

Figure 10-3. TimelineActivity

Summary
At this point, Yamba can post a new status as well as list the statuses of our friends.
Our application is complete and usable.

Figure 10-4 illustrates what we have done so far as part of the design outlined earlier
in Figure 5-4.

Summary | 159

Figure 10-4. Yamba completion

160 | Chapter 10: Lists and Adapters

CHAPTER 11

Broadcast Receivers

In this chapter, you will learn about broadcast receivers and when to use them. We’ll
create a couple of different receivers that illustrate different usage scenarios. First, you’ll
create a broadcast receiver that will start up your update service at boot time, so that
users always have their friends’ latest timelines the first time they check for them (as-
suming their preferences are set). Next, you will create a receiver that will update the
timeline when it changes while the user is viewing it. This will illustrate the program-
matic registration of receivers and introduce you to broadcasting intents. We’ll imple-
ment a receiver that is trigged by changes in network availability. And finally, we’ll
learn how to surround our app with some security by defining permissions.

By the end of this chapter, your app has most of the functionality that a user would
need. The app can send status updates, get friends’ timelines, update itself, and start
automatically. It works even when the user is not connected to the network (although
of course it cannot send or receive new messages).

About Broadcast Receivers
Broadcast receivers are Android’s implementation of the Publish/Subscribe messaging
pattern, or more precisely, the Observer pattern. Applications (known as publishers)
can generate broadcasts to simply send events without knowing who, if anyone, will
get them. Receivers (known as subscribers) that want the information subscribe to spe-
cific messages via filters. If the message matches a filter, the subscriber is activated (if
it’s not already running) and notified of the message.

As you may recall from Chapter 4, a BroadcastReceiver is a piece of code to which an
app subscribes in order to get notified when an action happens. That action is in the
form of an intent broadcast. When the right intent is fired, the receiver wakes up and
executes. The “wakeup” happens in the form of an onReceive() callback method.

161

http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Publish/subscribe
http://en.wikipedia.org/wiki/Observer_pattern

BootReceiver
In our Yamba application, the UpdaterService is responsible for periodically updating
the data from the online service. Currently, the user needs to start the service manually,
which she does by starting the application and then clicking on the Start Service menu
option.

It would be much cleaner and simpler if somehow the system automatically started
UpdaterService when the device powered up. To do this, we create BootReceiver, a
broadcast receiver that the system will launch when the boot is complete, which in turn
will launch our TimelineActivity activity. Example 11-1 sets up our broadcast receiver.

Example 11-1. BootReceiver.java

package com.marakana.yamba6;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class BootReceiver extends BroadcastReceiver { //

 @Override
 public void onReceive(Context context, Intent intent) { //
 context.startService(new Intent(context, UpdaterService.class)); //
 Log.d("BootReceiver", "onReceived");
 }

}

We create BootReceiver by subclassing BroadcastReceiver, the base class for all
receivers.

The only method that we need to implement is onReceive(). This method gets called
when an intent matches this receiver.

We launch an intent to start our Updater service. The system passed us a Context
object when it invoked our onReceive() method, and we are expected to pass it on
to the Updater service. The service doesn’t happen to use the Context object for
anything, but we’ll see an important use for it later.

At this point, we have our boot receiver. But in order for it to get called—in other words,
in order for the activity to start at boot—we must register it with the system.

Registering the BootReceiver with the AndroidManifest File
To register BootReceiver, we add it to the manifest file, shown in Example 11-2. We
also add an intent filter to this file. This intent filter specifies which broadcasts trigger
the receiver to become activated.

162 | Chapter 11: Broadcast Receivers

Example 11-2. AndroidManifest.xml: <application> section

...
<receiver android:name=".BootReceiver">
 <intent-filter>
 <action android:name="android.intent.action.BOOT_COMPLETED" />
 </intent-filter>
</receiver>
...

In order to get notifications for this particular intent filter, we must also specify that
we’re using a specific permission it requires, in this case android.permission
.RECEIVE_BOOT_COMPLETED (see Example 11-3).

Example 11-3. AndroidManifest.xml: <manifest> section

...
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" />
...

If we don’t specify the permission we require, we simply won’t be no-
tified when this event occurs, and we won’t have the chance to run our
startup code. We won’t even know we aren’t getting notified, so this is
potentially a hard bug to find.

Testing the Boot Receiver
At this point, you can reboot your device. Once it comes back up, your
UpdaterService should be up and running. You can verify this either by looking at the
LogCat for our output or by using System Settings and checking that the service is
running.

To verify via System Settings, at the Home screen, click on the Menu button and choose
Settings→Applications→Running Services. You should see UpdaterService listed there.
At this point, you know the BootReceiver did indeed get the broadcast and has started
the UpdaterService.

The TimelineReceiver
Currently, if you view your Timeline activity while a new status update comes in, you
won’t know about it. That’s because the UpdaterService doesn’t have a way to notify
TimelineActivity to refresh itself.

To address this, we create another broadcast receiver, this time as an inner class of
TimelineActivity, as shown in Example 11-4.

The TimelineReceiver | 163

Example 11-4. TimelineActivity.java with TimelineReceiver inner class

...
class TimelineReceiver extends BroadcastReceiver { //
 @Override
 public void onReceive(Context context, Intent intent) { //
 cursor.requery(); //
 adapter.notifyDataSetChanged(); //
 Log.d("TimelineReceiver", "onReceived");
 }
}
...

As before, to create a broadcast receiver, we subclass the BroadcastReceiver class.

The only method we need to override is onReceive(). This is where we put the work
we want done when this receiver is triggered.

The work we want done is simply to tell the cursor object to refresh itself. We do
this by invoking requery(), which executes the same query that was executed ini-
tially to obtain this cursor object.

Notifies the adapter that the underlying data has changed.

At this point, our receiver is ready but not registered. Unlike BootReceiver, where we
registered our receiver with the system statically via the manifest file, we’ll register
TimelineReceiver programmatically, as shown in Example 11-5. This is because Time
lineReceiver makes sense only within TimelineActivity because purpose is refreshing
the list when the user is looking at the Timeline activity.

Example 11-5. TimelineActivity.java with TimelineReceiver

...
@Override
protected void onResume() {
 super.onResume();

 // Get the data from the database
 cursor = db.query(DbHelper.TABLE, null, null, null, null, null,
 DbHelper.C_CREATED_AT + " DESC");
 startManagingCursor(cursor);

 // Create the adapter
 adapter = new TimelineAdapter(this, cursor);
 listTimeline.setAdapter(adapter);

 // Register the receiver
 registerReceiver(receiver, filter); //
}

@Override
protected void onPause() {
 super.onPause();

164 | Chapter 11: Broadcast Receivers

 // UNregister the receiver
 unregisterReceiver(receiver); //
}
...

We register the receiver in onResume() so that it’s registered whenever the
TimelineActivity is running. Recall that all paths to the running state go through
the onResume() method, as described in “Running state” on page 29.

Similarly, we unregister the receiver on the way to the stopped state (recall “Stopped
state” on page 30). onPause() is a good place to do that.

What’s missing now is the explanation of filter. To specify what triggers the receiver,
we need an instance of IntentFilter, which simply indicates which intent actions we
want to be notified about. In this case, we make up an action string through which we
filter intents, as shown in Example 11-6.

Example 11-6. TimelineActivity.java with update onCreate()

...
filter = new IntentFilter("com.marakana.yamba.NEW_STATUS"); //
...

Create a new instance of IntentFilter to filter for the com.marakana.yamba.NEW_STA
TUS intent action. Since this is a text constant, we’ll define it as such and refer to it
as a constant later on. A good place to define it is the UpdaterService, because that’s
the code that generates the events we’re waiting for.

Broadcasting Intents
Finally, to trigger the filter, we need to broadcast an intent that matches the action the
intent filter is listening for. In the case of BootReceiver, earlier, we didn’t have to do
this, because the system was already broadcasting the appropriate intent. However, for
TimelineReceiver, the broadcast is ours to make because the intent is specific to our
application.

If you recall from Chapter 8, our UpdaterService had an inner class called Updater (see
Example 11-7). This inner class was the separate thread that connected to the online
service and pulled down the data. Because this is where we know whether there are any
new statuses, this is a good choice for sending notifications as well.

Example 11-7. UpdaterService.java with the Updater inner class

...
private class Updater extends Thread {
 Intent intent;

 public Updater() {
 super("UpdaterService-Updater");
 }

Broadcasting Intents | 165

 @Override
 public void run() {
 UpdaterService updaterService = UpdaterService.this;
 while (updaterService.runFlag) {
 Log.d(TAG, "Running background thread");
 try {
 YambaApplication yamba =
 (YambaApplication) updaterService.getApplication(); //
 int newUpdates = yamba.fetchStatusUpdates(); //
 if (newUpdates > 0) { //
 Log.d(TAG, "We have a new status");
 intent = new Intent(NEW_STATUS_INTENT); //
 intent.putExtra(NEW_STATUS_EXTRA_COUNT, newUpdates); //
 updaterService.sendBroadcast(intent); //
 }
 Thread.sleep(60000); //
 } catch (InterruptedException e) {
 updaterService.runFlag = false; //
 }
 }
 }
}
...

We get the application object to access our common application methods.

If you recall, our application provides fetchStatusUpdates() to get all the latest status
updates and populate the database. This method returns the number of new statuses.

We check whether there are any new statuses.

This is the intent we are about to broadcast. NEW_STATUS_INTENT is a constant
that represents an arbitrary action. In our case, we define it as com.mara
kana.yamba.NEW_STATUS, but it could be any string without spaces. However, using
something that resembles your package name is a good practice.

There’s a way to add data to an intent. In our case, it would be useful to communicate
to others as part of this broadcast how many new statuses there are. In this line, we
use Intent’s putExtra() method to add the number of new statuses under a key
named NEW_STATUS_EXTRA_COUNT, which is just our arbitrary constant.

At this point, we know there’s at least one new status. sendBroadcast() is part of
Context, which is a superclass of Service and therefore also a superclass of our
UpdaterService. Since we’re inside the Updater inner class, we have to refer to the
parent’s updaterService instance in order to call sendBroadcast(). This method sim-
ply takes the intent we just created.

We tell this thread to sleep for a minute so that it doesn’t overload the device’s CPU
while checking regularly for updates.

In case this thread is interrupted for some reason, we update this service’s runFlag
so we know it’s not currently running.

166 | Chapter 11: Broadcast Receivers

UpdaterService might send broadcasts even when the Timeline
Receiver is not registered. That is perfectly fine. Those broadcasts will
simply be ignored.

At this point, a new status received by UpdaterService causes an intent to be broadcast
over to the TimelineActivity, where the message is received by the TimelineReceiver,
which in turn refreshes the ListView of statuses.

The Network Receiver
With the current design, our service will start automatically at boot time and attempt
to connect to the cloud and retrieve the latest updates approximately every minute.
One problem with the current design is that the service will try to connect even when
there’s no Internet connection available. This adds unnecessary attempts to wake up
the radio and connect to the server, all of which taxes the battery. Imagine how many
wasteful attempts would be made while your phone is in flight mode on a cross-country
flight. This highlights some of the inherit constraints when programming for mobile
devices: we’re limited by the battery life and network connectivity.

A better approach is to listen to network availability broadcasts and use that informa-
tion to intelligently turn off the service when the Internet is unavailable and turn it back
on when data connection comes back up. The system does send an intent whenever
connection availability changes. Another system service allows us to find out what
changed and act accordingly.

In this case, we’re creating another receiver, NetworkReceiver, shown in Exam-
ple 11-8. Just as before, we need to create a Java class that subclasses BroadcastRe
ceiver, and then register it via the Android manifest file.

Example 11-8. NetworkReceiver.java

package com.marakana.yamba6;

import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.net.ConnectivityManager;
import android.util.Log;

public class NetworkReceiver extends BroadcastReceiver { //
 public static final String TAG = "NetworkReceiver";

 @Override
 public void onReceive(Context context, Intent intent) {

 boolean isNetworkDown = intent.getBooleanExtra(
 ConnectivityManager.EXTRA_NO_CONNECTIVITY, false); //

The Network Receiver | 167

 if (isNetworkDown) {
 Log.d(TAG, "onReceive: NOT connected, stopping UpdaterService");
 context.stopService(new Intent(context, UpdaterService.class)); //
 } else {
 Log.d(TAG, "onReceive: connected, starting UpdaterService");
 context.startService(new Intent(context, UpdaterService.class)); //
 }
 }

}

As we said before, when you create a new broadcast receiver, you typically start by
subclassing Android’s own BroadcastReceiver class.

When the system broadcasts the particular intent action that this receiver subscribes,
the intent will have an extra piece of information indicating whether the network is
up or down. In this case, the variable is a Boolean value keyed to the Connectivity
Manager.EXTRA_NO_CONNECTIVITY constant. In the previous section, we associated a
value to a string of our own invention; here we’re on the other end of the message,
extracting a value from a Boolean. A value of true indicates that the network is down.

If the network is down, we simply send an intent to our UpdaterService. We now
have a use for the Context object that the system passed to this method. We call its
stopService() method, passing the Intent.

If the flag is false, we know that the network has changed and is now available. So
we start our UpdaterService, the inverse of our previous stop action.

Inside an activity or a service, we simply used the methods start
Activity(), startService(), stopService(), and so on. This is because
activities and services are subclasses of Context, and thus they inherited
these methods. So, there’s an is-a relationship between them and Con
text. Broadcast receivers, on the other hand have a Context object
passed into them, and thus have a has-a relationship with the object.

Now that we have created this new receiver, we need to register it with the manifest
file, shown in Example 11-9.

Example 11-9. AndroidManifest.xml: <application> section

...
<receiver android:name=".NetworkReceiver">
 <intent-filter>
 <action android:name="android.net.conn.CONNECTIVITY_CHANGE" />
 </intent-filter>
</receiver>
...

168 | Chapter 11: Broadcast Receivers

http://en.wikipedia.org/wiki/Is-a
http://en.wikipedia.org/wiki/Has-a

We also need to update our application’s permissions (Example 11-10) because the
action filter for a network change is protected and requires us to ask the user to grant
us this particular permission.

Example 11-10. AndroidManifest.xml: <manifest> section

...
<uses-permission android:name="android.permission.INTERNET" /> <!-- -->
<uses-permission android:name="android.permission.RECEIVE_BOOT_COMPLETED" /> <!-- -->
<uses-permission android:name="android.permission.ACCESS_NETWORK_STATE" /> <!-- -->
...

Used by our Twitter object to connect to the Internet to get and post status updates.
We saw this permission already in Chapter 6. Not having this permission will cause
our app to crash when it attempts to access the network (unless we catch and handle
that network exception).

Required in order to receive broadcasts that the system has booted. As mentioned
earlier, if we don’t have this permission, we will silently be ignored at boot time and
our boot code won’t run.

Needed in order to receive network state updates. Just as with the boot receiver, if
we don’t have this permission, we will be silently passed by when the network state
changes.

Adding Custom Permissions to Send and Receive Broadcasts
As discussed in “Updating the Manifest File for Internet Permission” on page 61, an
application must be granted permissions to access certain restricted features of the
system, such as connecting to the Internet, sending SMS messages, making phone calls,
reading the user’s contacts, taking photos, and so on. The user has to grant all or none
of the permissions to the application at installation time, and it is the job of the appli-
cation developer to list all the permissions the app needs by adding the <uses-permis
sion> element to the manifest file. So far, we’ve added permissions to Yamba in order
to access the Internet, kick off our boot-time service, and learn about network changes.

But now that we have our Updater service sending a broadcast action to our Timeline
receiver, we might want to restrict permission to send and receive that broadcast to our
own app. Otherwise, another app, knowing what our action looks like, could send it
and cause actions in our application that we didn’t intend.

To fill up this security hole, we define our own permission and ask the user to grant it
to the Yamba application. Next, we’ll enforce both sending and receiving the
permissions.

Adding Custom Permissions to Send and Receive Broadcasts | 169

Declaring Permissions in the Manifest File
The first step is to declare our permissions, explaining what they are, how they are to
be used, and setting their protection level, shown in Example 11-11.

Example 11-11. Adding permissions to manifest file

<manifest>

 ...
 <!-- -->
 <permission android:name="com.marakana.yamba.SEND_TIMELINE_NOTIFICATIONS"
 <!-- -->
 android:label="@string/send_timeline_notifications_permission_label"
 <!-- -->
 android:description="@string/send_timeline_notifications_permission_description"
 <!-- -->
 android:permissionGroup="android.permission-group.PERSONAL_INFO"
 <!-- -->
 android:protectionLevel="normal" />

 <!-- -->
 <permission android:name="com.marakana.yamba.RECEIVE_TIMELINE_NOTIFICATIONS"
 android:label="@string/receive_timeline_notifications_permission_label"
 android:description="@string/receive_timeline_notifications_permission_description"
 android:permissionGroup="android.permission-group.PERSONAL_INFO"
 android:protectionLevel="normal" />

 <!-- -->
 <uses-permission android:name="com.marakana.yamba.SEND_TIMELINE_NOTIFICATIONS" />
 <uses-permission android:name="com.marakana.yamba.RECEIVE_TIMELINE_NOTIFICATIONS" />

</manifest>

This is the name of our permission, which we refer to later both when we request
the permission and when we enforce it. In our app, we’ll be using the permission to
securely send timeline notifications.

Label that will be displayed to the user when she is prompted to grant this permission
to our app at installation time. It should be relatively short. Note that we have defined
this label in our strings.xml resource file.

A description should be provided to offer information about why this permission is
needed and how it’s going to be used.

The permission group is optional, but it helps the system group your permission
with other common permissions in one of the system-defined permission groups
http://d.android.com/reference/android/Manifest.permission_group.html. You could
also define your own group, but that is rarely done.

The permission level, a required value, specifies the severity or risk posed by granting
the permission. A “normal” level is the lowest and most basic of the four standard
permission levels.

170 | Chapter 11: Broadcast Receivers

http://d.android.com/reference/android/Manifest.permission_group.html
http://developer.android.com/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel
http://developer.android.com/reference/android/R.styleable.html#AndroidManifestPermission_protectionLevel

We do the same to define the other permission, which allows us to receive the time-
line notifications we are generating.

Once our permissions are defined, we need to ask the user to grant them to the
application. We do that via the <uses-permission> element, just as we did for the
other system permissions we specified earlier.

At this point, we have defined our two custom permissions and have requested them
for our application. Next, we need to make sure the sender and receiver both play by
the rules.

Updating the Services to Enforce Permissions
Our Updater service broadcasts the intent to the rest of the system once there’s a new
status update. Because we do not want everyone to receive this intent, in Exam-
ple 11-12 we ensure that the receiver won’t be allowed to receive it unless the receiver
defines the right permission.

Example 11-12. Updater in UpdaterService

 ...
 private class Updater extends Thread {
 static final String RECEIVE_TIMELINE_NOTIFICATIONS =
 "com.marakana.yamba.RECEIVE_TIMELINE_NOTIFICATIONS"; //
 Intent intent;

 public Updater() {
 super("UpdaterService-Updater");
 }

 @Override
 public void run() {
 UpdaterService updaterService = UpdaterService.this;
 while (updaterService.runFlag) {
 Log.d(TAG, "Running background thread");
 try {
 YambaApplication yamba = (YambaApplication) updaterService
 .getApplication();
 int newUpdates = yamba.fetchStatusUpdates();
 if (newUpdates > 0) {
 Log.d(TAG, "We have a new status");
 intent = new Intent(NEW_STATUS_INTENT);
 intent.putExtra(NEW_STATUS_EXTRA_COUNT, newUpdates);
 updaterService.sendBroadcast(intent, RECEIVE_TIMELINE_NOTIFICATIONS); //
 }
 Thread.sleep(DELAY);
 } catch (InterruptedException e) {
 updaterService.runFlag = false;
 }
 }
 }

Adding Custom Permissions to Send and Receive Broadcasts | 171

 } // Updater
 ...

This is the name of the permission that the receiver must have. It needs to be the
same as the permission name in the manifest file that we specified previously.

To enforce the permission on the receiver, we simply add it to the sendBroad
cast() call as the optional second parameter. If the receiver doesn’t have this par-
ticular permission granted to it by the user, the receiver won’t be notified and will
never know that our message just got dropped.

To complete the security in the sending direction, we don’t have to do anything to
TimelineReceiver. It will be able to receive the permission because the user granted it.
But there is a corresponding responsibility on the TimelineReceiver side. It should
check that the sender had permission to send the message it is receiving.

Updating TimelineReceiver to Enforce Permissions
Now we will check on the receiver side that the broadcaster is allowed to talk to us.
When we register our receiver, we add the broadcast permission that the sender should
have, as shown in Example 11-13.

Example 11-13. TimelineReceiver in TimelineActivity.java

...
public class TimelineActivity extends BaseActivity {
 static final String SEND_TIMELINE_NOTIFICATIONS =
 "com.marakana.yamba.SEND_TIMELINE_NOTIFICATIONS"; //
 ...
 @Override
 protected void onResume() {
 super.onResume();
 ...
 // Register the receiver
 super.registerReceiver(receiver, filter,
 SEND_TIMELINE_NOTIFICATIONS, null); //
 }
 ...
}

We define the permission name as a constant. This needs to be the same name as
the one we declared for this permission in the manifest file.

In the onResume() method where we register our TimelineReceiver, we now add a
parameter specifying this permission is a requirement for anyone who wants to send
us this type of broadcast.

We now have a pair of custom permissions, and we are enforcing them in both the
sender and the receiver of the broadcast. This illustrates some of the capabilities of
Android to fine-tune the permission system.

172 | Chapter 11: Broadcast Receivers

Summary
Yamba is now complete and ready for prime time. Our application can now send status
updates to our online service, get the latest statuses from our friends, start automatically
at boot time, and refresh the display when a new status is received.

Figure 11-1 illustrates what we have done so far as part of the design outlined earlier
in Figure 5-4.

Figure 11-1. Yamba completion

Summary | 173

CHAPTER 12

Content Providers

Content providers are Android building blocks that can expose data across the boun-
daries between application sandboxes. As you recall, each application in Android runs
in its own process with its own permissions. This means that an application cannot see
another app’s data. But sometimes you want to share data across applications. This is
where content providers become very useful.

Take your contacts, for example. You might have a large database of contacts on your
device, which you can view via the Contacts app as well as via the Dialer app. Some
devices, such as HTC Android models, might even have multiple versions of the Con-
tacts and Dialer apps. It would not make a lot of sense to have similar data live in
multiple databases.

Content providers let you centralize content in one place and have many different ap-
plications access it as needed. In the case of the contacts on your phone, there is actually
a ContactProvider application that contains a content provider, and other applications
access the data via this interface. The interface itself is fairly simple: it has the same
insert(), update(), delete(), and query() methods we saw in Chapter 9.

Android uses content providers quite a bit internally. In addition to contacts, your
settings represent another example, as do all your bookmarks. All the media in the
system is also registered with MediaStore, a content provider that dispenses images,
music, and videos in your device.

Creating a Content Provider
To create a content provider:

1. Create a new Java class that subclasses the system’s ContentProvider class.

2. Declare your CONTENT_URI.

3. Implement all the unimplemented methods, such as insert(), update(), delete(),
query(), getID(), and getType().

4. Declare your content provider in the AndroidManifest.xml file.

175

We are going to start by creating a brand-new Java class in the same package as all other
classes. Its name will be StatusProvider. This class, like any of Android’s main building
blocks, will subclass an Android framework class, in this case ContentProvider.

In Eclipse, select your package, click on File→New→Java Class, and enter “StatusPro-
vider”. Then, update the class to subclass ContentProvider, and organize the imports
(Ctrl-Shift-O) to import the appropriate Java packages. The result should look like this:

package com.marakana.yamba7;

import android.content.ContentProvider;

public class StatusProvider extends ContentProvider {

}

Of course, this code is now broken because we need to provide implementations for
many of its methods. The easiest way to do that is to click on the class name and choose
“Add unimplemented methods” from the list of quick fixes. Eclipse will then create
stubs, or templates, of the missing methods.

Defining the URI
Objects within a single app share an address space, so they can refer to each other
simply by variable names. But objects in different apps don’t recognize the different
address spaces, so they need some other mechanism to find each other. Android uses
a Uniform Resource Identifier, a string that identifies a specific resource, to locate a
content provider. A URI has three or four parts, shown in Example 12-1.

Example 12-1. Parts of a URI

content://com.marakana.yamba.statusprovider/status/47
 A B C D

• Part A, content://, is always set to this value. This is written in stone.

• Part B, com.marakana.yamba.provider, is the so-called authority. It is typically the
name of the class, all in lowercase. This authority must match the authority that
we specify for this provider when we later declare it in the manifest file.

• Part C, status, indicates the type of data that this particular provider provides. It
could contain any number of segments separated with a slash, including none at all.

• Part D, 47, is an optional ID for the specific item that we are referencing. If not set,
the URI will represent the entire set. Number 47 is an arbitrary number picked for
this example.

Sometimes you need to refer to the content provider in its entirety, and sometimes to
only one of the items of data it contains. If you refer to it in its entirety, you leave off
Part D; otherwise, you include that part to identify one item within the content pro-
vider. Actually, since we have only one table, we do not need Part C of the URI.

176 | Chapter 12: Content Providers

http://en.wikipedia.org/wiki/Uniform_Resource_Identifier

One way to define the constants for our example is like this:

public static final Uri CONTENT_URI = Uri
 .parse("content://com.marakana.yamba7.statusprovider");
public static final String SINGLE_RECORD_MIME_TYPE =
 "vnd.android.cursor.item/vnd.marakana.yamba.status";
public static final String MULTIPLE_RECORDS_MIME_TYPE =
 "vnd.android.cursor.dir/vnd.marakana.yamba.mstatus";

In “Getting the Data Type” on page 180, we’ll explore the reason for two MIME types.
We are also going to define the status data object in a class-global variable so that we
can refer to it:

StatusData statusData;

We’ll be using the status data object all over our app because all our database connec-
tivity is centralized in that class. So now the StatusProvider class has a reference to an
object of class StatusData.

Inserting Data
To insert a record into a database via the content provider interface, we need to override
the insert() method. The caller provides the URI of this content provider (without an
ID) and the values to be inserted. A successful call to insert the new record returns the
ID for that record. We end by returning a new URI concatenating the provider’s URI
with the ID we just got back:

@Override
public Uri insert(Uri uri, ContentValues values) {
 SQLiteDatabase db = statusData.dbHelper.getWritableDatabase(); //
 try {
 long id = db.insertOrThrow(StatusData.TABLE, null, values); //
 if (id == -1) {
 throw new RuntimeException(String.format(
 "%s: Failed to insert [%s] to [%s] for unknown reasons.", TAG,
 values, uri)); //
 } else {
 return ContentUris.withAppendedId(uri, id); //
 }
 } finally {
 db.close(); //
 }
}

We need to open the database for writing.

We attempt to insert the values into the database and, upon a successful insert,
receive the ID of the new record from the database.

If anything fails during the insert, the database will return -1. We can than throw a
runtime exception because this is an error that should never have happened.

Creating a Content Provider | 177

If the insert was successful, we use the ContentUris.withAppendedId() helper method
to craft a new URI containing the ID of the new record appended to the standard
provider’s URI.

We need to close the database no matter what, so a finally block is a good place to
do that.

Updating Data
To update the data via the Content Provider API, we need:

The URI of the provider
This may or may not contain an ID. If it does, the ID indicates the specific record
that needs to be updated, and we can ignore the selection. If the ID is not specified,
it means that we are updating many records and need the selection to indicate
which are to be changed.

The values to be updated
The format of this parameter is a set of name/value pairs that represent column
names and new values.

Any selection and arguments that go with it
These together make up a WHERE clause in SQL, selecting the records that will
change. The selection and its arguments are omitted when there is an ID, because
the ID is enough to select the record that is being updated.

The code that handles both types of update—by ID and by selection—can be as follows:

@Override
public int update(Uri uri, ContentValues values, String selection,
 String[] selectionArgs) {
 long id = this.getId(uri); //
 SQLiteDatabase db = statusData.dbHelper.getWritableDatabase(); //
 try {
 if (id < 0) {
 return db.update(StatusData.TABLE, values, selection, selectionArgs); //
 } else {
 return db.update(StatusData.TABLE, values,
 StatusData.C_ID + "=" + id, null); //
 }
 } finally {
 db.close(); //
 }
}

We use the local helper method getId() to extract the ID from the URI. If no ID is
present, this method returns -1. getId() will be defined later in this chapter.

We need to open the database for writing the updates.

If there’s no ID, that means we’re simply updating all the database records that match
the selection and selectionArgs constraints.

178 | Chapter 12: Content Providers

If an ID is present, we are using that ID as the only part of the WHERE clause to limit
the single record that we’re updating.

Don’t forget to close the database.

Deleting Data
Deleting data is similar to updating data. The URI may or may not contain the ID of
the particular record to delete:

@Override
public int delete(Uri uri, String selection, String[] selectionArgs) {
 long id = this.getId(uri); //
 SQLiteDatabase db = statusData.dbHelper.getWritableDatabase(); //
 try {
 if (id < 0) {
 return db.delete(StatusData.TABLE, selection, selectionArgs); //
 } else {
 return db.delete(StatusData.TABLE, StatusData.C_ID + "=" + id, null); //
 }

 } finally {
 db.close(); //
 }
}

The getId() helper method extracts the ID from the URI that we get. If no ID is
present, this method returns -1.

We need to open the database for writing the updates.

If there’s no ID, we simply delete all the database records that match the selec
tion and selectionArgs constraints.

If an ID is present, we use that ID as the only part of the WHERE clause to limit the
operation to the single record the user wants to delete.

Don’t forget to close the database.

Querying Data
To query the data via a content provider, we override the query() method. This method
has a long list of parameters, but usually we just forward most of them to the database
call with the same name:

@Override
public Cursor query(Uri uri, String[] projection, String selection,
 String[] selectionArgs, String sortOrder) {
 long id = this.getId(uri); //
 SQLiteDatabase db = statusData.dbHelper.getReadableDatabase(); //
 if (id < 0) {
 return db.query(StatusData.TABLE, projection, selection, selectionArgs, null,
 null, sortOrder); //

Creating a Content Provider | 179

 } else {
 return db.query(StatusData.TABLE, projection,
 StatusData.C_ID + "=" + id, null, null, null, null); //
 }
}

The getId() helper method extracts the ID from the URI that we get.

We need to open the database, in this case just for reading.

If there’s no ID, we simply forward what we got for the content provider to the
equivalent database call. Note that the database call has two additional parameters
that correspond to the SQL GROUPING and HAVING components. Because content pro-
viders do not support this feature, we simply pass in null.

If an ID is present, we use that ID as the WHERE clause to limit what record to return.

We do not close the database here, because closing the database will
destroy the cursor and we still need it on the receiving end to go over
the data returned by the query. One way to handle the cursor is to have
the receiver manage it. Activities have a simple startManagingCursor()
method for this purpose.

Getting the Data Type
A content provider must return the MIME type of the data it is returning. The MIME
type indicates either a single item or all the records for the given URI. Earlier in this
chapter we defined the single-record MIME type as vnd.android.cursor.item/vnd.mar
akana.yamba.status and the directory of all statuses as vnd.android.cursor.dir/vnd.mar
akana.yamba.status. To let others retrieve the MIME type, we must define the call
getType().

The first part of the MIME type is either vnd.android.cursor.item or vnd.android
.cursor.dir, depending on whether the type represents a specific item or all items for
the given URI. The second part, vnd.marakana.yamba.status or vnd.marakana
.yamba.mstatus for our app, is a combination of the constant vnd followed by your
company or app name and the actual content type.

As you may recall, the URI can end with a number. If it does, that number is the ID of
the specific record. If it doesn’t, the URI refers to the entire collection.

The following source shows the implementation of getType() as well as the getId()
helper method that we’ve already used several times:

@Override
public String getType(Uri uri) {
 return this.getId(uri) < 0 ? MULTIPLE_RECORDS_MIME_TYPE
 : SINGLE_RECORD_MIME_TYPE; //
}

180 | Chapter 12: Content Providers

http://en.wikipedia.org/wiki/MIME

private long getId(Uri uri) {
 String lastPathSegment = uri.getLastPathSegment(); //
 if (lastPathSegment != null) {
 try {
 return Long.parseLong(lastPathSegment); //
 } catch (NumberFormatException e) { //
 // at least we tried
 }
 }
 return -1; //
}

getType() uses the helper method getId() to determine whether the URI has an ID
part. If it does not—as indicated by a negative return value—we return
vnd.android.cursor.dir/vnd.marakana.yamba.mstatus for the MIME type. Other-
wise, we’re referring to a single record and the MIME type is vnd.android.cur
sor.item/vnd.marakana.yamba.status. Of course, we previously defined these values
as class constants.

To extract the ID in our implementation of getId(), we take the last part of the URI.

If that last part is not null, we try to parse it as a long and return it.

It could be that the last part is not a number at all, in which case the parse will fail.

We return -1 to indicate that the given URI doesn’t contain a valid ID.

Updating the Android Manifest File
As with any major building block, we want to define our content provider in the An-
droid manifest XML file. Notice that in this case the android:authorities property
specifies the URI authority permitted to access this content provider. Typically, this
authority would be your content provider class—which we use here—or your package:

<application>
 ...
 <provider android:name=".StatusProvider"
 android:authorities="com.marakana.yamba7.statusprovider" />
 ...
</application>

At this point our content provider is complete, and we are ready to use it in other
building blocks of Yamba. But since our application already centralizes all data access
in a StatusData object that is readily accessible via YambaApplication, we don’t really
have a good use for this content provider within the same application. Besides, content
providers mostly make sense when we want to expose the data to another application.

Using Content Providers Through Widgets
As mentioned before, content providers make the most sense when you want to expose
the data to other applications. It is a good practice to always think of your application

Using Content Providers Through Widgets | 181

as part of a larger Android ecosystem and, as such, a potential provider of useful data
to other applications.

To demonstrate how content providers can be useful, we’ll create a Home screen
widget. We’re not using the term widget here as a synonym for Android’s View class,
but as a useful embedded service offered by the Home screen.

Android typically ships with a few Home screen widgets. You can access them by going
to your Home screen, long-pressing on it to pull up an Add to Home Screen dialog,
and choosing Widgets. Widgets that come with Android include Alarm Clock, Picture
Frame, Power Controls, Music, and Search. Our goal is to create our own Yamba widget
that the user will be able to add to the Home screen.

The Yamba widget will be simple, displaying just the latest status update. To create it,
we’ll make a new YambaWidget class that subclasses AppWidgetProviderInfo. We’ll also
have to register the widget with the manifest file.

Implementing the YambaWidget class
YambaWidget is the main class for our widget. It is a subclass of AppWidgetProvider, a
special system class that makes widgets. This class itself is a subclass of Broadcast
Receiver, so our Yamba widget is a broadcast receiver automatically. Basically, when-
ever our widget is updated, deleted, enabled, or disabled, we’ll get a broadcast intent
with that information. So this class inherits the onUpdate(), onDeleted(), onEnabled(),
onDisabled(), and onReceive() callbacks. We can override any of these, but typically
we care mostly about the updates and general broadcasts we receive.

Now that we understand the overall design of the widget framework, Example 12-2
shows how we implement it.

Example 12-2. YambaWidget.java

package com.marakana.yamba7;

import android.app.PendingIntent;
import android.appwidget.AppWidgetManager;
import android.appwidget.AppWidgetProvider;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.database.Cursor;
import android.text.format.DateUtils;
import android.util.Log;
import android.widget.RemoteViews;

public class YambaWidget extends AppWidgetProvider { //
 private static final String TAG = YambaWidget.class.getSimpleName();

 @Override
 public void onUpdate(Context context, AppWidgetManager appWidgetManager,
 int[] appWidgetIds) { //

182 | Chapter 12: Content Providers

 Cursor c = context.getContentResolver().query(StatusProvider.CONTENT_URI,
 null, null, null, null); //
 try {
 if (c.moveToFirst()) { //
 CharSequence user = c.getString(c.getColumnIndex(StatusData.C_USER)); //
 CharSequence createdAt = DateUtils.getRelativeTimeSpanString(context, c
 .getLong(c.getColumnIndex(StatusData.C_CREATED_AT)));
 CharSequence message = c.getString(c.getColumnIndex(StatusData.C_TEXT));

 // Loop through all instances of this widget
 for (int appWidgetId : appWidgetIds) { //
 Log.d(TAG, "Updating widget " + appWidgetId);
 RemoteViews views = new RemoteViews(context.getPackageName(),
 R.layout.yamba_widget); //
 views.setTextViewText(R.id.textUser, user); //
 views.setTextViewText(R.id.textCreatedAt, createdAt);
 views.setTextViewText(R.id.textText, message);
 views.setOnClickPendingIntent(R.id.yamba_icon, PendingIntent
 .getActivity(context, 0, new Intent(context,
 TimelineActivity.class), 0));
 appWidgetManager.updateAppWidget(appWidgetId, views); //
 }
 } else {
 Log.d(TAG, "No data to update");
 }
 } finally {
 c.close(); //
 }
 Log.d(TAG, "onUpdated");
 }

 @Override
 public void onReceive(Context context, Intent intent) { //
 super.onReceive(context, intent);
 if (intent.getAction().equals(UpdaterService.NEW_STATUS_INTENT)) { //
 Log.d(TAG, "onReceived detected new status update");
 AppWidgetManager appWidgetManager = AppWidgetManager.getInstance(context); //
 this.onUpdate(context, appWidgetManager, appWidgetManager
 .getAppWidgetIds(new ComponentName(context, YambaWidget.class))); //
 }
 }
}

As mentioned before, our widget is a subclass of AppWidgetProvider, which itself is
a BroadcastReceiver.

This method is called whenever our widget is to be updated, so it’s where we’ll
implement the main functionality of the widget. When we register the widget with
the system in the manifest file later, we’ll specify the update frequency we’d like. In
our case, this method will be called about every 30 minutes.

We finally get to use our content provider. The whole purpose of this widget in this
chapter is to illustrate how to use the StatusProvider that we created earlier. As you
saw earlier when we implemented the content provider, its API is quite similar to

Using Content Providers Through Widgets | 183

the SQLite database API. The main difference is that instead of passing a table name
to a database object, we’re passing a content URI to the ContentResolver. We still
get back the very same Cursor object as we did with databases in Chapter 9.

In this particular example, we care only about the very latest status update from the
online service. So we position the cursor to the first element. If one exists, it’s our
latest status update.

In the next few of lines of code, we extract data from the cursor object and store it
in local variables.

Since the user could have multiple Yamba widgets installed, we need to loop
through them and update them all. We don’t particularly care about the specific
appWidgetId because we’re doing identical work to update every instance of the
Yamba widget. The appWidgetId becomes an opaque handle we use to access each
widget in turn.

The actual view representing our widget is in another process. To be precise, our
widget is running inside the Home application, which acts as its host and is the
process we are updating. Hence the RemoteViews constructor. The RemoteViews
framework is a special shared memory system designed specifically for widgets.

Once we have the reference to our widget views’ Java memory space in another
process, we can update those views. In this case, we’re setting the status data in the
row that represents our widget.

Once we update the remote views, the AppWidgetManager call to updateAppWidget()
actually posts a message telling the system to update our widget. This will happen
asynchronously, but shortly after onUpdate() completes.

Regardless of whether the StatusProvider found a new status, we release the data
that we might have gotten from the content provider. This is just a good practice.

The call to onReceive() is not necessary in a typical widget. But since a widget is a
broadcast receiver, and since our Updater service does send a broadcast when we
get a new status update, this method is a good opportunity to invoke onUpdate()
and get the latest status data updated on the widget.

We check whether the intent was for the new status broadcast.

If it was, we get the instance of AppWidgetManager for this context.

We then invoke onUpdate().

At this point, we have coded the Yamba widget, and as a receiver, it will be notified
periodically or when there are new updates, and it will loop through all instances of
this widget on the Home screen and update them.

Next, we need to set up the layout for our widget.

184 | Chapter 12: Content Providers

Creating the XML Layout
The layout for the widget is fairly straightforward. Note that we’re reusing our existing
row.xml file that displays status data properly in the Timeline activity. In Exam-
ple 12-3, we just include it along with a little title and an icon to make it look good on
the Home screen.

Example 12-3. res/layout/yamba_widget.xml

<?xml version="1.0" encoding="utf-8"?>
 <!-- -->
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_height="wrap_content" android:layout_width="fill_parent"
 android:background="@color/edit_text_background"
 android:layout_margin="5dp" android:padding="5dp">
 <!-- -->
 <ImageView android:layout_width="wrap_content" android:src="@drawable/icon"
 android:layout_height="fill_parent" android:id="@+id/yamba_icon"
 android:clickable="true" />
 <!-- -->
 <include layout="@layout/row" />
</LinearLayout>

We’re using LinearLayout to hold our widget together. It runs horizontally, with the
icon on the left and the status data on the right.

This is our standard Yamba icon.

Notice the use of the <include> element. This is how we include our existing
row.xml into this layout so we don’t have to duplicate the code.

This layout is simple enough, but it does the job for our particular needs. Next, we
need to define some basic information about this widget and its behavior.

Creating the AppWidgetProviderInfo File
The XML file shown in Example 12-4 is responsible for describing the widget. It typi-
cally specifies which layout this widget uses, how frequently it should be updated by
the system, and its size.

Example 12-4. res/xml/yamba_widget_info.xml

<?xml version="1.0" encoding="utf-8"?>
<appwidget-provider xmlns:android="http://schemas.android.com/apk/res/android"
 android:initialLayout="@layout/yamba_widget" android:minWidth="294dp"
 android:minHeight="72dp" android:label="@string/msgLastTimelineUpdate"
 android:updatePeriodMillis="1800000" />

In this case we specify that we’d like to have our widget updated every 30 minutes or
so (1,800,000 milliseconds). Here, we also specify the layout to use, the title of this
widget, and its size.

Using Content Providers Through Widgets | 185

Updating the Manifest File
Finally, we need to update the manifest file and register the widget:

 ...
 <application .../>
 ...
 <receiver android:name=".YambaWidget"
 android:label="@string/msgLastTimelineUpdate">
 <intent-filter>
 <action android:name="android.appwidget.action.APPWIDGET_UPDATE" />
 </intent-filter>
 <intent-filter>
 <action android:name="com.marakana.yamba.NEW_STATUS" />
 </intent-filter>
 <meta-data android:name="android.appwidget.provider"
 android:resource="@xml/yamba_widget_info" />
 </receiver>
 ...
 </application>
 ...

Notice that the widget is a receiver, as we mentioned before. So, just like other broadcast
receivers, we declare it within a <receiver> tag inside an <application> element. It is
important to register this receiver to receive ACTION_APPWIDGET_UPDATE updates. We do
that via the <intent-filter>. The <meta-data> specifies the meta information for this
widget in the yamba_widget_info XML file described in the previous section.

That’s it. We now have the widget and are ready to test it.

Testing the Widget
To test this widget, install your latest application on the device. Next, go to the Home
screen, long-press it, and click on the Widgets choice. You should be able to navigate
to the Yamba widget at this point. After adding it to the Home screen, the widget should
display the latest status update.

If your Updater service is running, the latest updates should show up on the Home
screen. This means your widget is running properly.

Summary
At this point, the Yamba app is complete. Congratulations! You are ready to fine-tune
it, customize it, and publish it to the market.

Figure 12-1 illustrates what we have done so far as part of the design outlined earlier
in Figure 5-4.

186 | Chapter 12: Content Providers

Figure 12-1. Yamba completion

Summary | 187

CHAPTER 13

System Services

Like many modern operating systems, Android comes with a number of system services
that are always on, always running, and readily available for developers to tap into.
These system services include things like the Location service, Sensor service, WiFi
service, Alarm service, Telephony service, Bluetooth service, and so on. System services
are started at boot time and are guaranteed to be running by the time your application
launches.

In this chapter, we’ll see how we can use some of the system services to further expand
the Yamba application. First, we’ll take a look at the Sensor service in a small example
to demonstrate some of the concepts that are common to most of the system services.
Then, we’ll add support for location information to our status updates via the Location
service.

Additionally, we’re going to refactor the Yamba application to take advantage of Intent
Service support. This will demonstrate how to use the Alarm service and will make our
Updater slightly simpler and more efficient.

Compass Demo
To start with system services, we are going to look at a simple, self-contained example
of a compass application. This application uses the Sensor service to get updates from
the orientation sensor and use its information to rotate a Rose, our custom UI compo-
nent. The Sensor service is very typical of system services and a relatively easy one to
understand.

To build this example, we’ll create an activity that will get the Sensor service and register
for updates from a particular sensor. Next, we’ll build the Rose that will rotate on the
screen based on the sensor readings.

189

Common Steps in Using System Services
To get any system service, issue the getSystemService() call. This returns a Manager
object representing that system service, which you then use to access the service. Most
system services work on some sort of publish/subscribe mechanism. In other words,
you generally register your app for notifications from that service and provide your own
callback methods that the service will invoke when an event happens. To do this in
Java, create a listener that implements an interface so that the service can call the call-
back methods.

Keep in mind that requesting notifications from a system service can be costly in terms
of battery usage. For example, getting a GPS signal or processing sensor updates takes
a lot of energy from the device. To preserve the battery, we typically want to be doing
the work of processing updates only when the user is looking at the activity itself. In
terms of the activity life cycle (see “Activity Life Cycle” on page 28), this means we want
to get the notifications only while in the running state (see “Running state”
on page 29).

To ensure that you request service updates only while in the running state, register for
updates in onResume() and unregister in onPause(). This is because all roads into the
running state go via onResume() and all roads out of it go via onPause(). In certain other
situations, you may want to cast the net wider and register the activity between
onStart() and onStop(), or even between onCreate() and onDestroy(). In our case, we
don’t want to register in onCreate(), because it would waste a lot of battery and pro-
cessing time by making us listen and process sensor updates even when our activity is
not in the foreground. You can now see how understanding the activity life cycle plays
an important role in optimizing the usage of system services for battery consumption.

Getting Updates from the Compass
To code our Compass demo application, we get SensorManager, the class that represents
the Sensor system service. We make our main activity implement SensorEvent
Listener so that we can register it (i.e., this) to get updates for a specific sensor. We
register and unregister the listener in onResume() and onPause(), respectively. To im-
plement the sensor listeners, our activity provides onAccuracyChanged() and onSensorCh
anged(). The former is a requirement, but we’ll leave it empty because the accuracy of
the orientation sensor is not expected to change. The latter call is what’s really of in-
terest to us.

When the orientation sensor changes, the Sensor service calls back our sensor listener
via onSensorChanged() and reports the new sensor data. The data always comes back
as an array of float values that represent degrees and therefore range from 0 to 359. In
the case of the orientation sensor, the elements represent the following dimensions,
illustrated in Figure 13-1:

190 | Chapter 13: System Services

Index [0], the azimuth
The amount of rotation around the Z axis from the vertical position around the
back and then around the bottom toward the front

Index [1], the pitch
The amount of rotation around the X axis from the front to the left and then around
the back toward the right

Index [2], the roll
The amount of rotation around the Y axis from the vertical position to the left and
then the around the bottom toward the right

For the Compass demo, we are interested only in the first element, i.e., the azimuth.
The data returned by each sensor has a different meaning, and you should look up the
particulars in the documentation at http://d.android.com/reference/android/hardware/
SensorManager.html.

Figure 13-1. Axis

Compass Main Activity
Example 13-1, the main Compass activity, sets the Rose as its only widget on the screen.
It also registers with SensorManager to listen to sensor events and updates the Rose
orientation accordingly.

Compass Demo | 191

http://d.android.com/reference/android/hardware/SensorManager.html
http://d.android.com/reference/android/hardware/SensorManager.html

Example 13-1. Compass.java

package com.marakana;

import android.app.Activity;
import android.content.res.Configuration;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Bundle;
import android.util.Log;
import android.view.Window;
import android.view.WindowManager;

// implement SensorListener
public class Compass extends Activity implements SensorEventListener { //
 SensorManager sensorManager; //
 Sensor sensor;
 Rose rose;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) { //
 super.onCreate(savedInstanceState);

 // Set full screen view
 getWindow().setFlags(WindowManager.LayoutParams.FLAG_FULLSCREEN,
 WindowManager.LayoutParams.FLAG_FULLSCREEN);
 requestWindowFeature(Window.FEATURE_NO_TITLE);

 // Create new instance of custom Rose and set it on the screen
 rose = new Rose(this); //
 setContentView(rose); //

 // Get sensor and sensor manager
 sensorManager = (SensorManager) getSystemService(SENSOR_SERVICE); //
 sensor = sensorManager.getDefaultSensor(Sensor.TYPE_ORIENTATION); //

 Log.d("Compass", "onCreated");
 }

 // Register to listen to sensors
 @Override
 public void onResume() {
 super.onResume();
 sensorManager.registerListener(this, sensor,
 SensorManager.SENSOR_DELAY_NORMAL); //
 }

 // Unregister the sensor listener
 @Override
 public void onPause() {
 super.onPause();
 sensorManager.unregisterListener(this); //
 }

192 | Chapter 13: System Services

 // Ignore accuracy changes
 public void onAccuracyChanged(Sensor sensor, int accuracy) { //
 }

 // Listen to sensor and provide output
 public void onSensorChanged(SensorEvent event) { //
 int orientation = (int) event.values[0]; //
 Log.d("Compass", "Got sensor event: " + event.values[0]);
 rose.setDirection(orientation); //
 }

 @Override
 public void onConfigurationChanged(Configuration newConfig) {
 super.onConfigurationChanged(newConfig);
 }

}

Since Compass listens to sensor events, it needs to implement the SensorEvent
Listener interface.

We define the local variable for the sensor, the sensor manager, and the Rose.

Because accessing the sensor is a one-time activity, we do it when our app is created.

The window manager flags set the activity into full-screen mode.

We create a new instance of the Rose widget, our custom compass rose.

In this case, the activity content is the single Rose widget. This is unlike the usual
reference to an XML layout resource.

We get the sensor manager from the system service.

From the sensor manager, we can obtain the actual sensor object that we are inter-
ested in.

We register to listen to sensor updates in the activity’s onResume() method, as de-
scribed earlier.

We unregister from sensor updates in onPause(), the counterpart to onResume().

onAccuracyChanged() is implemented because it is required by the SensorEvent
Listener interface, but is left empty for the reasons explained earlier.

onSensorChanged() is called whenever the sensor changes, indicating a rotation of
the device in some direction. The particular information about the change is stored
in SensorEvent.

We are interested in the first element of the array of new values.

Once we have the new orientation, we update our Rose widget to rotate accordingly.

Compass Demo | 193

The way a device reports sensor data can be very erratic, coming at
uneven intervals. There are ways to suggest to the system how frequently
we’d like the sensor updates, but these are just suggestions and not a
guarantee. Also, sensors are not supported by the emulator, so to really
test your application, you’ll need a physical device with support for the
orientation sensor. Most Android phones have that support.

Custom Rose Widget
Shown in Example 13-2, Rose is our custom UI widget showing a compass rose that
can be rotated like a real compass. Every UI widget in Android needs to be a subclass
of View. But because this is an image, we’ll choose a higher starting point, in this case
the ImageView class, which is a View. By subclassing ImageView, our Rose inherits some
useful methods to load an image and draw it on the screen.

With any custom UI widget, one of the most important methods is onDraw(), which
draws the widget onto a Canvas that is provided to the method. In the case of our Rose,
we rotate this canvas around its middle point for the same number of degrees as re-
ported by the orientation sensor. Next, we draw the image onto this rotated sensor as
it would normally be drawn by the super class. The result is a rotated compass rose
representing the direction in which we are pointing.

Example 13-2. Rose.java

package com.marakana;

import android.content.Context;
import android.graphics.Canvas;
import android.widget.ImageView;

public class Rose extends ImageView { //
 int direction = 0;

 public Rose(Context context) {
 super(context);

 this.setImageResource(R.drawable.compassrose); //
 }

 // Called when component is to be drawn
 @Override
 public void onDraw(Canvas canvas) { //
 int height = this.getHeight(); //
 int width = this.getWidth();

 canvas.rotate(direction, width / 2, height / 2); //
 super.onDraw(canvas); //
 }

 // Called by Compass to update the orientation
 public void setDirection(int direction) { //

194 | Chapter 13: System Services

 this.direction = direction;
 this.invalidate(); // request to be redrawn
 }

}

Our widget has to be a subclass of View, but since our widget is an image, we get
more functionality by starting from ImageView.

ImageView already knows how to set an image as its content. We just specify to
super which image resource to use. Note that the file compassrose.jpg is in
our /res/drawable folder.

onDraw() is the method that the layout manager calls to have each widget draw itself.
The layout manager passes the Canvas to this method. This method is where you
typically do any custom drawing to the canvas.

Once we have the canvas, we can figure out its size.

We simply rotate the entire canvas for some amount (in degrees) around its
midpoint.

We tell super to draw the image on this rotated canvas. At this point we have our
rose drawn at the proper angle.

setDirection() is called by the Compass activity to update the direction of the rose
based on the values that the sensor manager reported.

Calling invalidate() on a view marks it for redrawing, which happens later via a
call to onDraw().

At this point, your compass application is working. The compass rose should be pointing
north, more or less, when the device is held upright as usual. Keep in mind that you
should run this application on a physical device because the emulator doesn’t
support it.

Location Service
Now that you have seen how the sensor manager works, we can look at the Location
API, another system service provided by Android. Just like sensors, the Location API
is supported via the Location manager. And just like sensors, we get the Location man-
ager via a getSystemService() call.

Once we have access to the Location service, we need to register a Location listener
with it so the service can call back when there’s a change in location. Again, we’ll do
this by implementing a Location listener interface.

If you recall from “Common Steps in Using System Services” on page 190, processing
GPS and other location updates can be very taxing for the battery. To minimize the
battery consumption, we want to listen to location updates only while in the running

Location Service | 195

state. To do that, we’ll register for the updates in onResume() and unregister in
onPause(), taking advantage of the activity life cycle.

Where Am I? Demo
This example illustrates how to use location-based services in Android. First, we use
LocationManager to figure out our current location based on the resources in the envi-
ronment available to the device, such as GPS or a wireless network. Second, we use
Geocoder to convert this location to an address.

The layout

The layout for this example is trivial, as you can see in Example 13-3. Our resource file
provides a TextView widget for the title and another TextView widget for the output.
Since the output could be longer than the screen size, we wrap the output in a Scroll
View widget.

Example 13-3. res/layout/main.xml

<?xml version="1.0" encoding="utf-8"?>
<LinearLayout xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_height="fill_parent" android:layout_width="fill_parent"
 android:background="#fff" android:orientation="vertical">
 <!-- -->
 <TextView android:layout_width="wrap_content"
 android:layout_height="wrap_content" android:layout_gravity="center"
 android:textColor="#333" android:textSize="30dp" android:text="@string/title"/>
 <!-- -->
 <ScrollView android:layout_height="fill_parent"
 android:layout_width="fill_parent">
 <!-- -->
 <TextView android:textColor="#333" android:layout_gravity="center"
 android:layout_height="fill_parent" android:layout_width="fill_parent"
 android:gravity="center" android:textSize="25dp" android:text="Waiting..."
 android:id="@+id/textOut"></TextView>
 </ScrollView>
</LinearLayout>

The title for our application.

A ScrollView to enable scrolling if the output grows beyond the size of the screen.

A TextView to represent the output. It will be programmatically set from the Where-
AmI activity.

The activity for our Location listener

The code in Example 13-4 is our main activity, which sets up the screen, connects to
LocationManager, and uses the Geocoder to figure out our address. The Location
Manager uses location providers, such as GPS or Network, to figure out our current
location. The location is expressed as latitude and longitude values. The Geocoder

196 | Chapter 13: System Services

searches an online database for known addresses in the vicinity of the location provided.
It may come up with multiple results, some more specific than others.

Example 13-4. WhereAmI.java

package com.marakana;

import java.io.IOException;
import java.util.List;

import android.app.Activity;
import android.location.Address;
import android.location.Geocoder;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.Bundle;
import android.util.Log;
import android.widget.TextView;

public class WhereAmI extends Activity implements LocationListener { //
 LocationManager locationManager; //
 Geocoder geocoder; //
 TextView textOut; //

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 textOut = (TextView) findViewById(R.id.textOut);

 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE); //
 geocoder = new Geocoder(this); //

 // Initialize with the last known location
 Location lastLocation = locationManager
 .getLastKnownLocation(LocationManager.GPS_PROVIDER); //
 if (lastLocation != null)
 onLocationChanged(lastLocation);
 }

 @Override
 protected void onResume() { //
 super.onRestart();
 locationManager.requestLocationUpdates(LocationManager.GPS_PROVIDER, 1000,
 10, this);
 }

 @Override
 protected void onPause() { //
 super.onPause();
 locationManager.removeUpdates(this);
 }

Location Service | 197

 // Called when location has changed
 public void onLocationChanged(Location location) { //
 String text = String.format(
 "Lat:\t %f\nLong:\t %f\nAlt:\t %f\nBearing:\t %f", location
 .getLatitude(), location.getLongitude(), location.getAltitude(),
 location.getBearing()); //
 textOut.setText(text);

 // Perform geocoding for this location
 try {
 List<Address> addresses = geocoder.getFromLocation(
 location.getLatitude(), location.getLongitude(), 10); //
 for (Address address : addresses) {
 textOut.append("\n" + address.getAddressLine(0)); //
 }
 } catch (IOException e) {
 Log.e("WhereAmI", "Couldn't get Geocoder data", e);
 }
 }

 // Methods required by LocationListener
 public void onProviderDisabled(String provider) {
 }

 public void onProviderEnabled(String provider) {
 }

 public void onStatusChanged(String provider, int status, Bundle extras) {
 }

}

Notice that WhereAmI implements LocationListener. This is the interface that Location
Manager uses to notify us of changes to the location.

Local reference to LocationManager.

Local reference to Geocoder.

textOut is the text view to which we print our output so the user can see it.

To get the local reference to LocationManager, we ask the context to get the
location manager system service. For more about context, see “Application Con-
text” on page 34.

We create a new instance of Geocoder and pass the current context to it.

The location manager memorizes its last known location. This is useful because it
might take a while until we get the location lock via either a network or a GPS
provider.

As usual, we register in onResume(), since that is the method that is called en route
to the running state. We use the location manager’s requestLocationUpdates()
method to register for updates.

198 | Chapter 13: System Services

We unregister in onPause(), which will be called just before the activity goes into the
stopped state.

onLocationChanged() is the callback method called by the location manager when it
detects that the location has changed.

We get the Location object, which contains a lot of useful information about the
current location. We create a human-readable string with this info.

Once we have the location, we can try to “geocode” the location, a process of con-
verting latitude and longitude to a known address.

If we do find known addresses for this location, we print them out.

Some other callback methods are required to implement the LocationListener in-
terface. We don’t use them for this example.

The manifest file

As shown in Example 13-5, the manifest file for this app is fairly standard. Notice that
in order to register as a location listener, we have to hold the appropriate permissions.
Keep in mind that although we have GPS and Network as the two most commonly
used location providers, Android is built with extensibility in mind. In the future, we
might have other types of providers as well. For that reason, Android breaks down the
location permissions into abstract fine location and coarse location permissions.

Example 13-5. AndroidManifest.xml

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana" android:versionCode="1" android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">
 <activity android:name=".WhereAmI" android:label="@string/app_name">
 <intent-filter>
 <action android:name="android.intent.action.MAIN" />
 <category android:name="android.intent.category.LAUNCHER" />
 </intent-filter>
 </activity>
 </application>
 <uses-sdk android:minSdkVersion="4" />
 <!-- -->
 <uses-permission android:name="android.permission.ACCESS_FINE_LOCATION" />
 <uses-permission android:name="android.permission.ACCESS_COARSE_LOCATION" />

</manifest>

Declares that this app uses location providers. The location permissions could be
android.permission.ACCESS_FINE_LOCATION for a GPS provider or android.permis
sion.ACCESS_COARSE_LOCATION for a wireless network provider.

At this point, your WhereAmI application is complete. It illustrates how to use
LocationManager to get the actual location via a specific location provider and how to

Location Service | 199

convert that location into a known address via Geocoder. An example of the result is
shown in Figure 13-2.

Figure 13-2. WhereAmI

Updating Yamba to Use the Location Service
The WhereAmI application was a small standalone test to make sure we can get location
information. Now we’ll incorporate location information into our larger Yamba app.

Updating Our Preferences
First, the user might not want to broadcast her location to the world, so we should ask.
A good place to ask would be the Preferences. This time around, we’ll use a List
Preference property. This is somewhat different from the EditTextPreferences we’ve
seen before in Chapter 7, in that it requires a list of items. In fact, it requires two lists:
one to display and one to use for actual values.

So we’ll add a couple of strings to our strings.xml file and create two new string re-
sources: one to represent names of our location providers in a form friendly to human
readers and the other to represent their values. To do that, we’ll add the following to
our strings.xml file:

<?xml version="1.0" encoding="utf-8"?>
<resources>
 ...
 <string-array name="providers">
 <item>None, please</item>
 <item>GPS via satellites!</item>
 <item>Mobile Network will do</item>
 </string-array>

200 | Chapter 13: System Services

 <string-array name="providerValues">
 <item>NONE</item>
 <item>gps</item>
 <item>network</item>
 </string-array>
</resources>

Notice that both string arrays have the same number of elements. They basically rep-
resent name-value pairs and match each other.

Now that we have the names and values for our location providers, we can update
prefs.xml with that information, as shown in Example 13-6.

Example 13-6. Updated res/xml/prefs.xml

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
 <EditTextPreference android:title="@string/titleUsername"
 android:summary="@string/summaryUsername" android:key="username"></EditTextPreference>
 <EditTextPreference android:title="@string/titlePassword"
 android:password="true" android:summary="@string/summaryPassword"
 android:key="password"></EditTextPreference>
 <EditTextPreference android:title="@string/titleApiRoot"
 android:summary="@string/summaryApiRoot" android:key="apiRoot"></EditTextPreference>
 <ListPreference android:title="@string/titleProvider"
 android:summary="@string/summaryProvider" android:key="provider"
 android:entryValues="@array/providerValues" android:entries="@array/providers" />
 <!-- -->
 <ListPreference android:entryValues="@array/intervalValues"
 android:summary="@string/summaryUpdaterInterval"
 android:title="@string/titleUpdaterInterval"
 android:entries="@array/interval" android:key="interval"></ListPreference>
</PreferenceScreen>

The new ListPreference displaying the names and values of various location pro-
viders that we support: GPS, network, and none at all.

Updating the Yamba Application
Now that we have the location provider preferences, we have to expose those prefer-
ences via YambaApplication to rest of the app, namely StatusActivity.

To do that, add a getter method to YambaApplication.java (see Example 13-7).

Example 13-7. YambaApplication.java

public class YambaApplication extends Application implements
 OnSharedPreferenceChangeListener {
 ...
 public static final String LOCATION_PROVIDER_NONE = "NONE";
 ...
 public String getProvider() {
 return prefs.getString("provider", LOCATION_PROVIDER_NONE);

Updating Yamba to Use the Location Service | 201

 }
}

Now that we have support for providers in the preferences and in the Yamba app object,
we’re ready to update the Status activity.

Updating the Status Activity
The Status activity is the main place where we use the location information. Just as in
the WhereAmI demo, we’re going to get the Location manager by calling getSys
temService() and register for location updates. We’re also going to implement the
LocationListener interface, which means adding a number of new callback methods
to this activity. When the location does change, we’ll update the location object, and
next time around when we update our status online, we’ll have the proper location
information. Example 13-8 shows the updated code.

Example 13-8. StatusActivity.java

package com.marakana.yamba8;

import winterwell.jtwitter.Twitter;
import android.graphics.Color;
import android.location.Location;
import android.location.LocationListener;
import android.location.LocationManager;
import android.os.AsyncTask;
import android.os.Bundle;
import android.text.Editable;
import android.text.TextWatcher;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;
import android.widget.Toast;

public class StatusActivity extends BaseActivity implements OnClickListener,
 TextWatcher, LocationListener { //
 private static final String TAG = "StatusActivity";
 private static final long LOCATION_MIN_TIME = 3600000; // One hour
 private static final float LOCATION_MIN_DISTANCE = 1000; // One kilometer
 EditText editText;
 Button updateButton;
 TextView textCount;
 LocationManager locationManager; //
 Location location;
 String provider;

 /** Called when the activity is first created. */
 @Override
 public void onCreate(Bundle savedInstanceState) {

202 | Chapter 13: System Services

 super.onCreate(savedInstanceState);
 setContentView(R.layout.status);

 // Find views
 editText = (EditText) findViewById(R.id.editText);
 updateButton = (Button) findViewById(R.id.buttonUpdate);
 updateButton.setOnClickListener(this);

 textCount = (TextView) findViewById(R.id.textCount);
 textCount.setText(Integer.toString(140));
 textCount.setTextColor(Color.GREEN);
 editText.addTextChangedListener(this);
 }

 @Override
 protected void onResume() {
 super.onResume();

 // Setup location information
 provider = yamba.getProvider(); //
 if (!YambaApplication.LOCATION_PROVIDER_NONE.equals(provider)) { //
 locationManager = (LocationManager) getSystemService(LOCATION_SERVICE); //
 }
 if (locationManager != null) {
 location = locationManager.getLastKnownLocation(provider); //
 locationManager.requestLocationUpdates(provider, LOCATION_MIN_TIME,
 LOCATION_MIN_DISTANCE, this); //
 }

 }

 @Override
 protected void onPause() {
 super.onPause();

 if (locationManager != null) {
 locationManager.removeUpdates(this); //
 }
 }

 // Called when button is clicked
 public void onClick(View v) {
 String status = editText.getText().toString();
 new PostToTwitter().execute(status);
 Log.d(TAG, "onClicked");
 }

 // Asynchronously posts to twitter
 class PostToTwitter extends AsyncTask<String, Integer, String> {
 // Called to initiate the background activity
 @Override
 protected String doInBackground(String... statuses) {
 try {
 // Check if we have the location
 if (location != null) { //

Updating Yamba to Use the Location Service | 203

 double latlong[] = {location.getLatitude(), location.getLongitude()};
 yamba.getTwitter().setMyLocation(latlong);
 }
 Twitter.Status status = yamba.getTwitter().updateStatus(statuses[0]);
 return status.text;
 } catch (RuntimeException e) {
 Log.e(TAG, "Failed to connect to twitter service", e);
 return "Failed to post";
 }
 }

 // Called once the background activity has completed
 @Override
 protected void onPostExecute(String result) {
 Toast.makeText(StatusActivity.this, result, Toast.LENGTH_LONG).show();
 }
 }

 // TextWatcher methods
 public void afterTextChanged(Editable statusText) {
 int count = 140 - statusText.length();
 textCount.setText(Integer.toString(count));
 textCount.setTextColor(Color.GREEN);
 if (count < 10)
 textCount.setTextColor(Color.YELLOW);
 if (count < 0)
 textCount.setTextColor(Color.RED);
 }

 public void beforeTextChanged(CharSequence s, int start, int count, int after) {
 }

 public void onTextChanged(CharSequence s, int start, int before, int count) {
 }

 // LocationListener methods
 public void onLocationChanged(Location location) { //
 this.location = location;
 }

 public void onProviderDisabled(String provider) { //
 if (this.provider.equals(provider))
 locationManager.removeUpdates(this);
 }

 public void onProviderEnabled(String provider) { //
 if (this.provider.equals(provider))
 locationManager.requestLocationUpdates(this.provider, LOCATION_MIN_TIME,
 LOCATION_MIN_DISTANCE, this);
 }

 public void onStatusChanged(String provider, int status, Bundle extras) { //
 }

}

204 | Chapter 13: System Services

StatusActivity now implements LocationListener, the interface for callbacks from
the location manager.

Here we define local variables for LocationManager, Location, and our provider.

We get the provider from the Yamba application object, as we explained earlier. And
ultimately, the user chooses the provider in the preferences.

We check whether the user wants us to provide her location information at all.

If we pass that test, we get the location information via getSystemService(). This
call is relatively inexpensive, even if it happens every time the method runs, because
we’re just getting a reference to an already running system service.

Get the cached location if the location manager has it.

Register with the location manager to receive location updates. Here, we get to
specify how often we’d like to receive notifications and for what kind of change in
location. In our example, we care only about the general vicinity at a city level, so
we set these values to 1,000 meters (one kilometer) and 3,600,000 milliseconds (one
hour). Note that this is just a hint to the system.

When this activity is no longer visible, we unregister from the location manager and
no longer receive any updates to help save battery power.

Once the user is about to update her status, we check whether we have a location.
If we do, we pack it into the required double array and pass it on to
setMyLocation() in Yamba’s Twitter object.

Now we implement the methods that the location manager calls. onLocation
Changed() is called whenever there’s a change in location and provides us with the
actual new Location object.

This method is called when the provider is no longer available. We can simply re-
move any updates so that we don’t waste the battery.

When the provider we care about becomes available, we can request location up-
dates again.

This method is called when there’s a change with the provider in general. In this
case, we ignore it.

At this point our Yamba application supports location updates. The user can set pref-
erences to indicate what location provider to use, if any.

Next, we’re going to see another system service, this time the Alarm service, which we’ll
use to trigger an Intent service.

Updating Yamba to Use the Location Service | 205

Intent Service
Now that we understand how system services work, we can use another service concept
to substantially simplify our Updater service. If you recall, our Updater service is an
always-on, always-running service that periodically goes to the cloud and pulls down
the latest timeline updates. Since by default a service runs in the same thread as the
user interface (i.e., it runs on the UI thread), we had to create a separate thread called
Updater within the Updater service that is responsible for the actual network connec-
tion. We then started this thread in the service’s onCreate() and onStartCommand()
methods. We ran it forever until onDestroy() got called. However, our Updater thread
would sleep between the updates for some amount of time. All this worked well in
Chapter 8, but there’s a simpler way to accomplish this task, shown in Example 13-9.

An IntentService is a subclass of Service and is also activated by a startService()
intent. Unlike a regular service, it runs on its own worker thread, so it doesn’t block
our precious UI thread. Also, once it’s done, it’s done. This means it runs only once,
but we will use an Alarm later to run it periodically. Any call to the intent’s startSer
vice() will recreate it.

Unlike a regular service, we don’t override onCreate(), onStartCommand(),
onDestroy(), and onBind(), but rather a new onHandleIntent() method. This method
is where we want to put our code that goes online and handles the network updates.
Also, unlike a regular service, an IntentService has a default constructor that must be
provided.

In short, instead of creating a separate thread and delaying network updates as in a
regular service, we can simplify our code by using an IntentService to run status up-
dates on its worker thread. Now we just need something to periodically wake up our
IntentService so it knows it needs to handle the updating job. For that, we’ll use the
Alarm manager, another system service.

The key to Intent services is the onHandleIntent() method, a block of code that will run
on a separate thread.

Example 13-9. UpdaterService.java based on IntentService

package com.marakana.yamba8;

import android.app.IntentService;
import android.content.Intent;
import android.util.Log;

public class UpdaterService1 extends IntentService { //
 private static final String TAG = "UpdaterService";

 public static final String NEW_STATUS_INTENT = "com.marakana.yamba.NEW_STATUS";
 public static final String NEW_STATUS_EXTRA_COUNT = "NEW_STATUS_EXTRA_COUNT";
 public static final String RECEIVE_TIMELINE_NOTIFICATIONS
 = "com.marakana.yamba.RECEIVE_TIMELINE_NOTIFICATIONS";

206 | Chapter 13: System Services

 public UpdaterService1() { //
 super(TAG);

 Log.d(TAG, "UpdaterService constructed");
 }

 @Override
 protected void onHandleIntent(Intent inIntent) { //
 Intent intent;
 Log.d(TAG, "onHandleIntent'ing");
 YambaApplication yamba = (YambaApplication) getApplication();
 int newUpdates = yamba.fetchStatusUpdates();
 if (newUpdates > 0) { //
 Log.d(TAG, "We have a new status");
 intent = new Intent(NEW_STATUS_INTENT);
 intent.putExtra(NEW_STATUS_EXTRA_COUNT, newUpdates);
 sendBroadcast(intent, RECEIVE_TIMELINE_NOTIFICATIONS);
 }
 }
}

We now subclass IntentService instead of its parent, Service.

A default constructor is needed. This is a good place to give your service a name,
which can be useful in TraceView, for example, to help identify various threads.

This is the key method. The work inside of it takes place on a separate worker thread
and doesn’t interfere with the main UI thread.

The rest of the code in this section broadcasts the change, as described in “Broad-
casting Intents” on page 165.

At this point, our service is updated. An easy way to test it would be to change the
Start/Stop Service menu item to a Refresh button. To do that, update your menu.xml
file to include the new item shown in Example 13-10, and change its handling in our
BaseActivity class.

Example 13-10. res/xml/menu.xml

<?xml version="1.0" encoding="utf-8"?>
<menu xmlns:android="http://schemas.android.com/apk/res/android">
 ...
 <item android:title="@string/titleRefresh" android:id="@+id/itemRefresh"
 android:icon="@android:drawable/ic_menu_rotate"></item>
</menu>

I’ve replaced itemToggle with itemRefresh so that the names make more sense. We
must also add the appropriate string to the strings.xml file.

Now we need to update our BaseActivity.java file to handle this new Refresh button
(see Example 13-11). To do that, we change the appropriate case statement in
onOptionsItemSelected(). Additionally, we can now remove onMenuOpened() altogether

Intent Service | 207

because we no longer need to change the state of that toggle button—it doesn’t exist
any more.

Example 13-11. BaseActivity.java with support for the Refresh button

public class BaseActivity extends Activity {
 ...
 @Override
 public boolean onOptionsItemSelected(MenuItem item) {

 switch (item.getItemId()) {
 ...
 case R.id.itemRefresh:
 startService(new Intent(this, UpdaterService.class)); //
 break;
 ...
 }
 return true;
 }
 ...
}

We simply fire off an intent to start our Updater service.

So our options menu now has a Refresh button that will start a service and have it
update the status data in the background. We can use this button to test whether this
new feature works well.

Another way to add the same functionality would have been to use an AsyncTask. In
fact, AsyncTask would probably be slightly more appropriate in this case from a design
point of view, to keep all the functionality at the UI level, but we’ve already discussed
it in “Threading in Android” on page 65. Here we wanted to demonstrate quickly how
an IntentService is started, and as you can see, it works just like any other service.

Next, we want to have our Updater service triggered periodically. To do that, we’ll use
the Alarm manager.

Alarms
The previous incarnation of our Updater service had a regular service that was always
running in a loop, pulling network updates, then sleeping for some amount of time,
and then looping again. With IntentService, we turned the process around. Our Up-
dater service now runs only once when fired up by the startService() intent. Now we
need a way to have something fire these intents every so often.

Android comes with yet another system service just for that. The Alarm service, rep-
resented by the AlarmManager class, lets you schedule certain things to happen at certain
times. The time can be recurring, which makes it easy to start our service every so often.
And the event that happens is an intent, or more precisely, a PendingIntent.

208 | Chapter 13: System Services

Pending intents

A PendingIntent is a combination of an intent and an action to be executed on it.
Typically this is used for future intents that you are passing to someone else. Create a
pending intent via one of the static methods in the PendingIntent class. Since there are
only a handful of ways to send an intent, there are only a handful of static methods to
create pending intents along with their actions. If you recall, you typically use an intent
to start an activity via startActivity(), start a service via startService(), or send a
broadcast via sendBroadcast(). So, to create a pending intent that will execute start
Service() with our intent in the future, we call the getService() static method.

Adding an Interval to Preferences
Now that we know how to leave an intent for someone to execute later and how to tell
an Alarm service to repeat that periodically, we need to choose where to implement
this feature. One good place is our existing BootReceiver, but before we do that, we’ll
add another option to our preferences, shown in Example 13-12.

Example 13-12. strings.xml with arrays for interval options

<?xml version="1.0" encoding="utf-8"?>
<resources>
 ...

 <!-- -->
 <string-array name="interval">
 <item>Never</item>
 <item>Fifteen minutes</item>
 <item>Half hour</item>
 <item>An hour</item>
 <item>Half day</item>
 <item>Day</item>
 </string-array>

 <!-- -->
 <string-array name="intervalValues">
 <item>0</item>
 <item>900000</item>
 <item>1800000</item>
 <item>3600000</item>
 <item>43200000</item>
 <item>86400000</item>
 </string-array>
</resources>

These will be the names of options that show up in the list.

These will be their corresponding values.

Now that we have these arrays, we can update prefs.xml as shown in Example 13-13
to add to our list of intervals.

Intent Service | 209

Example 13-13. prefs.xml with support for interval preference setting

<?xml version="1.0" encoding="utf-8"?>
<PreferenceScreen xmlns:android="http://schemas.android.com/apk/res/android">
 ...
 <!-- -->
 <ListPreference android:entryValues="@array/intervalValues"
 android:summary="@string/summaryUpdaterInterval"
 android:title="@string/titleUpdaterInterval"
 android:entries="@array/interval" android:key="interval" />
</PreferenceScreen>

This is the list preference. It shows a list of entities, as represented by android:enti
ties. The value associated with it comes from android:entityValues.

Now we are ready to update BootReceiver and add the Alarm service alarms.

Updating BootReceiver
If you recall from “BootReceiver” on page 162, a BootReceiver wakes up every time the
device is booted up. So far, our BootReceiver just starts our Updater service. That was
fine when the Updater service was always on and running, but now it would cause only
a one-time execution of the Updater.

We can use the Alarm service instead to periodically fire intents that start our Updater
service, as shown in Example 13-14. To do that, we’ll get the reference to the Alarm
manager, create a pending intent to be started each time, and set up the interval at
which to start the updates. Because our pending intent is meant to start a service, we’ll
use the PendingIntent.getService() call, as described in “Pending intents”
on page 209.

Example 13-14. BootReceiver.java updated with Alarm service calls to periodically start the Updater
service

package com.marakana.yamba8;

import android.app.AlarmManager;
import android.app.PendingIntent;
import android.content.BroadcastReceiver;
import android.content.Context;
import android.content.Intent;
import android.util.Log;

public class BootReceiver extends BroadcastReceiver {

 @Override
 public void onReceive(Context context, Intent callingIntent) {

 // Check if we should do anything at boot at all
 long interval = ((YambaApplication) context.getApplicationContext())
 .getInterval(); //
 if (interval == YambaApplication.INTERVAL_NEVER) //

210 | Chapter 13: System Services

 return;

 // Create the pending intent
 Intent intent = new Intent(context, UpdaterService.class); //
 PendingIntent pendingIntent = PendingIntent.getService(context, -1, intent,
 PendingIntent.FLAG_UPDATE_CURRENT); //

 // Setup alarm service to wake up and start service periodically
 AlarmManager alarmManager = (AlarmManager) context
 .getSystemService(Context.ALARM_SERVICE); //
 alarmManager.setInexactRepeating(AlarmManager.ELAPSED_REALTIME, System
 .currentTimeMillis(), interval, pendingIntent); //

 Log.d("BootReceiver", "onReceived");
 }

}

The previous code assumes that the phone is awake and will not work
when the device is asleep. When your device is asleep, a different ap-
proach is needed (not discussed in this book).

Our Yamba application has a simple getter method to return the value of the interval
preference.

We check the user’s preference to set the frequency of checks for network updates.
A value of INTERVAL_NEVER (zero) means not to check for updates at all.

This is the intent that will run to start our Updater service.

Here we wrap that intent with the action to start a service and get a new pending
intent. The value -1 is for a request code that is currently not being used. The flag
in the final argument indicates whether this intent already exists. We need just to
update it and not recreate it.

We get the reference to AlarmManager via the usual getSystemService() call.

setInexactRepeating() specifies that we’d like this pending intent to be sent repeat-
edly, but we’re not concerned with being exactly on time. The ELAPSED_REALTIME flag
will keep the alarm from waking up the phone just to run the updates. The other
parameters are the current time as the start time for this alarm, our desired interval,
and the actual pending intent to execute when the alarm runs.

You can now install this application on a device (and thus install the updated
BootReceiver), and then reboot the device. Once the device starts, the LogCat should
indicate that the BootReceiver ran and started the Updater service by posting a pending
intent to the Alarm service.

Intent Service | 211

Sending Notifications
Here’s an opportunity to introduce yet another system service—this time the Notifi-
cation service. We worked hard to have our Updater service run in the background and
get the latest status updates, but what’s the point of all this work if the user is not made
aware that there’s something new to look at? A standard Android UI approach to this
would be to post a notification to the notification bar up at the top of the screen. To
do that, we use the Notification system service.

We’re going to make the Updater service responsible for posting the notifications, since
it is the part of the app that knows of new statuses in the first place. To do that, we’ll
get the reference to the system Notification service, create a new Notification object,
and update it with the latest information. The notification itself will contain a pending
intent so that when the user clicks on it, it takes the user to Timeline activity to view
the latest status updates. Example 13-15 shows the new code.

Example 13-15. UpdaterService.java with Notifications

package com.marakana.yamba8;

import android.app.IntentService;
import android.app.Notification;
import android.app.NotificationManager;
import android.app.PendingIntent;
import android.content.Intent;
import android.util.Log;

public class UpdaterService extends IntentService {
 private static final String TAG = "UpdaterService";

 public static final String NEW_STATUS_INTENT = "com.marakana.yamba.NEW_STATUS";
 public static final String NEW_STATUS_EXTRA_COUNT = "NEW_STATUS_EXTRA_COUNT";
 public static final String RECEIVE_TIMELINE_NOTIFICATIONS = "com.marakana.yamba.
 RECEIVE_TIMELINE_NOTIFICATIONS";

 private NotificationManager notificationManager; //
 private Notification notification; //

 public UpdaterService() {
 super(TAG);

 Log.d(TAG, "UpdaterService constructed");
 }

 @Override
 protected void onHandleIntent(Intent inIntent) {
 Intent intent;
 this.notificationManager = (NotificationManager) getSystemService(NOTIFICATION_
 SERVICE); //
 this.notification = new Notification(android.R.drawable.stat_notify_chat,
 "", 0); //

212 | Chapter 13: System Services

 Log.d(TAG, "onHandleIntent'ing");
 YambaApplication yamba = (YambaApplication) getApplication();
 int newUpdates = yamba.fetchStatusUpdates();
 if (newUpdates > 0) {
 Log.d(TAG, "We have a new status");
 intent = new Intent(NEW_STATUS_INTENT);
 intent.putExtra(NEW_STATUS_EXTRA_COUNT, newUpdates);
 sendBroadcast(intent, RECEIVE_TIMELINE_NOTIFICATIONS);
 sendTimelineNotification(newUpdates); //
 }
 }

 /**
 * Creates a notification in the notification bar telling user there are new
 * messages
 *
 * @param timelineUpdateCount
 * Number of new statuses
 */
 private void sendTimelineNotification(int timelineUpdateCount) {
 Log.d(TAG, "sendTimelineNotification'ing");
 PendingIntent pendingIntent = PendingIntent.getActivity(this, -1,
 new Intent(this, TimelineActivity.class),
 PendingIntent.FLAG_UPDATE_CURRENT); //
 this.notification.when = System.currentTimeMillis(); //
 this.notification.flags |= Notification.FLAG_AUTO_CANCEL; //
 CharSequence notificationTitle = this
 .getText(R.string.msgNotificationTitle); //
 CharSequence notificationSummary = this.getString(
 R.string.msgNotificationMessage, timelineUpdateCount);
 this.notification.setLatestEventInfo(this, notificationTitle,
 notificationSummary, pendingIntent); //
 this.notificationManager.notify(0, this.notification);
 Log.d(TAG, "sendTimelineNotificationed");
 }

}

This is just our local reference to the NotificationManager class, which is our access
to the Notification system service.

We create a class-global Notification object and update it each time there’s a new
notification for our listeners.

We obtain the reference to the Notification service by using the usual getSystem
Service() call.

We create the notification object that we’ll reuse later. For now, we just specify the
standard icon to use with our notification, and leave the text and timestamp to be
updated later when we are about to post this notification.

We call our private sendTimelineNotification() method once we know there are
new statuses for the user.

Sending Notifications | 213

This pending intent will be kicked off when the user checks the notification in the
notification bar and clicks on the actual item. In this case, we want to take the user
to the Timeline activity, so we create an intent for that.

We’re now updating the data for the most recent notification. This is the timestamp
that indicates when it happened.

This flag tells the Notification manager to cancel this notification as soon as the user
clicks on it. The notification will be removed from the notification bar at that point.

Here we get the notification’s title and summary from our strings.xml file. Notice
that the summary has parameters, so we can use String.format() to update the
actual number of new statuses.

Finally, we tell the Notification manager to post this notification. In this case, we
do not need the ID, so we specify zero. An ID can be used to refer to a notification
later, usually in order to cancel it.

At this point our application is yet again complete. We now have a way to notify the
user of any new status updates so he can stay on top of what is going on in the world.

Summary
At this point you have seen a few system services—Sensor, Location, Alarm, and
Notification—and Android provides a few more services in addition to these. You
might have noticed that most of them have a lot of similarities, and hopefully you have
started extrapolating certain patterns. We have also used this chapter to somewhat
simplify our Updater service and introduce Intent services and pending intents.

214 | Chapter 13: System Services

CHAPTER 14

The Android Interface
Definition Language

Each application in Android runs in its own process. For security reasons, an applica-
tion cannot directly access the data of another application. However, a couple of mech-
anisms allow communication between applications. One such mechanism that you’ve
seen throughout this book is Intents. Intents are asynchronous, meaning that you can
post a message for someone to receive at some future point in time and just continue
with your application.

Every once in a while we need a more direct, synchronous access to another process.
There are many ways to implement this across process boundaries, and collectively
they are called Interprocess Communication, or IPC for short.

To allow cross-application communication, Android provides its own version of an
IPC protocol. One of the biggest challenges in IPC is passing data around, such as when
passing parameters to method calls on the remote systems. IPC protocols tend to get
complicated because they have to convert data from its in-memory format to a format
that’s convenient for sending to another process. This is called marshaling, and the
unpacking at the receiver is called unmarshaling.

To help with this, Android provides the Android Interface Definition Language, or
AIDL. This lightweight implementation of IPC uses a syntax that is very familiar to Java
developers, and there is a tool that automatically creates the hidden code required to
connect a client and a remote service.

To illustrate how to use AIDL to create an interprocess communication, we’ll create
two applications: a remote service called LogService and a client called LogClient that
will bind to that remote service.

Implementing the Remote Service
Our remote service, LogService, will simply allow remote clients to log a message to it.

215

http://en.wikipedia.org/wiki/Inter-process_communication

We are going to start by creating the interface for the remote service. This interface
represents the API, or set of capabilities that the service provides. We write this interface
in the AIDL language and save it in the same directory as our Java code with an .aidl
extension.

The AIDL syntax is very similar to a regular Java interface. You simply define the
method signature. The datatypes supported by AIDL are somewhat different from reg-
ular Java interfaces. However, all Java primitive datatypes are supported, and so are
the String, List, Map, and CharSequence classes.

If you have a custom complex data type, such as a class, you need to make it
Parcelable so that the Android runtime can marshal and unmarshal it. In this example,
we’ll create a Message as a custom type.

Writing the AIDL
We start by defining the interface for our service. As you can see in Example 14-1, the
interface very much resembles a typical Java interface. For readers who might have
worked with CORBA in the past, AIDL has its roots in CORBA’s IDL.

Example 14-1. ILogService.aidl

package com.marakana.logservice; //

import com.marakana.logservice.Message; //

interface ILogService { //
 void log_d(String tag, String message); //
 void log(in Message msg); //
}

Just as in Java, our AIDL code specifies what package it’s part of.

However, unlike Java, we have to explicitly import other AIDL definitions, even if
they are in the same package.

We specify the name of our interface. Interface names conventionally start with I
for interface.

This method is simple because it doesn’t return anything and takes only primitives
as inputs. Note that the String class is not a Java primitive, but AIDL considers it
to be one.

This method takes our custom Message parcel as its input. We’ll define Message next.

Next, we’ll look at the implementation of the Message AIDL, shown in Example 14-2.

Example 14-2. Message.aidl

package com.marakana.logservice; //

216 | Chapter 14: The Android Interface Definition Language

/* */
parcelable Message;

Specifies the package it’s in.

Declares that Message is a parcelable object. We will define this object later in Java.

At this point, we are done with the AIDL. As you save your files, Eclipse automatically
builds the code to which the client will connect, called the stub because it looks like a
complete method to the client but actually just passes on the client request to your
remote service. The new Java file is located in the gen folder under /gen/com/marakana/
logservice/LogService.java. Because this file is derived from your AIDL, you should
never modify it. The aidl tool that comes with the Android SDK will regenerate it
whenever you make changes to your AIDL files.

Now that we have the AIDL and the generated Java stub, we are ready to implement
the service.

Implementing the Service
Just like any Android service, we implement LogService in a Java class that subclasses
the system Service class. But unlike our earlier Service implementations, where we
ignored onBind() but implemented onCreate(), onStartCommand(), and onDestroy(),
here we’re going to do the opposite. A method in a remote service starts when the client
makes its request, which is called binding to the service, and therefore the client request
triggers the service’s onBind() method.

To implement our remote service, we’ll return an IBinder object from the onBind()
method in our service class. IBinder represents the implementation of the remote
service. To implement IBinder, we subclass the ILogService.Stub class from the auto-
generated Java code, and provide the implementation for our AIDL-defined methods,
in this case various log() methods. Example 14-3 shows the code.

Example 14-3. LogService.java

package com.marakana.logservice;

import android.app.Service;
import android.content.Intent;
import android.os.IBinder;
import android.os.RemoteException;
import android.util.Log;

public class LogService extends Service { //

 @Override
 public IBinder onBind(Intent intent) { //
 final String version = intent.getExtras().getString("version");

 return new ILogService.Stub() { //

Implementing the Remote Service | 217

 public void log_d(String tag, String message) throws RemoteException { //
 Log.d(tag, message + " version: " + version);
 }

 public void log(Message msg) throws RemoteException { //
 Log.d(msg.getTag(), msg.getText());
 }
 };
 }

}

LogService is an Android class derived from Service. We’ve seen many services, but
this time around, it’s a bound service, as opposed to UpdaterService, which was
unbound.

Since this is a bound service, we must implement onBind() and have it return a correct
instance of IBinder class. The client passes us an Intent, from which we extract some
string data. During the client implementation, we’ll see how it sets this, and thus
how we can pass small amounts of data into the remote service as part of the binding
process.

This instance of IBinder is represented by ILogService.Stub(), a helper method that
is generated for us in the Java stub file created by the aidl tool when we saved our
AIDL interface. This code is part of /gen/com/marakana/logservice/LogService.java.

log_d() is the simple method that takes two strings and logs them. Our implemen-
tation simply invokes the system’s Log.d().

We also provide a log() method that gets our Message parcel as its input parameter.
Out of this object we extract the tag and the message. Again, for this trivial imple-
mentation, we just invoke Android’s logging mechanism.

Now that we have implemented the service in Java, we have to provide the Java im-
plementation of the Message parcel as well.

Implementing a Parcel
Since Message is a Java object that we’re passing across processes, we need a way to
encode and decode this object—marshal and unmarshal it—so that it can be passed.
In Android, the object that can do that is called a Parcel and implements the
Parcelable interface.

To be a parcel, this object must know how to write itself to a stream and how to recreate
itself. Example 14-4 shows the code.

Example 14-4. Message.java

package com.marakana.logservice;

import android.os.Parcel;

218 | Chapter 14: The Android Interface Definition Language

import android.os.Parcelable;

public class Message implements Parcelable { //
 private String tag;
 private String text;

 public Message(Parcel in) { //
 tag = in.readString();
 text = in.readString();
 }

 public void writeToParcel(Parcel out, int flags) { //
 out.writeString(tag);
 out.writeString(text);
 }

 public int describeContents() { //
 return 0;
 }

 public static final Parcelable.Creator<Message> CREATOR
 = new Parcelable.Creator<Message>() { //

 public Message createFromParcel(Parcel source) {
 return new Message(source);
 }

 public Message[] newArray(int size) {
 return new Message[size];
 }

 };

 // Setters and Getters
 public String getTag() {
 return tag;
 }

 public void setTag(String tag) {
 this.tag = tag;
 }

 public String getText() {
 return text;
 }

 public void setText(String text) {
 this.text = text;
 }

}

As we said before, Message implements the Parcelable interface.

Implementing the Remote Service | 219

To be parcelable, this object must provide a constructor that takes in a Parcel and
recreates the object. Here we read the data from the parcel into our local variables.
The order in which we read in data is important: it must correspond to the order in
which the data was written out.

writeToParcel() is the counterpart to the constructor. This method is responsible
for taking the current state of this object and writing it out into a parcel. Again, the
order in which variables are written out must match the order in which they are read
in by the constructor that gets this parcel as its input.

We’re not using this method, because we have no special objects within our parcel.

A parcelable object must provide a Creator. This Creator is responsible for creating
the object from a parcel. It simply calls our other methods.

These are just various setter and getter methods for our private data.

At this point, we have implemented the required Java code. We now need to register
our service with the manifest file.

Registering with the Manifest File
As always, whenever we provide one of the new main building blocks for an application,
we must register it with the system. The most common way to do that is to define it in
the manifest file.

Just as we registered UpdaterService earlier, we provide a <service> element specifying
our service. The difference this time around is that this service is going to be invoked
remotely, so we should specify what action this service responds to. To do that, we
specify the action and the intent filter as part of this service registration:

<?xml version="1.0" encoding="utf-8"?>
<manifest xmlns:android="http://schemas.android.com/apk/res/android"
 package="com.marakana.logservice" android:versionCode="1"
 android:versionName="1.0">
 <application android:icon="@drawable/icon" android:label="@string/app_name">

 <!-- -->
 <service android:name=".LogService">
 <!-- -->
 <intent-filter>
 <action android:name="com.marakana.logservice.ILogService" />
 </intent-filter>
 </service>

 </application>
 <uses-sdk android:minSdkVersion="4" />
</manifest>

This is where we define our service. It is a <service> element within the application
block.

220 | Chapter 14: The Android Interface Definition Language

The difference between this service and our UpdaterService is that this service is
going to be remote to the client. Therefore, calling it by an explicit class name
wouldn’t work well, because the client might not have access to the same set of
classes. So instead, we provide the intent filter and action to which this service is
registered to respond.

At this point, our service is complete. We can now move on to the client
implementation.

Implementing the Remote Client
Now that we have the remote service, we are going to create a client that connects to
that service to test that it all works well. Note that in this example we purposely sepa-
rated the client and the server into two separate projects with different Java packages
altogether, in order to demonstrate how they are separate apps.

So we’re going to create a new Android project in Eclipse for this client, just as we’ve
done before for various other applications. However, this time around we are also going
to make this project depend on the LogService project. This is important because
LogClient has to find the AIDL files we created as part of LogService in order to know
what that remote interface looks like. To do this in Eclipse:

1. After you have created your LogClient project, right-click on your project in Pack-
age Explorer and choose Properties.

2. In the “Properties for LogClient” dialog box, choose Java Build Path, and then click
on the Projects tab.

3. In this tab, click on “Add…”, and point to your LogService project.

This procedure will add LogService as a dependent project for LogClient.

Binding to the Remote Service
Our client is going to be an activity so that we can see it working graphically. In this
activity, we’re going to bind to the remote service, and from that point on, use it as if
it were just like any other local class. Behind the scenes, the Android binder will marshal
and unmarshal the calls to the service.

The binding process is asynchronous, meaning we request it and it happens at some
later point in time. To handle that, we need a callback mechanism to handle remote
service connections and disconnections.

Once we have the service connected, we can make calls to it as if it were any other local
object. However, if we want to pass any complex data types, such as a custom Java
object, we have to create a parcel for it first. In our case, we have Message as a custom
type, and we have already made it parcelable. Example 14-5 shows the code.

Implementing the Remote Client | 221

Example 14-5. LogActivity.java

package com.marakana.logclient;

import android.app.Activity;
import android.content.ComponentName;
import android.content.Context;
import android.content.Intent;
import android.content.ServiceConnection;
import android.os.Bundle;
import android.os.IBinder;
import android.os.Parcel;
import android.os.RemoteException;
import android.util.Log;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;

import com.marakana.logservice.ILogService;
import com.marakana.logservice.Message;

public class LogActivity extends Activity implements OnClickListener {
 private static final String TAG = "LogActivity";
 ILogService logService;
 LogConnection conn;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Request bind to the service
 conn = new LogConnection(); //
 Intent intent = new Intent("com.marakana.logservice.ILogService"); //
 intent.putExtra("version", "1.0"); //
 bindService(intent, conn, Context.BIND_AUTO_CREATE); //

 // Attach listener to button
 ((Button) findViewById(R.id.buttonClick)).setOnClickListener(this);
 }

 class LogConnection implements ServiceConnection { //

 public void onServiceConnected(ComponentName name, IBinder service) { //
 logService = ILogService.Stub.asInterface(service); //
 Log.i(TAG, "connected");
 }

 public void onServiceDisconnected(ComponentName name) { //
 logService = null;
 Log.i(TAG, "disconnected");
 }

 }

 public void onClick(View button) {

222 | Chapter 14: The Android Interface Definition Language

 try {
 logService.log_d("LogClient", "Hello from onClick()"); //
 Message msg = new Message(Parcel.obtain()); //
 msg.setTag("LogClient");
 msg.setText("Hello from inClick() version 1.1");
 logService.log(msg); //
 } catch (RemoteException e) { //
 Log.e(TAG, "onClick failed", e);
 }

 }

 @Override
 protected void onDestroy() {
 super.onDestroy();
 Log.d(TAG, "onDestroyed");

 unbindService(conn); //

 logService = null;
 }
}

LogConnection is our class that both connects to and handles disconnections from
the remote service. The class is explained later.

This is the action intent that we’re using to connect to the remote service. It must
match the action that LogService specified in the manifest file as part of its intent
filter.

Here is where we add the data to the intent, to be extracted by the remote method.

The bindService() method asks the Android runtime to bind this activity to the
remote service specified by the intent action. In addition to the intent, we pass
on the Service Connection class to handle the actual connection. The BIND_AUTO_
CREATE flag indicates that if the service we’re trying to connect to doesn’t already
exist, it should be created.

LogConnection is the class that will be called back upon successful connection
to the remote service and whenever the service disconnects. This class needs
to subclass ServiceConnection and implement onServiceConnected() and onService
Disconnected().

onServiceConnected() is called once the bind succeeds. At this point, the IBinder
instance represents our remote service.

We now need to cast the bound service into our LogService instance. To do that,
we use a helper method named ILogService.Stub.asInterface(), provided by that
Java stub that was created automatically by the aidl tool when we saved our AIDL
files.

Implementing the Remote Client | 223

onServiceDisconnected() is called once the remote service is no longer available. It
is an opportunity to handle any necessary cleanup. In this case, we just set log
Service to null to help with the garbage collection.

Assuming that we have successfully bound to the remote service, we can now make
calls to it as if it were a local call. logService.log_d() simply passes two strings to
the log_d() method that we saw defined in LogService.

As mentioned earlier, if we want to pass a Message to the remote method, we have
to create a parcel for it first. This is possible because Message is a parcelable object.
We then set its properties using appropriate setters.

Once we have the parcel, we simply call logService.log() and pass it to LogSer
vice, where it gets logged.

Whenever we make a remote call, it could fail for a variety of reasons outside of our
control. Because of that, it is a good practice to handle a possible RemoteException.

When this activity is about to be destroyed, we ask to unbind the service and free
those resources.

At this point our client is complete. There’s a simple UI with a single button that triggers
an onClick() call. Once the user clicks the button, our client should invoke the remote
call in the service.

Testing That It All Works
Try to run the client from within Eclipse. Since Eclipse knows that LogClient is de-
pendent on LogService, it should install both packages onto your device. Once the
client starts, it should bind to the service. Try clicking on the button and check that
LogService is indeed logging. Your adb logcat call should give you something like this:

...
I/LogActivity(613): connected
...
D/LogClient(554): Hello from onClick() version: 1.0
D/LogClient(554): Hello from inClick() version 1.1
...

The first line is from the LogConnection in the client, indicating that we’ve successfully
bound to the service. The other two lines are from the remote service, one for Log
Service.log_d() and the other one for LogService.log(), where we passed in the
Message parcel.

224 | Chapter 14: The Android Interface Definition Language

If you run adb shell ps to see the running processes on your device, you’ll notice two
separate line items for the client and the server:

app_43 554 33 130684 12748 ffffffff afd0eb08 S com.marakana.logservice
app_42 613 33 132576 16552 ffffffff afd0eb08 S com.marakana.logclient

This indicates that indeed the client and server are two separate applications.

Summary
Android provides an interprocess communication mechanism based on its binder, a
high-performance, shared-memory system. To create a remote service, we define it
using the Android Interface Definition Language (AIDL), in a way similar to Java in-
terfaces. We then implement the remote interface and connect to it via the IBinder
object. This allows us to connect our client to a remote service in a different process
altogether.

Summary | 225

CHAPTER 15

The Native Development Kit (NDK)

The Native Development Kit, or NDK, is an add-on to SDK that helps you integrate
native code—code that uses platform-specific features, generally exposed through C
or C++ language APIs—within your Android application. The NDK allows your An-
droid application to call some native code and even include some native libraries.

In the Gingerbread release of Android, NDK takes support for native code even further
with the introduction of the NativeActivity class. You can now write your entire ac-
tivity in C or C++. However, NativeActivity is not the subject of this chapter. Here,
we’ll look at integrating native C code within your Java Android application.

What Is and Isn’t the NDK For?
The main motivation for developing parts of your app in native code is performance.
As you can see, the NDK supports math and graphics libraries well, as well as some
supporting system libraries. So graphically and computationally intensive applications
are the best candidates for NDK. One could argue that the recent boom in the popu-
larity of mobile games is driving this development as well.

Note that any native code accessible from your app via the Java Native Interface (JNI)
still runs inside your application’s Dalvik VM. So it’s subject to the same security sand-
boxing rules that an Android application lives by. Writing parts of your application in
C or C++ just so you can do something that might not be possible in Java usually is
not a good reason for NDK. Keep in mind that most of the low-level hardware features
are already elegantly exposed via the Android framework in Java and are usually what
you want to use anyhow.

Problems Solved by the NDK
The NDK addresses several of the major issues you’d have to deal with if you were
doing native development directly.

227

http://developer.android.com/reference/android/app/NativeActivity.html

The Toolchain
Java offers access to native code via the Java Native Interface (JNI). To make it work,
you would typically have to compile everything on your host computer for the target
architecture, which would require you to have the entire tool chain on your develop-
ment machine. Setting up the proper cross-compiler and other tools is not easy.

NDK provides the complete toolchain you need to compile and build your native code
so it can run on your target platform. The build system makes it very easy to set up
your environment and integrate your native code into your project.

Packaging Your Libs
If you had a native library and wanted it to be available to your application, you’d have
to make sure it is part of the library path where the system searches for libraries to load.
This is typically LD_LIBRARY_PATH on Linux. On an Android device, only the /system/
lib directory is part of this path. This is a problem because the entire /system partition
is read-only and thus unavailable for installing libraries.

NDK solves this problem by providing for a mechanism to ship your native library as
part of your Application Package (APK) file. Basically, when the user installs an APK
that contains a native library, the system creates a directory named /data/data/
your.package/lib/. If you recall from “The Filesystem Explained” on page 95, this par-
tition is private just to your application and thus is a safe place to keep your libraries
for the user, while blocking other applications from loading and using your libraries.
This packaging mechanism is a dramatic change to the rules for distributing applica-
tions on Android devices, and is a big deal because it brings the huge range of legacy
and new native code into the game.

Documentation and Standardized Headers
The NDK comes with helpful documentation and a sample application explaining how
to get things done in native code. It also standardizes on certain guaranteed C and
C++ headers, such as:

• libc (C library) headers

• libm (math library) headers

• JNI interface headers

• libz (Zlib compression) headers

• liblog (Android logging) header

• OpenGL ES 1.1 and OpenGL ES 2.0 (3D graphics libraries) headers

• libjnigraphics (Pixel buffer access) header (for Android 2.2 and above)

• A minimal set of headers for C++ support

228 | Chapter 15: The Native Development Kit (NDK)

• OpenSL ES native audio libraries

• Android native application APIs

Given this set of standard headers, you might have extrapolated what NDK is well
suited for. We’ll examine that in the next section.

An NDK Example: Fibonacci
Because the NDK is well-suited for computationally intensive applications, I wanted
to find an example where we can implement a relatively simple algorithm in both native
code and Java to compare their relative speeds.

So I picked a Fibonacci algorithm as the example. It’s a fairly simple algorithm that can
be implemented easily in both C and Java. Additionally, we can implement it recursively
as well as iteratively.

As a quick refresher, the Fibonacci series is defined as:

fib(0)=0
fib(1)=1
fib(n)=fib(n-1)+fib(n-2)

So the Fibonacci sequence looks like this: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, and
so on.

In this example, we are going to:

• Create the Java class representing the Fibonacci library.

• Create the native code header file.

• Implement the native code by writing C code.

• Compile everything and build a shared library.

• Use this native code inside an Android activity.

FibLib
FibLib is where we declare our algorithms for computing the Fibonacci sequence. We
have a total of four versions of the Fibonacci algorithm:

• Java recursive version

• Java iterative version

• Native recursive version

• Native iterative version

We’ll write the Java implementation in Example 15-1 and do the native ones in C later.

An NDK Example: Fibonacci | 229

http://en.wikipedia.org/wiki/Fibonacci_number

Example 15-1. FibLib.java

package com.marakana;

public class FibLib {

 // Java implementation - recursive
 public static long fibJ(long n) { //
 if (n <= 0)
 return 0;
 if (n == 1)
 return 1;
 return fibJ(n - 1) + fibJ(n - 2);
 }

 // Java implementation - iterative
 public static long fibJI(long n) { //
 long previous = -1;
 long result = 1;
 for (long i = 0; i <= n; i++) {
 long sum = result + previous;
 previous = result;
 result = sum;
 }
 return result;
 }

 // Native implementation
 static {
 System.loadLibrary("fib"); //
 }

 // Native implementation - recursive
 public static native long fibN(int n); //

 // Native implementation - iterative
 public static native long fibNI(int n); //
}

This is the Java recursive version of the Fibonacci recursive algorithm.

The iterative version of the same Java recursive algorithm. Everything that can be
implemented recursively can be reduced to an iterative algorithm as well.

The native version will be implemented in a shared library. Here, we tell the Java
virtual machine to load that library so the function can be found when called.

We declare the native Fibonacci method, but don’t implement it. Notice the use of
the native keyword here. It tells the Java VM that the implementation of this method
is in a shared library. The library should be loaded prior to this method call.

The previous declaration is for the recursive native implementation. This one is for
the iterative version.

230 | Chapter 15: The Native Development Kit (NDK)

At this point, our FibLib is complete, but we still need to back the native methods with
their C implementations. To do that, first we need to create the appropriate JNI header
file.

The JNI Header File
The next step is to create the C header file based on our FibLib Java file. To do that,
we use Java’s standard javah tool. Note that you must have the Java Development Kit
(JDK) installed in order to find this tool in the JDK/bin directory.

Now, to create the C header, go to your project’s bin directory and execute:

[Fibonacci/bin]> javah -jni com.marakana.FibLib

javah -jni takes a Java class as the parameter. Not all the classes are in the Java class-
path by default, so it is easiest to just change directory to your project’s bin directory.
Here, we assume that the current working directory is part of your Java classpath and
thus that javah -jni com.marakana.FibLib at this location will work.

The result should be a new file named com_marakana_FibLib.h. This is the C header
file that we need to implement next.

Before implementing our native files, let’s organize our project a little bit. Although
Eclipse did a lot to set up our Android application directories in a meaningful way thus
far, it doesn’t yet offer that level of support and automation for NDK development. We
are going to do a couple of steps manually here.

For one, create a directory named jni inside your Eclipse Fibonacci project. This will
be the place where you’ll store all your native code and related files. You can create this
directory from within Eclipse by selecting the Fibonacci project in Package Explorer,
right-clicking on it, and choosing New→Folder.

Next, move this new header file into that folder:

[Fibonacci/bin]> mv com_marakana_FibLib.h ../jni/

You can look into this file:

/* DO NOT EDIT THIS FILE - it is machine generated */
#include <jni.h>
/* Header for class com_marakana_FibLib */

#ifndef _Included_com_marakana_FibLib
#define _Included_com_marakana_FibLib
#ifdef __cplusplus
extern "C" {
#endif
/*
 * Class: com_marakana_FibLib
 * Method: fibN
 * Signature: (I)J
 */

An NDK Example: Fibonacci | 231

JNIEXPORT jlong JNICALL Java_com_marakana_FibLib_fibN
 (JNIEnv *, jclass, jint);

/*
 * Class: com_marakana_FibLib
 * Method: fibNI
 * Signature: (I)J
 */
JNIEXPORT jlong JNICALL Java_com_marakana_FibLib_fibNI
 (JNIEnv *, jclass, jint);

#ifdef __cplusplus
}
#endif
#endif

As you can see, this file is automatically generated and is not to be modified by the
programmer directly. You may observe signatures for two of our native functions that
we’re yet to implement:

...
JNIEXPORT jlong JNICALL Java_com_marakana_FibLib_fibN
 (JNIEnv *, jclass, jlong);
...
JNIEXPORT jlong JNICALL Java_com_marakana_FibLib_fibNI
 (JNIEnv *, jclass, jlong);
...

These are standard JNI signatures. They are generated by a naming convention indi-
cating that the function contains code defined in Java as part of the com.mara
kana.FibLib class for the native methods fibN and fibNI. You can also see that both
methods return jlong, a JNI-standardized integer value.

Their input parameters are also interesting: JNIEnv, jclass, and jlong. The first two are
always part of a Java class, created to interface with native code. The JNIEnv points back
to the virtual machine environment, and the next parameter points back to the class or
object where this method is from; the parameter is jclass for a class method or
jobject for an instance method. The third parameter, jlong, is just our input into the
Fibonacci algorithm, or our n.

Now that we have this header file, it is time to provide its implementation in C.

C Implementation
We are going to create a C file that will implement our native algorithms. For simplic-
ity’s sake, we’ll call it fib.c. Like the header file we looked at earlier, this file will reside
in the jni folder. To create it, right-click on the jni folder and choose New→File. Save
it as fib.c.

232 | Chapter 15: The Native Development Kit (NDK)

When you open the C file, it might open up in another editor outside
of Eclipse. That’s because the Java version of Eclipse typically doesn’t
have support for C development. You could extend your Eclipse with
C development tools by opening Eclipse and going to Help→Install New
Software. Alternatively, you can just open the file with the standard
Eclipse text editor by selecting the file and choosing Open With→Text
Editor.

Next, we provide the implementation of the Fibonacci algorithm in C in this fib.c file,
as shown in Example 15-2. The C versions of our algorithms are almost identical to the
Java versions.

Example 15-2. jni/fib.c

#include "com_marakana_FibLib.h" /* */

/* Recursive Fibonacci Algorithm */
long fibN(long n) {
 if(n<=0) return 0;
 if(n==1) return 1;
 return fibN(n-1) + fibN(n-2);
}

/* Iterative Fibonacci Algorithm */
long fibNI(long n) {
 long previous = -1;
 long result = 1;
 long i=0;
 int sum=0;
 for (i = 0; i <= n; i++) {
 sum = result + previous;
 previous = result;
 result = sum;
 }
 return result;
}

/* Signature of the JNI method as generated in header file */
JNIEXPORT jlong JNICALL Java_com_marakana_FibLib_fibN
 (JNIEnv *env, jclass obj, jlong n) {
 return fibN(n);
}
/* Signature of the JNI method as generated in header file */
JNIEXPORT jlong JNICALL Java_com_marakana_FibLib_fibNI
 (JNIEnv *env, jclass obj, jlong n) {
 return fibNI(n);
}

We import com_marakana_FibLib.h, the header file that was produced when we
called javah -jni com.marakana.FibLib.

The actual recursive Fibonacci algorithm. This is fairly similar to the Java version.

An NDK Example: Fibonacci | 233

An iterative version of Fibonacci. Again, very similar to the Java version.

JNI provides this function to us. Copy and paste the prototype from com_
marakana_FibLib.h, add variable names, and call the appropriate C function to
produce the result.

Same for the iterative signature of the method.

Now that we have implemented C versions of Fibonacci, we want to build the shared
library. To do that, we need an appropriate makefile.

The Makefile
To build the native library, the Android.mk makefile must describe our files. The file is
shown in Example 15-3.

Example 15-3. jni/Android.mk

LOCAL_PATH := $(call my-dir)

include $(CLEAR_VARS)

LOCAL_MODULE := fib
LOCAL_SRC_FILES := fib.c

include $(BUILD_SHARED_LIBRARY)

The makefile is a part of the standard Android make system. All we are adding here is
our specific input (fib.c) and our specific output (the fib module). The name of the
module we specify is important and will determine the name of the library based on
the operating system convention. For example, on ARM-based systems, the output will
be a libfib.so file.

Once we have this makefile, we’re ready to initiate the build.

Building the Shared Library
Assuming you have the NDK installed properly, you can now build the native shared
library by running ndk-build in your project directory. Here, ndk-build is a tool in the
directory where your NDK is installed. We assume you put this directory into your
environment PATH.

At this point, you should have a subdirectory named lib containing your shared library.
When you deploy the Fibonacci application in the next section, this library is packaged
as part of the APK.

The shared library is compiled to run on the emulator by default, so it’s
based on ARM architecture.

234 | Chapter 15: The Native Development Kit (NDK)

Finally, we need an application to put this library to good use.

The Fibonacci Activity
The Fibonacci Activity asks the user to input a number. Then, it runs the four algo-
rithms to compute the Fibonacci value of that number. It also times the computation
and prints the results to the screen. This activity basically uses the FibLib class that in
turn uses libfib.so for its native part. Example 15-4 shows the code.

Example 15-4. FibActivity.java

package com.marakana;

import android.app.Activity;
import android.os.Bundle;
import android.view.View;
import android.view.View.OnClickListener;
import android.widget.Button;
import android.widget.EditText;
import android.widget.TextView;

public class Fibonacci extends Activity implements OnClickListener {
 TextView textResult;
 Button buttonGo;
 EditText editInput;

 @Override
 public void onCreate(Bundle savedInstanceState) {
 super.onCreate(savedInstanceState);
 setContentView(R.layout.main);

 // Find UI views
 editInput = (EditText) findViewById(R.id.editInput);
 textResult = (TextView) findViewById(R.id.textResult);
 buttonGo = (Button) findViewById(R.id.buttonGo);
 buttonGo.setOnClickListener(this);
 }

 public void onClick(View view) {

 int input = Integer.parseInt(editInput.getText().toString()); //

 long start, stop;
 long result;
 String out = "";

 // Dalvik - Recursive
 start = System.currentTimeMillis(); //
 result = FibLib.fibJ(input); //
 stop = System.currentTimeMillis(); //
 out += String.format("Dalvik recur sive: %d (%d msec)", result,
 stop - start);

 // Dalvik - Iterative

An NDK Example: Fibonacci | 235

 start = System.currentTimeMillis();
 result = FibLib.fibJI(input); //
 stop = System.currentTimeMillis();
 out += String.format("\nDalvik iterative: %d (%d msec)", result,
 stop - start);

 // Native - Recursive
 start = System.currentTimeMillis();
 result = FibLib.fibN(input); //
 stop = System.currentTimeMillis();
 out += String.format("\nNative recursive: %d (%d msec)", result,
 stop - start);

 // Native - Iterative
 start = System.currentTimeMillis();
 result = FibLib.fibNI(input); //
 stop = System.currentTimeMillis();
 out += String.format("\nNative iterative: %d (%d msec)", result,
 stop - start);

 textResult.setText(out); //
 }
}

We convert the string we get from the user into a number.

Before we start the calculation, we take the current timestamp.

We perform the actual Fibonacci calculation by invoking the appropriate static
method in FibLib. In this case, it’s the Java recursive implementation.

We take another timestamp and subtract the previous one. The delta is the length
of the computation, in milliseconds.

We do the same for the iterative Java implementation of Fibonacci.

Here we use the native recursive algorithm.

And finally, we use the native iterative algorithm.

We format the output and print out the results on the screen.

Testing That It All Works
At this point, we can fire up the Fibonacci application and run some tests on it. Keep
in mind that larger values for n take quite a bit longer to process, especially using the
recursive algorithms. One suggestion would be to keep n in the 25–30 range. Also keep
in mind that we are doing all this processing on Activity’s main UI thread, and blocking
that thread for a long period of time will lead to the Application Not Responding (ANR)
error we showed in Figure 6-9. As an exercise, you might want to move the actual
calculation into an AsyncTask, as described in “AsyncTask” on page 67, to prevent
blocking the main thread.

236 | Chapter 15: The Native Development Kit (NDK)

As you run some tests, you might notice that the native version of the algorithm runs
about one order of magnitude faster than the Java implementation (see Figure 15-1).

Figure 15-1. Fibonacci of 33

These results alone should provide enough motivation to consider moving some of your
computationally intensive code into native code. NDK makes the job of integrating
native code into your app much simpler.

Summary
Starting with the Gingerbread version of Android, NDK also supports Native activities,
a way to create an entire activity in C and still have it adhere to the activity life cycle
rules, as discussed in “Activity Life Cycle” on page 28. This makes game development
in Android even easier.

Summary | 237

http://en.wikipedia.org/wiki/Order_of_magnitude

Index

A
AbsoluteLayout, 50
activities, 28, 39
adb shell, 98
addPreferencesFromResource() method, 87
afterTextChanged() method, 73
AIDL (Android Interface Definition Language),

215
Alarm service, 205, 208–211
Alpha channel, 77
Android components (see activities) (see

broadcast receivers) (see content
providers) (see system services)

Android Device Dashboard, 5
Android Interface Definition Language (AIDL),

215
Android Project, 18
Android UI (see UI (user interface))
Android Virtual Device (AVD), 23, 96
Android, history of, 3
AndroidManifest.xml examples, 61, 163
Apache Harmony, 9
API

and AIDL interface, 216
Content Provider, 178, 183
levels, 4, 19, 51
Location, 195
root, 83, 85, 95, 98
Twitter-compatible, 58, 59, 113, 127

APK (Application Package) file, 12, 228, 234
app resources, 90
Application Context, 34
application framework, 11
application initial setup, 152

application objects, 102–105, 113, 133
application signing, 12
AppWidgetProvider class, 182
ARGB color set, 77
asInterface() method, 223
AsyncTask, 67
AVD (Android Virtual Device), 23, 96

B
background, running services in, 31
base activity example, 153
battery consumption, 29, 34, 50, 167, 190, 195,

205
bindService() method, 223
bindView() method, 146, 149
Bionic, 9
BootReceiver, 162, 210–211
Bornstein, Dan, 9
broadcast receivers, 34, 39, 161–173

BootReceiver, 162, 210–211
network receivers, 167–169
timeline receivers, 163–165, 172

build target, 19, 51
building blocks, overview, 27
buttons, 48, 52–59, 91, 108, 154, 207

C
C implementation, 12, 227, 228, 231, 232
Canvas, 194
classpaths, 60
close() method, 133
coarse location permissions, 199
color, adding, 74–78
Compass demo, 189–195

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

239

compiling code, 59–61
comprehensive platform, 1, 37
content providers

creating, 175–181
overview, 32, 39
using through widgets, 181–186

CRUD principle, 32
cursors, 122, 141, 180
custom permissions, 169–171

D
.d() severity level, 62
Dalvik, 9
databases

constraints on, 129
overview, 119
schema, creating, 120
working with, 139

DbHelper, 120
DDMS, 17, 63, 95, 98, 127
debugging, 41
declarative user interface, 47
delete() method, 121, 175
design philosophy, 39
Destroyed State, 30
development tools, 17
distribution of applications, 12
doInBackground() method, 67

E
.e() severity level, 62
Eclipse Android Development Tools (ADT),

47
Eclipse IDE

editing code in, 87, 88
installing, 16
Organize Imports tool, 62
WYSIWYG Editor, 75

emulators, 23
events, 70–73
execSQL() method, 122, 124

F
fetchStatusUpdates() method, 134, 166
Fibonacci demo, 229–237
file system, 42, 95–99
files, saving, 59
fine location permissions, 199

format() method, 141
FrameLayout, 50

G
garbage collector, 141
Geocoder, 196
getApplication() method, 35, 105, 116
getApplicationContext() method, 35
getColumnIndex() method, 141
getDefaultSharedPreferences() method, 94
getFilesDir() method, 98
getFriendsTimeline() method, 113, 116, 127,

129
getID() method, 175, 178
getLatestStatusCreatedAtTime() method, 133
getReadableDatabase() method, 140
getRelativeTimeSpanString() method, 148,

150
getService() method, 209
getStatusTextById() method, 133
getStatusUpdates() method, 158
getString() method, 94
getSystemService() method, 190, 195, 202,

205
getTwitter() method, 95, 102, 105, 116, 127
getType() method, 175, 180
getWriteableDatabase() method, 140
GNU libc, 9
Google, 3
graphics, adding, 74–78
gravity property, 55

H
header files, creating, 231
Hello, World example, 18–22
hexadecimal, 77
Hierarchy Viewer, 81
HTC Sense, 34

I
.i() severity level, 62
id property, 55
IDE (Integrated Development Environment),

16
images, adding, 74
insert() method, 121, 127, 129, 175, 177
insertOrThrow() method, 129
insertWithOnConflict() method, 133

240 | Index

Integrated Development Environment (IDE),
16

intents
broadcasts, 161, 165
filter, 162
and menus, 83, 92
overview, 31, 215
services, 206–208

interfaces, 216
Internet access, 167, 169
Internet permissions, 61
Interprocess Communication (IPC), 215
interrupt() method, 112
invalidate() method, 195
IPC (Interprocess Communication), 215

J
Java, 16

(see also Eclipse IDE)
and AIDL, 216, 218
BaseActivity.java, 154, 208
BootReceiver.java, 162, 210
classes, 51
classpaths, 60
compared to native code, 229, 237
Compass.java, 192
Dalvik compiler, 10, 12
DbHelper.java, 123
errors, 59
FibActivity.java, 235
FibLib.java, 230
file naming conventions, 51, 53
gen/com/marakana/R.java, 22
HelloWorld.java, 22
inflated from XML, 48, 56
libraries for, 60
libraries for Android, 11
LogActivity.java, 222
LogService.java, 217
loops, 116, 127
Message.java, 218
multithreaded execution, 66, 111
NetworkReceiver.java, 167
notifications, 190, 196
packages, 19, 51, 97
parcels, 218, 221
PrefsActivity.java, 87
programmatic user interface with, 48
R file and, 22, 90

Rose.java, 194
source code, 22
StatusActivity.java, 56, 58, 67, 71, 109,

202
StatusData.java, 130
synchronized method, 104
TimelineActivity.java, 139, 144–150, 156,

164, 172
UpdaterService.java, 106, 111, 114, 124,

134, 165, 206, 212
WhereAmI.java, 197
widget id's, 55
YambaApplication.java, 102, 133, 201
YambaWidget.java, 182

Java Native Interface (JNI), 227
javah tool, 231
JNI (Java Native Interface), 227
jtwitter.jar library, 59

L
layout file, 21
layouts and views, 48
layout_gravity, 55
layout_height, 54
layout_weight, 55
layout_width, 54
libraries

building shared, 234
native, 9–12, 234
packaging, 228
SQLite as set of, 119
using third-party, 60

licensing, 2, 9
LinearLayout, 49
Linux, 7
Lists and Adapters, 43
Location Service, 195–205
LocationListener, 205
Log class, 62
log() method, 217
LogCat, 62, 113
LogClient demo, 221
logging, 62
LogService demo, 215–224
looping in services, 110

M
make system, 234

Index | 241

makeText() method, 69
malware, 13
managers, 11
manifest file

declaring permissions in, 61, 170
LocationListener example, 199
overview, 20
refactoring via, 104
registering activities via, 88, 150
registering BootReceiver via, 162
registering content providers via, 181
registering network receivers via, 167
registering services via, 107, 220
registering widgets via, 186

marshaling, 215
Media Store, 33
menus

adding items to, 108
events, 92
loading, 91
resources, 89

moveToNext() method, 141
multithreaded execution, 66
multithreading, 41

N
name-value pairs, 83
naming conventions

CamelCase, 19
Java classes, 19, 51
Java packages, 51
JNI signatures, 232
resources, 56, 79
widgets, 55

Native Development Kit (NDK), 227–237
native libraries, 9, 12, 227
NDK (Native Development Kit), 227–237
network connectivity, 61, 167, 169
network latency, 41
network receivers, 167–169
notification service, 212

O
Observer pattern, 34, 161
onAccuracyChanged() method, 190, 193
onBind() method, 107, 217
onClick() method, 95

onCreate() method, 56, 87, 93, 106, 107, 121,
123, 127, 139

onCreateOptions() method, 156
onCreateOptionsMenu() method, 89, 91
onDeleted() method, 182
onDestroy() method, 106, 107, 112, 139, 141
onDisabled() method, 182
onDraw(), 194
onEnabled() method, 182
onHandleIntent() method, 206
onLocationChanged() method, 199, 205
onMenuOpened() method, 154, 156, 207
onOptionsItemSelected() method, 89, 91, 109,

156, 207
onPause() method, 165, 190, 193, 199
onPostExecute() method, 67, 69
onProgressUpdate() method, 67, 68
onReceive() method, 161, 182, 184
onResume() method, 139, 165, 172, 190, 193
onSensorChanged() method, 190, 193
onServiceConnected() method, 223
onServiceDisconnected() method, 223
onSharedPreferenceChanged() method, 94
onStart() method, 190
onStartCommand() method, 106, 107, 109,

112
onStop() method, 190
onTerminate() method, 104
onUpdate() method, 182, 184
onUpgrade() method, 121, 123
Open Handset Alliance, 1, 4
open source platform, 2
OpenGL, 9
OpenJDK, 10
OpenSSL, 9
options menus, 89, 153
Organize Imports tool, 62
Override/Implement Methods, 92, 106

P
packages, 19
packaging libraries, 228
parameters, passing, 215
Parcel, implementing, 218
partitions, 96
password, 98
PATH variable, 16
Paused State, 30
PendingIntent, 209

242 | Index

permissions
custom, 169–171
declaring in manifest file, 61, 170
fine and coarse, 199
Internet, 61
to send/receive broadcasts, 170
for status updates, 171

phishing attacks, 13
portability, 2, 7
preferences

accessing in file system, 95–99
directing user to, 158
initial setup, 152
location, 200
menu system, 89–92
overview, 83
prefs resource, 84–87
PrefsActivity class, 87–89
security, filesystem, 98
shared, 93

prepared statement approach, 127
programmatic user interface, 48
project design, 39
Publish/Subscribe pattern, 161
publishers, 161
putExtra() method, 166

Q
QEMU, 23
query() method, 121, 141, 175, 179

R
R file, 22
refactoring, 39, 94, 104, 130–135, 189
registering, 94, 95, 150, 162–169, 190–194,

220
RelativeLayout, 50
remote client, 221
remote services, 215
requery() method, 164
requestLocationUpdates() method, 198
res/layout folder, 53
resources, 12, 79, 90
RGB color set, 77
rose widget, 191–195
run() method, 113, 134
Running State, 29, 190

S
schema, database, 120
Schmidt, Eric, 3
SDCard partition, 96
SDK (Software Development Kit), 15, 19, 23,

91
security, 8, 61, 98, 120, 122, 169, 227
sendBroadcast() method, 166, 172, 209
sendTimelineNotification() method, 213
SensorManager, 190
services (see system services)
setContentView() method, 53, 57
setDirection() method, 195
setInexactRepeating() method, 211
setMyLocation() method, 205
Settings Provider, 33
setupList() method, 158
setViewBinder() method, 149
setViewValue() method, 149
severity levels, log, 62
shared preferences, 93
signing, application, 12
simulators, 23
single thread, 65
Software Development Kit (SDK) (see SDK

(Software Development Kit))
spyware, 13
SQL injection, 122
SQLite, 9, 42, 119
sqlite3 tool, 128
stack, 7–13
startActivity() method, 92, 152, 209
Starting State, 29
startManagingCursor() method, 141, 180
startService() method, 109, 209
Status activity, 202
status data, 110, 127, 130–135, 177, 184
status updates

checking for new, 110
using IntentService to run, 206
notification of, 163, 212–214
permissions for, 171
screen, 53
sending, 161
storing locally, 119
widget for displaying, 181–186

status.xml, 52
StatusActivity, 52, 56, 67, 91, 105
Stopped State, 30

Index | 243

stopService() method, 109, 168
strings resource, 55
Stub() method, 218, 223
subscribers, 161
system services

adding and handling menus, 108
Android Services vs. native services, 32
common steps in using, 190
Compass demo, 189–195
creating, 105
defining in manifest file, 107
intents, 206–208
location service, 195–205
looping in, 110
notification service, 212
overview, 101, 189
and project design, 39
testing, 109, 113

T
TableLayout, 50
TableRow, 50
testing, 109, 113, 117, 224
text property, 55
TextWatcher, 70
Thread.sleep() method, 110, 113
threading, 65
timeline activity example, 137–146, 156, 163
timeline adapter example, 146–150
timeline receivers, 163–165, 172
toggle service, 154
Twitter

140-character counter, 70–73
creating compatible apps, 56–61, 67, 71, 94,

137
example of app, 27, 34
pulling data from, 105, 113–116, 120, 127
and Yamba, 37

U
UI (user interface), 39

Android objects, 57
optimizing, 80
two ways to create, 47

Uniform Resource Identifier (URI), 176
unmarshaling, 215
update() method, 121, 175
updateAppWidget() method, 184

UpdaterService, 105, 114, 124–127, 162, 163,
165, 171

updateStatus() method, 65
URI (Uniform Resource Identifier), 176
user data partition, 96, 97
user interface (see UI)
user preferences (see preferences)
username, 98

V
ViewBinder, 149
views and layouts, 48
viruses, 13

W
.w() severity level, 62
wakeups, 161
Webkit, 9
Where Am I? demo, 196–200
widgets

Android UI widgets vs. App Widgets, 49
App Widgets, 181–186
Compass Rose example, 191–195
content providers through, 181–186
important properties of, 54
selection/viewing, 137, 196
and UI sluggishness, 80

withAppendedID() method, 178
writeToParcel() method, 220
.wtf() severity level, 62
WYSIWYG Editor, 75

X
XML

android: keyword, 90
AndroidManifest.xml, 21, 61, 88, 151, 163,

168, 199
declarative user interface with, 47
developer-friendly view, 89
Eclipse file naming/renaming, 53, 79, 84
editing options, 88
inflated into Java, 48, 56
intent filter, 151
layout code, 21, 143, 185
main.xml, 52
manifest file, 88, 107, 181, 186
menu resource, 89
menu.xml, 108

244 | Index

for preference resource, 86
prefs.xml, 210
res/layout/main.xml, 21, 196
res/layout/row.xml, 143
res/layout/status.xml, 78
res/layout/status2.xml, 70
res/layout/timeline.xml, 142
res/layout/timeline_basic.xml, 138
res/layout/yamba_widget.xml, 185
res/menu/menu.xml, 91, 154
res/values/strings.xml, 21, 56, 92
res/xml/menu.xml, 207
res/xml/prefs.xml, 86, 201
res/xml/yamba_widget_info.xml, 185
strings, 21
strings.xml, 152, 209
updating directly in, 76
viewing, 53, 61

Y
Yamba

application object, 102
opening a database, 122
overview, 37–45
starting, 51
updating to use location service, 200–202

YambaWidget class, 182

Z
zero-configuration database, 119

Index | 245

About the Author
Marko Gargenta is the founder and chief Android expert at Marakana, a training
company in San Francisco. Marko has developed Android Bootcamp and Android In-
ternals courses, and has trained over 1,000 developers on four continents. His clients
include Qualcomm, Sony-Ericsson, Motorola, Sharp, Cisco, the US Department of
Defense, and many more. Marko frequently speaks on Android at technical conferences
and events, and is the founder of the San Francisco Android Users Group.

Colophon
The animal on the cover of Learning Android is a Little Owl.

The Little Owl is part of the taxonomic family Strigdae, which is informally known as
“typical owl” or “true owl” (the other taxonomic family includes barn owls). True to
its name, the Little Owl is small, measuring between 23 and 27.5 centimeters in length.
It is native to the warmer areas of east Asia (particularly Korea), Europe, and North
Africa and has been introduced and naturalized in Great Britain and the South Island
of New Zealand.

The Little Owl is characterized by long legs and a round head with yellow eyes and
white eyebrows; the eyebrows are said to give the owl a serious expression. The most
widespread species, Athene noctua, is white and speckled brown on top and white-and-
brown streaked on bottom. A species commonly found in the Middle East, A. n.
lilith, or the Syrian Little Owl, is a pale grayish-brown.

The sedentary Little Owl typically makes its home in open country, such as parkland
and farmland. It preys on amphibians, earthworms, insects, and even smaller mammals
and birds; despite its diminutive stature, the Little Owl is able to attack many game
birds. Unlike many of its true owl family members, the Little Owl is diurnal, or active
during the day, during which it often perches openly. Depending on the habitat, the
Little Owl builds nests in cliffs, rocks, holes in trees, river banks, and buildings. Little
Owls that live in areas with human activity tend to get used to people and may perch
in full view when humans are present.

The cover image is from Cassell’s Natural History. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont’s TheSansMonoCondensed.

