
Remote and Local Exploitation of
Network Drivers

Yuriy Bulygin

Security Center of Excellence (SeCoE) & PSIRT @
Intel Corporation

6/29/20072 Security Center of Excellence (SeCoE)

Agenda

1. Remote vulnerabilities (wireless LAN only)
– Wireless LAN frames
– Fuzzing them: simple Beaconer
– More advanced vulnerabilities
– WLAN exploitation environment

2. Kernel payload

3. Local vulnerabilities
– Exploiting I/O Control codes
– Fuzzing Device I/O Control API
– Device state matters !!

4. Remote local vulnerabilities

5. Mitigated Intel® Centrino® wireless LAN vulnerabilities
– Remote vulnerability
– Local vulnerability

6. Concluding..

6/29/20073 Security Center of Excellence (SeCoE)

Remote wireless LAN vulnerabilities

6/29/20074 Security Center of Excellence (SeCoE)

IEEE 802.11 Frames

• Fixed-length 802.11 MAC Header
– Type/Subtype, e.g. Management/Beacon frame
– Source/Destination/Access Point MAC addresses etc.

6/29/20075 Security Center of Excellence (SeCoE)

IEEE 802.11 Frames (cont’d)

• Variable-length Frame body
– Mandatory fixed parameters: Capability Info, Auth Algorithm etc.
– Tagged information elements (IE): SSID, Supported Rates etc.

typedef struct
{
UINT8 IE_ID;
UINT8 IE_Length;
UCHAR IE_Data[1];

} IE;

6/29/20076 Security Center of Excellence (SeCoE)

Fuzzing IEEE 802.11

• IE is a nice way for an attacker to exploit WLAN driver
– IE Length comes right before IE data and is used in buffer processing

send unexpected length to trigger overflow
– Maximum IE length is 0xff enough to contain a shellcode
– A frame can have multiple IEs even more space for the shellcode
– Drivers may accept and process unspecified IEs w/in the frame

• Example (Supported Rates IE in Beacon management frame):
– #define NDIS_802_11_LENGTH_RATES 8 in ntddndis.h but not everyone knows

6/29/20077 Security Center of Excellence (SeCoE)

IEEE 802.11 Beacon fuzzer

• Beacons are good to exploit:
– Are processed by the driver even when not connected to any WLAN
– Can be broadcasted to ff:ff:ff:ff:ff:ff and will be accepted by all
– Don’t need to spoof BSSID or Source MAC
– Don’t actually need a protocol (don’t have to wait for target’s request,

don’t need to match challenge/response etc.) easy to inject
– Support most of general IEs: SSID, Supported Rates, Extended Rates etc.
– Quiz: Why Beacons are used in most exploits ??

• Let’s fuzz a length of Supported Rates IE w/in Beacon frame:

6/29/20078 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

• Exploiting while STA is connecting (Association Response frame)
– How many Beacons to send to inject payload ?? ~10000
– How many Probe Responses to send to inject payload ?? ~1000
– How many Association Responses to send to inject payload ?? ~50

• Injecting Association Response is less suspicious
– STA is sending Association Request frame to an AP it’s authenticated to
– The attacker sends malformed Association Response frames ~10 per sec
– That’s enough to flood legitimate Association Response frame from the AP
– This rate will rarely trigger an IDS alert
– Collect all STAs connecting to WLANs (e.g. during a lunch in cafeteria ;)

• Cons of Association Response
– STA must be authenticated => smaller time window
– BSSID must match MAC address of AP vulnerable STA is associating with

(in many cases SSID must also match)

6/29/20079 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

• Association Response management frame

6/29/200710 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

• Example 1: copying all Information Elements
MAC-PHY specifies Frame
Body can be up to 2312 bytes
long !!

An entire frame except the
MAC and Assoc Response
headers is copied into a stack
buffer

Summary:
– Fuzzing only IEs is not

enough
– Total frame size matters
– Space for the shellcode is

drastically increased

Forget about the underflow

6/29/200711 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

• Example 2: can shellcode be inside more than one IE ??

Vulnerability cannot be exploited by a
single IE (Supported Rates or Extended
Supported Rates)
– Stack buffer size is 16 bytes
– Code copies up to 16 bytes

What about pAPInfo rates_count ??
– Let Rates be 17 bytes long and

Extended Rates – 0xff bytes long
– Both are copied into rates buffer
– 16 bytes are copied to the buffer

but rates_count is set to 17

Then parsing Extended Rates IE..
– NdisMoveMemory copies

min(16, 16–rates_count) =
(size_t)-1 bytes

6/29/200712 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

6/29/200713 Security Center of Excellence (SeCoE)

More advanced remote vulnerabilities

Important points:
1. Multiple Information Elements are entangled: vulnerability

is triggered if both Rates and Supported Rates are present
2. An attacker can place the payload within more than one

Information Element
3. Maximum payload length is NOT limited by 0xff bytes

6/29/200714 Security Center of Excellence (SeCoE)

WLAN exploitation environment

To evaluate insecurity of WLAN driver (at least) 3 systems are needed:

1. Injector system having any wireless driver patched for injection
– BackTrack 2.0 Final (or older Auditor) LiveCD is very useful
– Fuzzer: LORCON, ruby-lorcon Metasploit 3.0 extensions
– Raw injection interface (madwifi-ng doesn’t support rawdev sysctl !!):

#!/bin/sh
wlanconfig athX create wlandev wifi0 wlanmode monitor
ifconfig athX up
iwconfig athX channel 11
iwpriv athX mode 2

2. Sniffer system (WireShark)
– Don’t forget to listen on the same frequency (channel)
– Filter only Beacons targeting specific destination NIC

wlan.fc.type_subtype==8 && wlan.da==00:13:13:13:13:13

– Filter only Association Request/Response management frames
wlan.fc.type_subtype==0 || wlan.fc.type_subtype==1

3. System under investigation (kernel debugger + target NIC driver)

Other reference: David Maynor. Beginner’s Guide to Wireless Auditing
http://www.securityfocus.com/infocus/1877?ref=rss

http://www.securityfocus.com/infocus/1877?ref=rss

6/29/200715 Security Center of Excellence (SeCoE)

Kernel-mode payload

6/29/200716 Security Center of Excellence (SeCoE)

Harmless kernel-mode payload

– First we need to find a trampoline to redirect an execution to the shellcode
– Trampolines are the same as for user-land shellcode. In case of stack-based

overflows, call esp/jmp esp/push esp – ret
– Searching for trampolines (SoftICE):
: mod ntos*
hMod Base PEHeader Module Name File Name

804D7000 804D70E8 ntoskrnl \WINNT\System32\ntoskrnl.exe
: S 804D7000 L ffffff ff,d4
Pattern found at 0010:804E4E27 (0000DE27)
: S 804D7000 L ffffff ff,e4
Pattern found at 0010:804E91D3 (000121D3)

– In kd/WinDbg/LiveKd (johnycsh,hdm,skape wrote about it):
kd> s nt L200000 54 c3
8064163d 54 c3 04 89 95 80 fd ff-ff 8b 04 81 89 85 5c fd T.............\.
806b8d00 54 c3 75 bc 9d 1d d1 65-c0 dd ce 63 54 c4 13 c7 T.u....e...cT...
kd> u 8064163d
nt!WmipQuerySingleMultiple+0x132:
8064163d 54 push esp
8064163e c3 ret

– For simplicity payload uses hardcoded ntoskrnl addresses
– To resolve addresses of necessary ntoskrnl functions one may use IDT vectors to

get some address inside ntoskrnl image and search lower addresses for “MZ”
signature to resolve ntoskrnl image base and parse its export table

6/29/200717 Security Center of Excellence (SeCoE)

Harmless kernel-mode payload: migration
and execution

1. Migration stage: Drop IRQL to PASSIVE_LEVEL

; -- nt!KeLowerIrql(PASSIVE_LEVEL);
xor cl, cl
mov eax, 0x80547a65
call eax

– “0wn the display” payload for demonstration purpose

; -- nt!InbvAcquireDisplayOwnership
mov eax, 0x8052d0d3
call eax

; -- nt!InbvResetDisplay
push 0x0
mov eax, 0x8052cf05
call eax

; -- nt!InbvDisplayString
lea eax, [esp+0x3d]
push eax
mov eax, 0x8050b3b0
call eax

6/29/200718 Security Center of Excellence (SeCoE)

Harmless kernel-mode payload: recovery

3. Recovery stage: yield execution in a loop to other threads w/o freezing the system

; -- DbgPrint("0WN3D");
yield_loop:

lea eax, [esp+0x3d]
push eax
mov eax, 0x80502829
call eax
add esp, 4

; -- nt!ZwYieldExecution();
mov eax, 0x804ddc74
call eax
jmp yield_loop

References:
[1] Barnaby Jack. Remote Windows Kernel Exploitation - Step Into the Ring0

http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
[2] bugcheck and skape. Kernel-mode Payload on Windows.

http://www.uninformed.org/?v=3&a=4&t=sumry

http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
http://www.uninformed.org/?v=3&a=4&t=sumry

0WN3D

6/29/200720 Security Center of Excellence (SeCoE)

Local vulnerabilities in network drivers

6/29/200721 Security Center of Excellence (SeCoE)

Exploiting I/O Control codes

• I/O Control (IOCTL) codes is a common interface between miniport
drivers and upper-level protocol drivers and user applications

• On Windows applications calls DeviceIoControl with IOCTL code of
an operation that miniport driver should perform (application
controls device using IOCTL interface)

• I/O Manager Windows executive passes major function
IRP_MJ_DEVICE_CONTROL down to the driver in response to IOCTL

• IOCTL defines a method used to transfer input data to the driver and
output back to application: Buffered I/O, Direct I/O and Neither I/O

• NDIS is a framework for drivers managing network cards (NIC)

• NDIS defines Object Identifiers (OID) for each NIC configuration or
statistics that an application can query or set

• As a common communication path I/O Control interface represents a
common way to exploit kernel-mode drivers

• If the driver fails to correctly handle IOCTL request it provides a way
to get kernel-level privileges to an attacker

6/29/200722 Security Center of Excellence (SeCoE)

Exploiting I/O Control codes

• To exploit NDIS miniport driver an attacker should identify a correct
OID that the driver fails to process correctly

• But in some cases invalid OIDs can also be exploited

• The driver copies unchecked contents of input buffer into the
internal buffer even before validating OID

6/29/200723 Security Center of Excellence (SeCoE)

Exploiting I/O Control codes

• Discovering supported OIDs in miniport binary (2 jump tables for
WLAN general OIDs)

6/29/200724 Security Center of Excellence (SeCoE)

Fuzzing Device I/O Control API

So how does the IOCTL fuzzing work ??

• Find out target device name
– enumerate objects in \Device object directory of Object Manager namespace

– use tools such as WinObjEx (Four-F), DeviceTree (OSR) or WinObj (SysInternals)
– NICs can also be enumerated using GetAdaptersInfo

• Generate IOCTLs
– use CTL_CODE macro: DeviceType is known from device object

– each device type has a set of common IOCTLs
– proprietary IOCTLs can be generated: Method and Access are fixed, Function is in

[0x800,~0x810]

• Generate OIDs for NDIS miniports
– use OID_GEN_SUPPORTED_LIST to get supported OIDs
– generate proprietary OIDs (described earlier)

• Generate SRBs for storage miniports (e.g. SCSI)

• Vary IN/OUT buffer sizes
– to reduce the space vary IN/OUT buffer sizes around the size of the structure

expected by the driver for certain OID and a fixed set (0, 4, 0xffffffff ..)

6/29/200725 Security Center of Excellence (SeCoE)

Fuzzing Device I/O Control API

• Is it enough to fuzz only IN/OUT buffer sizes for each OID?
– Sometimes yes but in many cases the fuzzer must be aware of the

structures it is passing to the driver
– Simple example: the driver may copy SsidLength bytes from Ssid into

32-byte buffer in response to OID_802_11_SSID
– If the fuzzer sends input buffer with SsidLength > 32 the overflow

doesn’t occur. The fuzzer should be aware of SsidLength

typedef struct _NDIS_802_11_SSID
{

ULONG SsidLength;
UCHAR Ssid[NDIS_802_11_LENGTH_SSID];

} NDIS_802_11_SSID, *PNDIS_802_11_SSID;

Most of the described techniques for IOCTL fuzzing are implemented in IOCTLBO driver
security testing tool on Windows

6/29/200726 Security Center of Excellence (SeCoE)

Device state matters !!

1.OID_802_11_SSID: request the wireless LAN miniport to return
SSID of associated AP

What if STA is not associated with any AP ??

2.OID_802_11_ADD_KEY: have STA use a new WEP key. Vulnerability
is encountered when STA is associated with WEP AP

May not be triggered if AP is Open/None or requires WPA/TKIP or
WPA/CCMP or STA is not connected at all

3.OID_802_11_BSSID_LIST: request info about all BSSIDs detected by
STA

May not be triggered if there are no wireless LANs in the range of
STA or radio is off

4.OID_MYDRV_LOG_CURRENT_WLAN: this proprietary OID may be used
by an application to obtain debug information about associated AP

Again, what if there is no associated AP and information about it ??

6/29/200727 Security Center of Excellence (SeCoE)

Device state matters !!

3 major states are not enough:

• radio off

• radio on, no wireless LAN found

• wireless LANs found

• authenticated to AP with Open System or WEP shared key authentication

• associated with AP that doesn't require any encryption or requires WEP

• associated with WPA capable AP in different stages of Robust Security
Network Association (RSNA): pre-RSNA - RSNA established

• associated with WPA capable APs requiring different cipher suites: TKIP or
AES-CCMP

• exchanged data frames (protected or not) with AP or another station

6/29/200728 Security Center of Excellence (SeCoE)

Remote exploitation of
local vulnerabilities

6/29/200729 Security Center of Excellence (SeCoE)

IOCTL vulnerabilities: local or remote ??

• Ok, so IOCTL vulnerabilities are less severe than remote because
they are exploited by local user-land application ?? Wrong

• IOCTLs are used to query driver for some information

• Most of the information WLAN driver receives from WLAN frames
(e.g. detected BSSIDs, current SSID, rates supported by associated
AP, WPA information etc.)

• So what will happen if local IOCTL vulnerability occurs when
returning this information ??

• Right, the vulnerability depends on the data supplied by an attacker
remotely and it can be exploited remotely

• But an attacker needs to have a local agent that will send vulnerable
OID..

• Any network management application periodically queries NDIS
miniport driver for information sending different OIDs (even a
protocol driver can send vulnerable OID)

6/29/200730 Security Center of Excellence (SeCoE)

Exploiting IOCTL vulnerabilities remotely

• NDIS miniport supports proprietary
OID_802_11_ACTIVE_BSSID_INFO used by
management applications to query
information about associated WLAN

• The driver responds to this OID returning
the information in internal connection
structure supplied remotely w/in
Beacon/Probe Response frames

• When handling this OID the driver copies
SSID of associated AP from internal
connection structure into a stack buffer
w/out checking the size of SSID

6/29/200731 Security Center of Excellence (SeCoE)

Exploiting IOCTL vulnerabilities remotely

Exploitation consists of two stages:

• Inject shellcode within malformed wireless frame

• Wait until some network management application queries for an OID
that contains a vulnerability depending on injected data

Identifying remote IOCTL vulnerabilities:

• When driver bugchecks, inspect crash dump for data received from
wireless frames

• Fuzz IOCTLs along with injecting malformed wireless frames to
increase the likehood of encountering the vulnerability

• Automatically inspect registers and memory pointed to by registers
in crash dump for frame contents ??

• These IOCTL vulnerabilities can be exploited remotely even while
radio is off

6/29/200732 Security Center of Excellence (SeCoE)

Getting control over Intel® Centrino®:
Case studies of mitigated vulnerabilities

6/29/200733 Security Center of Excellence (SeCoE)

Remote execution

• When STA was connecting to wireless LAN..

• Injected Association Response frames (~40-300) in response to
Association Request with legitimate AP

• Unspecified oversized SSID element

• BSSID had to match AP’s MAC address

• STA had to be authenticated (used Open System authentication AP)

6/29/200734 Security Center of Excellence (SeCoE)

Remote Denial-of-Service (BSOD)

• Behavior of old vulnerable version of w29n51.sys after receiving
some NOPs w/in SSID

6/29/200735 Security Center of Excellence (SeCoE)

Remote execution

• Let’s inject the frame with demo payload discussed earlier

6/29/200736 Security Center of Excellence (SeCoE)

Local OID_802_11_BSSID_LIST vulnerability

• In response to OID_802_11_BSSID_LIST (0x0d010217) NDIS
miniport should return information about all detected BSSIDs as an
array of NDIS_WLAN_BSSID_EX structures

• After sending IOCTL request with output buffer length in [12;128]
bytes w29n51.sys returned 128 bytes of arbitrary kernel pool

• IOCTL fuzzer allocated output buffer of a maximum size so that it
doesn’t crash and continue testing in case if driver corrupts heap
chunk

6/29/200737 Security Center of Excellence (SeCoE)

Local OID_802_11_BSSID_LIST vulnerability

Output buffer prior to sending
OID = 0x0d010217 request
(126 bytes sent)

Output buffer after the query
(128 bytes returned by the
driver)

6/29/200738 Security Center of Excellence (SeCoE)

Local OID_802_11_BSSID_LIST vulnerability
Let IOCTL fuzzer allocate output
buffer each time it sends IOCTL
request to the driver.

The size of the output buffer is the
same as specified in IOCTL
request

IOCTL fuzzer quickly ends up in
OllyDbg after sending IOCTL
request with 12-bytes large output
buffer.

The driver writes 128 bytes into
12-byte user-land buffer and
corrupts heap chunk allocated by
IOCTL fuzzer

User-mode app can observe
kernel pool contents which isn’t
good but not the end goal

6/29/200739 Security Center of Excellence (SeCoE)

Concluding..

• Although we focused on wireless LAN drivers, any wireless device
driver is a subject to remote exploitation
– The longer range of the radio technology - more attractive exploitation
– WWAN, WiMAX are nationwide technologies. Exploits in these technologies

can be very dangerous

• Vulnerabilities in I/O Control code API can exist in any device driver
and can is a generic way to exploit kernel
– Fuzzing NDIS OID covers all NDIS miniport drivers: WLAN, WWAN,

WiMAX, Ethernet, Bluetooth, IrDA, FDDI, Token Ring, ATM..

• Local IOCTL vulnerabilities can lead to remote exploits
– Can be remotely exploited even when radio is off

6/29/200740 Security Center of Excellence (SeCoE)

Acknowledgements

Nathan Bixler (Intel), all authors of reference papers

6/29/200741 Security Center of Excellence (SeCoE)

Lunch time !!

Appreciate your attention.
Any questions ??

yuriy-.-bulygin-@-intel

6/29/200742 Security Center of Excellence (SeCoE)

References
1. David Maynor and Jon Ellch. Device Drivers. BlackHat USA, Aug. 2006, Las Vegas, USA.

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Cache.pdf

2. IEEE Standard 802.11-1999. Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications. IEEE, 1999. http://standards.ieee.org/getieee802/download/802.11-1999.pdf

3. Johnny Cache, H D Moore and skape. Exploiting 802.11 Wireless Driver Vulnerabilities on Windows.
Uninformed, volume 6. http://www.uninformed.org/?v=6&a=2&t=sumry

4. David Maynor. Beginner's Guide to Wireless Auditing. Sep 19, 2006.
http://www.securityfocus.com/infocus/1877?ref=rss

5. Barnaby Jack. Remote Windows Kernel Exploitation - Step Into the Ring 0. eEye Digital Security White Paper.
2005. http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf

6. bugcheck and skape. Kernel-mode Payload on Windows. Dec 12, 2005. Uninformed, volume 3.
http://www.uninformed.org/?v=3&a=4&t=sumry

7. SoBeIt. Windows Kernel Pool Overflow Exploitation. XCon2005. Beijing, China. Aug. 18-20 2005.
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005_SoBeIt.pdf

8. Piotr Bania. Exploiting Windows Device Drivers. Oct 16, 2005. http://pb.specialised.info/all/articles/ewdd.pdf

9. Microsoft® Corporation. Windows Driver Kit. Microsoft Developer Network (MSDN).
http://msdn2.microsoft.com/en-us/library/aa972908.aspx

10. Microsoft® Corporation. Windows Driver Kit: Network Devices and Protocols: NDIS Core Functionality.
http://msdn2.microsoft.com/en-us/library/aa938278.aspx

11. Ruben Santamarta. Intel PRO/Wireless 2200BG and 2915ABG Drivers kernel heap overwrite. reversmode.org
advisory. 2006

12. INTEL-SA-00001 Intel® Centrino Wireless Driver Malformed Frame Remote Code Execution. INTEL-SA-00001.
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00001&languageid=en-fr

13. Intel® Centrino Wireless Driver Malformed Frame Privilege Escalation. INTEL-SA-00005. http://security-
center.intel.com/advisory.aspx?intelid=INTEL-SA-00005&languageid=en-fr

14. Laurent Butti. Wi-Fi Advanced Fuzzing. BlackHat Europe 2007. https://www.blackhat.com/presentations/bh-
europe-07/Butti/Presentation/bh-eu-07-Butti.pdf

http://www.blackhat.com/presentations/bh-usa-06/BH-US-06-Cache.pdf
http://standards.ieee.org/getieee802/download/802.11-1999.pdf
http://www.uninformed.org/?v=6&a=2&t=sumry
http://www.securityfocus.com/infocus/1877?ref=rss
http://research.eeye.com/html/Papers/download/StepIntoTheRing.pdf
http://www.uninformed.org/?v=3&a=4&t=sumry
http://xcon.xfocus.org/xcon2005/archives/2005/Xcon2005_SoBeIt.pdf
http://pb.specialised.info/all/articles/ewdd.pdf
http://msdn2.microsoft.com/en-us/library/aa972908.aspx
http://msdn2.microsoft.com/en-us/library/aa938278.aspx
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00001&languageid=en-fr
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00005&languageid=en-fr
http://security-center.intel.com/advisory.aspx?intelid=INTEL-SA-00005&languageid=en-fr
https://www.blackhat.com/presentations/bh-europe-07/Butti/Presentation/bh-eu-07-Butti.pdf
https://www.blackhat.com/presentations/bh-europe-07/Butti/Presentation/bh-eu-07-Butti.pdf

	Remote and Local Exploitation of Network Drivers
	Agenda
	Slide Number 3
	IEEE 802.11 Frames
	IEEE 802.11 Frames (cont’d)
	Fuzzing IEEE 802.11
	IEEE 802.11 Beacon fuzzer
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	More advanced remote vulnerabilities
	WLAN exploitation environment
	Slide Number 15
	Harmless kernel-mode payload
	Harmless kernel-mode payload: migration and execution
	Harmless kernel-mode payload: recovery
	0WN3D
	Slide Number 20
	Exploiting I/O Control codes
	Exploiting I/O Control codes
	Exploiting I/O Control codes
	Fuzzing Device I/O Control API
	Fuzzing Device I/O Control API
	Device state matters !!
	Device state matters !!
	Slide Number 28
	IOCTL vulnerabilities: local or remote ??
	Exploiting IOCTL vulnerabilities remotely
	Exploiting IOCTL vulnerabilities remotely
	Slide Number 32
	Remote execution
	Remote Denial-of-Service (BSOD)
	Remote execution
	Local OID_802_11_BSSID_LIST vulnerability
	Local OID_802_11_BSSID_LIST vulnerability
	Local OID_802_11_BSSID_LIST vulnerability
	Concluding..
	Acknowledgements
	Lunch time !!
	References
	Slide Number 43

