Introduction to Reverse Engineering Software

Introduction to Rever se Engineering Software

Introduction to Reverse Engineering
Software

Mike Perry

<m kepery@ scked. or g>

Nasko Oskov

<nasko@et sekure. or g>

Revision History
Revision $Revision: 1.3 $ $Date; 2003/07/06 17:22:18 $

Abstract

This book is an attempt to provide an introduction to reverse engineering software under both Linux and
Windows. Since reverse engineering is under legal fire, the authors figure the best response is to make
the knowledge widespread. The ideais that since discussing specific reverse engineering feats is now
illegal in many cases, we should then discuss general approaches, so that it is within every motivated
user's ability to obtain information locked inside the black box. Furthermore, interoperability issues with
closed-source proprietary systems are just plain annoying, and something needs to be done to educate
more open source developers as to how to implement this functionality in their software.

[Note] | Note
This book is actively being updated, and we are looking for a publisher. Please
contact the authors if you are interested in helping to publish this book or know
someone who would be.

[Note] | Note

http://www.acm.uiuc.edu/sigmil/RevEng/ (1 of 2) [7/6/2003 7:03:54 PM]

mailto:mikepery@fscked.org
mailto:nasko@netsekure.org

Introduction to Reverse Engineering Software

TO SLASHDOT READERS:. Yes, this book isincomplete. Yesit has mistakes. Yes,
we are working as hard as we can to fix them. Please email the authors directly
rather than simply ranting/flaming on slashdot. We will take your comments into
consideration, and will list you in the credits. We've already built up a large queue

of fixes thanks to helpful emails.

Table of Contents

1. Introduction

2. The Compilation Process

3. Gathering Info

4. Determining Program Behavior

5. Determining Interesting Functions
6. Understanding Assembly

7. Debugging

8. Executable formats

9. Understanding Copy Protection
10. Code Modification

11. Network Application Interception
12. Buffer Overflows

13. TODO (Contribute!)

14. Extra Resources

List of Figures

1.1. Exploring a Hypothesis Space
2.1. The compilation Process
3.1. Netstat output

http://www.acm.uiuc.edu/sigmil/RevEng/ (2 of 2) [7/6/2003 7:03:54 PM]

Next
Chapter 1. Introduction

Chapter 1. Introduction

Chapter 1. Introduction
Prev Next

Chapter 1. Introduction

Table of Contents

Prerequisites
What is reverse engineering?

Why reverse engineer?

Legal issues
How to use this book

Prerequisites

This book iswritten at alevel such that anyone who has taken an introductory computer science course
(or has read the book Teach Yourself X in 21 days, where X is C or C++) should be able to understand all
the material and work through all of the examples.

However, a data structures course (or abook that explains at least AVL trees, Hash Tables, Graphs, and
priority queues), and a software engineering course (or even better, the book Design Patterns) would be
very helpful not so much in understanding the following material, but more so in your ability to make the
guesses and leaps needed to effectively reverse engineer software on your own.

What is reverse engineering?

Reverse engineering as this book will discussit is simply the act of figuring out what software that you
have no source code for doesin a particular feature or function to the degree that you can either modify
this code, or reproduce it in another independent work.

In the general sense, ground-up reverse engineering is very hard, and requires severa engineers and a
good deal of support software just to capture the al of the ideas in a system. However, we'll find that by
using tools available to us, and keeping a good notebook of what's going on, we should be able to extract
the information we need to do what matters. make modifications and hacks to get software that we do not
have source code for to do things that it was not originally intended to do.

Why reverse engineer?

http://www.acm.uiuc.edu/sigmil/RevEng/ch01.html (1 of 7) [7/6/2003 7:03:55 PM]

http://hillside.net/patterns/DPBook/DPBook.html
http://www.program-transformation.org/

Chapter 1. Introduction

Answer: Because you can.

It comes down to an issue of power and control. Every computer enthusiast (and essentially any
enthusiast in general) is a control-freak. We love the details. We love being able to figure things out. We
love to be able to wrap our heads around a system and be able to predict its every move, and more, be
able to direct its every move. And if you have source code to the software, thisis all fine and good. But
unfortunately, thisis not always the case.

Furthermore, software that you do not have source code to is usually the most interesting kind of
software. Sometimes you may be curious as to how a particular security feature works, or if the copy
protection isreally uncrackable, and sometimes you just want to know how a particular feature is
implemented.

And we don't know about you, but to us, software that we don't have source code to just pisses us off. So
we figure: screw it, lets do some damage. :)

It makes you a better programmer.

This book will teach you alarge amount about how your computer works on alow level, and the better an
understanding you have of that, the more efficient programs you can write in general.

To Learn Assembly Language.

If you don't know assembly language, at the end of this book you will literally know it inside-out. While
most first courses and books on assembly language teach you how to use it as a programming language,
you will get to see how to use C as an assembly language generation tool, and how to look at and think
about assembly as a C program. This puts you at atremendous advantage over your peers not only in
terms of programming ability, but also in terms of your ability to figure out how the black box works. In
short, learning this way will naturally make you a better reverse engineer. Plus, you will have the fine
distinction of being able to answer the question "Who taught you assembly language?' with "Why, my C
compiler, of course!"

Legal issues

FIXME: Pending... Research here and here (Also be aware of shrink-wrap licenses which forbid reverse
engineering if you intend to publish results).

How to use this book

http://www.acm.uiuc.edu/sigmil/RevEng/ch01.html (2 of 7) [7/6/2003 7:03:55 PM]

http://www.digital-law-online.com/lpdi1.0/treatise48.html
http://www4.law.cornell.edu/uscode/17/1201.html

Chapter 1. Introduction

Learn the General Approach

This book isintended to give you an overview of Reverse Engineering under both UNIX and Windows.
Most likely you will beinitialy interested in only one side or the other, but it is always a good idea to
understand two different perspectives of the same idea. Even if you are not intending on ever using one of
these two platforms now, the day will come when a particular program on one catches your eye, and you
say to yourself, "Wouldn't it be neat if that ran on my OS? | wonder how | would go about doing that..."
Knowing the general approach can allow you to rapidly adapt to new environments and paradigm shifts
(ie you will be less thrown off when say, 64 bit architectures become prevalent, and less helpless when
Palladium begins to see widespread usage).

The key insight is to think about how to use these tools and techniques to build as complete a map of your
target application/feature as possible. Try not to focus on one tool or even one platform as the end-all-be-
all of reverse engineering. Instead, try to focus on the process of information extraction, of fact gathering,
and how each tool can give you a piece of the puzzle.

Read between the lines

This book isintentionally terse. We have alot of material to cover, and the learning experienceis
intended to be hands-on rather than force-fed. We're not going to provide command summaries of every
option of every tool. In fact, the most basic tools most likely will not even have output provided for them.
The assumption isthat the reader is either already familiar with these tools in the course of normal
development/system usage, or iswilling to play with the tools on their own.

On the contrary, we will not be skimping on the difficult material, such as learning assembly, or code
modification techniques that are not as straightforward as simply running tools and looking at output.
Hopefully you will still repeat or follow our example in your own projects.

Have a goal

None of the information in this book will be integrated into your thought process, or even retained, if you
do not have some reason for reading it. Pick a program for which you want to figure out some small piece
of it so that you can do something interesting. Maybe you want to replace a function call in an app to
make it do something different, maybe you want to implement a particular feature of a program
somewhere else, maybe you want to monitor al data before a program encrypts it and sends it across the
network, or maybe you just want to cheat at your favorite multiplayer networked game.

Keep a notebook

Once you have this goal, define a map of your objectives. Get a multi-subject notebook, and divide it into
sections. We suggest a Notes section, a Questions Section, an Active Hypotheses section, and an

http://www.acm.uiuc.edu/sigmil/RevEng/ch01.html (3 of 7) [7/6/2003 7:03:55 PM]

Chapter 1. Introduction

Experiments section. Date all your entries, and save one section for ageneral diary, where you jot down a
brief timeline of what you've done.

Every fact you pick up about your target application should make you feel alittle triumphant. Write it
down. Collect everything you can. These will come in handy, especially if the scope of your reversing
effort islarge.

Use the Scientific Method.

Remember 8th grade science class? Well guess what, it's relevant to reverse engineering. Essentially
reverse engineering is a science in this sense (one could argue much more so than the rest of the slop-
shod field of computer science itself). Consider every program you attack to be a system. You are
performing educated guesses about that system, and then verifying these educated guesses with alook at
the program behavior under a number of observational tools. To refresh your memory, the actual
scientific method is an iteration over four steps:

1. Observe and describe a phenomenon or group of phenomena

Thisisthefirst step. Y ou notice something interesting in your application. An interesting
behavior, afluke, or just a sequence of events. Describe thiswell, trying to establish as many
variables, unknowns, requisites and conditions as possible (using these termsin the general
scientific sense, not the language syntactic sense - although we will see that these ideas are really
parallel).

2. Formulate a hypothesis to explain these phenomena.

Make an educated guess as to why this behavior occurred. Education is key. Hopefully you
understand how software works at this point. And hopefully you have some data structures and
pattern experience, or have areally good intuition for guessing how programs work. In any case,
try to formulate a guess as to why these behavior are occurring. Some guidelines for this guessis
that it should be comparable to the complexity of the feature. If it is something that can be
implemented in one self-contained function, well then it should have afew variables that govern
its behavior. Make predictions as to what will happen when these variables change.

Sometimes, if you are looking at alarge enough feature (or trying to determine a more
complicated interaction), you need something more sophisticated than a simple function model.
This still fitsinto this framework. If you have knowledge of finite state machines (which are
basically just state transition diagrams) or push down automata (which are state transition
diagrams with a stack, and are useful in language/grammar applications), you can go along way to
modeling more pieces of a system using the tools and techniques we introduce in this book. Just
be sure to keep it in the back of your mind. If this paragraph scared you, don't worry. It isintended
to give a name-drop overview of more formal methods you can use to model systems. The
interested reader is encouraged to investigate these topics, but they won't come up in anything but

http://www.acm.uiuc.edu/sigmil/RevEng/ch01.html (4 of 7) [7/6/2003 7:03:55 PM]

Chapter 1. Introduction

large-scale reverse engineering efforts, usually involving protocols or parsing systems. (FIXME:
we should consider devoting a chapter, appendix, or example to such a system)

Y ou may also gain some information by taking a guess at the data structures used, or the design
patterns employed. Also, thisis usually only relevant to large scale reverse engineering efforts, but
again, it fitsinto the framework and is worth mentioning.

3. Either try to use your hypothesis to predict new events, or attempt to find events that demonstrate
your hypothesisisincorrect or incomplete.

The latter is probably most useful, especialy initially when trying to eliminate broad ranges of
possibilities. (FIXME: Elaborate on this?)
4. Useyour hypothesisto gain insight into the system, and perhaps even write some code.

If you modify the environment of your program in certain ways, can you predict how this will
affect it's behavior? Eventually the time will come to put your hypothesis to the ultimate test: If
you code a component the way you think the original works, will your code do the original's job?
If your goal is feature implementation details, it is probably a good idea to attempt to recode the
feature and use a code modification technigue to replace the original feature with yours. If your

goal is modification, predict the action of the system under this modification, and verify it.

The most important thing to remember is that thisis an iterative process. It converges on a solution
through repetition of observation, guessing, testing, and predicting (coding). Initial loops through this
process will start with major aspects of the system, and initial hypothesizing and testing should be done
by actually using the application. Y ou probably won't bring out the tools until the second or third
iteration, and won't dive into the assembly until after that.

If you follow this procedure, you will narrow in on a solution relatively quickly. The most tempting thing
Isto skimp on the guess stage, and just test. Thiswill get you limited results. Y ou should try to structure
your guesses and tests such that they eliminate large classes of possible operation first, and then zero in
on the details. Note that nothing says these iterations have to be formal or written down. If your project is
small, you can go through two or three iterations of the scientific method right in your head. But you still
should be thinking about the system in this manner to be most effective.

If you notice that you have many different hypotheses about how the system works, build tests for them
in order. If the feature you are after seems to depend on lots of variables, you should either narrow your
focus, or try to develop a hierarchy or tree structure, with the variables that you suspect will effect the
largest change at the top, and those that effect less change towards the leaves. Make predictions involving
the largest variablesfirst. If you find you have many different possible ways that your feature could work
on different levels, again, organize atree structure with the most likely way at the root, and then use a left
branch to indicate that this hypthesis was incorrect, and a right branch to indicate that the general
statement was correct. Typically, acorrect hypothesis will lead to awhole new hypothesis tree, which
you can either include or leave for another diagram, depending on the complexity.

http://www.acm.uiuc.edu/sigmil/RevEng/ch01.html (5 of 7) [7/6/2003 7:03:55 PM]

Chapter 1. Introduction

Figure 1.1. Exploring a Hypothesis Space

Exploring a Hypothesis
Space

Of course, you don't have to actually draw the tree, but it helps for more complicated scenarios,
especially when you're dealing with many features at once. At the very least, this sort of organization
should be going on in your head. Furthermore, you may find it useful to have more than two branches at
certain points, but only if you can come up with asingle test that somehow selects one outcome from
several possible ones.

Most of the time for smaller efforts, you will probably only need one or two hypotheses that serve to
simply point you in the right direction in the application, however, and you won't need to worry about
doing anything complicated. Usually these will be something simple, like " This feature works with the
help of such and such system library function(s)." Once you do alinker test to verify thisand atrace to
see where it calls this function, you're right where you need to be.

[Tip] [INOTE

If you just haphazardly test without a battle plan, you will be in danger of
performing unnecessary/irrelevant tests, or will waste your time looking at alot of
useless assembly code.

The Layout of the Book

The rest of the book is structured as a gradual decent from general to specific tools and techniques. We
will first introduce tools that are used to gather information about the system/target as a whole. This will
give us the information we need to form hypotheses about the next level of detail, namely, how our target
is accomplishing various operations. We then can verify this using utilities that allow us a closer look at
program behavior. From here, we then reapply the scientific method to hypothesize about the location
and function of interesting segments of the program itself, based on which functions are being called
from which regions of the program and in what manner. This should give us a hypothesis about the
operation of our target in detail, which we then verify by looking at the assembly. (FIXME: Consider
adding a"Form Y our Hypothesis" section to each chapter).

From this point on, the game is all about how do we want to make use of this information. For this
reason, various code modification and interception techniques are presented, including function insertion,
RPC interception and buffer overflow techniques.

Prev Up Next

http://www.acm.uiuc.edu/sigmil/RevEng/ch01.html (6 of 7) [7/6/2003 7:03:55 PM]

Chapter 1. Introduction

Introduction to Reverse Engineering
Software

Home Chapter 2. The Compilation Process

http://www.acm.uiuc.edu/sigmil/RevEng/ch01.html (7 of 7) [7/6/2003 7:03:55 PM]

Chapter 2. The Compilation Process

Chapter 2. The Compilation Process
Prev Next

Chapter 2. The Compilation Process

Table of Contents

Intro

The Compiler

The C Preprocessor

Parsing And Trandation Stages
Assembly Stage

Linking Stage

Intro

Compilation in general is split into roughly 5 stages. Preprocessing, Parsing, Trandlation, Assembling,
and Linking.

Figure 2.1. The compilation Process

The compilation Process

All 5 stages are implemented by one program in UNIX, namely cc, or in our case, gcc (or g++). The
genera order of things goes gcc -> gec -E -> gecc -S-> as-> |d.

Under Windows, however, the process is a bit more obfuscated, but once you delve under the MSV C++
front end, it is essentially the same. Also note that the GNU toolchain is available under Windows,
through both the MinGW project as well as the Cygwin Project and behaves the same as under UNIX.
Cygwin provides an entire POSIX compatibility layer and UNIX-like environment, where as MinGW
just provides the GNU buildchain itself, and allows you to build native windows apps without having to
ship an additional dIl. Many other commercial compilers exist, but they are omitted for space.

The Compiler

Despite their seemingly disparate approaches to the development environment, both UNIX and Windows
do share a common architectural back-end when it comes to compilers (and many many other things, as

http://www.acm.uiuc.edu/sigmil/RevEng/ch02.html (1 of 5) [7/6/2003 7:03:57 PM]

http://www.mingw.org/
http://www.cygwin.com/

Chapter 2. The Compilation Process

we will find out in the coming pages). Executable generation is essentially handled end-to-end on both
systems by one program: the compiler. Both systems have a single front-end executabl e that acts as glue
for essentially al 5 steps mentioned above.

The C Preprocessor

The preprocessor is what handles the logic behind all the # directivesin C. It runsin asingle pass, and
essentially isjust a substitution engine.

gcc -E

gcc -E runs only the preprocessor stage. This places al include filesinto your .c file, and also translates
all macrosinto inline C code. Y ou can add -o file to redirect to afile.

cl -E

Likewise, cl -E will aso run only the preprocessor stage, printing out the results to standard out.

Parsing And Translation Stages

The parsing and translation stages are the most useful stages of the compiler. Later in this book, we will
use this functionality to teach ourselves assembly, and to get afeel for the type of code generated by the
compiler under certain circumstances. Unfortunately, the UNIX world and the Windows world diverge
on their choice of syntax for assembly, as we shall seein abit. It is our hope that exposure to both of
these syntax methods will increase the flexibility of the reader when moving between the two
environments. Note that most of the GNU tools do allow the flexibility to choose Intel syntax, should
you wish to just pick one syntax and stick with it. We will cover both, however. (FIXME: Should we?)

gcc -S

gcc -Swill take .c files as input and output .s assembly filesin AT& T syntax. If you wish to have Intel
syntax, add the option -masm=intel. To gain some association between variables and stack usage, use
add -fver bose-asm to the flags.

gcc can be called with various optimization options that can do interesting things to the assembly code
output. There are between 4 and 7 general optimization classes that can be specified with a-ON, where O
<= N <= 6. 0isno optimization (default), and 6 is usually maximum, although oftentimes no
optimizations are done past 4, depending on architecture and gcc version.

http://www.acm.uiuc.edu/sigmil/RevEng/ch02.html (2 of 5) [7/6/2003 7:03:57 PM]

Chapter 2. The Compilation Process

There are also several fine-grained assembly options that are specified with the -f flag. The most
interesting are -funroll-loops, -finline-functions, and -fomit-frame-pointer. Loop unrolling means to
expand aloop out so that there are n copies of the code for n iterations of the loop (ie no jmp statements
to the top of the loop). On modern processors, this optimization is negligible. Inlining functions meansto
effectively convert all functionsin afile to macros, and place copies of their code directly inlinein the
calling function (like the C++ inline keyword). This only applies for functions called in the same C file
astheir definition. It isaso arelatively small optimization. Omitting the frame pointer (akathe base
pointer) frees up an extraregister for usein your program. If you have more than 4 heavily used local
variables, this may be rather large advantage, otherwise it is just a nuisance (and makes debugging much
more difficult).

[Tip] [NOTE

Since some of these get turned on by default in the higher optimization classes, it is
useful to know that despite the fact that the manual page does not mention it
explicitly, al of the -f options have -fno- equivalents. So -fno-inline-functions
prevents function inlining, regardless of the -O option.

If you use -fverbose-asm, anon-inclusive list of compiler optionsis now printed at
the top of the assembly output file. An annoying nuisance with gcc-3.x isthat it
enables many optimizations even at the -O0 level, making it difficult to generate
hand-tuned asm from C. Y ou can turn these off one by one using the above
mentioned -fno- switch, however. Also one can write inline assembly to make sure
that gcc will generate the code desired, but this should not be the preferred
approach.

cl -S

Likewise, cl.exe has a-S option that will generate assembly, and also has several optimization options.
Unfortunately, cl does not appear to allow optimizations to be controlled to asfine alevel as gcc does.
The main optimization options that cl offers are predefined ones for either speed or space. A couple of
options that are similar to what gcc offers are:

-Ob<n> - inline functions (-finline-functions)
-Oy - enable frame pointer omission (-fomit-frame-pointer)

FIXME: Play with these.

Assembly Stage

The assembly stage is where assembly code is trandlated almost directly to machine instructions. Some

http://www.acm.uiuc.edu/sigmil/RevEng/ch02.html (3 of 5) [7/6/2003 7:03:57 PM]

Chapter 2. The Compilation Process

minimal preprocessing, padding, and instruction reordering can occur, however. We won't concern
ourselves with that too much, as it will become visible during disassembly, which is covered in the
section Know Y our Compiler

GNU as

asisthe GNU assembler. It takesinput asan AT&T or Intel syntax asm file and generates a .o object file.

MASM

MASM isthe Microsoft assembler. FIXME: Wherethe hell isit?

Linking Stage

Both Windows and UNIX have similar linking procedures, athough the support is slightly different.
Both systems support 3 styles of linking, and both implement these in remarkably similar ways.

Static Linking

Static linking means that for each function your program calls, the assembly to that function is
actually included in the executable file. Function calls are performed by calling the address of this
code directly, the same way that functions of your program are called.

Dynamic Linking

Dynamic linking means that the library existsin only one location on the entire system, and the
operating system's virtual memory system will map that single location into your program's
address space when your program loads. The address at which this map occursis not always
guaranteed, although it will remain constant once the executable has been built. Functions calls
are performed by making calls to a compile-time generated section of the executable, called the
Procedure Linkage Table, PLT, or jump table, which is essentially a huge array of jump
Instructions to the proper addresses of the mapped memory. These structures will be discussed in
Chapter 8, Executable formats and aso in the Code Modification Chapter. (FIXME: Verify PLT

on windows)
Runtime Linking

Runtime linking is linking that happens when a program requests a function from alibrary it was
not linked against at compiletime. The library is mapped with dlopen() under UNIX, and
LoadLibrary() under Windows, both of which return a handle that is then passed to symbol
resolution functions (disym() and GetProcAddress()), which actually return afunction pointer that
may be called directly from the program asif it were any normal function. This approach is often

http://www.acm.uiuc.edu/sigmil/RevEng/ch02.html (4 of 5) [7/6/2003 7:03:57 PM]

Chapter 2. The Compilation Process

used by applications to load user-specified plugin libraries with well-defined initialization
functions. Such initialization functions typically report further function addresses to the program
that loaded them.

|d/collect2

Id isthe GNU linker. It will generate avalid executable file. If you link against shared libraries, you will
want to actually use what gcc calls, which is collect2. FIXME: Watch gcc -v for flags

link.exe

Thisisthe MSVC++ linker. Normally, you will just passit options indirectly viacl's -link option.
However, you can use it directly to link object filesand .dll files together into an executable. For some
reason though, Windows requires that you have a .lib (or a .def) file in addition to your .dllsin order to
link against them. The .lib fileis only used in the interim stages, but the location to it must be specified
on the -LIBPATH: option.

Next

=

Prev
Chapter 1. Introduction Home Chapter 3. Gathering Info

http://www.acm.uiuc.edu/sigmil/RevEng/ch02.html (5 of 5) [7/6/2003 7:03:57 PM]

Chapter 3. Gathering Info

Chapter 3. Gathering Info

Chapter 3. Gathering Info

Table of Contents

System Wide Process |nformation
Obtaining Linking information
Obtaining Function Information
Viewing Filesystem Activity
Viewing Open Network Connections
Gathering Network Data

Now the fun begins. Thefirst step to figuring out what is going on in our target program is to gather as much information as
we can. Several tools allow usto do this on both platforms. Let's take alook at them.

System Wide Process Information

On Windows as on Linux, severa applicationswill give you varying amounts of information about processes running.
However, there is a one stop shop for information on both systems.

/proc

The Linux /proc filesystem contains all sorts of interesting information, from where libraries and other sections of the code are
mapped, to which files and sockets are open where. The /proc filesystem contains a directory for each currently running
process. S0, if you started a process whose pid was 1337, you could enter the directory /proc/1337/ to find out almost anything
about this currently running process. Y ou can only view process information for processes which you own.

Thefilesin this directory change with each UNIX OS. The interesting onesin Linux are: cmdline -- lists the command line
parameters passed to the process cwd -- alink to the current working directory of the process environ -- alist of the
environment variables for the process exe -- the link to the process executable fd -- alist of the file descriptors being used by
the process maps -- VERY USEFUL. Lists the memory locations in use by this process. These can be viewed directly with gdb
to find out various useful things.

Sysinternals Process Explorer

Sysinternals provides an all-around must-have set of utilities. In this case, Process Explorer isthe functional equivalent of

/proc. It can show you dIl mapping information, right down to which functions are at which addresses, as well as process
properties, which includes an environment tab, security id's, what files and objects are open, what the type of objects those
handles are for, etc. It will also allow you to modify processes for which you have access to in ways that are not possible in
/proc. Y ou can close handles, change permissions, open debug windows, and change process priority.

Obtaining Linking information

http://www.acm.uiuc.edu/sigmil/RevEng/ch03.html (1 of 7) [7/6/2003 7:03:58 PM]

http://www.sysinternals.com/

Chapter 3. Gathering Info

Thefirst step towards understanding how a program works isto analyze what librariesit is linked against. This can help us
immediately make predictions as to the type of program we're dealing with and make some insights into its behavior.

ldd

Idd isabasic utility that shows us what libraries a program is linked against, or if its statically linked. It also gives usthe
addresses that these libraries are mapped into the program's execution space, which can be handy for following function calls
in disassembled output (which we will get to shortly).

depends

dependsisa utility that comes with the Microsoft SDK, aswell aswith MS Visual Studio. It will show you quite a bit about

the linking information for a program. Not only will list dll's, but it will list which functionsin those DLL's are being imported
(used) by the current executable, and at what address they reside. Thiswill come in very handy when we discuss code

modification and interception.

Obtaining Function Information

The next step in reverse engineering is the ability to differentiate functional blocksin programs. Unfortunately, this can prove
to be quite difficult if you aren't lucky enough to have debug information enabled. We'll discuss some of those techniques later.

nm

nm lists all of theloca and library functions, global variables, and their addresses in the binary. However, it will not work on
binaries that have been stripped with strip.

dumpbin.exe

Unfortunately, the closest thing Windows has to nm is dumpbin.exe, which isn't very great. The only thing it can dois
essentially what depends already does: that is list functions used by this binary (dumpbin /imports), and list functions provided
by this binary (dumpbin /exports). The only way a binary can export a function (and thus the only way the function is visible)
isif that function hasthe __declspec(dllexport) tag next to it's prototype (FIXME: Verify).

Luckily, dependsis so overkill, it often provides us with more than the information we need to get the job done.
Viewing Filesystem Activity

|sof

Isof isaprogram that lists all open files by the processes running on a system. An open file may be aregular file, adirectory, a
block specid file, a character special file, an executing text reference, alibrary, a stream or a network file (Internet socket,
NFSfile or UNIX domain socket). It has plenty of options, but in its default mode it gives an extensive listing of the opened
files. Isof does not come installed by default with most of the flavors of Linux/UNIX, so you may need to install it by yourself.
On some distributions I sof installs in /usr/sbin which by default is not in your path and you will have to add it. An example
output would be:

COMVAND PID USER FD TYPE DEVI CE SI ZE NCDE NAME

http://www.acm.uiuc.edu/sigmil/RevEng/ch03.html (2 of 7) [7/6/2003 7:03:58 PM]

http://www.microsoft.com/msdownload/platformsdk/setuplauncher.htm

Chapter 3. Gathering Info

bash 101 nasko cwd DI R 3,2 4096 1172699 / hone/ nasko

bash 101 nasko rtd DI R 3,2 4096 2/

bash 101 nasko txt REG 3,2 518140 1204132 / bi n/ bash

bash 101 nasko nmem REG 3,2 432647 748736 /lib/ld-2.2.3.s0
bash 101 nasko nem REG 3,2 14831 1399832
/1ib/libterncap.so.2.0.8

bash 101 nasko nmem REG 3,2 72701 748743 [lib/libdl-2.2.3.s0
bash 101 nasko nem REG 3,2 4783716 748741 /lib/libc-2.2.3.s0
bash 101 nasko nem REG 3,2 249120 748742 /1ib/libnss_conpat -
2.2.3.s0

bash 101 nasko nem REG 3,2 357644 748746 /lib/libnsl-2.2.3.s0
bash 101 nasko Ou CHR 4,5 260596 /dev/tty5

bash 101 nasko 1lu CHR 4,5 260596 /dev/tty5

bash 101 nasko 2u CHR 4,5 260596 /dev/tty5b

bash 101 nasko 255u CHR 4,5 260596 /dev/tty5

screen 379 nasko cwd DI R 3,2 4096 1172699 / hone/ nasko

screen 379 nasko rtd DI R 3,2 4096 2/

screen 379 nasko txt REG 3,2 250336 358394 /usr/ bi n/ screen-
3.9.9

screen 379 nasko nmem REG 3,2 432647 748736 /lib/ld-2.2.3.s0
Screen 379 nasko nmem REG 3,2 357644 748746 /lib/libnsl-2.2.3.s0
screen 379 nasko or CHR 1,3 260468 / dev/ nul

SCreen 379 nasko Iw CHR 1,3 260468 / dev/ nul

screen 379 nasko 2w CHR 1,3 260468 / dev/ nul

screen 379 nasko 3r FIFO 3,2 1334324

/ honme/ nasko/ . screen/ 379. pt s- 6. sl ack

startx 729 nasko cwd DI R 3,2 4096 1172699 / hone/ nasko

startx 729 nasko rtd DI R 3,2 4096 2/

startx 729 nasko txt REG 3,2 518140 1204132 / bi n/ bash

ksnserver 794 nasko 3u uni x 0xc8d36580 346900 socket

ksnserver 794 nasko 4r FIFO 0,6 346902 pi pe

ksnserver 794 nasko 5w FIFO 0,6 346902 pi pe

ksnserver 794 nasko 6u uni x 0xd4c83200 346903 socket

ksnserver 794 nasko 7u uni x 0xd4c83540 346905 /tnp/. 1 CE-uni x/ 794
nozilla-b 5594 nasko 144u sock 0,0 639105 can't identify

pr ot ocol

mozilla-b 5594 nasko 146u uni x 0xdl18ec3e0 639134 socket

nozilla-b 5594 nasko 147u sock 0,0 639135 can't identify

pr ot ocol

nozilla-b 5594 nasko 150u unix 0xd18ed420 639151 socket

Hereis brief explanation of some of the abbreviations |sof usesin its output:

cwd current working directory

mem nmenory-mapped file

pd parent directory

rtd root directory

txt programtext (code and data)
CHR for a character special file
sock for a socket of unknown domai n
uni x for a UNI X domai n socket

http://www.acm.uiuc.edu/sigmil/RevEng/ch03.html (3 of 7) [7/6/2003 7:03:58 PM]

Chapter 3. Gathering Info

DR for a directory
FIFO for a FIFO special file

It is pretty handy tool when it comes to investigating program behavior. |sof reveals plenty of information about what the
process is doing under the surface.

[Tip] | fuser
A command closely related to Isof isfuser. fuser accepts as a command-line parameter the name of afile
or socket. It will return the pid of the process accessing that file or socket.

Sysinternals Filemon

The analog to Isof in the windows world is the Sysinternals Filemon utility. It can show not only open files, but reads, writes,
and status requests as well. Furthermore, you can filter by specific process and operation type. A very useful tool.

Sysinternals Regmon
Theregistry in Windowsis akey part of the system that contains |lots of secrets. In order to try and understand how a program
works, one definitely should know how the target interacts with the registry. Does it store configuration information,

passwords, any useful information, and so on. Regmon from Sysinternals lets you monitor all or selected registry activity in
real time. Definitely amust if you plan to work on any target on Windows.

Viewing Open Network Connections

So thisis one of the cases where both Linux and Windows have the same exact name for a utility, and it performs the same
exact duty. Thisutility is netstat.

netstat

netstat is handy little tool that is present on all modern operating systems. It is used to display network connections, routing
tables, interface statistics, and more.

How can netstat be useful ? Let's say we are trying to reverse engineer a program that uses some network communication. A
quick look at what netstat displays can give us clues where the program connects and after some investigation maybe why it
connects to this host. netstat does not only show TCP/IP connections, but also UNIX domain socket connections which are
used in interprocess communication in lots of programs. Here is an example output of it:

Figure 3.1. Netstat output

Active Internet connections (W o servers)

Proto Recv-Q Send-Q Local Address For ei gn Address State

tcp 0 0 sl ack. | ocal net: 58705 egon: ssh ESTABLI SHED
tcp 0 0 sl ack.l ocal net: 51766 gw. | ocal net: ssh ESTABLI SHED
tcp 0 0 sl ack.local net: 51765 gw. | ocal net: ssh ESTABLI SHED
tcp 0 0 sl ack. | ocal net: 38980 cl ortho: ssh ESTABLI SHED
tcp 0 0 sl ack. | ocal net: 58510 st udent s: ssh ESTABLI SHED

Active UNI X domai n sockets (w o servers)

http://www.acm.uiuc.edu/sigmil/RevEng/ch03.html (4 of 7) [7/6/2003 7:03:58 PM]

Chapter 3. Gathering Info

Proto Ref Cnt Fl ags Type State | - Node Pat h
unix 5 [] DGRAM 68 / dev/ | og
uni x 3 [] STREAM CONNECTED 572608 /tnp/ .| CE-uni x/ 794
uni x 3 [] STREAM CONNECTED 572607
unix 3 [] STREAM CONNECTED 572604 /tnp/. X11-uni x/ X0
uni x 3 [] STREAM CONNECTED 572603
uni x 2 [] STREAM 572488
[Tip] |NOTE

The output shown is from Linux system. The Windows output is almost identical.

Asyou can seethereis great deal of info shown by netstat. But what is the meaning of it? The output is divided in two parts -
Internet connections and UNIX domain sockets as mentioned above. Here is breifly what the Internet portion of netstat output
means. The first column shows the protocol being used (tcp, udp, unix) in the particular connection. Receiving and sending
gueues for it are displayed in the next two columns, followed by the information identifying the connection - source host and
port, destination host and port. The last column of the output shows the state of the connection. Since there are several stages

in opening and closing TCP connections, this field was included to show if the connection is ESTABLISHED or in some of the
other available states. SYN_SENT, TIME_WAIT, LISTEN are the most often seen ones. To see complete list of the available
states ook in the man page for netstat. FIXME: Describe these states.

Depending on the options being passed to netstat, it is possible to display more info. In particular interesting for usisthe -p
option (not available on al UNIX systems). Thiswill show us the program that uses the connection shown, which may help us
determine the behaviour of our target. Another use of this optionsisin tracking down spyware programs that may be installed
on your system. Showing all the network connection and looking for unknown entriesis invaluable tool in discovering
programs that you are unaware of that send information to the network. This can be combined with the -a option to show all
connections. By default listening sockets are not displayed in netstat. Using the -awe force all to be shown. -n shows
numerical |P addesses instead of hostnames.

netstat -p as normal user

(Not all processes could be identified, non-owned process info
will not be shown, you would have to be root to see it all.)
Active Internet connections (W o servers)

Proto Recv-Q Send-Q Local Address For ei gn Address State

Pl D/ Pr ogr am nane

tcp 0 0 sl ack. | ocal net: 58705 egon: ssh ESTABLI SHED -
tcp 0 0 sl ack.l ocal net: 58766 W nst on: www ESTABLI SHED

5587/ nozil | a-bin

netstat -npa as root user
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address For ei gn Address State

Pl DY Progr am nane

tcp 0 0 0.0.0.0:139 0.0.0.0:* LI STEN

390/ snbd

tcp 0 0 0.0.0.0:6000 0.0.0.0:* LI STEN 737/ X
tcp 0 0 0.0.0.0:22 0.0.0.0:* LI STEN

78/ sshd

tcp 0 0 10.0.0.3:58705 128. 174. 252. 100: 22 ESTABLI SHED

http://www.acm.uiuc.edu/sigmil/RevEng/ch03.html (5 of 7) [7/6/2003 7:03:58 PM]

Chapter 3. Gathering Info

13761/ ssh

tcp 0 0 10.0.0.3:51766 10.0.0. 1: 22 ESTABLI| SHED
897/ ssh

tcp 0 0 10.0.0.3:51765 10.0.0. 1: 22 ESTABL| SHED
896/ ssh

tcp 0 0 10.0.0. 3:38980 128. 174. 252. 105: 22 ESTABLI| SHED
8272/ ssh

tcp 0 0 10.0.0. 3:58510 128.174.5. 39: 22 ESTABLI| SHED
13716/ ssh

So this output shows that mozilla has established a connection with winston for HT TP traffic (since port is www(80)). In the
second output we see that the SMB daemon, X server, and ssh daemon listen for incoming connections.

Gathering Network Data

Collecting network datais usually done with a program called sniffer. What the program does isto put your ethernet card into
promiscuous mode and gather all the information that it sees. What is a promiscuous mode? Ethernet is a broadcast media. All
computers broadcast their messages on the wire and anyone can see those messages. Each network interface card (NIC), asa
hardcoded physical address called MAC (Media Access Control) address, which is used in the Ethernet protocol. When
sending data over the wire, the OS specifies the destination of the data and only the NIC with the destination MAC address
will actually process the data. All other NICs will disregard the data coming on the wire. When in promiscuous mode, the card
picks up al the datathat it sees and sends it to the OS. In this case you can see al the data that is flowing on your local
network segment.

[Tip] | Disclaimer
Switched networks eliminate the broadcast to all machines, but sniffing traffic is still possible using
certain techniques like ARP poisoning. (FIXME: link with section on ARP poisoning if we have one.)

Several popular sniffing programs exist, which differ in user interface and capabilities, but any one of them will do the job.
Here are some good tools that we use on adaily basis:

. ethereal - one of the best sniffers out there. It has a graphical interface built with the GTK library. It is not just a sniffer,
but also a protocol analyzer. It breaks down the captured data into pieces, showing the meaning of each piece (for
example TCP flags like SYN or ACK, or even kerberos or NTLM headers). Furthermore, it has excellent packet
filtering mechanisms, and can save captures of network traffic that match afilter for later analysis. It is available for
both Windows and Linux and requires (as amost any sniffer) the pcap library. Ethereal is available at
www.ethereal.com and you will need libpcap for Linux or WinPcap for Windows.

. tcpdump - one of the first sniffing programs. It is a console application that printsinfo to the screen. The advantage is
that it comes by default with most Linux distributions. Windows version is available as well, called WinDump.

. ettercap - also a console based sniffer. Uses the ncurses library to provide console GUI. It has built in ARP poisoning
capability and supports plugins, which give you the power to modify data on the fly. This makesit very suitable for all
kinds of Man-In-The-Middle attacks (MITM), which will we will describe in chapter (FIXME: link). Ettercap isn't that
great a sniffer, but nothing prevents you from using its ARP poisoning and plugin features while also running a more
powerful sniffer such as ethereal.

Now that you know what a sniffer is and hopefully learned how to use basic functionality of your favorite one, you are all set
to gather network data. Let's say you want to know how does a mail client authenticate and fetch messages from the server.
Since the protocol in useis POP3, we should instruct ethereal (our sniffer of choice) to capture traffic only destined to port 110

http://www.acm.uiuc.edu/sigmil/RevEng/ch03.html (6 of 7) [7/6/2003 7:03:58 PM]

http://www.ethereal.com/
http://www.ethereal.com/
http://www.tcpdump.org/
http://winpcap.polito.it/
http://www.tcpdump.com/
http://winpcap.polito.it/
http://ettercap.sourceforge.net/

Chapter 3. Gathering Info

or originating from port 110. If you have alot of machines checking mail at the same time on a network with a hub, you might
want to restrict the matching only to your machine and the server you are connecting to. Here is an example of captured packet
in ethereal: Ethereal breaks down the packet for us, showing what each part of the data means. For example, 1 shows us the
Ethernet level information, such as source and destination MAC address. Also meaning of each bit in flag values are explained.
Looking at the TCP header information, it saysthat the.... bits are set and the rest are not. Using packet captures, one can

trace the flow of a protocol to better understand how an application works, or even try to reverse engineer the protocol itself if
unknown.

Prev

=

Next
Chapter 2. The Compilation Process Home Chapter 4. Determining Program Behavior

http://www.acm.uiuc.edu/sigmil/RevEng/ch03.html (7 of 7) [7/6/2003 7:03:58 PM]

Chapter 4. Determining Program Behavior

Chapter 4. Determining Program Behavior
Prev Next

Chapter 4. Determining Program Behavior

Table of Contents

Tracing System Calls
Tracing Library Calls

There are a couple of tools that allow usto ook into program behavior at a more closer level. Lets ook
at some of these:

Tracing System Calls

This section isreally only relevant for to our efforts under UNIX, as Windows system calls change
regularly from version to version, and have unpredictable entry points.

strace/truss(Solaris)
These programs trace system calls a program makes as it makes them.
Useful options:

1. -f (follow fork)
2. -ffo filename (output trace to filename.pid for forking)
3. -1 (Print instruction pointer for each system call)

Tracing Library Calls

Now we're starting to get to the more interesting stuff. Tracing library callsis avery powerful method of
system analysis. It can give us a*lot* of information about our target.

ltrace

This utility is extremely useful. It traces ALL library calls made by a program.

http://www.acm.uiuc.edu/sigmil/RevEng/ch04.html (1 of 2) [7/6/2003 7:03:58 PM]

Chapter 4. Determining Program Behavior

Useful options:

1. -S(display syscallstoo)

2. -f (follow fork)

3. -o filename (output trace to filename)
4. -C (demangle C++ function call names)
5. -n 2 (indent each nested call 2 spaces)
6. -i (printsinstruction pointer of caller)
7. -p pid (attaches to specified pid)

API Monitor

API Monitor isincredible. It will let you watch .dll callsin real time, filter on type of dil call, view

Prev Up Next

Chapter 3. Gathering Info Chapter 5. Determining Interesting

Home]
Functions

http://www.acm.uiuc.edu/sigmil/RevEng/ch04.html (2 of 2) [7/6/2003 7:03:58 PM]

http://www.rohitab.com/apimonitor

Chapter 5. Determining I nteresting Functions

Chapter 5. Determining I nteresting Functions
Prev Next

Chapter 5. Determining Interesting Functions

Table of Contents

Reconstructing function & control information
Consider the objective

Finding key functions

Plotting out program flow

Clearly without source code, we can't possibly hope to understand all of sections of an entire program. So
we have to use various methods and guess work to narrow down our search to a couple of key functions.

Reconstructing function & control information

The problem is that first, we must determine what portions of the code are actually functions. This can be
difficult without debugging symbols. Fortunately, there are a couple of utilities that make our lives
easier.

objdump

Objdump's most useful purpose is to disassemble a program with the -d switch. Lacking symbols, this
output is abit more cryptic. The -j option is used to specify a segment to disassemble. Most likely we
will want .text, which is where all the program code lies.

Note that the leftmost column of objdump contains a hex number. Thisisin fact the actual addressin
memory where that instruction is located. Its binary value is given in the next column, followed by its
mnemonic.

objdump -T will giveusalisting of al library functions this program calls.
disasm.pl

Steve Barker wrote a neat little perl script that makes objdump much more legible in the event that
symbols are not included. The script has since been extended and improved by myself and Nasko Oskov.

http://www.acm.uiuc.edu/sigmil/RevEng/ch05.html (1 of 4) [7/6/2003 7:03:59 PM]

Chapter 5. Determining Interesting Functions

It now makes 3 passes through the output. The first pass builds a symbol table of called and jumped-to
locations. The second pass finds areas between two rets, and inserts them into the symbol table as
"unused" functions. The third pass prints out the nicely labeled output, and prints out a function call tree.

Usage:
./ disasm/path/to/binary > binary.asm nfo

There are/will be few command line options to the utility. Now --graph is supported. It will generate a
file called call_graph that contains definition that can be used with a program called dot to generate

visual representation of the call graph.

Note: Unused functions just mean that that function wasn't called DIRECTLY . It is still possible that a
function was called through a function pointer (ie, main is called this way)

Consider the objective

Ok, so now we're getting ready to get really down and dirty. The first step to finding what you are
looking for isto know what you are looking for. Which functions are 'interesting' is entirely dependent
on your point of view. Are you looking for copy protection? How do you suspect it is done. When in the
program execution does it show up? Are you looking to do a security audit of the program? Is there any
sloppy string usage? Which functions use stremp, sprintf, etc? Which use malloc? Is there a possibility of
improper memory allocation?

Finding key functions

If we can narrow down our search to just afew functions that are relevant to our objective, our lives
should be much easier.

Finding main()

Regardless of our objective, it is amost always helpful to know where main() lies. Unfortunately, when
debugging symbols are removed, thisis not aways easy.

In Linux, program execution actually begins at the location defined by the _start symbol, whichis
provided by gcc in the crtO libraries (check gec -v for location). Execution then continuesto
__libc_start_main(), which calls_init() for each library in the program space. Each _init() then calls any
global constructors you may have in that particular library. Global constructors can be created by making
global instances of C++ classes with a constructor, or by specifying __ attribute _ ((constructor)) after a
function prototype. After this, execution isfinaly transferred to main.

http://www.acm.uiuc.edu/sigmil/RevEng/ch05.html (2 of 4) [7/6/2003 7:03:59 PM]

http://www.research.att.com/sw/tools/graphviz/

Chapter 5. Determining Interesting Functions

The easiest techniqueisto try to use our friends ltrace and gdb together with our disassembled output.
Checking the return address of the first few functions of ltrace -i, and cross referencing that to our
assembly output and function call tree should give us a pretty good idea where main is. We may have to
try to trick the program into exiting early, or printout out an error message before it gets too deep into its
call stack.

Other techniques exist. For example, we can LD _PRELOAD a.c file with a constructor function in it.

We can then set a breakpoint to alibc function that it callsthat is also in the main executable, and
fini shandstepi until we are satisfied that we have found main.

Even better, we could just set a breakpoint in the function __libc_start main (which isalibc function,
and thus we will aways have a symbol for it), and do the same technique of finishing and stepping until
we reach what looks like main to us.

At worst, even without a frame pointer, we should be able to get the address of afunction early enough in
the execution chain for usto consider it to be main.

Finding other interesting functions

Its probably a good ideato make alist of all functionsthat call exit. These may be of use to us. Other
techniques for tracking down interesting functions include:

1. Checking for which functions call obscure gui construction widgets used in a dialog box asking
for aproduct serial number

2. Checking the string references to find out which functions reference strings that we are interested
in. For example, if aprogram outputs the text "Already registered." knowing what function
outputs this string is helpful in figuring out the protection this particular program uses.

3. Running a program in gdb, then hitting control C when it begins to perform some interesting
operation. using stepi N should slow things down and allow you to be more accurate. Sometimes
thisistoo slow however. Find acommonly called function, set a breakpoint, and try doing cont N.

4. Checking which functions call functionsin the BSD socket layer

Plotting out program flow

Plot out execution paths into a tree from main, especially to your function(s) of interest. Y ou can use
disasm.pl to generate call graphs with the --graph option. Using it enables the script to generate file
called call_graph. It contains definition of the call graph in aformat used by a popular graphing tool
called dot. Feeding this definition file in dot will give you anice (probably pretty huge) graphics file with
visual representation of the call graph. It is pretty amazing. Definitely try it with some small program.

Further analysis will have to hold off until we understand some assembly.

http://www.acm.uiuc.edu/sigmil/RevEng/ch05.html (3 of 4) [7/6/2003 7:03:59 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/code/constructor.c

Chapter 5. Determining Interesting Functions

Prev Up Next
Chapter 4. Determining Program Home Chapter 6. Understanding Assembly
Behavior -

http://www.acm.uiuc.edu/sigmil/RevEng/ch05.html (4 of 4) [7/6/2003 7:03:59 PM]

Chapter 6. Understanding Assembly

Chapter 6. Understanding Assembly
Prev Next

Chapter 6. Understanding Assembly

Table of Contents

Registers

The stack

Two's complement
Reading Assembly
Know Y our Compiler
Writing Inline Assembly

Since the output of al of thesetoolsisin AT&T syntax, those of you who know Intel/MASM syntax have a bit of re-
learning to do.

Assembly language is one step closer to the hardware than high level languages like C and C++. So to understand
assembly, you have to understand how the hardware works. Lets start with a set of memory locations known as the
CPU registers.

Registers

Registers are like the local variables of the CPU, except there are a fixed number of them. For the ix86 CPU, there are
only 4 main registers for doing integer calculations: A, B, C, and D. Each of these 4 registers can be accessed 4
different ways: as a 32 hit value (%eax), as a 16 hit value (%ax), and as alow and a high 8 bit value (%al and %ah).
There are five more registers that you will see used occasionally - namely Sl, DI, SP and BP. Sl and DI are around
from the DOS days when people used 64k segmented addressing, and as it turns out, may be used as integer like
normal registers now. SP and BP are two specia registers used to handle an area of memory called the stack. Thereis
one last register, the instruction pointer 1P that you may not modify directly, but is changed through jmps and calls. Its
value is the address of the next instruction to execute. (FIXME: Check this)

Note: If gcc was called with the -fomit-frame-pointer, the BP register is freed up to be used as an extrainteger register.

The stack

What is A stack?

A stack iswhat iscalled aLast In, First Out data structure or LIFO. Think of it as a stack of plates. The most recent
(last) plate pushed on top of the stack is the first one to be removed. This allows us to manage the stack with only one
register if need be, namely the stack pointer or SP register.

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (1 of 11) [7/6/2003 7:04:00 PM]

http://linuxassembly.org/linasm.html
http://linuxassembly.org/linasm.html

Chapter 6. Understanding Assembly

What is THE stack?

The stack isaregion of memory that is present throughout the entire lifetime of a program. It iswhere local variables
are stored, and it is also how function call arguments are passed.

On all modern computers, the stack is said to grow down, that is, as el ements are pushed on to it, the SP register is
decremented by the size of the element pushed. From our earlier analogy, its asif the stack of plates where hung from
the ceiling, new plates were inserted at the bottom, and the whole stack some sort of catch to stop them all from
dumping out. That catch would be the SP register.

So the stack starts from a high memory address, and works down to alower address. Thisis because another section of
memory called the heap grows up, and its handy to have the two of them grow towards eachother to fill in asingle
empty hole in the program address space.

Note: It is easy to become confused when dealing with the stack. Remember that while it may grow down, variables are
till addressed sequentially upwards. So an array of char b[4] at esp of 80 will have b[0] at 80 (right at the stack
pointer), b[1] abovethat at 81, b[2] at 82, and b[3] at 83, which is where the stack pointer was before the push. The
next push will then place the stack pointer at 76.

Working with the stack

There are two instructions that deal with the stack directly: push and pop. Each take aregister or value as an argument.
Push will place its argument onto the stack, and then decrement the SP by the size of its argument (4 for pushl, 2 for
pushw, 1 for pushb). //[FIXME (What is pushl and push b) Pop copies the value on the top of the stack into its
argument, then increments SP. Pusha and popa push and pop all the registers with one instruction. Because of speed
considerations, the value is not touched, just the SP register is changed to point to the next location ot the stack. So SP
is always pointing to the top value of the stack and not at invalid memory.

Normal arithmetic expressions can also be used to modify SP to make space for working directly with stack memory
with other instructions.

How gcc works with the stack

Right before afunction is called, its arguments are pushed onto the stack in reverse order. Then the call instruction
pushes the address of the next instruction (ie the value of I P after call) onto the stack, and then the CPU begins
executing the address of the call by copying that value into the invisible instruction pointer (1P) register.

The called function then starts with what is known as the function prolog, which pushes the current base pointer onto
the stack, and then copies the current stack pointer to the base pointer, and then subtracts from SP enough space to hold
al local variables (and then some!). The base pointer is then used to reference variables and parameters during function
execution, since its value is not affected by pushes and pops. Thus, parameters all have fixed positive offsets from the
BP, where as local variables all have fixed negative offsets from the BP.

At the end of function execution, the base pointer is copied to the stack pointer during ret, and the return addressis
popped off the stack and placed into the invisible IP register to return to the caller function.

Note: Unless -fomit-frame-pointer is specified, gcc always generates code that references local variables by negative

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (2 of 11) [7/6/2003 7:04:00 PM]

Chapter 6. Understanding Assembly

offsets from the BP instead of positive offsets from the SP.

Two's complement

What is it?

Twao's complement is specific way signed integers are represented in pretty much all modern computers. Thisis due to
the fact that two's complement form has several advantages:

1. The samerulesfor addition apply, no extrawork is required to compute the sum of negative integers.
2. Easy to negate a number.
3. The most significant bit tells you the sign: O is positive, 1 is negative.

It should be noted that when using signed values the ranges of number that can be represented by a specific number of
bitsisless than the usual. Therangeis-2n-1to +2n-1-1

Conversion

There are several ways to convert any unsigned binary number into signed two's complement form. The most intuitive
and easy to remember is the following Complement each bit of the number and add one. Let'sfind how -13is
represented, so we convert it into its binary form:

0000 1101

Then invert all the bhits.
1111 0010

Now add one to it.
1111 0011

So 1111 0011 is -13 in two's conpl enment.

Second method is to complement all the bits to the left of the rightmost 1 bit, but not including it (but not the rightmost
bit, for example 0001 0100). It sounds a bit complicated, but is easier once you figure out how it is done. Let's get back
to the example of -13.

0000 1101
N

Invert the bits to the left of the rightnost one.
1111 0011

There you go. We get the number without second step of adding one. It can be proven why this method works, but we
arenot in class. Yet athird method is to subtract the number from 2". Here is how it works.

1000 0000

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (3 of 11) [7/6/2003 7:04:00 PM]

Chapter 6. Understanding Assembly

0000 1101

1111 0011

There may be other ways of doing it, but if you master those, you will not need to remember any more. To convert a
negative number in two's complement, you apply the exact same procedure as described and you get back the positive
value for the number.

From reverse engineering angle

Now that we know what two's complement is let's look at some examples of this type of representation in reverse
engineering process. Using one of the tools discussed earlier, objdump and the wrapper disasm.pl, let's ook at the Is
command binary. If you look at function7 (which starts at address 80495a8), lines like the following appear frequently:

80495be: 83 c4 8 add $Oxfffffff8, %esp

What does this instruction do? It just adds some constant to the stack pointer register (%esp). There are two ways you
can look at this constant. It is either a huge unsigned number or two's complement negative number. Since we just add
to the stack pointer, it does not make sense to be big number, so let's find what is the value of this number.

f f f f f f f 8
1111 1111 1111 1111 1111 1111 1111 1000

0000 0000 0000 0000 0000 0000 0000 1000
0 0 0 0 0 0 0 8

Now we can see that thisis just the negative of 0x00000008 or just plain -8 in decimal. If you think about this, what
thisline does is decrement the stack pointer by 8 bytes (allocate more space).

Byte Ordering

Why this section? One simple reason - different platforms use different byte ordering. There are two different orderings
- little endian and big endian. Some of you are may be what byte ordering actually is? Byte ordering refersto the
physical layout of datain memory. When a data structure or datatype is represented by more than one byte, the
ordering of bytes matter. For example if we consider along (4 bytes) let's |abel the least significant byte O and the most
significant one 3. If we are on little endian machine the long will be represented in memory like this (yeah, some
machines do not allow addressable bytes, but let's forget about this): 0x040 0 0x041 1 0x042 2 0x043 3 On abig endian
machine on the other hand, the long will be layed out like that: 0x040 3 0x041 2 0x042 1 0x043 O Now let'slook at an
example. The easiest way to see the difference in byte ordering isto look at how string is stored in memory on different
architectures. Here is an example program that will demonstrate it.

#i ncl ude <stdi o. h>

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (4 of 11) [7/6/2003 7:04:00 PM]

Chapter 6. Understanding Assembly
int main() {
char* test = "this is a string";

printf("%\n", test);

}

We compiled it and here is the output of two different ways of disassembling it first on Solaris machine (Linux XXxxxx
2.4.16 #1 Tue Dec 11 01:57:19 EST 2001 sparc64 unknown): objdump

11850: 74 68 69 73 call dla2belc < end+0xdla0a394>

11854: 20 69 73 20 unknown

11858: 61 20 73 74 call 8482e628 < end+0x8480cbal>

1185c: 72 69 6e 67 call c9a6dl1lf8 < end+0xc9a4b770>

11860: 00 00 00 00 uninp O
gdb

0x11850 <_| O stdi n_used+8>: 0x74686973 0x20697320 0x61207374
0x72696e67

Now let'slook at how the memory itself is organized and how the string is represented:

Addr ess Code Letter
0x11850 74 t
0x11851 68 h
0x11852 69 i
0x11853 73 S
0x11854 20
0x11855 69 i
0x11856 73 S
0x11857 20
0x11858 61 a
0x11859 20
0x1185a 73 S
0x1185b 74 t
0x1185c 72 r
0x1185d 69 i
0x1185e 6e n
0x1185f 67 g
0x11860 00

And if we do the same on Intel machine (Linux xxxxxx 2.4.17 #17 Thu Jan 31 23:34:35 CST 2002 i686 unknown) this

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (5 of 11) [7/6/2003 7:04:00 PM]

Chapter 6. Understanding Assembly

iswhat we get:

Addr ess Code Letter
0x8048420 73 S
0x8048421 69 i
0x8048422 68 h
0x8048423 74 t
0x8048424 20

0x8048425 73 S
0x8048426 69 i
0x8048427 20

0x8048428 74 t
0x8048429 73 S
0x804842a 20

0x804842b 61 a
0x804842c 67 g
0x804842d 6e n
0x804842e 69 i
0x804842f 72 r

At first glance of the x86 architecture you may miss that this actually is the string we are looking for. Thisisthe
difference in byte ordering. In order for different hosts on the same network to be able to communicate and the
exchanged data to make sense, they agree on common byte ordering. In modern networking the datais transmitted in
big endian byte ordering i.e. most significant byte comes first. On the i80x86 the host byte order is Least Significant
Byte first, whereas the network byte order, as used on the Internet, is Most Significant Byte first.

Reading Assembly

Keep track of the stack and registers

The secret to understanding assembly code is to always work with a sheet of paper and a pencil. When you first sit
down, draw out atable for all 6 registers A, B, C, D, S, and DI. Keep track of the high and low portions as well. Each
new line of thistable should represent a modification of aregister, so the last value in each register column isthe
current value of that register.

Next, draw out along column for the stack, and |eave space on the sides to place the BP and SP registers as they move
down. Be sure to write all values into the stack as they are placed there, including ret and the stored BP.

AT&T syntax

In AT&T syntax, al instructions are of the form:

mnemonic src, dest

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (6 of 11) [7/6/2003 7:04:00 PM]

Chapter 6. Understanding Assembly

Standal one numerical constants are prepended with a $. Hexadecimal numbers always start with Ox (as opposed to
ending in h). Registers are specified with a % sign, ie %eax.

Dereferencing or pointer representation is of the form disp(%base, %index, scale), where the resulting address is disp +
%base + %index* scale. disp and scale are constants (no $), and %base and %index are registers. Any of these 4 may be
omitted, leaving either blank space and then a comma, or ssimply leaving off the argument, and all remaining
arguments. For example, 4(%eax) means memory address 4+%eax, where as (,%eax,4) means %eax* 4. This compact
notation makes array indexing easy.

Intel Instruction Set

From here, it is ssimply a matter of understanding what each assembly mnemonic does. Most common mnemonics are
obvious, but you can find a complete description of al the Intel instructions (in agonizing detail) at Intel's Devel oper

Site. Volume 2 contains the instruction list. Keep in mind that in Intel syntax, operands are in the reverse order of
AT&T syntax (ie, mnemonic dest,src).

Know Your Compiler

In order to learn to read assembly effectively, you really have to know what type of code your compiler likesto
generate in certain situations. If you learn to recognize what awhile loop, afor loop, an if-else statement all look likein
assembly, you can learn to get ageneral feel for code more quickly. There are also afew tricks that GCC performs that
may seem unintuitive at first to the neophyte reverse engineer, even if they already know how to forward-engineer in
assembly.

Basic Control Structures

In assembly, the only flow control mechanisms are branching and calling. So every control structure is built up from a
combination of goto's and conditional branches. Lets look at some specific examples.

Function Calls

So we've mentioned that function calls use the stack to pass arguments. But where does that |eave return values? And
what about local variables?

Local variables are also on the stack, just below the base pointer instead of above. But if you thought that a return value
was a pop off of the stack, you were wrong! GCC places the return value of a particular function into the eax register at
the end of that function. Upon calling a function with areturn value, it knows to copy the eax register into whatever
variable will store that return value.

S0 lets see some gec output for function calls. Get your paper ready, we're going to need to draw our stack and register
table to follow these. Y eah yeah, it seemslike a hassle, and you're sure you can do without it. We know, we know. But
humor us. If you at |east practice the methodical way a few times, doing things in your head will become easier |ater.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer To get the most out
of these examples, start at main, and trace execution throughout the executable. Do the low optimization first, and then

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (7 of 11) [7/6/2003 7:04:00 PM]

http://developer.intel.com/design/pentium4/manuals/
http://developer.intel.com/design/pentium4/manuals/
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions.c

Chapter 6. Understanding Assembly

move up to higher levels. The comments assume you are progressing in that order. FIXME: We may want to split these
out into several simpler example files, to avoid overwhelming people all at once.

The if statement

The if statement is represented in assembly as atest followed by ajump. The thing to notice is that sometimes the body
of the if statement iswhat isjumped to, as opposed to being jumped over as your C code may specify. This means that
the condition for the jJump will often be the negation of the condition for your if statement.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

The if..else statement

So we've seen that if statements are usually done by doing a single jump over the statement body. If..else statements
operate the same way, except with an unconditional jump at the end of the if statement body that diverts execution flow
to the end of the else body.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

If..else..if statements

Adding another if in an else clause works the same way as having an if statement inside an else clause. We just ssmply
jump to another label if it evaluatesto false, and if the first if statement evaluates astrue, at the bottom of it we simply
jump past both the else if and any remaining else clauses.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

Complicated if statements

Of course, if statements can get much more complicated than the above examples. They can contain boolean short-
circuits, function calls, nested-ifs, etc.

The while loop

Think about the while loop for a second. Think about how it operates. Basically, you could write awhile loop with an if
and a goto statement inside the if body to the top of the loop. So, since the only branching mechanisms we havein
assembly are jumps and calls, while loops are just if statements with ajmp back to the top at the bottom.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

The for loop

o lets rewrite the above loop as afor loop, to see if our professors were lying to us when they said these loops were
equivalent.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (8 of 11) [7/6/2003 7:04:00 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/if.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelse.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelseif.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/for.c

Chapter 6. Understanding Assembly
The do...while loop

Do while loops are a hit different than for and while loopsin that they allow execution of the loop body to occur at |east
once. As such, their comparison instructions take place at the bottom of the loop as opposed to the top. Observe:

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

Arrays
Arrays on the stack

Arrays on the stack are just memory regions that we access with variations on the disp(%base, %index, scale) idea
presented earlier. So lets start with awarm-up consisting of a simple char array where we let libc do all the work.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

S0 lets do another example where we do all the work. One dimensional arrays are the easiest, asthey are ssimply a
chunk of memory that is the number of elements times the size of each element.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

Two dimensional arrays are actually just an abstraction that makes working with memory easier in C. A 2D array on
the stack isjust onelong 1D array that the C compiler divides for us to make it manageable. To parameterize things, an
array declared as. type array[dim2][dim1]; isreally a 1D array of length dim2*dim1*type. The C compiler handles
array indexing as follows: array[i][j] is the memory location array + i*diml1*type + j*type. So it divides our 1D array
into dim2 sections, each dim1*type long.

FIXME: Graphicsto illustrate this.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

As| tell my introductory computer science students, the best way to think of higher dimensional arraysisto think of a
set of arrays of the next lower dimension. So the best way to think about how a 3D array can be jammed into a 1D array
isto think about how a set of 2D arrays would be jammed into a 1D array: one right after another. So for array declared
astype array[dim3][dim2][dim1];, array[i][j][K] means array + i*dim2*dim1*type + j*dim1*type + k*type. So this
means just by looking at the assembly multiplications of the indexing variables, we should be able to determine n-1
dimensions of any n dimensional array. The remaining dimension can be determined from the total size, or the bounds
of some initialization loop.

FIXME: Diagram/graphics to show this

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

Arrays through malloc

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (9 of 11) [7/6/2003 7:04:00 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/dowhile.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D.c

Chapter 6. Understanding Assembly

Structs

Using structs

Structures (structs) are a convenient way of managing related variables without having to write a class to encapsul ate
al of them. A structure is essentially a class without any member functions. Structures are used VERY oftenin Cin
order to avoid passing several variables back and forth between functions. Instead of passing all the variables, a
common practice is to encapsulate all of them in a struct and just pass the location of the struct in memory to the
function that needs access to those variables. Structuresin C++ are declared like this:

struct a
{
int first;
fl oat second;
char *third;
b

Don't forget that ; after the last brace. Structs can store any type of variable that you would normally be able to declare
anywhere in your program. To access a variable in astruct you use the dot (.) operator. For example, to assign 5 to the
variablefirst in the struct a, do

a.first = 5;

Arrays of structs

Arrays of structs are created just as you would create an array of any other variable. Using the declaration of a above,
an array of astructs of size 10 would be declared like this:

struct a stuctarray[10];

Note the use of the struct keyword, followed by the name of the struct declared, followed by the name of the array.

The code above declares a static array of structs. This means that space will be allocated for this array during load time
(FIXME: Check this). Struct arrays can aso be declared as pointers so that space for individua elements can be
alocated at runtime asit is needed. (FIXME: Um...how is this done?...time to brush up on C).

Passing structs
Returning structs

GCC handles structs a bit oddly. When you have afunction that returns a struct, what gcc doesis actually push the
address of the struct onto the stack just before calling the function (as if the first argument to the function was a pointer
to the struct that will contain the return i value). Then, inside the function, code is generated to modify the struct
through this address. At the end of the function, the value of %eax contains a pointer to the struct that was passed on to
the stack. So instead of the normal convention of having %eax store the return value, %eax stores a pointer to the return

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (10 of 11) [7/6/2003 7:04:00 PM]

Chapter 6. Understanding Assembly

value, and the return value is modified directly inside of the function.

Example .c file and gcc output with no optimization, with -O2, and with -O3 -fomit-frame-pointer

Classes (ie C++ code)
C with Classes

Inheritance

Virtual functions

Operator Overloading

Templates

Global variables

Exercises

These examples were al compiled using GCC 2.95.4 under Debian 3.0/Testing. A good exercise would be to go
compile some of these examples with GCC 3.0 under high optimizations, changing some things around and viewing the
resulting asm to get afeel for that new compiler and how it does things, as code it generates will begin to become more
ubiquitous as time goes on. It was still considered rather unstable as of this writing, so we opted for the older GCC for
all these examples for that reason.

Writing Inline Assembly

Calling Conventions

Prev Next
Chapter 5. Determining Interesting Functions Home Chapter 7. Debugging

=

http://www.acm.uiuc.edu/sigmil/RevEng/ch06.html (11 of 11) [7/6/2003 7:04:00 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/structs/struct.c
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/stucts/struct-O0.s
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/structs/struct-O2.s
http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/structs/struct-full.s

Chapter 7. Debugging

Chapter 7. Debugging
Prev Next

Chapter 7. Debugging

Table of Contents

User-level Debuqgging
Kernel-level Debugging

User-level Debugging

gdb

gdb isthe GNU debugger. It is very intimidating to most people, but there really is no reason for it to be.
It isvery well done for acommand line debugger. Thereisanice GUI front end to it known as DDD, but

our purposes will require a closer relationship with the command line.

gdb has anice built-in help system organized by topic. typing help will show you the categories. The
main commands we will be interested in are run, break, cont, stepi, finish, disassemble, bt, info
[registers/frame], and x. Every command in gdb can be followed by a number N, which means repeat N
times. For example, stepi 1000 will step over 1000 assembly instructions.

-> Example using gdb to set breakpoints in functions with and without debugging symbols.

-> FIXME: Test watchpoints

Using windbg

WinDbg is part of the standart Debugging Tools for Windows that everyone can download for free from.
Microsoft offers few different debuggers, which use common commands for most operations and
ofcourse there are cases where they differ. Since WinDbg is a GUI program, all operations are supposed

to be done using the provided visual components. There is also acommand line embeded in the
debugger, which lets you type commands just like if you were to use a console debugger like ntsd.

Breakpoints

http://www.acm.uiuc.edu/sigmil/RevEng/ch07.html (1 of 2) [7/6/2003 7:04:01 PM]

http://www.gnu.org/software/ddd/
http://www.microsoft.com/whdc/ddk/debugging/default.mspx

Chapter 7. Debugging

Breakpoints can be set, unset, or listed with the GUI by using Edit->Breakpoints or the shortcut keys
Alt+F9. From the command line one can set breakpoints using the bp command, list them using bl
command, and delete them using bc command. One can set breakpoints both on function names
(provided the symbol files are available) or on amemory address.

Stack operations
Reading and Writing to Memory

Tips and tricks

Using softice

Kernel-level Debugging

Kernel-level debugging is useful if you want to attempt to figure out how a particular device driver is
working, or if you want more information on a particular kernel entry point/API. Unfortunately, the
support for kernel debugging is much better under Windows than it is under Linux. Fortunately, under
Linux we have the source :)

Using kd
Using softice
Using gdb

Using the kernel profiling/hacking option

Prev Up Next
Chapter 6. Understanding Assembly Home Chapter 8. Executable formats

http://www.acm.uiuc.edu/sigmil/RevEng/ch07.html (2 of 2) [7/6/2003 7:04:01 PM]

Chapter 8. Executable formats

Chapter 8. Executable formats

Chapter 8. Executable formats

Table of Contents

Working with the EL F Program Format
Working with the PE Program Format

Working with the ELF Program Format

S0 at this point we now know how to write our programs on an extremely low level, and thus produce an executable
file that very closely matches what we want. But the question is, how is our program code now actually stored on
disk?

WEll, recall that when a program runs, we start at the _start function, and move on from thereto __libc_start_main,
and eventually to main, which is our code. So somehow the operating system is gathering together awhole ot of code
from various places, and loading it into memory and then running it. How does it know what code goes where?

The answer on Linux and UNIX isthe ELF binary specification. ELF specifies a standard format for mapping your

code on disk to a complete executable image in memory that consists of your code, a stack, a heap (for malloc), and
al thelibraries you link against.

o lets provide an overview of the information needed for our purposes here, and refer the user to the ELF spec to fill
in the details if they wish. We'll start from the beginning of atypical executable and work our way down.

ELF Layout

There are three header areasin an ELF file: The main ELF file header, the program headers, and then the section
headers. The program code lies in between the program headers and the section headers.

TODO: Insert figure here to show atypical ELF layout.

NOTE: ELF isextremely flexible. Many of these sections can be shunk, expanded, removed, etc. In fact, it is not
outside the realm of possibility that some programs may deliberately make abnormal, yet valid ELF headers and files
to try to make reverse engineering difficult (vmware does this, for example).

The Main ELF File Header

The main elf header basically tells us where everything is located in the file. It comes at the very beginning of the
executable, and can be read directly from the first e _ehsize (default: 52) bytes of the file into this structure.

http://www.acm.uiuc.edu/sigmil/RevEng/ch08.html (1 of 4) [7/6/2003 7:04:03 PM]

http://www.skyfree.org/linux/references/ELF_Format.pdf

Chapter 8. Executable formats

/* ELF File Header */

t ypedef struct
{

unsi gned char e_ident[El _NI DENT]; /* Magi ¢ nunber and other info */

El f 32 Hal f e_type; /[* Cbject file type */

El f 32_Hal f e_machi ne; /* Architecture */

El f32_ Word e_version; /* Cbject file version */

El f 32_Addr e _entry; /[* Entry point virtual address */

El f32_Of e_phof f; /* Program header table file offset */

El f32 Of e _shoff; /* Section header table file offset */

El f32_Word e fl ags; /| * Processor-specific flags */

El f32_Hal f e_ehsi ze; /| * ELF header size in bytes */

El f 32_Hal f e_phent si ze; /* Program header table entry size */

El f 32_Hal f e_phnum /* Program header table entry count */

El f32_Hal f e_shent si ze; /* Section header table entry size */

El f 32_Hal f e_shnum /* Section header table entry count */

El f 32 Hal f e_shstrndx; /* Section header string table index */
} Elf32_Ehdr;

Thefields of interest to us are e_entry, e phoff, e shoff, and the sizes given. e_entry specifies the location of _start,
e _phoff shows us where the array of program headers liesin relation to the start of the executable, and e _shoff shows
us the same for the section headers.

The Program Headers

The next portion of the program are the ELF program headers. These describe the sections of the program that contain
executable program code to get mapped into the program address space as it loads.

/* Program segnent header. */

t ypedef struct

{
El f32_Wrd p_type; /* Segnment type */
El f32_Of p_offset; /* Segnment file offset */
El f 32_Addr p_vaddr; /* Segment virtual address */
El f 32_Addr p_paddr; /* Segnment physical address */
El f32_Wbrd p_filesz; /* Segnment size in file */
El f32_Word p_nensz, /* Segment size in nenory */
El f32_Word p_flags; /* Segnment flags */
El f32 Wrd p_align; /* Segnent alignnment */

} Elf32_Phdr;

Keep in mind that there are going to afew of these (usually 2) end-to-end (ie forming an array of structs) in atypical
ELF executable. The interesting fields in this structure are p_offset, p_filesz, and p_memsz, all of which we will need
to make use of in the code modification chapter.

The ELF Body

http://www.acm.uiuc.edu/sigmil/RevEng/ch08.html (2 of 4) [7/6/2003 7:04:03 PM]

Chapter 8. Executable formats

The meat of the ELF file comes next. The actual locations and sizes of portions of the body are described by the
program headers above, and contain the executable instructions from our assembly file, as well as string constants and
global variable declarations. Thiswill become important in the next chapter, program modification. (TODO: How to
link to other chapters)

ELF Section Headers

The ELF section headers describe various named sections in an executable file. Each section has an entry in the
section headers array, which is found at the bottom of the executable and has the following format:

/* Section header. */

t ypedef struct

{
El f32 Word sh_nane; /* Section nane (string tbl index) */
El f32_ Wrd sh_type; /* Section type */
El f32_ Wrd sh_fl ags; /* Section flags */
El f 32_Addr sh_addr; /* Section virtual addr at execution */
El f32_Of sh_offset; /* Section file offset */
El f32 Word sh_si ze; /* Section size in bytes */
El f32 Word sh_link; /* Link to another section */
El f32_Word sh_i nf o; /* Additional section information */
El f32_ Wrd sh_addral i gn; /* Section alignment */
El f32 Word sh_entsi ze; /* Entry size if section holds table */
} Elf32_Shdr;

The section headers are entirely optional, however. A list of common sections can be found on page 20 of the ELF

Spec PDF
Editing ELF

Editing ELF is often desired during reverse engineering, especially when we want to insert bodies of code, or if we
want to reverse engineer binaries with deliberately corrupted ELF headers.

Now you could edit these headers by hand using the <elf.h> header file and those above structures, but luckily thereis
already anice editor called HT Editor that allows you to examine and modify all sections of an ELF program, from
ELF header to actual instructions. (TODO: instructions, screenshots of HTE)

Do note that changing the size of various program sections in the ELF headers will most likely break things. We will
get into how to edit ELF in more detail when we are talking about actual code insertion, which is the next chapter.

Working with the PE Program Format

http://www.acm.uiuc.edu/sigmil/RevEng/ch08.html (3 of 4) [7/6/2003 7:04:03 PM]

http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://hte.sourceforge.net/

Chapter 8. Executable formats

Prev Next
Chapter 7. Debugging Home Chapter 9. Understanding Copy Protection

=

http://www.acm.uiuc.edu/sigmil/RevEng/ch08.html (4 of 4) [7/6/2003 7:04:03 PM]

Chapter 9. Understanding Copy Protection

Chapter 9. Understanding Copy Protection
Prev Next

Chapter 9. Understanding Copy Protection

TODO: Not sure where to put this (perhaps in the intro? Different goals of reverse engineering? or
perhaps as a part of the next section?) In any case, it should describe common methods to copy
protection, and how it basically boils down to a conditional check in your program (with possible alittle
decryption). Basically it comes down to choosing between presenting techniques and then discussing
how to use them, or first discussing how we can us the techniques we are about to discuss.. Whichis
better?

Next

=

Prev
Chapter 8. Executable formats Home Chapter 10. Code Modification

http://www.acm.uiuc.edu/sigmil/RevEng/ch09.html [7/6/2003 7:04:03 PM]

Chapter 10. Code Modification

Chapter 10. Code M odification
Prev Next

Chapter 10. Code Modification

Table of Contents

Reasons for Code Modification
Library Hooking

| nstruction Modification
Single Instruction Insertion
Single Function Insertion
Multiple Function Insertion
Attacking copy protection

So now we know the tools to analyze our programs and find functions of interest to us even in programs
without source code. We can understand the assembly that makes them up, and can write assembly of our
own to do what we want. We know how a program looks on the disk and how that corresponds to what
the program looks like in memory. Knowledge is power, and we know alot. TODO: Read this:
http://hcunix.org/hcunix/terran.txt

Reasons for Code Modification

Code modification is most useful if we wish to change the behavior of closed-source programs written by
unenlightened authors. It is aso handy when trying to skirt copy protection of various kinds.

Library Hooking

LD_PRELOAD

Thisis an environment variable that allows usto add alibrary to the execution of a particular program.
Any functions in this library automatically override standard library functions. Sorry, you can't use this
with suid programs.

Example:

% gcc -0 preload.so -shared preload.c -Idl

http://www.acm.uiuc.edu/sigmil/RevEng/ch10.html (1 of 3) [7/6/2003 7:04:04 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/code/preload.c

Chapter 10. Code Modification
% LD_PREL OAD=preload.so ssh students.uiuc.edu

Instruction Modification

Since the smallest unit of code isthe instruction, it follows that the ssmplest form of code modification is
instruction modification. In instruction modification, we are looking to change some property of a
specific instruction. Recall from the assembly section that each instruction has 2 parts: The mnemonic
and the arguments. So our choices are limited.

The best way to modify instructionsis through HT Editor, which was mentioned earlier in the ELF

section. HTE has a hex editor mode where we can edit the hex value of an instruction and see the
assembly updated in real time. (TODO: instructions, screenshots of HTE)

Editing the arguments

Editing the arguments of an assembly instruction is easy. Simply look at the hex value of the assembly
instruction's argument, and see where it liesin the hex bytes for that instruction. HTE will alow you to
overwrite these values with values of your own. (Be careful with byte ordering!). TODO: Examplel.

Editing the Mnemonic

Thisisfar more tricky.

Single Instruction Insertion

Single Function Insertion

Use unused space as found by disasm.pl (be careful about main)

Multiple Function Insertion

Trickery.. We're working on a util to modify ELF programs and insert functions. What about using
MMAP?? (P.S. Can you unmap executable memory to modify it... if they are doing an MD5 of their
executable)

Attacking copy protection

http://www.acm.uiuc.edu/sigmil/RevEng/ch10.html (2 of 3) [7/6/2003 7:04:04 PM]

http://hte.sourceforge.net/

Chapter 10. Code Modification

Lest | be accused of hiding in my ivory tower, lets look a concrete application of these ideas, and some
techniques (:

Prev Up Next
Chapter 9. Understanding Copy Home Chapter 11. Network Application
Protection - Interception

http://www.acm.uiuc.edu/sigmil/RevEng/ch10.html (3 of 3) [7/6/2003 7:04:04 PM]

Chapter 11. Network Application Interception

Chapter 11. Network Application I nterception
Prev Next

Chapter 11. Network Application Interception

Table of Contents

General Network Data Capture

What to do if the Network Layer is Encrypted
DCOM/RPC/CORBA

-NET

Web Services

DCOM/RPC/CORBA/.NET Interception, general traffic sniffing, web services?

General Network Data Capture

What to do if the Network Layer is Encrypted
DCOM/RPC/CORBA

NET

Web Services

Next

£

Prev
Chapter 10. Code Modification Home Chapter 12. Buffer Overflows

http://www.acm.uiuc.edu/sigmil/RevEng/ch11.html [7/6/2003 7:04:04 PM]

Chapter 12. Buffer Overflows

Chapter 12. Buffer Overflows

Prev

Chapter 12. Buffer Overflows

Table of Contents

Stack Overflows

1-Byte Overflows

Returning to Libc

Attacking Countermeasures
Heap Overflows

Attacking hard copy protection

Sometimes you don't have access to the program code.

Stack Overflows

1-Byte Overflows

Returning to Libc

Attacking Countermeasures
Heap Overflows

Attacking hard copy protection

Prev Up

Chapter 11. Network Application

. Home
| nterception

http://www.acm.uiuc.edu/sigmil/RevEng/ch12.html [7/6/2003 7:04:04 PM]

Next
Chapter 13. TODO (Contribute!)

Chapter 13. TODO (Contribute!)

Chapter 13. TODO (Contribute!)
Prev Next

Chapter 13. TODO (Contribute!)

Table of Contents

More detall

Update disasm.pl

Do this for windows
Do thisfor protocols
Do thisfor hardware

Things that need to get done to this document. Note, none of these things are going to be particularly
easy. But then again, neither was writing up the rest of thistutorial.

More detall

More detail is needed in some places, especially in the area of widget interception. (describing the event
loop and suggesting good breakpoint places for GTK, Qt, Win32 might be nice)

Add resources and links section for each chapter (where applicable)

Update disasm.pl

The ssimpler things to do to this script would be to clean up the FIXME's, and add optionsto it (such as --
no-show-raw-insn) Also, making an attempt at dereferencing pointers based on some heuristic would be
nice. Check out this perl disassembler for ideas (not too many ideas.. its output format sucks).

If anyone isfeeling extremely hardcore and wants to help modify Steve and Nasko's perl script to make
the output more intuitive, feel free. A directed graph would be fantastic, automatic determination of main
would also be great (use graph theory on your directed graph). Thereisalso a utility called ptrace that is
part of the LDasm project. Interfacing it (or gdb) with disasm.pl script to set a break point for each
function would be a heroic task as well (because this would be the equivalent of Itrace, except for ALL
functionsin a program, not just the libs).

Do this for windows

http://www.acm.uiuc.edu/sigmil/RevEng/ch13.html (1 of 2) [7/6/2003 7:04:05 PM]

http://hcunix.org/hcunix/siulinux.htm

Chapter 13. TODO (Contribute!)

If any of the dual booters in the crowd want to create a similar document for windows and/or give atalk,
submissions are encouraged. Do note that in the meantime, all of these utils exist for windows as well,
thanks to the cygwin project. (LINK). They should work the same there.

Do this for protocols

Protocol reverse engineering is a bit different than software engineering, tho many of the tools are the
same. A tutorial on "reverse engineering" network protocols and data formats would also be helpful.

Do this for hardware

If anyone wants to present tactics for reverse engineering device drivers or electronic equipment,
submissions are also welcome.

Next

=

Prev
Chapter 12. Buffer Overflows Home Chapter 14. Extra Resources

http://www.acm.uiuc.edu/sigmil/RevEng/ch13.html (2 of 2) [7/6/2003 7:04:05 PM]

Chapter 14. Extra Resources

Chapter 14. Extra Resources
Prev

Chapter 14. Extra Resources

Table of Contents

ELF Binary Specification
Other Resources and amusements

ELF Binary Specification

1. The Official Spec

2. Alsoin PDF

3. Moreinteresting description

4. From aLinux Programmer's Perspective

Other Resources and amusements

1. LDasm project. LDasm is at best a passable disassembly tool (disasm.pl is FAR more useful), but
it does come with a utility called ptrace, which allows you to view which instructions of a
program actually execute. Y ou can also give ptrace alist of addresses (for example, the list of
functions found by disasm.pl) and have it step through those to show you which ones actually
execute in your program.

2. Creating Teensy Executablesin Linux

Microsoft COFF format

4. Attacking FlexLM isan essay written in 1998 on attacking a specific form of hard copy
protection. There are several other essays on that site, but most of them cover material that we

cover above, but with specific example programs.

w

Prev up
Chapter 13. TODO (Contribute!) Home

http://www.acm.uiuc.edu/sigmil/RevEng/ch14.html [7/6/2003 7:04:05 PM]

ftp://tsx.mit.edu/pub/linux/packages/GCC/ELF.doc.tar.gz
http://www.skyfree.org/linux/references/ELF_Format.pdf
http://www.cs.ucdavis.edu/~haungs/paper/node10.html
http://linux4u.jinr.ru/usoft/WWW/www_debian.org/Documentation/elf/elf.html
http://www.geocities.com/rmaxdx/ldasm.html
http://www.muppetlabs.com/~breadbox/software/tiny/teensy.html
http://www.microsoft.com/hwdev/hardware/downPECOFF.htm
http://hcunix.org/hcunix/siulflex.htm
http://hcunix.org/hcunix/essays.html

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s

file "functions.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "%, %, %\ n"
. text
.align 4
.globl function3args
.type function3args, @unction

function3args:
/* This push saves the ebp, and in conbination with the nove is called
* the function prolog. */
pushl %bp /* at (%bp) on the stack */
movl %esp, Y%ebp

/[* This subl is used to allocate space for any local variables. In
this case we have none, and we can see the fact that this
instruction is usel ess because no stack references are negative
offsets fromthe %bp (visualize or draw the stack to see this).
I'"'mnot sure why GCC does this. */

subl $8, %esp

[* (Y%esp) == -8(%bp) */

* 0k kX %

/* remenber our coments. This instruction copies the |ast argunent of
* the function to Y%eax*/
movl 16(%bp), Yeax

/* push this value as the last argunent to the printf call.

* Note: This is why we have an %bp regi ster, because this push wll
* affect the %sp, not the %bp, and our references to | oca

* variables all remain the sanme still. */

pushl % ax

[* (Y%esp) == -12(%bp) */

/* Now access the second argunent of the function, and push it */
movl 12(%bp), Y%eax

pushl % ax

[* (Y%esp) == -16(%bp) */

/* Access the first argunent of the function. Renenber that the
* remaining two things bel ow 8(%bp) are the return address at
* 4(%bp) and the old val ue of %bp, which is at (%bp) */

movl 8(%ebp), Y%eax

pushl %sax

[* (Y%esp) == -20(%bp) */

/* Push the string onto the stack */

pushl $.LCO

[* (Y%esp) == -24(%bp) */

call printf

[* (Y%esp) == -24(%bp) because the stack is reset fixed after a call */

/* Again, "pop" all 16 bytes of argunments off the stack */
addl $16, %esp

[* (Y%esp) == -8(%bp) */

. L2:
/* Leave copies the value of %bp into %sp, effectively popping al
* extra local variables and junk off the stack. It then pops the top
* value off the stack (which is the saved %bp) and stores it in %bp

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s (1 of 7) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s

So it is basically the reverse of the function

prolog, and inplicityly renmoves any | ocal variables and junk that
GCC may have thrown on the stack. This is key, because GCC | oves to
throw junk on the stack for no reason. It is all taken care of at
function exit because of this instruction */

| eave

* % X X X

[* (Y%esp) == (Y%bp) == (old %bp) just after call */

/* pops the return address saved on the stack into %ip, and thus
* execution transfers to just after the call */

ret
. Lfel:
. size function3args, . Lfel-function3args
.align 4
.globl function3argsRet
.type function3argsRet, @unction
function3argsRet:
pushl %ebp
movl %esp, Y%ebp
/* Move the first argunment to %edx */
[* The first argunment is at 8 above the ebp. le it as at the | owest
* address of all argunments. The rest are at higher address */
movl 8(%ebp) , Y%edx
/* multiply the second argunent with %dx, store in %dx */
imull 12(%bp), Y%edx
/[* multiply the third argunent with %dx, store in % dx */
imull 16(%bp), %edx
/* Move %dx to %ax. %ax is the return value */
movl %edx, Y%eax
[* Alignnent junk */
jmp . L3
.p2align 4,,7
. L3:
| eave
ret
. Lfe2:
. size function3argsRet, . Lfe2-function3argsRet
.align 4

.globl functionPtrArg

.type functionPtrArg, @unction
functionPtrArg:

pushl %bp

movl Y%esp, Y%ebp

subl $8, %esp

/* nove the third argunment (the pointer) into eax */
movl 16(%bp), Y%eax

/* derefrence it. Renenber how | said that |eal does not deref, but
* npv does? */
movl (%ax), Y%edx

/* push the rest of the args, and call printf */
pushl %edx
movl 12(%bp), Y%eax

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s (2 of 7) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s

pushl % ax
movl 8(%ebp) , Y%eax
pushl % ax
pushl $.LCO
call printf
addl $16, %esp
. L4:
| eave
ret
.Lfe3:
.size functionPtrArg,.Lfe3-functionPtrArg
.align 4
. gl obl functionPtrRet
.type functionPtrRet, @unction
functionPtrRet:
pushl %ebp
movl %esp, Y%ebp

[* Put the first argunent of our function */
movl 8(%ebp) , Yeax
movl %eax, Yedx

/* put the address nade by 0 + %dx*4 into register % ax */
| eal O(, %dx, 4), %eax
movl %eax, Yedx

/[* Add the third argunent of our function (the pointer) to the result */
addl 16(%bp), Yedx

/* Put the second arg into eax */
movl 12(%bp), Y%eax
movl %eax, Yecx

/[* put the address 0 + %cx*4 into %ax. */
| eal O(, %ecx, 4), Y%eax

/* add %ax to %edx, store in %edx.
* |f you were keeping track of the registers |like you should have been,
* you should now realize that %dx contains pointer + second arg*4 +
* third ard*4. In other words, we know pointer is an integer pointer
* because the scale was 4 during all the pointer arithmetic */
addl %ax, Yedx

/[* Put the result into the return value register %ax */
movl %edx, Yeax

jmp . L5
.p2align 4,,7
. L5:
| eave
ret
. Lfed4:
. size functionPtrRet,.Lfe4-functionPtrRet
.align 4
.globl functionLocal Vars
.type functionLocal Vars, @ uncti on
functionLocal Vars:
pushl %ebp
movl %esp, Yebp

/* so this is enough space for 4 integer variables, but sonetimes GCC
* all ocates nmore space than it needs, especially in recent versions.
* Note in this case, we have only THREE vari ables in our function
* But we will actually get to see GCC use this magic |ocal variable

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s (3 of 7) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s

*in abit. Mdst tines we aren't so |ucky. */
subl $16, %esp

/* recall 12 fromebp is the second 4-byte function argument (note
* that if this function had non-integer argunents, 12(%bp) m ght be
* like the 3rd or 5th argunent. Just something to keep in mnd) */

movl 12(%bp), %Yeax

/* XOR the second function arg with the first function arg */

xor | 8(%bp), %eax

[* Store it in the first local variable. So the first |ocal variable
* now contains argl ~ arg2. This update of a |ocal variable should
* clue you into the conpletetion of a C statenent.

* In this case, we have deternined that the statenent was

* locall = argl ™ arg2

*/

nmovl %eax, -4(%bp)

/[* put the first arg into %edx */

movl 8(%bp), %edx

/* Take the address of the second function arg.. */

| eal 12(%bp), Yeax

/[* put it into what appears to be the fourth l|ocal variable (again,
* it could be the the 9th, 17th, etc)

*

* HONEVER, NOTE: W do NOT have 4 |ocal variables in the

* correspondi ng C code. GCC has created a tenporary here to do the
*

calculation. This is further evidence of non-optimzed code. */
nmovl %eax, -16(%bp)

/* check your sheet for % edx */
nmovl %edx, %eax

/* Move the fourth local variable into %cx. So, follow ng your sheet,
* Ogcx now contains the address of the second function arg. */

movl -16(%bp), %ecx

/* FI XME: BUH? */

cltd

/* So here's an odd intruction. Basically, if you check the Intel

*
* |Instruction set reference, you see that idiv takes a single

* argunent of either a register %eg or an indirected register (ie a

* register containing a nenory |location, (%eg)) and then divides

* Ogax by the value in %eg or at nenory location (% eg). The result is
* stored in %ax, and the remminder is in %edx.

*/

[* Do: %ax = Y%ax/(%cx); %edx = Y%eax MDD (%ecx);
* so fromyour sheet, %ax = argl/arg2; %dx = argl MOD arg2 */
i divl (%ecx)

/* Move result to second local variable. So local2 = argl / arg2; */
nmovl %eax, -8(%bp)

/* Mowve first arg to %dx */

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s (4 of 7) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s

movl 8(%bp), %edx

/* Put the address of the second arg into %ax */
| eal 12(%bp), %Yeax

/* Use that tenporary variable again */

nmovl %eax, -16(%bp)

novl %edx, %eax

mov| -16(%bp), %ecx

cltd

/* %ax = %ax/(%ecx); %dx = %eax MDD (%ecx);
* So, Y%ax = argl/arg2; %dx = argl MOD arg2
*/

i divl (%ecx)

[* Store %dx into third local variable. So local 3 = argl MO arg2

nmovl %edx, -12(%bp)

/* Put the local?2 into %ax */
mov| -8(%bp), %ax

/* %ax = locall | Y%ax */
orl -4(%bp), %eax

/[* local3 = 1locall | local2 */
movl Y%eax, -12(%bp)

/* Put local2 into eax */
mov| -12(%bp), %eax

/* %ax = locall & local2 */
andl 8(%bp), %Y%eax

/* Junk instruction that says return %ax */
movl %eax, %Yeax
| eave
ret
. Lfe5:
. size functionlLocal Vars, . Lf e5-functi onLocal Vars
.align 4
.globl main
.type mai n, @unction
mai n:
/* save ebp */
pushl %bp

/* nove esp to ebp so we can access vars fromebp */
movl %esp, Y%ebp

/
space than it needs in sone cases.. why this is, | don't know.
We really only need 4 bytes of space here for our int a, and a

* % kX %k

| ocal variable we use */
subl $24, %esp
#APP
nop
#NO_APP
/* So here we see that GCC pushes sone nystery arg onto the stack,

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s (5 of 7) [7/6/2003 7:04:07 PM]

al | ocate stack space.. Notice that gcc likes to allocate WAY nore

qui ck scroll through the function shows that -4(%bp) is the only

*/

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s

* and then the three argunments in reverse order, followed by the cal

* to function3args. Renenber that the call instruction places the

* address of the next instruction onto the stack. So at the entrance
* to function3args, esp points to the return address, and we have 20
* bytes above the esp, including ret and the nystery argunent.

* However, since we are working on source generated w thout

* -fomt-frame-pointer, there will be a push of the ebp, and then the
* esp will be copied to ebp, and variables will be referenced fromthe
* ebp.

*/

addl $-4, %esp [* 20(%ebp) after prolog */

pushl $3 /* 16(ebp) */

pushl $2 [* 12(%bp) */

pushl $1 /* 8(%bp) */

call function3args [* 4(%bp) */

/* Go to function3args and see the conmrents there to see these
* variables in action */

[* This stack ajustnent is the sanme as popping all 4 argunents off the
* stack, ie the 3 integers and the nystery arg. */
addl $16, %esp

#APP
nop
#NO_APP
/* So this function is the sane exact deal as the previous, except we
* have a return value. GCC uses the eax register to store the return
* value of a function.
* A good excercise would be to follow the stack al ong yourself with
* a sheet of paper for this example. */
addl $-4, %esp
pushl $3
pushl $2
pushl $1
call function3argsRet
addl $16, %esp
/* Junk instruction, unoptinzed code */
movl %eax, Yeax
/* Notice nowthat % ax is copied into the first |local variable */
movl %ax, - 4(Y%ebp)
#APP
nop
#NO_APP

/* This function exists as an exanpl e of what happens when you have a
* pointer as an argument. */
addl $-4, %sp

/* the lea instruction |oads the effective address of its first
argunent and places it in the second. In other words, it sinply
adds the offset to the register being indexed, and then noves that

into the destination

It is easy to becone confused with this instruction, because it
actually does NOT derefrence the first arg, where as a nov does.

L T R R

~

/* Load the address of the first |ocal variable into %ax */

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s (6 of 7) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s
| eal -4(%bp), Yeax

[* push it. Thus the pointer is the third argument */
pushl % ax

pushl $3

pushl $1

call functionPtrArg

addl $16, %esp

#APP
nop
#NO_APP
[* The exanple is the sane as the previous, except we return a
* pointer */
addl $-4, %esp
| eal -4(%bp), Y%eax
pushl %ax
pushl $3
pushl $1
call functionPtrRet
addl $16, %esp
movl % eax, Yeax
/* Put the value in %ax into the second l|ocal variable. So the second
* var nust be an int pointer fromout conclusions in functionPtrRet */
movl %ax, - 8(¥%ebp)
#APP
nop
#NO_APP
[* This exanple is intended to show how a function handl es | oca
* variabl es as al ways bei ng negative offsets fromthe %bp */
/* Here we see another nystery stack allocation.. */
subl $8, %esp
pushl $2
pushl $1
call functionLocal Vars
addl $16, %esp
nmovl Y%eax, %Yeax
nmovl %eax, -4(%bp)
#APP
nop
#NO_APP
. L6:
| eave
ret
. Lf e6:
. Si ze mai n, . Lf e6- nai n

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"
/1 vim noet

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-00.s (7 of 7) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-02.s

file "functions.c"

.version "01.01"
gcc2_conpi | ed.

.section .rodata

. LCO:

.string "%, %, %\ n"
. text

.align 4
.globl function3args

.type function3args, @unction
function3args:

pushl %ebp

nmovl Y%esp, Yebp

subl $8, %esp

pushl 16(%ebp)

pushl 12(%ebp)

pushl 8(%ebp)

pushl $.LCO

cal | printf

| eave

ret
.Lfel:

. si ze function3args, . Lfel-function3args

.align 4
. gl obl function3argsRet

.type function3argsRet, @unction
function3argsRet:

pushl %ebp

nmovl Y%esp, Yebp

nmov| 12(%bp), %eax

i mul | 8(%bp), %eax

i mul | 16(%bp), %eax

popl %ebp

ret
. Lfe2:

.size function3argsRet, . Lf e2-functi on3ar gsRet

.align 4

.globl functionPtrArg
.type functionPtrArg, @unction
functionPtrArg:

pushl %ebp

nmovl %esp, Yebp
subl $8, %esp

nmov| 16(%bp), %eax
pushl (%eax)

pushl 12(%ebp)
pushl 8(%ebp)
pushl $.LCO
cal | printf
| eave
ret
. Lf e3:
.size functionPtrArg,.Lfe3-functionPtrArg
.align 4
.gl obl functionPtrRet
.type functionPtrRet, @unction
functionPtrRet:

pushl %ebp

nmovl %esp, Yebp
nmov| 12(%bp), %eax
addl 8(%bp), %eax

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-O2.s (1 of 3) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-02.s

sal | $2, Y%eax
addl 16(%bp), %ax
popl %ebp
ret
. Lf e4:
.size functionPtrRet,.Lfed-functionPtrRet
.align 4
.globl functionLocal Vars
.type functionLocal Vars, @uncti on
functionLocal Vars:
pushl %ebp
nmovl Y%esp, Yebp
pushl %ebx
pushl Y%eax
nmovl 8(%bp), %ebx
nmov| %ebx, %Yeax
nmovl 12(%bp), %ecx
cltd
nmovl %ebx, -8(%bp)
i divl %ecx
xor | %ecx, -8(%bp)
nmov| Y%eax, Yecx
orl %ecx, -8(%bp)
andl -8(%bp), %ebx
nmov| %ebx, %Yeax
nmovl -4(%bp), Y%ebx
| eave
ret
. Lf e5:
.size functionLocal Vars, . Lf e5-functi onLocal Vars
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
nmovl Y%esp, Yebp
pushl %ebx
subl $8, %esp
#APP
nop
#NO_APP
pushl $3
pushl $2
pushl $1
call function3args
#APP
nop
#NO_APP
add| $12, %sp
pushl $3
pushl $2
pushl $1
call functi on3ar gsRet
nmovl %eax, -8(%bp)
#APP
nop
#NO_APP
add| $12, %sp
| eal -8(%bp), %ebx

pushl %ebx

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-O2.s (2 of 3) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-02.s

pushl $3
pushl $1
cal | functionPtrArg
#APP
nop
#NO_APP
addl $12, %sp
pushl %ebx
pushl $3
pushl $1
call functionPtr Ret
#APP
nop
#NO_APP
popl Y%edx
popl %ecx
pushl $2
pushl $1
call functionLocal Vars
nmovl| %eax, -8(%bp)
#APP
nop
#NO_APP
nmov| -4(%bp), %ebx
| eave
ret
. Lfe6:
. size mai n, . Lf e6- mai n

.ident "GCC. (CGNU) 2.96 20000731 (Red Hat Linux 7.1 2.96-81)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-O2.s (3 of 3) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/functions/functions-full.s

"functions.c"
"01. 01"

.file
.version
gcc2_conpi | ed.
.section
. LCO:

.rodata

.string "%, %, %\ n"
. text
.align 4
function3args
.type function3args, @unction
function3args:
subl $12, %esp
pushl 24(%sp)
pushl 24(%sp)
pushl 24(%sp)
pushl $.LCO
call printf
addl $16, %esp
addl $12, %esp

ret

. gl obl

.Lfel:
. si ze
.align 4
functi on3argsRet

function3args, .Lfel-function3args

. gl obl

.type function3argsRet, @unction
function3argsRet:

movl 4(%esp), Yeax

imull 8(%sp), Yeax

imull 12(%esp), Yeax

ret
. Lfe2:

.size function3argsRet, . Lf e2-functi on3ar gsRet

.align 4
.globl functionPtrArg

.type functionPtrArg, @unction
functionPtrArg:

subl $12, %esp

movl 24(%sp), Yeax

pushl (%eax)

pushl 24(%sp)

pushl 24(%esp)

pushl $.LCO

call printf

addl $16, %esp

addl $12, %esp

ret
. Lf e3:

.size functionPtrArg,.Lfe3-functionPtrArg

.align 4
.gl obl functionPtrRet

.type functionPtrRet, @unction
functionPtrRet:

movl 4(%esp), Yeax

sall $2, %eax

addl 12(%esp), Yeax

movl 8(%esp), Yedx

sall $2, %edx

addl %edx, Yeax

ret
. Lfed4:

.size functionPtrRet,.Lfed-functionPtrRet

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-full.s (1 of 2) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/functions/functions-full.s

.align 4
.globl main
.type mai n, @unction
mai n:
subl $12, %esp
#APP
nop
#NO_APP
pushl $3
pushl $2
pushl $1
pushl $.LCO
call printf
addl $16, %esp
#APP
nop
nop
#NO_APP
pushl $6
pushl $3
pushl $1
pushl $.LCO
call printf
addl $16, %esp
#APP
nop
nop
#NO_APP
addl $12, %esp
ret
. Lf e5:
.size mai n, . Lf e5-mai n

.ident "GCC. (GNU) 2.95.4 (Debian prerelease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-full.s (2 of 2) [7/6/2003 7:04:07 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/if/if-00.s

file "if.c
.version "01. 01"

gcc2_conpi | ed.

.section

. LCO:

.text

. gl obl

mai n:

. L3:
.L2:

. Lfel:

.rodata
.string "Ais less than 0\n"

.align 4

mai n

.type mai n, @unction

/* save ebp */
pushl %ebp

/* nove esp to ebp so we can access vars fromebp */
movl Y%esp, Y%ebp

/* allocate stack space */
subl $24, %esp

/* conpare a to 0. The way this conparason works is that

* the subtraction a - 0 is perforned, and all of the flags on p65-66
* of the Intel Basic Archetecture manual are updated. */

cnpl $0, - 4(%ebp)

[* If you check the Intel Instruction Reference, the conditions for

* jge are jump if SF == , ie junmp if the result of the subtraction
* was positive and there was no overflow, or junmp if the

* result of the subtraction was negative and there was an overflow */

/* So the proper way to abstract all this away in your brain
* is to think of cnp a,b and j XX as a pair that says:
* "Junp if b XX a"

[* Jump if a ge 0, so junp to .L3 if (a >= 0) */
joge .L3

[* This code is now executed if (0 > a) */
addl $-12, %esp

pushl $.LCO

call printf

addl $16, %esp

| eave
ret

.size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerelease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/if-O0.s [7/6/2003 7:04:08 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/if/if-O2.s

file "if.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "Ais less than 0\n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
/* Save ebp */
pushl %ebp
[* Work off of sp */
movl %esp, Y%ebp
/* allocate space - Notice it goes unused. I'mstill not sure why
* gcc does this.
*/
subl $8, %esp
/*
* Here we see that GCC has decided to use the test instruction in a
* very wierd way. |If you look at the Intel instruction reference
* manual, you see that they are using the SF flag that is set with
* the sign bit (renmenber the section we did on two's conpl enent ?)
* of %ax AND %ax. This allows themto use jge, which
* junps on the condition that (SF = OF). Since OF is set to 0 by
* test, the jge junps to L18 on the condition that the sign bit of
* Ogax is 0. In otherwords, we junp to the end of the function
*if (%ax >= 0).
*
*/
testl % ax, %eax
/* So the general way to abstract away a test a,a, jXX pair is to say:
* "Junmp if (a XX 0)"
*/
[* if (Y%eax >= 0) then junp */
jge .L18
/* following code is executed if (%ax < 0) */
addl $-12, %esp
pushl $.LCO
call printf
. L18:
| eave
ret
. Lfel:
.size mai n, . Lf el- mai n

.ident "GCC. (GNU) 2.95.4 (Debian prerelease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/if-O2.s [7/6/2003 7:04:08 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/if/if-full.s

file "if.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "Ais less than 0\n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
/* Notice we have no function prolog with -fonit-frame-pointer */
/* Also notice that we STILL allocate unneeded stack space.. go gcc! */
subl $12, %esp

/* Again that odd use of test */
testl % ax, Y%eax

[* jump if (%ax ge 0) */
jge .L18

addl $-12, %esp
pushl $.LCO
call printf
addl $16, %esp
. L18:
addl $12, %esp
ret
. Lfel:
. size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/if-full.s [7/6/2003 7:04:09 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/if/ifel se-00.s

file "ifelse.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "Ais less than 0\n"
.align 32
. LC1:
.string "Ais greater than or equal to O\n"
.LC2:
.string "Leaving main\n"
.text
.align 4
.globl main
.type mai n, @unction
mai n:
/* function prolog */
pushl %ebp
movl %esp, Y%ebp
subl $24, %esp
[* "Junp if -4(%bp) ge 0" -> junp if (a >= 0) */
cnpl $0, - 4(%ebp)
jge .L3
[* This code executed if (a < 0) */
addl $-12, %esp
pushl $.LCO
call printf
addl $16, %esp
/* Junp past the else clause to the unconditionally executed code */
jmp . L4
.palign 4,,7
. L3:
[* else { */
addl $-12, %esp
pushl $.LC1
call printf
addl $16, %esp
. L4:
/* Unconditionally executed printf */
addl $-12, %esp
pushl $.LC2
call printf
addl $16, %esp
.L2:
| eave
ret
.Lfel:
. size mai n, . Lf el- mai n

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm!/if/ifelse-O0.s [7/6/2003 7:04:09 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/if/ifelse-02.s

file "ifelse.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "Ais less than 0O\n"
.align 32
. LC1:
.string "Ais greater than or equal to O\n"
.LC2:
.string "Leaving main\n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $8, %esp

[* jump if %ax ge 0 */
testl % ax, Y%eax
jge .L18

/* code executed if (%ax < 0) */
addl $-12, %esp
pushl $.LCO

/* Well now ain't this tricky. The printf call itself was determ ned
* to be redunant since it was in both the if and the el se cl auses.
* So it was noved right after the el se section */

[* Junp past else clause */
jmp .L20
.p2align 4,,7
.L18:
/* Code executed if (%ax >= 0) */
addl $-12, %esp
pushl $.LC1
. L20:
/* Factored-out shared printf call */
call printf
addl $16, %esp
addl $-12, %esp
pushl $.LC2
call printf
| eave
ret
. Lfel:
.size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerelease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelse-O2.s [7/6/2003 7:04:09 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelse-full.s

file "ifelse.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "Ais less than 0\n"
.align 32
. LC1:
.string "Ais greater than or equal to O\n"
.LC2:
.string "Leaving main\n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
subl $12, %esp
/* not much in this file has changed as far as the if..else is
* concerened */
testl % ax, Y%eax
joge .L18
addl $-12, %esp
pushl $.LCO
jmp .L20
.palign 4,,7
. L18:
addl $-12, %esp
pushl $.LC1
. L20:
call printf
addl $16, %esp
addl $-12, %esp
pushl $.LC2
call printf
addl $16, %esp
addl $12, %esp
ret
.Lfel:
. size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelse-full.s [7/6/2003 7:04:10 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/if/ifel seif-O0.s

file "ifelseif.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "Ais less than 0\n"
. LC1:
.string "Ais 0\n"
.LC2:
.string "A > 0\n"
. LC3:
.string "Leaving main\n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $24, %esp
[* "Junp past if body if -4(%bp) ge 0" */
cnpl $0, - 4(%&ebp)
jge .L3
/* code executed if (a > 0) */
addl $-12, %esp
pushl $.LCO
call printf
addl $16, %esp
/[* junp past else if and el se cl ause */
jmp . L4
.p2align 4,,7
. L3:
[* else.. */
[* junp past elseif body if -4(%bp) ne 0 */
cmpl $0, - 4(%bp)
jne .L5
/* code executed if (a == 0 */
addl $-12, %esp
pushl $.LC1
call printf
addl $16, %esp
[* Junp past else */
jmp . L4
.palign 4,,7
. L5:
/* else */
addl $-12, %esp
pushl $.LC2
call printf
addl $16, %esp
. L6:
. L4:

addl $-12, %esp
pushl $.LC3
call printf
addl $16, %esp

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelseif-O0.s (1 of 2) [7/6/2003 7:04:10 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/if/ifel seif-O0.s

.L2:
| eave
ret
. Lfel:
.Size mai n, . Lfel-main

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelseif-O0.s (2 of 2) [7/6/2003 7:04:10 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/if/ifel seif-O2.s

file "ifelseif.c"

.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:

.string "Ais less than 0\n"
. LC1:

.string "Ais 0\n"
.LC2:

.string "A > 0\n"
. LC3:

.string "Leaving main\n"
. text

.align 4
.globl main

.type mai n, @unction
mai n:

pushl %ebp

movl %esp, Y%ebp

subl $8, %esp

[* junp past if body if %ax ge 0 */
testl % ax, %eax
jge .L18

addl $-12, %esp
pushl $.LCO

/[* junp past elseif and el se */
jmp . L22
.palign 4,,7
. L18:
[* jump if %ax ne 0 */
testl % ax, Y%eax
jne .L20

addl $-12, %esp
pushl $.LC1

[* Junp past else */
jmp .L22
.p2align 4,,7
. L20:
addl $-12, %esp
pushl $.LC2
. L22:
/* notice the factored printf again */
call printf
addl $16, %esp
addl $-12, %esp
pushl $.LC3
call printf
| eave
ret
. Lfel:
.size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsml/if/ifelseif-O2.s [7/6/2003 7:04:11 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/if/ifel seif-full.s

file "ifelseif.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "Ais less than 0\n"
. LC1:
.string "Ais 0\n"
.LC2:
.string "A > 0\n"
. LC3:
.string "Leaving main\n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
/* again, not much has changed except this prolog. See if you can
* follow this programs flow without help fromthe coments */
subl $12, %esp
testl %ax, %eax
joge .L18
addl $-12, %esp
pushl $.LCO
jmp . L22
.palign 4,,7
. L18:
testl %ax, %eax
jne .L20
addl $-12, %esp
pushl $.LC1
jmp . L22
.palign 4,,7
. L20:
addl $-12, %esp
pushl $.LC2
.L22:
call printf
addl $16, %esp
addl $-12, %esp
pushl $.LC3
call printf
addl $16, %esp
addl $12, %esp
ret
.Lfel:
. size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelseif-full.s [7/6/2003 7:04:11 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/loops/while-O0.s

file "while.c"

.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "%\ n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $24, %esp
novl $0, - 4(%bp)
.p2align 4,,7
. L3:
cmpl $9, - 4(%bp)
jle .L5
jmp . L4
.palign 4,,7
. L5:
addl $-8, %esp
movl - 4(%bp), Yeax
pushl % ax
pushl $.LCO
call printf
addl $16, %esp
i ncl -4(%bp)
jmp . L3
.palign 4,,7
. L4:
.L2:
| eave
ret
.Lfel:
. size mai n, . Lf el- mai n

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-O0.s [7/6/2003 7:04:11 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-O2.s

file "while.c"

.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "%\ n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $16, %esp
pushl %esi
pushl %ebx
movl 12(%bp), Yesi
xorl %ebx, ¥%ebx
jmp .L18
.palign 4,,7
. L20:
addl $-8, %esp
pushl %ebx
pushl $.LCO
call printf
i ncl % sbx
addl $16, %esp
. L18:
addl $-12, %esp
pushl 4(%esi)
call atoi
addl $16, %esp
cnpl %ax, Y%ebx
jl .L20
| eal -24(%bp), Yesp
popl %ebx
popl %esi
| eave
ret
.Lfel:
. size mai n, . Lf el- mai n

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-O2.s [7/6/2003 7:04:12 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-full.s

file "while.c"
.version "01.01"
gcc2_conpil ed. :
.section .rodata
. LCO:
.string "%\ n"
.text
.align 4
.globl main
.type mai n, @unction
mai n:
subl $24, %esp
pushl %ebx
xorl %ebx, ¥%ebx
.palign 4,,7
. L20:
addl $-8, %esp
pushl %ebx
pushl $.LCO
call printf
i ncl % sbx
addl $16, %esp
cnpl $9, %ebx
jle .L20
popl %ebx
addl $24, %esp
ret
.Lfel:
. size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-full.s [7/6/2003 7:04:12 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/loops/for-00.s

file "for.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "%\ n"
.text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $24, %esp
nop

/* move O to varl */
nmovl $0, - 4(¥%ebp)
.p2align 4,,7
. L3:
[* Jump if varl le 9, ie if varl <= 9 */
cmpl $9, - 4(%bp)
jle .L6
[* exit |oop */
jmp . L4
.p2align 4,,7
. L6:
[* call to printf */
addl $-8, %esp
movl - 4(%bp) , Y%eax
pushl % ax
pushl $.LCO
call printf
addl $16, %esp
. L5:
[* var++ */
i ncl -4(%bp)
jmp . L3
.p2align 4,,7
/* So we see that aside fromsone extra | abels generated for each of
* the sections of the Ioop, they are the sanme instructions */
. L4:
.L2:
| eave
ret
. Lfel:
. Ssize mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/for-O0.s [7/6/2003 7:04:13 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/loops/for-O2.s

file "for.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "%\ n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $16, %esp
pushl %esi
pushl %ebx
movl 12(%bp), Yesi
xorl %ebx, ¥%ebx
jmp .L18
.palign 4,,7
.L21:
addl $-8, %esp
pushl %ebx
pushl $.LCO
call printf
addl $16, %esp
i ncl % sbx
. L18:
addl $-12, %esp
pushl 4(%esi)
call atoi
addl $16, %esp
cnpl %ax, Y%ebx
il .L21
| eal -24(%bp), Yesp
popl %ebx
popl %esi
| eave
ret
.Lfel:
. size mai n, . Lf el- mai n

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/for-O2.s [7/6/2003 7:04:13 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/loops/for-full.s

file "for.c"
.version "01.01"
gcc2_conpil ed. :
.section .rodata
. LCO:
.string "%\ n"
.text
.align 4
.globl main
.type mai n, @unction
mai n:
subl $24, %esp
pushl %ebx
xorl %ebx, ¥%ebx
.palign 4,,7
.L21:
addl $-8, %esp
pushl %ebx
pushl $.LCO
call printf
addl $16, %esp
i ncl % sbx
cnpl $9, %ebx
jle .L21
popl %ebx
addl $24, %esp
ret
.Lfel:
. size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/for-full.s [7/6/2003 7:04:14 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/'UnderstandingA sm/loops/dowhile-00.s

.file "dowhile.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "%\ n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $24, %esp

/* Move O to varl */

/* Now, here we see the conparason at the bottom so that the | oop

| east once before term nation

Turns out the code for the

* conmarison is generated the exact same way */

nmovl $0, - 4(¥%ebp)
.p2align 4,,7
. L3:
[* call to printf */
addl $-8, %esp
movl - 4(%bp) , Y%eax
pushl % ax
pushl $.LCO
call printf
addl $16, %esp
/* var++ */
i ncl -4(%bp)
. L5:
* runs at
[* jump if varl <= 9 */
cnpl $9, - 4(%ebp)
jle .L6
[* else quit */
jmp . L4
.p2align 4,,7
. L6:
jmp . L3
.p2align 4,,7
. L4:
. L2:
| eave
ret
. Lfel:
. size mai n, . Lf el- mai n
.ident "GCC. (G\U) 2.95.4

(Debi an prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/dowhile-O0.s [7/6/2003 7:04:14 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/'UnderstandingA sm/loops/dowhile-02.s

.file "dowhile.c"

.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "%\ n"
. text
.align 4
.globl main
.type mai n, @unction
mai n:
pushl %ebp
movl %esp, Y%ebp
subl $16, %esp
pushl %esi
pushl %ebx
movl 12(%bp), Yesi
xorl %ebx, ¥%ebx
.palign 4,,7
. L21:
addl $-8, %esp
pushl %ebx
pushl $.LCO
call printf
i ncl % sbx
addl $16, %esp
addl $-12, %esp
pushl 4(%esi)
call atoi
addl $16, %esp
cnpl %ax, Y%ebx
il .L21
| eal -24(%bp), Yesp
popl %ebx
popl %esi
| eave
ret
.Lfel:
. size mai n, . Lf el- mai n

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/dowhile-O2.s [7/6/2003 7:04:15 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/loops/dowhile-full.s

.file "dowhile.c"
.version "01.01"
gcc2_conpil ed. :
.section .rodata
. LCO:
.string "%\ n"
.text
.align 4
.globl main
.type mai n, @unction
mai n:
subl $24, %esp
pushl %ebx
xorl %ebx, ¥%ebx
.palign 4,,7
.L21:
addl $-8, %esp
pushl %ebx
pushl $.LCO
call printf
i ncl % sbx
addl $16, %esp
cnpl $9, %ebx
jle .L21
popl %ebx
addl $24, %esp
ret
.Lfel:
. size mai n, . Lf el- mai n
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/dowhile-full.s [7/6/2003 7:04:15 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/array s/stack/array-stack-char-O0.s

file "array-stack-char.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "hello there, govna!"
. text

.align 4
. gl obl charArray
.type char Array, @unction
char Array:
pushl %ebp
movl %esp, Y%ebp
/* Subtract enough space for the array and then sone. Such |arge stack
* allocations are a HUGE clue that sonebody is working with arrays on
* the stack. */
subl $520, %esp

/* nystery arg to strncpy */
addl $-4, %sp

[* This line is perplexing at first, but scan down. Its the length
* argunent to strncpy. This gives us the hint that GCC all ocated 8
* extra bytes on the stack */

pushl $511
/* string to copy */
pushl $.LCO

/* address of the buffer to copy into */
| eal -512(%bp), Yeax

pushl % ax

call strncpy

/* Post-call stack adjust */

addl $16, %esp

/* nore nystery args */
addl $-12, %esp

/[* Strlen */

pushl $.LCO

call strlen

/* stack ajust */

addl $16, %esp

/* Return value transfer (unoptimzed) */
movl % eax, Yeax

/* put address of string into edx */
| eal -512(%bp), Y%edx

novb $0, (%eax, ¥edx)

/*
Recal | : di sp(%base, % ndex, scale) = disp + Y%ase + % ndex*scal e.
In this case, base and scale were onmitted, so we have the address
%eax + %edx. (Scale is assumed to be one). Since %ax contains the
return value fromstrlen, we are doing string[strlen(.LCO)] = O.
In otherwords, we are null termnating the string, in case the
strncpy call failed to copy everything. Think about this for a
mnute. This is a bug. Can you see why?

Answer: |If the strncpy call failed, LESS than .LCO would have been

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char-O0.s (1 of 2) [7/6/2003 7:04:16 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/array s/stack/array-stack-char-O0.s

copi ed because there wasn't enough roonl Hence this is a bug that we

di scovered through pai nstaking anal ysis of the assenbly that the

.L2:

. Lfel:

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char-O0.s (2 of 2) [7/6/2003 7:04:16 PM]

aut hor of the C code overl ooked! (To those of you who worry this may

be a contrived exanple, | wote the .c file, and didn't notice this
bug until looking at the assenbly just now).
Techni ques to use bugs like this to our advantage will be di scussed

later, in the buffer overflow chapter.
*/

/* nystery arg */

addl $-12, %esp

| eal -512(%bp), Yeax

pushl % ax

/*
printArray is a bogus function that we call sinply to prevent the
optinizer fromoptimzing away all our code in future exanpl es.

*/

call printArray

addl $16, %esp

| eave
ret

. size char Array, . Lfel-charArray
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

have

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es’UnderstandingA sm/arrays/stack/array-stack-char-O2.s

file "array-stack-char.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "hello there, govna!"
. text

.align 4
. gl obl charArray

.type char Array, @unction
char Array:

pushl %ebp

movl %esp, Y%ebp

subl $532, %esp

pushl %ebx

addl $-4, %esp

pushl $511

pushl $.LCO

| eal -512(%bp), Y%ebx
pushl %ebx

call strncpy
novb $0, - 493(%ebp)
addl $-12, %esp
pushl %ebx
call printArray
movl -536(%bp) , Y%ebx
| eave
ret
.Lfel:
.size char Array, . Lf el-char Array
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char-O2.s [7/6/2003 7:04:16 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/array s/stack/array-stack-char-full.s

file "array-stack-char.c"
.version "01.01"
gcc2_conpi | ed.
.section .rodata
. LCO:
.string "hello there, govna!"
. text

.align 4
. gl obl charArray
.type char Array, @unction

char Array:
subl $536, %esp
pushl %ebx
addl $-4, %esp
pushl $511
pushl $.LCO
| eal 28(%esp), Yebx
pushl %ebx

call strncpy
novb $0, 51(%esp)
addl $-12, %esp
pushl %ebx

call printArray
addl $32, %esp

popl %ebx
addl $536, %esp
ret

.Lfel:
. size char Array, . Lfel-charArray
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char-full.s [7/6/2003 7:04:16 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/array s/stack/array-stack-int1D-0O0.s

file "array-stack-intiD.c"
.version "01.01"
gcc2_conpi | ed.
. text
.align 4
.globl intArray
.type intArray, @unction
intArray:
pushl %ebp
nmovl %esp, Yebp
/* Whah thats a | ot of space */
subl $2072, %esp
/[* nop is a Null OPeration. It does nothing but padd our instruction
* space */
nop
/* Set some variable varl to zero. (Keep track of it on your stack
* sheet!) */
movl $0, - 2052(%ebp)
/* alignnent noise */
.p2align 4,,7
. L3:
/* Scanni ng ahead, we see what | ooks like it could be a | oop: Double
* junp, |abel here, |abel after conparason.. */
/* Recall: "Jump if -2052(%bp) le $511" */
cnpl $511, - 2052(%ebp)
jle .L7
[* if varl > 511, exit loop */
jmp . L5
.palign 4,,7
. L6:
/[* put varl in eax */
movl -2052(%bp), Yeax
movl Y%eax, Y%edx
/* Here we see our indexing operation begin:
Pl ace var1*4 into %ax */
| eal O(, %dx, 4), %eax
/* place the address of some nicely aligned quantity into %edx
(A large array, perhaps?) */
| eal -2048(%bp), Yedx
/* Place varl into ecx */
movl -2052(%bp), Yecx
[* *(%ax + %dx) = %ecx; -> arrayl[varl] = varl
(because %ax = varl*4 */
movl %ecx, (Y%eax, Yedx)
. L5:
[* var1l++ */
i ncl -2052(%bp)
[* loop */
jmp . L4
.p2align 4,,7
. L4:

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D-O0.s (1 of 2) [7/6/2003 7:04:17 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/array s/stack/array-stack-int1D-0O0.s

/* Printarray call to prevent over-optim zation */
addl $-12, %esp

| eal -2048(%bp), Yeax

pushl % ax

call printArray

addl $16, %esp

. L2:
| eave
ret
. Lfel:
.size intArray,.Lfel-intArray

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D-O0.s (2 of 2) [7/6/2003 7:04:17 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/array s/stack/array-stack-int1D-O2.s

file "array-stack-intiD.c"
.version "01.01"
gcc2_conpi | ed.
.text
.align 4
.globl intArray
.type intArray, @unction
intArray:
pushl %ebp
movl %esp, Y%ebp
/* A whole |ot of stack space is clue to an array */
subl $2056, %esp
/* leals are clue to the fact that we are going to be doing some nore
* indexing in the future. Fromthis its save to assune that -2048
* down from %bp is our array, and local variables are after it. */
| eal -2048(%bp), Yedx
novl $511, %ecx
/* Here is the top of our array */
| eal -4(%bp), Y%eax
.p2align 4,,7
. L21:
/[* *%ax = %ecx;.. Note: 32bit integer operation */
movl %ecx, (%eax)
/* nove %eax down by 4. W are now sure we're dealing with ints here */
addl $- 4, %eax
/* Decrenent counter */
decl %ecx
/* JNS neans junp if not signed, ie if the result of the previous
* instruction was not negative. So junp if %cx >= 0 */
jns .L21
/* So can you predict the results of the follow ng imaginary
* printArray call? Qur resulting code is a bit different than
* the original code. Instead of running the |loop forwards, the
* optimzer has decided that we should start at index 511, and run
* backwards until %cx < 0. So the array is still nunbered 0..511, we
* just did it in reverse. Pretty strange optim zation, eh?
*/
addl $-12, %esp
pushl %edx
call printArray
| eave
ret
. Lfel:
. size intArray,.Lfel-intArray

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D-O2.s [7/6/2003 7:04:17 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples’UnderstandingA sm/arrays/stack/array-stack-int1D-full.s

file "array-stack-intiD.c"
.version "01.01"
gcc2_conpi | ed.
. text
.align 4
.globl intArray
.type intArray, @unction
intArray:
subl $2060, %esp
movl Y%esp, Y%edx
nmovl $511, %ecx
| eal 2044(%esp), Yeax
.palign 4,,7
. L21:
movl %ecx, (Yeax)
addl $- 4, %eax
decl %ecx
jns .L21
addl $-12, %esp
pushl %edx
call printArray
addl $16, %esp
addl $2060, %esp
ret
.Lfel:
.size intArray,.Lfel-intArray

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D-full.s [7/6/2003 7:04:17 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/array s/stack/array-stack-int2D-00.s

file "array-stack-int2D.c"
.version "01.01"
gcc2_conpi | ed.
. text
.align 4
.globl intArray2D
.type i nt Array2D, @uncti on
i nt Array2D:
pushl %ebp
movl %esp, Y%ebp
/* Lots of stack space.. Clue that we're working with arrays */
subl $424, %esp
nop

/* Gve -404(%bp) the label varl on your stack sheet, set it 0 */
/* This also gives us a bound on the total array size.. Mst likely
* they specified the array first, then the vars */
movl $0, - 404(Yebp)
.p2align 4,,7
. L3:
/[* Unh oh.. a |oop! */
[* "Jump if varl le 9" -> Loop while varl <= 9 */
cmpl $9, - 404(%bp)
jle .L6
jmp . L4
.p2align 4,,7
. L6:
/* Lable this space var2 */
movl $0, - 408(¥ebp)
.p2align 4,,7
. L7:

[* Hmm . could this be a nested | oop? YEP! */

[* "Loop while var2 <= 9" */
cnpl $9, - 408(%ebp)
jle .L10
jmp . L5
.palign 4,,7
.L10: /* Loop body */
/* nove varl to eax */
movl - 404(%bp) , Yeax
[* Junmp if var2 ne varl */
cnpl -408(%bp), Yeax
jne .L11

/* Code executed if (var2 == varl) */

/* Put var2 into eax */
movl -408(%bp), %eax
movl %eax, Yedx

/* Indexing operation com ng! (%ax = var2*4*/
| eal O(, %dx, 4), %eax

/[* put varl into ecx, then edx */
movl - 404(%bp) , ¥%ecx
movl %ecx, Y%edx

/[* The sal instruction bitshifts the operand |eft by the specified
* nunber. It is basically a faster way of multiplying by powers of 2.*/
[* %dx *= 4; (edx = varl*4)*/

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-00.s (1 of 3) [7/6/2003 7:04:18 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/array s/stack/array-stack-int2D-00.s
sal | $2, %edx

/* %dx = varl * 5 */
addl %ecx, Yedx

/* %cx =varl * 5 * 8 =varl * 40 (hrmm. 40 is 10*4... coincidence?)*/
| eal O(, %dx, 8), %ecx

/* %ax = varl1l*40 + var2*4 */
addl %ecx, Yeax

/[* Put the base of the array into %dx */
| eal -400(%bp), %edx

/[* put 1 into the address %ax + %dx. You see that gcc |ikes to use

the base and index backwards if there is no scale.. Lord only knows..

The inportant thing to notice is that we have stored a 1 at nenory
| ocation array + varl1*40 + var2*4, and we have done it HORRI BLY
inefficiently! (A human shoul d have been able to do this with 2

| eal s and an add).

Way 40 and 4? Well, recall that 2D arrays on the

stack of the form 'type array[din2][dim];"

are represented by a single array of size type*di m*di n2. So
visualize long array as being divided into rows now (like text that
wraps around the screen). To get to the varl row, we have to go past
var1*di mi*type cells, and to get to the var2 columm, we have to add
on var2*type cells. Thus array[varl][var2] is

array + varl*di m*type + var2*type

L S R R S S R N . N N

~

nmovl $1, (%eax, ¥edx)

jmp . L9

.palign 4,,7

.L11:

/* Else clause to if(var2 == varl) */

/* put var2 into eax */
movl -408(%bp) , Yeax
movl %eax, Yedx

/* eax now has var2*4 */
| eal O(, %dx, 4), %eax

/* ecx has varl */
movl -404(%ebp) , Y%ecx
movl %ecx, Yedx

[* edx = varl*4 */

sal | $2, %edx

/* edx = var1l*5 (because ecx = varl) */
addl %ecx, %edx

/[* ecx = varl1*40 */
| eal O(, %dx, 8), %ecx

/* eax = varl1l*40 + var2*4 */
addl %ecx, Yeax

/* Base of our array in edx */
| eal -400(%bp), Yedx

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-O0.s (2 of 3) [7/6/2003 7:04:18 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/exampl es/UnderstandingA sm/array s/stack/array-stack-int2D-00.s

/* put the zero in eax */
movl $0, (Y%eax, ¥edx)

.L12:
. L9:
[* var2++ */
i ncl -408(%bp)
jmp . L7
.p2align 4,,7
. L8:
. L5:
[* var1l++ */
i ncl -404(%bp)
jmp . L3
.p2align 4,,7
. L4:
/* So, can you visualize what this code is doing based on the assenbly
* we just went through wthout reverting back to the C code?
* What does the 2D array look like after the programis done? Can you
* draw it in 2D? How about in 1D? How about on the stack? (recall it
* is on the stack) */
/* Answer:
So let's summari ze
We have an outer loop that is iterating over varl until it hits 10
We have an inner loop that is iterating over var2 until it hits 10
The inner |oop sets array[varl][var2] to 1 if varl == var2
else it sets array[varl][var2] to O.
So can you draw the array now?
*/
addl $-12, %esp
| eal -400(%bp), Yeax
pushl % ax
call printArray
addl $16, %esp
. L2:
| eave
ret
. Lfel:
. size int Array2D, . Lfel-intArray2D

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-00.s (3 of 3) [7/6/2003 7:04:18 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/array s/stack/array-stack-int2D-O2.s

file "array-stack-int2D.c"

.version "01.01"
gcc2_conpi | ed.
. text

.align 4
.globl intArray2D

.type i nt Array2D, @uncti on
i nt Array2D:

pushl %ebp

movl %esp, Y%ebp

/* Huge allocation. Miust be an array */
subl $412, %sp

/* preserve registers */
pushl %edi
pushl %esi
pushl %ebx

[* %bx = 0 */
xor| %ebx, %ebx

[* Thi nk about where -400(%bp) is on the stack, and howit is
* aligned. The fact that it is such a nice nunber really suggests
* that we have the bottom of an array here
* Ogax = array */

| eal -400(%bp), Yeax

/* So this is kind of odd.. the pointer to the bottomof array is

* being stored on the stack. Just make a note of it and nove on. */
movl %ax, - 404(Yebp)

movl %ax, Yedi

.p2align 4,,7

.L21:
/* %ecx = 0 */
xorl %ecx, ¥Yecx

[* %dx = %bx*4 */
| eal O(, %bx, 4), %edx

/[* %si = %bx + 1 */
| eal 1(%ebx), %esi

[* %ax = %bx + %edx = %bx*5 */
| eal (%bx, %edx), Yeax

/* %¢ax = Y%eax*8 = %ebx*40 */
sal |l $3, %eax

[* %&dx = %bx*40 + %bx*4 */
addl %eax, Yedx

[* %ax = %bx*40 + array */
addl %edi , Yeax
.p2align 4,,7

. L25:
[* if(%bx != %cx) junp */
cnpl %ecx, Y%ebx
jne .L26

/* code executed if(%bx = %cx) */

[* array + %edx =1 */

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-O2.s (1 of 2) [7/6/2003 7:04:18 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/array s/stack/array-stack-int2D-O2.s

movl $1, (%edx, %edi)
jmp . L24
.p2align 4,,7

. L26:
movl $0, (%eax)
. L24:
addl $4, Y%eax
i ncl % ecx
crpl $9, %ecx
jle .L25
movl %esi , %ebx
cnpl $9, %ebx
jle .L21
addl $-12, %esp
movl - 404(%bp) , Yeax
pushl % ax
call printArray
| eal -424(%bp), Yesp
popl %ebx
popl %esi
popl %edi
| eave
ret
.Lfel:
.size intArray2b, . Lfel-intArray2D

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-O2.s (2 of 2) [7/6/2003 7:04:18 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples’UnderstandingA sm/arrays/stack/array-stack-int2D-full.s

file "array-stack-int2D.c"
.version "01.01"
gcc2_conpi | ed.
. text
.align 4
.globl intArray2D
.type i nt Array2D, @uncti on
i nt Array2D:
subl $412, %esp
pushl %ebp
pushl %edi
pushl %esi
pushl %ebx
xorl %ebx, ¥Yebx
| eal 16(%esp), Yebp
movl %ebp, Yedi
.p2align 4,,7
. L21:
xorl %ecx, Yecx
| eal O(, %bx, 4), %edx
| eal 1(%ebx), %esi
| eal (%bx, %edx), %eax
sal |l $3, %eax
addl %ax, Yedx
addl %edi, Yeax
.palign 4,,7
. L25:
cnpl %ecx, Y%ebx
jne .L26
nmovl $1, (%edx, %edi)
jmp . L24
.palign 4,,7
. L26:
movl $0, (%eax)
. L24:
addl $4, %eax
i ncl % ecx
cnpl $9, %ecx
jle .L25
movl %esi , %ebx
cnpl $9, %ebx
jle .L21
addl $-12, %esp
pushl %ebp
call printArray
addl $16, %esp
popl %ebx
popl %esi
popl %edi
popl %ebp
addl $412, %esp
ret
.Lfel:
.size intArray2b, . Lfel-intArray2D

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-full.s [7/6/2003 7:04:19 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-00.s

file "array-stack-int3D.c"
.version "01.01"
gcc2_conpi | ed.
.text
.align 4
.globl intArray3D
.type i nt Array3D, @unction
i nt Array3D:
pushl %ebp
movl %esp, Y%ebp
/* Whah thats a | ot of nmenory */
subl $1224, %esp
nop
[* Set varl = 0 */
movl $0, - 1204(%ebp)
.p2align 4,,7
. L3:
[* Wile(varl <= 2) */
crpl $2, - 1204(Y&bp)
jle .L6
jmp . L4
.palign 4,,7
. L6:
[* set var2 = 0 */
nmovl $0, - 1208(%ebp)
.palign 4,,7
.L7:
[* While(var2 <= 9) */
cnpl $9, - 1208(%&bp)
jle .L10
jmp . L5
.palign 4,,7
. L10:
/* Set var3 = 0 */
novl $0, - 1212(%ebp)
.palign 4,,7
.L11:
[* While(var3 <= 9) */
cnpl $9, -1212(%bp)
jle .L14
jmp . L9
.palign 4,,7
. L14:

/[* var2 -> eax */
movl -1208(%ebp), Yeax

[* if(var2 != var3) then junp*/

cnpl -1212(%ebp) , Y%eax

jne .L15

/* code executed if(var2 == var3) */

/* place var3 in eax */
movl -1212(%bp), Y%eax
movl Y%eax, Y%edx

[* eax = var3 *4 */
I eal O(, %dx, 4), %eax

/[* place var2 in ecx */
movl -1208(%ebp), %ecx

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-O0.s (1 of 3) [7/6/2003 7:04:19 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-00.s
movl %ecx, Y%edx

/* edx = var2*4 */
sall $2, %edx

/* edx = var2*5 */
addl %ecx, %edx

/[* ecx = var2*40 */
| eal O(, %dx, 8), %ecx

/* eax = var2*40 + var3 * 4 */
addl %ecx, Yeax

/* ecx = varl */
movl -1204(%bp), Yecx
movl %ecx, Yedx

/[* edx = varl*4 */
sall $2, %edx

/* edx = varl*5 */
addl %ecx, Yedx

/* ecx = varl1*20 */
| eal O(, %dx, 4), %&cx

/* edx = varl1*25 */
addl %ecx, Yedx
movl %edx, Y&cx

/* ecx = varl*25*16 = var1*100*4 = var 1*400 */
sall $4, %ecx

/* eax = varl1l*400 + var2*40 + var3*4 */
addl %ecx, Yeax

/* edx = base of array */
| eal -1200(%bp), Yedx

/* ecx = varl */
movl - 1204(%ebp) , %ecx

/* set *(array + var1*400 + var2*40 + var3*4) = varl

So: array[varl][var2][var3] = varl
Can we guess the dinensions of our array at this point yet?

Fromthe formula given, 400 = di n2*di ml*type, 40 = di ml*type,
4=t ype

So type is int, dim is 10, dinR is 10, dinB is unknown.

For a hint at dinB, what does the |oop iterate varl over?

It executes so long as varl <= 2. So our array is probably declared
as:

int array[3][10][10];

L R T R R B S I I

~

movl %ecx, (Yeax, Yedx)

jmp . L13

.palign 4,,7

. L15:

/* else clause for if(var2 == var3) */

/* this is pretty much the sane code as above.. with one exception.. */
movl -1212(%bp), Yeax

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-O0.s (2 of 3) [7/6/2003 7:04:19 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-00.s
movl Y%eax, Y%edx

I eal O(, %dx, 4), %eax
movl -1208(%&bp), Yecx
movl %ecx, Yedx

sal | $2, %edx

addl %ecx, %edx

I eal O(, %dx, 8), %&cx
addl %ecx, ¥%eax

movl -1204(%bp), Yecx
movl %ecx, Yedx

sal | $2, %edx

addl %ecx, %edx

I eal O(, %dx, 4), %ecx
addl %ecx, %edx

movl %edx, %ecx

sal | $4, %ecx

addl %ecx, ¥%eax

| eal -1200(%bp), Yedx

[* set *(array + var1*400 + var2*40 + var3*4) = 0 */
novl $0, (%eax, Yedx)

. L16:

. L13:
[* var3++ */
incl -1212(%bp)
jmp . L11
.p2align 4,,7

. L12:

. L9:
[* var2++ */
i ncl -1208(%bp)
jmp . L7
.p2align 4,,7

. L8:

. L5:
[* var1++ */
i ncl -1204(%bp)
jmp . L3
.p2align 4,,7

. L4:

/* So can you visualize what is going on with our 3D array?
* VWhat does it look like? You should be able to do this on your own
*with little to no difficulty now.
*/

addl $-12, %esp
| eal -1200(%bp), Yeax
pushl % ax
call printArray
addl $16, %esp
.L2:
| eave
ret
. Lfel:
. size i nt Array3D, . Lfel-intArray3D
.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-O0.s (3 of 3) [7/6/2003 7:04:19 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/array s/stack/array-stack-int3D-O2.s

file
.vers

"array-stack-int3D.c"
i on "01.01"

gcc2_conpil ed. :

.text

. gl obl

.alig
intArr

.type

i nt Array3D:

.L21:

. L25:

. L29:

. L30:

. L28:

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-O2.s (1 of 2) [7/6/2003 7:04:20 PM]

pushl
nmovl
subl
pushl
pushl
pushl
nmovl
| eal
nmovl
. p2al

xor |
nmovl|
i ncl
nmovl|
nmovl|
| eal
| eal
sal |
. p2al

xor |
| eal
| eal
nmovl|
| eal
sal |
addl
addl
addl
. p2al

cnpl
j ne
nmov|
nmov|
jmp
. p2al

nmov|

addl
i ncl
cnpl
jle
nmovl|
cnpl
jle
nmovl|
nmovl|
cnpl
jle
addl

n 4
ay3D
i nt Array3D, @unction

%ebp
%esp, Yebp
$1228, %esp

%edi

%esi

%ebx
$0, - 1204(%ebp)
-1200(%ebp) , Yeax
Y%eax, - 1212(Y%ebp)
ign 4,,7

o%esi , Yesi

-1204(%ebp) , Yedx
%edx

%edx, - 1208(%ebp)
-1204(%ebp) , %edi
(%edi , %&di , 4) , Y%eax
(%eax, Y%eax, 4), ¥%ebx
$4, Y%ebx

ign 4,,7

%ecX, Yecx

0o(, %esi, 4), Yedx
1(%esi), Yeax
Y%eax, - 1216(Y%ebp)
(%esi , Y%edx) , Yeax
$3, %eax

Yeax, Yedx

%ebx, Yedx

%ebx, Yeax

ign 4,,7
o%ecx, Yesi
. L30

- 1204(%ebp) , Yedi
%edi , - 1200(%edx, %ebp)

.L28

ign 4,,7
$0, - 1200(%eax, %ebp)
$4, Yeax

%ecxX
$9, %ecx

.L29

-1216(%ebp) , Y%esi
$9, %esi

.L25

-1208(%ebp) , Yeax
%eax, - 1204(%ebp)
$2, %eax

.L21

$-12, %esp

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingA sm/array s/stack/array-stack-int3D-O2.s

movl -1212(%bp), Yedx
pushl %edx

call printArray

| eal -1240(%bp), Yesp

popl %ebx
popl %esi
popl %edi
| eave
ret
. Lfel:
. size intArray3D,.Lfel-intArray3D

.ident "GCC. (GNU) 2.95.4 (Debian prerelease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-O2.s (2 of 2) [7/6/2003 7:04:20 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/examples’UnderstandingA sm/arrays/stack/array-stack-int3D-full.s

file
.vers
gcc2_conpil ed
. text
.alig
intArr
.type
i nt Array3D:
subl
pushl
pushl
pushl
pushl
xor |
| eal
nmovl
. p2al

. gl obl

. L21:
xor |
| eal
nmovl|
| eal
| eal
sal |
. p2al
. L25:
xor |
| eal
| eal
| eal
sal |
addl
addl
addl
. p2al
. L29:
cnpl
j ne
nmovl|
jmp
. p2al
. L30:
nmovl|
. L28:
addl
i ncl
cnpl
jle
nmovl|
cnpl
jle
nmovl|
cnpl
jle
addl
nmovl|
pushl
cal |
addl
popl
popl

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-full.s (1 of 2) [7/6/2003 7:04:20 PM]

"array-stack-int3D.c"
i on "01.01"

n 4
ay3D
i nt Array3D, @unction

$1228, %esp
%ebp

%edi

%esi

%ebx

%ebp, Y%ebp
32(%esp) , Yeax
Yeax, 24(Y%esp)
ign 4,,7

o%esi , Yesi
1(%bp) , Yeax
Y%eax, 28(%esp)
(%ebp, %&bp, 4) , Yeax
(%eax, Y%eax, 4), ¥%ebx
$4, Y%ebx

ign 4,,7

%ecX, Yecx

0o(, %esi, 4), Yedx
1(%esi), Yedi
(%esi , Y%edx) , Yeax
$3, %eax

Yeax, Yedx

%ebx, Yedx

%ebx, Yeax

ign 4,,7

o%ecx, Yesi

.L30
%ebp, 32(%esp, Y%edx)
.L28

ign 4,,7

$0, 32(%esp, Yeax)

$4, Yeax
%ecxX
$9, %ecx

.L29

o%edi , %esi
$9, %esi

.L25

28(%esp), Yebp
$2, %ebp

.L21

$-12, Y%esp

36(%esp), Yeax
Y%eax
printArray
$16, Y%esp

%ebx

%esi

http://www.acm.uiuc.edu/sigmil/RevEng/examples’UnderstandingA sm/arrays/stack/array-stack-int3D-full.s

popl %edi
popl %ebp
addl $1228, %esp
ret
. Lfel:
. size intArray3D,.Lfel-intArray3D

.ident "GCC. (GNU) 2.95.4 (Debian prerel ease)"

http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-full.s (2 of 2) [7/6/2003 7:04:20 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl .txt
#!/usr/bin/perl -w
Disasmpl v0.4

#Assunmes that the file we're working with is stripped

#TODO

0. Sort NUMERI CALLY on function call nanes, not |exographically

1. Get this to work if synbols are present

2. Add options or speed up the finding of unused functions (can we do it
wi t hout an extra pass?)

3. Fix various FI XME' s

4. Make work with sparc

HHHHHHR

use strict;
use Cetopt::Long;

nmy ($call _graph, $fnanes);

i f($HARGV < 0)

{
print "Usage: $0 <file> [options]\n";
print "\t--fnames\tprint function nanes\n";
print "\t--graph\tgenerate file with graph information for dot\n";
exit 1;
} else {
$cal | _graph = $fnames = 0;
Get Options("fnames" => \ $f names, # --fnanes
"graph” => \$call _graph # --graph
)
}
my %ynbol s;
my $fprefix = "function #";
my $lprefix = "l abel #";
my $return = "ret "
my $cal | = "call ox";
ny $j unmp =" 0x";
ny $retsize = 1; #size of ret opcode
#Spar c:
#FI XME: There's a few i ssues with sparc opcodes:
1. W need to handle command |ine options to specify to use sparc
2. W need to allow arbitrary spacing after the branch instruction
3. Some functions return with just ret, some return with ret then restore
my $sreturn = "restore";
nmy $scall = "call ";
nmy $sjunp =" Db[rMO0-9].["O9a-f].[]*";
nmy $sparc = “unanme -a =~ /sparc/;
i f($sparc)
{
$return = $sreturn;
$call = $scal | ;
$j unp = $sj unp;

}
ny $filename = shift(@RGY);

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl.txt (1 of 5) [7/6/2003 7:04:24 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl .txt
@ines = "objdunp -TC $fil ename’;

9% uncti ons;
% abel s;
ocal | s;

333 3

foreach (@i nes)

i f(/0([0-9a-f]+).**UND*.* ([~]1+)$/)

{

ny $tenmp = $2;

chop $tenp;

$synbol s{$1} = $tenp;
}

}
@ines = “objdunp -dj .text $filenanme’;

#counters for functions, unused functions, and | abels

ny $fcount = 1;
ny $lcount = 1;
foreach(@i nes)
{
#FI XME: Hack that al so assunes stripped binary.. How can we factor this
#out of the | oop?
if(/([0]+)([0-9a-f]1+)\ <.text>/)
{

print "Text @$1 $2 ($_)";
$synbol s{$2} = "_start";
$functions{$2} = "_start";

}
if(/$call ([0-9a-f]+)/ &&
I exists($synbol s{$1}))
if(/([0-9a-f]+).*$function/)
{
$synbol s{$1} = "$fprefi x$fcount";
$f count ++;
$f uncti ons{$1} = $synbol s{$1};
}
el sif(/$ump([0-9a-f]1+)/ &&
I exists($synbol s{$1}))
{
$synbol s{$1} = "$l prefix$l count"”;
$l count ++;
$l abel s{$1} = $synbol s{$1};
}
}
#FI XME: Thi s should be an option...
#

Nasko - should it? m sses sonme data in the output just unconment the if
statenment and the correspondi ng cl osing brace to nmake --fnames work
#

nmy $i nFunc;
nmy $l ast Ret;

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl.txt (2 of 5) [7/6/2003 7:04:24 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl .txt

ny $storeRet = O;
ny $counter = O;

#if ($fnames == 1) {

foreach(@i nes)
{
++$count er;
#HACK: Yeah, this sucks.. but we can't just add 1 to get the next address
#and | don't know how to peek at the next l|ine
#
Nasko - just use $lines[$counter]
#
i f($storeRet == 1)
{
if(/([0-9a-f]+)/)
{
$l ast Ret = $1;
$storeRet = O;
}

el se

{

}
}
if(/([0-9a-f]+)/ and exists($functions{$1}))
{

next ;

$i nFunc = 1;

}
elsif(/([0-9a-f]+).*$return/)
{

i f($inFunc == 0)

$synbol s{$l ast Ret} = "function #$f count (unused)";
$functions{$l ast Ret} = "function #$fcount (unused)"
$f count ++;
}
#FI XME: Sure woul d be nice to peek at the next line and set |astRet
#right here..
$storeRet = 1;
$i nFunc = 0;

#}

my $l ocal Func;
foreach(@i nes)

{
if(/([0-9a-f]+)/ and exists($synbol s{$1}))
{
ny $synb = $synbol s{$1};
if ($synb =~ /label/) {
$_ = "$synmb:\n$_";
} else {
$ = "\n$synmb:\n$_";
$l ocal Func = $synb;
}
}

elsif(/.*$return/)

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl.txt (3 of 5) [7/6/2003 7:04:24 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl .txt

{

$.= "return\n\n";

}
el sif(/.*$junp([0-9a-f]1+)/ ||
/. *$cal | ([0-9a-f]+)/)

{
chop;
i f(exists($synbol s{$1}))
{
$.="\t<" . S$synbols{$1} . ">\n";
}
el se
{
$_ .= "\t<unknown synbol >\ n";
}

ny $synb = $synbol s{$1};

Why skip | abel s??
if ($synb =~ /label /) {
next;
}
i f(exists($calls{ $local Func }))
{
push @ $calls{ $local Func } }, $synb;
}
el se
$call s{ $local Func } = [$symb];
}
}
print;
}

print "\nKnown synbol s:\n";

foreach (sort (keys %ynbol s))

{
if (!($synbol s{$_} =~ /label/))
{
print;
print ": $synbol s{$_}\n";
}
}

print "\nCall graph:\n";

ny $f Nane;
if ($call _graph == 1) {
a local variable for each function nane
open the file to store the definition of the graph
open(FI LE, ">call_graph") ||
die "Couldn't open file for witing the call graph\n";
print FILE "digraph prof {\n";
}

#f oreach (sort keys 9%alls)
foreach (%alls)

{
$fNanme = $_;

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl.txt (4 of 5) [7/6/2003 7:04:24 PM]

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl .txt

print;

print ":\n";

foreach (@ $calls{$_} })
{

ny $nytnp = $_;
if(1($_ =~ /labell))

{
print " calls $_\n";
print to the graph file
if($call _graph == 1) {print FILE "\t\"$f Name\" -> \"$ \"\n"};
}
}
print "\n";

}

if ($call _graph == 1) {
put the closing brace and close the file
print FILE "}\n";
cl ose(FILE);

http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl.txt (5 of 5) [7/6/2003 7:04:24 PM]

	uiuc.edu
	Introduction to Reverse Engineering Software
	Chapter 1. Introduction
	Chapter 2. The Compilation Process
	Chapter 3. Gathering Info
	Chapter 4. Determining Program Behavior
	Chapter 5. Determining Interesting Functions
	Chapter 6. Understanding Assembly
	Chapter 7. Debugging
	Chapter 8. Executable formats
	Chapter 9. Understanding Copy Protection
	Chapter 10. Code Modification
	Chapter 11. Network Application Interception
	Chapter 12. Buffer Overflows
	Chapter 13. TODO (Contribute!)
	Chapter 14. Extra Resources
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/functions/functions-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/if-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/if-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/if-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelse-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelse-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelse-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelseif-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelseif-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/if/ifelseif-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/while-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/for-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/for-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/for-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/dowhile-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/dowhile-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/loops/dowhile-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-char-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int1D-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int2D-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-O0.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-O2.s
	http://www.acm.uiuc.edu/sigmil/RevEng/examples/UnderstandingAsm/arrays/stack/array-stack-int3D-full.s
	http://www.acm.uiuc.edu/sigmil/RevEng/code/disasm.pl.txt

