

1

Socket Programming in Python

Socket Basics

A network socket is an endpoint of an inter-process communication flow across a computer

network. Sockets may communicate within a process, between processes on the same machine, or

between processes on different continents. Today, most communication between computers is

based on the internet protocol; therefore most network sockets are internet sockets. To create a

connection between machines, Python programs import the socket module, create a socket object,

and call the object’s methods to establish connections and send and receive data. Sockets are the

endpoints of a bidirectional communications channel.

Socket in Python

Python provides two levels of access to network services. At a low level, you can access the basic

socket support in the underlying operating system, which allows you to implement clients and

servers for both connection-oriented and connectionless protocols. Python also has libraries that

provide higher level access to specific application level network protocols, such as FTP, HTTP,

SMTP, and so on.

Sockets may be implemented over a number of different channel types: UNIX domain sockets,

TCP, UDP, and so on. The socket library provides specific classes for handling the common

transports as well as a generic interface for handling the rest.

Vocabulary of Sockets

Term Description

domain
The family of protocols that will be used as the transport mechanism. These values are

constants such as AF_INET, PF_INET, PF_UNIX, PF_X25, and so on.

type
The type of communications between the two endpoints, typically SOCK_STREAM for

connection-oriented protocols and SOCK_DGRAM for connectionless protocols.

protocol
Typically zero, this may be used to identify a variant of a protocol within a domain

and type.

hostname

The identifier of a network interface:

• A string, which can be a host name, a dotted-quad address, or an IPV6 address in

colon (and possibly dot) notation

• A string "<broadcast>", which specifies an INADDR_BROADCAST address.

• A zero-length string, which specifies INADDR_ANY, or

• An Integer, interpreted as a binary address in host byte order.

port
Each server listens for clients calling on one or more ports. A port may be a Fixnum

port number, a string containing a port number, or the name of a service.

The socket Module

To create a socket, you must use the socket.socket() function available in socket module, which has

the general syntax:

Socket Programming in Python

2

s = socket.socket (socket_family, socket_type, protocol=0)

Here is the description of the parameters:

• socket_family: This is either AF_UNIX or AF_INET, as explained earlier.

• socket_type: This is either SOCK_STREAM or SOCK_DGRAM.

• protocol: This is usually left out, defaulting to 0.

Once you have socket object, then you can use required functions to create your client or server

program.

Server Socket Methods

Method Description

s.bind() This method binds address (hostname, port number pair) to socket.

s.listen() This method sets up and start TCP listener.

s.accept()
This passively accept TCP client connection, waiting until connection arrives

(blocking).

Client Socket Methods

Method Description

s.connect() This method actively initiates TCP server connection.

General Socket Methods

Method Description

s.recv() This method receives TCP message

s.send() This method transmits TCP message

s.recvfrom() This method receives UDP message

s.sendto() This method transmits UDP message

s.close() This method closes socket

socket.gethostname() Returns the hostname.

A Simple Server

To write Internet servers, we use the socket function available in socket module to create a socket

object. A socket object is then used to call other functions to setup a socket server.

Now call bind(hostname, port) function to specify a port for your service on the given host.

Next, call the accept method of the returned object. This method waits until a client connects to the

port you specified, and then returns a connection object that represents the connection to that client.

Socket Programming in Python

3

#!C:\Python33\python.exe

Echo server program

import socket

host = socket.gethostname()

port = 12345

s = socket.socket()

s.bind((host, port))

s.listen(5)

conn, addr = s.accept()

print('Got connection from ', addr[0], '(', addr[1], ')')

print('Thank you for connecting')

while True:

 data = conn.recv(1024)

 if not data: break

 conn.sendall(data)

conn.close()

A Simple Client

Now we will write a very simple client program which will open a connection to a given port

12345 and given host. This is very simple to create a socket client using Python's socket module

function.

The socket.connect(hosname, port) opens a TCP connection to hostname on the port. Once you

have a socket open, you can read from it like any IO object. When done, remember to close it, as

you would close a file.

The following code is a very simple client that connects to a given host and port, reads any

available data from the socket, and then exits:

#!C:\Python33\python.exe

Echo client program

import socket

host = socket.gethostname()

port = 12345

s = socket.socket()

s.connect((host, port))

s.sendall(b'Welcome User!')

data = s.recv(1024)

s.close()

print(repr(data))

Now run this server.py in background and then run above client.py to see the result.

Output:

Step 1: Run server.py. It would start a server in background.

Step 2: Run client.py. Once server is started run client.

Step 3: Output of server.py generates as follows:

Socket Programming in Python

4

C:\Users\Ashok Kumar\Desktop>python server.py

Got connection from 192.168.3.21 (61428)

Thank you for connecting

Step 4: Output of client.py generates as follows:

C:\Users\Ashok Kumar\Desktop>python clients.py

b'Welcome User!'

Python Internet Modules

A list of some important modules which could be used in Python Network/Internet programming.

Protocol Common function Port No Python module

HTTP Web pages 80 httplib, urllib, xmlrpclib

NNTP Usenet news 119 nntplib

FTP File transfers 20 ftplib, urllib

SMTP Sending email 25 smtplib

POP3 Fetching email 110 poplib

IMAP4 Fetching email 143 imaplib

Telnet Command lines 23 telnetlib

Gopher Document transfers 70 gopherlib, urllib

