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Introduction
1.1  What Is This Book About?
Artificial intelligence is a wide field covering diverse techniques, 

objectives, and measures of success. One branch is concerned with finding 

provably optimal solutions to some well-defined problems.

This book is an introduction to the art and science of implementing 

mathematical models of optimization problems.

An optimization problem is almost any problem that is, or can be, 

formulated as a question starting with “What is the best … ?” For instance,

• What is the best route to get from home to work?

• What is the best way to produce cars to maximize 

pro�t?

• What is the best way to carry groceries home: paper or 

plastic?

• Which is the best school for my kid?

• Which is the best fuel to use in rocket boosters?

• What is the best placement of transistors on a chip?

• What is the best NBA schedule?
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These questions are rather vague and can be interpreted in a multitude 
of ways. Consider the first: by �best� do we mean fastest, shortest, most 
pleasant to ride, least bumpy, or least fuel-guzzling? Besides, the question 
is incomplete. Are we walking, riding, driving, or snowboarding? Are we 
alone or accompanied by a screaming toddler?

To help us formulate solutions to optimization problems, optimizers1 
have established a frame into which we mould the questions; it�s called a 
model. The most crucial aspect of a model is that it has an objective and it 
has constraints. Roughly, the objective is what we want and the constraints 
are the obstacles in our way. If we can reformulate the question to clearly 
identify both the objective and the constraints, we are closer to a model.

Let�s consider in more detail the �best route� problem but with an eye 
to clarify objective and constraints. We could formulate it as

Given a map of the city, my home address, and the 
address of the daycare of my two-year-old son, what 
is the best route to take on my bike to bring him to 
daycare as fast as possible?

The goal is to find among all the solutions that satisfy the requirements 
(that is, paths following either streets or bike lanes, also known as the 
constraints) one path that minimizes the time it takes to get there (the 
objective).

Objectives are always quantities we want to maximize or minimize 
(time, distance, money, surface area, etc.), although you will see examples 
where we want to maximize something and minimize something else; 
this is easily accommodated. Sometimes there are no objectives. We say 

1 I use the term �optimizers� to name the mathematicians, theoreticians, and 
practitioners, who, since the nineteen-fifties, have worked in the fields of linear 
programming (LP) and integer programming (IP). There are others who could 
make valid claims to the moniker, chiefly among them researchers in constraint 
programming, but my focus will be mostly in LP and IP models, hence my 
restricted definition.

CHAPTER 1  INTRODUCTION
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that the problem is one of feasibility (i.e. we are looking for any solution 
satisfying the requirements). From the point of view of the modeler, the 
difference is minimal. Especially since, in most practical cases, a feasibility 
model is usually a first step. After noticing a solution, one usually wants 
to optimize something and the model is modified to include an objective 
function.

1.2  Features of�the�Text
As this text is an introduction, I do not expect the reader to be already 
well versed in the art of modeling. I will start at the beginning, assuming 
only that the reader understands the definition of a variable (both in 
the mathematical sense and in the programming sense), an equation, 
an inequality, and a function. I will also assume that the reader knows 
some programming language, preferably Python, although knowing any 
other imperative language is enough to be able to read the Python code 
displayed in the text.

Note that the code in this book is an essential component. To get the 
full value, the reader must, slowly and attentively, read the code. This book 
is not a text of recipes described from a birds-eye view, using mathematical 
notation, with all the nitty-gritty details �left as an exercise for the reader.� 
This is implemented, functional, tested, optimization code that the reader 
can use and moreover is encouraged to modify to fully understand. The 
mathematics in the book has been reviewed by mathematicians, like any 
mathematical paper. But the code has been subjected to a much more 
stringent set of reviewers with names Intel, AMD, Motorola, and IBM.2

2 My doctoral advisor used to say �There are error-free mathematical papers.� But 
we only have found an existence proof of that theorem. I will not claim that the 
code is error-free, but I am certain that it has fewer errors than any mathematical 
paper I ever wrote.

CHAPTER 1  INTRODUCTION
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The book is the fruit of decades of consulting and of years teaching 
both an introductory modeling class (MOR242 Intro to Operation 
Research Models) and a graduate class (APM568 Mathematical Modeling 
in Industry) at Oakland University. I start at the undergraduate level and 
proceed up to the graduate level in terms of modeling itself, without 
delving much into the attendant theory.

� Every model is expressed in Python using Google 
OR-Tools3 and can be executed as stated. In fact, the 
code presented in the book is automatically extracted, 
executed, and the output inserted into the text without 
manual intervention; even the graphs are produced 
automatically (thanks to Emacs4 and org-mode5).

� My intention is to help the reader become a 
pro�cient modeler, not a theoretician. �erefore, 
little of the fascinating mathematical theory related 
to optimization is covered. It is nevertheless used 
pro�tably to create simple yet e�cient models.

� �e associated web site provides all the code presented 
in the book along with a random generator for many of 
the problems and variations. �e author uses this as a 
personalized homework generator. It can also be used 
as a self-guided learning tool.

https://github.com/sgkruk/Apress-AI

3 https://github.com/google/or-tools
4 The one and only editor: http://emacs.org
5 http://orgmode.org/

CHAPTER 1  INTRODUCTION
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1.2.1  Running the�Models
There is danger in describing in too much detail installations instructions 
because software tends to change more often than this text will change. 
For instance, when I started with Google�s OR-Tools, it was hosted on the 
Google Code repository; now it is on GitHub. Nevertheless, here are a few 
pointers. All the code presented here has been tested with

� Python 3 (currently 3.7), although the models will work 
on Python 2

� OR-Tools 6.6

The page https://developers.google.com/optimization offers 
installation instructions for most operating systems. The fastest and most 
painless way is

pip install --upgrade ortools

Once OR-Tools are installed, the software of this text can be 
downloaded most easily by cloning the GitHub repo at

git clone https://github.com/sgkruk/Apress-AI.git

where the reader will find a Makefile testing almost all the models detailed 
in the text. The reader only has to issue a make to test that the installation 
was completed successfully.

The code of each section of the book is separated into two parts: a 
model proper, shown in the text, and a main driver to illustrate how to call 
the model with some data. For instance, the chapter corresponding to the 
set cover has a file named set_cover.py with the model and a file named 
test_set_cover.py which will create a random instance, run the model 
on it, and display the result. Armed with these examples, the reader should 
be able to modify to suit his needs. It is important to understand that the 
mainline is in test_set_cover.py and that file needs to be executed.

CHAPTER 1  INTRODUCTION
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1.2.2  A Note on�Notation
Throughout the book, I will describe algebraic models. These models can 
be represented in a number of ways. I will use two. I will sketch each model 
using common mathematical notation typeset with TEX in math mode. I 
will then express the complete, detailed model in executable Python code. 
The reader should have no problem seeing the equivalence between the 
formulations. Table�1-1 illustrates some of the equivalencies.

1.3  Getting Our Feet Wet: Amphibian 
Coexistence

The simplest problems are similar to those first encountered in high 
school: the dreaded word problems. They are algebraic in nature; that 
is, they can be formulated and sometimes solved using the simple tools 
of elementary linear algebra. Let�s consider here one such problem 
to illustrate the approach to modeling and define some fundamental 
concepts.

Table 1-1. Equivalence of Expression in Math and Python Modes

Object Math Mode Python Mode

Scalar Variable X X

Vector vi v[i]

Matrix Mij M[i][j]

Inequality x + y � 10 x+y <= 10

Summation
i

ix
�
�

0

9

sum(x[i] for i in range(10))

Set De�nition {i 2 | i � [0, 1, . . ., 9]} [i**2 for i in range(10)]

CHAPTER 1  INTRODUCTION
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A zoo biologist will place three species of amphibians (a toad, a 
salamander, and a caecilian) in an aquarium where they will feed on 
three different small preys: worms, crickets, and flies. Each day 1,500 
worms, 3,000 crickets, and 5,500 flies will be placed in the aquarium. 
Each amphibian consumes a certain number of preys per day. Table�1-2 
summarizes the relevant data.

The biologist wants to know how many amphibians, up to 1,000 of 
each species, can coexist in the aquarium assuming that food is the only 
relevant constraint.

How to we model this problem? All optimization and feasibility 
problems in this book are modeled using a three-step approach. We 
will expand on this approach as we encounter problems on increasing 
complexity, but the fundamental three steps remain the cornerstone of a 
good model.

 1. Identify the question to answer. This identification 
should take the form of a precise sentence involving 
either counting or valuating one or more objects. In 
this case, how many amphibians each species can 
coexist in the aquarium? Notice that �How many 
amphibians?� would not be precise enough because 
we are not interested in the total count, but rather 
in the count of each species. Formulating a precise 
question is often the hardest part.

Table 1-2. Number of Preys Consumed by Each Species of Amphibian

Food Toad Salamander Caecilian Available

Worms 2 1 1 1500

Crickets 1 3 2 3000

Flies 1 2 3 5000

CHAPTER 1  INTRODUCTION
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Once we have this precise question, we assign a 
variable to each of the objects to count. We will 
use x0, x1, and x2. These are traditionally known as 
decision variables. The expression is a misnomer 
in our first example but reflects the origins of 
optimization problems in logistics where the 
decision variables were indeed representative of 
quantities under the control of the modeler and 
mapped to planning decisions.

 2. Identify all requirements and translate them 
into constraints. �e constraints, as you will see 
throughout the book, can take on a multitude of 
forms. In this simple problem, they are algebraic, 
linear inequalities. It is often best to write down 
each requirement in a precise sentence before 
translating it into a constraint. For the coexistence 
case, the requirements, in words, are

� All amphibians combined consume 1,500 worms.

� All amphibians combined consume 3,000 crickets.

� All amphibians combined consume 5,000 flies.

Note that a statement starting with �The amount  
of �� may not be precise enough. In our simple case, 
there are no specified units but there could be. For 
instance, the amount consumed could be stated 
in grams while the availability is in kilograms. This 
happens often and is the cause of many a model 
going awry.

CHAPTER 1  INTRODUCTION
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Yet, even with our seemingly precise statements, 
there is an ambiguity left to consider. It is one 
of the main contributions of a good modeler 
to highlight ambiguity and clarify problem 
statements. Here, do we mean that the amphibians 
will consume exactly the amounts stated, or that 
they will consume at most the amounts stated?6 We 
will assume that �at most� is the proper form of the 
requirement, both because it is more interesting 
and, in a sense, subsumes the �equal� question. 
We will then translate these requirements into 
algebraic constraints based on our decision 
variables.

Let�s consider worms. The toads eat two per day. 
The salamanders and caecilians each eat one. Since 
we decided on x0 toads, x1 salamanders, and x2 
caecilians, the total number of worms consumed 
will be bounded by the following inequality:

2 15000 1 2x x x� � �  (1.1)

Had we decided that �equal to� was the proper 
constraint, we would replace the inequality by an 
equality.

6 This seemingly trivial change from �exactly equal� to �at most� represents more 
than 2,000 years of mathematical development in solution techniques. We have 
known how to solve the �equal� form since ancient Babylonians (though it is 
known today as �Gaussian elimination�) and we teach it in high school, but we 
only discovered how to solve the �at most� form in the twentieth century.

CHAPTER 1  INTRODUCTION
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Consider now crickets. Toads consume one per day 
while salamanders consume three and caecilians 
consume two. They will collectively consume x0 + 
3x1 + 2x2 and we obtain the constraint

x x x0 1 23 2 3000� � �  (1.2)

The constraint on flies is obtained similarly to 
produce

x x x0 1 22 3 5000� � �  (1.3)

 3. Identify the objective to optimize. �e objective 
is, in the case of an optimization problem, what 
we want to maximize (or minimize). In the case 
of a feasibility problem, there is no objective, but 
in practice, most feasibility problems are really 
optimization problems that have been incompletely 
formulated.

Since the problem is stated as �How many 
amphibians of each species can coexist?�, a possible, 
even likely, reading is that we want the maximum 
number of amphibians. (The minimum number is 
zero and is an example of the uninteresting trivial 
solution.) In terms of our decision variables, we 
want to maximize the sum and obtain

max x x x0 1 2� �  (1.4)

CHAPTER 1  INTRODUCTION
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At this point we have a model! Not the model, but a model: a simple, 
clear, and precise algebraic model that has a solution, one that answers our 
original question.

Since we are not mere theoreticians uninterested in practical 
applications, our next step is to solve the model. As we will do for every 
model in this book, we need to translate the mathematical expressions 
above ((1.1)-(1.4)) into a form digestible by one of the many solvers 
available.

Over the years, optimizers have developed a number of specialized 
modeling languages and solvers. Here is a short list of the better-known 
ones:

� Modeling languages

� AMPL (www.ampl.com)

� GAMS (www.gams.com)

� GMPL (http://en.wikibooks.org/wiki/GLPK/
GMPL (MathProg))

� Minizinc (www.minizinc.org/)

� OPL (www-01.ibm.com/software/info/ilog/)

� ZIMPL (http://zimpl.zib.de/)

� Solvers

� CBC (www.coin-or.org/)

� CLP (www.coin-or.org/Clp/)

� CPLEX (www-01.ibm.com/software/info/ilog/)

� ECLiPSe (http://eclipseclp.org/)

� Gecode (www.gecode.org/)

CHAPTER 1  INTRODUCTION
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� GLOP (https://developers.google.com/
optimization/lp/glop)

� GLPK (www.gnu.org/software/glpk/)

� Gurobi (www.gurobi.com/)

� SCIP (http://scip.zib.de/)

We should maintain a distinction between modeling languages, 
formal constructions with specific vocabulary and grammars, and solvers, 
software packages that can read in models expressed in certain languages 
and write out the solutions, although in some cases this distinction is 
blurry.

As a modeler, one creates a model (in language X) which is then fed 
to a solver (solver Y). This can happen because solver Y knows how to 
parse language X or because there is a translator between language X and 
another language, say Z, which the solver understands. This, over the 
years, has been the cause of much irritation (�What? You mean that I have 
to rewrite my model to use your solver?�).

To make matters worse, these languages and solvers are not 
equivalent. Each has its strengths and weaknesses, its areas of 
specialization. After years of writing models in all the languages above and 
then some, my preference today is to eschew specialized languages and to 
use a general-purpose programming language, for instance Python, along 
with a library interfacing with multiple solvers. Throughout this book I will 
use Google�s Operations Research Tools (OR-Tools), a very well-structured 
and easy-to-use library.

The OR-Tools library is comprehensive. It offers the best interface I 
have ever used to access multiple linear and integer solvers (MPSolver). It 
also has special-purpose code for network flow problems as well as a very 
effective constraint programming library. In this text, I will display only a 
very small fraction of this cornucopia of optimization tools.

CHAPTER 1  INTRODUCTION
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One of the many advantages of using a general purpose language like 
Python is that we can do the modeling part as well as the insertion of the 
models into a larger application, maybe a web or a phone app. We can 
also easily present the solutions in a clear format. We have all the power 
of a complete language at our disposal. True, the specialized modeling 
languages sometimes allow more concise model expression. But, in my 
experience, they all, at one point or another, hit a wall, forcing the modeler 
to write kludgy glue to connect a model to the rest of the application. 
Moreover, writing OR-Tools models in Python can be such a joy.7 The 
whole coexistence model is shown at Listing 1-1.

Listing 1-1. Amphibian Coexistence Model

 1  from ortools.linear_solver import pywraplp
 2  def solve_coexistence():
 3    t = 'Amphibian coexistence'
 4    s =  pywraplp.Solver(t,pywraplp.Solver.GLOP_LINEAR_

PROGRAMMING)
 5    x = [s.NumVar(0, 1000,'x[%i]' % i) for i in range(3)]
 6    pop = s.NumVar(0,3000,'pop')
 7    s.Add(2*x[0] + x[1] + x[2] <= 1500)
 8    s.Add(x[0] + 3*x[1] + 2*x[2] <= 3000)
 9    s.Add(x[0] + 2*x[1] + 3*x[2] <= 4000)
10    s.Add(pop == x[0] + x[1] + x[2])
11    s.Maximize(pop)
12    s.Solve()
13    return pop.SolutionValue(),[e.SolutionValue() for e in x]

7 Writing in Common Lisp would be even better. Alas, there is no Lisp binding for 
OR-Tools yet.

CHAPTER 1  INTRODUCTION
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Let�s deconstruct the code. Line 1 loads the Python wrapper of the 
linear programming subset of OR-Tools. Every model we write will start 
this way. Line 4 names and creates a linear programming solver (hereafter 
named s) using Google�s own8 GLOP.�The OR-Tools library has interfaces 
to a number of solvers. Switching to a different solver, say GNU�s9 GLPK or 
Coin-or10 CLP is a simple matter or modifying this line.

On line 5, we create a one-dimensional array x of three decision 
variables that can take on values between 0 and 1000. The lower bound 
is a physical constraint since we cannot have a negative number of 
amphibians. The upper bound is part of the problem statement as the 
biologist will not put more than 1,000 of each species in the test tube. It 
is possible to state ranges as any contiguous subsets of (��, +�), but, 
as a general rule of thumb, restricting the range as much as possible 
during variable declaration tends to help solvers run efficiently. The third 
parameter of the call to NumVar is used as the name to print if and when 
this variable is displayed, for instance, in debugging a model. We will have 
little use for this feature as we prefer to write bug-free models.

The constraints on lines 7 to 9 are direct translations of the 
mathematical expressions (1.1)-(1.3). The order of the terms is irrelevant. 
In contrast to some restrictive modeling languages, we could have written 
line 7 as

1500>=x[0]+x[2]+x[1]

or

x[0]+x[1]+x[2]-1500<=0

or any other equivalent algebraic expression.

8 https://developers.google.com/optimization/lp/glop
9 www.gnu.org/software/glpk/
10 https://projects.coin-or.org/Clp
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At line, 6, we declare an auxiliary variable, pop. Though there is no 
such distinction in the modeling language, this is not a decision variable 
but rather a helpful device to model the problem. We use this auxiliary 
on line 10 where we add an equation that does not constrain the model 
in any way. It simply defines the auxiliary variable pop to be the sum of 
our decision variables. This allows us to express the objective easily and, 
possibly, to help display the solution.

The objective function is on line 11, a translation of (1.4). The function 
choices are, unsurprisingly, either s.Maximize or s.Minimize with, for 
parameter, a linear expression in terms of the variables declared previously.

We used

s.Maximize(pop)

We could have written

s.Maximize(x[0]+x[1]+x[2])

We then call on the solver at line 12 to do its job. This is where all the 
computational work gets done, work that I will not describe. The interested 
reader can search for �simplex method� and �interior-point methods� to 
learn about the fascinating theory11 behind the solution methods of linear 
optimization models. To understand the simplex method, one needs only 
high school algebra. To understand interior-point methods requires a 
somewhat more mathematical background.

For some models, solvers may complete their work in a fraction of a 
second; for others, it may take hours. Moreover, not all solvers will have the 
same runtime behavior. Model A may run faster than model B on solver 
X while it may be exactly the reverse on solver Y. One more advantage of 
using the OR-Tools library is that we can try out another solver by changing 
one line.

11 See, for example, Alexander Schrijver, Theory of Linear and Integer Programming 
(Hoboken, NJ: Wiley, 1998).

CHAPTER 1  INTRODUCTION



16

We should, if this code were meant for production and the problem 
nontrivial, check the return value to ensure that the solver found an 
optimal solution. It may have aborted because of a model error, or because 
it ran out of time or memory, or for some other reason. But for this simple 
first example, we will forgo good engineering practice in the name of 
simplicity of exposition.

We return, on line 13, both the optimal objective function value held 
in variable pop and the optimal values of the decision variables (not all the 
associated object attributes carried by those variables).

On more complex models, we may post-process the decision variables 
to return something simpler and more meaningful to the caller. You will 
see a good example of this when we solve the shortest path problem in 
Chapter 4, Section 4.4. The general approach I encourage is to create 
models that can be used without any knowledge of the internals of  OR- Tools. 
The modeler is responsible for the creation of the model, but once the 
model is created and validated, it should leave the hands of its creator for 
those of the domain expert who originally formulated the problem.

When the diligent reader executes Listing 1-2, she will observe a result 
similar to Table�1-3.

Listing 1-2. How to Execute the Coexistence Model

1  from __future__ import print_function
2  from coexistence import solve_coexistence
3  pop,x=solve_coexistence()
4  T=[['Specie', 'Count']]
5  for i in range(3):
6    T.append([['Toads','Salamanders','Caecilians'][i], x[i]])
7  T.append(['Total', pop])
8  for e in T:
9    print (e[0],e[1])
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Notice that you can look at the solution of Table�1-3 and see that it does 
indeed satisfy the constraints. By substituting the solution into (1.1)-(1.3), 
we obtain

2(100.0) + 300.0 + 1000.0 = 1500 � 1500,

100.0 + 3(300.0) + 2(1000.0) = 3000 � 3000,

100.0 + 2(300.0) + 3(1000.0) = 3700 < 5000.

Notice that the first two inequalities are satisfied with equality. In the 
jargon of optimization, such inequalities are tight or active. The last one is 
said to be slack or inactive. In a certain sense, we could delete it from the 
problem and nothing would change. (The reader can try this and other 
modifications. The code is available in the additional material under the 
name coexistence.py).

In summary, the steps to construct and run a model are the following 
and are shown in Figure�1-1:

� Formulate the question precisely.

� De�ne the decision variables by identifying what is 
required to answer the question.

� Possibly de�ne auxiliary variables to help simplify the 
statements of constraints or of the objective function. �ey can 
also help in the analysis and the presentation of the solution.

Table 1-3. Solution to the Coexistence Problem

Specie Count

Toads 100.0

Salamanders 300.0

Caecilians 1000.0

Total 1400.0
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� Translate each constraint into an algebraic equality or 
inequality involving directly the decision variables or 
indirectly through the auxiliary variables.

� Construct the objective function as some quantity that 
should be minimized or maximized.

� Run the model using an appropriate solver.

� Display the solution in an appropriate manner.

� Validate the results. Does the solution correctly satisfy 
the constraints? Is the solution meaningful and 
implementable? If so, declare that you are done; if not, 
consider the necessary modi�cations to the model.

The rest of this book will construct models of increasing complexity, 
illustrating and expanding the points above.

Decision
variables

More
variables?

Yes

No

No

Objective Run

Valid? Yes Analysis

Constraints

Auxiliary + +

Figure 1-1. The steps to construct and run a model
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Linear Continuous 
Models
At the dawn of optimization (the nineteen fifties), the state-of-the-art was 

defined by linear optimization models and the simplex method, the only 

reasonably efficient algorithm known at the time to solve such models. 

When I started studying this subject, one repeatedly heard from multiple 

sources that over 70% of the CPU cycles in the world were devoted to 

running various simplex codes. Surely an exaggeration, but it is indicative 

of the power of linear models. The world is not linear, but sometimes a 

linear approximation is good enough.

More precisely, I discuss here linear continuous models (though 

the usage is to call these models LPs for linear programs, implying the 

continuity properties). Linear continuous models are the simplest to 

write down and the simplest to solve. They have been the workhorse of 

optimizers since George Dantzig invented the simplex method to solve 

them. What characterizes them are three elements:

• All variables are continuous.

• All constraints are linear.

• The objective function is linear.

In detail, the decision variables (say x0, … , xn) can take on integral 

and fractional values. This is appropriate when the solution is measuring 
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amounts (for example, pounds of flour or tons of concrete). It is not 
appropriate when the solution is counting objects (as in people or 
politicians), unless one is looking only for an approximation.

The objective function is (or can be) parameterized by constant array c 
and expressed as

c x c x c xn n1 1 2 2� ���

This limitation precludes objective functions with terms of the form

x x x e x x or xx
1
2

4
3

1 2
3, ,sin , , ,� � �

among infinitely many others, although you will see later how to handle 
some of these non-linearities by model transformation.

Finally, the constraints are parameterized by matrix aij, array b, and 
can be stated as a set of relations, for i � {1, . . . , m},

a x a x a x bi i i i in in i1 1 2 2� ��� � , or � bi , or � bi

or some equivalent algebraic form.
In this chapter, we consider problems where the natural formulation is 

such a linear continuous model.

2.1  Mixing
The canonical linear programming example is the diet problem, one of 
the first optimization problems to be studied in the thirties and forties 
(twentieth century, not twenty-first1). The likely apocryphal origin of the 
problem is the US military�s desire to meet the nutritional requirements 
of the field GIs while minimizing the cost of the food. One of the early 
researchers to study this problem was George Stigler. He made an 

1 I add this temporal precision on the odd chance that this text is still being read 
long after my body has maximized its entropy.
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educated guess of the optimal solution to the linear program using a 
heuristic method. In the fall of 1947, Jack Laderman of the Mathematical 
Tables Project of the National Bureau of Standards (NBS, today NIST) 
undertook solving Stigler�s model with the new simplex method. The 
linear model consisted of nine equations in 77 unknowns, a huge problem 
for the time. Some models in this book are orders of magnitude larger and 
will be solved in a minuscule fraction of the time it took the NBS people to 
solve the diet problem in 1947. The increase in efficiency is partly due to 
the hardware, but mostly due to the software.

A generic version of the problem is

Given a list of food with some nutritional content, 
each with a cost, find the combination of food that 
will minimize cost and yet provide all the necessary 
nutrients.

Here is one simple version of this problem. The foods are F0, F1, F2, F3, 
etc. (Imagine them to be pizza, ramen noodles, cupcakes, chips, etc. or, if 
you are of a more health-conscious bent, tofu, green peas, quinoa, beets, 
etc.) The nutrients will be represented by N0, N1, N2, N3, etc. (Imagine 
them to be calories, protein, calcium, vitamin A, etc.). Each has a cost per 
serving. In addition, to avoid eating one food all week long, let�s restrict the 
number of servings per week.

A randomly generated instance is given in Table�2-1.2 Each row 
represents a food, with the nutritional content per serving followed by the 
acceptable range of servings of the food and its cost per serving. Ignore 
the last row and column for now. We will return to them after the model 
is constructed and solved. The two rows before last represent the allowed 
range of each nutrient.

2 To encourage the reader to experiment, every model in this book is available in 
the additional material (https://github.com/sgkruk/Apress-AI), along with a 
random instance generator.
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2.1.1  Constructing a�Model
What would a solution be but a list of servings of each food? Therefore, 
the decision variables must be one per food, representing the number 
of servings. Let�s name these variables f0, � , fn. We will assume that it is 
acceptable to have fractional answers (i.e. one half serving is acceptable).

The objective is to minimize cost. We have one cost per food (c0, � , cn).  
These are not variables, they are data. Therefore, what we want is to 
minimize the sum of all the products, ci × fi. This leads to the objective 
function

min
i

i ic f�

Let�s tackle the constraints. We have two sets: one indicating the range 
of acceptable servings of each food (assume that the minimum of food i 
is li and maximum is ui) and one indicating the required nutrients range 
(minimum of nutrient j is aj and maximum is bj). The simpler constraint 

Table 2-1. Example of Data and Solution for the Diet Problem

N0 N1 N2 N3 Min Max Cost Solution

F0 606 563 665 23 7 17 9.06 17.0

F1 68 821 83 72 6 27 8.42 7.47

F2 28 70 916 56 1 36 9.47 6.11

F3 121 429 143 38 14 26 6.97 14.0

F4 60 179 818 46 9 35 4.77 35.0

Min 5764 28406 48157 1642

Max 15446 76946 82057 6280

Sol 14775 28406 48157 3413 539.37
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is related to the food. Since our decision variables indicate the number of 
servings of each food, we need only to box each serving count,

 l f ui i i� �  (2.1)

The constraint on nutrients is a bit more involved. Consider nutrient 
j. How much of it will be included in the diet? Each food i may have some 
of it, as indicated in Table�2-1. Let�s call this amount Nji (corresponding to 
the entry at the row of food i and the column of nutrient j). To get the total 
of this nutrient, we therefore need to sum over all foods the product of the 
food serving and the nutrient content. For each nutrient j,

a N f bj
i

ji i j� ��

We are done with the theory. Let�s translate this into an executable 
model general enough to solve all problems of this type (Listing 2-1). We 
will assume that the data is given in a two-dimensional array called N. It 
has the structure of Table�2-1 without the last column and row. Each row 
represents a food, except that the last two rows represent the minimum 
and maximum requirement of each nutrient, represented by the columns, 
with the last three representing the minimum, maximum, and the cost of 
each food serving.

Listing 2-1. Model for Minimal Cost Diet (diet problem.py)

 1  def solve_diet(N):
 2    s = newSolver('Diet')
 3    nbF,nbN = len(N)-2, len(N[0])-3
 4    FMin,FMax,FCost,NMin,NMax = nbN,nbN+1,nbN+2,nbF,nbF+1
 5     f = [s.NumVar(N[i][FMin], N[i][FMax],'') for i in 

range(nbF)]

CHAPTER 2  LINEAR CONTINUOUS MODELS



24

 6    for j in range(nbN):
 7       s.Add(N[NMin][j]<=s.Sum([f[i]*N[i][j] for i in 

range(nbF)]))
 8       s.Add(s.Sum([f[i]*N[i][j] for i in 

range(nbF)])<=N[NMax][j])
 9    s.Minimize(s.Sum([f[i]*N[i][FCost] for i in range(nbF)]))
10    rc = s.Solve()
11    return rc,ObjVal(s),SolVal(f)

The model uses the newSolver function to simplify the expression 
of the code3 as the reader can see at Listing 2-2. These, and other 
simplifications, can be found in my_or_tools.py.

Listing 2-2. Utility Function to Create an Appropriate Solver 
Instance

from ortools.linear_solver import pywraplp
def newSolver(name,integer=False):
  return pywraplp.Solver(name,\
                    pywraplp.Solver.
                        CBC_MIXED_INTEGER_PROGRAMMING \
                    if integer else \
                    pywraplp.Solver.GLOP_LINEAR_PROGRAMMING)

To help the expression of the model, lines 3-4 give meaningful names 
to the row and column indices that we will use. In line 5, we define the 
decision variables, one per food, each taking values in the range [li, ui ] as 
in equation (2-1). It would be correct to give a range of [0, +�) and then 
add constraints to enforce the bounds. The solver would still find the same 
solution, but it is simpler and good practice to limit as much as possible 

3 Mostly to make the code fit a page, but also to hide some of the verbosity of the 
OR-Tools library. The authors chose, rightly in my opinion, meaningful but rather 
long names for their functions.
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the range of decision variables. In complex models, it often dramatically 
improves the solution time.

The two-line loop starting on line 6 establishes the range on each 
nutrient as in (2.1.1). Lines 9 and following create the objective function, 
solve the problem, and return three numbers: the status of the solver  
(it should be zero), the optimal value, and the optimal solution. The dual 
role of the functions SolVal and ObjVal (seen in Listing 2-3) is to simplify 
the results returned to the caller and the code to read.

Listing 2-3. Utility Functions to Extract Values from the OR- Tools 
Objects

def SolVal(x):
  if type(x) is not list:
    return 0 if x is None \
      else x if isinstance(x,(int,float)) \
          else x.SolutionValue() if x.Integer() is False \
              else int(x.SolutionValue())
  elif type(x) is list:
    return [SolVal(e) for e in x]

def ObjVal(x):
  return x.Objective().Value()

The results from executing this model are shown in the last row and 
column of Table�2-1. The column indicates the number of servings of each 
food and the row indicates the amount of each nutrient that will be in the 
diet. The reader should notice that many of the food items and nutrient 
counts are at their minimum required values. This is expected of such a 
model since we are trying to minimize a linear cost function; the optimal 
solution should push towards the boundary of the constraints as much as 
possible.
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The reader can experiment with this model. It is included in the 
additional material as diet problem.py, along with a generator of random 
diet problems and a routine to display the solution in a table format similar 
to Table�2-1.

2.1.2  Variations
There are a number of simple variations of this problem.

� Instead of minimizing cost, we could be given a pro�t 
to maximize.

We could also not have either the minima or the 
maxima in either the foods or nutrients.

� It becomes more complex, and consequently 
interesting, when we have, in addition, requirements 
of the form �If food 2 is used, then we must have at 
least as much food 3�in the diet� or �Nutrient 3 must be 
included in at least twice the amount as nutrient 4.�

Let�s consider some of these in detail. First, let�s 
try �If food 2 is used, then food 3 must also be 
included in at least as many servings.� The following 
inequality ensures the required result:

f3 � f2

Notice that food 3 could still be included when food 
2 is not, but that does not violated the requirement. 
And if food 2 is included, then we will have at least 
as many servings of food 3. It should be clear that 
the requirement could have been stated in reverse 
as �No more food 2 than food 3.� The constraint is 
the same.
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� A requirement on the nutrients, �Nutrient 3 must be 
included in at least twice the amount as nutrient 4,� has 
a similar �avor but note that the amount of any given 
nutrient is spread among all food items. It may be fruitful 
to introduce auxiliary variables that will tally the nutrients, 
say nj. We then add to the model one equality per nutrient,

n N fj
i

ij i��

Note that these equations do not constrain the problem; 
their insertion is simply a helpful device to implement 
the requirement. We can now easily relate the nutrient 
content according to the new requirement as

n n3 42�

This we could have stated, had we not defined the 
variables ni, as

i
i i

i
i iN f N f� ��3 42

Defining the auxiliary variables nj seems clearer. 
Moreover, displaying the total of each nutrient at the 
end might help with the analysis or the presentation 
of the solution.

� A similar requirement may occur to the reader, namely 
�If food (nutrient) 3 is used then food (nutrient)  
4 must not be (and vice versa).� This may look like a 
simple variation to the above but it is decidedly not 
simple. If fact, it forces the modeler to use a different 
modeling technique. You will see how to implement 
such requirements in later chapters (see, for instance, 
Section 7.2�in Chapter 7). There are two valid 
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approaches to modeling such requirements properly: 
integer programming and constraint programming. 
The reader is encouraged to spend some time trying 
to model such constraints to develop intuition into the 
difficulties. The key, and the reason that this is a beast of 
an entirely different ilk, is that the change is not uniquely 
quantitative (as much as, or twice the amount of) but is 
additionally qualitative: we transition between having an 
element and not having that element.

2.1.3  Structure of�the�Problems Under 
Consideration

Problems with the structure of the diet problem are generally known 
as product mix problems. They can be presented in various ways but if 
they can be fitted into the abstract Table�2-2 they can all be handled in 
the manner described in this section. Of course, it may be that some of 
the columns or rows are missing (no cost, or no price, or no maximum 
demand, etc.) That only simplifies the model.

Table 2-2. Abstract Structure of Product Mix Problems

Components Availabilities Cost

C1 … Cn Min Max

P1 99 … 99 99 99 99

Products … … … … … … …

Pm 99 … 99 99 99 99

Demands Min 99 … 99 99 99 99

Max 99 … 99 99 99 99

Price 99 … 99 99 99 99
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The decision variable indicates the amount of product needed and 
the constraints indicate availabilities of the raw material or, equivalently, 
capacities of the processing units as well as demand bounds. The 
objectives are often profits to maximize or costs to minimize or, simply, 
quantity to produce.

Here are a few instances to help the reader recognize the underlying 
structure. The reader is encouraged to marshal the problems into the 
format of Table�2-2 by inventing numbers.

� A factory is producing cement of various types. Each 
product is composed of the same elements, but in 
various quantities, and we have on hand a limited 
supply of each of these elements, each with a cost. To 
each final product is associated a profit. What is the 
best mix of product to produce to maximize profit?

� A Florida-based fruit company produces orange drinks, 
juices, and concentrates for various markets. �e raw 
materials for all products are oranges, sugar, water, and 
time in various quantities, some positive and some 
negative (producing orange drinks requires water; 
producing concentrates generates water). Given certain 
availabilities, how much can the company produce to 
maximize pro�t?

� A toy manufacturer produces a number of di�erent 
toys. Each is composed of a number of basic materials 
and, in addition, requires special processing 
(assembling, painting, boxing). �e processing is done 
on specialized machines and has a duration. Since the 
manufacturer has limited supplies of materials and 
machines, which can only operate a certain number of 
hours per day, how many toys can be produced?
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� A fertilizer company named Bush, Rove and Company 
(BR & Co.) has two products: a high phosphate blend 
and a low phosphate blend. �ey are produced by 
mixing di�erent raw materials in various quantities.

The company can procure, from its own 
subsidiaries, at most some amount of each raw 
material per day at a fixed internal cost. This cost 
includes labor, power, depreciation, delivery, bribes, 
etc. In addition, the mixing process incurs a certain 
cost per ton for each product.

Both products are sold to a wholesaler, Fox Inc., at a 
fixed price. Moreover, the wholesaler has agreed to 
buy all the production BR & Co. can produce. How 
much of each fertilizer should it produce?

� Queequeg sells half-kilo bags of co�ee in three 
blends, House, Special, and Gourmet, which sell at 
di�erent prices per bag. Each blend is made up of 
Colombian, Cuban, and Kenyan co�ee beans in various 
proportions. Queequeg has on hand some Colombian, 
Cuban, and Kenyan. How much of each blend should it 
bag to maximize revenues?

2.2  Blending
A second type of problem that readily admits a linear model is the blending 
problem. The classical example involves blending so-called raw or crude 
gasolines to achieve various refined products with specified octane value. 
For instance, let�s assume that we are given crude gasolines R0, R1, ... , 
Rn, each with a certain octane rating, maximum availabilities in barrels, and 
a cost in dollars per barrels, as shown in Table�2-3.
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We are also given demands for multiple types of refined gasolines, 
(think Bronze, Silver, and Gold) with their own octane ratings. The 
demands are stated in minimum and maximum number of barrels along 
with their selling prices, as shown in Table�2-4.

We create the three types by mixing the appropriate raw gasolines 
together, assuming that the octane rating of a mix is a linear function of 
the volumes mixed. This is a crucial assumption: if we mix half and half of 
octane ratings 80 and 90, we get an octane rating of 85 because

Table 2-3. Example of Raw Gasolines for the Blending Problem

Gas Octane Availability Cost

R0 99 782 55.34

R1 94 894 54.12

R2 84 631 53.68

R3 92 648 57.03

R4 87 956 54.81

R5 97 647 56.25

R6 81 689 57.55

R7 96 609 58.21

Table 2-4. Example of Refined Gasolines for the Blending Problem

Gas Octane Min. Demand Max. Demand Price

F0 88 415 11707 61.97

F1 94 199 7761 62.04

F2 90 479 12596 61.99
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1
2

80 1
2

90 40 45 85� � � �

If we mix 40% of octane 80 and 60% of octane 90, we get

40
100

80 60
100

90 32 54 86� � � �

This assumption is the key to the blending model.
Notice that there might be a number of ways to mix the raw gasolines 

together to get the required ratings. Our task is to construct a model that 
will tell us exactly how to mix the raw products to satisfy the demands and 
maximize the profits (understood as the difference between the total selling 
price of the finished products and the total cost of the raw gasolines).

2.2.1  Constructing a�Model
What is the question to answer? Let�s ask this question a number of times 
with increasing precision. A first stab is �How much of each type of refined 
gas to produce?� This is correct but is incomplete, since we need to know 
the composition of each refined gas, how much of each crude goes into 
each mix. A second stab is �How to mix the crude gas to produce the 
refined gas?� This is the right question, but is not yet in the proper form for 
an algebraic model. Imagine you are the manager of the refinery. On one 
side you have all these tanks filled with crude gas, and on the other side all 
empty tanks that will contain the refined gas. In between: miles of pipes 
with valves that you control. What you really want to know is which valves 
to open and by how much to have exactly the right mix. So the proper 
question is �How much of each crude gas goes into each refined gas?�

The key difference between the mixing problems of the preceding 
section and this blending problem is that previously we were told the exact 
composition of the products in terms of the material (in each food, the 
amount of each nutrient, for instance) while in the problem considered 
here, the composition of each product is one of the answers sought.
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Since we need to know how much of raw i goes into refined j, we are 
led to a two-dimensional decision variable, say Gij where i is the index of 
the crude gas and j is the index of the refined gas. For example, G51 = 250 
will mean that there are 250 barrels of crude 5 going into the mix of refined 1. 
We understand here that the units will be barrels; it seems natural because 
the prices are per barrels. We probably should also introduce auxiliary 
variables to help us model and present the solution: the total of each 
crude gas (the sum of a row of G), say Ri, and the total of each refined gas 
(the sum of a column of G), say Fj. So we will have these non- constraining 
equations in the model:

 
R G ii

j
ij� ��

 
(2.2)

and

 
F G jj

i
ij� ��  

(2.3)

Note that, by construction, �i Ri = �j Fj. That is, the total volume of 
crude used is equal to the total volume of refined products. We need not 
enforce this, though we need it. We can think of this as a �continuity� 
equation: it reflects that the refining process does not lose product along 
the way. This idea of continuity is a useful modeling idea. It will reappear 
in various guises throughout the models we develop.

Armed with these variables, we can now easily model the objective 
function. We are asked to maximize profits, hence the difference between 
total sales (given price pj for refined gas j) and costs (given cost ci for crude 
gas i),

max
j

j j
i

i iF p R c� ��
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The constraints come in multiple forms. The easy ones are, as in the 
mixing problems, constraints on the availability of each raw material. With 
our auxiliary variables, these are simple to express and can be included in 
the range of the defined variables or in a constraint

0 � � �R u ii i

The constraints on the demand of refined gas (minimum and/or 
maximum) are just as simple:

a F b ij j j� � �

Notice how our auxiliary variables help write down constraints. Having 
only our decision variables, the constraints would have to be written with 
respect to column and row sums.

The only real complication of this problem refers to the octane rating. 
The key here is the assumption of linearity. To see how to model the octane 
requirement, let�s imagine a simple case: say we mix 800 barrels of crude 1 
with octane rating of 98 with 200 barrels of crude 2 with octane rating of 90. 
What is the resulting octane rating? Since we have a total of 1,000 barrels of 
refined,

800 98 200 90
1000

96 4� � � � .

So, in general, we need the fraction of each crude that goes into a mix 
times its octane rating. Assuming Oi as the octane rating of crude i and oj 
the octane rating of refined j, this leads us to

 i
i ij j jO G F o j� � �

 
(2.4)

We now have an algebraic linear model. Let�s translate it into 
executable code, as in Listing 2-4. We will assume that the data are entered 
in two-dimensional arrays, exactly as in Tables�2-3 and 2-4, except for the 
first columns, added for reference only.
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Listing 2-4. Gasoline Blending Model (gas blend.py)

 1  def solve_gas(C, D):
 2    s = newSolver('Gas blending problem')
 3    nR,nF = len(C),len(D)
 4    Roc,Rmax,Rcost = 0,1,2
 5    Foc,Fmin,Fmax,Fprice = 0,1,2,3
 6    G = [[s.NumVar(0.0,10000,'')
 7        for j in range(nF)] for i in range(nR)]
 8    R = [s.NumVar(0,C[i][Rmax],'') for i in range(nR)]
 9     F = [s.NumVar(D[j][Fmin],D[j][Fmax],'') for j in 

range(nF)]
10    for i in range(nR):
11      s.Add(R[i] == sum(G[i][j] for j in range(nF)))
12    for j in range(nF):
13      s.Add(F[j] == sum(G[i][j] for i in range(nR)))
14    for j in range(nF):
15      s.Add(F[j]*D[j][Foc] ==
16          s.Sum([G[i][j]*C[i][Roc] for i in range(nR)]))
17  Cost = s.Sum(R[i]*C[i][Rcost] for i in range(nR))
18  Price = s.Sum(F[j]*D[j][Fprice] for j in range(nF))
19  s.Maximize(Price - Cost)
20  rc = s.Solve()
21  return rc,ObjVal(s),SolVal(G)

At lines 3-5 we declare some constants to access the appropriate rows 
and columns of the data. The constraints on the range of each variable 
are entered not as constraints, but rather as a range on the corresponding 
variables. The equations (2.2)-(2.3) are seen on the four lines starting at 10.

The blending equations are created on the loop of line 14. Note that 
since the goal is to achieve a certain octane level, we might replace the 
equality with an inequality, indicating that the refined product has at 
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least the required octane level. This relaxes the problem a little and allows 
optimization over a larger space. This might be required if, for example, we 
did not have sufficient low octane crude gasolines available.

The objective function (three lines starting at 17) maximizes the 
difference between the selling price of the refined product and the cost of 
the crude gas used.

Executing this model with the data above produces Table�2-5 where 
the bottom right number is the profit: the difference between the sum of 
the row Price and the column Cost.

2.2.2  Variations
While blending problems can be presented in various ways, they can 
all be handled in the manner above. The decision variables should be 
two-dimensional: the sum in one dimension and the other indicating 

Table 2-5. Complete Solution to the Blending Problem

F0 F1 F2 Barrels Cost

R0 542.5 239.5 782.0 43275.88

R1 894.0 894.0 48383.28

R2 631.0 631.0 33872.08

R3 648.0 648.0 36955.44

R4 704.41 251.59 956.0 52398.36

R5 647.0 647.0 36393.75

R6 449.5 239.5 689.0 39651.95

R7 50.93 558.07 609.0 35449.89

Barrels 2378.33 2998.67 479.0

Price 147385.32 186037.28 29693.21 36735.18
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total input material used and total output material produced. Finally, in 
addition to the capacity and demand constraints, there should be at least 
one blending constraint satisfying a linearity assumption.

One interesting variation is that we might be asked to achieve more 
than one characteristic. For instance, in addition to an octane level, we 
might also be given a certain concentration of sulfur in each of the crude 
and asked to keep the refined gas below a certain sulfur threshold. In this 
case, the octane equation (2.4) will almost certainly need to be replaced 
by an inequality, ensuring a minimum octane level, and another similar 
inequality will ensure a maximum sulfur lever. Assuming Si as the sulfur 
level of crude i and sj as the sulfur level of refined j, we get

i
i ij j jO G F o j� � �

and

i
i ij j jS G F s j� � �

The reason for the inequalities is that it is unlikely for the problem 
to have any feasible solution with exactly the specified octane and sulfur 
levels. The reader might try to modify Listing 2-4 to verify this.

To help the reader recognize the underlying structure of blending 
problems, the following is an instance we will revisit soon, with additional 
complexities.

A very popular ingredient in junk food is manufactured by refining and 
blending various oils together. The oils come in five flavors (O1 to O5) and 
measures of �hardness� as given in Table�2-6, where cost is in dollars per 
tons and the hardness is measured in the appropriate unit.
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The oils O1 and O2 can be refined at production facility A, which has 
a capacity of 200 tons per month, while O3, O4, and O5 can be refined at 
production facility B, which has a capacity of 250 tons per month. There is 
no loss of weight during the refining process and you can ignore the cost of 
the process.

The final product is obtained by mixing various amounts of the five 
oils. It has a hardness restriction. Measured in the same unit as given in the 
table, it must lie between 3 and 6 units. It is assumed that hardness blends 
linearly. That is, if we mix 10 tons of oil O1 with 20 tons of oil O2, the blend 
will have a hardness rating of

10 8 8 20 6 1 10 20� � �� � �� �. . /

The final product sells for $150 per ton. How should the oils be refined 
and blended to maximize profit?

2.3  Project Management
Project management, as is usually understood in the context of 
optimization, refers to a set T of tasks, each with two properties:

� A duration

� A subset of T (possibly empty) of preceding tasks

The classic example is house construction: tasks include finding 
location, drawing plans, getting permits, breaking ground, laying 

Table 2-6. Caption Needed

O1 O2 O3 O4 O5

Cost 110 120 130 110 115

Hardness 8.8 6.1 2.0 4.2 5.0
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foundations, building walls, installing plumbing, bribing inspectors, etc. 
Crucially, some tasks must be done before others: you cannot build the 
roof until you raise the walls. The main question under consideration: 
�When should each task start to minimize the total project completion 
time?� That is, when do we start each task to have the house entirely built 
in the shortest time possible? Also, if one task falls behind schedule, what 
is the impact on all the ulterior tasks and how do we reschedule them?

Table�2-7 is an instance of such a project and I will use to illustrate a 
solution technique.

Table 2-7. Example of Project Management Tasks

Task Duration Preceding Tasks

0 3 { }

1 6 { 0 }

2 3 { }

3 2 { 2 }

4 2 { 1 2 3 }

5 7 { }

6 7 { 0 1 }

7 5 { 6 }

8 2 { 1 3 7 }

9 7 { 1 7 }

10 4 { 7 }

11 5 { 0 }
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2.3.1  Constructing a�Model
What we need to decide in this instance is how early to start each task, 
respecting precedence, to minimize the total completion time. This 
suggests, as a decision variable, the starting time of each task in the same 
units as the given durations. Let�s assume a set T of tasks (corresponding to 
the first column of Table�2-7) to declare our decision variables as

0 � � �t i Ti

To ensure that precedence requirements are met, let�s assume that we 
have, in addition to duration Di (corresponding to the second column of 
Table�2-7), subsets Ti � T of preceding tasks for each task i (corresponding 
to the third column of Table�2-7). Then we need to lower bound the 
starting times by

t D t j T i Tj j i i� � � � � �;

The objective is to minimize the project completion time. This time 
would be the starting time of the last task plus its duration if the tasks were 
all done sequentially. But they are likely not; we might be doing as many 
tasks in parallel as possible. Then how do we find the completion time if 
we do not know the last task, or if there is no single �last� task?

Let�s introduce another variable, t. We will constrain this t to be larger 
than, for each task, its starting time plus its duration. It will therefore be 
larger than the completion time. And if we add the objective min t to the 
set of constraints

t D t i Ti i� � � �

then t will, at optimality, be the completion time, a condition that will hold 
no matter how many tasks we do in parallel.

This is translated into an executable model in Listing 2-5 where we 
assume that the data is given to us in table D with the same structure as 
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Table�2-7: each row has a task identifier, a duration, and a set, possibly 
empty of preceding tasks.

Listing 2-5. Project Management Model (project management.py)

 1  def solve_model(D):
 2    s = newSolver('Project management')
 3    n = len(D)
 4    max = sum(D[i][1] for i in range(n))
 5    t = [s.NumVar(0,max,'t[%i]' % i) for i in range(n)]
 6    Total = s.NumVar(0,max,'Total')
 7    for i in range(n):
 8      s.Add(t[i]+D[i][1] <= Total)
 9      for j in D[i][2]:
10        s.Add(t[j]+D[j][1] <= t[i])
11  s.Minimize(Total)
12  rc = s.Solve()
13  return rc, SolVal(Total),SolVal(t)

Line 4 computes a valid upper bound on the times by adding all the 
durations. This is clearly an overestimate but is fine to use in the declaration 
of the decision variables at line 5. We declare the total completion time 
variable at line 6, which we use as an upper bound on all starting times plus 
duration at line 8. Finally, we add the precedence bounds at line 10. The 
results appear in Table�2-8 and, graphically, in Figure�2-1. Note that the last 
ending time is the total project completion time.

Table 2-8. One Optimal Solution to the Project Management Problem

Task 0 1 2 3 4 5 6 7 8 9 10 11

Start 0 3 0 3 9 0 9 16 26 21 24 23

End 3 9 3 5 11 7 16 21 28 28 28 28
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Note that all tasks could have started at any time after their required 
tasks have ended. And in fact, depending on the solver used, the solution 
might look rather different. You can see an example of an alternate 
solution in Table�2-9. This situation of multiple optimal solutions offers us, 
as modelers, an opportunity to improve the model. In this particular case, 
it might be useful to start all tasks as early as possible. This will not affect 
the total completion time but might make the project more practical and 
less prone to delays if some tasks� duration were poorly estimated.

Note finally that by looking at the graphical representation, it is 
clear that the subset of tasks 0,2,1,6,7,9 is critical in the sense that if any 
of them are delayed, the project completion time is delayed. On small 
projects, such a graphical representation is sufficient to identify the 
critical tasks. On larger projects, it might be profitable to identify these 
tasks programmatically. You will see one way to compute critical paths in 
Section 4.4.3�in Chapter 4 when I discuss longest paths.

Table 2-9. An Alternate Optimal Solution to the Project Management 
Problem

Task 0 1 2 3 4 5 6 7 8 9 10 11

Start 0 3 0 3 9 0 9 16 21 21 21 3

End 3 9 3 5 11 7 16 21 23 28 25 8
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2.3.2  Variations
I displayed two possible solutions to the problem in Figures 2-1 and 2-2. 
The alternate might be preferable for practical reason. How can we ensure 
that, among all solutions that minimize total completion time, we choose 
a solution that starts all tasks as early as possible? One way is to minimize 
the sum of starting times.

That is, replace the objective function by

s.Minimize(sum(t[i] for i in range(n)))

In cases like this, optimizers talk of multiple objectives. In general, 
these might be independent, or worse, contradictory. But in our project 

Figure 2-1. Graphical representation of example solution (nodes are 
times)

Figure 2-2. Graphical representation of alternate solution
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management situation, the objectives (minimizing completion time and 
starting all tasks as early as possible) are coherent. Note that the new 
optimal value of the model is neither interesting nor useful. We need to 
inspect the Total variable to give us the completion time.

2.3.2.1  Minimax Problems
The technique we used for the project management can be used more 
generally whenever we face a minimax problem. This is a problem where 
we want to minimize the maximum of some set of functions. For example, 
let�s assume we want to find the optimal x for

minmax ,x i T j
i j ja x

� �

This is handled by introducing a new variable, say t, along with the 
objective

min t

and the constraints

j
i j ja x t i T� � � �,

The corresponding maximin problem is handled the similarly. Note that 
the related maximax and minimin are considerably more difficult to handle. 
We will revisit those in a later section (see section 7.2.4�in Chapter 7.)

2.3.2.2  Absolute Value Problems
Essentially the same approach can also be used for some non-linear 
functions, for instance, those involving absolute values. Say we seek the 
optimal x for

min
x

j
j jc x�
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Since the absolute value function is defined as

z
z z
z z

�
�

� �
�
�
�

0
0

we can use the same min t objective along with constraints

j
j jc x t i T� � � �

and

� � � ��( )
j

j jc x t i T

I will illustrate some non-trivial applications of this technique in 
Section 3.2�in Chapter 3.

2.4  Multi-Stage Models
In life, decisions at one stage often influence decisions at a later stage. 
The same holds for more pedestrian situations. For instance, consider a 
warehouse: what it contains at the end of a month surely should influence 
what is ordered at the beginning of the following month.

In a certain sense there is little that is new in these multi-stage models 
except that we have to be careful to properly set up the continuity from one 
stage to the next.

To illustrate, let�s revisit the blending problem. To multiple targets, 
prices, and costs, we will add a planning horizon of many months. 
This will exemplify the stages. This problem will require all the tricks 
and techniques you have seen so far (and then some). It forms a 
comprehensive review of the current chapter.
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2.4.1  Problem Instance
Soap is manufactured by refining and blending various oils together. The 
oils come in various flavors (apricot, avocado, canola, coconut, etc.) and 
each oil contains multiple fatty acids (lauric, linoleic, oleic, etc.) in various 
proportions. For example, see Table�2-10.

According to the properties of the soap one is creating (cleaning 
power, lather production, dryness of the skin, etc.) one targets the final 
proportions of the fatty acids to be in certain ranges by blending the oils 
appropriately. For instance, we will target our soap to have acid contents in 
the ranges of Table�2-11.

Table 2-10. Example of Oils (Oi) with Their Acid Content (Aj)

A0 A1 A2 A3 A4 A5 A6

O0 36 20 33 6 4 1

O1 68 13 8 11

O2 6 66 16 5 7

O3 32 14 54

O4 49 3 39 7 2

O5 45 40 15

O6 28 72

O7 36 55 9

O8 12 48 34 4 2
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Here is an additional twist, relative to periods. We will be planning for a 
certain number of months. Each oil may be purchased for immediate delivery 
or bought on the futures market for delivery in a later month. The price of 
each oil in each of the months is given in Table�2-12 in dollars per ton.

It is possible to store up to 1,000 tons of oil for later use (any 
combination of oils) but there is a holding cost of $5 per ton per month. 
Finally, we must satisfy a demand of 5,000 tons of soap per month. This 
demand drives the model.

Table 2-11. Fatty Acid Content Targets

A0 A1 A2 A3 A4 A5 A6

Min 13.3 23.2 17.8 3.7 4.6 8.8 23.6

Max 14.6 25.7 19.7 4.1 5.0 9.7 26.1

Table 2-12. Cost of Oils in Dollars per Ton Over the Planning 
Horizon

Month 0 Month 1 Month 2 Month 3 Month 4

O0 118 128 182 182 192

O1 161 152 149 156 174

O2 129 191 118 198 147

O3 103 110 167 191 108

O4 102 133 179 119 140

O5 127 100 110 135 163

O6 171 166 191 159 164

O7 171 131 200 113 191

O8 147 123 135 156 116
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At the beginning of the planning horizon, we have some oils in 
inventory, as illustrated in Table�2-13. How should the oils be refined and 
blended every month to minimize cost?

2.4.2  Constructing a�Model
2.4.2.1  Decision variables
The question to answer is �How should the various oils be blended every 
month?� This means we need to identify how much of each oil goes into the 
final blend during each month. This is a good start but it is clearly not enough. 
For instance, we can blend from oil we buy and from oil we have in inventory.

So we need to distinguish these two quantities. Moreover, we may 
decide to buy for storage (because the prices are about to go up) so we also 
need to know how much we can store. This suggests at least three decision 
variables for each oil (O = {0, 1, 2, � , no } will be the set of oils), and for 
each month (M = {0, 1, 2, � , nm} is the set of months)

Table 2-13. Initial Inventory in Tons

Oil Held

O0 15

O1 52

O2 193

O3 152

O4 70

O5 141

O6 43

O7 25

O8 89
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xi,j � 0 �i � O, �j � M Buy

yi,j � 0 �i � O, �j � M Blend

zi,j � 0 �i � O, �j � M Hold

The interpretation is xi,j will be the number of tons of oil i bought 
during month j; yi,j will be the number of tons blended into our soap; and 
zi,j is the number of tons held at the beginning of the month. Note that 
we have a choice here to have the variable represent the amount at the 
beginning or at the end of the period. Either is acceptable but it must be 
clear in the model which one is chosen because it affects the constraints. 
A typical mistake in a multi-period model is to have some constraints 
assume that a variable represents a quantity at the start of the period 
while some other constraints assume the end. The model may run, but the 
solution will be nonsensical. Since we are given quantities in storage at the 
beginning of the planning period, having a variable represent the quantity 
held at beginning means that we can easily initialize it with the given data.

We probably will need to know how much soap we are producing 
each month. This is not, strictly speaking, essential to the problem as 
formulated, but it may make the presentation of the solution and maybe 
the formulation of some constraints much simpler. As usual, it helps to 
introduce auxiliary variables to clear up some statements. To tally the total 
production per month,

t j Mj � �

2.4.2.2  Constraints
Let�s tackle the continuity constraints. We need to specify for each oil and 
for each month (but the last) how the inventory fluctuates, so

 z x y z i O j M ni j i j i j i j m, , , , , \� � � � � � � � ��1  (2.5)
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In words, this is what is held at the beginning of the month plus what 
we buy minus what we blend forms the new inventory.

We have a minimum and a maximum storage capacity at each month 
of the total amount of oil, or

C z C j M
i

i jmin max� � � �� ,

Now comes the blending constraint, or rather constraints, since we 
need to target a number of fatty acids. To help the formulation, let�s extract 
the total production,

t y j Mj
i

i j� � �� ,

Let�s assume that for each acid k � A we have a target range [lk, uk ] 
and that each oil i � O, a percentage pi,k of the required acid (Table�2-10). 
Since the final product for each acid must fall in a certain range, we should 
have two constraints: one for the low end and one for the high end of the 
interval. That is,

 
i

i j i k k jy p l t k A j M� � � � � �, , ,  (2.6)

and

 
i

i j i k k jy p u t k A j M� � � � � �, , ,  (2.7)

These constraints could be written without the production variables tj 
but would be more cumbersome and difficult to read.

Finally, we need to satisfy demand. This is simple, assuming a demand 
of Dj at each month j,

t D j Mj j� � �
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2.4.2.3  Objective Function
We are told that the objective is to minimize costs, comprised of the 
varying oil costs at each month plus the fixed storage cost of the oils we 
keep in inventory. Therefore,

i j
i j i j

i j
i jx P z p�� ���, , ,

This type of objective (fixed plus variable cost) appears regularly in 
business-type problems. You will see this again when considering facility 
location to service customer demands. The decision to build incurs a fixed 
cost. The servicing of the various customers is a variable cost.

2.4.2.4  Executable Model
Let�s now translate this into executable code as shown in Listing 2-6. There 
is a fair amount of data to pass in. Let�s assume arrays Part as in Table�2- 10,  
Target as in Table�2-11, Cost as in Table�2-12, and Inventory as in Table�2-13 
in addition to three parameters: D in tons for the demand, SC in dollars per 
ton for the storage cost, and SL in tons for the minimum and maximum to 
hold in inventory.

From line 5 to line 11 we declare variables but only the first three are 
true decision variables. All the others are artificially introduced either 
to help us state the constraints (for 8 and 11) or to help us display some 
details of the resulting solutions. They will not affect the running time of 
the solver in any appreciable manner but will make our life easier.

At line 12 we set the Hold variable to contain what is known to be in the 
inventory at the start of the planning period.

The large loop starting at line 14 will set all the constraints since they 
have the identical structure for each month and we have declared our 
variables to be arrays indexed by the month.
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Line 15 sets the artificial variable Prod to be the sum of the blended 
oils. This is not really a constraint, but rather a simplifying trick. If we 
repeat some calculations in a model as here,

sum(Blnd[i][j] for i in range(nO)

we should consider introducing an artificial variable. Assuming a decent 
solver, it will cost nothing and is likely to help. One of the principles of 
programming (and modeling) is �Do not repeat yourself.�

We use this Prod variable immediately after, at line 16 to ensure that we 
satisfy the demand. If this demand is a scalar, we set it identically for each 
month, but it could be an array indexed by the month.

The code starting with the if on line 17 implements the continuity 
requirement we described in equation (2.5). We ensure that what we buy 
and what we have on hand at the beginning of the month equals what we 
blend and what we store for the next month. The conditional is to avoid 
setting a constraint on a month past the planning horizon.

Lines 20 and 21 ensure the bounds on the oils we keep in inventory.
The loop starting at line 22 first defines our auxiliary Acid variable to 

ease the formulation of the blending constraints stated on the following 
two lines, which correspond to equations (2.6) and (2.7). Acid, indexed by 
the ordinal of the fatty acid k and of the month j under consideration, is 
summed over all oils of the quantity blended with the oil�s percentage of 
acid k. This quantity, divided by the total blended, will be the percentage 
that must fall within the required range.

Finally, the four lines starting at 26 set the artificial variables that will 
hold the costs of purchasing and holding at each period and then sum 
them to construct the objective function which we will minimize.

Listing 2-6. Multi-Period Blending Model (blend multi.py)

 1  def solve_model(Part,Target,Cost,Inventory,D,SC,SL):
 2    s = newSolver('Multi-period soap blending problem')
 3    Oils= range(len(Part))
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 4    Periods, Acids = range(len(Cost[0])), range(len(Part[0]))
 5    Buy = [[s.NumVar(0,D,'') for _ in Periods] for _ in Oils]
 6    Blnd = [[s.NumVar(0,D,'') for _ in Periods] for _ in Oils]
 7    Hold = [[s.NumVar(0,D,'') for _ in Periods] for _ in Oils]
 8    Prod = [s.NumVar(0,D,'') for _ in Periods]
 9    CostP= [s.NumVar(0,D*1000,'') for _ in Periods]
10    CostS= [s.NumVar(0,D*1000,'') for _ in Periods]
11     Acid = [[s.NumVar(0,D*D,'') for _ in Periods] for _  

in Acids]
12    for i in Oils:
13      s.Add(Hold[i][0] == Inventory[i][0])
14    for j in Periods:
15      s.Add(Prod[j] == sum(Blnd[i][j] for i in Oils))
16      s.Add(Prod[j] >= D)
17      if j < Periods[-1]:
18        for i in Oils:
19           s.Add(Hold[i][j]+Buy[i][j]-Blnd[i][j] == Hold[i]

[j+1])
20      s.Add(sum(Hold[i][j] for i in Oils) >= SL[0])
21      s.Add(sum(Hold[i][j] for i in Oils) <= SL[1])
22    for k in Acids:
23       s.Add(Acid[k][j]==sum(Blnd[i][j]*Part[i][k] for i in 

Oils))
24      s.Add(Acid[k][j] >= Target[0][k] * Prod[j])
25      s.Add(Acid[k][j] <= Target[1][k] * Prod[j])
26     s.Add(CostP[j] == sum(Buy[i][j] * Cost[i][j] for i in Oils))
27    s.Add(CostS[j] == sum(Hold[i][j] * SC for i in Oils))
28  Cost_product = s.Sum(CostP[j] for j in Periods)
29  Cost_storage = s.Sum(CostS[j] for j in Periods)
30  s.Minimize(Cost_product+Cost_storage)
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31  rc = s.Solve()
32  B,L,H,A = SolVal(Buy),SolVal(Blnd),SolVal(Hold),SolVal(Acid)
33  CP,CS,P = SolVal(CostP),SolVal(CostS),SolVal(Prod)
34  return rc,ObjVal(s),B,L,H,P,A,CP,CS

Since this model is of a certain complexity, the caller should examine 
the return code of the solver. It needs to be zero for the solution to be 
optimal. The most frequent non-zero return status will be for infeasibility. 
This may occur for a number of reasons, the most likely of which is that 
there is no combination of oil that will achieve our target fatty acid content.

The results of a run with all the above data is displayed in Table�2-14. 
It displays everything we need to know. The first set of lines, to be sent 
to Purchasing, specify how much of each oil to buy per month. The next 
set of lines, to be sent to Manufacturing, describe the exact recipe of the 
blending to do each month. Notice that the soap is created from different 
oils in each month to achieve the minimal cost. The next set of lines, to 
be sent to the Bean Counters, describes the inventory, the product costs, 
and the storage costs at each month. And finally, we can send to Quality 
Control the last set of lines, indicating the actual percentages of fatty acids 
achieved by the blending recipe.

The main point of this model is to present the complexity of real 
models along with some tricks on managing this complexity at the model 
level. A second point is to highlight some of the advantages of modeling in 
Python instead of in specialized modeling languages.

2.4.3  Variations
There are an infinite number of variations of such a complex model.

� The demand could vary at each month, as shown in 
Table�2-14.
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Table 2-14. Multi-Period Blending Results

Buy qty Month 0 Month 1 Month 2 Month 3 Month 4

O0 1935.7 0.0 0.0 0.0 0.0

O1 480.7 0.0 274.6 0.0 0.0

O2 192.4 0.0 545.9 0.0 0.0

O3 2835.0 1553.3 0.0 0.0 0.0

O4 293.7 0.0 0.0 136.8 0.0

O5 0.0 966.7 1611.3 0.0 0.0

O6 482.6 1011.5 275.1 1517.9 0.0

O7 0.0 0.0 0.0 1247.9 0.0

O8 0.0 1468.5 2293.1 597.4 0.0

Blend qty Month 0 Month 1 Month 2 Month 3 Month 4

O0 1683.6 117.7 149.4 0.0 2034.4

O1 532.7 0.0 274.6 0.0 919.5

O2 113.3 272.1 269.3 276.6 105.6

O3 1551.3 1465.1 1524.0 0.0 382.6

O4 363.7 0.0 0.0 136.8 392.7

O5 141.0 966.7 1051.8 559.5 0.0

O6 525.6 684.9 601.7 1517.9 1165.2

O7 0.0 25.0 0.0 747.9 0.0

O8 89.0 1468.5 1129.2 1761.3 0.0

(continued)
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Hold qty Month 0 Month 1 Month 2 Month 3 Month 4

O0 15.0 267.2 149.4 0.0 0.0

O1 52.0 0.0 0.0 0.0 0.0

O2 193.0 272.1 0.0 276.6 0.0

O3 152.0 1435.7 1524.0 0.0 0.0

O4 70.0 0.0 0.0 0.0 0.0

O5 141.0 0.0 0.0 559.5 0.0

O6 43.0 0.0 326.6 0.0 0.0

O7 25.0 25.0 0.0 0.0 500.0

O8 89.0 0.0 0.0 1163.9 0.0

Prod qty 5000.0 5000.0 5000.0 5000.0 5000.0

P. Cost $735098.96 $616064.04 $644688.93 $491829.66 $0.00

S.�Cost $3900.00 $10000.00 $10000.00 $10000.00 $2500.00

Acid % Month 0 Month 1 Month 2 Month 3 Month 4

A0 13.6 13.3 13.3 14.6 14.6

A1 24.9 24.5 25.2 25.5 23.2

A2 17.8 18.5 17.8 17.8 19.7

A3 3.7 3.7 3.7 3.7 4.1

A4 5.0 5.0 5.0 5.0 5.0

A5 8.8 8.8 8.8 9.7 9.7

A6 26.1 26.1 26.1 23.6 23.6

Total 100.0 100.0 100.0 100.0 100.0

Table 2-14. (continued)
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� Instead of satisfying some demand, we may be asked 
maximize pro�t. In this case, we need to know the price 
of the �nal product, which of course may change at 
each month.

� �e inventory levels may be stated in terms of each oil 
instead of aggregate quantities.

� �ere may be uncertainty in the fatty acid content of 
certain oils.

2.5  Pattern Classification
Classification is currently one of the most successful applications of software 
to tasks that were, not so long ago, the privilege of the human intellect. 
For instance, software decides if an email is legitimate or spam, whether a 
biopsied cell is malignant or benign, and whether the company should offer 
you an interview or let your re·sume· rot in the great bit bucket in the sky.

Let�s look at one of the first effective techniques for the binary 
classification of data. The example is contrived because I want to draw 
pictures to guide the intuition, but the code we will write is applicable in a 
wide variety of cases.

Let�s imagine that we are trying to automate the classification of cells as 
malignant or benign based on two measures: the area and the perimeter. 
Those features are measured automatically from a picture of the cell under 
a microscope. The process starts with a collection of such cells, divided 
by an expert into the two groups. These groups form what is known as the 
training set for our software. After we have �trained� our software, we will 
feed it new data, that has not been seen by an expert, and it will decide in 
which group the cell falls. That is, it will classify the cell as malignant or 
benign. This process is real and used in laboratories all over the world. The 
major simplification I am making here is that many more than two features 
are used in practice.
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Let�s consider as an example the cell features plotted in Figure�2-3 
with perimeter on the x-axis and radius on the y-axis. We see that the 
two classes can be separated by a line. Our task is to discover that line. Of 
course, there are a number of valid lines but, as a first attempt, any line 
separating the two classes will do.

2.5.1  Constructing a�Model
Algebraically, a line is an equation of the form a1 x1 + a2 x2 = b for some 
fixed coefficient a1, a2, a0. Or, in dimension n, we call it a hyperplane and it 
has an equation of

i

n

i ia x a
�
� �

1
0

Figure 2-3. Cell data and separation hyperplane
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What does it mean for a particular point x to be on one side or the 
other of the line? It means that either a1 x1 + a2 x2 < a0 or a1 x1 + a2 x2 > a0. 
These strict inequalities can be scaled to increase the gap by any amount. 
We can therefore simplify our task to identifying a vector a such that, for 
every point x� in class A, we have

i
i ia x a� � � �0 1

and that, for every point x� in class B, we have

i
i ia x a� � � �0 1

Let�s introduce a positive variable for each of the data points, say yi
� for 

each point of class A and yi
� for each of class B.�Now the inequality  

�i ai xi � a0 + 1 can be enforced by requiring 

� � � �� �y a a x
i

i i0 1  and � �y 0

and minimizing y� to zero. The algebra is symmetric for the points of class B.� 
All in all, we are led to the following optimization problem:

min
i A

i
i B

iy y
�

�

�

�� ��

subject to � � � �� �y a a x
i

i i0 1 ,

�� � � �� �y a x a
i

i i 0 1 ,

and

� �� �y y, 0

One characteristic of this model is that if the optimal objective value 
is zero, we have a hyperplane correctly separating the training set into 
malignant cells and benign cells. But if the value is non-zero, it means that 
the set is not separable by a hyperplane and so more complex techniques 
are required.
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2.5.2  Executable Model
Let�s translate this into the executable model seen in Listing 2-7. It accepts 
two sets of data points with any number of features, classified by some 
expert into classes A and B.�After defining the potential deviation from 
the hyperplane of sets A and B on lines 4 and 5, we define the variable 
that will hold the hyperplane on line 6. Note that we need this hyperplane 
later on, to do the classification of the unknown points. Note also that the 
coefficients could be restricted to be in any interval containing zero. It is 
simple to scale all coefficients of a plane to have its algebraic expression 
reside on whatever interval we choose, as long as it includes zero.

The constraints at lines 8 and 10 set up the offset of each point to the 
hyperplane which the objective function will attempt to minimize to zero.

Listing 2-7. Identification of the Classifying Hyperplane (features.py)

 1  def solve_classification(A,B):
 2    n,ma,mb=len(A[0]),len(A),len(B)
 3    s = newSolver('Classification')
 4    ya = [s.NumVar(0,99,'') for _ in range(ma)]
 5    yb = [s.NumVar(0,99,'') for _ in range(mb)]
 6    a = [s.NumVar(-99,99,'') for _ in range(n+1)]
 7    for i in range(ma):
 8       s.Add(ya[i] >= a[n]+1-s.Sum(a[j]*A[i][j] for j in 

range(n)))
 9    for i in range(mb):
10       s.Add(yb[i] >= s.Sum(a[j]*B[i][j] for j in range(n))-

a[n]+1 )
11    Agap = s.Sum(ya[i] for i in range(ma))
12    Bgap = s.Sum(yb[i] for i in range(mb))
13    s.Minimize(Agap+Bgap)
14    rc = s.Solve()
15    return rc,ObjVal(s),SolVal(a)
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The reader might feel a little uncomfortable about this model and 
here is why, at least partly: This is a model where we do not care about the 
optimal value, but only whether it is zero or not. The decision variables 
(and we already discussed why this expression is such a misnomer) are not 
deciding anything. The set of y variables has no real interpretation other 
than it represents by how much a point violates a linear inequality. And 
finally, the only part of the solution we extract, the hyperplane, is not used 
yet. It will only be used later on, in a different program trying to classify a 
new point as belonging to class A or B.�We have moved, with this model, to 
a higher abstract plane than ever before.

2.5.2.1  Variations
There are at least three directions we can go from this model.

� The first is to add constraints to increase the quality 
of the returned hyperplane. For example, we could 
require that it not only separates the two sets, but that it 
is, in some sense, as far from one set as from the other. 
If the training set is well-chosen, this will ensure that 
we minimize erroneous classifications later on. This 
is known as maximizing the margin and we will tackle 
this problem in a later chapter.

� �e second direction to pursue is what to do when the 
optimal value is not zero; that is, when the two sets are 
not separable by a hyperplane. �ey may be separable 
by a nonlinear curve. �is question is complex and 
multiple approaches have been tried, but most rely on 
knowing something additional about the data. We will 
not consider it.

� The final improvement would be to consider 
classification into multiple classes. We will consider 
this in a later chapter.
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Hidden Linear 
Continuous Models
In this chapter we do violence to some problems to reveal their inner 

structure. The focus is on problems which, at first glance, may not seem 

to be of the continuous linear variety yet can be marshalled into that form 

with a handful of creative alterations. The key is to ensure a one-to-one 

correspondence between the original and the altered problems so that we 

can retrieve a solution to the original from a solution to the alteration.

The main reason for massaging problems in this way is that continuous 

linear solvers have become so fast that they can handle models with 

hundreds of thousands of variables and constraints. Therefore, if a 

problem can be modeled in that manner, there is little practical limit on 

the instance size that can be solved. As you will see later, this is not the 

case with more complex models. In fact, we can write models with a few 

dozen variables that no current solver can solve in a reasonable time.

The main obstacles encountered in this chapter are non-linearities 

of one kind or another, but with the advantageous restriction that the 

functions be considered convex. A convex function1 is one that sits “above” 

1 All research mathematicians agree on the labels “convex” and its opposite, 
“concave,” but textbook authors for high schools in the US, ignoring thousands of 
papers, journals, and research monographs, insist on “concave up” and “concave 
down.”
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any valid linear approximation to it. In one dimension, algebraically, f is 
convex at point x0 if

f x h f x f x h0 0 0�� � � � � � � ��

Geometrically, it looks like Figure�3-1, with a first-order approximation 
of f (x) = x2 at x0 = 4. Convexity will be the Trojan horse used to beat the 
non-linearity into submission.

Figure 3-1. Prototypical example of a convex function and a linear 
approximation
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3.1  Piecewise Linear
We consider here broken-up linear functions. In the traditional parlance, 
they are piecewise linear. As such, the linear programming solvers we 
have used up to now (GLPK, GLOP, CLP) cannot handle them directly, 
but a little coding on our part will morph them into a standard form that 
all solvers can handle. This is one of the good reasons to code models in 
Python instead of the specialized modeling languages.

As first example, to illustrate the technique without any side issue that 
might hide the essence, let�s consider a piecewise function defined as

 f x

C x x B
C B C x B B x B
C B C B B C x B

� � �

� �
� �� � � �
� �� �� ��

1 1

1 1 2 1 1 2

1 1 2 2 1 3 2

0 ,
,

�� � �
�

�

�
��

�
�
�

B x B2 3 ,
 (3.1)

We can think of this function as a shipping cost function with 
additional penalties for weights; that is, the more product we ship, the 
more expensive each unit is. Table�3-1 (and Figure 3-2) represent an 
instance of this simple function where the first two columns bracket the 
quantities (Bi, Bi+1 for which the third column is the unit cost, ci.

Table 3-1. Example of Piecewise Function

(From To] Unit Cost (Total cost Total cost]

0 148 24 0 3552

148 310 28 3552 8088

310 501 32 8088 14200

501 617 34 14200 18144

617 762 36 18144 23364

762 959 40 23364 31244
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We will illustrate the approach by minimizing this function subject to a 
simple bound on the quantity.

3.1.1  Constructing a�Model
What we need to decide in this problem is simply the quantity to produce. 
We can define a decision variable with bounds from 0 to the last quantity 
in the table as

x Bn�� �0,

Figure 3-2. Piecewise convex cost function
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But the quantity we decide on will affect the objective function, 
therefore we need to know in which bracket we end up, and where on 
that bracket. Here is the key trick: we introduce additional variables, one 
for each break-point in the function. Assuming that we have n brackets, 
conceptually we consider these variables as weights on the bracket 
boundaries, telling us where we are in the bracket. We want at most two 
consecutive variables to be non-zero, with their sum to be one. This will 
tell us where x lies and, consequently, what is the objective function value.

�i i n�� � � � �� �0 1 0, , ,

For example, if �2
1
4

�  and �3
3
4

�  we know that we are in the third bracket, 

one quarter of the way and that x = �2 B2 + �3 B3.

3.1.1.1  Constraints
We will enforce that the � sum be one, and, by the convex structure of the 
problem, at most two, adjacent � will be non-zero. This will tell us which 
bracket and where in the bracket. To do this we add the constraint

i
i� �� 1

We deduce the value of the decision variable by

 
x B

i
i i� ��

 (3.2)

Note that this x variable and its associated constraint play no role in 
the optimization model. For the solver, the � is the real decision variable 
and the x is simply a translation into the language of the original problem. 
This is the key.
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3.1.1.2  Objective
The objective function is linear within a bracket; therefore we sum over all 
brackets:

min
i

n

i
j

i

j j jB B C
� �

� �� � �� ��
1 1

1 1�

We must stress here that the transformation trick only works because 
of the structure of this objective function. It is convex. Had it been concave, 
the problem would not have been solvable by a linear programming solver. 
You will see in Chapter 7 (Section 7.2) how to use an integer programming 
solver to handle this more difficult case.

3.1.1.3  Executable Model
Let�s translate this into an executable model. First, assume that the 
objective function is described by an array D of tuples (x, f (x)). This allows 
us to consider any continuous piecewise linear function. Assume that we 
are also given a lower bound b for the quantity to produce. This problem is 
so simple that we know what the solution will be, namely, the lower bound 
b. See Listing 3-1. But this is meant to illustrate the technique used to solve 
a piecewise linear function using a linear solver. In the next section, we will 
use this technique on a more realistic problem.

Listing 3-1. Simplest Example of Piecewise Model (piecewise.py)

 1   def minimize_piecewise_linear_convex(Points,B):
 2     s,n = newSolver(’Piecewise’),len(Points)
 3     x = s.NumVar(Points[0][0],Points[n-1][0],’x’)
 4     l = [s.NumVar(0.0,1,’l[%i]’ % (i,)) for i in range(n)]
 5     s.Add(1 == sum(l[i] for i in range(n)))
 6     s.Add(x == sum(l[i]*Points[i][0] for i in range(n)))
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 7     s.Add(x >= B)
 8     Cost = s.Sum(l[i]*Points[i][1] for i in range(n))
 9     s.Minimize(Cost)
10     s.Solve()
11     R = [l[i].SolutionValue() for i in range(n)]
12     return  R

Line 4 defines our additional variables, one for each breakpoint of the 
piecewise function. We force that the sum of those be one at line 5. The 
definition of x at line 6 and its simple bound at 7 will allow us to consider 
various interesting scenarios.

The objective function is handled in a similar fashion to x at line 8.  
We solve and return the solution in a table with all the appropriate 
information to understand what the solver produced.

We will run this code with various bounds to illustrate the types of 
solution produced. First, Table�3-2 shows a typical run with a solution 
within a bracket. We set a bound of x � 250, which is exactly the value 
obtained.

Note that only two � are non-zero and that

�1 × B1 + �2 × B2 = 0.37 × 148 + 0.63 × 310 = 250,

while the cost function is

0.37 × 3552 + 0.63 × 8088 = 6408.

Table 3-2. Optimal Solution to Convex Piecewise Objective with  
x � 250

Interval 0 1 2 3 4 5 6 Solution

�i 0.0 0.3704 0.6296 0.0 0.0 0.0 0.0 � �=1.0

xi 0 148 310 501 617 762 959 x=250.0

f (xi) 0 3552 8088 14200 18144 23364 31244 Cost=6408
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To illustrate a boundary case, let�s set a bound of x � 310 and the 
beginning of a bracket, and observe the result in Table�3-3. Notice that only 
one � is non-zero in this case and it is set at the maximum weight of one.

As a final example of a boundary case, let�s force x � 1. The result is in 
Table�3-4.

3.1.2  Variations
The first variation is an application of the piecewise approach to  
non- linear optimization.

Table 3-4. Optimal Solution to Convex Piecewise Objective with x � 1

Interval 0 1 2 3 4 5 6 Solution

�i 0.9932 0.0068 0.0 0.0 0.0 0.0 0.0 � �=1.0

xi 0 148 310 501 617 762 959 x=1.0

f (xi) 0 3552 8088 14200 18144 23364 31244 Cost=24

Table 3-3. Optimal Solution to Convex Piecewise Objective with  
x � 310

Interval 0 1 2 3 4 5 6 Solution

�i 0.0 0.0 1.0 0.0 0.0 0.0 0.0 � �=1.0

xi 0 148 310 501 617 762 959 x=310.0

f (xi) 0 3552 8088 14200 18144 23364 31244 Cost=8088
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3.1.2.1  Non-Linear Function Minimization via�Linear 
Approximations

Since we can solve optimization problems with piecewise linear functions, 
we can use this approach to approximate convex non-linear functions with 
piecewise linear functions of increasing accuracy. Here is an example. Say 
we need to minimize, on the interval [2, 8], the nonlinear function

f (x) = sin(x)e x

We can easily decompose this function into segments on which we 
interpolate linearly between function values, as in Figure�3-3.

Figure 3-3. Piecewise approximation of a non-linear function
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We then minimize this piecewise linear approximation. If the solution 
is accurate enough for our needs, we are done. If not, we zoom in around 
the solution and approximate the function again using smaller segments. 
The executable code is shown in Listing 3-2 and is one more instance 
where using a general-purpose programming language like Python clearly 
wins over special-purpose modeling languages.

Listing 3-2. Minimizing Non-Linear Functions via Linear 
Approximations

 1   def minimize_non_linear(my_function,left,right,precision):
 2     n = 5
 3     while right-left > precision:
 4       dta = (right - left)/(n-1.0)
 5        points = [(left+dta*i, my_function(left+dta*i)) for i 

in range(n)]
 6       G = minimize_piecewise_linear_convex(points,left)
 7       x = sum([G[i]*points[i][0] for i in range(n)])
 8       left = points[max(0,[i-1 for i in range(n) \
 9                        if G[i]>0][0])][0]
10       right = points[min(n-1,[i+1 for i in range(n-1,0,-1) \
11                          if G[i]>0][0])][0]
12   return   x.SolutionValue()

The function minimize_non_linear accepts as parameters any Python 
function, along with an interval of values over which to minimize and a 
desired precision. At line 4 we compute the length of each sub-interval and 
we construct a piecewise description of the given function at line 5 which 
we use as a parameter to our previously described solver (Listing 3-1).

The lines 9 and 11 zoom in on the appropriate sub-interval, which 
becomes the new interval to be subdivided. The process stops when the 
interval is smaller than the required precision. In ten very simple lines 

CHAPTER 3  HIDDEN LINEAR CONTINUOUS MODELS



73

of codes we leverage the power of a linear solver to minimize non-linear 
convex functions.

We can see the increasing accuracy of the solution in Table�3-5. Each 
set of three consecutive rows represent the breakpoints in x, the value of the 
function at those points, and the interval parameter delta, indicating the 
optimal bracket. The rightmost two columns are the corresponding optimal 
x and f(x). We note that x jumps alternatively under and above the final 
solution, which can be important if one requires an under or over- estimate.

Table 3-5. Optimal Solution to Non-Linear Minimization

Interval 0 1 2 3 4 x� f (x�)

xi 2.0 3.5 5.0 6.5 8.0

f (xi) 6.7 -11.6 -142.3 143.1 2949.2

�i 0.0 0.0 1.0 0.0 0.0 5.0 -142.3

xi 3.5 4.2 5.0 5.8 6.5

f (xi) -11.6 -62.7 -142.3 -159.7 143.1

�i 0.0 0.0 0.0 1.0 0.0 5.8 -159.7

xi 5.0 5.4 5.8 6.1 6.5

f (xi) -142.3 -170.2 -159.7 -72.0 143.1

�i 0.0 1.0 0.0 0.0 0.0 5.4 -170.2

xi 5.0 5.2 5.4 5.6 5.8

f (xi) -142.3 -159.2 -170.2 -171.9 -159.7

�i 0.0 0.0 0.0 1.0 0.0 5.6 -171.9

xi 5.4 5.5 5.6 5.7 5.8

f (xi) -170.2 -172.5 -171.9 -167.8 -159.7

(continued)
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3.1.2.2  Non-Convex Piecewise Linear
The most vexing situation occurs when the function to minimize is  
non- convex. For example, if the unit cost went on decreasing as in  
Table�3-6 and Figure 3-4 instead of increasing, then the technique 
presented in this section will fail, as you can see in Table�3-7.

Notice that the sum of the � is one and the value of the decision 
variable is correct, but the total cost is nonsensical. It is obtained by 
a combination of the first and last �, non-consecutive points. What is 
happening is that the solver is considering the straight line between f (0) 
and f (924); this line is below f (x), hence it produces a lower cost value for 
all intermediate values of x.

Interval 0 1 2 3 4 x� f (x�)

�i 0.0 1.0 0.0 0.0 0.0 5.5 -172.5

xi 5.4 5.4 5.5 5.5 5.6

f (xi) -170.2 -171.7 -172.5 -172.6 -171.9

�i 0.0 0.0 0.0 1.0 0.0 5.5 -172.6

xi 5.4 5.5 5.5 5.5 5.6

f (xi) -171.7 -172.4 -172.6 -172.5 -171.9

�i 0.0 0.0 1.0 0.0 0.0 5.5 -172.6

xi 5.5 5.5 5.5 5.5 5.5

f (xi) -172.4 -172.5 -172.6 -172.6 -172.5

�i 0.0 0.0 1.0 0.0 0.0 5.5 -172.6

Table 3-5. (continued)
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Table 3-6. Example of Non-Convex Piecewise Function

(From To] Unit cost (Total cost Total cost]

0 194 18 0 3492

194 376 16 3492 6404

376 524 14 6404 8476

524 678 13 8476 10478

678 820 11 10478 12040

820 924 6 12040 12664

Figure 3-4. Piecewise non-convex cost function
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As you will see in a later section (Section 7.2 of Chapter 7), all is not 
lost. The approach taken here can be amended to use an integer solver, 
adding a few more constraints.

3.2  Curve Fitting
A very common problem is to move from a set of data points to an analytic 
representation of the same data. Statisticians call this regression; applied 
mathematicians utter parameter estimation; and engineers speak of curve 
fitting. I prefer the last expression.2

Its most famous and simplest example is illustrated by the following: 
imagine that we know (or, conjecture, as Galileo was the first to do) that a 
falling body follows a curve of the form

f (t) = a2t2 + a1t + a0,

where t represent time, but we do not know the appropriate values for a0, 
a1, and a2. We run an experiment where we collect the data in Table�3- 8.

2 The expression �regression� comes from Francis Galton�s original paper about 
�Re-gression towards mediocrity� and shadows rather than highlights the 
technique. As for �parameter,� what, pray tell, is not a parameter?

Table 3-7. Incorrect Solution to Non-Convex Objective with x � 250

Interval 0 1 2 3 4 5 6 Solution

�i 0.7294 0.0 0.0 0.0 0.0 0.0 0.2706 � �=1.0

xi 0 194 376 524 678 820 924 x=250.0

f (xi) 0 3492 6404 8476 10478 12040 12664 Cost=3426
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Since we need to identify the coefficients of our function (the a0, a1, �),  
we need somehow to minimize a distance from each possible curve to 
our data points. Statisticians are fond of using the Euclidean distance or 
equivalently, its square,

min (
n

i if f t� � � �2

This Least-Squares approach dates from Carl Friedrich Gauss,3 who 
developed it to predict planetary motion. It often makes sense and is very 

3 Carl Friedrich Gauss, Theoria Combinationis Observationum Erroribus Minimis 
Obnoxiae (Theory of the Combination of Observations Least Subject to Errors) 
(Philadelphia, PA: Society for Industrial and Applied Mathematics, 1987).

Table 3-8. Example of Data to Fit on a Quadratic  
f (t) = a2t 2 + a1t + a1

ti fi

0.1584 0.0946

0.8454 0.2689

2.1017 5.8285

3.1966 14.8898

4.056 25.6134

4.9931 38.3952

5.8574 43.5065

7.1474 91.3715

8.1859 119.075

9.0349 115.7737
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easy to obtain by solving one system of linear equations, the so-called 
Normal Equations.

Notwithstanding its popularity, the Euclidean distance is not the only 
valid distance to minimize. Another one is to use the absolute values of the 
deviations, as in

min
n

i if f t� � � �

or even the largest of the absolute values of the deviations, as in

min max
n i if f t� � �

This latter approach is the most appropriate one when, for instance, we 
are dealing with tolerances; that is, when all errors must be within some 
maximal value. We will develop code that can choose, at runtime, between 
the latter two objective functions.

3.2.1  Constructing a�Model
We will describe this rather complex model in stages.

3.2.1.1  Objective Function
Let�s assume, with some generality, that we are asked to identify a 
polynomial of degree k in the variable t. The coefficients a0, a1, � , ak are to 
be determined which minimize either the sum of deviations or the largest 
deviation between the data points and the polynomial.

The first abstraction here is to think of all of these deviations as some 
functions, say e0, e2, � , en, which we will determine later. In the case of the 
sum of deviations, the objective is simply

min
i

ie�
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But for the second case, we need an objective that minimizes the 
maximum deviation:

min max
n ie

This latter expression is clearly not a form that fits our framework of 
linear programs; we can have a min or a max but not both, and we must 
have one objective function, not a set of them.

The abstract approach to use in cases like this is to move the objectives 
into the constraints. To illustrate, first we introduce a set of inequalities 
with a new variable, say e, representing the maximum deviation:

e e i n1 1� � �� �,

Second, we state the objective as min e. Since e is an upper bound 
on all the deviations and we minimize it, we minimize the maximum 
deviation. Note that, at optimality, at least one of the inequalities will be 
binding, or else we clearly are not optimal, but most will likely be slack 
since their deviation will be smaller than the maximum deviation.

3.2.1.2  Constraints
Now we need to express these deviations. We are given a set of couples (tfli, ffl)  
representing the measurement at time tfli of the putative function f. The 
deviation for a particular couple is therefore

e a a t a t a t fi i i k i

k

i� � � ��� �0 1 2

2

That is, the deviation is the absolute value of the difference between 
the experimental ffli and the theoretical displacement f (tfli ), which is 
obtained by i evaluating the function at the time tfli. Why the absolute 
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value? Because the deviation could be positive or negative and we care 
only about its magnitude.

In terms of the inequalities, we intend to write that we would want a 
constraint of the form | f (tfli ) � ffl | <= e but this is not linear. There are at 
least two different ways to handle this situation. The one to use depends 
on what information we want to extract from the model�s solution.

 1. Double the inequalities and bound the deviations.

Consider the definition of absolute value. |a| = a if 
a is positive and �a if it is negative. This suggests 
therefore replacing the inequality |ei | <= e by two 
inequalities:

f t f e

f t f e

i i

i i

� � � ��

� � �� ��

,

.

This is a workable approach.

 2. Double the variables and �nd each deviation.

Note that the �doubling the inequalities� approach 
will not find the deviation at each point. We simply 
have a bound of all deviations, a bound which we 
minimize. What if we want to know each deviation, 
for instance, to minimize their sum?

One way to find the value of each deviation is to introduce two 
non-negative variables for each point (tfli, ffli ). Let�s call them ui and vi and 
introduce the following equality:

 f t u v fi i i i� � � � �  (3.3)
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Notice that since the new variables are non-negative, only one of them 
will be non-zero per equality. That one will equal the deviation (i.e. the 
difference between the experimental point and the theoretical point).

This �doubling the variables� approach is somewhat more general. 
If we want to minimize the sum of deviations, we minimize the sum of 
all ui and vi. If we want to minimize the maximum deviation, we add the 
inequalities

u e
v e

i

i

�
�

,
,

and minimize e.

3.2.1.3  Executable Model
Let�s translate this into an executable model seen in Listing 3-3. Assume 
that we obtain the data in an array of tuples (tfli, ffli ) named D, along with 
the degree of the polynomial required and an indicator of the distance to 
minimize (0 for the sum and 1 for the maximum).

Listing 3-3. Polynomial Curve Fitting Model (curve fit.py)

 1   def solve_model(D,deg=1,objective=0):
 2     s,n = newSolver('Polynomialufitting'),len(D)
 3     b = s.infinity()
 4     a = [s.NumVar(-b,b,'a[%i]' % i) for i in range(1+deg)]
 5     u = [s.NumVar(0,b,'u[%i]' %  i) for i in range(n)]
 6     v = [s.NumVar(0,b,'v[%i]' % i) for i in range(n)]
 7     e = s.NumVar(0,b,'e')
 8     for i in range(n):
 9       s.Add(D[i][1]==u[i]-v[i]+sum(a[j]*D[i][0]**j \
10                              for j in range(1+deg)))
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11     for i in range(n):
12       s.Add(u[i]  <=  e)
13       s.Add(v[i]  <=  e)
14     if objective:
15       Cost = e
16     else:
17       Cost = sum(u[i]+v[i] for i in range(n))
18     s.Minimize(Cost)
19     rc  = s.Solve()
20     return  rc,ObjVal(s),SolVal(a)

Line 4 defines the real decision variables, the coefficients of the 
polynomial. Since we cannot easily set bounds on the coefficients, we 
use infinity. Lines 5 and 6 define the deviations between the data points 
and the corresponding theoretical values. This is used at line 8, which 
corresponds to (3.3). Then we bound the deviations at line 11 by our 
maximum error variable defined at line 7.

The last element is the choice of objective function. The user can select 
to minimize the maximum deviation at 15 or the sum of deviations at  
line 17. These are displayed in Table�3-9 under the headings, respectively, 
of ei

max and ei
sum.
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The data points, along with both solutions (one for minimizing the 
maximum deviation and one for minimizing the sum of deviation), are 
displayed in Figure�3-5.

Table 3-9. Optimal Solution to Curve Fitting Problem

ti fi fsum(ti ) ei
sum fmax(ti ) ei max

0.1584 0.0946 -0.4382 0.5328 -12.4063 12.5008

0.8454 0.2689 0.3421 0.0731 -8.3251 8.594

2.1017 5.8285 5.8285 0.0 2.0924 3.7362

3.1966 14.8898 14.8898 0.0 14.285 0.6047

4.056 25.6134 24.7951 0.8184 25.8879 0.2744

4.9931 38.3952 38.3952 0.0 40.5766 2.1814

5.8574 43.5065 53.5269 10.0204 56.0073 12.5008

7.1474 91.3715 80.7311 10.6403 82.3995 8.972

8.1859 119.075 106.6547 12.4203 106.5742 12.5008

9.0349 115.7737 130.5102 14.7365 128.2745 12.5008
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3.2.2  Variations
The example above is a special case of a technique very useful in practice, 
the so-called handling of soft constraints. Often we would like an equation 
to be satisfied but we know that it is unlikely to be. Examples abound. Here 
is one: constructing a model of a scheduling system to produce student 
schedules at school. In the intelligent manner, we take all the student 
course choices and their days of availability (I have to work Fridays, so no 
class then. Or, I work nights; I need day classes only). From all of this data, 
we wish to construct schedules that work for all students.

Unfortunately, it is unlikely that a schedule accommodating all 
requests is feasible. The best one can hope for is to satisfy as many 
students� requests as possible. These become soft constraints and the 

Figure 3-5. Data and fitted curves
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technique is similar to the one above: we introduce new variables (like 
the ui and vi above) to measure the distance to the ideal (the number of 
students with unsatisfied requests) and minimize the sum of these.

So, if we aim to satisfy, say

a1x1 + a2 x2 + � + anxn = b.

But we know that this is unlikely, so we change to

a1xi + aix2 + � + anxn + u � v = b,

where u and v are non-negative. Then we add (u + v) to the objective 
function (assuming this is a minimization problem).

Note that we may need only one of u and v if we already know that the 
left-hand side will always be either too high or too low with respect to the 
right-hand side. We need both only when it can deviate in both directions, 
as in our curve fitting example.

3.3  Pattern Classification Revisited
Recall the classification model from Section 2.5�in Chapter 2: given two 
sets of data points, benign and malignant cells identified by an expert, we 
obtained a separating hyperplane that could afterwards be used to mimic 
the expert by classifying new data into one or the other set. One weakness 
of our initial approach was that we would not necessarily find the �best� 
hyperplane by any definition. We stopped as soon as we got one. The result 
of our first attempt is illustrated in Figure�3-6 where one malignant cell 
is located exactly on the separating hyperplane. It could just as well have 
been a benign cell.
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People in classification therefore tend to prefer a hyperplane that 
would maximally separate the two sets; that is, one that is equally distant 
from one set as from the other. This might minimize misclassification later 
on, assuming that the training set was well chosen.

One way to achieve this maximal separation is to maximize the 
minimum distance from the training set to the separating hyperplane. This 
is known as maximizing the margins and we now have the tools to perform 
this maximization. Let�s assume that we have run our previous 
classification model and we know that the two sets are separable by 
hyperplane � �a x aj j 0. Now we want the best such separation.

How does one compute the distance of a point xfl to hyperplane 

� �a x aj j 0?  By the formula

Figure 3-6. Data and separation maximizing margins
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�
�

�a x a

a

j j

j

0

2

Since we intend to maximize the minimum of this value over all data 
points yet have no need for the actual value, the denominator is irrelevant 
and we might as well simply consider the numerator, a fortuitous 
condition as we cannot yet handle general nonlinear functions. This 
numerator is an absolute value. We will therefore use the double positive 
variable trick and introduce for each data point xfl a triplet of constraints

� � � �
��
��

a x u l a
e u
e l

j j 0

where the first constraints will force either u or l to measure the value of 
the numerator in the distance formula. The two inequalities will have the 
variable e lower bound both. We then only have to maximize the value of e 
to achieve our goal.

3.3.1  Executable Model
The translation into an executable model is shown in Listing 3-4.  
Lines 4 to 7 define the new positive variables to hold the distance from 
each data point to the separating hyperplane. Line 8 is the same as before, 
the coefficient of the hyperplane we are searching for. The rest of the 
model is identical to our previous classification model with the addition of 
three lines at 12 and at 17 fixing the distance constraint and establishing 
the lower bound e on them. The objective function is now to force this 
lower bound upward, maximizing the minimum distance.
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Listing 3-4. Maximizing the Margins (margins.py)

 1   def solve_margins_classification(A,B):
 2     n,ma,mb=len(A[0]),len(A),len(B)
 3     s = newSolver('Classification')
 4     ua = [s.NumVar(0,99,") for _ in range(ma)]
 5     la = [s.NumVar(0,99,") for _ in range(ma)]
 6     ub = [s.NumVar(0,99,") for _ in range(mb)]
 7     lb = [s.NumVar(0,99,") for _ in range(mb)]
 8     a = [s.NumVar(-99,99,") for _ in range(n+1)]
 9     e = s.NumVar(-99,99,")
10     for i in range(ma):
11        s.Add(0 >= a[n]+1-s.Sum(a[j]*A[i][j] for j in 

range(n)))
12        s.Add(a[n]==s.Sum(a[j]*A[i][j]-ua[i]+la[i]for j in 

range(n)))
13       s.Add(e <= ua[i])
14       s.Add(e <= la[i])
15     for i in range(mb):
16       s.Add(0 >= s.Sum(a[j]*B[i][j] for j in range(n))-a[n]+1 )
17        s.Add(a[n]==s.Sum(a[j]*B[i][j]-ub[i]+lb[i]for j in 

range(n)))
18       s.Add(e <= ub[i])
19       s.Add(e <= lb[i])
20     s.Maximize(e)
21     rc  = s.Solve()
22     return  rc,SolVal(a)

The result, on the same data set as in Section 2.5, shows the new and 
improved separating hyperplane, equidistant from the closest points both 
in the malignant set and the benign set, which is as good a separation as 
we can hope for. But beware: this is only as good as the training set. If this 
set was biased in any way, the separation will be just as biased.
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Linear Network 
Models
Six degrees of separation!

This meme and the play, movies, and games it generated did more to 

introduce elements of network theory to the general public than years of 

public education. Movie buffs play the Kevin Bacon Game, trying to link 

two actors through movies in which they appeared with Kevin Bacon. 

Mathematicians proudly announce their Erdös number (when they have 

one), the number of co-written papers away they stand from a paper  

co- written with the famous Paul Erdös.1 Throughout this chapter networks 

play an essential role in visualizing a problem.

A network is an object composed of nodes (people, in our 

examples) and arcs (indicating the presence of a relationship). It 

is a tool mathematicians invented hundreds of years ago to help 

model situations2 and solve problems. We will use networks to help 

us construct optimization models. In a sense, we are doing meta-

modeling.

Network-based optimization models often share, along with the 

structural description, an interesting characteristic: if the input data are all 

integers, then there is an integral optimal solution. Moreover, the solver 

1 www.oakland.edu/enp/
2 The first instance of such a model is usually attributed to Euler.
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will find it. This is a useful property as it allows for modeling of countable 
items (people, trucks, data packets) as well as measurable items (money, 
time, water).

It is important to realize the importance of integrality in modeling. 
Let�s imagine a complex problem involving the flight of a space shuttle. 
The constraints involve weight, amount of fuel, amount of oxygen, work to 
do while in orbit, etc. There are thousands, maybe hundreds of thousands, 
of variables and constraints. If such a problem asks �How many astronauts 
can be carried in the shuttle?� it is unlikely that NASA (or SpaceX) would 
accept �Two and a half astronauts� as the optimal answer.

Crucially, we must dispense with the tempting but wrong work- 
around: rounding. It is rarely the case that rounding helps. If we round a 
fractional solution, many (maybe even all) constraints might be violated. 
Round up the solution of our space shuttle instance and the weight 
constraint might prevent lift-off; round down and the astronauts may fail 
to accomplish all the required tasks. To be fair, there are problems where 
rounding is acceptable, but those are either boring, or the solution is 
obvious, or both.

4.1  Maximum Flow
Network-related problems often have a structure where the integrality of 
the solution is guaranteed �for free.� We can do nothing except recognize 
that the problem falls in that special category and be merry. The goal of 
this section is to recognize and model problems with this special structure.

The prototypical, overt example is the network maximum flow 
(maxflow) problem where some substance flows from some source(s) to 
some destinations(s) on capacitated channels and we try to maximize the 
amount of flowing.

CHAPTER 4  LINEAR NETWORK MODELS



91

The substance flowing does not have to be material, as water, oil, or 
even electricity. It could be data packets flowing through a network of fiber 
optics cables. Imagine, for instance, that you are trying to establish how 
many concurrent video streams you can send from your servers to your 
viewers. This fits nicely in the context of a maximum flow problem.

To consider the simplest problem abstractly, let�s assume a network as 
described by Figure�4-1 where each arc has the noted capacity and we are 
trying to send as much as possible from the nodes marked as sources (-S) 
to the nodes marked as sinks (-T).

4.1.1  Constructing a�Model
What we need to decide in this problem is the amount to deliver from the 
source to the sink and through which arcs of the network.

Figure 4-1. Visual representation of a network flow problem 
instance
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4.1.2  Decision Variables
The simplest, most natural way to answer the question is to introduce a 
two-dimensional variable. The first dimension indicates the origin node 
and the second dimension indicates the destination node; the value of the 
variable will be the amount of substance flowing on the arc between the 
two, or

x i N j Ni j, ,� � � �

For example, if x2,3 = 35, it will mean that we should send 35 units from 
node 2 to node 3.

4.1.2.1  Objective
The objective is to maximize the amount flowing from the sources to the 
sinks. So the sum of either what is coming out of the sources (say set S) 
or the sum of what goes into the sinks (say set T) will work. This suggests 
either of these objective functions

max ,
i s j N

i jx
� �
��

 or 
max ,

j T i N
i jx

� �
��

But, since we allow multiple sources and nothing prevents a source 
from sending to another source for further transport, we should be careful 
to maximize the �net� flow out of the sources, or

 max , ,
i S j N

i j
j N

j ix x
� � �
� � ��

�

�
�

�

�
�  (4.1)
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The corresponding net flow into the sinks should be obvious.3

This objective function (4.1) is enough to get a working model, but we 
have two minor annoyances to consider: chained sources and cycles.

The first problematic case is illustrated by Figure�4-2. It is clear that 
since the capacity of the arc going into the sink is 2, exactly two units will 
flow. But these two units could come from source N1-S or one could come 
from N0-S and a second from N1-S.

The second problematic case occurs when there is a cycle involving 
a source. Then, given any flow f around that cycle, if that flow is not as 
large as the capacity on that cycle, then there is another flow, f + 1, with 
exactly the same objective value. Consider Figure�4-3 as an example. An 
optimal solution could send 10 units from the source to the sink through 
the intermediate node or up to 20 units from the source, with up to 10 units 
flowing back from the intermediate node to the source.

These two cases illustrate multiple optimal solutions with, of course, 
exactly the same optimal value. There is little chance that, for any 
application, this multitude of optimal flows represents a feature. It will 
likely be considered a nuisance, especially if two different solvers or two 

3 Note that there may be applications where the flow out of the source is to be 
maximized without regards to the flow in.

Figure 4-2. Problematic chaining of sources

Figure 4-3. Problematic cycles
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different runs of the same solver return two different flows! How can we 
ensure that the solver consistently returns the same flow?

We could decide that, among all optimal flows, we want the flow with 
as little flow into the sources as possible. This is a dual objective: maximize 
the net flow out of the sources, and minimize the flow into the sources. 
This idea of a dual objective, or more generally of multiple objectives, 
often occurs in practice and often for the same reason as here: the need to 
determine, among multiple optimal solutions according to one criterion, 
the most preferable one according to a secondary criterion.

Since we need to maximize one object and minimize another, all at 
one go, we need another trick, the reversal:

max minf x f x� � � � � �

We can always replace a minimization problem by a maximization 
problem, and vice versa. And now we can add the two objectives: 
maximizing the net flow as in equation (4.1) and minimizing the inflow, or 
maximizing �

� �
��
i S j N

j ix , . After simplification, it looks like

 max *, ,
i S j N

i j
j N

j ix x
� � �
� � ��

�

�
�

�

�
�2  (4.2)

In the case of our chaining example, we would maximize x0,1 + x1,2 �  
2� x0,1, or x1,2 � x0,1 which would force a solution where all the flow is issued 
from N1-S.�In our cyclic example, this would yield x0,1 + x1,2 � x1,0 which 
guarantees that no flow comes back into the source and it emits 10 units.

CHAPTER 4  LINEAR NETWORK MODELS



95

4.1.2.2  Constraints
The only constraint type is known as conservation of flow: for every node 
that is neither a source nor a sink, whatever flow goes in must come out, or

 
j N

i j
j N

j ix x i N S T
� �
� �� � � �� �, , \  (4.3)

Since the objective function will force flow out of the sources or, 
equivalently, into the sinks, the conservation of flow will take care to move 
the material from sources to sinks.

4.1.2.3  Executable Model
Let�s translate this into an executable model. To make the model general 
enough to solve all problems of this type, we will assume that the input is a 
two-dimensional array called C, indexed by nodes, containing the capacity 
of the arc between two nodes. We will also assume arrays, one of sources S 
and one of sinks T.

To allow some flexibility in the choice of objective function and 
illustrate the occurence of multiple optimal solutions, we add a final 
parameter, unique. If this parameter is set to True, the model will run 
with objective function (4.2), which will maximize the net flow while 
minimizing the flow into the sources. If set to False, it will simply 
maximize the flow out of the sources. See Listing 4-1.

Listing 4-1. Maximum Flow Model (maxflow.py)

 1   def solve_model(C,S,T,unique=True):
 2     s,n = newSolver('Maximumuflowuproblem'),len(C)
 3      x=[[s.NumVar(0,C[i][j],")for j in range(n)] 

for i in range(n)]
 4     B=sum(C[i][j] for i in range(n) for j in range(n))
 5     Flowout,Flowin   =   s.NumVar(0,B,"),s.NumVar(0,B,")
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 6     for i in range(n):
 7       if i not in S and i not in T:
 8        s.Add(sum(x[i][j] for j in range(n)) == \
 9        sum(x[j][i] for j in range(n)))
10      s.Add(Flowout == s.Sum(x[i][j] for i in S for j  

in range(n)))
11      s.Add(Flowin == s.Sum(x[j][i] for i in S for j  

in range(n)))
12      s.Maximize(Flowout-2*Flowin if unique else  

Flowout- Flowin)
13     rc  = s.Solve()
14     return rc,SolVal(Flowout),SolVal(Flowin),SolVal(x)

Line 3 defines the two-dimensional variable where the first index 
specifies the origin and the second, the destination. Line 9 ensures that 
we conserve flow across nodes that are neither sources nor sinks. The 
objective function at line 12 computes the total flow and indicates that we 
should maximize that quantity.

We return the total flow out of the sources and the total flow into 
the sources. The output of the model is displayed in Table�4-1 and 
Table�4-2 where each corresponds to the choice unique at, respectively, 
False and True.
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Table 4-1. Optimal Solution Maximizing Net Flow

71-13 N0-S N1 N2-S N3 N4 N5 N6-T

N0-S 21.0

N1 23.0

N2-S 24.0 10.0 16.0

N3 23.0 13.0 9.0

N4 19.0

N5

N6-T

Table 4-2. Optimal Solution Maximizing  
Net Flow and Minimizing Inflow

58-0 N0-S N1 N2-S N3 N4 N5 N6-T

N0-S 8.0

N1 23.0

N2-S 24.0 10.0 16.0

N3 23.0 9.0

N4 19.0

N5

N6-T
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Here is the interesting phenomenon: all solutions are integers, yet 
we did not impose an integrality constraint. This is a consequence of two 
elements. First, the structure of the problem, which guarantees that if there 
is an optimal solution, there is an integral solution.4 Second, the solution 
technique of all solvers, which will either only consider integer solutions 
(simplex solvers) or will move from a fractional solution to an integer 
one (interior-point solvers) before returning to the caller. The reader is 
encouraged to tweak the numbers to verify that, if the problem is feasible, 
the solver will find an integral solution.

4.1.3  Variations
One useful application is to model assignment problems. These come 
in multiple flavors of which here is one: imagine that we have a certain 
number of workers (they could be people, machines, or cores in a desktop 
computer) and a certain number of jobs to accomplish (papers to push, 
widgets to build, or programs to execute). We construct a network with one 
source connected by an arc of unit capacity directed to each worker. These 
workers are connected by an arc to job nodes, the sinks, but only they are 
capable of executing the given job. Maximizing the flow will assign workers 
to jobs optimally in the sense that the most jobs will get done. We read the 
assignments by looking at the arcs with non-zero flow between workers 
and jobs. See Figure�4-4.

4 The theoretically-minded reader will research �total unimodularity.�
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4.2  Minimum Cost Flow
There is a second class of problems where the integrality of the solution is 
guaranteed �for free:� the minimum cost flow problems (mincost).

Here is the prototypical example. Solar-1138 Inc. has a set of clean 
power plants supplying the needs of multiple cities. Each power plant 
has a maximum capacity, so it can supply a limited number of kilowatt- 
hours (kW-h). Each city has a peak demand and all cities peak at roughly 
the same time. Therefore, the sum of peak demands is the quantity that 
the power plants need to accommodate. The cost of sending one kW-h 
from a plant to a city varies according to the plant, the city, the delivery 
infrastructure, and distance between plant and city. This cost has been 
arrived at by considering production of the power and maintenance of the 
plant and the power lines.

Figure 4-4. Assigning workers to jobs
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Table�4-3 has the cost of delivery between plant and city, whenever 
possible, in dollars per kW-h. The maximum supply of each plant and the 
peak demand of each city are in kW-h.

The question to answer is �How much power should be sent from each 
plant to each city, satisfying peak demand while minimizing cost?�

4.2.1  Constructing a�Model
What we need to decide in this problem is the amount of power to deliver 
from each plant to each customer. It may be that a plant sends power to 
none, some, or all cities, and we need a way to indicate this. As a visual aid, 
consider the bipartite5 graph shown in Figure 4-5 where plants are the top 
nodes, cities the bottom, and the arcs are power lines annotated by the 
cost of carrying power along that particular transmission line.

5 Bipartite means that there will never be any arcs between the top nodes or 
between the bottom nodes. You will see in the next section a more general 
problem.

Table 4-3. Example of Electrical Distribution Cost

From/To City 0 City 1 City 2 City 3 City 4 City 5 City 6 Supply

Plant 0 23 19 25 14 22 551

Plant 1 16 20 23 13 23 689

Plant 2 22 18 11 20 13 24 634

Demand 288 234 236 231 247 262 281
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4.2.1.1  Decision Variables
With this image in mind, a solution to the problem would be, for each 
plant-city pair, the amount of power delivered by plant to city. The 
simplest, most natural way to do this is to introduce a two-dimensional 
variable. The first dimension indicates the origin (which plant of the set of 
plants P) and the second dimension indicates the destination (which city 
out of the set of cities C), or

x i P j Ci j, ,� � � �

For example, if x2,3 = 35, it means we should send 35 kW-h from plant 2 
to city 3.

These multi-dimensional variables, and you will see many of them,  
are simply a short-hand notation for one variable per each combination 
plant-city. So if we have 3 plants and 4 cities, we are really introducing  
3.4 = 12 decision variables. This is somewhat wasteful of memory as there 
are not always paths between each plant and each city, but you will see 
how to avoid the waste if it becomes an issue.

Figure 4-5. Caption needed
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4.2.1.4  Executable Model
Let�s translate this into an executable model. To make the model general 
enough to solve all problems of this type, we will assume that the costs, 
demands, and supply capacities are given in a two-dimensional array 
called D structured as in Table�4-3, where a zero cost indicates that there 
are no power lines between that plant-city combination.

In more general terms than �plants� and �cities,� we can view each 
row as representing a producer and each column a consumer, except that 
the last row represents the demand and the last column the supply. The 
�product� exchanged between producers and consumers can be anything, 
not only divisible quantities like kW-h or liters of water, but trucks, flowers, 
data packets, or people. The optimal solution will never contain fractions 
of people. See Listing 4-2.

Listing 4-2. Power Distribution Model (mincost.py)

 1   def solve_model(D):
 2     s = newSolver('Mincostuflowuproblem')
 3     m,n = len(D)-1,len(D[0])-1
 4     B = sum([D[-1][j] for j in range(n)])
 5     G =  [[s.NumVar(0,B if D[i][j] else 0,") for j in 

range(n)] \
 6         for i in range(m)]
 7     for i in range(m):
 8       s.Add(D[i][-1] >= sum(G[i][j] for j in range(n)))
 9     for j in range(n):
10       s.Add(D[-1][j] == sum(G[i][j] for i in range(m)))
11     Cost= s.Sum(G[i][j]*D[i][j] for i in range(m)for j in 

range(n))
12     s.Minimize(Cost)
13     rc  = s.Solve()
14     return rc,ObjVal(s),SolVal(G)
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Line 6 defines the two-dimensional variable where the first index 
specifies the producer and the second, the consumer. Since we know that 
if a particular producer-consumer pair has no channel between, the entry 
is zero, so we use this to collapse the range of the variable to zero. A good 
solver will use this information to eliminate these variables before doing 
any other work.

Line 8 ensures that we supply no more than each plant can produce 
while line 10 ensures that the peak demands are satisfied. The objective 
function at line 11 computes the total cost and indicates that we should 
minimize that quantity.

The output of the model is displayed in Table�4-4. The reader can verify 
that the total column is below or at the maximum that each plant can 
produce, while the total row is exactly the required peak demand of each 
consumer.

Here is again the interesting phenomenon: all solutions are integers, 
yet we did not impose any integrality constraints.

Table 4-4. Optimal Solution to the Power Distribution Problem

From/To City 0 City 1 City 2 City 3 City 4 City 5 City 6 Total

Plant 0 247 281 528

Plant 1 288 231 170 689

Plant 2 234 236 92 562

Total 288 234 236 231 247 262 281
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4.2.2  Variations
The simplest variation is to have capacities on the arcs. Then we need 
to insure that no flow goes above the capacity. Assuming we have the 
capacities in matrix A, this is simply a question of adding a constraint of 
the form

x A i P j Ci j i j, , ,� � � � �

An interesting variation involves spreading the sources. To minimize 
risks, for instance, we might not want to satisfy more than some fraction 
of the demand from one source. Say we decide that no city�s demand may 
be satisfied at more than 60 percent from a single source, we could add a 
constraint of the form

x D i P j Ci j j, . ,� � � � �0 6

The reader is encouraged to add this constraint and note that the 
optimal value will not be as low as it is without the constraint. Moreover, 
the solution might not be integral anymore. This simple additional 
constraint destroys the property that guarantees integrality. We must 
declare the decision variable integral (with the consequent increase in 
complexity and solution time) to guarantee an integral solution.

Instead of material that flows, the problem sometimes appears as 
an assignment question: given a set of workers with specific skills and 
hourly wages and a set of jobs, which worker do you assign to which job to 
minimize cost?
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For example, consider a consulting firm with three teams based in 
different cities as well as three customers at different sites. Since the cost of 
travel varies from team to customer site, we want to minimize total travel 
cost. In this case, the demand and supply are simply one since we want 
one team per customer site and one customer assigned to each team. See 
Table�4-5.

4.3  Transshipment
A more general type of problem that can be modeled as a network flow 
problem is the transshipment problem. The characteristics of such a 
problem are a set of nodes with a cost of transporting between each pair; 
a subset of the nodes is suppliers and another subset is consumers. The 
remaining nodes can be used to carry the material but neither produces 
nor consumes, hence the moniker transshipment.

Table�4-6 has, for example, the cost of delivery between each pair of 
nodes. A blank indicates that there is no path between two nodes. The 
last column indicates the amount that a node can produce, if any; the last 
row is the demand of each node, if any. Note that the sum of demands 
should, in general, be the same as the sum of supplies or else the problem 
is infeasible.

Table 4-5. Caption Needed

Customer 0 Customer 1 Customer 2 Supply

Team 0 25 30 20 1

Team 1 20 15 35 1

Team 2 18 19 28 1

Demand 1 1 1
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Transshipment problems are often depicted visually as in Figure�4-6, 
corresponding to the data in Table�4-6, where the arrows are annotated 
with the cost of transportation of the material and where the nodes contain 
a positive number indicating supply value and/or a negative number 
indicating a demand value.

Note that this is clearly a generalization of the mininimum cost flow 
problem as there could be arcs between any two nodes, which means, for 
instance, that a source node could receive whatever product is flowing 
through the network, add it to its production, and send the result off 
towards another node, whether a consumer or a transshipment node.

4.3.1  Constructing a�Model
What we need to decide in this problem is the amount of material to 
deliver from each node with a positive supply to each node with a positive 
demand. The simplest, most natural way to model this is to introduce a 

Table 4-6. Example of Transshipment Distribution  
Cost Over a Network

From/To N0 N1 N2 N3 N4 N5 N6 N7 Supply

N0 17 10 19

N1 23 28 23

N2 29 30 25 25 680

N3 17 15 19 29

N4 16

N5 22 25 18 540

N6 25 29 16 22

N7 30 10 27

Demand 241 164 239 152 424
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two-dimensional variable. The first dimension indicates the origin and the 
second dimension indicates the destination. The variable itself will contain 
the amount to ship. We will assume that N is the set of nodes to get

x i N j Ni j, ,� � � �

For example, if x2,3 = 35, it means we should send 35 units from node 2 
to node 3.

Figure 4-6. Transshipment example viewed graphically
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4.3.1.1  Objective
The objective is to minimize cost in dollars of delivery. For this we will 
need a parameter for the cost. Let�s assume Ci,j indexed exactly as the 
decision variable. The objective will therefore be

min , ,
i j

i j i jC x��

4.3.1.2  Constraints
In the previous minimum cost flow problem, we had two types of 
constraints: one for the producing nodes which stated that the outflow 
was equal to the supply value, and another one for the consuming nodes, 
stating that the inflow was equal to the demand value. We could use these 
constraints here, in addition to a third constraint for intermediate nodes, 
those without any demand or supply value, stating that the inflow must 
equal flow.

While it is possible to treat each of type of nodes (producers, 
consumers, and intermediate) differently, it is simpler to notice that one 
constraint, appropriately general, will hold each node. Namely, that the 
flow into the node (fin) minus the flow out of the node (fout) must equal the 
demand (D) minus the supply (S), or

fin
 � fout = D � S.

Note that in the case of pure sources and sinks, the equation reduces to 
the constraints we used in the mininimum cost flow model:

� fout = �S Special case for sources

fin = D Special case for sinks
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Let�s assume that Si and Di are, respectively, the supply and the 
demand of node i, keeping in mind that for producing nodes only supply 
is non-zero; for consuming nodes, only demand is non-zero; and for 
intermediate nodes, both are zero. We get

 
j

j i
j

i j i ix x D S i N� �� � � � �, ,  (4.5)

This constraint is known as a general conservation of flow constraint. It 
is the only constraint we need, but it must hold at every node.

4.3.1.3  Executable Model
Let�s translate this into an executable model. To make the model general 
enough to solve all problems of this type, we will assume that the costs, 
demands, and supply capacities are given in a two-dimensional array 
called D structured as in Table�4-6. Each entry {i,j} represents the cost of 
transporting from node i to node j, except that the last row represents the 
demand and the last column the supply. See Listing 4-3.

Listing 4-3. Transshipment Distribution Model (transship dist.py)

 1   def solve_model(D):
 2     s = newSolver('Transshipmentuproblem')
 3     n = len(D[0])-1
 4     B = sum([D[-1][j] for j in range(n)])
 5     G = [[s.NumVar(0,B  if D[i][j] else  0,") \
 6        for j in range(n)] for i in range(n)]
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 7     for i in range(n):
 8       s.Add(D[i][-1] - D[-1][i] == \
 9        sum(G[i][j] for j in range(n))-sum(G[j][i]for j in 

range(n)))
10      Cost=s.Sum(G[i][j]*D[i][j] for i in range(n)for j in 

range(n))
11     s.Minimize(Cost)
12     rc = s.Solve()
13     return rc,ObjVal(s),SolVal(G)

Line 6 defines the two-dimensional variable where the first index 
specifies the producer and the second, the consumer. The range of a 
variable is from zero to either the total demand or to zero to ensure that 
we don�t use a route that does not exist. In data D, the absence of a cost at 
entry i,j indicates that there is no direct route between i and j.

The generalized conservation of flow constraint corresponding to (6.5) 
is implemented on line 7. The objective function at line 10 computes the 
total cost and line 11 indicates that we should minimize that quantity.

The output of the model is displayed in Table�4-7. Note that the 
solution is again entirely integral, even though we did not enforce 
integrality.

The reader can verify that the difference between the entry in the total 
column of a given node less the entry in the total row of the same node is 
equal to the difference of the supply and the demand of that node. This is 
especially interesting for nodes that receive more than their demands and 
reroute whatever they do not use. Even for very small problems, those are 
not solutions can be easily guessed.
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Table 4-7. Optimal Solution to the Transshipment Problem

From/To N0 N1 N2 N3 N4 N5 N6 N7 Out

N0

N1 164 164

N2 125 403 152 680

N3

N4 164 164

N5 116 424 540

N6

N7

In 241 164 164 403 152 424

4.3.2  Variations

� One possible variation is when the supply and demand 
are not balanced. It could be that the producing nodes 
have a maximum production capacity that they need 
not meet; only the demands must be satisfied. In 
this case, these nodes must be treated separately 
and, instead of the generalized conservation of flow 
constraint, we indicate that the flow out less the flow in 
must be at most the supply, so

j
i j

j
j i i ix x S i N S� �� � � � �� �, , 0

Nothing else needs to change because we are 
minimizing cost and satisfying demands, so we will 
get the optimal solution.
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� The reverse situation is also possible, though unlikely, 
in which case we must treat the demand nodes 
separately and ensure that the flow in less the flow out 
must be at most the demand value.

� Another simple variation is to have capacities on the 
arcs, limiting the amount flowing through them. In this 
case, the additional constraints are, assuming a matrix 
of capacity C,

x Ci j i j, ,�

4.4  Shortest Paths
Now let�s consider the problem Google faces every time someone asks 
Google Maps to find a path from point A to point B: the shortest path 
problem (either shortest according to distance or according to time). It 
may surprise the reader that this too can be modeled and solved very 
efficiently as a network flow problem.

Here is the abstracted situation: we are given a two-dimensional array 
of distances between a set of points as exemplified by Table�4-8. This is 
called the distance matrix. It could be distances in thousands of kilometers 
between cities if we are considering a planetary scale problem or times in 
minutes between city street intersections if we are looking for a bike path 
taking into consideration the path elevation. In addition to the array of 
distances, we could be given a start and an end point but, in their absence, 
we will assume that the array has been ordered so that we need a path 
from the first point to the last.

The task is to find a sequence of points between the start and the end 
that minimizes the corresponding sum of entries in the array. This is called 
a shortest path, no matter what the units are. Note that we do not say the 
shortest path as there may be many paths with the same shortest total 
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distance. So if we go through the sequence 0,3,2,5, for instance, our total 
distance will be the sum of M0,3 + M3,2 + M2,5.

4.4.1  Constructing a�Model
What we need to decide in this problem is the sequence of points to 
choose to go from start to end. This is a subset of the given points (say P) 
along with an order in which to traverse them. It turns out that the most 
efficient approach is to picture a graph with the points as nodes and with 
the distances as weights on the arcs. Choosing a path on the graph will 
correspond to a path on the original map.

Table 4-8. Example of a Distance Matrix

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 46 17 24 51

P1 46 31 33 54

P2 38 34 31 51

P3 24 33 17 49 31

P4 51 4 18 39 60

P5 48 4 4 27 35 57 51

P6 33 1 59

P7 54 26 32 27 31 14 42 66

P8 51 49 18 20 17 43 57 32

P9 39 35 14 28

P10 60 58 6

P11 32 61 58 56

P12 59 56
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At first glance, this may not seem natural. It may not even be clear how 
to construct a decision variable to hold the subset of points and the order 
in which to visit them. Here is the trick: for each arc on the graph we have 
a decision variable that will take on exactly one of two values, either zero if 
we do not take this arc or one if we do. Therefore,

x i P j Pi j, , ,�� � � � � �0 1

To pursue our example path of 0,3,2,5, we will have decision variables 
x0,3, x3,2, and x2,5 at value one and all other arc variables at value zero. The 
reader should see the parallel with the other flow problems by thinking of 
a network where all arcs have a capacity of one: an integral solution will be 
a flow of value of one on some sequences of adjacent arcs and zero on all 
others.

The objective function is correspondingly simple. Assuming that the 
distance matrix is D,

min , ,
i j

i j i jD x�� ,

how do we ensure that we choose a sequence of adjacent arcs from the 
start point to the end point? By modeling this as a unit flow through the 
graph where the start point is a source of value one and the end point is a 
sink of value one. All we need is the usual flow conservation constraints we 
used previously.

The executable model is seen in Listing 4-4, where we assume a 
distance matrix D with optional starting and ending points. We could use 
our existing code for flow problems but, in this case, as a courtesy to the 
caller, we will write a special-purpose code to help the call and to return a 
meaningful answer. After all, we as modelers are thinking of this problem 
as a flow on a graph, but the caller is thinking of a shortest path! Let�s not 
burden him with our unnatural decision variables. Not to mention that 
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there may be a million points, hence a trillion6 decision variables and 
yet the solution, from the caller�s perspective, may be only a minuscule 
fraction of those variables.

Listing 4-4. Shortest Path Model (shortest path.py)

 1   def solve_model(D,Start=None, End=None):
 2     s,n = newSolver('Shortestupathuproblem'),len(D)
 3     if Start is None:
 4       Start,End = 0,len(D)-1
 5     G = [[s.NumVar(0,1  if D[i][j] else  0,") \
 6          for j in range(n)] for i in range(n)]
 7     for i in range(n):
 8       if i == Start:
 9         s.Add(1 == sum(G[Start][j] for j in range(n)))
10         s.Add(0 == sum(G[j][Start] for j in range(n)))
11     elif i == End:
12       s.Add(1 == sum(G[j][End] for j in range(n)))
13       s.Add(0 == sum(G[End][j] for j in range(n)))
14     else:
15       s.Add(sum(G[i][j] for j in range(n)) ==
16            sum(G[j][i] for j in range(n)))
17      s.Minimize(s.Sum(G[i][j]*(0 if D[i][j] is None else  

D[i][j]) \
18                   for i in range(n) for j in range(n)))
19     rc  = s.Solve()
20     Path,Cost,Cumul,node=[Start],[0],[0],Start
21     while rc == 0 and node != End and len(Path)<n:
22        next = [i for i in range(n) if SolVal(G[node][i]) == 1][0]
23       Path.append(next)

6 If the reader reads American; a billion if English.
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Table 4-9. Optimal Solution to Shortest Path Problem

Points 0 3 7 9 10 12

Distance 0 24 17 14 28 6

Cumulative 0 24 41 55 83 89

24       Cost.append(D[node][next])
25       Cumul.append(Cumul[-1]+Cost[-1])
26       node = next
27     return rc,ObjVal(s),Path,Cost,Cumul

On line 3 we set the start and end nodes to be the first and last if the 
caller did not specify any. Line 6 defines the decision variable. We apply a 
little trick to the range: we know that if the distance matrix has a zero entry, 
it means that there is no path between two points. In that case, we give 
a range of [0, 0], which forces this variable to be zero. In the other cases, 
the range will be [0, 1]. Notice that this range allows fractions but, again 
because of the structure of the constraints in a flow problem, no variable 
will ever have a fractional value. They will all be either 0 or 1.

At lines 9 and 12 we set the supply to be one at the start node and 
the demand to be one at the end node. At all other nodes (line 16) 
conservation of flow ensures that whatever goes in comes out. This will 
produce a solution consisting of a continuous path from start to end.

The objective function at line 18 has the same structure as all the 
flow problem examples: the product of the cost (here a distance) with the 
indicator variable of the arc used.

After we solve the problem, we process the solution to return to the 
caller something smaller, and potentially more meaningful, than our 
decision variable: a sequence of jumps, from point to point, along with 
the distance of each jump. It is the job of the modeler to hide the tricks 
required to solve a problem and provide meaningful solutions to the caller. 
A solution corresponding to the example above is shown in Table�4-9.
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4.4.2  Alternate Algorithms
If the reader is aware of Dijkstra�s algorithm, he may wonder why we 
create a linear programming model for shortest paths, especially since a 
fast implementation of Dijstra�s algorithm might be faster. The answer is 
that in the real life of a modeler we rarely have to solve pure shortest paths 
(or pure anything, really). For the vast majority of situations outside of 
textbooks, the kernel of the problem might be a shortest path, but there 
are bound to be multiple additional considerations. And adding these 
considerations in the form of additional constraints to a basic shortest 
path linear program is often a simple matter. In contrast, trying to modify 
an implementation of Dijkstra (assuming that we even have access to the 
source code) might prove considerably more difficult, if at all possible.

4.4.3  Variations
� It may be that, instead of minimizing the sum of 

distances, we want to minimize their product. We 
cannot multiply variables with a linear solver, but we can 
slightly transform the problem by taking the logarithms 
of the distances and minimizing the sum of the logs.

� Alternatively, we might be interested in the longest 
path between start and end. In theory, this is unlikely 
to be solved by linear programming in all cases7 but the 
pathological cases that hinder the theory are few and 
may not apply to the problem at hand. Another way to 
view this is that there is a large class of networks where 
it is possible to find longest paths.

7 Note that if we can solve the longest path, we can solve the Hamiltonian path. 
Also, recall that linear programs can be solved in polynomial time. Ergo, if we 
can solve the longest path problem via LP, we prove P = NP.�Then, we collect one 
million dollars from the Clay Mathematics Institute.
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The simplest transformation would be to change the minimization to 
a maximization. We can obtain a maximization by negating the distance 
matrix. But this will allow repeated nodes; worse, it may lead to an 
unbounded model (an infinite loop). The problem is that the �flow� could 
go around a cycle an infinite number of times. A partial solution is to add 
constraints to ensure that no more than one unit of flow goes into any 
node. This is a redundant constraint in the case of a minimization, but not 
in the case of a maximization. In this manner we get rid of the infinite loop 
and the repeated nodes. There still remains a problem: subtours. I will 
explain and handle this problem in Section 5.4 of Chapter 5.

In the case of a cycle-free directed graph, then longest paths are easy 
to find. You saw it before a situation where these paths are of interest: in 
Section 2.3.1 of Chapter 2 I discussed critical paths of project management. 
These are the sequence of tasks which, if delayed, will delay the whole 
project. Note that these paths are rarely unique, so that looking for a (or 
worse, the) longest path is misguided (for a simple example, see Tasks 1 
and 2 Figure fig:process-example). Let�s create a small function that will 
start from the optimal solution of our project management model and use 
our shortest paths model to extract critical paths. See Listing 4-5 for details.

Listing 4-5. Critical Tasks Extractor

 1   def critical_tasks(D,t):
 2     s = set([t[i]+D[i][1] \
 3             for i in range(len(t))]+[t[i] for i in 

range(len(t))])
 4     n,ix,start,end,times = len(s),0,min(s),max(s),{}
 5     for e in s:
 6       times[e]=ix
 7       ix += 1
 8     M = [[0 for _ in range(n)] for _ in range(n)]
 9     for i in range(len(t)):

CHAPTER 4  LINEAR NETWORK MODELS



120

10       M[times[t[i]]][times[t[i]+D[i][1]]] = -D[i][1]
11      rc,v,Path,Cost,Cumul = solve_model(M,times[start], 

times[end])
12     T = [i for i in range(len(t)) \
13         for time in Path if times[t[i]+D[i][1]] == time]
14     return rc, T

The first few lines create a set with all the tasks� starting and ending 
times; they will become our network nodes once we rename them 0, � ,  
n � 1. At line 9 we create our distance matrix by the negative of the duration 
of each task. There is an entry per task, from its starting to ending time.

We then call our shortest path model, which in this case will find a 
longest path from earliest time to project completion time. Finally, we 
extract all the tasks that end on one of the nodes of the longest path. All 
these tasks are critical since they will stretch the already longest path if 
delayed.

Running this code on the example in Table�2-8 produces Table�4-10.

� We might be interested in the shortest paths tree from 
a start node to every other node in the network. In this 
case, we could run our shortest path model n � 1 times, 
but it is simple and interesting to create a separate 
model, especially since we can return the solution in a 
more compact form than n � 1 lists of paths.

The idea of Listing 4-6 is to set the starting node with 
a supply of n � 1 (at line 8) and every other node 
with a demand of one (at line 12). The decision 
variables at line 5 each have an empty range if there 

Table 4-10. Critical Tasks of Project Management Example

[0 1 2 6 7 9]
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is no corresponding arc or else a range of [0, n]. This 
is in contrast to the previous shortest path code 
where the range was up to one. We need this relaxed 
range because the flow will not be a unit flow until 
the very last arc on a given path; that is, the arc 
incident to a leaf.

We return a list of arcs in the tree, along with their 
distances as in Table 4-11. This is best displayed 
graphically as in Figure�4-7.

Listing 4-6. Shortest Paths Tree Model

 1   def solve_tree_model(D,Start=None):
 2     s,n = newSolver('Shortestupathsutreeuproblem'),len(D)
 3     Start = 0 if Start is None else Start
 4      G = [[s.NumVar(0,0 if D[i][j] is None else  min(n,D[i]

[j]),")\
 5     for j in range(n)] for i in range(n)]
 6     for i in range(n):
 7       if i == Start:
 8         s.Add(n-1 == sum(G[Start][j] for j in range(n)))
 9         s.Add(0 == sum(G[j][Start] for j in range(n)))
10       else:
11         s.Add(sum(G[j][i] for j in range(n)) - \
12              sum(G[i][j] for j in range(n))==1)
13      s.Minimize(s.Sum(G[i][j]*(0 if D[i][j] is None else D[i]

[j]) \
14                   for i in range(n) for j in range(n)))
15     rc  = s.Solve()
16      Tree = [[i,j, D[i][j]] for i in range(n) for j in range(n) \
16           if SolVal(G[i][j])>0]
17     return rc,ObjVal(s),Tree
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Figure 4-7. Shortest tree solution

Table 4-11. Optimal Solution to the Shortest Paths Tree Problem

From To Distance

0 1 46

0 2 17

0 3 24

0 4 51

2 5 31

2 8 51

3 7 17

5 6 4

5 11 51

7 9 14

9 10 28

10 12 6
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� We might also be interested in the shortest paths 
between each pair of nodes. Again, if the reader is well- 
versed in combinatorial algorithms, he might be aware 
of the Floyd-Warshall algorithm, but for the same 
reasons we create a shortest path model, we might 
create an all-pairs shortest paths model or use our 
current model repeatedly to find all pairs. You will see 
later a better approach but since a few lines of code will 
suffice, let�s write an all-pairs function (Listing 4-7).

To avoid running n2 instances we use the Principle of Optimality, 
which states that, if P = (vi+1, vi+2, vi+3, � , vi+k ) is a shortest path, then so is 
every subpath of P. This is used in the loop starting at line 11 to extract all 
intermediate paths from a given shortest path.

Listing 4-7. All-Pairs Shortest Path Function Using Our Shortest 
Path Model

 1   def solve_all_pairs(D):
 2     n = len(D)
 3     Costs =[[None if i != j else 0 for i in range(n)]\
 4       for j in range(n)]
 5     Paths =[[None for i in range(n)] for j in range(n)]
 6     for start in range(n):
 7       for end in range(n):
 8         if start != end and Costs[start][end] is None:
 9            rc, Value, Path, Cost, Cumul = solve_model(D,start,end)
10           if rc==0:
11             for k in range(len(Path)-1):
12               for l in range(k+1,len(Path)):
13                 if Costs[Path[k]][Path[l]] is None:
14                    Costs[Path[k]][Path[l]] = Cumul[l]-Cumul[k]
15                   Paths[Path[k]][Path[l]] = Path[k:l+1]
16     return Paths, Costs
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Running Listing 4-7 on our example produces the matrix of distances 
at Table�4-12. The reader should notice that this matrix extends the initial 
distance of matrix of Table 4-7.

Table 4-12. Optimal Solution to All-Pairs Shortest Paths Problem

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12

P0 46 17 24 51 48 52 41 68 55 83 99 89

P1 46 63 70 31 33 37 54 49 68 90 81 96

P2 79 38 68 34 31 35 58 51 66 88 82 94

P3 24 70 41 33 37 41 17 49 31 59 81 65

P4 51 85 57 41 4 8 31 18 39 60 50 66

P5 48 81 53 37 4 4 27 22 35 57 51 63

P6 52 86 58 33 1 5 32 19 40 59 51 65

P7 75 54 26 64 31 27 31 49 14 42 66 48

P8 68 89 51 49 18 20 17 43 55 57 32 63

P9 83 68 40 72 39 35 39 14 57 28 80 34

P10 111 145 116 101 60 64 68 91 65 99 58 6

P11 100 121 83 81 50 52 49 75 32 61 58 56

P12 127 148 110 108 77 79 76 102 59 114 114 56
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Classic Discrete 
Models
The problems in this chapter are classical examples of integer programs 

(IP). A better name would be discrete linear programs because we 

described the past ones as continuous linear programs and the antonym 

of continuous is discrete. Alas, the tradition is firmly entrenched so we 

will refer to them as IPs. They are characterized by algebraically linear 

constraints and linear objectives with the additional requirement that 

variables must take on only integral values.

All are very simple to state, if not always simple to model or solve. They 

are included here to highlight two elements:

• First, many real-life problems have embedded in 

them one or more of these simple, pure problems. It is 

therefore profitable for a modeler to recognize these 

kernels and model them with ease.

• Second, many of the problems, to be efficiently 

modeled, require some trickery. Knowing these tricks, 

and recognizing different situations where they can be 

applied, is the hallmark of a good modeler.

What makes an integral model is the requirement that some or  

all of the variables be integral. Keep in mind that, contrary to the  

pseudo- integral models of the previous chapter, the structure of the 
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problem does not guarantee this integrality and the modeler must choose 
a solver capable of handling integrality constraints.

There are a few reasons to require integral variables. The first and 
most obvious case is that we are counting objects, not measuring 
amounts (people, cars, or planets as opposed to water, carbon dioxide, 
or percentages). The second case occurs when the decision variables 
represent answers to yes/no questions (Should we build this plant? Should 
we get married?) or, more generally, Boolean conditions (with states of 
either True or False, satisfying the principle of an excluded middle). The 
third case more technical applies to auxiliary variables when they are used 
as �indicator variables.� This is when they indicate the presence or absence 
of a certain state (y is 1 if and only if the continuous variable x is non-zero). 
Of course, the boundary between these use cases is blurry: a true decision 
variable could be an indicator variable and an auxiliary variable could be 
counting people. The three cases are nevertheless good to keep in mind 
while modeling.

Problems of this chapter have multiple interesting variations. I cannot 
possibly hope to cover them all, but the reader, after reading some of the 
variations, is encouraged to imagine others. No matter how creative one 
is in varying some of the requirements, most of these problems have been 
studied so extensively that few variations remain untouched and most 
have found some use.1

5.1  Minimum Set Cover
The first problem in this chapter is one of the most studied and best 
understood of the integer programs. There are a number of applications, 
but let�s consider the following one: General Engine Corp. is considering 

1 This might be a case, in the words of Wigner, of the unreasonable effectiveness 
of mathematics in the natural sciences; or more prosaically, because we mostly 
solve problems that we know how to solve.
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suppliers for its new line of electric cars. Every supplier can produce 
some parts of the cars, and there is overlap in the parts coverage between 
suppliers. For instance, Dolphin Inc. can supply wheel bearings, electrical 
cables, and low-power light emitting diodes while Schukert GA can supply 
electrical cables, batteries, and battery casings. There are hundreds of 
suppliers and thousands of parts.

For General Engine, minimizing the number of suppliers offers 
contractual savings. So the goal is to find the smallest number of suppliers 
that together will provide all the required parts. The name set cover is 
explained by the goal: covering all the elements of the set, here the parts 
needed to build the electric cars. The small example used to illustrate the 
model is given in Table�5-1.

Table 5-1. Example of Set Cover

Supplier Part Numbers Supplier Part Numbers

S0 { 3; 4; 5; 8; 24 } S1 { 11; 15; 21; 23 }

S2 { 9; 15; 24 } S3 { 9; 13 }

S4 { 5; 11; 12; 14; 16; 20 } S5 { 8; 11; 12; 15; 21 }

S6 { 1; 4; 18; 20 } S7 { 0; 3; 6; 11; 13; 15; 21; 23 }

S8 { 14; 16; 18; 19; 23 } S9 { 2; 7; 16; 22 }

S10 { 10; 14; 21 } S11 { 6; 19 }

S12 { 4; 10; 24 } S13 { 3; 4; 7; 9; 17 }

S14 { 1; 3; 5; 6; 15; 18; 19; 20; 23 }
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5.1.1  Constructing a�Model
This model will be described in stages.

5.1.1.1  Decision Variables
What we need to decide in this problem is which suppliers will get 
contracts. This is a yes/no decision. We need, for each supplier, a variable 
that will take on one of two values. The classical approach in integer 
programming is to use an integer variable with a range of [0, 1]. Being 
an integer, it therefore only has two possible values, zero and one, and is 
known as a binary or indicator variable.2

There are other possible approaches: one using Boolean variables 
taking on values True and False, but this is really the same approach, 
renamed; and one using a dynamic array variable that will include only 
the chosen suppliers. This later approach may seem natural at first glance, 
but is not easily implemented using an integer solver. It is better suited to a 
constraint solver, which I will not cover here.

Let�s assume a set S of suppliers and declare our first integer  
variables as

S i Si �� � � �0 1,

The interpretation is that if, for example, s3, s5, and s7 are one  
while all the others are zero, then General Engine awards a contract to 
suppliers 3, 5, and 7 only. It may occur to the reader that in cases where the 
number of suppliers is much larger than the final set of chosen suppliers 
we are wasting resources. We will try to mitigate this waste but in a certain 
sense, it is unavoidable in integer programs.

2 There are cases where a binary choice -1, 1 would make the model simpler. Alas, 
no popular integer solver offers that option.
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5.1.1.2  Objective
The standard objective is to minimize the number of suppliers. Since we have 
a zero-one variable per supplier, we need to minimize the sum of all these, so

min
i S

iS
�
�

It is possible to encounter a cost per supplier. So that, instead of simply 
minimizing the number of suppliers, we want to minimize the total cost. 
Assuming that we have cost Ci for supplier i, we modify the objective 
function to read

min
i S

i iC S
�
�

This cost array could be a function of the parts supplied (more parts, 
larger cost) and the bargaining strength of the supplier.

5.1.1.3  Constraints
From a high-level perspective, there is only one constraint: General Engine 
must have access to all the required parts. Of course, there may be more 
than one supplier for some parts, but what we must not have is a part with 
no supplier (a car without a steering wheel might not sell so well).

How can we insure that we have all of the parts? Consider a given part, 
say part 23. Which suppliers provide it? There may be four, say 1, 7, 8, and 14.

This means that we must choose one of these suppliers to get part 23 
or, algebraically, that the sum s1 + s7 + s8 + s14 must be at least one.  
(Not equal to one because there are, in general, no solutions without some 
redundancy.)
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14    Parts = [[i for i in range(nbSup) \
15       if j in D[i] and SolVal(S[i])>0] for j in 

range(nbParts)]
16    return rc,ObjVal(s),Suppliers,Parts

The function receives two-dimensional array D containing the part 
numbers supplied by each supplier, exactly as in Table�5-1. The code 
also accepts cost array C in case there is a varying cost per supplier. It is 
optional and its absence indicates a pure set cover problem, one where we 
are concerned with minimizing the number of subsets chosen.

Line 4 is different from all our previous models. It chooses a solver, in 
this case, CBC from the COIN-OR project,3 which can handle discrete as 
well as continuous variables. This very small change on our part represents 
an order of magnitude change on the part of the solver. In fact, to solve an 
integer model, most solvers will internally solve a multitude of continuous 
models derived from ours. The algorithms are fascinating but beyond the 
scope of this book.4

For this first discrete model, we create the solver instance using the 
low-level OR-Tools routine Solver. From here onward, we will use our own 
newSolver in this manner:

s = newSolver('Name of problem', True)

The second parameter, which defaults to False, instantiates an integer 
solver if True. Internally we usually use CBC, but there are a number of 
possible integer solvers. (See Listing 7-31 in Chapter 7 for details.)

Line 7 defines our binary variable (with the understanding that zero 
will mean �ignore supplier� and one will mean �pick supplier�). Up until 
now, all variables were defined with NumVar, which implies a floating point 

3 www.coin-or.org
4 The interested reader should search �branch and bound� to start reading about 
the solution techniques.
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variable approximating a real number. With IntVar we are instructing the 
solver that a variable can only take on integral values. Since we give it a 
range of zero to one, it forces the variable to have only one of two values. 
Any range is possible with all solvers.

The reader should experiment with this model by changing the IntVar 
to a NumVar and note that the variables will now take on values of zero,  
one- half, and one.5 What does it mean to have one-half of a supplier? 
Nothing, hence the integrality requirement.

The loop at line 9 implements the cover constraints. It mimics to the 
letter the constraint (5.1), forcing the sum of suppliers of each part to be 
above one. Notice how easily we can extract subsets based on conditionals 
in Python.

The cost function at Line 11 is either the number of supplier, as in a 
traditional set cover, or the total cost of choosing these suppliers if each 
one incurs a different cost. This is the purpose of the optional cost array C, 
indexed by supplier.

Finally, after we solve it, we construct meaningful return values. It 
would be painful to the caller to receive the raw S variables. Most of them 
might be zero. In a real problem with thousands, maybe tens of thousands 
of parts and suppliers, the zeros are not interesting. So we return an array 
containing only the suppliers who should be offered a contract, along with 
a cross-reference of parts to suppliers. This way the user knows where to go 
for each part.

For our example, the solution, absent a cost array, is displayed in 
Table�5-2. The first line lists all retained suppliers, the next indicates 
who can supply (among those retained) each part. Note that each part is 
covered.

5 No other fractions are possible in a pure set cover problem for fascinating reasons 
the reader is encouraged to research (keyword search: half-integrality).
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5.1.2  Variations
Variations abound, from seemingly unrelated �elds.

� A famous instance of the set cover problem is part of 
the infamous crew scheduling problem. Imagine that 
we are an airline and we want to make sure that all 
the so-called legs (pairs of cities) are covered during a 
certain time window. We have rosters of crew members 
travelling together from city A to city B, with stopovers 
in cities C, D, � , E.�Our task is to cover all legs using 
the minimum number of rosters.

Table 5-2. Optimal Solution to the Set Cover Problem

Parts Suppliers Parts Suppliers

All { 5; 7; 9; 10; 12; 13; 14 } Part #0 { 7 }

Part #1 { 14 } Part #2 { 9 }

Part #3 { 7; 13; 14 } Part #4 { 12; 13 }

Part #5 { 14 } Part #6 { 7; 14 }

Part #7 { 9; 13 } Part #8 { 5 }

Part #9 { 13 } Part #10 { 10; 12 }

Part #11 { 5; 7 } Part #12 { 5 }

Part #13 { 7 } Part #14 { 10 }

Part #15 { 5; 7; 14 } Part #16 { 9 }

Part #17 { 13 } Part #18 { 14 }

Part #19 { 14 } Part #20 { 14 }

Part #21 { 5; 7; 10 } Part #22 { 9 }

Part #23 { 7; 14 } Part #24 { 12 }
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� Another geeky example involves computer virus 
detection. Imagine that we have a database of 
thousands of computer viruses and are trying to build 
a detector. One way to do this is to try to identify short 
strings of bytes that are present in these viruses but not 
in non-virus code. What we want is to minimize the 
numbers of strings and yet identify all viruses. �en our 
detector will look for this small set of strings in the data 
(all programs on the hard drive).

� �ere are applications in telecommunications. Imagine 
that we can build cell towers in a city in a number of 
locations. Considering the cost of each, we want to 
minimize expenditures and yet cover all the buildings 
and houses in the city.

� Where should we locate �re stations in a city so that, 
considering the average response time, we minimize 
the number of stations and yet cover the whole city?

5.2  Set Packing
The mirror problem to the set cover is known as the set packing. In either 
case, we are given a universal set and a set of subsets, and we need to 
choose some of them. In the former case, we aim at covering the universal 
set with a minimal set of subsets, possibly covering some elements more 
than once. In the latter case, the objective is to choose as many of the 
subsets as possible but without ever choosing an element more than once. 
Therefore, some elements may not be covered.

To justify this problem, let�s consider an application for airline  
crew scheduling. To simplify, say that each plane must have a pilot,  
a co- pilot, a navigator, and a purser. Each of these sets is called a roster. 
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Some pilots may fly some types of planes but not others. Pilots also may 
have preferences for their co-pilots (and vice versa). Conceptually we can 
think of a specific combination of plane/pilot/co-pilot/navigator/purser as 
a subset of our universal set of planes and crews members. What we want 
is to maximize the number of subsets we choose, but we must not pick two 
subsets that share elements since a pilot cannot be at two places at once. 
Table�5-3 illustrates a small instance of this problem.

Table 5-3. Example of Set Packing from Crew Scheduling

Roster # Crew IDs Roster # Crew IDs

0 { 3; 18; 30 } 1 { 4; 4; 36 }

2 { 1; 5; 9 } 3 { 7; 17; 30 }

4 { 10; 23; 23 } 5 { 8; 10; 25 }

6 { 19; 29; 36 } 7 { 3; 4; 17 }

8 { 19; 28; 40 } 9 { 11; 24; 31 }

10 { 18; 30; 33 } 11 { 22; 25; 26 }

12 { 13; 15; 26 } 13 { 21; 27; 28 }

14 { 7; 12; 33 }

5.2.1  Constructing a�Model
The model will be constructed in stages.

5.2.1.1  Decision Variables
What we need to decide in this problem is very similar to the decision for 
the set cover: which rosters to pick. Again, it�s a yes/no decision, which 
suggests an indicator variable. Let�s assume a set S of crew rosters to 
declare our indicator variables as

s i Si �� � � �0 1,
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5.2.1.2  Objective
The simplest objective is to maximize the number of rosters chosen, therefore

max
i S

iS
�
�

Of course, we could also have a variation with a value per roster and 
maximize the total value.

5.2.1.3  Constraints
The constraint, and there is only one, is never to pick two rosters including 
the same crew member. Since our decision variables are zero-one, we can 
simply force, for each crew, that the sum of roster variables including the 
crew under consideration is at most one.

If all crew of roster i are held in Si and the universal set of crew is U,  
we obtain

i j S
i

i

s j u
: �
� � � �1

5.2.1.4  Executable Model
The executable model is seen in Listing 5-2. Very similar to Listing 5-1, it 
receives a two-dimensional array D with a list of crew rosters, exactly as 
Table�5-3. The function will also accept an optional cost array C to attach to 
each roster.

Listing 5-2. Set Packing Model (set packing.py)

 1  def solve_model(D,C=None):
 2    s = newSolver(’SetuPacking’, True)
 3    nbRosters,nbCrew = len(D),max([e for d in D for e in d])+1
 4    S = [s.IntVar(0,1,”) for i in range(nbRosters)]
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 5    for j in range(nbCrew):
 6      s.Add(1 >= sum(S[i] for i in range(nbRosters) if j in D[i]))
 7    s.Maximize(s.Sum(S[i]*(1 if C==None else C[i]) \
 8      for i in range(nbRosters)))
 9    rc = s.Solve()
10     Rosters=[i for i in range(nbRosters)if S[i].

SolutionValue()>0]
11    return rc,s.Objective().Value(),Rosters

A solution for our instance, with no cost array, appears in Table�5-4.

Table 5-4. Optimal Solution to the Set Packing

Rosters chosen 8����{ 2; 4; 6; 7; 9; 12; 13; 14 }

5.2.2  Variations
A few minor variations.

� �e main variation is to have a cost on the rosters 
selected. We then minimize the total cost. �e code 
given already implements this possibility.

� Another possibility is that we have a combination of 
set cover and set packing: we want to cover entirely the 
universal set and use each element exactly once. In this 
case, we speak of set partitioning.

5.3  Bin Packing
Notwithstanding the familial appearance of set packing and the current 
problem, bin packing, the two problems are antipodal in difficulty. Set 
cover is the easy cousin while set packing is the battle-hardened old aunt. 
To solve it, we will need to go past the obvious natural formulation and dig 
into a new bag of tools.
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Abstractly, bin packing is the problem of partitioning a set, where each 
element has a weight so that we minimize the number of groups and yet 
maintain each group under a prescribed weight limit.

To illustrate, shipper VQT Inc. has a number of trucks, each with a 
maximum weight capacity. On a particular morning, they have packages 
of various weights to transport. A simple instance is described in Table�5-5. 
The goal is to minimize the number of trucks used to deliver all packages.

Table 5-5. Example of Bin Packing

Truck Weight Limit 1264
Number of Packages Unit weight

0 8 258

1 10 478

2 8 399

Total 26 10036

Note that having only a weight limit is not entirely realistic. Packages 
also have a volume and it is likely that we need to be able to pack according 
to volume. But that problem is considerably more difficult and we will 
leave it aside. There should also be consideration of distances, which we 
will tackle in a later section (see 5.4). To repeat a point worth repeating: 
few, if any, real-life optimization problems are pure and simple textbook 
problems. They are always a combination of multiple problems. A good 
modeler recognizes this and has the toolset to model all.

CHAPTER 5  CLASSIC DISCRETE MODELS



139

5.3.1  Constructing a�Model
The model will be described in stages.

5.3.1.1  Decision Variables
What we need to decide is, �Which package goes into which truck?� We 
know all the packages. Although there are many instances of identical 
packages (identical for our purposes, that is, with the same weight), we can 
give them ordinal numbers. But we do not really know the number of trucks.

That is one of the questions we are trying to answer. Nevertheless, 
we can certainly give an upper bound on the number of trucks by some 
heuristic. At worst, we can say with certainty that we will need at most one 
truck per package.

So let�s assume P packages and at most T trucks. Our decision variable 
is then

x i P j Ti j, , ,�� � � � �0 1

where xi,j = 1 will mean that package i goes into truck j.
This is a good start but we also need to know which of the trucks we 

will need. So another decision variable seems indicated, namely

y j Tj �� � � �0 1,

where yj = 1 will indicate that truck j is to be used. This seems to answer all 
of the questions we need answered.

5.3.1.2  Constraints
First, we need to establish a relationship between our xi,j and yj variables 
since we must have a given yj equal to one (truck j used) if xi,j is one for 
any i. Another way to view this is that we cannot put packages in a truck 
we do not use. You have seen this type of constraint before. Recall the diet 
problem of Section 2.1.2�in Chapter 2, where one of the constraints was  
�If food 2 is used, then we must have at least as much food 3�in the diet.�
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The general idea is to ensure that one variable is bounded by another 
or by a multiple of another. In this case, that trick suggests using

x y i P j Ti j i, ,� � � � �  (5.2)

This does satisfy our relationship, although it may look rather 
wasteful to the reader. Indeed, we will prune this attempt shortly. Note 
coincidentally that we also need to bind the sum of the package weights in 
every certain truck. Assuming that package i has weight wi and truck j has 
capacity Wj, we need

i P
i i j jw x W j T

�
� � � �,  (5.3)

Here is the obvious question now, once we notice the explosion of 
similar constraints: �Is there a way to combine equations (5.2) and (5.3)?� 
Indeed there is:

i P
i i j j jw x W y j T

�
� � � �,  

(5.4)

We can see that equation (5.4) subsumes both of (5.2) and (5.3). We 
have reduced the number of constraints from |P||T| + |T| to |T|, a non-trivial 
improvement.

At this point, our model guarantees that

� A truck is used if any package is loaded in it.

� The sum of the package weights in a truck respects its 
capacity.

Last, we ensure that each package finds its way to some truck:

i T
i jx i P

�
� � � �, 1

 
(5.5)
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5.3.1.3  Objective
The simplest objective is to minimize the number of trucks used, therefore

min
j T

jy
�
�

5.3.1.4  Executable Model
We will assume that the function receives array D containing a list of 
packages with their weights and the count of packages of each weight 
(we will call these weight classes), exactly as in Table�5-5. It also receives 
a weight capacity for each truck in W.�The third parameter, optional, 
will be explained after we solve our small example. Just note that its 
default value is False and in that case, a large set of, as yet unexplained, 
constraints are skipped (lines 17 to 27). See Listing 5-3.

Listing 5-3. Bin Packing Model (bin packing.py)

 1  def solve_model(D,W,symmetry_break=False,knapsack=True):
 2    s = newSolver(’BinuPacking’,True)
 3    nbC,nbP = len(D),sum([P[0] for P in D])
 4    w = [e for sub in [[d[1]]*d[0] for d in D] for e in sub]
 5    nbT,nbTmin = bound_trucks(w,W)
 6    x = [[[s.IntVar(0,1,”) for _ in range(nbT)] \
 7       for _ in range(d[0])] for d in D]
 8    y = [s.IntVar(0,1,”) for _ in  range(nbT)]
 9    for k in range(nbT):
10      sxk = sum(D[i][1]*x[i][j][k] \
11              for i in range(nbC) for j in range(D[i][0]))
12      s.Add(sxk <= W*y[k])
13    for i in range(nbC):
14      for j in range(D[i][0]):
15        s.Add(sum([x[i][j][k] for k in range(nbT)]) == 1)
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16    if symmetry_break:
17      for k in range(nbT-1):
18        s.Add(y[k] >= y[k+1])
19      for i in range(nbC):
20        for j in range(D[i][0]):
21          for k in range(nbT):
22            for jj in range(max(0,j-1),j):
23              s.Add(sum(x[i][jj][kk] \
24               for kk in range(k+1)) >= x[i][j][k])
25            for jj in range(j+1,min(j+2,D[i][0])):
26              s.Add(sum(x[i][jj][kk] \
27                for kk in range(k,nbT))>=x[i][j][k])
28    if knapsack:
29      s.Add(sum(W*y[i] for i in range(nbT)) >= sum(w))
30    s.Add(sum(y[k] for k in range(nbT)) >= nbTmin)
31    s.Minimize(sum(y[k] for k in range(nbT)))
32    rc = s.Solve()
33     P2T=[[D[i][1], [k for j in range(D[i][0]) for k in 

range(nbT)
34                 if SolVal(x[i][j][k])>0]] for i in range(nbC) ]
35    T2P=[[k, [(i,j,D[i][1]) \
36      for i in range(nbC) for j in range(D[i][0])\
37            if SolVal(x[i][j][k])>0]] for k in range(nbT)]
38    return rc,ObjVal(s),P2T,T2P

At line 4 we construct an array of weights, one per package. This implicitly 
also assigns an ordinal to each package. The function bound- trucks, 
described in Listing 5-4, uses the weights of the packages and the capacity of 
each truck to quickly estimate an upper bound on the number of trucks. This 
function does not need to be brilliant, but a better bound tends to accelerate 
the solver.
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The two lines starting at 7 define our decision variables: one to assign 
packages to trucks, and one to select trucks. The package variable is a 
three-dimensional array. The first dimension indicates the weight class, 
the second is the ordinal within the class, and the third is the truck. So that 
if, for example, x[2][3][5] has value of 1, it will mean that package three of 
the weight class two is loaded onto truck five.

The constraint at the loop on line 9 is a transcription of equation (5.4), 
our merged constraint to both force the truck selection variable and to  
limit the total package weight carried by a truck, modified to use the  
three- dimensional decision variables.

The final constraint at line 15 is a transcription of equation (5.5) to 
ensure all packages find a truck.

Ignore the lines starting at 16 and guarded by the symmetry_break 
parameter, for now.

After solving, we produce two arrays, each providing a distinct view of 
the solution. The first indicates, for each package, the loading truck. The 
second indicates, for each truck, the list of packages. The solution for our 
instance appears in Table�5-6, tab:bin_packing_results_bad. The first table 
lists the trucks and their content indicated by a triple (weight class, package 
ordinal, weight). The second table lists each weight class, in the same order 
as Table�5-5, with the truck in which each package of the class is loaded.

Even for small instances, this code can take hours to produce a 
solution. Bin packing is not an easy problem and here is part of the  
reason why: notice that some truck numbers are omitted. The solver  

Table 5-6. Optimal Package Assignments (Naive Approach)

Weight Truck Id

258 [0, 6, 2, 5, 3, 8, 7, 4]

478 [3, 5, 6, 8, 4, 5, 4, 6, 7]

399 [2, 0, 7, 8, 0, 3, 2]
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seems to choose trucks at random among those we allow. Also, the 
packages of a given weight class are randomly distributed among the trucks. 
Indeed, executing the same model on the same instance on a different  
computer or a different solver might very well produce a different answer 
(of course, with the same total number of trucks). The problem is that there 
are many solutions with exactly the same value. Imagine, for instance, 
swapping the entire contents of two trucks with the same capacity or 
swapping two packages of the same weight class within a truck, or between 
two trucks. These swaps will clearly have no effect on the value of the solution.

In classical optimization terms, this situation is a form6 of degeneracy. 
Researchers in constraint programming talk7 of symmetry. It almost always 
affects the solver negatively. The runtime is difficult to predict because it 
is solver-dependent but it is rarely good. There is another reason to want 
to modify the model to avoid these identical solutions: we could produce 
nicer solutions for the user.

Adding constraints favoring one optimal solution over another 
identical one (identical from our point of view) is known as symmetry 
breaking, which begins to explain the parameter symmetry_break in the 
code guarding the additional constraints. Let�s tackle these constraints, 
starting with the easiest first.

How can we ensure that the trucks are chosen in order and none are 
skipped, assuming that they all have the same capacity? One way is to bind 
the truck selection variables pairwise:

y y j Tj j� � � � � �1 0\

To see how this works, consider what happens to the y vector for, say, y5 
to be one. It must be that y4 is one and, transitively, so must be y3, y2, y1, and 
y0. On the other hand, it has no effect on y6 or higher. In terms of code, this 
is done in the loop at line 17.

6 For the theoretically minded, this is a case of dual-degeneracy.
7 The symmetry stems from visualizing the search tree and noticing that there are 
multiple branches with exactly the same structure and value.
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The second form of symmetry alluded to is interchangeable packages. 
The way we stated the problem, there is no difference between two 
packages in the same weight class. Yet, for the solver, swapping two 
packages within a truck or between two trucks is another potential 
solution, and any time spent looking in that direction is time wasted.

Let�s consider how to break this symmetry by looking at a small 
example, say three packages and three trucks. The idea is that since the 
packages of a weight class are naturally ordered, we can force that they 
be loaded into trucks in their order. For instance, if the second package is 
loaded in truck one, then the third can only be loaded in truck one or higher. 
In terms of the decision variables, we want the following implications:
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You will see later (Section 7.2.3�in Chapter 7 on reification) a general 
way to implement these implications. For now, let�s try to implement them 
as simply as possible.

The first implication says �If package 0 is loaded onto truck 2, then 
both packages 1 and 2 must also be loaded onto truck 2.� But this is a 
boundary case because truck 2 is our last truck. The next implication is 
more interesting: �If package 0 is loaded onto truck 1, then packages 1 and 
2 must be loaded onto truck 1 or 2.�
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All these additional constraints reduce the search space. With some 
solvers, on some problems the approach will drastically reduce the 
execution time. With these symmetry-breaking constraints enabled by 
calling solve_model with the last parameter as True, the output on the 
same instance is shown in Tables�5-7 and 5-8. You see that all trucks used 
are consecutive from zero and that the packages are loaded in order, a 
much nicer solution. What you do not see by reading the table is that the 
runtime is a very small fraction of the runtime necessary for the same 
instance when the symmetry-breaking constraints are ignored.

Table 5-7. Optimal Truck Loads with Symmetry-Breaking 
Constraints 

Trucks 8.0 (Id Weight) Packages 24 (9159) (Id Weight)*

0 (1252) [(0, 0, 258), (0, 1, 258), (0, 2, 258), (1, 0, 478)]

1 (1214) [(0, 3, 258), (1, 1, 478), (1, 2, 478)]

2 (1214) [(0, 4, 258), (1, 3, 478), (1, 4, 478)]

3 (1135) [(0, 5, 258), (1, 5, 478), (2, 0, 399)]

4 (1056) [(0, 6, 258), (2, 1, 399), (2, 2, 399)]

5 (956) [(1, 6, 478), (1, 7, 478)]

6 (1197) [(2, 3, 399), (2, 4, 399), (2, 5, 399)]

7 (1135) [(0, 7, 258), (1, 8, 478), (2, 6, 399)]

Table 5-8. Optimal Package Assignments  
with Symmetry-Breaking Constraints

Weight Truck Id

258 [0, 0, 0, 1, 2, 3, 4, 7]

478 [0, 1, 1, 2, 2, 3, 5, 5, 7]

399 [3, 4, 4, 6, 6, 6, 7]
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We have left to consider a simple heuristic to bound the number of trucks 
required. We start by adding packages to the first truck until we reach capacity 
and then move on to the next. This greedy approach will never be optimal 
but is enough to get a reasonable upper bound on the required number of 
trucks. A simple lower bound is obtained by dividing the sum of the weights 
of all packages by the truck capacity. This is presented in Listing 5-4. Better 
heuristics abound and they might be necessary for large instances.

Listing 5-4. Simple-Minded Heuristic to Bound the Number of Trucks

1  def bound_trucks(w,W):
2    nb,tot = 1,0
3    for i in range(len(w)):
4      if tot+w[i] < W:
5       tot += w[i]
6      else:
7       tot = w[i]
8       nb = nb+1
9    return nb,ceil(sum(w)/W)

5.3.1.5  Variations
�is problem o�en appears in combination with others. But here are a few 
of the simpler variations.

� It may be that each truck has a di�erent weight 
capacity. �e capacity constraint is simple to adapt, 
but care must be taken with the symmetry-breaking 
constraint. Skipping some trucks may be unavoidable. 
So the symmetry-breaking must be done only within 
subsets of trucks with the same capacity.

� Instead of loading a �xed number of packages in an 
undetermined number of trucks, we may have a �xed 
number of trucks and an undetermined number 
of packages to load. In that situation, packages, in 
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addition to a weight, usually also have a value, and we 
must try to maximize the total value. �is situation is 
usually much simpler to solve. Assuming that package i 
has value vi, the objective function is

max ,
i P j T

i i jv x
� �
��

subject to constraint (5.4).

� �ere is a simpler version of bin packing known as 
knapsack where packages have value and weight, 
but there is only one truck with a weight capacity. 
�is problem is so simple that there exist very fast 
algorithms for it. But, a general-purpose integer solver 
will, of course, solve it without any di�culty. Although 
it is simple, it does have some value, not as a problem 
that occurs naturally, but as a subproblem of a more 
complex situation. You will see examples of this later.

� A closely related problem is that of capital budgeting. 
Consider a multi-period planning horizon T and a 
set of possible projects, P; each project j requiring an 
investment of atj in period t and representing a value 
cj. Given a limited budget bt in period t, which projects 
should be earmarked for investments? �e model is a 
simpli�cation of bin packing:

max

,

j P
j j

j P
tj i t

i

c y

a y b t T

y

�

�

�
� � � �

� ��0 1

where yj represents the decision �Go ahead (or not) 
with project j.�
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5.4  TSP
We now tackle the venerable travelling salesman problem (hereafter TSP). 
This problem was never important for salesmen but it is very important 
in vehicle routing, electronic circuit design, and job sequencing, among 
other applications. Moreover, it will allow me to describe, with a minimum 
of spurious complexity, an effective and reusable modeling technique: 
adding constraints iteratively.

Here is an example situation: at HAL Inc., during the process of a new 
circuit design, power must be routed to each elementary component. 
These components are set in a two-dimensional lattice, potentially all 
pairwise connected. The best way to feed power to these components is to 
establish a path of minimal total length, conceptually starting at the power 
supply (Vcc), going around to each component, and then coming back to 
the power supply (Vee or ground).8

Therefore, the problem, viewed abstractly, can be stated as �Given 
a matrix of pairwise distances in a graph, find a tour of all vertices 
minimizing total distance.� Table�5-9 is the example we will solve to 
illustrate. In addition to the distances, it includes the Cartesian coordinates 
of the points. We will not use these coordinates in the model but they are 
useful for visualizing the problem. The absence of a number in the table 
indicates that there is no direct path between the two nodes.

8 Whether the trace comes back to the origin is irrelevant from a complexity 
standpoint. We can assume a distance zero between Vcc and Vee if need be.
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5.4.1  Constructing a�Model
The model will be described in stages.

5.4.1.1  Decision Variables
What we need to decide in this problem is simply the path to take, which 
means the sequence of points to follow. This is identical to our decision in 
the shortest path problem; therefore, assuming that P is the set of points, 
we define

x i P j Pi j, , ,� � � � � ��0 1 ,

where xi,j with a value of one will indicate that we need to connect 
points i and j. Beware: This problem has the same decision variable and 
underlying graph structure as the shortest path problem. However, it is 
not a flow problem; it is considerably more complex, as you will begin to 
appreciate shortly.

Table 5-9. Example of Distance Matrix for TSP

P (x y) P0 P1 P2 P3 P4 P5 P6 P7 P8 P9

P0 72 19 711 107 516 387 408 539 309 566 771

P1 10 37 539 769 881 380 546 655 443 295 1140

P2 77 31 122 752 281 441 264 318 448 588 730

P3 89 61 519 875 274 435 334 93 776 949 302

P4 51 61 484 561 338 419 118 268 607 495 431

P5 57 52 409 406 244 380 93 295 544 549 494

P6 82 69 479 735 334 101 345 247 679 809 238

P7 52 1 221 444 433 744 487 435 649 325 840

P8 21 14 510 303 599 984 531 553 847 350 1001

P9 88 96 663 989 664 335 588 434 297 1093 1012
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With the addition of this constraint, solvers will never include more 
than three arcs between the four problematic vertices, preventing a 
subtour among them. Another way to view this type of constraint: it forces 
a path entering a cluster of nodes to exit the cluster. The difficulty is that 
there are many possible subtours, in fact, an exponential number: every 
subset of vertices of size larger than one is a potential subtour.

Can we add all the possible subtours? Programmatically, this is not 
difficult, but the resulting model would be unwieldy and many solvers would 
slow down unacceptably. The trick is to improve the model iteratively, as we 
did when optimizing a non-linear function 3.1.2.1. But here we will use the 
result of a solver run to choose the constraints to add to the next run.

A birds-eye view: We execute a model with no subtour elimination 
constraints. If the solver returns a tour, we are done. If it returns a set of 
subtours, we add subtour elimination constraints for each of them, and 
only them. Eventually all relevant subtours are eliminated and the solver 
returns a tour of the whole graph. It takes longer to explain this approach 
than to implement it by writing a few lines of code.

5.4.1.4  Executable Model
Let�s translate this into executable code which we will split into two: a 
first model which, given some set of subtours, will optimize after adding 
subtour elimination constraints for that particular set. See Listing 5-5. 
A second one, a main routine, iteratively calls the first model, adding 
subtours as they appear.

Listing 5-5. TSP Model with Subtour Elimination Constraints (tsp.py)

 1  def solve_model_eliminate(D,Subtours=[]):
 2    s,n = newSolver(’TSP’, True),len(D)
 3    x = [[s.IntVar(0,0 if D[i][j] is None else 1,”) \
 4         for j in range(n)] for i in range(n)]
 5    for i in range(n):
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 6      s.Add(1 == sum(x[i][j] for j in range(n)))
 7      s.Add(1 == sum(x[j][i] for j in range(n)))
 8      s.Add(0 == x[i][i])
 9    for sub in Subtours:
10      K = [x[sub[i]][sub[j]]+x[sub[j]][sub[i]]\
11           for i in range(len(sub)-1) for j in 

range(i+1,len(sub))]
12      s.Add(len(sub)-1 >= sum(K))
13    s.Minimize(s.Sum(x[i][j]*(0 if D[i][j] is None else D[i][j]) \
14                 for i in range(n) for j in range(n)))
15    rc = s.Solve()
16    tours = extract_tours(SolVal(x),n)
17    return rc,ObjVal(s),tours

Line 4 defines the decision variable, a binary indicator of the arcs 
to take. The loop starting at line 5 enforces that there must be an arc in 
and an arc out of every node, exactly as in equations (5.6)-(5.7). We also 
enforce that all x[i][i] are zero to avoid loops. For each subtour provided 
by the caller, we extract all arcs of the corresponding clique at line 9 and 
constrain the sum of them to be one less than the number of vertices in the 
clique. We process the solution returned by the solver to extract, at line 16, 
the subtours and return them to the caller. This extraction code is shown in 
Listing 5-6.

Listing 5-6. Subtour Extraction

 1  def extract_tours(R,n):
 2    node,tours,allnodes = 0,[[0]],[0]+[1]*(n-1)
 3    while sum(allnodes) > 0:
 4      next = [i for i in range(n) if R[node][i]==1][0]
 5      if next not in tours[-1]:
 6        tours[-1].append(next)
 7        node = next
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 8      else:
 9        node = allnodes.index(1)
10        tours.append([node])
11      allnodes[node] = 0
12    return tours

The main loop is simple: we iterate until the number of tours returned 
by the solver is one, taking care to accumulate subtours as they are 
discovered. See Listing 5-7.

Listing 5-7. TSP Model Mainline (tsp.py)

1  def solve_model(D):
2    subtours,tours = [],[]
3    while len(tours) != 1:
4      rc,Value,tours=solve_model_eliminate(D,subtours)
5      if rc == 0:
6        subtours.extend(tours)
7    return rc,Value,tours[0]

The solution to our small example, in Table�5-10, one iteration per 
row, illustrates the subtours that were eliminated. In parentheses, we see 
the optimal value, the total length. As we eliminate subtours, it increases, 
of course. A graphical representation is shown in Figure�5-1 where the 
subtours eliminated at each iteration are shown in distinct shades.

Table 5-10. Successive Iterations of the TSP 
Solver Showing Optimal Values and Subtours

Iter (value) Tour(s)

0-(2177) [0, 2]; [1, 7, 8]; [3, 6, 9]; [4, 5]

1-(2526) [0, 2, 7]; [1, 8]; [3, 6]; [4, 9, 5]

2-(2673) [0, 2, 3, 6, 9, 5, 4, 1, 8, 7]
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Figure 5-1. Successive (partial) solutions of TSP example

The key idea to take away from the TSP model is not that we can solve 
gigantic instances with it (specialized algorithms will do much better).9 It 
is that, even if the number of constraints to completely specify a correct 
model is large, it may be possible to include a very small fraction of the 

9 See www.math.uwaterloo.ca/tsp/concorde.html for instance
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