

i

About the Tutorial

Lua is an open source language built on top of C programming language. Lua

has its value across multiple platforms ranging from large server systems to

small mobile applications.

This tutorial covers various topics ranging from the basics of Lua to its scope in

various applications.

Audience

This tutorial is designed for all those readers who are looking for a starting point

to learn Lua. It has topics suitable for both beginners as well as advanced users.

Prerequisites

It is a self-contained tutorial and you should be able to grasp the concepts easily

even if you are a total beginner. However it would help if you have a basic

understanding of working with a simple text editor and command line.

Copyright & Disclaimer

 Copyright 2015 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of

Tutorials Point (I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain,

copy, distribute or republish any contents or a part of contents of this e-book in

any manner without written consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as

precisely as possible, however, the contents may contain inaccuracies or errors.

Tutorials Point (I) Pvt. Ltd. provides no guarantee regarding the accuracy,

timeliness or completeness of our website or its contents including this tutorial.

If you discover any errors on our website or in this tutorial, please notify us at

contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

ii

Table of Contents

About the Tutorial ... i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer .. i

Table of Contents .. ii

1. OVERVIEW .. 1

Features .. 1

How Lua is Implemented? ... 1

Learning Lua .. 2

Some Uses of Lua .. 2

2. ENVIRONMENT ... 3

Try it Option Online .. 3

Local Environment Setup .. 3

Text Editor .. 3

The Lua Interpreter ... 4

The Lua Compiler .. 4

Installation on Windows ... 4

Installation on Linux.. 4

Installation on Mac OS X ... 5

Lua IDE .. 5

3. BASIC SYNTAX ... 7

First Lua Program .. 7

Tokens in Lua .. 8

Comments .. 9

iii

Identifiers ... 9

Keywords .. 9

Whitespace in Lua ... 10

4. VARIABLES .. 11

Variable Definition in Lua .. 11

Variable Declaration in Lua ... 12

Lvalues and Rvalues in Lua .. 13

5. DATA TYPES .. 14

Type Function ... 14

6. OPERATORS .. 16

Arithmetic Operators .. 16

Relational Operators ... 17

Logical Operators .. 20

Misc Operators ... 22

Operators Precedence in Lua .. 22

7. LOOPS ... 25

while loop ... 26

for loop ... 27

repeat...until loop ... 29

nested loops ... 31

Loop Control Statement .. 32

break statement ... 33

The Infinite Loop ... 34

8. DECISION MAKING .. 35

if statement .. 36

iv

if...else statement ... 37

The if...else if...else Statement .. 39

nested if statements ... 40

9. FUNCTIONS ... 42

Defining a Function ... 42

Function Arguments .. 43

Calling a Function .. 43

Assigning and Passing Functions ... 44

Function with Variable Argument ... 45

10. STRINGS .. 46

String Manipulation .. 47

Case Manipulation .. 48

Replacing a Substring .. 48

Finding and Reversing ... 49

Formatting Strings .. 49

Character and Byte Representations ... 50

Other Common Functions ... 51

11. ARRAYS ... 52

One-Dimensional Array ... 52

Multi-Dimensional Array ... 53

12. ITERATORS .. 56

Generic For Iterator .. 56

Stateless Iterators ... 56

Stateful Iterators ... 58

v

13. TABLES .. 60

Introduction .. 60

Representation and Usage .. 60

Table Manipulation ... 62

Table Concatenation ... 62

Insert and Remove .. 63

Sorting Tables ... 64

14. MODULES .. 66

What is a Module? .. 66

Specialty of Lua Modules .. 66

The require Function ... 67

Things to Remember ... 68

Old Way of Implementing Modules .. 68

15. METATABLES ... 70

__index ... 70

__newindex .. 71

Adding Operator Behavior to Tables ... 72

__call .. 74

__tostring ... 75

16. COROUTINES ... 76

Introduction .. 76

Functions Available in Coroutines ... 76

What Does the Above Example Do? .. 78

Another Coroutine Example .. 78

vi

17. FILE I/O.. 81

Implicit File Descriptors .. 82

Explicit File Descriptors ... 83

18. ERROR HANDLING ... 86

Need for Error Handling .. 86

Assert and Error Functions .. 87

pcall and xpcall ... 88

19. DEBUGGING .. 90

Debugging – Example .. 93

Debugging Types ... 94

Graphical Debugging ... 95

20. GARBAGE COLLECTION ... 96

Garbage Collector Pause ... 96

Garbage Collector Step Multiplier ... 96

Garbage Collector Functions ... 96

21. OBJECT ORIENTED ... 99

Introduction to OOP.. 99

Features of OOP .. 99

OOP in Lua .. 99

A Real World Example... 100

Creating a Simple Class ... 100

Creating an Object .. 101

Accessing Properties ... 101

Accessing Member Function ... 101

Complete Example .. 101

vii

Inheritance in Lua ... 102

Overriding Base Functions .. 103

Inheritance Complete Example ... 103

22. WEB PROGRAMMING ... 106

Applications and Frameworks ... 106

Orbit ... 106

Creating Forms .. 109

WSAPI ... 110

Xavante ... 111

Lua Web Components ... 113

Ending Note .. 113

23. DATABASE ACCESS .. 115

MySQL db Setup ... 115

Importing MySQL .. 115

Setting up Connection ... 115

Execute Function... 116

Create Table Example ... 116

Insert Statement Example ... 117

Update Statement Example .. 117

Delete Statement Example ... 117

Select Statement Example .. 117

A Complete Example ... 118

Performing Transactions ... 119

Start Transaction... 119

Rollback Transaction ... 119

Commit Transaction .. 119

viii

Importing SQLite ... 120

Setting Up Connection .. 120

Execute Function... 120

Create Table Example ... 120

Insert Statement Example ... 121

Select Statement Example .. 121

A Complete Example ... 121

24. GAME PROGRAMING .. 124

Corona SDK ... 124

Gideros Mobile ... 125

ShiVa3D .. 125

Moai SDK .. 126

LOVE ... 126

CryEngine .. 126

An Ending Note ... 127

25. STANDARD LIBRARIES .. 128

Basic Library .. 128

Modules Library .. 131

String manipulation .. 132

Table manipulation ... 132

File Input and output .. 132

Debug facilities ... 132

26. MATH LIBRARY .. 133

Trigonometric Functions ... 135

Other Common math Functions .. 136

ix

27. OPERATING SYSTEM FACILITIES... 138

Common OS functions .. 139

Lua

1

Lua is an extensible, lightweight programming language written in C. It started

as an in-house project in 1993 by Roberto Ierusalimschy, Luiz Henrique de

Figueiredo, and Waldemar Celes.

It was designed from the beginning to be a software that can be integrated with

the code written in C and other conventional languages. This integration brings

many benefits. It does not try to do what C can already do but aims at offering

what C is not good at: a good distance from the hardware, dynamic structures,

no redundancies, ease of testing and debugging. For this, Lua has a safe

environment, automatic memory management, and good facilities for handling

strings and other kinds of data with dynamic size.

Features

Lua provides a set of unique features that makes it distinct from other

languages. These include:

 Extensible

 Simple

 Efficient

 Portable

 Free and open

Example Code

print ("Hello World!")

How Lua is Implemented?

Lua consists of two parts - the Lua interpreter part and the functioning software

system. The functioning software system is an actual computer application that

can interpret programs written in the Lua programming language. The Lua

interpreter is written in ANSI C, hence it is highly portable and can run on a vast

spectrum of devices from high-end network servers to small devices.

Both Lua's language and its interpreter are mature, small, and fast. It has

evolved from other programming languages and top software standards. Being

small in size makes it possible for it to run on small devices with low memory.

1. OVERVIEW

Lua

2

Learning Lua

The most important point while learning Lua is to focus on the concepts without

getting lost in its technical details.

The purpose of learning a programming language is to become a better

programmer; that is, to become more effective in designing and implementing

new systems and at maintaining old ones.

Some Uses of Lua

 Game Programming

 Scripting in Standalone Applications

 Scripting in Web

 Extensions and add-ons for databases like MySQL Proxy and MySQL

WorkBench

 Security systems like Intrusion Detection System.

Lua

3

Try it Option Online

We have already set up the Lua Programming environment online, so that you

can build and execute all the available examples online at the same time when

you are doing your theory work. This gives you confidence in what you are

reading and to check the result with different options. Feel free to modify any

example and execute it online.

Try the following example using our online compiler option available at

http://www.compileonline.com/

#!/usr/loc al/bin/lua

print ("Hello World!")

For most of the examples given in this tutorial, you will find a Try it option in our

website code sections at the top right corner that will take you to the online

compiler. So, just make use of it and enjoy your learning.

Local Environment Setup

If you are still willing to set up your environment for Lua programming language,

you need the following softwares available on your computer - (a) Text Editor,

(b) The Lua Interpreter, and (c) Lua Compiler.

Text Editor

You need a text editor to type your program. Examples of a few editors include

Windows Notepad, OS Edit command, Brief, Epsilon, EMACS, and vim or vi.

Name and version of the text editor can vary on different operating systems. For

example, Notepad will be used on Windows, and vim or vi can be used on

Windows as well as Linux or UNIX.

The files you create with your editor are called source files and these files

contain the program source code. The source files for Lua programs are typically

named with the extension ".lua".

2. ENVIRONMENT

http://www.compileonline.com/

Lua

4

The Lua Interpreter

It is just a small program that enables you to type Lua commands and have

them executed immediately. It stops the execution of a Lua file in case it

encounters an error unlike a compiler that executes fully.

The Lua Compiler

When we extend Lua to other languages/applications, we need a Software

Development Kit with a compiler that is compatible with the Lua Application

Program Interface.

Installation on Windows

There is a separate IDE named "SciTE" developed for the windows environment,

which can be downloaded from

http://code.google.com/p/luaforwindows/ download section.

Run the downloaded executable to install the Lua IDE.

Since it’s an IDE, you can both create and build the Lua code using the same.

In case, you are interested in installing Lua in command line mode, you need to

install MinGW or Cygwin and then compile and install Lua in windows.

Installation on Linux

To download and build Lua, use the following command:

$ wget http : //www.lua.org/ftp/lua - 5.2.3.tar.gz

$ tar zxf lua - 5.2 . 3.tar . gz

$ cd lua - 5.2 . 3

$ make linux test

In order to install on other platforms like aix, ansi, bsd, generic linux, mingw,

posix, solaris by replacing Linux in make Linux, test with the corresponding

platform name.

We have a helloWorld.lua, in Lua as follows:

print ("Hello World!")

Now, we can build and run a Lua file say helloWorld.lua, by switching to the

folder containing the file using cd, and then using the following command:

$ lua helloWorld

Lua

5

We can see the following output.

hello world

Installation on Mac OS X

To build/test Lua in the Mac OS X, use the following command:

$ curl - R - O http://www.lua.org/ftp/lua - 5.2.3.tar.gz

$ tar zxf lua - 5.2.3.tar.gz

$ cd lua - 5. 2.3

$ make macosx test

In certain cases, you may not have installed the Xcode and command line tools.

In such cases, you won’t be able to use the make command. Install Xcode from

mac app store. Then go to Preferences of Xcode, and then switch to Downloads

and install the component named "Command Line Tools". Once the process is

completed, make command will be available to you.

It is not mandatory for you to execute the "make macosx test" statement. Even

without executing this command, you can still use Lua in Mac OS X.

We have a helloWorld.lua, in Lua, as follows:

print ("Hello World!")

Now, we can build and run a Lua file say helloWorld.lua by switching to the

folder containing the file using cd and then using the following command:

$ lua helloWorld

We can see the following output:

hello world

Lua IDE

As mentioned earlier, for Windows SciTE, Lua IDE is the default IDE provided by

the Lua creator team. The alternate IDE available is from ZeroBrane

Studio, which is available across multiple platforms like Windows, Mac and Linux.

There are also plugins for eclipse that enable the Lua development. Using IDE

makes it easier for development with features like code completion and is highly

recommended. The IDE also provides interactive mode programming similar to

the command line version of Lua.

Lua

6

Lua

7

Let us start creating our first Lua program!

First Lua Program

Interactive Mode Programming

Lua provides a mode called interactive mode. In this mode, you can type in

instructions one after the other and get instant results. This can be invoked in

the shell by using the lua -i or just the lua command. Once you type in this,

press Enter and the interactive mode will be started as shown below.

$ lua - i

$ Lua 5.1 . 4 Copyright (C) 1994- 2008 Lua. org , PUC- Rio

quit to end; cd, dir and edit also available

You can print something using the following statement:

> print ("test")

Once you press enter, you will get the following output:

'test'

Default Mode Programming

Invoking the interpreter with a Lua file name parameter begins execution of the

file and continues until the script is finished. When the script is finished, the

interpreter is no longer active.

Let us write a simple Lua program. All Lua files will have extension .lua. So put

the following source code in a test.lua file.

print ("test")

Assuming, lua environment is setup correctly, let’s run the program using the

following code:

$ lua test . lua

3. BASIC SYNTAX

Lua

8

We will get the following output:

test

Let's try another way to execute a Lua program. Below is the modified test.lua

file:

#!/usr/local/bin/lua

print ("test")

Here, we have assumed that you have Lua interpreter available in your

/usr/local/bin directory. The first line is ignored by the interpreter, if it starts

with # sign. Now, try to run this program as follows:

$ chmod a +rx test . lua

$./ test . lua

We will get the following output.

test

Let us now see the basic structure of Lua program, so that it will be easy for you

to understand the basic building blocks of the Lua programming language.

Tokens in Lua

A Lua program consists of various tokens and a token is either a keyword, an

identifier, a constant, a string literal, or a symbol. For example, the following

Lua statement consists of three tokens:

io . write ("Hello world, from " , _VERSION, "! \ n")

The individual tokens are:

io . write

(

"Hello world, from " , _VERSION, "! \ n"

)

Lua

9

Comments

Comments are like helping text in your Lua program and they are ignored by the

interpreter. They start with --[[and terminates with the characters --]] as

shown below:

-- [[my first program in Lua --]]

Identifiers

A Lua identifier is a name used to identify a variable, function, or any other

user-defined item. An identifier starts with a letter ‘A to Z’ or ‘a to z’ or an

underscore ‘_’ followed by zero or more letters, underscores, and digits (0 to 9).

Lua does not allow punctuation characters such as @, $, and % within

identifiers. Lua is a case sensitive programming language.

Thus Manpower and manpower are two different identifiers in Lua. Here are some

examples of the acceptable identifiers:

mohd zara abc move_name a_123

myname50 _temp j a23b9 retVal

Keywords

The following list shows few of the reserved words in Lua. These reserved words

may not be used as constants or variables or any other identifier names.

and break do else

elseif end false for

function if in local

nil not or repeat

return then true until

while

Lua

10

Whitespace in Lua

A line containing only whitespace, possibly with a comment, is known as a blank

line, and a Lua interpreter totally ignores it.

Whitespace is the term used in Lua to describe blanks, tabs, newline characters

and comments. Whitespace separates one part of a statement from another and

enables the interpreter to identify where one element in a statement, such as int

ends, and the next element begins. Therefore, in the following statement:

local age

There must be at least one whitespace character (usually a space) between local

and age for the interpreter to be able to distinguish them. On the other hand, in

the following statement:

fruit = apples + oranges -- get the total fruit

No whitespace characters are necessary between fruit and =, or between = and

apples, although you are free to include some if you wish for readability

purpose.

Lua

11

A variable is nothing but a name given to a storage area that our programs can

manipulate. It can hold different types of values including functions and tables.

The name of a variable can be composed of letters, digits, and the underscore

character. It must begin with either a letter or an underscore. Upper and

lowercase letters are distinct because Lua is case-sensitive. There are eight basic

types of values in Lua:

In Lua, though we don't have variable data types, we have three types based on

the scope of the variable.

 Global variables: All variables are considered global unless explicitly

declared as a local.

 Local variables: When the type is specified as local for a variable then its

scope is limited with the functions inside their scope.

 Table fields: This is a special type of variable that can hold anything

except nil including functions.

Variable Definition in Lua

A variable definition means to tell the interpreter where and how much to create

the storage for the variable. A variable definition have an optional type and

contains a list of one or more variables of that type as follows:

type variable_list ;

Here, type is optionally local or type specified making it global, and

variable_list may consist of one or more identifier names separated by

commas. Some valid declarations are shown here:

local i , j

local i

local a, c

The line local i, j both declares and defines the variables i and j; which instructs

the interpreter to create variables named i, j and limits the scope to be local.

Variables can be initialized (assigned an initial value) in their declaration. The

initializer consists of an equal sign followed by a constant expression as follows:

type variable_list = value_list ;

4. VARIABLES

Lua

12

Some examples are:

local d , f = 5 , 10 -- declaration of d and f as local variables .

d , f = 5, 10; -- declaration of d and f as global variables .

d, f = 10 -- [[declaration of d and f as global var iables .

 Here value of f is nil --]]

For definition without an initializer: variables with static storage duration are

implicitly initialized with nil.

Variable Declaration in Lua

As you can see in the above examples, assignments for multiples variables

follows a variable_list and value_list format. In the above example local d , f =

5 ,10, we have d and f in variable_list and 5 and 10 in values list.

Value assigning in Lua takes place like first variable in the variable_list with first

value in the value_list and so on. Hence, the value of d is 5 and the value of f is

10.

Example

Try the following example, where variables have been declared at the top, but

they have been defined and initialized inside the main function:

-- Variable definition :

local a, b

-- Initialization

a = 10

b = 30

print ("value of a:" , a)

print ("value of b:" , b)

-- Swapping of variables

b, a = a, b

print ("value of a:" , a)

Lua

13

print ("value of b:" , b)

f = 70.0 / 3.0

print ("value of f" , f)

When the above code is built and executed, it produces the following result:

value of a : 10

value of b : 30

value of a : 30

value of b : 10

value of f 23.333333333333

Lvalues and Rvalues in Lua

There are two kinds of expressions in Lua:

 lvalue: Expressions that refer to a memory location is called "lvalue"

expression. An lvalue may appear as either the left-hand or right-hand

side of an assignment.

 rvalue: The term rvalue refers to a data value that is stored at some

address in memory. An rvalue is an expression that cannot have a value

assigned to it, which means an rvalue may appear on the right-hand side,

but not on the left-hand side of an assignment.

Variables are lvalues and so may appear on the left-hand side of an assignment.

Numeric literals are rvalues and so may not be assigned and cannot appear on

the left-hand side. Following is a valid statement:

g = 20

But following is not a valid statement and would generate a build-time error:

10 = 20

In Lua programming language, apart from the above types of assignment, it is

possible to have multiple lvalues and rvalues in the same single statement. It is

shown below.

g, l = 20, 30

In the above statement, 20 is assigned to g and 30 is assigned to l.

Lua

14

Lua is a dynamically typed language, so the variables don't have types, only the

values have types. Values can be stored in variables, passed as parameters and

returned as results.

In Lua, though we don't have variable data types, but we have types for the

values. The list of data types for values are given below.

Value Type Description

nil Used to differentiate the value from having some data or no

(nil) data.

boolean Includes true and false as values. Generally used for condition

checking.

number Represents real (double precision floating point) numbers.

string Represents array of characters.

function Represents a method that is written in C or Lua.

userdata Represents arbitrary C data.

thread Represents independent threads of execution and it is used to

implement co-routines.

table Represent ordinary arrays, symbol tables, sets, records,

graphs, trees, etc., and implements associative arrays. It can

hold any value (except nil).

Type Function

In Lua, there is a function called ‘type’ that enables us to know the type of the

variable. Some examples are given in the following code.

print (type ("What is my type")) -- > string

5. DATA TYPES

Lua

15

t =10

print (type (5.8 * t)) -- > number

print (type (true)) -- > boolean

print (type (print)) -- > function

print (type (type)) -- > functio n

print (type (nil)) -- > nil

print (type (type (ABC))) -- > string

When you build and execute the above program, it produces the following result

on Linux:

string

number

function

function

boolean

nil

string

By default, all the variables will point to nil until they are assigned a value or

initialized. In Lua, zero and empty strings are considered to be true in case of

condition checks. Hence, you have to be careful when using Boolean operations.

We will know more using these types in the next chapters.

Lua

16

An operator is a symbol that tells the interpreter to perform specific

mathematical or logical manipulations. Lua language is rich in built-in operators

and provides the following type of operators:

 Arithmetic Operators

 Relational Operators

 Logical Operators

 Misc Operators

This tutorial will explain the arithmetic, relational, logical, and other

miscellaneous operators one by one.

Arithmetic Operators

Following table shows all the arithmetic operators supported by Lua language.

Assume variable A holds 10 and variable B holds 20, then:

Operator Description Example

+ Adds two operands A + B will give 30

- Subtracts second operand from the first A - B will give -10

* Multiply both operands A * B will give 200

/ Divide numerator by de-numerator B / A will give 2

% Modulus Operator and remainder of after

an integer division

B % A will give 0

^ Exponent Operator takes the exponents A^2 will give 100

- Unary - operator acts as negation -A will give -10

Example

6. OPERATORS

Lua

17

Try the following example to understand all the arithmetic operators available in

the Lua programming language:

a = 21

b = 10

c = a + b

print ("Line 1 - Value of c is " , c)

c = a - b

print ("Line 2 - Value of c is " , c)

c = a * b

print ("Line 3 - Value of c is " , c)

c = a / b

print ("Line 4 - Value of c is " , c)

c = a % b

print ("Line 5 - Value of c is " , c)

c = a^2

print ("Line 6 - Value of c is " , c)

c = - a

print ("Line 7 - Value of c is " , c)

When you execute the above program, it produces the following result:

Line 1 - Value of c is 31

Line 2 - Value of c is 11

Line 3 - Value of c is 210

Line 4 - Value of c is 2.1

Line 5 - Value of c is 1

Line 6 - Value of c is 441

Line 7 - Value of c is - 21

Relational Operators

Following table shows all the relational operators supported by Lua language.

Assume variable A holds 10 and variable B holds 20 then:

Operator Description Example

Lua

18

== Checks if the values of two operands are

equal or not, if yes then condition becomes

true.

(A == B) is not true.

~= Checks if the values of two operands are

equal or not, if values are not equal then

condition becomes true.

(A ~= B) is true.

> Checks if the value of left operand is

greater than the value of right operand, if

yes then condition becomes true.

(A > B) is not true.

< Checks if the value of left operand is less

than the value of right operand, if yes then

condition becomes true.

(A < B) is true.

>= Checks if the value of left operand is

greater than or equal to the value of right

operand, if yes then condition becomes

true.

(A >= B) is not true.

<= Checks if the value of left operand is less

than or equal to the value of right operand,

if yes then condition becomes true.

(A <= B) is true.

Example

Try the following example to understand all the relational operators available in

the Lua programming language:

a = 21

b = 10

if (a == b)

then

 print ("Line 1 - a is equal to b")

else

 print ("Line 1 - a is not equal to b")

end

Lua

19

if (a ~= b)

then

 print ("Line 2 - a is not equal to b")

else

 print ("Line 2 - a is eq ual to b")

end

if (a < b)

then

 print ("Line 3 - a is less than b")

else

 print ("Line 3 - a is not less than b")

end

if (a > b)

then

 print ("Line 4 - a is greater than b")

else

 print ("Line 5 - a is not greater than b")

end

-- Lets change value of a and b

a = 5

b = 20

if (a <= b)

then

 print ("Line 5 - a is either less than or equal to b")

end

if (b >= a)

then

 print ("Line 6 - b is either greater than or equal to b")

end

Lua

20

When you build and execute the above program, it produces the following result:

Line 1 - a is not equal to b

Line 2 - a is not equal to b

Line 3 - a is not less than b

Line 4 - a is greater than b

Line 5 - a is either less than or equal to b

Line 6 - b is either greater than or equal to b

Logical Operators

Following table shows all the logical operators supported by Lua language.

Assume variable A holds true and variable B holds false then:

Operator Description Example

and Called Logical AND operator. If both the

operands are non-zero, then condition

becomes true.

(A and B) is false.

or Called Logical OR Operator. If any of the

two operands is non-zero, then condition

becomes true.

(A or B) is true.

not Called Logical NOT Operator. Used to

reverse the logical state of its operand. If a

condition is true, then Logical NOT operator

will make false.

!(A and B) is true.

Example

Try the following example to understand all the logical operators available in the

Lua programming language:

a = 5

b = 20

if (a and b)

then

 print ("Line 1 - Conditio n is true")

Lua

21

end

if (a or b)

then

 print ("Line 2 - Condition is true")

end

-- lets change the value ofa and b

a = 0

b = 10

if (a and b)

then

 print ("Line 3 - Condition is true")

else

 print ("Line 3 - Condition is not true")

end

if (not (a and b))

then

 print ("Line 4 - Condition is true")

else

 print ("Line 3 - Condition is not true")

end

When you build and execute the above program, it produces the following result:

Line 1 - Condition is true

Line 2 - Condition is true

Line 3 - Condit ion is true

Line 3 - Condition is not true

Lua

22

Misc Operators

Miscellaneous operators supported by Lua Language include concatenation and

length.

Operator Description Example

.. Concatenates two strings. a..b where a is "Hello " and

b is "World", will return

"Hello World".

A unary operator that returns the

length of the a string or a table.

#"Hello" will return 5

Example

Try the following example to understand the miscellaneous operators available in

the Lua programming language:

a = "Hello "

b = "Worl d"

print ("Concatenation of string a with b is " , a.. b)

print ("Length of b is " ,# b)

print ("Length of b is " ,# "Test")

When you build and execute the above program, it produces the following result:

Concatenation of string a with b is Hello World

Lengt h of b is 5

Length of b is 4

Operators Precedence in Lua

Operator precedence determines the grouping of terms in an expression. This

affects how an expression is evaluated. Certain operators have higher

precedence than others; for example, the multiplication operator has higher

precedence than the addition operator:

Lua

23

For example, x = 7 + 3 * 2; Here x is assigned 13, not 20 because operator *

has higher precedence than + so, it first gets multiplied with 3*2 and then adds

into 7.

Here, operators with the highest precedence appear at the top of the table,

those with the lowest appear at the bottom. Within an expression, higher

precedence operators will be evaluated first.

Category Operator Associativity

Unary not # - Right to left

Concatenation .. Right to left

Multiplicative * / % Left to right

Additive + - Left to right

Relational < > <= >= == ~= Left to right

Equality == ~= Left to right

Logical AND and Left to right

Logical OR or Left to right

Example

Try the following example to understand all the precedence of operators in Lua

programming language:

a = 20

b = 10

c = 15

d = 5

e = (a + b) * c / d; -- (30 * 15) / 5

print ("Value of (a + b) * c / d is :" , e)

e = ((a + b) * c) / d; -- (30 * 15) / 5

Lua

24

print ("Value of ((a + b) * c) / d is :" , e)

e = (a + b) * (c / d); -- (30) * (15/ 5)

print ("Value of (a + b) * (c / d) is :" , e)

e = a + (b * c) / d; -- 20 + (150/ 5)

print ("Value of a + (b * c) / d is :" , e)

When you build and execute the above program, it produces the following result:

Value of (a + b) * c / d is : 90

Value of ((a + b) * c) / d is : 90

Value of (a + b) * (c / d) is : 90

Value of a + (b * c) / d is : 50

Lua

25

There may be a situation when you need to execute a block of code several

number of times. In general, statements are executed sequentially: the first

statement in a function is executed first, followed by the second, and so on.

Programming languages provide various control structures that allow for more

complicated execution paths.

A loop statement allows us to execute a statement or group of statements

multiple times. Following is the general form of a loop statement in most of the

programming languages:

Lua provides the following types of loops to handle looping requirements.

Loop Type Description

while loop Repeats a statement or group of statements while a

given condition is true. It tests the condition before

executing the loop body.

for loop Executes a sequence of statements multiple times and

abbreviates the code that manages the loop variable.

7. LOOPS

Lua

26

repeat...until loop Repeats the operation of group of statements till the

until condition is met.

nested loops You can use one or more loop inside any another

while , for or do..while loop.

while loop

A while loop statement in Lua programming language repeatedly executes a

target statement as long as a given condition is true.

Syntax

The syntax of a while loop in Lua programming language is as follows:

while (condition)

do

 statement (s)

end

Here, statement(s) may be a single statement or a block of statements.

The condition may be any expression, and true is any non-zero value. The loop

iterates while the condition is true.

When the condition becomes false, the program control passes to the line

immediately following the loop.

Flow Diagram

Lua

27

Here, the key point to note is that the while loop might not be executed at all.

When the condition is tested and the result is false, the loop body will be skipped

and the first statement after the while loop will be executed.

Example

a=10

while (a < 20)

do

 print ("value of a:" , a)

 a = a+1

end

When the above code is built and executed, it produces the following result:

value of a : 10

value of a : 11

value of a : 12

value of a : 13

value of a : 14

value of a : 15

value o f a : 16

value of a : 17

value of a : 18

value of a : 19

for loop

A for loop is a repetition control structure that allows you to efficiently write a

loop that needs to execute a specific number of times.

Syntax

The syntax of a for loop in Lua programming language is as follows:

for init , max/ min value , increment

do

 statement (s)

end

Lua

28

Here is the flow of control in a for loop:

1. The init step is executed first, and only once. This step allows you to

declare and initialize any loop control variables.

2. Next, the max/min. This is the maximum or minimum value till which the

loop continues to execute. It creates a condition check internally to

compare between the initial value and maximum/minimum value.

3. After the body of the for loop executes, the flow of the control jumps back

up to the increment/decrement statement. This statement allows you

to update any loop control variables.

4. The condition is now evaluated again. If it is true, the loop executes and

the process repeats itself (body of loop, then increment step, and then

again condition). After the condition becomes false, the for loop

terminates.

Flow Diagram

Example

Lua

29

for i =10, 1, - 1

do

 print (i)

end

When the above code is built and executed, it produces the following result:

10

9

8

7

6

5

4

3

2

1

repeat...until loop

Unlike the for and while loops, which test the loop condition at the top of the

loop, the repeat...until loop in Lua programming language checks its condition

at the bottom of the loop.

A repeat...until loop is similar to a while loop, except that a do...while loop is

guaranteed to execute at least one time.

Syntax

The syntax of a repeat...until loop in Lua programming language is as follows:

repeat

 stat ement(s)

while (condition)

Notice that the conditional expression appears at the end of the loop, so the

statement(s) in the loop execute(s) once before the condition is tested.

If the condition is false, the flow of control jumps back up to do, and the

statement(s) in the loop execute again. This process repeats until the given

condition becomes true.

Lua

30

Flow Diagram

Example

-- [local variable definition --]

a = 10

-- [repeat loop execution --]

repeat

 print ("value of a:" , a)

 a = a + 1

until (a > 15)

When you build and execute the above program, it produces the following result:

value of a : 10

value of a : 11

value of a : 12

value of a : 13

value of a : 14

valu e of a : 15

Lua

31

nested loops

Lua programming language allows to use one loop inside another loop. Following

section shows few examples to illustrate the concept.

Syntax

The syntax for a nested for loop statement in Lua is as follows:

for init , max/ min value , in crement

do

 for init , max/ min value , increment

 do

 statement (s)

 end

 statement (s)

end

The syntax for a nested while loop statement in Lua programming language is

as follows:

while (condition)

do

 while (condition)

 do

 statement (s)

 end

 statement (s)

end

The syntax for a nested repeat...until loop statement in Lua programming

language is as follows:

repeat

 statement (s)

 repeat

 statement (s)

 until (condition)

until (condition)

Lua

32

A final note on loop nesting is that you can put any type of loop inside of any

other type of loop. For example, a for loop can be inside a while loop or vice

versa.

Example

The following program uses a nested for loop:

j =2

for i =2, 10 do

 for j =2,(i / j) , 2 do

 if (not (i %j))

 then

 break

 end

 if (j > (i / j)) then

 print ("Value of i is" , i)

 end

 end

end

When you build and run the above code, it produces the following result.

Value of i is 8

Value of i is 9

Value of i is 10

Loop Control Statement

Loop control statement changes execution from its normal sequence. When

execution leaves a scope, all automatic objects that were created in that scope

are destroyed.

Lua supports the following control statements.

Control Statement Description

break statement Terminates the loop and transfers execution to the

statement immediately following the loop or switch.

Lua

33

break statement

When the break statement is encountered inside a loop, the loop is immediately

terminated and the program control resumes at the next statement following the

loop.

If you are using nested loops (i.e., one loop inside another loop), the break

statement will stop execution of the innermost loop and start executing the next

line of code after the block.

Syntax

The syntax for a break statement in Lua is as follows:

break

Flow Diagram

Example

-- [local variable definition --]

a = 10

-- [while loo p execution --]

while (a < 20)

do

Lua

34

 print ("value of a:" , a)

 a=a+1

 if (a > 15)

 then

 -- [terminate the loop using break statement --]

 break

 end

end

When you build and run the above code, it produces the following result.

value of a : 10

value of a : 11

value of a : 12

value of a : 13

value of a : 14

value of a : 15

The Infinite Loop

A loop becomes infinite loop if a condition never becomes false. The while loop

is often used for this purpose. Since we directly give true for the condition, it

keeps executing forever. We can use the break statement to break this loop.

while(true)

do

 print("This loop will run forever.")

end

Lua

35

Decision making structures require that the programmer specifies one or more

conditions to be evaluated or tested by the program, along with a statement or

statements to be executed, if the condition is determined to be true, and

optionally, other statements to be executed if the condition is determined to be

false.

Following is the general form of a typical decision making structure found in

most of the programming languages:

Lua programming language assumes any combination of Boolean true and non-

nil values as true, and if it is either Boolean false or nil, then it is assumed

as false value. It is to be noted that in Lua, zero will be considered as true.

Lua programming language provides the following types of decision making

statements.

Statement Description

if statement An if statement consists of a boolean expression

followed by one or more statements.

if...else statement An if statement can be followed by an optional else

statement, which executes when the boolean

8. DECISION MAKING

Lua

36

expression is false.

nested if statements You can use one if or else if statement inside

another if or else if statement(s).

if statement

An if statement consists of a Boolean expression followed by one or more

statements.

Syntax

The syntax of an if statement in Lua programming language is:

if (boolean_expression)

then

 -- [statement (s) will execute if the boolean expression is true --]

end

If the Boolean expression evaluates to true, then the block of code inside the if

statement will be executed. If Boolean expression evaluates to false, then the

first set of code after the end of the if statement (after the closing curly brace)

will be executed.

Lua programming language assumes any combination of Boolean true and non-

nil values as true, and if it is either Boolean false or nil, then it is assumed

as false value. It is to be noted that in Lua, zero will be considered as true.

Flow Diagram

Lua

37

Example

-- [local variable definition --]

a = 10;

-- [check the boolean condition using if statement --]

if (a < 20)

then

 -- [if condition is true then print the following --]

 print ("a is less than 20");

end

print ("value of a is :" , a);

When you build and run the above code, it produces the following result.

a is less than 20

value of a is : 10

if...else statement

An if statement can be followed by an optional else statement, which executes

when the Boolean expression is false.

Syntax

The syntax of an if...else statement in Lua programming language is:

if (boolean_expression)

then

 -- [statement (s) will execute if the boolean expression is true --]

else

 -- [statement (s) will execute if the boolean expression is false --]

end

If the Boolean expression evaluates to true, then the if block of code will be

executed, otherwise else block of code will be executed.

Lua programming language assumes any combination of Boolean true and non-

nil values as true, and if it is either Boolean false or nil, then it is assumed

as false value. It is to be noted that in Lua, zero will be considered as true.

Lua

38

Flow Diagram

Example

-- [local variable definition --]

a = 100;

-- [check the boolean condition --]

if (a < 20)

then

 -- [if condition is true then print the following --]

 print ("a is less than 20")

else

 -- [if condition is false then print the following --]

 print ("a is not less than 20")

end

print ("value of a is :" , a)

When you build and run the above code, it produces the following result.

a is not less than 20

value of a is : 100

Lua

39

The if...else if...else Statement

An if statement can be followed by an optional else if...else statement, which is

very useful to test various conditions using single if...else if statement.

While using if, else if, else statements, there are a few points to keep in mind:

An if can have zero or one else's and it must come after any else if's.

An if can have zero to many else if's and they must come before the else.

Once an else if succeeds, none of the remaining else if's or else's will be tested.

Syntax

The syntax of an if...else if...else statement in Lua programming language is:

if (boolean_expression 1)

then

 -- [Executes when the boolean expression 1 is true --]

else if (boolean_expression 2)

 -- [Executes when the boolean expression 2 is true --]

else if (boolean_expression 3)

 -- [Executes when the boolean expression 3 is true --]

else

 -- [executes when the none of the above condition is true --]

end

Example

-- [local variable definition --]

a = 100

-- [check the boolean condition --]

if (a == 10)

then

 -- [if condition is true then print the following --]

 print ("Value of a is 10")

elseif (a == 20)

Lua

40

then

 -- [if else if condition is true --]

 print ("Value of a is 20")

elseif (a == 30)

then

 -- [if else if condition is true --]

 print ("Value of a is 30")

else

 -- [if none of the conditions is true --]

 print ("None of the values is m atching")

end

print ("Exact value of a is: " , a)

When you build and run the above code, it produces the following result.

None of the values is matching

Exact value of a is : 100

nested if statements

It is always legal in Lua programming to nest if-else statements, which means

you can use one if or else if statement inside another if or else if statement(s).

Syntax

The syntax for a nested if statement is as follows:

if (boolean_expression 1)

then

 -- [Executes when the boolean expression 1 is true --]

 if (boolean_expression 2)

 then

 -- [Executes when the boolean expression 2 is true --]

 end

end

You can nest else if...else in the similar way as you have nested if statement.

Lua

41

Example

-- [local variable definition --]

a = 100;

b = 200;

-- [check the boolean condition --]

if (a == 100)

then

 -- [if condition is true then check the following --]

 if (b == 200)

 then

 -- [if condition is true then print the following --]

 print ("Value of a is 100 and b is 200");

 end

end

print ("Exact value of a is :" , a);

print ("Exact value of b is :" , b);

When you build and run the above code, it produces the following result.

Value of a is 100 and b is 200

Exact value of a is : 100

Exact value of b is : 200

Lua

42

A function is a group of statements that together perform a task. You can divide

up your code into separate functions. How you divide up your code among

different functions is up to you, but logically the division usually is unique, so

each function performs a specific task.

The Lua language provides numerous built-in methods that your program can

call. For example, method print() to print the argument passed as input in

console.

A function is known with various names like a method or a sub-routine or a

procedure etc.

Defining a Function

The general form of a method definition in Lua programming language is as

follows:

optional_function_scope function function_name (argument1 , argument2 ,

argument3 ..., argumentn)

function_body

return result_params_comma_separated

end

A method definition in Lua programming language consists of a method

header and a method body . Here are all the parts of a method:

 Optional Function Scope: You can use keyword local to limit the scope

of the function or ignore the scope section, which will make it a global

function.

 Function Name: This is the actual name of the function. The function

name and the parameter list together constitute the function signature.

 Arguments: An argument is like a placeholder. When a function is

invoked, you pass a value to the argument. This value is referred to as

the actual parameter or argument. The parameter list refers to the type,

order, and number of the arguments of a method. Arguments are

optional; that is, a method may contain no argument.

 Function Body: The method body contains a collection of statements that

define what the method does.

9. FUNCTIONS

Lua

43

 Return: In Lua, it is possible to return multiple values by following the

return keyword with the comma separated return values.

Example

Following is the source code for a function called max(). This function takes two

parameters num1 and num2 and returns the maximum between the two:

-- [[function returning the max between two numbers --]]

function max(num1, num2)

 if (num1 > num2) then

 result = num1;

 else

 result = num2;

 end

 return result ;

end

Function Arguments

If a function is to use arguments, it must declare the variables that accept the

values of the arguments. These variables are called the formal parameters of

the function.

The formal parameters behave like other local variables inside the function and

are created upon entry into the function and destroyed upon exit.

Calling a Function

While creating a Lua function, you give a definition of what the function has to

do. To use a method, you will have to call that function to perform the defined

task.

When a program calls a function, program control is transferred to the called

function. A called function performs the defined task and when its return

statement is executed or when its function's end is reached, it returns program

control back to the main program.

To call a method, you simply need to pass the required parameters along with

the method name and if the method returns a value, then you can store the

returned value. For example:

Lua

44

function max(num1, num2)

 if (num1 > num2) then

 result = num1;

 else

 result = num2;

 end

 return result ;

end

-- calling a function

print ("The maximum of the two numbers is " , max(10, 4))

print ("The maximum of the two numbers is " , max(5, 6))

When we run the above code, we will get the following output.

The maximum of the two numbers is 10

The maximum of the two numbers is 6

Assigning and Passing Functions

In Lua, we can assign the function to variables and also can pass them as

parameters of another function. Here is a simple example for assigning and

passing a function as parameter in Lua.

myprint = function (param)

 print ("This is my print function - ##" , param, "##")

end

function add(num1, num2, functionPrint)

 result = num1 + num2

 functionP rint (result)

end

myprint (10)

add(2, 5, myprint)

Lua

45

When we run the above code, we will get the following output.

This is my print function - ## 10 ##

This is my print function - ## 7 ##

Function with Variable Argument

It is possible to create functions with variable arguments in Lua using ‘...’ as its

parameter. We can get a grasp of this by seeing an example in which the

function will return the average and it can take variable arguments.

function average (...)

 result = 0

 local arg ={...}

 for i , v i n ipairs (arg) do

 result = result + v

 end

 return result /# arg

end

print ("The average is" , average (10, 5, 3, 4, 5, 6))

When we run the above code, we will get the following output.

The average is 5.5

Lua

46

String is a sequence of characters as well as control characters like form feed.

String can be initialized with three forms which includes:

 Characters between single quotes

 Characters between double quotes

 Characters between [[and]]

An example for the above three forms are shown below.

stri ng1 = "Lua"

print (" \ "String 1 is \ "" , string1)

string2 = 'Tutorial'

print ("String 2 is" , string2)

string3 = [["Lua Tutorial"]]

print ("String 3 is" , string3)

When we run the above program, we will get the following output.

"String 1" is Lua

String 2 is Tutoria l

String 3 is "Lua Tutorial"

Escape sequence characters are used in string to change the normal

interpretation of characters. For example, to print double inverted commas (""),

we have used \" in the above example. The escape sequence and its use is listed

below in the table.

Escape Sequence Use

\a Bell

\b Backspace

\f Formfeed

10. STRINGS

Lua

47

\n New line

\r Carriage return

\t Tab

\v Vertical tab

\\ Backslash

\" Double quotes

\' Single quotes

\[Left square bracket

\] Right square bracket

String Manipulation

Lua supports string to manipulate strings:

S.N. Method & Purpose

1 string.upper(argument):

Returns a capitalized representation of the argument.

2 string.lower(argument):

Returns a lower case representation of the argument.

3 string.gsub(mainString,findString,replaceString)

Returns a string by replacing occurrences of findString with

replaceString.

4 string.strfind(mainString,findString,optionalStartIndex,option

alEndIndex)

Returns the start index and end index of the findString in the main

string and nil if not found.

Lua

48

5 string.reverse(arg)

Returns a string by reversing the characters of the passed string.

6 string.format(...)

Returns a formatted string.

7 string.char(arg) and string.byte(arg)

Returns internal numeric and character representations of input

argument.

8 string.len(arg)

Returns a length of the passed string.

9 string.rep(string, n))

Returns a string by repeating the same string n number times.

10 ..

Thus operator concatenates two strings.

Now, let’s dive into a few examples to exactly see how these string manipulation

functions behave.

Case Manipulation

A sample code for manipulating the strings to upper and lower case is given

below.

string1 = "Lua" ;

print (string . upper (string1))

print (string . lower (string1))

When we run the above program, we will get the following output.

LUA

lua

Replacing a Substring

A sample code for replacing occurrences of one string with another is given

below.

Lua

49

string = "Lua Tutorial"

-- replacing strings

newstring = string . gsub(str ing , "Tutorial" , "Language")

print ("The new string is" , newstring)

When we run the above program, we will get the following output.

The new string is Lua Language

Finding and Reversing

A sample code for finding the index of substring and reversing string is given

below.

string = "Lua Tutorial"

-- replacing strings

print (string . find (string , "Tutorial"))

reversedString = string . reverse (string)

print ("The new string is" , reversedString)

When we run the above program, we will get the following output.

5 12

The new string is lairotuT auL

Formatting Strings

Many times in our programming, we may need to print strings in a formatted

way. You can use the string.format function to format the output as shown

below.

string1 = "Lua"

string2 = "Tutorial"

number1 = 10

number2 = 20

-- Basic string formatting

print (string . format ("Basic formatting %s %s" , string1 , string2))

-- Date formatting

Lua

50

date = 2; month = 1; year = 2014

print (string . format ("Date formatting %02d/%02d/%03d" , date , month,

year))

-- Decimal formatting

print (string . format ("%.4f" , 1/ 3))

When we run the above program, we will get the following output.

Basic formatting Lua Tutorial

Date formatting 02/ 01/ 2014

0.3333

Character and Byte Representations

A sample code for character and byte representation, which is used for

converting the string from string to internal representation and vice versa.

-- Byte conversion

-- First character

print (string . byte ("Lua"))

-- Third character

print (string . byte ("Lua" , 3))

-- first character from last

print (string . byte ("Lua" , - 1))

-- Second character

print (string . byte ("Lua" , 2))

-- Second character from last

print (string . byte ("Lua" , - 2))

-- Internal Numeric ASCII Conversion

print (string . char (97))

When we run the above program, we will get the following output.

76

97

97

Lua

51

117

117

a

Other Common Functions

The common string manipulations include string concatenation, finding length of

string and at times repeating the same string multiple times. The example for

these operations is given below.

string1 = "Lua"

string2 = "Tutorial"

-- String Concatenations using ..

print ("Concatenated string" , string1 .. string2)

-- Length of string

print ("Length of string1 is " , string . len (string1))

-- Repeating strings

repeatedString = string . rep (string1 , 3)

print (repeatedString)

When we run the above program, we will get the following output.

Concatenated string LuaTutorial

Length of string1 is 3

LuaLuaLua

Lua

52

Arrays are ordered arrangement of objects, which may be a one-dimensional

array containing a collection of rows or a multi-dimensional array containing

multiple rows and columns.

In Lua, arrays are implemented using indexing tables with integers. The size of

an array is not fixed and it can grow based on our requirements, subject to

memory constraints.

One-Dimensional Array

A one-dimensional array can be represented using a simple table structure and

can be initialized and read using a simple for loop. An example is shown below.

array = { "Lua" , "Tutorial" }

for i = 0, 2 do

 print (array [i])

end

When we run the above code, we will get the following output.

nil

Lua

Tutorial

As you can see in the above code, when we are trying to access an element in

an index that is not there in the array, it returns nil. In Lua, indexing generally

starts at index 1. But it is possible to create objects at index 0 and below 0 as

well. Array using negative indices is shown below where we initialize the array

using a for loop.

array = {}

for i = - 2, 2 do

 array [i] = i * 2

end

11. ARRAYS

Lua

53

for i = - 2, 2 do

 print (array [i])

end

When we run the above code, we will get the following output.

- 4

- 2

0

2

4

Multi-Dimensional Array

Multi-dimensional arrays can be implemented in two ways:

 Array of arrays

 Single dimensional array by manipulating indices

An example for multidimensional array of 3. 3 is shown below using array of

arrays.

-- Initializing the array

array = {}

for i =1, 3 do

 array [i] = {}

 for j =1, 3 do

 array [i][j] = i * j

 end

end

-- Accessing the array

for i =1, 3 do

 for j =1, 3 do

 print (array [i][j])

 end

end

Lua

54

When we run the above code, we will get the following output.

1

2

3

2

4

6

3

6

9

An example for multidimensional array is shown below using manipulating

indices.

-- Initializing the array

array = {}

maxRows = 3

maxColumns = 3

for row=1, maxRows do

 for col =1, maxColumns do

 array [row* maxColumns +col] = row* col

 end

end

-- Accessing the array

for row=1, maxRows do

 for col =1, maxColumns do

 print (array [row* maxColumns +col])

 end

end

When we run the above code, we will get the following output.

1

2

3

Lua

55

2

4

6

3

6

9

As you can see in the above example, data is stored based on indices. It is

possible to place the elements in a sparse way and it is the way Lua

implementation of a matrix works. Since it does not store nil values in Lua, it is

possible to save lots of memory without any special technique in Lua as

compared to special techniques used in other programming languages.

Lua

56

Iterator is a construct that enables you to traverse through the elements of the

so called collection or container. In Lua, these collections often refer to tables,

which are used to create various data structures like array.

Generic For Iterator

A generic for iterator provides the key value pairs of each element in the

collection. A simple example is given below.

array = { "Lua" , "Tutorial" }

for key, value in ipairs (array)

do

 print (key, value)

end

When we run the above code, we will get the following output:

1 Lua

2 Tutorial

The above example uses the default ipairs iterator function provided by Lua.

In Lua, we use functions to represent iterators. Based on the state maintenance

in these iterator functions, we have two main types:

 Stateless Iterators

 Stateful Iterators

Stateless Iterators

By the name itself we can understand that this type of iterator function does not

retain any state.

Let us now see an example of creating our own iterator using a simple function

that prints the squares of n numbers.

function square (iteratorMaxCount , currentNumber)

 if currentNumber <iter atorMaxCount

12. ITERATORS

Lua

57

 then

 currentNumber = currentNumber +1

 return currentNumber , currentNumber * currentNumber

 end

end

for i , n in square , 3, 0

do

 print (i , n)

end

When we run the above program, we will get the following output.

1 1

2 4

3 9

The above code can be modified slightly to mimic the way ipairs function of

iterators work. It is shown below.

function square (iteratorMaxCount , currentNumber)

 if currentNumber <iteratorMaxCount

 then

 currentNumber = currentNumber +1

 return currentNumber , currentNumber * currentNumber

 end

end

function squares (iteratorMaxCount)

 return square , iteratorMaxCount , 0

end

for i , n in squares (3)

do

 print (i , n)

end

Lua

58

When we run the above program, we will get the following output.

1 1

2 4

3 9

Stateful Iterators

The previous example of iteration using function does not retain the state. Each

time the function is called, it returns the next element of the collection based on

a second variable sent to the function. To hold the state of the current element,

closures are used. Closure retain variables values across functions calls. To

create a new closure, we create two functions including the closure itself and a

factory, the function that creates the closure.

Let us now see an example of creating our own iterator in which we will be using

closures.

array = { "Lua" , "Tutorial" }

function elementIterator (collection)

 local index = 0

 local count = #collection

 -- The closure function is returned

 return function ()

 index = index + 1

 if index <= count

 then

 -- return the current element of the iterator

 return collection [index]

 end

 end

end

for element in elementIterator (array)

do

 print (element)

end

Lua

59

When we run the above program, we will get the following output.

Lua

Tutorial

In the above example, we can see that elementIterator has another method

inside that uses the local external variables index and count to return each of

the element in the collection by incrementing the index each time the function is

called.

We can create our own function iterators using closure as shown above and it

can return multiple elements for each of the time we iterate through the

collection.

Lua

60

Introduction

Tables are the only data structure available in Lua that helps us create different

types like arrays and dictionaries. Lua uses associative arrays and which can be

indexed with not only numbers but also with strings except nil. Tables have no

fixed size and can grow based on our need.

Lua uses tables in all representations including representation of packages.

When we access a method string.format, it means, we are accessing the format

function available in the string package.

Representation and Usage

Tables are called objects and they are neither values nor variables. Lua uses a

constructor expression {} to create an empty table. It is to be known that there

is no fixed relationship between a variable that holds reference of table and the

table itself.

-- sample table initialization

mytable = {}

-- simple tab le value assignment

mytable [1]= "Lua"

-- removing reference

mytable = nil

-- lua garbage collection will take care of releasing memory

When we have a table a with set of elements and if we assign it to b, both a and

b refer to the same memory. No separate memory is allocated separately for b.

When a is set to nil, table will be still accessible to b. When there are no

reference to a table, then garbage collection in Lua takes care of cleaning up

process to make these unreferenced memory to be reused again.

An example is shown below for explaining the above mentioned features of

tables.

-- Simple empty table

13. TABLES

Lua

61

mytable = {}

print ("Type of mytable is " , type (mytable))

mytable [1]= "Lua"

mytable ["wow"] = "Tutorial"

print ("mytable Element at index 1 is " , mytable [1])

print ("mytable Element at index wow is " , mytable ["wow"])

-- alternatetable and mytable refers to same table

alternatetable = mytable

print ("alternatetable Element at index 1 is " , alternatetable [1])

print ("mytable Element at index wow is " , alternatet able ["wow"])

alternatetable ["wow"] = "I changed it"

print ("mytable Element at index wow is " , mytable ["wow"])

-- only variable released and and not table

alternatetable = nil

print ("alternatetable is " , alternatetable)

-- mytable is still accessible

pr int ("mytable Element at index wow is " , mytable ["wow"])

mytable = nil

print ("mytable is " , mytable)

When we run the above program we will get the following output:

Type of mytable is table

mytable Element at index 1 is Lua

mytable Element at index wow i s Tutorial

alternatetable Element at index 1 is Lua

Lua

62

mytable Element at index wow is Tutorial

mytable Element at index wow is I changed it

alternatetable is nil

mytable Element at index wow is I changed it

mytable is nil

Table Manipulation

There are in built functions for table manipulation and they are listed in the

following table.

S.N. Method & Purpose

1 table.concat (table [, sep [, i [, j]]]):

Concatenates the strings in the tables based on the parameters given.

See example for detail.

2 table.insert (table, [pos,] value):

Inserts a value into the table at specified position.

3 table.maxn (table)

Returns the largest numeric index.

4 table.remove (table [, pos])

Removes the value from the table.

5 table.sort (table [, comp])

Sorts the table based on optional comparator argument.

Let us see some samples of the above functions.

Table Concatenation

We can use the concat function to concatenate two tables as shown below:

fruits = { "banana" , "orange" , "apple" }

-- returns concatenated string of tabl e

Lua

63

print ("Concatenated string " , table . concat (fruits))

-- concatenate with a character

print ("Concatenated string " , table . concat (fruits , ", "))

-- concatenate fruits based on index

print ("Concatenated string " , table . concat (fruits , ", " , 2, 3))

When we run the above program we will get the following output:

Concatenated string bananaorangeapple

Concatenated string banana, orange , apple

Concatenated string orange , apple

Insert and Remove

Insertion and removal of items in tables is most common in table manipulation.

It is explained below.

fruits = { "banana" , "orange" , "apple" }

-- insert a fruit at the end

table . insert (fruits , "mango")

print ("Fruit at index 4 is " , fruits [4])

-- insert fruit at index 2

table . insert (fruits , 2, "grapes")

print ("Fruit at index 2 is " , frui ts [2])

print ("The maximum elements in table is" , table . maxn(fruits))

print ("The last element is" , fruits [5])

table . remove(fruits)

print ("The previous last element is" , fruits [5])

Lua

64

When we run the above program, we will get the following output:

Fruit at in dex 4 is mango

Fruit at index 2 is grapes

The maximum elements in table is 5

The last element is mango

The previous last element is nil

Sorting Tables

We often require to sort a table in a particular order. The sort functions sort the

elements in a table alphabetically. A sample for this is shown below.

fruits = { "banana" , "orange" , "apple" , "grapes" }

for k, v in ipairs (fruits) do

print (k, v)

end

table . sort (fruits)

print ("sorted table")

for k, v in ipairs (fruits) do

print (k, v)

end

When we run the above program, we will get the following output:

1 banana

2 orange

3 apple

4 grapes

sorted table

1 apple

2 banana

3 grapes

4 orange

Lua

65

Lua

66

What is a Module?

Module is like a library that can be loaded using require and has a single global

name containing a table. This module can consist of a number of functions and

variables. All these functions and variables are wrapped in to the table, which

acts as a namespace. Also, a well behaved module has necessary provisions to

return this table on require.

Specialty of Lua Modules

The usage of tables in modules helps us in numerous ways and enables us to

manipulate the modules in the same way we manipulate any other Lua table. As

a result of the ability to manipulate modules, it provides extra features for which

other languages need special mechanisms. Due to this free mechanism of

modules in Lua, a user can call the functions in Lua in multiple ways. A few of

them are shown below.

-- Assuming we have a module printFormatter

-- Also printFormatter has a funtion simpleFormat (arg)

-- Method 1

require "printFormatter"

printFormatter . simpleFormat ("test")

-- Method 2

local formatter = require "printFormatter"

formatter . simpleFormat ("test")

-- Method 3

require "printFormatter"

local formatterFunction = printFormatter . simpleFormat

formatterFunction ("test")

In the above sample code, you can see how flexible programming in Lua is,

without any special additional code.

14. MODULES

Lua

67

The require Function

Lua has provided a high level function called require to load all the necessary

modules. It is kept as simple as possible to avoid having too much information

on module to load it. The require function just assumes the modules as a chunk

of code that defines some values, which is actually functions or tables containing

functions.

Example

Let us consider a simple example, where one function has the math functions.

Let’s call this module as mymath and filename being mymath.lua. The file

content is as follows:

local mymath = {}

function mymath. add(a, b)

 print (a+b)

end

function mymath. sub(a, b)

 print (a- b)

end

function mymath. mul(a, b)

 print (a* b)

end

function mymath. div (a, b)

 print (a/ b)

end

return mymath

Now, in order to access this Lua module in another file, say, moduletutorial.lua,

you need to use the following code segment.

mymathmodule = require ("mymath")

mymathmodule. add(10, 20)

mymathmodule. sub(30, 20)

mymathmodule. mul(10, 20)

Lua

68

mymathmodule. div (30, 20)

In order to run this code, we need to place the two Lua files in the same

directory or alternatively, you can place the module file in the package path and

it needs additional setup. When we run the above program, we will get the

following output.

30

10

200

1.5

Things to Remember

 Place both the modules and the file you run in the same directory.

 Module name and its file name should be the same.

 It is a best practice to return modules for require function and hence the

module should be preferably implemented as shown above even though

you can find other types of implementations elsewhere.

Old Way of Implementing Modules

Let me now rewrite the same example in the older way, which uses

package.seeall type of implementation. This was used in Lua versions 5.1 and

5.0. The mymath module is shown below.

module("mymath" , package. seeall)

function mymath. add(a, b)

 print (a+b)

end

function mymath. sub(a, b)

 print (a- b)

end

function mymath. mul(a, b)

 print (a* b)

Lua

69

end

function mymath. div (a, b)

 print (a/ b)

end

The usage of modules in moduletutorial.lua is shown below.

require ("mymath")

mymath. add(10, 20)

mymath. sub(30, 20)

mymath. mul(10, 20)

mymath. div (30, 20)

When we run the above, we will get the same output. But it is advised on to use

the older version of the code and it is assumed to less secure. Many SDKs that

use Lua for programming like Corona SDK has deprecated the use of this.

Lua

70

A metatable is a table that helps in modifying the behavior of a table it is

attached to with the help of a key set and related meta methods. These meta

methods are powerful Lua functionality that enables features like -

 Changing/adding functionalities to operators on tables.

 Looking up metatables when the key is not available in the table using

__index in metatable.

There are two important methods that are used in handling metatables, which

includes -

 setmetatable(table,metatable): This method is used to set metatable

for a table.

 getmetatable(table): This method is used to get metatable of a table.

Let’s first look at how to set one table as metatable of another. It is shown

below.

mytable = {}

mymetatable = {}

setmetatable (mytable , mymetatable)

The above code can be represented in a single line as shown below.

mytable = setmetatable ({},{})

__index

A simple example of metatable for looking up the meta table when it's not

available in table is shown below.

mytable = setmetatable ({ key1 = "value1" }, {

 __index = function (mytable , key)

 if key == "key2" then

 return "metatablevalue"

 else

 return mytable [key]

 end

15. METATABLES

Lua

71

 end

})

print (mytable . key1, mytable . key2)

When we run the above program, we will get the following output.

value1 metatablevalue

Let us explain what happened in the above example in steps.

 The table mytable here is {key1 = "value1"}.

 Metatable is set for mytable that contains a function for __index, which

we call as a metamethod.

 The metamethod does a simple job of looking up for an index "key2", if

it's found, it returns "metatablevalue", otherwise returns mytable's value

for corresponding index.

We can have a simplified version of the above program as shown below.

mytable = setmetatable ({ key1 = "value1" }, { __index = { key2 =

"metatablevalue" } })

print (mytable . key1, mytable . key2)

__newindex

When we add __newindex to metatable, if keys are not available in the table,

the behavior of new keys will be defined by meta methods. A simple example

where metatable's index is set when index is not available in the main table is

given below.

mymetatable = {}

mytable = setmetatable ({ key1 = "value1" }, { __newindex = mymetatable })

print (mytable . key1)

mytable . newkey = "new value 2"

print (mytable . newkey, mymetatable . newkey)

Lua

72

mytable . key1 = "new value 1"

print (mytable . key1, mymetatable . newkey1)

When you run the above program, you get the following output.

valu e1

nil new value 2

new value 1 nil

You can see in the above program, if a key exists in the main table, it just

updates it. When a key is not available in the maintable, it adds that key to the

metatable.

Another example that updates the same table using rawset function is shown

below.

mytable = setmetatable ({ key1 = "value1" }, {

 __newindex = function (mytable , key, value)

 rawset (mytable , key, " \ "" .. value .. " \ "")

 end

})

mytable . key1 = "new value"

mytable . key2 = 4

print (mytable . key1, mytable . key2)

When we run the above program we will get the following output.

new value "4"

rawset sets value without using __newindex of metatable. Similarly there is

rawget that gets value without using __index.

Adding Operator Behavior to Tables

A simple example to combine two tables using + operator is shown below:

mytable = setmetatable ({ 1, 2, 3 }, {

 __add = function (mytable , newtable)

Lua

73

 for i = 1, table . maxn(newtable) do

 table . insert (mytable , table . maxn(mytable)+ 1, newtable [i])

 end

 return mytable

 end

})

secondtable = { 4, 5, 6}

mytable = mytable + secondtable

for k, v in ipairs (mytable) do

print (k, v)

end

When we run the above program, we will get the following output

1 1

2 2

3 3

4 4

5 5

6 6

The __add key is included in the metatable to add behavior of operator +. The

table of keys and corresponding operator is shown below.

Mode Description

__add Changes the behavior of operator '+'.

__sub Changes the behavior of operator '-'.

__mul Changes the behavior of operator '*'.

__div Changes the behavior of operator '/'.

Lua

74

__mod Changes the behavior of operator '%'.

__unm Changes the behavior of operator '-'.

__concat Changes the behavior of operator '..'.

__eq Changes the behavior of operator '=='.

__lt Changes the behavior of operator '<'.

__le Changes the behavior of operator '<='.

__call

Adding behavior of method call is done using __call statement. A simple

example that returns the sum of values in main table with the passed table.

mytable = setmetatable ({ 10}, {

 __call = function (mytable , newtable)

 sum = 0

 for i = 1, table . maxn(mytable) do

 sum = sum + mytable [i]

 end

 for i = 1, table . maxn(newtable) do

 sum = sum + newtable [i]

 end

 return sum

 end

})

newtable = { 10, 20, 30}

print (mytable (newtable))

When we run the above program, we will get the following output.

70

Lua

75

__tostring

To change the behavior of the print statement, we can use the __tostring

metamethod. A simple example is shown below.

mytable = setmetatable ({ 10, 20, 30 }, {

 __tostring = function (mytable)

 sum = 0

 for k, v in pairs (mytable) do

 sum = sum + v

 end

 return "The sum of values in the table is " .. sum

 end

})

print (mytable)

When we run the above program, we will get the following output.

The sum of values in the table is 60

If you know the capabilities of meta table fully, you can really perform a lot of

operations that would be very complex without using it. So, try to work more on

using metatables with different options available in meta tables as explained in

the samples and also create your own samples.

Lua

76

Introduction

Coroutines are collaborative in nature, which allows two or more methods to

execute in a controlled manner. With coroutines, at any given time, only one

coroutine runs and this running coroutine only suspends its execution when it

explicitly requests to be suspended.

The above definition may look vague. Let us assume we have two methods, one

the main program method and a coroutine. When we call a coroutine using

resume function, its starts executing and when we call yield function, it

suspends executing. Again the same coroutine can continue executing with

another resume function call from where it was suspended. This process can

continue till the end of execution of the coroutine.

Functions Available in Coroutines

The following table lists all the available functions for coroutines in Lua and their

corresponding use.

S.N. Method & Purpose

1. coroutine.create (f):

Creates a new coroutine with a function f and returns an object of type

"thread".

2. coroutine.resume (co [, val1, ...]):

Resumes the coroutine co and passes the parameters if any. It returns

the status of operation and optional other return values.

3. coroutine.running ():

Returns the running coroutine or nil if called in the main thread.

4. coroutine.status (co):

Returns one of the values from running, normal, suspended or dead

based on the state of the coroutine.

16. COROUTINES

Lua

77

5. coroutine.wrap (f):

Like coroutine.create, the coroutine.wrap function also creates a

coroutine, but instead of returning the coroutine itself, it returns a

function that, when called, resumes the coroutine.

6. coroutine.yield (...):

Suspends the running coroutine. The parameter passed to this method

acts as additional return values to the resume function.

Example

Let's look at an example to understand the concept of coroutines.

co = coroutine . create (function (value1 , value2)

 local tempvar3 =10

 print ("coroutine section 1" , value1 , value2 , tempvar3)

 local tempvar1 = coroutine . yield (value1 +1, value2 +1)

 tempvar3 = tempvar3 + value1

 print ("coroutine section 2" , tempvar1 , tempvar2 , tempvar 3)

 local tempvar1 , tempvar2 = coroutine . yield (value1 +value2 , value1 - value2)

 tempvar3 = tempvar3 + value1

 print ("coroutine section 3" , tempvar1 , tempvar2 , tempvar3)

 return value2 , "end"

end)

print ("main" , coroutine . resume(co, 3, 2))

print ("main" , coroutine . resume(co, 12, 14))

print ("main" , coroutine . resume(co, 5, 6))

print ("main" , coroutine . resume(co, 10, 20))

When we run the above program, we will get the following output.

coroutine section 1 3 2 10

main true 4 3

coroutine section 2 12 nil 13

main true 5 1

coroutine section 3 5 6 16

Lua

78

main true 2 end

main false cannot resume dead coroutine

What Does the Above Example Do?

As mentioned before, we use the resume function to start the operation and

yield function to stop the operation. Also, you can see that there are multiple

return values received by resume function of coroutine.

 First, we create a coroutine and assign it to a variable name co, and the

coroutine takes in two variables as its parameters.

 When we call the first resume function, the values 3 and 2 are retained in

the temporary variables value1 and value2 till the end of the coroutine.

 To make you understand this, we have used a tempvar3, which is 10

initially and it gets updated to 13 and 16 by the subsequent calls of the

coroutines since value1 is retained as 3 throughout the execution of the

coroutine.

 The first coroutine.yield returns two values 4 and 3 to the resume

function, which we get by updating the input params 3 and 2 in the yield

statement. It also receives the true/false status of coroutine execution.

 Another thing about coroutines is how the next params of resume callis

taken care of, in the above example; you can see that the variable the

coroutine.yield receives the next call params, which provides a powerful

way of doing new operation with the retentionship of existing param

values.

 Finally, once all the statements in the coroutines are executed, the

subsequent calls will return in false and "cannot resume dead coroutine"

statement as response.

Another Coroutine Example

Let us look at a simple coroutine that returns a number from 1 to 5 with the help

of yield function and resume function. It creates coroutine if not available or else

resumes the existing coroutine.

function getNumber()

 local function getNumberHelper ()

 co = coroutine . create (function ()

 coroutine . yield (1)

 coroutine . yield (2)

Lua

79

 coroutine . yield (3)

 coroutine . yield (4)

 coroutine . yield (5)

 end)

 return co

 end

 if (numberHelper) then

 status , number = coroutine . resume(numberHelper);

 if coroutine . status (numberHelper) == "dead" then

 numberHelper = getNumberHelper ()

 status , number = coroutine . resume(numberHelper);

 end

 return number

 else

 numberHelper = getNumberHelper ()

 status , number = coroutine . resume(numberHelper);

 return number

 end

end

for index = 1, 10 do

 print (index , getNumber())

end

When we run the above program, we will get the following output.

1 1

2 2

3 3

4 4

5 5

6 1

7 2

8 3

9 4

Lua

80

10 5

There is often a comparison of coroutines with the threads of multiprogramming

languages, but we need to understand that coroutines have similar features of

thread but they execute only one at a time and never execute concurrently.

We control the program execution sequence to meet the needs with the

provision of retaining certain information temporarily. Using global variables with

coroutines provides even more flexibility to coroutines.

Lua

81

I/O library is used for reading and manipulating files in Lua. There are two kinds

of file operations in Lua namely implicit file descriptors and explicit file

descriptors.

For the following examples, we will use a sample file test.lua as shown below.

-- sample test . lua

-- sample2 test . lua

A simple file open operation uses the following statement.

file = io . open (filename [, mode])

The various file modes are listed in the following table.

Mode Description

"r" Read-only mode and is the default mode where an existing file

is opened.

"w" Write enabled mode that overwrites the existing file or creates

a new file.

"a" Append mode that opens an existing file or creates a new file

for appending.

"r+" Read and write mode for an existing file.

"w+" All existing data is removed if file exists or new file is created

with read write permissions.

"a+" Append mode with read mode enabled that opens an existing

file or creates a new file.

17. FILE I/O

Lua

82

Implicit File Descriptors

Implicit file descriptors use the standard input/output modes or using a single

input and single output file. A sample of using implicit file descriptors is shown

below.

-- Opens a file in read

file = io . open("test.lua" , "r")

-- sets t he default input file as test . lua

io . input (file)

-- prints the first line of the file

print (io . read ())

-- closes the open file

io . close (file)

-- Opens a file in append mode

file = io . open("test.lua" , "a")

-- sets the default output file as test . lua

io . output (file)

-- appends a word test to the last line of the file

io . write (" -- End of the test.lua file")

-- closes the open file

io . close (file)

When you run the program, you will get an output of the first line of test.lua file.

For our program, we got the following output:

-- Sample test . lua

This was the first line of the statement in test.lua file for us. Also the line "-- End

of the test.lua file" would be appended to the last line of the test.lua code.

Lua

83

In the above example, you can see how the implicit descriptors work with file

system using the io."x" methods. The above example uses io.read() without the

optional parameter. The optional parameter can be any of the following.

Mode Description

"*n" Reads from the current file position and returns a number if

exists at the file position or returns nil.

"*a" Returns all the contents of file from the current file position.

"*l" Reads the line from the current file position, and moves file

position to next line.

number Reads number of bytes specified in the function.

Other common I/O methods includes,

 io.tmpfile(): Returns a temporary file for reading and writing that will be

removed once the program quits.

 io.type(file): Returns whether file, closed file or nil based on the input

file.

 io.flush(): Clears the default output buffer.

 io.lines(optional file name): Provides a generic for loop iterator that

loops through the file and closes the file in the end, in case the file name

is provided or the default file is used and not closed in the end of the loop.

Explicit File Descriptors

We often use explicit file descriptor, which allows us to manipulate multiple files

at a time. These functions are quite similar to implicit file descriptors. Here, we

use file:function_name instead of io.function_name. The following example of

the file version of the same implicit file descriptors example is shown below.

-- Opens a file in read mode

file = io . open("test.lua" , "r")

-- prints the first line of the file

print (file : read ())

Lua

84

-- closes the opened file

fi le : close ()

-- Opens a file in append mode

file = io . open("test.lua" , "a")

-- appends a word test to the last line of the file

file : write (" -- test")

-- closes the open file

file : close ()

When you run the program, you will get a similar output as the implicit

descriptors example.

-- Sample test . lua

All the modes of file open and params for read for external descriptors is same

as implicit file descriptors.

Other common file methods includes,

 file:seek(optional whence, optional offset): Whence parameter is

"set", "cur" or "end". Sets the new file pointer with the updated file

position from the beginning of the file. The offsets are zero-based in this

function. The offset is measured from the beginning of the file if the first

argument is "set"; from the current position in the file if it's "cur"; or from

the end of the file if it's "end". The default argument values are "cur" and

0, so the current file position can be obtained by calling this function

without arguments.

 file:flush(): Clears the default output buffer.

 io.lines(optional file name): Provides a generic for loop iterator that

loops through the file and closes the file in the end, in case the file name

is provided or the default file is used and not closed in the end of the loop.

An example to use the seek method is shown below. It offsets the cursor from

the 25 positions prior to the end of file. The read function prints remainder of

the file from seek position.

-- Opens a file in read

file = io . open("test.lua" , "r")

Lua

85

file : seek("end" , - 25)

print (file : read ("*a"))

-- closes the opened file

file : close ()

You will get some output similar to the following:

 sample2 test . lua

-- test

You can play around all the different modes and parameters to know the full

ability of the Lua file operations.

Lua

86

Need for Error Handling

Error handling is quite critical since real-world operations often require the use

of complex operations, which includes file operations, database transactions and

web service calls.

In any programming, there is always a requirement for error handling. Errors

can be of two types which includes,

 Syntax errors

 Run time errors

Syntax Errors

Syntax errors occur due to improper use of various program components like

operators and expressions. A simple example for syntax error is shown below.

a == 2

As you know, there is a difference between the use of a single "equal to" and

double "equal to". Using one instead of the other can lead to an error. One

"equal to" refers to assignment while a double "equal to" refers to comparison.

Similarly, we have expressions and functions having their predefined ways of

implementation.

Another example for syntax error is shown below:

for a= 1, 10

 print (a)

end

When we run the above program, we will get the following output:

lua : test2 . lua : 2: 'do' expected near 'print'

Syntax errors are much easier to handle than run time errors since, the Lua

interpreter locates the error more clearly than in case of runtime error. From the

above error, we can know easily that adding a do statement before print

statement is required as per the Lua structure.

18. ERROR HANDLING

Lua

87

Run Time Errors

In case of runtime errors, the program executes successfully, but it can result in

runtime errors due to mistakes in input or mishandled functions. A simple

example to show runtime error is shown below.

function add(a, b)

 return a+b

end

add(10)

When we build the program, it will build successfully and run. Once it runs, it

shows a runtime error.

lua : test2 . lua : 2: attempt to perform arithmetic on local 'b' (a nil

value)

stack traceback :

 test2 . lua : 2: in function 'add'

 test2 . lua : 5: in main chunk

 [C]: ?

This is a runtime error, which had occurred due to not passing two variables.

The b parameter is expected and here it is nil and produces an error.

Assert and Error Functions

In order to handle errors, we often use two functions: assert and error. A

simple example is shown below.

local function add(a, b)

 assert (type (a) == "number" , "a is not a number")

 assert (type (b) == "number" , "b is not a number")

 return a+b

end

add(10)

When we run the above program, we will get the following error output.

lua : test2 . lua : 3: b is not a number

stack traceback :

Lua

88

 [C]: in function 'assert'

 test2 . lua : 3: in function 'add'

 test2 . lua : 6: in main chunk

 [C]: ?

The error (message [, level]) terminates the last protected function called and

returns message as the error message. This function error never returns.

Usually, error adds some information about the error position at the beginning of

the message. The level argument specifies how to get the error position. With

level 1 (the default), the error position is where the error function was called.

Level 2 points the error to where the function that called error was called; and

so on. Passing a level 0 avoids the addition of error position information to the

message.

pcall and xpcall

In Lua programming, in order to avoid throwing these errors and handling

errors, we need to use the functions pcall or xpcall.

The pcall (f, arg1, ...) function calls the requested function in protected mode.

If some error occurs in function f, it does not throw an error. It just returns the

status of error. A simple example using pcall is shown below.

function myfunction ()

 n = n/ nil

end

if pcall (myfunction) then

 print ("Success")

else

 print ("Failure")

end

When we run the above program, we will get the following output.

Failure

The xpcall (f, err) function calls the requested function and also sets the error

handler. Any error inside f is not propagated; instead, xpcall catches the error,

calls the err function with the original error object, and returns a status code.

A simple example for xpcall is shown below.

Lua

89

function myfunction ()

 n = n/ nil

end

function myerrorhandler (err)

 print ("ERROR:", err)

end

status = xpcall (myfunction , myerrorhandler)

print (status)

When we run the above program, we will get the following output.

ERROR: test2 . lua : 2: attempt to perform arithmetic on global 'n' (a

nil value)

false

As a programmer, it is most important to ensure that you take care of proper

error handling in the programs you write. Using error handling can ensure that

unexpected conditions beyond the boundary conditions are handled without

disturbing the user of the program.

Lua

90

Lua provides a debug library, which provides all the primitive functions for us to

create our own debugger. Even though, there is no in-built Lua debugger, we

have many debuggers for Lua, created by various developers with many being

open source.

The functions available in the Lua debug library are listed in the following table

along with its uses.

S.N. Method & Purpose

1. debug():

Enters interactive mode for debugging, which remains active till we type

in only cont in a line and press enter. User can inspect variables during

this mode using other functions.

2. getfenv(object):

Returns the environment of object.

3. gethook(optional thread):

Returns the current hook settings of the thread, as three values: the

current hook function, the current hook mask, and the current hook

count.

4. getinfo(optional thread, function or stack level, optional flag):

Returns a table with info about a function. You can give the function

directly, or you can give a number as the value of function, which

means the function running at level function of the call stack of the

given thread: level 0 is the current function (getinfo itself); level 1 is

the function that called getinfo; and so on. If function is a number

larger than the number of active functions, then getinfo returns nil.

5. getlocal(optional thread, stack level, local index):

Returns the name and the value of the local variable with index local of

the function at level of the stack. Returns nil if there is no local variable

with the given index, and raises an error when called with a level out of

range.

19. DEBUGGING

Lua

91

6. getmetatable(value):

Returns the metatable of the given object or nil if it does not have a

metatable.

7. getregistry():

Returns the registry table, a pre-defined table that can be used by any

C code to store whatever Lua value it needs to store.

8. getupvalue(function, upvalue index):

This function returns the name and the value of the upvalue with index

up of the function func. The function returns nil if there is no upvalue

with the given index.

9. setfenv(function or thread or userdata, environment table):

Sets the environment of the given object to the given table. Returns

object.

10. sethook(optional thread, hook function, hook mask string with

"c" and/or "r" and/or "l", optional instruction count):

Sets the given function as a hook. The string mask and the number

count describes when the hook will be called. Here, c, r and l are called

every time Lua calls, returns, and enters every line of code in a function

respectively.

11. setlocal(optional thread, stack level, local index, value):

Assigns the value to the local variable with index local of the function at

level of the stack. The function returns nil if there is no local variable

with the given index, and raises an error when called with a level out of

range. Otherwise, it returns the name of the local variable.

12. setmetatable(value, metatable):

Sets the metatable for the given object to the given table (which can be

nil).

13. setupvalue(function, upvalue index, value):

This function assigns the value to the upvalue with index up of the

function func. The function returns nil if there is no upvalue with the

Lua

92

given index. Otherwise, it returns the name of the upvalue.

14. traceback(optional thread, optional message string, optional

level argument):

Builds an extended error message with a traceback.

The above list is the complete list of debug functions in Lua and we often use a

library that uses the above functions and provides easier debugging. Using these

functions and creating our own debugger is quite complicated and is not

preferable. Anyway, we will see an example of simple use of debugging

functions.

function myfunction ()

print (debug. traceback ("Stack trace"))

print (debug. getinfo (1))

print ("Stack trace end")

 return 10

end

myfunction ()

print (debug. getinfo (1))

When we run the above program, we will get the stack trace as shown below.

Stack trace

stack traceback :

 test2 . lua : 2: in function 'myfunction'

 test2 . lua : 8: in main chunk

 [C]: ?

table : 0054C6C8

Stack trace end

In the above sample program, the stack trace is printed by using the

debug.trace function available in the debug library. The debug.getinfo gets the

current table of the function.

Lua

93

Debugging – Example

We often need to know the local variables of a function for debugging. For that

purpose, we can use getupvalue and to set these local variables, we use

setupvalue. A simple example for this is shown below.

function newCounter ()

 local n = 0

 local k = 0

 return function ()

 k = n

 n = n + 1

 return n

 end

end

counter = newCounter ()

print (counter ())

print (counter ())

local i = 1

repeat

 name, val = debug. getupvalue (counter , i)

 if name then

 print ("index" , i , name, "=" , val)

 if (name == "n") then

 debug. setupvalue (counter , 2, 10)

 end

 i = i + 1

 end -- if

until not name

print (counter ())

Lua

94

When we run the above program, we will get the following output:

1

2

index 1 k = 1

index 2 n = 2

11

In this example, the counter updates by one, each time it is called. We can see

the current state of the local variable using the getupvalue function. We then set

the local variable to a new value. Here, n is 2 before the set operation is called.

Using setupvalue function, it is updated to 10. Now, when we call the counter

function, it will return 11 instead of 3.

Debugging Types

 Command line debugging

 Graphical debugging

Command Line Debugging

Command line debugging is the type of debugging that uses command line to

debug with the help of commands and print statements. There are many

command line debuggers available for Lua of which a few are listed below.

 RemDebug: RemDebug is a remote debugger for Lua 5.0 and 5.1. It lets

you control the execution of another Lua program remotely, setting

breakpoints and inspecting the current state of the program. RemDebug

can also debug CGILua scripts.

 clidebugger: A simple command line interface debugger for Lua 5.1

written in pure Lua. It's not dependent on anything other than the

standard Lua 5.1 libraries. It was inspired by RemDebug but does not

have its remote facilities.

 ctrace: A tool for tracing Lua API calls.

 xdbLua: A simple Lua command line debugger for the Windows platform.

 LuaInterface - Debugger: This project is a debugger extension for

LuaInterface. It raises the built in Lua debug interface to a higher level.

Interaction with the debugger is done by events and method calls.

 Rldb: This is a remote Lua debugger via socket, available on both

Windows and Linux. It can give you much more features than any existing

one.

Lua

95

 ModDebug: This allows in controlling the execution of another Lua

program remotely, set breakpoints, and inspect the current state of the

program.

Graphical Debugging

Graphical debugging is available with the help of IDE where you are provided

with visual debugging of various states like variable values, stack trace and

other related information. There is a visual representation and step by step

control of execution with the help of breakpoints, step into, step over and other

buttons in the IDE.

There are number of graphical debuggers for Lua and it includes the following.

 SciTE: The default windows IDE for Lua provides multiple debugging

facilities like breakpoints, step, step into, step over, watch variables and

so on.

 Decoda: This is a graphical debugger with remote debugging support.

 ZeroBrane Studio: Lua IDE with integrated remote debugger, stack

view, watch view, remote console, static analyzer, and more. Works with

LuaJIT, Love2d, Moai, and other Lua engines; Windows, OSX, and Linux,

Open source

 akdebugger: Debugger and editor Lua plugin for Eclipse.

 luaedit: This features remote debugging, local debugging, syntax

highlighting, completion proposal list, parameter proposition engine,

advance breakpoint management (including condition system on

breakpoints and hit count), function listing, global and local variables

listing, watches, solution oriented management.

Lua

96

Lua uses automatic memory management that uses garbage collection based on

certain algorithms that is in-built in Lua. As a result of automatic memory

management, as a developer -

 No need to worry about allocating memory for objects.

 No need to free them when no longer needed except for setting it to nil.

Lua uses a garbage collector that runs from time to time to collect dead objects

when they are no longer accessible from the Lua program.

All objects including tables, userdata, functions, thread, string and so on are

subject to automatic memory management. Lua uses incremental mark and

sweep collector that uses two numbers to control its garbage collection cycles

namely garbage collector pause and garbage collector step multiplier.

These values are in percentage and value of 100 is often equal to 1 internally.

Garbage Collector Pause

Garbage collector pause is used for controlling how long the garbage collector

needs to wait, before; it is called again by the Lua's automatic memory

management. Values less than 100 would mean that Lua will not wait for the

next cycle. Similarly, higher values of this value would result in the garbage

collector being slow and less aggressive in nature. A value of 200, means that

the collector waits for the total memory in use to double before starting a new

cycle. Hence, depending on the nature and speed of application, there may be a

requirement to alter this value to get best performance in Lua applications.

Garbage Collector Step Multiplier

This step multiplier controls the relative speed of garbage collector to that of

memory allocation in Lua program. Larger step values will lead to garbage

collector to be more aggressive and it also increases the step size of each

incremental step of garbage collection. Values less than 100 could often lead to

avoid the garbage collector not to complete its cycle and it is not generally

preferred. The default value is 200, which means the garbage collector runs

twice as the speed of memory allocation.

Garbage Collector Functions

As developers, we do have some control over the automatic memory

management in Lua. For this, we have the following methods.

20. GARBAGE COLLECTION

Lua

97

 collectgarbage("collect"): Runs one complete cycle of garbage

collection.

 collectgarbage("count"): Returns the amount of memory currently

used by the program in Kilobytes.

 collectgarbage("restart"): If the garbage collector has been stopped, it

restarts it.

 collectgarbage("setpause"): Sets the value given as second parameter

divided by 100 to the garbage collector pause variable. Its uses are as

discussed a little above.

 collectgarbage("setstepmul"): Sets the value given as second

parameter divided by 100 to the garbage step multiplier variable. Its uses

are as discussed a little above.

 collectgarbage("step"): Runs one step of garbage collection. The larger

the second argument is, the larger this step will be. The collectgarbage

will return true if the triggered step was the last step of a garbage-

collection cycle.

 collectgarbage("stop"): Stops the garbage collector if its running.

A simple example using the garbage collector example is shown below.

mytable = { "apple" , "orange" , "banana" }

print (collectgarbage ("count"))

mytable = nil

print (collectgarbage ("count"))

print (collectgarbage ("collect"))

print (collectgarbage ("count"))

When we run the above program, we will get the following output. Please note

that this result will vary due to the difference in type of operating system and

also the automatic memory management feature of Lua.

20.9560546875

20.9853 515625

0

Lua

98

19.4111328125

You can see in the above program, once garbage collection is done, it reduced

the memory used. But, it's not mandatory to call this. Even if we don't call them,

it will be executed automatically at a later stage by Lua interpreter after the

predefined period.

Obviously, we can change the behavior of the garbage collector using these

functions if required. These functions provide a bit of additional capability for the

developer to handle complex situations. Depending on the type of memory need

for the program, you may or may not use this feature. But it is very useful to

know the memory usage in the applications and check it during the

programming itself to avoid undesired results after deployment.

Lua

99

Introduction to OOP

Object Oriented Programming (OOP), is one the most used programming

technique that is used in the modern era of programming. There are a number

of programming languages that support OOP which include,

 C++

 Java

 Objective-C

 Smalltalk

 C#

 Ruby

Features of OOP

 Class: A class is an extensible template for creating objects, providing

initial values for state (member variables) and implementations of

behavior.

 Objects: It is an instance of class and has separate memory allocated for

itself.

 Inheritance: It is a concept by which variables and functions of one class

is inherited by another class.

 Encapsulation: It is the process of combining the data and functions

inside a class. Data can be accessed outside the class with the help of

functions. It is also known as data abstraction.

OOP in Lua

You can implement object orientation in Lua with the help of tables and first

class functions of Lua. By placing functions and related data into a table, an

object is formed. Inheritance can be implemented with the help of metatables,

providing a look up mechanism for nonexistent functions(methods) and fields in

parent object(s).

Tables in Lua have the features of object like state and identity that is

independent of its values. Two objects (tables) with the same value are different

objects, whereas an object can have different values at different times, but it is

21. OBJECT ORIENTED

Lua

100

always the same object. Like objects, tables have a life cycle that is independent

of who created them or where they were created.

A Real World Example

The concept of object orientation is widely used but you need to understand it

clearly for proper and maximum benefit.

Let us consider a simple math example. We often encounter situations where we

work on different shapes like circle, rectangle and square.

The shapes can have a common property Area. So, we can extend other shapes

from the base object shape with the common property area. Each of the shapes

can have its own properties and functions like a rectangle can have properties

length, breadth, area as its properties and printArea and calculateArea as its

functions.

Creating a Simple Class

A simple class implementation for a rectangle with three properties, area,

length, and breadth is shown below. It also has a printArea function to print the

area calculated.

-- Meta class

Rectangle = { area = 0, length = 0, breadth = 0}

-- Derived class method new

function Rectangle : new (o, length , breadth)

 o = o or {}

 setmetatable (o, self)

 self . __index = self

 self . length = length or 0

 self . breadth = breadth or 0

 self . area = length * breadth ;

 return o

end

-- Derived class method printArea

function Rectangle : printArea ()

 print ("The area of Rectangle is " , self . area)

Lua

101

end

Creating an Object

Creating an object is the process of allocating memory for the class instance.

Each of the objects has its own memory and share the common class data.

r = Rectangle : new(nil , 10, 20)

Accessing Properties

We can access the properties in the class using the dot operator as shown

below:

print (r . length)

Accessing Member Function

You can access a member function using the colon operator with the object as

shown below:

r : printArea ()

The memory gets allocated and the initial values are set. The initialization

process can be compared to constructors in other object oriented languages. It

is nothing but a function that enables setting values as shown above.

Complete Example

Let’s look at a complete example using object orientation in Lua.

-- Meta class

Shape = { area = 0}

-- Base class method new

function Shape: new (o, side)

 o = o or {}

 setmetatable (o, self)

 self . __index = self

 side = side or 0

Lua

102

 self . area = side * side ;

 return o

end

-- Base class method printArea

function Shape: printArea ()

 print ("The area is " , self . area)

end

-- Creating an object

myshape = Shape: new(nil , 10)

myshape: printArea ()

When you run the above program, you will get the following output.

The area is 100

Inheritance in Lua

Inheritance is the process of extending simple base objects like shape to

rectangles, squares and so on. It is often used in the real world to share and

extend the basic properties and functions.

Let us see a simple class extension. We have a class as shown below.

 -- Meta class

Shape = { area = 0}

-- Base class method new

function Shape: new (o, side)

 o = o or {}

 setmetatable (o, self)

 self . __index = self

 side = side or 0

 self . area = side * side ;

 return o

end

Lua

103

-- Base class method printArea

function Shape: printArea ()

 print ("The area is " , self . area)

end

We can extend the shape to a square class as shown below.

Square = Shape: new()

-- Derived class method new

function Square: new (o, side)

 o = o or Shape: new(o, side)

 setmetatable (o, self)

 self . __index = self

 return o

end

Overriding Base Functions

We can override the base class functions that is instead of using the function in

the base class, derived class can have its own implementation as shown below:

-- Derived class method printArea

function Square: printArea ()

 print ("The area of square is " , self . area)

end

Inheritance Complete Example

We can extend the simple class implementation in Lua as shown above with the

help of another new method with the help of metatables. All the member

variables and functions of base class are retained in the derived class.

 -- Meta class

Shape = {area = 0}

-- Base class method new

function Shape:new (o,side)

 o = o or {}

 setmetatable(o, self)

Lua

104

 self.__index = self

 side = side or 0

 self.area = side*side;

 return o

end

-- Base class method printArea

function Shape:printArea ()

 print("The area is ",self.are a)

end

-- Creating an object

myshape = Shape:new(nil,10)

myshape:printArea()

Square = Shape:new()

-- Derived class method new

function Square:new (o,side)

 o = o or Shape:new(o,side)

 setmetatable(o, self)

 self.__index = self

 return o

end

-- Deriv ed class method printArea

function Square:printArea ()

 print("The area of square is ",self.area)

end

-- Creating an object

mysquare = Square:new(nil,10)

mysquare:printArea()

Rectangle = Shape:new()

Lua

105

-- Derived class method new

function Rectangle:new (o, length,breadth)

 o = o or Shape:new(o)

 setmetatable(o, self)

 self.__index = self

 self.area = length * breadth

 return o

end

-- Derived class method printArea

function Rectangle:printArea ()

 print("The area of Rectangle is ",self.area)

end

-- Creating an object

myrectangle = Rectangle:new(nil,10,20)

myrectangle:printArea()

When we run the above program, we will get the following output:

The area is 100

The area of square is 100

The area of Rectangle is 200

In the above example, we have created two derived classes - Rectangle and

Square from the base class Square. It is possible to override the functions of the

base class in derived class. In this example, the derived class overrides the

function printArea.

Lua

106

Lua is a highly flexible language and it is often used in multiple platforms

including web applications. The Kepler community that was formed in 2004 to

provide open source web components in Lua.

Even though, there are other web frameworks using Lua that have been

developed, we will be primarily focusing on the components provided by Kepler

community.

Applications and Frameworks

 Orbit is an MVC web framework for Lua, based on WSAPI.

 WSAPI is the API that abstracts the web host server from Lua web

applications and is the base for many projects.

 Xavante is a Lua Web server that offers a WSAPI interface.

 Sputnik is a wiki/CMS developed over WSAPI on Kepler Project used for

humor and entertainment.

 CGILua offers LuaPages and LuaScripts web page creation, based on

WSAPI but no longer supported. Use Orbit, Sputnik or WSAPI instead.

In this tutorial, we will try to make you understand what Lua can do and to know

more about its installation and usage, refer the Kepler website.

Orbit

Orbit is an MVC web framework for Lua. It completely abandons the CGILua

model of "scripts" in favor of applications, where each Orbit application can fit in

a single file, but you can split it into multiple files if you want.

All Orbit applications follow the WSAPI protocol, so they currently work with

Xavante, CGI and Fastcgi. It includes a launcher that makes it easy to launch a

Xavante instance for development.

The easiest way to install Orbit is using LuaRocks. Luarocks install orbit is the

command for installing. For this, you need to install LuaRocks first.

If you haven't installed all the dependencies, here are the steps to be followed to

setup Orbit in Unix/Linux environment.

22. WEB PROGRAMMING

Lua

107

Installing Apache

Connect to your server. Install Apache2, its support modules and enable

required Apache2 modules using:

$ sudo apt - get install apache2 libapache2 - mod- fcgid libfcgi - dev build -

essential

$ sudo a2enmod rewrite

$ sudo a2enmod fcgid

$ sudo /etc/init.d/apache2 force - reload

Install LuaRocks

$ sudo apt - get install lua rocks

Install WSAPI, FCGI, Orbit, and Xavante

$ sudo luarocks install orbit

$ sudo luarocks install wsapi - xavante

$ sudo luarocks install wsapi - fcgi

Setting up Apache2

$ sudo raj / etc / apache2/ sites - available / default

Add this following section below the <Directory /var/www/> section of the config

file. If this section has an 'AllowOverride None' then you need to change the

'None' to 'All' so that the .htaccess file can override the configuration locally.

<IfModule mod_fcgid . c>

 AddHandler fcgid - script .lu a

 AddHandler fcgid - script .ws

 AddHandler fcgid - script .op

 FCGIWrapper "/usr/local/bin/wsapi.fcgi" .ws

 FCGIWrapper "/usr/local/bin/wsapi.fcgi" .lua

 FCGIWrapper "/usr/local/bin/op.fcgi" .op

 #FCGIServer "/usr/local/bin/wsapi.fcgi" - idl e- timeout 60 - processes 1

 #IdleTimeout 60

 #ProcessLifeTime 60

Lua

108

</IfModule>

Restart the server to ensure the changes made comes into effect.

To enable your application, you need to add +ExecCGI to an .htaccess file in the

root of your Orbit application - in this case, /var/www.

Options +ExecCGI

DirectoryIndex index . ws

Simple Example - Orbit

#!/usr/bin/env index.lua

-- index . lua

require "orbit"

-- declaration

 module("myorbit" , package. seeall , orbit . new)

-- handler

function index (web)

 return my_home_page()

end

-- dispatch

myorbit : dispatch_get (index , "/" , "/index")

-- Sample page

function my_home_page()

 return [[

 <head></ head>

 <html>

 <h2>First Page</ h2>

 </ html >

]]

end

Lua

109

Now, you should be able to launch your web browser. Go to

http://localhost:8080/ and you should see the following output:

First Page

Orbit provides another option, i.e., Lua code can generate html.

#!/usr/bin/env index.lua

-- index . lua

require "orbit"

function generate ()

 return html {

 head{ title "HTML Example" },

 body{

 h2{ "Here we go again!" }

 }

 }

end

orbit . htmlify (generate)

print (generate ())

Creating Forms

A simple form example is shown below:

#!/usr/bin/env index.lua

require "orbit"

function wrap (i nner)

 return html { head(), body(inner) }

end

function test ()

 return wrap(form (H'table' {

Lua

110

 tr { td "First name" , td (input { type ='text' , name='first' })},

 tr { td "Second name" , td (input { type ='text' , name='second' })},

 tr { td (input { ty pe='submit' , value ='Submit!' }),

 td (input { type ='submit' , value ='Cancel' })

 },

 }))

end

orbit . htmlify (wrap, test)

print (test ())

WSAPI

As mentioned earlier, WSAPI acts as the base for many projects and have

multiple features embedded in it. You can use WSAPI and support the following

platforms,

 Windows

 UNIX-based systems

The supported servers and interfaces by WSAPI includes,

 CGI

 FastCGI

 Xavante

WSAPI provides a number of libraries, which makes it easier for us in web

programming using Lua. Some of the supported features in Lua includes,

 Request processing

 Output buffering

 Authentication

 File uploads

 Request isolation

 Multiplexing

A simple example of WSAPI is shown below:

Lua

111

#!/usr/bin/env wsapi.cgi

module(..., package. seeall)

function run (wsapi_env)

 local headers = { ["Content - type"] = "text/html" }

 local function hello_text ()

 coroutine . yield ("<html><body>")

 coroutine . yield ("<p>Hello Wsapi! </p>")

 coroutine . yield ("<p>PATH_INFO: " .. wsapi_env . PATH_INFO .. "</p>")

 coroutine . yield ("<p>SCRIPT_NAME: " .. wsapi_env . SCRIPT_NAME .. "</p>")

 coroutine . yield ("</body></html>")

 end

 return 200, headers , coroutine . wrap(hello_text)

end

You can see in the above code a simple html page is formed and returned. You

can see the usage of coroutines that makes it possible to return statement by

statement to calling function. Finally, html status code(200), headers and html

page is returned.

Xavante

Xavante is a Lua HTTP 1.1 Web server that uses a modular architecture based

on URI mapped handlers. Xavante currently offers,

 File handler

 Redirect handler

 WSAPI handler

File handler is used for general files. Redirect handler enables URI remapping

and WSAPI handler for handing with WSAPI applications.

A simple example is shown below.

require "xavante.filehandler"

Lua

112

require "xavante.cgiluahandler"

require "xavante.redirecthandler"

-- Define here where Xavante HTTP documents scripts are located

loc al webDir = XAVANTE_WEB

local simplerules = {

 { -- URI remapping example

 match = "^[^%./]*/$" ,

 with = xavante . redirecthandler ,

 params = { "index.lp" }

 },

 { -- cgiluahandler example

 match = { "%.lp$" , "%.lp/.*$" , "%.lua$ " , "%.lua/.*$" },

 with = xavante . cgiluahandler . makeHandler (webDir)

 },

 { -- filehandler example

 match = "." ,

 with = xavante . filehandler ,

 params = { baseDir = webDir }

 },

}

xavante . HTTP{

 server = { host = "*" , por t = 8080},

 defaultHost = {

 rules = simplerules

 },

}

Lua

113

To use virtual hosts with Xavante, the call to xavante.HTTP would be changed to

something like as follows:

xavante . HTTP{

 server = { host = "*" , port = 8080},

 defaultHost = { },

 virtualhosts = {

 ["www.sitename.com"] = simplerules

 }

}

Lua Web Components

 Copas, a dispatcher based on coroutines that can be used by TCP/IP

servers.

 Cosmo, a "safe templates" engine that protects your application from

arbitrary code in the templates.

 Coxpcall encapsulates Lua native pcall and xpcall with coroutine

compatible ones.

 LuaFileSystem, a portable way to access the underlying directory

structure and file attributes.

 Rings, a library which provides a way to create new Lua states from

within Lua.

Ending Note

There are so many Lua based web frameworks and components available for us

and based on the need, it can be chosen. There are other web frameworks

available which include the following:

 Moonstalk enables efficient development and hosting of dynamically

generated web-based projects built with the Lua language; from basic

pages to complex applications.

 Lapis, a framework for building web applications using MoonScript (or

Lua) that runs inside of a customized version of Nginx called OpenResty.

Lua

114

 Lua Server Pages, a Lua scripting engine plug-in that blows away any

other approach to embedded web development, offers a dramatic short

cut to traditional C server pages.

These web frameworks can leverage your web applications and help you in doing

powerful operations.

Lua

115

For simple data operations, we may use files, but sometimes, these file

operations may not be efficient, scalable, and powerful. For this purpose, we

may often switch to using databases. LuaSQL is a simple interface from Lua to a

number of database management systems. LuaSQL is the library, which provides

support for different types of SQL. This include,

 SQLite

 Mysql

 ODBC

In this tutorial, we will be covering database handling of MySQL and SQLite in

Lua. This uses a generic interface for both and should be possible to port this

implementation to other types of databases as well. First let see how you can do

the operations in MySQL.

MySQL db Setup

In order to use the following examples to work as expected, we need the initial

db setup. The assumptions are listed below.

 You have installed and setup MySQL with default user as root and

password as '123456'.

 You have created a database test.

 You have gone through MySQL tutorial to understand MySQL Basics.

Importing MySQL

We can use a simple require statement to import the sqlite library assuming

that your Lua implementation was done correctly.

 mysql = require "luasql.mys ql"

The variable mysql will provide access to the functions by referring to the main

mysql table.

Setting up Connection

We can set up the connection by initiating a MySQL environment and then

creating a connection for the environment. It is shown below.

23. DATABASE ACCESS

Lua

116

local env = mysql . mysql ()

local conn = env: connect ('test' , 'root' , '123456')

The above connection will connect to an existing MySQL file and establishes the

connection with the newly created file.

Execute Function

There is a simple execute function available with the connection that will help us

to do all the db operations from create, insert, delete, update and so on. The

syntax is shown below:

conn: execute ([['MySQLSTATEMENT']])

In the above syntax, we need to ensure that conn is open and existing MySQL

connection and replace the 'MySQLSTATEMENT' with the correct statement.

Create Table Example

A simple create table example is shown below. It creates a table with two

parameters id of type integer and name of type varchar.

mysql = require "luasql.mysql"

local env = mysql . mysql ()

local conn = env: connect ('test' , 'root' , '123456')

print (env, conn)

status , errorString = conn: execute ([[CREATE TABLE sample2 (id INTEGER,
name TEXT);]])

print (status , errorString)

When you run the above program, a table named sample will be created with

two columns namely, id and name.

MySQL environment (004BB178) MySQL connection (004BE3C8)

0 nil

In case there is any error, you would be returned an error statement instead of

nil. A simple error statement is shown below.

Lua

117

LuaSQL: Error executing query . MySQL: You have an error in your SQL

syntax ; check the manual that corresponds to your MySQL server version

for the right syntax to use near '"id INTEGER, name TEXT)' at line 1

Insert Statement Example

An insert statement for MySQL is shown below.

 conn: execute ([[INSERT INTO sample values ('11' , 'Raj')]])

Update Statement Example

An update statement for MySQL is shown below.

conn: execute ([[UPDATE sample3 SET name='John' where id ='12']])

Delete Statement Example

A delete statement for MySQL is shown below.

conn: execute ([[DELETE from sample3 where id ='12']])

Select Statement Example

As far as select statement is concerned, we need to loop through each of the

rows and extract the required data. A simple select statement is shown below.

cursor , errorString = conn: execute ([[select * from sample]])

row = cursor : fetch ({}, "a")

while row do

 print (string . format ("Id: %s, Name: %s" , row. id , row. name))

 -- reusing the table of results

 row = cursor : fetch (row, "a")

end

In the above code, conn is an open MySQL connection. With the help of the

cursor returned by the execute statement, you can loop through the table

response and fetch the required select data.

Lua

118

A Complete Example

A complete example including all the above statements is given below.

mysql = require "luasql.mysql"

local env = mysql . mysql ()

local conn = env: connect ('test' , 'root' , '123456')

print (env, conn)

status , errorString = conn: execute ([[CREATE TABLE sample3 (id INTEGER,

name TEXT)]])

print (status , errorString)

status , errorString = conn: execute ([[INSERT INTO sample3

values ('12' , 'Raj')]])

print (status , errorString)

cursor , errorString = conn: execute ([[select * from sample3]])

print (cursor , errorString)

row = cursor : fetch ({}, "a ")

while row do

 print (string . format ("Id: %s, Name: %s" , row. id , row. name))

 row = cursor : fetch (row, "a")

end

-- close everything

cursor : close ()

conn: close ()

env: close ()

When you run the above program, you will get the following output.

MySQL environmen t (0037B178) MySQL connection (0037EBA8)

0 nil

1 nil

MySQL cursor (003778A8) nil

Lua

119

Id : 12, Name: Raj

Performing Transactions

Transactions are a mechanism that ensures data consistency. Transactions

should have the following four properties:

 Atomicity: Either a transaction completes or nothing happens at all.

 Consistency: A transaction must start in a consistent state and leave the

system in a consistent state.

 Isolation: Intermediate results of a transaction are not visible outside the

current transaction.

 Durability: Once a transaction was committed, the effects are persistent,

even after a system failure.

Transaction starts with START TRANSACTION; and ends with commit or rollback

statement.

Start Transaction

In order to initiate a transaction, we need to execute the following statement in

Lua, assuming conn is an open MySQL connection.

conn: execute ([[START TRANSACTION;]])

Rollback Transaction

We need to execute the following statement to rollback changes made after start

transaction is executed.

conn: execute ([[ROLLBACK;]])

Commit Transaction

We need to execute the following statement to commit changes made after start

transaction is executed.

conn: execute ([[COMMIT;]])

We have known about MySQL in the above and following section explains about

basic SQL operations. Remember transactions, though not explained again for

SQLite3 but the same statements should work for SQLite3 as well.

Lua

120

Importing SQLite

We can use a simple require statement to import the SQLite library assuming

that your Lua implementation was done correctly. During installation, a folder

libsql that contains the database related files.

 sqlite3 = require "luasql.sqlite3"

The variable sqlite3 will provide access to the functions by referring to the main

sqlite3 table.

Setting Up Connection

We can set up the connection by initiating an SQLite environment and then

creating a connection for the environment. It is shown below.

local env = sqlite3 . sqlite3 ()

local conn = env: connect ('mydb.sqlite')

The above connection will connect to an existing SQLite file or creates a new

SQLite file and establishes the connection with the newly created file.

Execute Function

There is a simple execute function available with the connection that will help us

to do all the db operations from create, insert, delete, update and so on. The

syntax is shown below:

conn: execute ([['SQLite3STATEMENT']])

In the above syntax, we need to ensure that conn is open and existing sqlite3

connection and replace the 'SQLite3STATEMENT' with the correct statement.

Create Table Example

A simple create table example is shown below. It creates a table with two

parameters id of type integer and name of type varchar.

sqlite3 = require "luasql.sqlite3"

local env = sqlite3 . sqlite3 ()

local conn = env: connect ('mydb.sqlite')

print (env, conn)

Lua

121

status , errorString = conn: execute ([[CREATE TABLE sample ('id' INTEGER,

'name' TEXT)]])

print (status , errorString)

When you run the above program, a table named sample will be created with

two columns namely, id and name.

SQLite3 environment (003EC918) SQLite3 connection (00421F08)

0 nil

In case of an error, you would be returned an error statement instead of nil. A

simple error statement is shown below.

LuaSQL: unrecognized token: ""'id' INTEGER, 'name' TEXT)"

Insert Statement Example

An insert statement for SQLite is shown below.

 conn: execute ([[INSERT INTO sample values ('11' , 'Raj')]])

Select Statement Example

As far as select statement is concerned, we need to loop through each of the

rows and extract the required data. A simple select statement is shown below.

cursor , errorString = conn: execute ([[select * from sample]])

row = cursor : fetch ({}, "a")

while row do

 print (string . format ("Id: %s, Name: %s" , row. id , row. name))

 -- reusing the table of result s

 row = cursor : fetch (row, "a")

end

In the above code, conn is an open sqlite3 connection. With the help of the

cursor returned by the execute statement, you can loop through the table

response and fetch the required select data.

A Complete Example

A complete example including all the above statements is given below.

Lua

122

sqlite3 = require "luasql.sqlite3"

local env = sqlite3 . sqlite3 ()

local conn = env: connect ('mydb.sqlite')

print (env, conn)

status , errorString = conn: execute ([[CREATE TABLE sample ('id' INTEGER,

'name' TEXT)]])

print (status , errorString)

status , errorString = conn: execute ([[INSERT INTO sample

values ('1' , 'Raj')]])

print (status , errorString)

cursor , errorString = conn: execute ([[select * from sample]])

print (cursor , errorString)

row = cursor : fetch ({}, "a")

while row do

 print (string . format ("Id: %s, Name: %s" , row. id , row. name))

 row = cursor : fetch (row, "a")

end

-- close everything

cursor : close ()

conn: close ()

env: close ()

When you run the above program, you will get the following output.

SQLite3 environment (005EC918) SQLite3 connection (005E77B0)

0 nil

1 nil

SQLite3 cursor (005E9200) nil

Id : 1, Name: Raj

Lua

123

We can execute all the available queries with the help of this libsql library. So,

please don't stop with these examples. Experiment various query statement

available in respective MySQL, SQLite3 and other supported db in Lua.

Lua

124

Lua is used in a lot of game engines due to its simple language structure and

syntax. The garbage collection feature is often quite useful in games which

consume a lot of memory due to rich graphics that is used. Some game engines

that use Lua includes:

 Corona SDK

 Gideros Mobile

 ShiVa3D

 Moai SDK

 LOVE

 CryEngine

Each of these game engines are based on Lua and there is a rich set of API

available in each of these engines. We will look at the capabilities of each in

brief.

Corona SDK

Corona SDK is a cross platform mobile game engine that supports iPhone, iPad,

and Android platforms. There is a free version of Corona SDK that can be used

for small games with limited features. You can upgrade to other versions when

needed.

Corona SDK provides a number of features which includes the following:

 Physics and Collision handling APIs

 Web and Network APIs

 Game Network API

 Ads API

 Analytics API

 Database and File System APIs

 Crypto and Math APIs

 Audio and Media APIs

It is easier and faster to develop an application using the above APIs rather than

using the native APIs separately for iOS and Android.

24. GAME PROGRAMING

Lua

125

Gideros Mobile

Gideros provides the cross-platform SDK to create games for iOS and Android. It

is free to use with a made with Gideros splash. Some of the striking advantages

in Gideoros includes the following:

 Development IDE: It provides its own IDE which makes it easier to

develop Gideros apps.

 Instant testing: While developing your game, it can be tested on a real

device through Wifi in only 1 second. You don't need to waste your time

with an export or deploy process.

 Plugins: You can easily extend the core with plugins. Import your existing

(C, C++, Java or Obj-C) code, bind to Lua and interpret them directly.

Dozens of open-source plugins are already developed and ready to use.

 Clean OOP approach: Gideros provides its own class system with all the

basic OOP standards, enabling you to write clean and reusable code for

any of your future games.

 Native speed: Developed on top of C/C++ and OpenGL, your game runs

at native speed and fully utilizes the power of CPUs and GPUs underneath.

ShiVa3D

ShiVa3D is one of 3D game engines which provides a graphical editor designed

to create applications and video games for the Web, Consoles and Mobile

devices. It supports multiple platforms which includes, Windows, Mac, Linux,

iOS, Android, BlackBerry, Palm OS, Wii and WebOS.

Some of the major features include

 Standard plugins

 Mesh modification API

 IDE

 Built-in Terrain, Ocean and animation editor

 ODE physics engine support

 Full lightmap control

 Live preview for materials, particles, trails and HUDs

 Collada exchange format support

The web edition of Shiva3d is completely free and other editions you have

subscribe.

Lua

126

Moai SDK

Moai SDK is a cross platform mobile game engine that supports iPhone, iPad,

and Android platforms. Moai platform initially consisted of Moai SDK, an open

source game engine, and Moai Cloud, a cloud platform as a service for the

hosting and deployment of game services. Now the Moai Cloud is shut down and

only the game engine is available.

Moai SDK runs on multiple platforms including iOS, Android, Chrome, Windows,

Mac and Linux.

LOVE

LOVE is a framework that you can use to make 2D games. It is free and open-

source. It supports Windows, Mac OS X and Linux platforms.

It provides multiple features which include,

 Audio API

 File System API

 Keyboard and Joystick APIs

 Math API

 Window and Mouse APIs

 Physics API

 System and timer APIs

CryEngine

CryEngine is a game engine developed by the German game developer Crytek.

It has evolved from generation 1 to generation 4 and is an advanced

development solution. It supports PC, Xbox 360, PlayStation3 and WiiU games.

It provides multiple features which include,

 Visual effects like Natural Lighting & Dynamic Soft Shadows, Real-time

Dynamic Global Illumination, Light Propagation Volume, Particle Shading,

Tessellation and so on.

 Character Animation System and Character Individualization System.

 Parametric Skeletal Animation and Unique Dedicated Facial Animation

Editor

 AI Systems like Multi-Layer Navigation Mesh and Tactical Point System.

Also provides Designer-Friendly AI Editing System.

Lua

127

 In Game Mixing & Profiling, Data-driven Sound System Dynamic Sounds &

Interactive Music and so on.

 Physics features like Procedural Deformation and Advanced Rope Physics

An Ending Note

Each of these Game SDKs/frameworks have their own advantages and

disadvantages. A proper choice between them makes your task easier and you

can have a better time with it. So, before using it, you need to know the

requirements for your game and then analyze which satisfies all your needs and

then should use them.

Lua

128

Lua standard libraries provide a rich set of functions that is implemented directly

with the C API and is in-built with Lua programming language. These libraries

provide services within the Lua programming language and also outside services

like file and db operations.

These standard libraries built in official C API are provided as separate C

modules. It includes the following:

 Basic library, which includes the coroutine sub-library

 Modules library

 String manipulation

 Table manipulation

 Math library

 File Input and output

 Operating system facilities

 Debug facilities

Basic Library

We have used the basic library throughout the tutorial under various topics. The

following table provides links of related pages and lists the functions that are

covered in various part of this Lua tutorial

S.N. Library / Method & Purpose

1. Error Handling

Includes error handling functions like assert, error as explained in Lua -

Error Handling.

2. Memory Management

Includes the automatic memory management functions related to

garbage collection as explained in Lua - Garbage Collection.

3. dofile ([filename])

25. STANDARD LIBRARIES

Lua

129

It opens the file and executes the contents of the file as a chunk. If no

parameter is passed, then this function executes the contents of

standard input. The errors will be propagated to the caller.

4. _G

Thus is the global variable that holds the global environment (that is,

_G._G = _G). Lua itself does not use this variable.

5. getfenv ([f])

Returns the current environment in use by the function. f can be a Lua

function or a number that specifies the function at that stack level:

Level 1 is the function calling getfenv. If the given function is not a Lua

function, or if f is 0, getfenv returns the global environment. The default

for f is 1.

6. getmetatable (object)

If object does not have a metatable, returns nil. Otherwise, if the

object's metatable has a "__metatable" field, returns the associated

value. Otherwise, returns the metatable of the given object.

7. ipairs (t)

This functions fetches the indices and values of tables.

8. load (func [, chunkname])

Loads a chunk using function func to get its pieces. Each call to func

must return a string that concatenates with previous results.

9. loadfile ([filename]))

Similar to load, but gets the chunk from file filename or from the

standard input, if no file name is given.

10. loadstring (string [, chunkname])

Similar to load, but gets the chunk from the given string.

11. next (table [, index])

Allows a program to traverse all fields of a table. Its first argument is a

table and its second argument is an index in this table. next returns the

Lua

130

next index of the table and its associated value.

12. pairs (t)

Suspends the running coroutine. The parameter passed to this method

acts as additional return values to the resume function.

13. print (...)

Suspends the running coroutine. The parameter passed to this method

acts as additional return values to the resume function.

14. rawequal (v1, v2)

Checks whether v1 is equal to v2, without invoking any metamethod.

Returns a boolean.

15. rawget (table, index)

Gets the real value of table[index], without invoking any metamethod.

table must be a table; index may be any value.

16. rawset (table, index, value)

Sets the real value of table[index] to value, without invoking any

metamethod. table must be a table, index any value different from nil,

and value any Lua value. This function returns table.

17. select (index, ...)

If index is a number, returns all arguments after argument number

index. Otherwise, index must be the string "#", and select returns the

total number of extra arguments it received.

18. setfenv (f, table)

Sets the environment to be used by the given function. f can be a Lua

function or a number that specifies the function at that stack level:

Level 1 is the function calling setfenv. setfenv returns the given

function. As a special case, when f is 0 setfenv changes the

environment of the running thread. In this case, setfenv returns no

values.

19. setmetatable (table, metatable)

Lua

131

Sets the metatable for the given table. (You cannot change the

metatable of other types from Lua, only from C.) If metatable is nil,

removes the metatable of the given table. If the original metatable has

a "__metatable" field, raises an error. This function returns table.

20. tonumber (e [, base])

Tries to convert its argument to a number. If the argument is already a

number or a string convertible to a number, then tonumber returns this

number; otherwise, it returns nil.

21. tostring (e)

Receives an argument of any type and converts it to a string in a

reasonable format. For complete control of how numbers are converted,

use string.format.

22. type (v)

Returns the type of its only argument, coded as a string. The possible

results of this function are "nil" (a string, not the value nil), "number",

"string", "boolean", "table", "function", "thread", and "userdata".

23. unpack (list [, i [, j]])

Returns the elements from the given table.

24. _VERSION

A global variable (not a function) that holds a string containing the

current interpreter version. The current contents of this variable is "Lua

5.1".

25. Coroutines

Includes the coroutine manipulation functions as explained in Lua -

Coroutines.

Modules Library

The modules library provides the basic functions for loading modules in Lua. It

exports one function directly in the global environment: require. Everything else

is exported in a table package. The details about the modules library is explained

in the earlier chapter Lua - Modules tutorial.

Lua

132

String manipulation

Lua provides a rich set of string manipulation functions. The earlier Lua -

Strings tutorial covers this in detail.

Table manipulation

Lua depends on tables in almost every bit of its operations. The earlier Lua -

Tables tutorial covers this in detail.

File Input and output

We often need data storage facility in programming and this is provided by

standard library functions for file I/O in Lua. It is discussed in earlier Lua - File

I/O tutorial.

Debug facilities

Lua provides a debug library which provides all the primitive functions for us to

create our own debugger. It is discussed in earlier Lua - Debugging tutorial.

Lua

133

We often need math operations in scientific and engineering calculations and we

can avail this using the standard Lua library math. The list of functions available

in math library is shown in the following table.

S.N. Library / Method & Purpose

1. math.abs (x)

Returns the absolute value of x.

2. math.acos (x)

Returns the arc cosine of x (in radians).

3. math.asin (x)

Returns the arc sine of x (in radians).

4. math.atan (x)

Returns the arc tangent of x (in radians).

5. math.atan2 (y, x)

Returns the arc tangent of y/x (in radians), but uses the signs of both

parameters to find the quadrant of the result. (It also handles correctly

the case of x being zero.)

6. math.ceil (x)

Returns the smallest integer larger than or equal to x.

7. math.cos (x)

Returns the cosine of x (assumed to be in radians).

8. math.cosh (x)

Returns the hyperbolic cosine of x.

9. math.deg (x)

Returns the angle x (given in radians) in degrees.

10. math.exp (x)

Returns the value e power x.

11. math.floor (x)

26. MATH LIBRARY

Lua

134

Returns the largest integer smaller than or equal to x.

12. math.fmod (x, y)

Returns the remainder of the division of x by y that rounds the quotient

towards zero.

13. math.frexp (x)

Returns m and e such that x = m2e, e is an integer and the absolute

value of m is in the range [0.5, 1) (or zero when x is zero).

14. math.huge

The value HUGE_VAL, a value larger than or equal to any other

numerical value.

15. math.ldexp (m, e)

Returns m2e (e should be an integer).

16. math.log (x)

Returns the natural logarithm of x.

17. math.log10 (x)

Returns the base-10 logarithm of x.

18. math.max (x, ...)

Returns the maximum value among its arguments.

19. math.min (x, ...)

Returns the minimum value among its arguments.

20. math.modf (x)

Returns two numbers, the integral part of x and the fractional part of x.

21. math.pi

The value of pi.

22. math.pow (x, y)

Returns xy. (You can also use the expression x^y to compute this

value.)

23. math.rad (x)

Returns the angle x (given in degrees) in radians.

24. math.random ([m [, n]])

This function is an interface to the simple pseudo-random generator

Lua

135

function rand provided by ANSI C.When called without arguments,

returns a uniform pseudo-random real number in the range [0,1). When

called with an integer number m, math.random returns a uniform

pseudo-random integer in the range [1, m]. When called with two

integer numbers m and n, math.random returns a uniform pseudo-

random integer in the range [m, n].

25. math.randomseed (x)

Sets x as the "seed" for the pseudo-random generator: equal seeds

produce equal sequences of numbers.

26. math.sin (x)

Returns the sine of x (assumed to be in radians).

27. math.sinh (x)

Returns the hyperbolic sine of x.

28. math.sqrt (x)

Returns the square root of x. (You can also use the expression x^0.5 to

compute this value.)

29. math.tan (x)

Returns the tangent of x (assumed to be in radians).

30. math.tanh (x)

Returns the hyperbolic tangent of x.

Trigonometric Functions

A simple example using trigonometric function is shown below.

radianVal = math. rad(math.pi / 2)

io.write(radianVal," \ n")

-- Sin value of 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.sin(radianVal))," \ n")

-- Cos value of 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.cos(radianVal))," \ n")

-- Tan value o f 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.tan(radianVal))," \ n")

Lua

136

-- Cosh value of 90(math.pi / 2) degrees

io.write(string.format("%.1f ", math.cosh(radianVal))," \ n")

-- Pi Value in degrees

io.write(math.deg(math.pi)," \ n")

When we run the above program, we will get the following output.

0.027415567780804

0.0

1.0

0.0

1.0

180

Other Common math Functions

A simple example using common math functions is shown below.

-- Floor

io.write("Floor of 10.5055 is ", math.floor(10.5055)," \ n")

-- Cei l

io.write("Ceil of 10.5055 is ", math.ceil(10.5055)," \ n")

-- Square root

io.write("Square root of 16 is ",math.sqrt(16)," \ n")

-- Power

io.write("10 power 2 is ",math.pow(10,2)," \ n")

io.write("100 power 0.5 is ",math.pow(100,0.5)," \ n")

-- Absolute

io.write ("Absolute value of - 10 is ",math.abs(- 10)," \ n")

-- Random

math.randomseed(os.time())

io.write("Random number between 1 and 100 is ",math.random()," \ n")

-- Random between 1 to 100

io.write("Random number between 1 and 100 is ",math.random(1,100)," \ n")

-- Max

Lua

137

io.write("Maximum in the input array is

",math.max(1,100,101,99,999)," \ n")

-- Min

io.write("Minimum in the input array is
",math.min(1,100,101,99,999)," \ n")

When we run the above program, we will get the following output.

Floor of 10.5055 is 10

Ceil of 10.5 055 is 11

Square root of 16 is 4

10 power 2 is 100

100 power 0.5 is 10

Absolute value of - 10 is 10

Random number between 1 and 100 is 0.22876674703207

Random number between 1 and 100 is 7

Maximum in the input array is 999

Minimum in the input array is 1

The above examples are just a few of the common examples. We can use math

library based on our need, so try using all the functions to be more familiar.

Lua

138

In any application, it is often required to access Operating System level

functions and it is made available with Operating System library. The list of

functions available are listed in the following table.

S.N. Library / Method & Purpose

1. os.clock ()

Returns an approximation of the amount in seconds of CPU time used

by the program.

2. os.date ([format [, time]])

Returns a string or a table containing date and time, formatted

according to the given string format.

3. os.difftime (t2, t1)

Returns the number of seconds from time t1 to time t2. In POSIX,

Windows, and some other systems, this value is exactly t2-t1.

4. os.execute ([command])

This function is equivalent to the ANSI C function system. It passes

command to be executed by an operating system shell. Its first result is

true if the command terminated successfully, or nil otherwise.

5. os.exit ([code [, close])

Calls the ANSI C function exit to terminate the host program. If code is

true, the returned status is EXIT_SUCCESS; if code is false, the

returned status is EXIT_FAILURE; if code is a number, the returned

status is this number.

6. os.getenv (varname)

Returns the value of the process environment variable varname, or nil if

the variable is not defined.

7. os.remove (filename)

Deletes the file (or empty directory, on POSIX systems) with the given

name. If this function fails, it returns nil, plus a string describing the

error and the error code.

8. os.rename (oldname, newname)

Renames file or directory named oldname to newname. If this function

27. OPERATING SYSTEM FACILITIES

Lua

139

fails, it returns nil, plus a string describing the error and the error code.

9. os.setlocale (locale [, category])

Sets the current locale of the program. locale is a system-dependent

string specifying a locale; category is an optional string describing which

category to change: "all", "collate", "ctype", "monetary", "numeric", or

"time"; the default category is "all". The function returns the name of

the new locale, or nil if the request cannot be honored.

10. os.time ([table])

Returns the current time when called without arguments, or a time

representing the date and time specified by the given table. This table

must have fields year, month, and day, and may have fields hour

(default is 12), min (default is 0), sec (default is 0), and isdst (default is

nil). For a description of these fields, see the os.date function.

11. os.tmpname ()

Returns a string with a file name that can be used for a temporary file.

The file must be explicitly opened before its use and explicitly removed

when no longer needed.

Common OS functions

A simple example using common math functions is shown below.

-- Date with format

io.write("The date is ", os.date("%m/%d/%Y")," \ n")

-- Date and time

io.write("The date and time is ", os.date()," \ n")

-- Time

io.write("The OS time is ", os.time()," \ n")

-- Wait for some time

for i=1,10000 00 do

end

-- Time since Lua started

Lua

140

io.write("Lua started before ", os.clock()," \ n")

When we run the above program, we will get similar output to the following.

The date is 01/25/2014

The date and time is 01/25/14 07:38:40

The OS time is 1390615720

Lua st arted before 0.013

The above examples are just a few of the common examples, we can use OS

library based on our need, so try using all the functions to be more familiar.

There are functions like remove which helps in removing file, execute that helps

us executing OS commands as explained above.

