

Invent Your Own

Computer Games

with Python

3rd Edition

By Al Sweigart

ii http://inventwithpython.com

Post questions to http://invpy.com/forum

Copyright © 2008-2015 by Albert Sweigart

Some Rights Reserved. "Invent Your Own Computer Games with Python" ("Invent with Python")

is licensed under a Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States

License.

You are free:

 To Share ð to copy, distribute, display, and perform the work

 To Remix ð to make derivative works

Under the following conditions:

 Attribution ð You must attribute the work in the manner specified by the author or

licensor (but not in any way that suggests that they endorse you or your use of the work).

(Visibly include the title and authorôs name in any excerpts of this work.)

 Noncommercial ð You may not use this work for commercial purposes.

 Share Alike ð If you alter, transform, or build upon this work, you may distribute

the resulting work only under the same or similar license to this one.

Your fair use and other rights are in no way affected by the above. There is a human-readable

summary of the Legal Code (the full license), located here:

http://creativecommons.org/licenses/by-nc-sa/3.0/us/legalcode

The source code in this book is released under a BSD 2-Clause license, located here:

http://opensource.org/licenses/BSD-2-Clause

Book Version 3.0.1, ISBN 978-1503212305

Attribution: Treasure chest icon by Victor Escorsin, Sonar icon by Pantelis Gkavos

If ȅƻǳΩǾŜ downloaded this book from a torrent, ƛǘΩǎ probably out of date. Go

to http://inventwithpython.com to download the latest version instead.

For Caro, with more love

than I ever knew I had.

iv http://inventwithpython.com

Post questions to http://invpy.com/forum

A Note to Parents and Fellow Programmers

Thank you for reading this book. My motivation for writing it came from a gap I saw in todayôs

literature for kids interested in learning to program. I started programming in the BASIC

programming language with a book similar to this one.

During the course of writing this, I've realized how a modern language like Python has made

programming far easier and versatile for a new generation of programmers. Python has a gentle

learning curve while still being a serious language used by programmers professionally.

The current crop of programming books fall into two categories. First, books that didnôt teach

programming so much as ñgame creation softwareò or a dumbed-down languages to make

programming ñeasyò to the point that it is no longer programming. Or second, they taught

programming like a mathematics textbook: all principles and concepts with little application

given to the reader. This book takes a different approach: show the source code for games right

up front and explain programming principles from the examples.

Iôve also made this book available under the Creative Commons license, which allows you to

make copies and distribute this book (or excerpts) with my full permission, as long as attribution

to me is left intact and it is used for noncommercial purposes. (See the copyright page.) I want to

make this book a gift to a world that has given me so much.

Whatõs New in the 3rd Edition?

The third edition features no new content since the second edition. However, the third edition has

been streamlined to cover the same content with 20% fewer pages. Explanations have been

expanded where needed and ambiguities clarified.

Chapter 9 was split into chapters 9 and 9½ to keep the chapter numbering the same.

The source code has intentionally been kept the same as the second edition to prevent confusion.

If youôve already read the second edition, thereôs no reason to read this book. However, if you are

new to programming, or introducing a friend to programming, this third edition will make the

process easier, smoother, and more fun.

Who is this book for?

Programming isnôt hard. But it is hard to find learning materials that teach you to do interesting

things with programming. Other computer books go over many topics most newbie coders donôt

need. This book will teach you how to program your own computer games. Youôll learn a useful

skill and have fun games to show for it! This book is for:

¶ Complete beginners who want to teach themselves computer programming, even if they

have no previous experience programming.

¶ Kids and teenagers who want to learn programming by creating games.

¶ Adults and teachers who wish to teach others programming.

¶ Anyone, young or old, who wants to learn how to program by learning a professional

programming language.

vi http://inventwithpython.com

Post questions to http://invpy.com/forum

TABLE OF CONTENTS

Chapter 1 - Installing Python ... 1

Downloading and Installing Python ... 2

Starting IDLE ... 3

How to Use this Book .. 4

Finding Help Online .. 5

Chapter 2 - The Interactive Shell ... 6

Some Simple Math Stuff .. 6

Evaluating Expressions .. 8

Storing Values in Variables ... 9

Chapter 3 - Writing Programs .. 14

Strings .. 14

String Concatenation .. 15

Writing Programs in IDLEôs File Editor .. 15

Hello World! .. 16

Saving Your Program .. 17

Opening The Programs Youôve Saved ... 18

How the ñHello Worldò Program Works ... 20

Variable Names .. 22

Chapter 4 - Guess the Number ... 24

Sample Run of Guess the Number ... 24

Source Code of Guess the Number .. 25

import statements ... 26

The random.randint() Function ... 27

Loops ... 29

Blocks .. 29

The Boolean Data Type ... 30

Comparison Operators ... 30

Conditions .. 31

The Difference Between = and == .. 32

Looping with while statements ... 33

Converting Values with the int() , float() , and str() Functions 34

if statements ... 36

Leaving Loops Early with the break statement ... 37

Flow Control Statements .. 39

Chapter 5 - Jokes .. 41

Making the Most of print() .. 41

Sample Run of Jokes .. 41

Source Code of Jokes ... 41

Escape Characters .. 42

Quotes and Double Quotes .. 43

print() ôs end Keyword Argument... 44

Chapter 6 - Dragon Realm ... 46

Functions .. 46

How to Play Dragon Realm ... 46

Sample Run of Dragon Realm ... 47

Source Code of Dragon Realm .. 47

def Statements .. 48

Boolean Operators ... 50

Return Values... 54

Global Scope and Local Scope .. 55

Parameters .. 56

Designing the Program .. 60

Chapter 7 - Using the Debugger .. 62

Bugs! .. 62

The Debugger... 63

viii http://inventwithpython.com

Post questions to http://invpy.com/forum

Stepping ... 65

Find the Bug ... 68

Break Points ... 71

Example Using Break Points ... 72

Chapter 8 - Flow Charts ... 75

How to Play Hangman ... 75

Sample Run of Hangman ... 75

ASCII Art ... 77

Designing a Program with a Flowchart .. 77

Creating the Flow Chart ... 79

Chapter 9 - Hangman ... 88

Source Code of Hangman .. 88

Multi -line Strings ... 92

Constant Variables ... 93

Lists .. 93

Methods ... 97

The lower() and upper() String Methods ... 98

The reverse() and append() List Methods .. 100

The split() List Method ... 100

The range() and list() Functions ... 103

for Loops ... 104

Slicing .. 106

elif (ñElse Ifò) Statements .. 109

Chapter 9 ½ - Extending Hangman .. 117

Dictionaries .. 118

The random.choice() Function ... 121

Multiple Assignment .. 122

Chapter 10 - Tic Tac Toe ... 125

Sample Run of Tic Tac Toe ... 125

Source Code of Tic Tac Toe .. 127

Designing the Program .. 131

Game AI ... 133

References .. 138

Short-Circuit Evaluation .. 146

The None Value .. 149

Chapter 11 - Bagels .. 157

Sample Run of Bagels .. 157

Source Code of Bagels ... 158

The random.shuffle() Function ... 161

Augmented Assignment Operators .. 163

The sort() List Method ... 164

The join() String Method .. 165

String Interpolation .. 167

Chapter 12 - Cartesian Coordinates ... 171

Grids and Cartesian Coordinates.. 171

Negative Numbers ... 173

Math Tricks .. 175

Absolute Values and the abs() Function .. 177

Coordinate System of a Computer Screen ... 178

Chapter 13 - Sonar Treasure Hunt ... 179

Sample Run of Sonar Treasure Hunt ... 180

Source Code of Sonar Treasure Hunt .. 183

Designing the Program .. 188

An Algorithm for Finding the Closest Treasure Chest .. 195

The remove() List Method .. 197

Chapter 14 - Caesar Cipher .. 207

Cryptography ... 207

The Caesar Cipher .. 208

x http://inventwithpython.com

Post questions to http://invpy.com/forum

ASCII, and Using Numbers for Letters ... 209

The chr() and ord() Functions .. 210

Sample Run of Caesar Cipher .. 211

Source Code of Caesar Cipher ... 212

How the Code Works ... 213

The isalpha() String Method .. 215

The isupper() and islower() String Methods .. 216

Brute Force... 218

Chapter 15 - Reversi .. 222

Sample Run of Reversi .. 224

Source Code of Reversi ... 227

How the Code Works ... 235

The bool() Function ... 244

Chapter 16 - Reversi AI Simulation ... 258

Making the Computer Play Against Itself .. 259

Percentages .. 263

The round() function ... 264

Sample Run of AISim2.py ... 265

Comparing Different AI Algorithms.. 266

Chapter 17 - Graphics and Animation ... 274

Installing Pygame... 274

Hello World in Pygame ... 275

Source Code of Hello World .. 275

Running the Hello World Program .. 277

Tuples ... 278

RGB Colors .. 279

Fonts, and the pygame.font.SysFont() Function .. 280

Attributes ... 282

Constructor Functions .. 283

Pygameôs Drawing Functions .. 283

Events and the Game Loop .. 288

Animation .. 289

Source Code of the Animation Program .. 289

How the Animation Program Works ... 292

Running the Game Loop .. 295

Chapter 18 - Collision Detection and Keyboard/Mouse Input ... 300

Source Code of the Collision Detection Program .. 300

The Collision Detection Algorithm.. 304

Donôt Add to or Delete from a List while Iterating Over It ... 309

Source Code of the Keyboard Input Program .. 310

The colliderect() Method .. 318

Chapter 19 - Sounds and Images.. 319

Sound and Image Files ... 320

Sprites and Sounds Program .. 321

Source Code of the Sprites and Sounds Program .. 321

The pygame.transform.scale() Function ... 325

Chapter 20 - Dodger ... 329

Review of the Basic Pygame Data Types .. 329

Source Code of Dodger .. 330

Fullscreen Mode... 339

The Game Loop ... 343

Event Handling .. 343

The move_ip() Method ... 346

The pygame.mouse.set_pos() Function .. 349

Modifying the Dodger Game ... 353

Chapter 1 ɀ Installing Python 1

Chapter 1

INSTALLING PYTHON

Topics Covered In This Chapter:

¶ Downloading and installing the Python interpreter

¶ How to use this book

¶ The bookôs website at http://inventwithpython.com

Hello! This book teaches you how to program by making video games. Once you learn how the

games in this book work, youôll be able to create your own games. All youôll need is a computer,

some software called the Python interpreter, and this book. The Python interpreter is free to

download from the Internet.

When I was a kid, a book like this one taught me how to write my first programs and games. It

was fun and easy. Now as an adult, I still have fun programming and I get paid for it. But even if

you donôt become a computer programmer when you grow up, programming is a useful and fun

skill to have.

Computers are incredible machines, and learning to program them isnôt as hard as people think. If

you can read this book, you can program a computer. A computer program is a bunch of

instructions that the computer can understand, just like a storybook is a bunch of sentences

understood by the reader. Since video games are nothing but computer programs, they are also

made up of instructions.

To instruct a computer, you write a program in a language the computer understands. This book

teaches a programming language named Python. There are many different programming

languages including BASIC, Java, JavaScript, PHP, and C++.

When I was a kid, BASIC was a common first language to learn. However, new programming

languages such as Python have been invented since then. Python is even easier to learn than

BASIC! But itôs still a serious programming language used by professional programmers. Many

adults use Python in their work and when programming for fun.

The games youôll create from this book seem simple compared to the games for Xbox,

PlayStation, or Nintendo. These games donôt have fancy graphics because theyôre meant to teach

coding basics. Theyôre purposely simple so you can focus on learning to program. Games donôt

have to be complicated to be fun.

2 http://inventwithpython.com

Post questions to http://invpy.com/forum

Downloading and Installing Python

Youôll need to install software called the Python interpreter. The interpreter program

understands the instructions youôll write in the Python language. Iôll just refer to ñthe Python

interpreter softwareò as ñPythonò from now on.

Important Note! Be sure to install Python 3, and not Python 2. The programs in

this book use Python 3, and youôll get errors if you try to run them with Python 2.

It is so important Iôve added a cartoon penguin in Figure 1-1 to tell you to install

Python 3 so you do not miss this message.

Figure 1-1: An incongruous penguin tells you to install Python 3.

On Windows, download the Python installer (the filename will end with .msi) and double-click it.

Follow the instructions the installer displays on the screen to install Python, as listed here:

1. Select Install for All Users and then click Next.

2. Install to the C:\Python34 folder by clicking Next.

3. Click Next to skip the Customize Python section.

On Mac OS X, download the .dmg file thatôs right for your version of OS X from the website and

double-click it. Follow the instructions the installer displays on the screen to install Python, as

listed here:

1. When the DMG package opens in a new window, double-click the Python.mpkg file. You

may have to enter the administrator password.

2. Click Continue through the Welcome section and click Agree to accept the license.

Chapter 1 ɀ Installing Python 3

3. Select HD Macintosh (or whatever name your hard drive has) and click Install.

If youôre running Ubuntu, you can install Python from the Ubuntu Software Center by following

these steps:

1. Open the Ubuntu Software Center.

2. Type Python in the search box in the top-right corner of the window.

3. Select IDLE (using Python 3.4), or whatever is the latest version.

4. Click Install . You may have to enter the administrator password to complete the

installation.

Starting IDLE

IDLE stands for Interactive DeveLopment Environment. The development environment is like

word processing software for writing Python programs. Starting IDLE is different on each

operating system.

On Windows, click the Start button in the lower left corner, type ñIDLEò and select IDLE

(Python GUI).

On Mac OS X, open the Finder window and click on Applications. Then click Python 3.4. Then

click the IDLE icon.

On Ubuntu or Linux, open a terminal window and then type ñidle3ò. You may also be able to

click on Applications at the top of the screen. Then click Programming and IDLE 3 .

The window that appears when you first run IDLE is the interactive shell, as shown in Figure 1-

2. You can enter Python instructions into the interactive shell at the >>> prompt and Python will

perform them. After displaying instruction results, a new >>> prompt will wait for your next

instruction.

Figure 1-нΥ ¢ƘŜ L5[9 ǇǊƻƎǊŀƳΩǎ ƛƴǘŜǊŀŎǘƛǾŜ ǎƘŜƭƭ ƻƴ ²ƛƴŘƻǿǎΣ h{ ·Σ ŀƴŘ ¦ōǳƴǘǳ [ƛƴǳȄΦ

4 http://inventwithpython.com

Post questions to http://invpy.com/forum

How to Use this Book

Most chapters in this book will begin with a sample run of the chapterôs featured program. This

sample run shows you what the program looks like when you run it. The parts the user types in

are shown as bold print.

Type the code for the program into IDLEôs file editor yourself, rather than download or

copy/paste it. Youôll remember programming better if you take the time to type in the code.

Line Numbers and Spaces

When typing the source code from this book, do not type the line numbers at the start of each

line. For example, if you see this in the book:

9. number = random.randint(1, 20)

You do not need to type the ñ9.ò on the left side, or the one space immediately following it. Just

type it like this:

number = random.randint(1, 20)

Those numbers are there only so that this book can refer to specific lines in the program. They are

not a part of the actual programôs source code.

Aside from the line numbers, enter the code exactly as it appears. Notice that some of the lines of

code are indented by four or eight spaces. Each character in IDLE is the same width, so you can

count the number of spaces by counting the number of characters on the line above or below.

For example, the indented spaces here are marked with a ǐ black square so you can see them:

while gu esses < 10:

ǐǐǐǐif number == 42:

ǐǐǐǐǐǐǐǐprint('Hello')

Text Wrapping in This Book

Some instructions are too long to fit on one line on the page and will wrap around to the next line.

When you type this code, enter it all on one line without pressing ENTER. You can tell when a

new instruction starts by looking at the line numbers on the left. The example below has only two

instructions:

1. print('This is the first instruction ! xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxx')

Chapter 1 ɀ Installing Python 5

2. print('This is the secon d instruction , not the third instruction .')

The first instruction wraps around and makes it look like three instructions in total. Thatôs only

because this bookôs pages arenôt wide enough to fit the first instruction on one line.

Finding Help Online

This bookôs website is at http://inventwithpython.com. You can find several resources related to

this book there. Several links in this book use the invpy.com domain name for shortened URLs.

The website at http://reddit.com/r/inventwithpython is a great place to ask programming questions

related to this book. Post general Python questions to the LearnProgramming and LearnPython

websites at http://reddit.com/r/learnprogramming and http://reddit.com/r/learnpython,

respectively.

You can also email me your programming questions at al@inventwithpython.com.

Keep in mind there are smart ways to ask programming questions that help others help you. Be

sure to read the Frequently Asked Questions sections these websites have about the proper way to

post questions. When asking programming questions, do the following:

¶ If you are typing out the programs in this book but getting an error, first check for typos

with the online diff tool at http://invpy.com/diff. Copy and paste your code into the diff

tool to find any differences from the bookôs code in your program.

¶ Explain what you are trying to do when you explain the error. This will let your helper

know if you are on the wrong path entirely.

¶ Copy and paste the entire error message and your code.

¶ Search the Web to see whether someone else has already asked (and answered) your

question.

¶ Explain what youôve already tried to do to solve your problem. This tells people youôve

already put in some work to try to figure things out on your own.

¶ Be polite. Donôt demand help or pressure your helpers to respond quickly.

Asking someone, ñWhy isnôt my program working?ò doesnôt tell them anything. Tell them what

you are trying to do, the exact error you are getting, and your operating system and version.

6 http://inventwithpython.com

Post questions to http://invpy.com/forum

Chapter 2

THE INTERACTIVE SHELL

Topics Covered In This Chapter:

¶ Integers and Floating Point Numbers

¶ Expressions

¶ Values

¶ Operators

¶ Evaluating Expressions

¶ Storing Values in Variables

Before you can make games, you need to learn a few basic programming concepts. You wonôt

make games in this chapter, but learning these concepts is the first step to programming video

games. Youôll start by learning how to use Pythonôs interactive shell.

Some Simple Math Stuff

Open IDLE using the steps in Chapter 1, then get Python to solve some simple math stuff. The

interactive shell can work just like a calculator. Type 2 + 2 into the interactive shell at the >>>

prompt and press the ENTER key on your keyboard. (On some keyboards, this is the RETURN key.)

Figure 2-1 shows how the interactive shell responds with the number 4.

Figure 2-1: Enter 2+2 into the interactive shell.

This math problem is a simple programming instruction. The + sign tells the computer to add the

numbers 2 and 2. Table 2-1 lists the other math symbols available in Python. The - sign will

subtract numbers. The * asterisk will multiply numbers. The / slash will divide numbers.

Chapter 2 ɀ The Interactive Shell 7

Table 2-1: The various math operators in Python.

Operator Operation

+ addition
- subtraction
* multiplication
/ division

When used in this way, +, - , * , and / are called operators. Operators tell Python what to do with

the numbers surrounding them.

Integers and Floating Point Numbers

Integers (or ints for short) are whole numbers such as 4, 99, and 0. Floating point numbers (or

floats for short) are fractions or numbers with decimal points like 3.5, 42.1 and 5.0. In Python,

the number 5 is an integer, but 5.0 is a float. These numbers are called values.

Expressions

These math problems are examples of expressions. Computers can solve millions of these

problems in seconds. Expressions are made up of values (the numbers) connected by operators

(the math signs). Try entering some of these math problems into the interactive shell, pressing the

ENTER key after each one.

2+2+2+2+2

8*6

10- 5+6

2 + 2

After you type in the above instructions, the interactive shell will look like Figure 2-2.

Figure 2-2: What the IDLE window looks like after entering instructions.

8 http://inventwithpython.com

Post questions to http://invpy.com/forum

Figure 2-3: An expression is a made up of values and operators.

In the 2 + 2 example, notice that there can be any amount of spaces between the values

and operators. However, always start instructions at the beginning of the line when entering them

into the interactive shell.

Evaluating Expressions

When a computer solves the expression 10 + 5 and gets the value 15, it has evaluated the

expression. Evaluating an expression reduces the it to a single value, just like solving a math

problem reduces the problem to a single number: the answer. The expressions 10 + 5 and 10 + 3

+ 2 both evaluate to 15.

Expressions can be of any size, but they will always evaluate down to a single value. Even single

values are expressions: The expression 15 evaluates to the value 15. For example, the expression

8 * 3 / 2 + 2 + 7 - 9 will evaluate down to the value 12.0 through the following steps:

8 * 3 / 2 + 2 + 7 ð 9

 Ƹ

 24 / 2 + 2 + 7 ð 9

 Ƹ

 12.0 + 2 + 7 ð 9

 Ƹ

 14.0 + 7 ð 9

 Ƹ

 21.0 ð 9

 Ƹ

 12.0

You donôt see all of these steps in the interactive shell. The interactive shell does them and just

shows you the results:

>>> 8 * 3 / 2 + 2 + 7 - 9

12.0

Chapter 2 ɀ The Interactive Shell 9

Notice that the / division operator evaluates to a float value, as in 24 / 2 evaluating to 12.0 .

Math operations with float values also evaluate to float values, as in 12.0 + 2 evaluating to 14.0 .

Syntax Errors

If you enter 5 + into the interactive shell, youôll get an error message.

>>> 5 +

SyntaxError: invalid syntax

This error happened because 5 + isnôt an expression. Expressions have values connected by

operators. But the + operator expects a value after the + sign. An error message appears when this

value is missing.

SyntaxError means Python doesnôt understand the instruction because you typed it incorrectly.

A lot of computer programming isnôt just telling the computer what to do, but also knowing how

to tell it.

Donôt worry about making mistakes though. Errors donôt damage your computer. Just retype the

instruction correctly into the interactive shell at the next >>> prompt.

Storing Values in Variables

You can save the value an expression evaluates to so you can use it later by storing them in

variables. Think of variables like a box that can hold a value.

An assignment statement instruction will store a value inside a variable. Type the name for the

variable, followed by the = sign (called the assignment operator), and then the value to store in

the variable. For example, enter spam = 15 into the interactive shell:

>>> spam = 15

>>>

The spam variableôs box will have the value 15 stored in it, as shown in Figure 2-4. The name

ñspamò is the label on the box (so Python can tell variables apart) and the value is written on a

small note inside the box.

When you press ENTER you wonôt see anything in response. In Python, the instruction executed

was successful if no error message appears. The >>> prompt will appear so you can type in the

next instruction.

10 http://inventwithpython.com

Post questions to http://invpy.com/forum

Figure 2-4: Variables are like boxes that can hold values in them.

Unlike expressions, statements are instructions that do not evaluate to any value. This is why

thereôs no value displayed on the next line in the interactive shell after spam = 15 . If you are

confused about which instructions are expressions and which are statements, remember that

expressions evaluate to a single value. Any other kind of instruction is a statement.

Variables store values, not expressions. For example, consider the expression in the statements

spam = 10 + 5 and spam = 10 + 7 - 2. They both evaluate to 15. The end result is the same:

Both assignment statements store the value 15 in the variable spam.

The first time a variable is used in an assignment statement, Python will create that variable. To

check what value is in a variable, type the variable name into the interactive shell:

>>> spam = 15

>>> spam

15

The expression spam evaluates to the value inside the spam variable: 15. You can use variables in

expressions. Try entering the following in the interactive shell:

>>> spam = 15

>>> spam + 5

20

Youôve set the value of the variable spam to 15, so writing spam + 5 is like writing the

expression 15 + 5 . Here are the steps of spam + 5 being evaluated:

spam + 5

 Ƹ

 15 + 5

 Ƹ

 20

Chapter 2 ɀ The Interactive Shell 11

You cannot use a variable before an assignment statement creates it. Python will give you a

NameError because no such variable by that name exists yet. Mistyping the variable name also

causes this error:

>>> spam = 15

>>> spma

Traceback (most recent call last):

 File "<pyshell#8>", line 1, in <module>

 spma

NameError: name 'spma' is not defined

The error appeared because thereôs spam variable but no variable named spma.

You can change the value stored in a variable by entering another assignment statement. For

example, try entering the following into the interactive shell:

>>> spam = 15

>>> spam + 5

20

>>> spam = 3

>>> spam + 5

8

When you first enter spam + 5 , the expression evaluates to 20 because you stored 15 inside spam.

However, when you enter spam = 3 , the value 15 is replaced, or overwritten, with the value 3.

Now when you enter spam + 5 , the expression evaluates to 8 because the value of spam is now 3.

Overwriting is shown in Figure 2-5.

Figure 2-5: The 15 value in spam being overwritten by the 3 value.

You can even use the value in the spam variable to assign a new value to spam:

12 http://inventwithpython.com

Post questions to http://invpy.com/forum

>>> spam = 15

>>> spam = spam + 5

20

The assignment statement spam = spam + 5 is like saying, ñthe new value of the spam variable

will be the current value of spam plus five.ò Keep increasing the value in spam by 5 several times

by entering the following into the interactive shell:

>>> spam = 15

>>> spam = spam + 5

>>> spam = spam + 5

>>> spam = spam + 5

>>> spam

30

Using More Than One Variable

Create as many variables as you need in your programs. For example, letôs assign different values

to two variables named eggs and bacon , like so:

>>> bacon = 10

>>> eggs = 15

Now the bacon variable has 10 inside it, and eggs has 15 inside it. Each variable is its own box

with its own value, like in Figure 2-6.

Figure 2-6Υ ¢ƘŜ άbaconέ ŀƴŘ άŜƎƎǎέ ǾŀǊƛŀōƭŜǎ ƘŀǾŜ ǾŀƭǳŜǎ ǎǘƻǊŜŘ ƛƴ ǘƘŜƳΦ

Try entering spam = bacon + eggs into the interactive shell, then check the new value of spam:

>>> bacon = 10

>>> eggs = 15

>>> spam = bacon + eggs

>>> spam

Chapter 2 ɀ The Interactive Shell 13

25

The value in spam is now 25. When you added bacon and eggs you are adding their values,

which are 10 and 15, respectively. Variables contain values, not expressions. The spam variable

was assigned value 25, and not the expression bacon + eggs . After the spam = bacon + eggs

assignment statement, changing bacon or eggs does not affect spam.

Summary

In this chapter, you learned the basics about writing Python instructions. Python needs you to tell

it exactly what to do in a strict way. Computers donôt have common sense and only understand

specific instructions.

Expressions are values (such as 2 or 5) combined with operators (such as + or -). Python can

evaluate expressions, that is, reduce the expression to a single value. You can store values inside

of variables so that your program can remember them and use them later.

There are many other types of operators and values in Python. In the next chapter, youôll go over

some more basic concepts and write your first program. Youôll learn about working with text in

expressions. Python isnôt limited to just numbers; itôs more than a calculator!

14 http://inventwithpython.com

Post questions to http://invpy.com/forum

Chapter 3

WRITING PROGRAMS

Topics Covered In This Chapter:

¶ Flow of execution

¶ Strings

¶ String concatenation

¶ Data types (such as strings or integers)

¶ Using the file editor to write progams

¶ Saving and running programs in IDLE

¶ The print() function

¶ The input() function

¶ Comments

¶ Case-sensitivity

Thatôs enough math for now. Now letôs see what Python can do with text. In this chapter, youôll

learn how to store text in variables, combine text, and display text on the screen.

Almost all programs display text to the user, and the user enters text into your programs through

the keyboard. Youôll also make your first program in this chapter. This program displays the

greeting, ñHello World!ò and asks for the userôs name.

Strings

In Python, text values are called strings. String values can be used just like integer or float values.

You can store strings in variables. In code, string values start and end with a single quote ('). Try

entering this code into the interactive shell:

>>> spam = 'hello'

The single quotes tell Python where the string begins and ends. They are not part of the string

valueôs text. Now if you type spam into the interactive shell, you will see the contents of the spam

variable. Remember, Python evaluates variables to the value stored inside the variable. In this

case, this is the string ' hello' :

>>> spam = 'hello'

>>> spam

'hello'

Chapter 3 ɀ Writing Programs 15

Strings can have any keyboard character in them and can be as long as you want. These are all

examples of strings:

'hello'

'Hi there!'

'KITTENS'

'7 apples, 14 oranges, 3 lemons'

'Anything not pertaining to elephants is irrelephant.'

'A long time ago , in a galaxy far, far away...'

'O *&#wY%*&OCfsdYO*&gfC%YO*&%3yc8r2'

String Concatenation

String values can combine with operators to make expressions, just like integer and float values

do. You can combine two strings with the + operator. This is string concatenation. Try entering

'Hello' + 'World!' into the interactive shell:

>>> 'Hello' + 'World!'

'HelloWorld!'

The expression evaluates to a single string value, 'HelloWorld!' . There is no space between the

words because there was no space in either of the two concatenated strings, unlike this example:

>>> 'Hello ' + 'World!'

'Hello World!'

The + operator works differently on string and integer values because they are different data

types. All values have a data type. The data type of the value 'Hello' is a string. The data type of

the value 5 is an integer. The data type tells Python what operators should do when evaluating

expressions. The + operator will concatenate string values but add integer and float values.

Writing Programs in L5[9Ωǎ File Editor

Until now, youôve been typing instructions into IDLEôs interactive shell one at a time. When you

write programs though, you type in several instructions and have them run all at once. Letôs write

your first program!

IDLE has another part called the file editor. Click on the File menu at the top of the interactive

shell window. Then select New Window. A blank window will appear for you to type your

programôs code into, like in Figure 3-1.

16 http://inventwithpython.com

Post questions to http://invpy.com/forum

Figure 3-1: The file editor window (left) and the interactive shell window (right).

The two windows look similar, but just remember this: The interactive shell window will have

the >>> prompt. The file editor window will not.

Hello World!

Itôs traditional for programmers to make their first program display ñHello world!ò on the screen.

Youôll create your own Hello World program now.

When you enter your program, donôt enter the numbers at the left side of the code. Theyôre there

so this book can refer to code by line number. The bottom-right corner of the file editor window

will tell you where the blinking cursor is. Figure 3-2 shows that the cursor is on line 1 and column

0.

Figure 3-2: The bottom right of the file editor window tells you what line the cursor is on.

hello.py

Enter the following text into the new file editor window. This is the programôs source code. It

contains the instructions Python will follow when the program is run.

Chapter 3 ɀ Writing Programs 17

IMPORTANT NOTE! The programs in this book will only run on Python 3, not

Python 2. When the IDLE window starts, it will say something like ñPython

3.4.2ò at the top. If you have Python 2 installed, you can have Python 3 installed

at the same time. To download Python 3, go to https://python.org/download/.

hello .py

1. # This program says hello and asks for my name.

2. print('Hello world!')

3. print('What is your name?')

4. myName = input()

5. print('It is good to meet you, ' + myName)

The IDLE program will write different types of instructions with different colors. After youôre

done typing the code, the window should look like this:

Figure 3-3: The file editor window will look like this after you type in the code.

Saving Your Program

Once youôve entered your source code, save it by clicking on File Ʒ Save As. Or press Ctrl-S to

save with a keyboard shortcut. Figure 3-4 shows the Save As window that will open. Enter

hello.py in the File name text field then click Save.

18 http://inventwithpython.com

Post questions to http://invpy.com/forum

Figure 3-4: Saving the program.

You should save your programs often while you type them. That way, if the computer crashes or

you accidentally exit from IDLE you wonôt lose much work.

Opening The Programs ̧ ƻǳΩǾŜ {ŀǾŜŘ

To load your previously saved program, click File Ʒ Open. Choose the file in the window that

appears and click the Open button. Your saved hello.py program will open in the File Editor

window.

Now itôs time to run the program. Click File Ʒ Run Ʒ Run Module or just press F5 from the

file editor window. Your program will run in the interactive shell window.

Enter your name when the program asks for it. This will look like Figure 3-5.

Figure 3-5: The interactive shell after running hello.py.

Chapter 3 ɀ Writing Programs 19

When you type your name and push ENTER, the program will greet you by name.

Congratulations! Youôve written your first program and are now a computer programmer. Press

F5 again to run the program a second time and enter another name.

If you got an error, compare your code to this bookôs code with the online diff tool at

http://invpy.com/diff. Copy and paste your code from the file editor into the web page and click

the Compare button. This tool will highlight any differences between your code and the code in

this book, like in Figure 3-6.

Figure 3-6: The diff tool at http://invpy.com/diff

While coding, if you get a NameError that looks like this:

Hello world!

What is your name?

Albert

Traceback (most recent call last):

 File "C:/Python26/test1.py", line 4, in <module>

 myName = input()

 File "<string>", line 1, in <module>

NameError: name 'Albert' is not defined

...that means you are using Python 2, instead of Python 3. Install a version of Python 3 from

https://python.org/download. Re-run the program with Python 3.

20 http://inventwithpython.com

Post questions to http://invpy.com/forum

Iƻǿ ǘƘŜ άIŜƭƭƻ ²ƻǊƭŘέ tǊƻƎǊŀƳ ²ƻǊƪǎ

Each line of code is an instruction interpreted by Python. These instructions make up the

program. A computer programôs instructions are like the steps in a cookbook recipe. Each

instruction executes in order, beginning from the top of the program and going down the list of

instructions.

The step Python is at in the program is called the execution. When the program starts, the

execution is at the first instruction. After executing the instruction, the execution moves down to

the next instruction.

Letôs look at each line of code to see what itôs doing. Weôll begin with line number 1.

Comments

1. # This program says hello and asks for my name.

This instruction is a comment. Any text following a # sign (called the pound sign) is a comment.

Comments are not for Python, but for you, the programmer. Python ignores comments.

Comments are the programmerôs notes about what the code does. You can write anything in a

comment. To make it easier to read the source code, this book prints comments in a light gray-

colored text.

Programmers usually put a comment at the top of their code to give their program a title.

Functions

A function is kind of like a mini-program inside your program. Functions contain several

instructions to execute when the function is called. Python provides some built-in functions

already. Two functions, print() and input() , are described next. The great thing about

functions is that you only need to know what the function does, but not how it does it.

A function call is an instruction that tells Python to run the code inside a function. For example,

your program calls the print() function to display a string on the screen. The print() function

takes the string you type between the parentheses as input and displays the text on the screen.

To display Hello world! on the screen, type the print function name, followed by an opening

parenthesis, followed by the 'Hello world!' string and a closing parenthesis.

The print() function

2. print('Hello world!')

Chapter 3 ɀ Writing Programs 21

3. print('What is your name?')

Lines 2 and 3 are calls to the print() function. A value between the parentheses in a function

call is an argument. The argument on line 2ôs print() function call is 'Hello world!' . The

argument on line 3ôs print() function call is 'What is your name?' . This is called passing the

argument to the print() function.

In this book, function names have parentheses at the end. This makes it clear that print() means

this book is talking about a function named print() , and not a variable named print . This is like

the quotes around the number '42' telling Python that you are talking about a string '42' and not

an integer 42.

The input() function

4. myName = input()

Line 4 is an assignment statement with a variable (myName) and a function call (input()). When

input() is called, the program waits for the user to enter text. The text string that the user enters

becomes the value that the function call evaluates to. Function calls can be used in expressions

anywhere a value can be used.

The value that the function call evaluates to is called the return value. (In fact, ñthe value a

function call returnsò means the same thing as ñthe value a function call evaluates toò.) In this

case, the return value of the input() function is the string that the user typed in-their name. If the

user typed in ñAlbertò, the input() function call evaluates to the string 'Albert' . The evaluation

looks like this:

myName = input()

 Ƹ

myName = 'Albert'

This is how the string value 'Albert' gets stored in the myName variable.

Using Expressions in Function Calls

5. print('It is good to meet you, ' + myName)

The last line is another print() function call. The expression 'It is good to meet you, ' +

myName in between the parentheses of print() . However, arguments are always single values.

Python will first evaluate this expression and then pass that value as the argument. If 'Albert' is

stored in myName, the evaluation looks like this:

22 http://inventwithpython.com

Post questions to http://invpy.com/forum

print('It is good to meet you, ' + myName)

 Ƹ

print('It is good to meet you, ' + 'Albert')

 Ƹ

print('It is good to meet you, Albert')

This is how the program greets the user by name.

Ending the Program

Once the program executes the last line, it terminates or exits. This means the program stops

running. Python forgets all of the values stored in variables, including the string stored in myName.

If you run the program again and enter a different name, the program will think that is your name.

Hello world!

What is your name?

Carolyn

It is good to meet you, Carolyn

Remember, the computer does exactly what you program it to do. Computers are dumb and just

follow the instructions you give it exactly. The computer doesnôt care if you type in your name,

someone elseôs name, or just something silly. Type in anything you want. The computer will treat

it the same way:

Hello world!

What is your name?

poop

It is good to meet you, poop

Variable Names

Giving variables descriptive names makes it easier to understand what a program does. Imagine if

you were moving to a new house and you labeled every moving box ñStuffò. That wouldnôt be

helpful at all!

Instead of myName, you could have called this variable abrahamLincoln or nAmE. Python doesnôt

care. It will run the program just the same.

Variable names are case-sensitive. Case-sensitive means the same variable name in a different

case is considered a different variable. So spam, SPAM, Spam, and sPAM are four different variables

in Python. They each contain their own separate values. Itôs a bad idea to have differently cased

variables in your program. Use descriptive names for your variables instead.

Chapter 3 ɀ Writing Programs 23

Variable names are usually lowercase. If thereôs more than one word in the variable name,

capitalize each word after the first. This makes your code more readable. For example, the

variable name whatIHadForBreakfastThisMorning is much easier to read than

whatihadforbreakfastthismorning . This is a convention: an optional but standard way of

doing things in Python programming.

Short variable names are better than long names: breakfast or foodThisMorning is more

readable than whatIHadForBreakfastThisMorning .

This bookôs interactive shell examples use variable names like spam, eggs , ham, and bacon . This

is because the variable names in these examples donôt matter. However, this bookôs programs all

use descriptive names. Your programs should use descriptive variable names too.

Summary

Once you learn about strings and functions, you can start making programs that interact with

users. This is important because text is the main way the user and the computer will communicate

with each other. The user enters text through the keyboard with the input() function. The

computer will display text on the screen with the print() function.

Strings are just values of a new data type. All values have a data type, and there are many data

types in Python. The + operator can concatenate strings.

Functions are used to carry out some complicated instruction as part of your program. Python has

many built-in functions that youôll learn about in this book. Function calls can be used in

expressions anywhere a value is used.

The instruction in your program that Python is currently at is called the execution. In the next

chapter, youôll learn more about making the execution move in ways other than just straight down

the program. Once you learn this, youôll be ready to create games.

24 http://inventwithpython.com

Post questions to http://invpy.com/forum

Chapter 4

GUESS THE NUMBER

Topics Covered In This Chapter:

¶ import statements

¶ Modules

¶ while statements

¶ Conditions

¶ Blocks

¶ Booleans

¶ Comparison operators

¶ The difference between = and ==

¶ if statements

¶ The break keyword

¶ The str() and int() and float () functions

¶ The random.randint() function

In this chapter, youôre going to make a ñGuess the Numberò game. The computer will think of a

random number from 1 to 20, and ask you to guess it. The computer will tell you if each guess is

too high or too low. You win if you can guess the number within six tries.

This is a good game to code because it uses random numbers, loops, and input from the user in a

short program. Youôll learn how to convert values to different data types, and why you would

need to do this. Since this program is a game, weôll call the user the player. But ñuserò would be

correct too.

Sample Run of Guess the Number

Hereôs what the program looks like to the player when run. The text that the player types in is in

bold.

Hello! What is your name?

Albert

Well, Albert, I am thinking of a number between 1 and 20.

Take a guess.

10

Your guess is too high.

Take a guess.

2

Chapter 4 ɀ Guess the Number 25

Your guess is too low.

Take a guess.

4

Good job, Albert! You guessed my number in 3 g uesses!

Source Code of Guess the Number

Open a new file editor window by clicking on the File Ʒ New Window. In the blank window

that appears, type in the source code and save it as guess.py. Then run the program by pressing

F5. When you enter this code into the file editor, be sure to pay attention to the spacing at the

front of some of the lines. Some lines have four or eight spaces of indentation.

IMPORTANT NOTE! The programs in this book will only run on Python 3, not

Python 2. When the IDLE window starts, it will say something like ñPython

3.4.2ò at the top. If you have Python 2 installed, you can have Python 3 installed

at the same time. To download Python 3, go to https://python.org/download/.

If you get errors after typing this code in, compare the code you typed to the bookôs code with the

online diff tool at http://invpy.com/diff/guess.

guess.py

 1. # This is a guess the number game.

 2. import random

 3.

 4. guessesTaken = 0

 5.

 6. print('Hello! What is your name?')

 7. myName = input()

 8.

 9. number = random.randint(1, 20)

10. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.')

11.

12. while guessesTaken < 6:

13. print('Take a guess.') # There are four spaces in front of print.

14. guess = input()

15. guess = int(guess)

16.

17. guessesTaken = guessesTaken + 1

18.

19. if guess < number:

20. print('Your guess is too low.') # There are e ight spaces in front

of print.

21.

22. if guess > number:

26 http://inventwithpython.com

Post questions to http://invpy.com/forum

23. print('Your guess is too high.')

24.

25. if guess == number:

26. break

27.

28. if guess == number:

29. guessesTaken = str(guessesTaken)

30. print('Good job, ' + myName + '! You guessed my number in ' +

guessesTaken + ' guesses!')

31.

32. if guess != number:

33. number = str(number)

34. print('Nope. The number I was thinking of was ' + number)

import statements

1. # This is a gues s the number game.

2. import random

The first line is a comment. Remember that Python will ignore everything after the # sign. This

just reminds us what this program does.

The second line is an import statement. Remember, statements are instructions that perform

some action but donôt evaluate to a value like expressions do. Youôve already seen statements:

assignment statements store a value in a variable.

While Python includes many built-in functions, some functions exist in separate programs called

modules. You can use these functions by importing their modules into your program with an

import statement.

Line 2 imports the module named random so that the program can call random.randint() . This

function will come up with a random number for the user to guess.

4. guessesTaken = 0

Line 4 creates a new variable named guessesTaken . Youôll store the number of guesses the

player has made in this variable. Since the player hasnôt made any guesses at this point in the

program, store the integer 0 here.

6. print('Hello! What is your name?')

7. myName = input()

Chapter 4 ɀ Guess the Number 27

Lines 6 and 7 are the same as the lines in the Hello World program that you saw in Chapter 3.

Programmers often reuse code from their other programs to save themselves work.

Line 6 is a function call to the print() function. Remember that a function is like a mini-

program inside your program. When your program calls a function, it runs this mini-program.

The code inside the print() function displays the string argument you passed it on the screen.

Line 7 lets the user type in their name and stores it in the myName variable. (Remember, the string

might not really be the playerôs name. Itôs just whatever string the player typed. Computers are

dumb and just follow their instructions no matter what.)

The random.randint() Function

9. number = random.randint(1, 20)

Line 9 calls a new function named randint() and stores the return value in number . Remember,

function calls can be part of expressions because they evaluate to a value.

The r andint() function is provided by the random module, so you must precede it with random.

(donôt forget the period!) to tell Python that the function randint() is in the random module.

The randint() function will return a random integer between (and including) the two integer

arguments you pass to it. Line 9 passes 1 and 20 between the parentheses separated by commas

that follow the function name. The random integer that randint() returns is stored in a variable

named number ; this is the secret number the player is trying to guess.

Just for a moment, go back to the interactive shell and enter import random to import the random

module. Then enter random.randint(1, 20) to see what the function call evaluates to. It will

return an integer between 1 and 20. Repeat the code again and the function call will return a

different integer. The randint() function returns random integer each time, just as rolling dice

youôll get a random number each time:

>>> import random

>>> random.randint(1, 20)

12

>>> random.randint(1, 20)

18

>>> random.randint(1, 20)

3

>>> random.randint(1, 20)

18

>>> random.randint(1, 20)

7

28 http://inventwithpython.com

Post questions to http://invpy.com/forum

Use the randint() function when you want to add randomness to your games. Youôll use

randomness in many games. (Think of how many board games use dice.)

You can also try different ranges of numbers by changing the arguments. For example, enter

random.randint(1, 4) to only get integers between 1 and 4 (including both 1 and 4). Or try

random.randint(1000, 2000) to get integers between 1000 and 2000 .

For example, enter the following into the interactive shell. The results you get when you call the

random.randint() function will probably be different (it is random, after all).

>>> random.randint(1, 4)

3

>>> random.randint (1000, 2000)

1294

You can change the gameôs code slightly to make the game behave differently. Try changing line

9 and 10 from this:

 9. number = random.randint(1, 20)

10. print('Well, ' + name + ', I am thinking of a number between 1 and 20.')

éinto these lines:

 9. number = random.randint(1, 100)

10. print('Well, ' + name + ', I am thinking of a number between 1 and 100 .')

And now the computer will think of an integer between 1 and 100 instead of 1 and 20. Changing

line 9 will change the range of the random number, but remember to change line 10 so that the

game also tells the player the new range instead of the old one.

Welcoming the Player

10. print('Well, ' + myName + ', I am thinking of a number between 1 and 20.')

On line 10 the print() function welcomes the player by name, and tells them that the computer

is thinking of a random number.

It may look like thereôs more than one string argument in line 10, but look at the line carefully.

The plus signs concatenate the three strings to evaluate down to one string. And that one string is

the argument passed to the print() function. If you look closely, youôll see that the commas are

inside the quotes and part of the strings themselves.

Chapter 4 ɀ Guess the Number 29

Loops

12. while guessesTaken < 6:

Line 12 is a while statement, which indicates the beginning of a while loop. Loops let you

execute code over and over again. However, you need to learn a few other concepts first before

learning about loops. Those concepts are blocks, Booleans, comparison operators, conditions, and

the while statement.

Blocks

Several lines of code can be grouped together in a block. Every line in a block of code has the

same minimum amount of indentation. You can tell where a block begins and ends by looking at

the number of spaces at the front of the lines. This is the lineôs indentation.

A block begins when a lineôs indentation increases (usually by four spaces). Any following line

also indented by four spaces is part of the block. The block ends when thereôs a line of code with

the same indentation before the block started. This means blocks can exist within other blocks.

Figure 4-1 is a diagram of code with the blocks outlined and numbered.

In Figure 4-1, line 12 has no indentation and isnôt inside any block. Line 13 has an indentation of

four spaces. Since this indentation is larger than the previous lineôs indentation, a new block has

started. This block is labeled (1) in Figure 4-1. This block will continue until a line with zero

spaces (the original indentation before the block began). Blank lines are ignored.

Line 20 has an indentation of eight spaces. Eight spaces is more than four spaces, which starts a

new block. This block is labeled (2) in Figure 4-1. This block is inside of another block.

Figure 4-1: Blocks and their indentation. The black dots represent spaces.

30 http://inventwithpython.com

Post questions to http://invpy.com/forum

Line 22 has only four spaces. Because the indentation has decreased, you know that block has

ended. Line 20 is the only line in that block. Line 22 is in the same block as the other lines with

four spaces.

Line 23 increases the indentation to eight spaces, so again a new block has started. It is labeled

(3) in Figure 4-1.

To recap, line 12 isnôt in any block. Lines 13 to 23 all in one block marked (1). Line 20 is in a

block in a block marked as (2). Line 23 is the only line in another block in a block marked as (3).

The Boolean Data Type

The Boolean data type has only two values: True or False . These values must be typed with a

capital ñTò and ñFò. The rest of the valueôs name must be in lowercase. You will use Boolean

values (called bools for short) with comparison operators to form conditions. (Conditions are

explained later.)

For example, try storing the Boolean values in variables:

>>> spam = True

>>> eggs = False

The data types that have been introduced so far are integers, floats, strings, and now bools. Every

value in Python belongs to one data type.

Comparison Operators

Line 12 has a while statement:

12. while guessesTaken < 6:

The expression that follows the while keyword (the guessesTaken < 6 part) contains two values

(the value in the variable guessesTaken , and the integer value 6) connected by an operator (the <

ñless thanò sign). The < sign is a comparison operator.

Comparison operators compare two values and evaluate to a True or False Boolean value. A list

of all the comparison operators is in Table 4-1.

Chapter 4 ɀ Guess the Number 31

Table 4-1: Comparison operators.

Operator Sign Operator Name
< Less than
> Greater than

<= Less than or equal to
>= Greater than or equal to
== Equal to
!= Not equal to

Youôve already read about the +, -, *, and / math operators. Like any operator, the comparison

operators combine with values to form expressions such as guessesTaken < 6 .

Conditions

A condition is an expression that combines two values with a comparison operator (such as < or

>) and evaluates to a Boolean value. A condition is just another name for an expression that

evaluates to True or False . Conditions are used in while statements (and a few other

instructions, explained later.)

For example, the condition guessesTaken < 6 asks, ñis the value stored in guessesTaken less

than the number 6?ò If so, then the condition evaluates to True . If not, the condition evaluates to

False .

In the case of the ñGuess the Numberò program, on line 4 you stored the value 0 in

guessesTaken . Because 0 is less than 6, this condition evaluates to the Boolean value of True .

The evaluation would look like this:

guessesTaken < 6

 Ƹ

 0 < 6

 Ƹ

 True

Experiment with Booleans, Comparison Operators, and Conditions

Enter the following expressions in the interactive shell to see their Boolean results:

>>> 0 < 6

True

>>> 6 < 0

False

>>> 50 < 10

32 http://inventwithpython.com

Post questions to http://invpy.com/forum

False

>>> 10 < 11

True

>>> 10 < 10

False

The condition 0 < 6 returns the Boolean value True because the number 0 is less than the

number 6. But because 6 isnôt less than 0, the condition 6 < 0 evaluates to False . 50 isnôt less

than 10, so 50 < 10 is False . 10 is less than 11, so 10 < 11 is True .

Notice that 10 < 10 evaluates to Fals e because the number 10 isnôt smaller than the number 10.

They are the same size. If Alice were the same height as Bob, you wouldn't say that Alice is taller

than Bob or that Alice is shorter than Bob. Both of those statements would be false.

Now try entering these expressions into the interactive shell:

>>> 10 == 10

True

>>> 10 == 11

False

>>> 11 == 10

False

>>> 10 != 10

False

>>> 10 != 11

True

>>> 'Hello' == 'Hello'

True

>>> 'Hello' == 'Goodbye'

False

>>> 'Hello' == 'HELLO'

False

>>> 'Goodbye' != 'Hello'

True

The Difference Between = and ==

Try not to confuse the assignment operator (=) and the ñequal toò comparison operator (==). The

equal sign (=) is used in assignment statements to store a value to a variable, while the equal-

equal sign (==) is used in expressions to see whether two values are equal. Itôs easy to

accidentally use one when you meant to use the other.

Just remember that the ñequal toò comparison operator (==) has two characters in it, just as the

ñnot equal toò comparison operator (!=) has two characters in it.

Chapter 4 ɀ Guess the Number 33

String and integer values will never be equal to each other. For example, try entering the

following into the interactive shell:

>>> 42 == 'Hello'

False

>>> 42 != '42'

True

Looping with while statements

The while statement marks the beginning of a loop. Loops can execute the same code repeatedly.

When the execution reaches a while statement, it evaluates the condition next to the while

keyword. If the condition evaluates to True , the execution moves inside the following block,

called the while-block. (In the program, the while-block begins on line 13.) If the condition

evaluates to False , the execution moves all the way past the while-block. In Guess the Number,

the first line after the while-block is line 28.

A while statement always has a : colon after the condition. Statements that end with a colon

expect a new block on the next line.

12. while guessesTaken < 6:

Figure 4-2: The while ƭƻƻǇΩǎ ŎƻƴŘƛǘƛƻƴΦ

Figure 4-2 shows how the execution flows depending on the condition. If the condition evaluates

to True (which it does the first time, because the value of guessesTaken is 0), execution will

34 http://inventwithpython.com

Post questions to http://invpy.com/forum

enter the while-block at line 13 and keep going down. Once the program reaches the end of the

while-block, instead of going down to the next line, the execution loops back up to the while

statementôs line (line 12) and re-evaluates the condition. As before, if the condition is True the

execution enters the while-block again. Each time the execution goes through the loop is called an

iteration.

This is how the loop works. As long as the condition is True , the program keeps executing the

code inside the while-block repeatedly until the first time the condition is False . Think of the

while statement as saying, ñwhile this condition is true, keep executing the code in the following

blockò.

The Player Guesses

13. print('Take a guess.') # There are four spaces in front of print.

14. guess = input()

Lines 13 to 17 ask the player to guess what the secret number is and lets them enter their guess.

That number is stored in a variable named guess .

Converting Values with the int() , float () , str() , and bool () Functions

15. guess = int(guess)

Line 15 calls a new function named int() . The int() function takes one argument and returns

an integer value form of that argument. Try entering the following into the interactive shell:

>>> int('42')

42

>>> 3 + int('2')

5

The int('42') call will return the integer value 42. However, even though you can pass a string

to the int() function, you cannot pass just any string. Passing 'forty - two ' to int() will result

in an error. The string you pass to int() must be made up of numbers:

>>> int('forty - two')

Traceback (most recent call last):

 File "<pyshell#5>", line 1, in <module>

int('forty - two')

ValueError: invalid literal for int() with base 10: 'forty - two'

Chapter 4 ɀ Guess the Number 35

The 3 + int('2') line shows an expression that uses the return value of int() as part of an

expression. It evaluates to the integer value 5:

3 + int('2')

 Ƹ

3 + 2

 Ƹ

 5

Remember, the input() function always returns a string of text the player typed. If the player

types 5, the input() function will return the string value '5' , not the integer value 5. Python

cannot use the < and > comparison operators to compare a string and an integer value:

>>> 4 < '5'

Traceback (most recent call last):

 File "<pyshell#0>", line 1, in <module>

 4 < '5'

TypeError: unorderable types: int() < str()

14. guess = input()

15. guess = int(gue ss)

On line 14 the guess variable originally held the string value of what the player typed. Line 15

overwrites the string value in guess with the integer value returned by int() . This lets the code

later in the program compare if guess is greater than, less than, or equal to the secret number in

the number variable.

One last thing: Calling int(guess) doesnôt change the value in the guess variable. The code

int(guess) is an expression that evaluates to the integer value form of the string stored in the

guess variable. What changes guess is the assignment statement: guess = int(guess)

The float() , str() , and bool() functions will similarly return float, string, and Boolean

versions of the arguments passed to them. Try entering the following into the interactive shell:

>>> float('42')

42.0

>>> float(42)

42.0

>>> str(42)

'42'

>>> str(42.0)

'42.0'

>>> str(False)

'False'

>>> bool('')

36 http://inventwithpython.com

Post questions to http://invpy.com/forum

False

>>> bool('any nonempty string')

True

Using the int() , float() , str() , and bool() functions, you can take a value of one data type

and return it as a value of a different data type.

Incrementing Variables

17. guessesTaken = guessesTaken + 1

Once the player has taken a guess, the number of guesses should be increased by one.

On the first iteration of the loop, guessesTaken has the value of 0. Python will take this value

and add 1 to it. 0 + 1 evaluates to 1, which is stored as the new value of guessesTaken . Think of

line 17 as meaning, ñthe guessesTaken variable should be one more than what it already isò.

Adding one to a variableôs integer or float value is called incrementing the variable. Subtracting

one from a variableôs integer or float value is called decrementing the variable.

if statements

19. if guess < number:

20. print('Your guess is too low.') # There are eight spaces in front

of print.

Line 19 is an if statement. The execution will run the code in the following block if the if

statementôs condition evaluates to True. If the condition is False , then the code in the if-block is

skipped. Using if statements, you can make the program only run certain code when you want it

to.

Line 19 checks if the playerôs guess is less than the computerôs secret number. If so, then the

execution moves inside the if-block on line 20 and prints a message telling the player this.

The if statement works almost the same as a while statement, too. But unlike the while-block,

the execution doesnôt jump back to the if statement at the end of the if-block. It just continues

down to the next line. In other words, if statements donôt loop. See Figure 4-3 for a comparison

of the two statements.

Chapter 4 ɀ Guess the Number 37

Figure 4-3: if and while statements.

22. if guess > number:

23. print('Your guess is too high.')

Line 22 checks if the playerôs guess is greater than the secret number. If this condition is True ,

then the print() function call tells the player that their guess is too high.

Leaving Loops Early with the break statement

25. if guess == number:

26. break

The if statement on line 25 checks if the guess is equal to the secret number. If it is, the program

runs the break statement on line 26.

A break statement tells the execution to jump immediately out of the while-block to the first line

after the end of the while-block. The break statement doesnôt bother rechecking the while loopôs

condition.

The break statement is only found inside loops, such as in a while-block.

If the playerôs guess isnôt equal to the secret number, the execution reaches the bottom of the

while-block. This means the execution will loop back to the top and recheck the condition on line

12 (guessesTaken < 6). Remember after the guessesTaken = guessesTaken + 1 instruction

executed, the new value of guessesTaken is 1. Because 1 < 6 is True , the execution enters the

loop again.

If the player keeps guessing too low or too high, the value of guessesTaken will change to 2,

then 3, then 4, then 5, then 6. When guessesTaken has the number 6 stored in it, the while

38 http://inventwithpython.com

Post questions to http://invpy.com/forum

statementôs condition (guessesTaken < 6) is False , since 6 isnôt less than 6. Because the while

statementôs condition is False , the execution moves to the first line after the while-block, line 28.

Check if the Player Won

28. if guess == number:

Line 28 has no indentation, which means the while-block has ended and this is the first line after

the while-block. The execution left the while-block either because the while statementôs

condition was False (when the player runs out of guesses) or the bre ak statement on line 26 was

executed (when the player guesses the number correctly).

Line 28 checks to see if the player guessed correctly. If so, the execution enters the if-block at

line 29.

29. guessesTaken = str(guessesTaken)

30. print('Good jo b, ' + myName + '! You guessed my number in ' +

guessesTaken + ' guesses!')

Lines 29 and 30 only execute if the condition in the if statement on line 28 was True (that is, if

the player correctly guessed the computerôs number).

Line 29 calls the str() function, which returns the string form of guessesTaken . Line 30

concatenates strings to tell the player they have won and how many guesses it took them. Only

string values can concatenate to other strings. This is why line 29 had to change guessesTaken to

the string form. Otherwise, trying to concatenate a string to an integer would cause Python to

display an error.

Check if the Player Lost

32. if guess != number:

Line 32 uses the ñnot equal toò comparison operator != to check if playerôs last guess is not equal

to the secret number. If this condition evaluates to True , the execution moves into the if-block on

line 33.

Lines 33 and 34 are inside the if-block, and only execute if the condition on line 32 was True .

33. number = str(number)

34. print('Nope . The number I was thinking of was ' + number)

Chapter 4 ɀ Guess the Number 39

In this block, the program tells the player what the secret number they failed to guess correctly

was. This requires concatenating strings, but number stores an integer value. Line 33 will

overwrite number with a string form so that it can be concatenated to the 'Nope. The number I

was thinking of was ' string on line 34.

At this point, the execution has reached the end of the code, and the program terminates.

Congratulations! Youôve just programmed your first real game!

You can change the gameôs difficulty by changing the number of guesses the player gets. To give

the player only four guesses, change the code on line 12:

12. while guessesTaken < 6:

into this line:

12. while guessesTaken < 4:

Code later in the while-block increases the guessesTaken variable by 1 on each iteration. By

setting the condition to guessesTaken < 4 , you ensure that the code inside the loop only runs

four times instead of six. This makes the game much more difficult. To make the game easier, set

the condition to guessesTaken < 8 or guessesTaken < 10 . This will cause the loop to run a few

more times and accept more guesses from the player.

Flow Control Statements

In previous chapters, the program execution started at the top instruction in program and went

straight down, executing each instruction in order. But with the while , if , else , and break

statements, you can cause the execution to loop and skip instructions based on conditions. The

name for these kinds of statements is flow control statement, since they change the ñflowò of the

program execution as it moves around your program.

Summary

If someone asked you, ñWhat exactly is programming anyway?ò what could you say to them?

Programming is just the action of writing code for programs, that is, creating programs that can

be executed by a computer.

ñBut what exactly is a program?ò When you see someone using a computer program (for

example, playing your ñGuess the Numberò game), all you see is some text appearing on the

screen. The program decides what exact text to show on the screen (the programôs output), based

40 http://inventwithpython.com

Post questions to http://invpy.com/forum

on its instructions and on the text that the player typed on the keyboard (the programôs input). A

program is just a collection of instructions that act on the userôs input.

ñWhat kind of instructions?ò There are only a few different kinds of instructions, really.

1. Expressions are values connected by operators. Expressions are all evaluated down to a

single value, as 2 + 2 evaluates to 4 or 'Hello' + ' ' + 'World' evaluates to 'Hello

World' . When expressions are next to the if and while keywords, you can also call them

conditions.

2. Assignment statements store values in variables so you can remember the values later in

the program.

3. The if , while , and break statements are flow control statements that can cause the

execution to skip instructions, loop over instructions, or break out of loops. Function calls

also change the flow of execution by jumping to the instructions inside of a function.

4. The print() and input() functions. These functions display text on the screen and get

text from the keyboard. This is called I/O (pronounced like the letters, ñeye-ohò), because

it deals with the Input and Output of the program.

And thatôs it, just those four things. Of course, there are many details about those four types of

instructions. In this book youôll learn about new data types and operators, new flow control

statements, and many other functions that come with Python. There are also different types of I/O

such as input from the mouse or outputting sound and graphics instead of just text.

For the person using your programs, they only care about that last type, I/O. The user types on the

keyboard and then sees things on the screen or hears things from the speakers. But for the

computer to figure out what sights to show and what sounds to play, it needs a program, and

programs are just a bunch of instructions that you, the programmer, have written.

Chapter 5 ɀ Jokes 41

Chapter 5

JOKES

Topics Covered In This Chapter:

¶ Escape characters

¶ Using single quotes and double quotes for strings

¶ Using print()õs end keyword argument to skip newlines

Making the Most of print()

Most of the games in this book will have simple text for input and output. The input is typed by

the user on the keyboard. The output is the text displayed on the screen. In Python, the print()

function displays textual output on the screen. But thereôs more to learn about how strings and

print() work in Python.

This chapterôs program tells a few different jokes to the user, and demonstrates advanced string

and print() code.

Sample Run of Jokes

What do you get when you cross a snowman with a vampire?

Frostbite!

What do dentists call an astronaut's cavity?

A black hole!

Knock knock .

Who's there?

Interrupting cow.

Interrupting cow wh - MOO!

Source Code of Jokes

Open a new file editor window by clicking on the File Ʒ New Window. In the blank window

that appears type in the source code and save it as jokes.py. Then run the program by pressing F5.

IMPORTANT NOTE! The programs in this book will only run on Python 3, not

Python 2. When the IDLE window starts, it will say something like ñPython

3.4.2ò at the top. If you have Python 2 installed, you can have Python 3 installed

at the same time. To download Python 3, go to https://python.org/download/.

42 http://inventwithpython.com

Post questions to http://invpy.com/forum

If you get errors after typing this code in, compare the code you typed to the bookôs code with the

online diff tool at http://invpy.com/diff/jokes.

jokes.py

 1. print ('What do you get when you cross a snowman with a vampire?')

 2. input()

 3. print('Frostbite!')

 4. print()

 5. print('What do dentists call a astronaut \ 's cavity?')

 6. input()

 7. print('A black hole!')

 8. print()

 9. print('Knock knock.')

10. input()

11. print("Who's there?")

12. input()

13. print('Interrupting cow.')

14. input()

15. print('Interrupting cow wh', end='')

16. print(' - MOO!')

How the Code Works

 1. print('What do you get when you cross a snowman with a vampire?')

 2. input()

 3. print('Fro stbite!')

 4. print()

Lines 1 to 4 have three print() function calls. You donôt want the player to immediately read the

jokeôs punch line, so thereôs a call to the input() function after the first print() . The player can

read the joke, press ENTER, and then read the punch line.

The user can still type in a string and hit ENTER, but this returned string isnôt being stored in any

variable. The program will just forget about it and move to the next line of code.

The last print() function call has no string argument. This tells the program to just print a blank

line. Blank lines are useful to keep the text from being bunched up.

Escape Characters

 5. print('What do dentists call a astronaut \ 's cavity?')

 6. input()

 7. print('A black hole!')

Chapter 5 ɀ Jokes 43

 8. print()

On line 5, thereôs a backslash right before the single quote: \ ' . Note that \ is a backslash, and / is

a forward slash. This backslash tells you that the letter right after it is an escape character. An

escape character lets you print characters that are hard to enter into the source code. On line 5

the escape character is the single quote.

The single quote escape character is there because otherwise Python would think the quote meant

the end of the string. But this quote needs to be a part of the string. The escaped single quote tells

Python that the single quote is literally a part of the string rather than marking the end of the

string value.

Some Other Escape Characters

What if you really want to display a backslash? This instruction would not work:

>>> print (' They flew away in a green \ teal helicopter.')

They flew away in a green eal helicopter.

This is because the ñtò in ñtealò was seen as an escape character since it came after a backslash.

The escape character t simulates pushing the Tab key on your keyboard. Instead, try this line:

>>> print(' They flew away in a green \ \ teal helicopter.')

They flew away in a green \ teal helicopter.

Table 5-1 is a list of escape characters in Python.

Table 5-1: Escape Characters

Escape Character What Is Actually Printed
\ \ Backslash (\)
\ ' Single quote (')
\ " Double quote (")
\ n Newline
\ t Tab

Quotes and Double Quotes

Strings donôt always have to be between single quotes in Python. You can also put them between

double quotes. These two lines print the same thing:

>>> print('Hello world')

Hello world

44 http://inventwithpython.com

Post questions to http://invpy.com/forum

>>> print("Hello world")

Hello world

But you cannot mix quotes. This line will give you an error if you try to use them:

>>> print('Hello world")

SyntaxError: EOL while scanning single - quoted string

I like to use single quotes so I donôt have to hold down the shift key to type them. Itôs easier to

type, and Python doesnôt care either way.

Just like you need the escape character \' to have a single quote in a string surrounded by single

quotes, you need the escape character \" to have a double quote in a string surrounded by double

quotes. For example, look at these two lines:

>>> print('I asked to borrow Abe \ 's car for a week. He said, "Sure."')

I asked to borrow Abe's car for a week. He said, "Sure."

>>> print(" She said, \ "I canõt believe you let them borrow your car. \ "")

She said, "I canõt believe you let them borrow your car."

In the single quote strings you donôt need to escape double quotes, and in the double quote strings

you donôt need to escape single quotes: "astr onaut's" . The Python interpreter is smart enough

to know that if a string starts with one type of quote, the other type of quote doesnôt mean the

string is ending.

print() Ωǎ end Keyword Argument

 9. print('Knock knock.')

10. input()

11. print("Who's there? ")

12. input()

13. print('Interrupting cow.')

14. input()

15. print('Interrupting cow wh', end='')

16. print(' - MOO!')

Did you notice the second parameter on line 15's print() ? Normally, print() adds a newline

character to the end of the string it prints. This is why a blank print() function will just print a

newline. But the print() function can optionally have a second parameter (which has the name

end .)

Chapter 5 ɀ Jokes 45

The blank string passed is called a keyword argument. The end parameter has a specific name,

and to pass a keyword argument to this specific parameter you must type end= before it.

By passing a blank string for end , the print() function wonôt add a newline at the end of the

string, but instead add a blank string. This is why ' - MOO!' appears next to the previous line,

instead of on its own new line. There was no newline after the 'Interrupting cow wh' string

was printed.

Summary

This chapter explores the different ways you can use the print() function. Escape characters are

used for characters that are difficult or impossible to type into the code with the keyboard. Escape

characters are typed into strings beginning with a backslash \ followed by a single letter for the

escape character. For example, \ n would be a newline. To include a backslash in a string, you

would use the escape character \ \ .

The print() function automatically appends a newline character to the end of the string passed it

to be displayed on the screen. Most of the time, this is a helpful shortcut. But sometimes you

donôt want a newline character at the end. To change this, you can pass the end keyword

argument with a blank string. For example, to print ñspamò to the screen without a newline

character, you would call print('spam', end='') .

Python provides many flexible ways to display text on the screen.

46 http://inventwithpython.com

Post questions to http://invpy.com/forum

Chapter 6

DRAGON REALM

Topics Covered In This Chapter:

¶ The time.sleep() function

¶ Creating your own functions with the def keyword

¶ The return keyword

¶ The and , or , and not Boolean operators

¶ Truth tables

¶ Global and local variable scope

¶ Parameters and Arguments

¶ Flow charts

Functions

Youôve already used a few functions: print() , input() , random.randint() , str() , and int() .

Youôve called these functions to execute the code inside them. In this chapter, youôll write your

own functions for your programs to call. A function is like a mini-program inside a program.

Functions let you run the same code multiple times without duplicating the source code several

times. Instead, you can put that code inside a function and call the function several times. This

has the added benefit that if the functionôs code has a mistake, you only have one place in the

program to change it.

The game you will create in this chapter is called ñDragon Realmò. The player decides between

two caves which hold either treasure or certain doom.

How to Play Dragon Realm

In this game, the player is in a land full of dragons. The dragons all live in caves with their large

piles of collected treasure. Some dragons are friendly and share their treasure with you. Other

dragons are hungry and eat anyone who enters their cave. The player is in front of two caves, one

with a friendly dragon and the other with a hungry dragon. The player must choose between the

two.

Open a new file editor window by clicking on the File Ʒ New Window. In the blank window

that appears type in the source code and save it as dragon.py. Then run the program by pressing

F5.

Chapter 6 ɀ Dragon Realm 47

Sample Run of Dragon Realm

You are in a land full of d ragons. In front of you,

you see two caves. In one cave, the dragon is friendly

and will share his treasure with you. The other dragon

is greedy and hungry, and will eat you on sight.

Which cave will you go into? (1 or 2)

1

You approach the cave...

It is d ark and spooky...

A large dragon jumps out in front of you! He opens his jaws and...

Gobbles you down in one bite!

Do you want to play again? (yes or no)

no

Source Code of Dragon Realm

IMPORTANT NOTE! The programs in this book will only run on Python 3, not

Python 2. When the IDLE window starts, it will say something like ñPython

3.4.2ò at the top. If you have Python 2 installed, you can have Python 3 installed

at the same time. To download Python 3, go to https://python.org/download/.

If you get errors after typing this code in, compare the code you typed to the bookôs code with the

online diff tool at http://invpy.com/diff/dragon.

dragon.py

 1. import random

 2. import time

 3.

 4. def displayIntro() :

 5. print('You are in a land full of dragons. In front of you,')

 6. print('you see two caves. In one cave, the dragon is friendly')

 7. print('and will share his treasure with you. The other dragon')

 8. print('is greedy and hungry, and will eat you on sight.')

 9. print()

10.

11. def chooseCave():

12. cave = ''

13. while cave != '1' and cave != '2':

14. print('Which cave will you go into? (1 or 2)')

15. cave = input()

16.

17. return cave

18.

48 http://inventwithpython.com

Post questions to http://invpy.com/forum

19. def checkCave(chosenCave):

20. print('You approach the cave...')

21. time.sleep(2)

22. print('It is dark and spooky...')

23. time.sleep(2)

24. print('A large dragon jumps out in front of you! He opens his jaws

and...')

25. print()

26. time.sleep(2)

27.

28. friendlyCave = random.randint(1, 2)

29.

30. if chosenCave == str(friendlyCave):

31. print('Gives you his treasure!')

32. else:

33. print('Gobbles you down in one bite!')

34.

35. playAgain = 'yes'

36. while playAgain == 'yes' or playAgain == 'y':

37.

38. displayIntro()

39.

40. caveNumber = chooseCave()

41.

42. checkCave(caveNumber)

43.

44. print('Do you want to play again? (yes or no)')

45. playAgain = inpu t()

How the Code Works

Letôs look at the source code in more detail.

 1. import random

 2. import time

This program imports two modules. The random module will provide the random.randint()

function like it did in the ñGuess the Numberò game. You will also want time-related functions

that the time module includes, so line 2 imports the time module.

def Statements

 4. def displayIntro():

 5. print('You are in a land full of dragons. In fr ont of you,')

Chapter 6 ɀ Dragon Realm 49

 6. print('you see two caves. In one cave, the dragon is friendly')

 7. print('and will share his treasure with you. The other dragon')

 8. print('is greedy and hungry, and will eat you on sight.')

 9. print()

Line 4 is a def statement. The def statement defines a new function that you can call later in the

program. When you define this function, you specify the instructions in its def-block. When you

call this function, the code inside the def-block executes.

Figure 6-1 shows the parts of a def statement. It has the def keyword followed by a function

name with parentheses and then a colon (the : sign). The block after the def statement is called

the def-block.

Figure 6-1: Parts of a def statement.

Remember, the def statement doesnôt execute the code. It only defines what code to execute

when you call the function. When the execution reaches a def statement it skips down to the first

line after the def-block.

But when the displayIntro() function is called (such as on line 38), the execution moves inside

of the displayIntro() function to the first line of the def-block.

38. displayIntro()

Then all of the print() calls are run and the ñYou are in a land full of dragons...ò introduction is

displayed.

Where to Put Function Definitions

A function's def statement and the def-block must come before you call the function. This is like

how you must assign a value to a variable before you use the variable. If you put the function call

before the function definition, youôll get an error. For example, look at this code:

sayGoodbye()

def sayGoodbye():

50 http://inventwithpython.com

Post questions to http://invpy.com/forum

 print('Goodbye!')

If you try to run it, Python will give you an error message that looks like this:

Traceback (most recent call last):

 File "C: \ Python34 \ spam.py", line 1, in <module>

sayGoodbye()

NameError: name 'sayGoodbye' is not defined

To fix this, put the function definition before the function call:

def sayGoodbye():

 print('Goodbye!')

sayGoodbye()

Defining the chooseCave() Function

11. def chooseCave():

Line 11 defines another function called chooseCave () . This functionôs code asks the player

which cave they want to go in, either 1 or 2.

12. cave = ''

13. while cave != '1' and cave != '2':

This function needs to make sure the player typed 1 or 2, and not something else. A loop here will

keep asking the player until they enter one of these two valid responses. This is called input

validation.

Line 12 creates a new variable called cave and stores a blank string in it. Then a while loop

begins on line 13. The condition contains a new operator you haven't seen before called and . Just

like the - or * are mathematical operators, and == or != are comparison operators, the and

operator is a Boolean operator.

Boolean Operators

Boolean logic deals with things that are either True or False . Boolean operators compare values

and evaluate to a single Boolean value.

Chapter 6 ɀ Dragon Realm 51

Think of the sentence, ñCats have whiskers and dogs have tails.ò ñCats have whiskersò is true and

ñdogs have tailsò is also true, so the entire sentence ñCats have whiskers and dogs have tailsò is

true.

But the sentence, ñCats have whiskers and dogs have wingsò would be false. Even though ñcats

have whiskersò is true, dogs do not have wings, so ñdogs have wingsò is false. In Boolean logic,

things can only be entirely true or entirely false. Because of the word ñandò, the entire sentence is

only true if both parts are true. If one or both parts are false, then the entire sentence is false.

The and and or Operators

The and operator in Python is the same. If the Boolean values on both sides of the and keyword

are True , then the expression evaluates to True . If either or both of the Boolean values are False ,

then the expression evaluates to Fals e.

Try entering the following expressions with the and operator into the interactive shell:

>>> True and True

True

>>> True and False

False

>>> False and True

False

>>> False and False

False

>>> spam = 'Hello'

>>> 10 < 20 and spam == 'Hello'

True

The or operator is similar to the and operator, except it will evaluate to True if either of the two

Boolean values are True . The only time the or operator evaluates to False is if both of the

Boolean values are False .

Try entering the following into the interactive shell:

>>> True or True

True

>>> True or False

True

>>> False or True

True

>>> False or False

False

>>> 10 > 20 or 20 > 10

True

52 http://inventwithpython.com

Post questions to http://invpy.com/forum

The not Operator

The not operator only works on one value, instead of combining two values. The not operator

evaluates to the opposite Boolean value. The expression not True will evaluate to False and not

False will evaluate to True .

Try entering the following into the interactive shell:

>>> not True

False

>>> not False

True

>>> not ('black' == 'white')

True

Truth Tables

If you ever forget how the Boolean operators work, you can look at these truth tables:

Table 6-1: The and operator's truth table.

A and B is Entire statement

True and True is True
True and False is False
False and True is False
False and False is False

Table 6-2: The or operator's truth table.

A or B is Entire statement

True or True is True
True or False is True
False or True is True
False or False is False

Table 6-3: The not operator's truth table.

not A is Entire statement

not True is False
not False is True

Chapter 6 ɀ Dragon Realm 53

Evaluating Boolean Operators

Look at line 13 again:

13. while cave != '1' and cave != '2':

The condition has two parts connected by the and Boolean operator. The condition is True only if

both parts are True .

The first time the while statementôs condition is checked, cave is set to the blank string, '' . The

blank string is not equal to the string '1' , so the left side evaluates to True . The blank string is

also not equal to the string '2' , so the right side evaluates to True .

So the condition then turns into True and True . Because both values are True , the condition

finally evaluates to True . So the program execution enters the while-block.

This is what the evaluation looks like (if the value of cave is the blank string):

while cave != '1' and cave != '2':

 Ƹ

while '' != '1' and cave != '2':

 Ƹ

while True and cave != '2' :

 Ƹ

while True and '' != '2':

 Ƹ

while True and True:

 Ƹ

while True:

DŜǘǘƛƴƎ ǘƘŜ tƭŀȅŜǊΩǎ LƴǇǳǘ

13. while cave != '1' and cave != '2':

14. print('Which cave will you go into? (1 or 2)')

15. cave = input()

Line 14 asks the player which cave they choose. Line 15 lets the player type the response and hit

ENTER. This response is stored in cave . After this code is executed, the execution loops back to

the top of the while statement and rechecks the condition.

If the player typed in 1 or 2, then cave will either be '1' or '2' (since input() always returns

strings). This makes the condition False , and the program execution will continue past the while

loop. For example, if the user entered '1' then the evaluation would look like this:

54 http://inventwithpython.com

Post questions to http://invpy.com/forum

while cave != '1' and cave != '2':

 Ƹ

while '1' != '1' and cave != '2':

 Ƹ

while False and cave != '2' :

 Ƹ

while False and '1' != '2':

 Ƹ

while False and True:

 Ƹ

while False:

But if the player typed 3 or 4 or HELLO, that response would be invalid. The condition will be

True and enters the while-block to ask the player again. The program will keep asking until the

player types 1 or 2. This will guarantee that once the execution moves on, the cave variable

contains a valid response.

Return Values

17. return cave

This is a return statement, which only appears inside def-blocks. Remember how the input()

function returns a string value that the player typed in? The choose Cave() function will also

return a value. Line 17 returns the string that is stored in cave , either '1' or '2' .

Once the return statement executes, the program execution jumps immediately out of the def-

block. (This is like how the break statement will make the execution jump out of a while-block.)

The program execution moves back to the line with the function call. The function call itself will

evaluate to the return value.

Skip down and look at line 40 for a moment:

40. caveNumber = chooseCave()

When the chooseCave() function is later called by the program on line 40, the return value is

stored in the caveNumber variable. The while loop guarantees that chooseCave() will only

return either '1' or '2' as its return value.

So when line 17 returns a string, the function call on line 40 evaluates to this string, which is then

stored in caveNumber .

Chapter 6 ɀ Dragon Realm 55

Global Scope and Local Scope

Your programôs variables are forgotten after the program terminates. The variables created while

the execution is inside a function call are the same. The variables are created when the function is

called and forgotten when the function returns. Remember, functions are kind of like mini-

programs in your program.

When execution is inside a function, you cannot change the variables outside of the function,

including variables inside other functions. This is because these variables exist in a different

ñscopeò. All variables exist in either the global scope or a function callôs local scope.

The scope outside of all functions is called the global scope. The scope inside of a function (for

the duration of a particular function call) is called a local scope.

The entire program has only one global scope. Variables defined in the global scope can be read

outside and inside functions, but can only be modified outside of all functions. Variables created

in a function call can only be read or modified during that function call.

You can read the value of global variables from the local scope, but attempting to change a global

variable from the local scope wonôt work. What Python actually does in that case is create a local

variable with the same name as the global variable. You could, for example, have a local variable

named spam at the same time as having a global variable named spam. Python will consider these

to be two different variables.

Look at this example to see what happens when you try to change a global variable from inside a

local scope. The comments explain what is going on:

def bacon():

 # We create a local variable named "spam"

 # in stead of changing the value of the global

 # variable "spam":

 spam = 99

 # The name "spam" now refers to the local

 # variable only for the rest of this

 # function:

 print(spam) # 99

spam = 42 # A global variable named "spam":

print(spam) # 42

bacon() # Call the bacon() function:

The global variable was not changed in bacon ():

print(spam) # 42

When run, this code will output the following:

56 http://inventwithpython.com

Post questions to http://invpy.com/forum

42

99

42

Where a variable is created determines what scope it is in. When the Dragon Realm program first

executes the line:

12. cave = ''

...the variable cave is created inside the chooseCave() function. This means it is created in the

chooseCave() functionôs local scope. It will be forgotten when chooseCave() returns, and will

be recreated if chooseCave() is called a second time. The value of a local variable isnôt

remembered between function calls.

Parameters

19. def checkCave(chosenCave):

The next function the program defines is named checkCave() . Notice the text chosenCave

between the parentheses. This is a parameter: a local variable that is assigned the argument

passed when this function is called.

Remember how for some function calls like str() or randint() , you would pass one or more

arguments between the parentheses:

>>> str(5)

'5'

>>> random.randint(1, 20)

14

You will also pass an argument when you call checkCave() . This argument is stored in a new

variable named chosenCave . These variables are also called parameters.

For example, here is a short program that demonstrates defining a function with a parameter:

def sayHello(name):

 print('Hello, ' + name + '. Your name has ' + str(len(name)) + ' letters.')

sayHello('Alice')

sayHello('Bob')

spam = 'Carol'

sayHello(spam)

Chapter 6 ɀ Dragon Realm 57

If you run this program, it would look like this:

Hello, Alice. Your name has 5 letters.

Hello, Bob. Your name has 3 letters.

Hello, Carol. Your name has 5 letters.

When you call sayHello() , the argument is assigned to the name parameter. Parameters are just

ordinary local variables. Like all local variables, the values in parameters will be forgotten when

the function call returns.

Displaying the Game Results

Back to the gameôs source code:

20. print('You approach the cave...')

21. time.sleep(2)

The time module has a function called sleep() that pauses the program. Line 21 passes the

integer value 2 so that time.sleep() will pause the program for 2 seconds.

22. print('It is dark and spooky...')

23. time.sleep(2)

Here the code prints some more text and waits for another 2 seconds. These short pauses add

suspense to the game, instead of displaying the text all at once. In the previous chapterôs Jokes

program, you called the input() function to pause until the player pressed the ENTER key. Here,

the player doesnôt have to do anything except wait a couple seconds.

24. print('A large dragon jumps out in front of you! He opens his jaws

and...')

25. print()

26. time.sleep(2)

What happens next? And how does the program decide? This is explained in the next section.

Deciding Which Cave has the Friendly Dragon

28. friendlyCave = random.randint(1, 2)

Line 28 calls the random.randint() function which will return either 1 or 2. This integer value

is stored in friendlyCave and is the cave with the friendly dragon.

58 http://inventwithpython.com

Post questions to http://invpy.com/forum

30. if chosenCave == str(friendlyCave):

31. print('Gives you his treasure!')

Line 30 checks if the playerôs chosen cave in the chosenCave variable ('1' or '2') is equal to the

friendly dragon cave.

But the value in friendlyCave is an integer because random.randint() returns integers. You

canôt compare strings and integers with the == sign, because they will always be not equal to each

other. '1' is not equal to 1 and '2' is not equal to 2.

So friendly Cave is passed to str() function, which returns the string value of friendlyCave .

This way the values will be the same data type and can be meaningfully compared to each other.

This code could also have been used to convert chosenCave to an integer value:

 if int(chosenCave) == friendlyCave:

If the condition is True , line 31 tells the player they have won the treasure.

32. else:

33. print('Gobbles you down in one bite!')

Line 32 is an else statement. The else statement can only come after an if -block. The else-block

executes if the if statementôs condition was False . Think of it as the programôs way of saying,

ñIf this condition is true then execute the if-block or else execute the else-block.ò

Remember to put the colon (the : sign) after the else keyword.

Where the Main Part Begins

35. playAgain = 'yes'

36. while playAgain == 'yes' or playAgain == 'y':

Line 35 is the first line that isnôt a def statement or inside a def-block. This line is where the main

part of the program begins. The previous def statements merely defined the functions. They

didnôt run the code inside of the functions.

Line 35 and 36 are setting up a loop that the rest of the game code is in. At the end of the game,

the player can enter if they want to play again. If they do, the execution enters the while loop to

run the entire game all over again. If they donôt, the while statementôs condition will be False

and the execution will move on to the end of the program and terminate.

Chapter 6 ɀ Dragon Realm 59

The first time the execution comes to this while statement, line 35 will have just assigned 'yes'

to the playAgain variable. That means the condition will be True . This guarantees that the

execution enters the loop at least once.

Calling the Functions in the Program

38. displayIntro()

Line 38 calls the displayIntro() function. This isnôt a Python function, it is your function that

you defined earlier on line 4. When this function is called, the program execution jumps to the

first line in the displayIntro() function on line 5. When all the lines in the function are done,

the execution jumps back to line 38 and continues moving down.

40. caveNumber = chooseCave()

Line 40 also calls a function that you defined. Remember that the chooseCave() function lets the

player type in the cave they want to go into. When the line 17ôs return cave executes, the

program execution jumps back to line 40, and the chooseCave() call evaluates to the return

value. This return value is stored in a new variable named caveNumber . Then the program

execution moves on to line 42.

42. checkCave(caveNumber)

Line 42 calls your checkCave() function, passing the value in cave Number as an argument. Not

only does execution jump to line 20, but the value in caveNumber is copied to the parameter

chosenCave inside the check Cave() function. This is the function that will display either 'Gives

you his treasure!' or 'Gobbles you down in one bite!' depending on the cave the player

chose to go into.

Asking the Player to Play Again

44. print('Do you want to play again? (yes or no)')

45. playAgain = input()

Whether the player won or lost, they are asked if they want to play again. The variable

playAgain stores what the player typed. Line 45 is the last line of the while-block, so the

program jumps back to line 36 to check the while loopôs condition: playAgain == 'yes' or

playAgain == 'y'

If the player typed in the string 'yes' or 'y' , then the execution would enter the loop again at

line 38.

60 http://inventwithpython.com

Post questions to http://invpy.com/forum

If the player typed in 'no' or 'n' or something silly like 'Abraham Lincoln' , then the condition

would be False . The program execution would continue on to the line after the while-block. But

since there are no more lines after the while-block, the program terminates.

One thing to note: the string 'YES' is not equal to the string 'yes' . If the player typed in the

string 'YES' , then the while statementôs condition would evaluate to False and the program

would still terminate. Later programs in this book will show you how to avoid this problem.

You've just completed your second game! In Dragon Realm, you used a lot of what you learned

in the Guess the Number game and picked up a few new tricks. If you didn't understand some of

the concepts in this program, then go over each line of the source code again, and try changing

the source code and see how the program changes.

In the next chapter you wonôt create a game, but instead learn how to use a feature of IDLE called

the debugger.

Designing the Program

Dragon Realm is a simple game. The other games in this book will be a bit more complicated. It

sometimes helps to write down everything you want your game or program to do before you start

writing code. This is called ñdesigning the program.ò

For example, it may help to draw a flow chart. A flow chart is a picture that shows every possible

action that can happen in the game, and which actions lead to which other actions. Figure 6-2 is a

flow chart for Dragon Realm.

To see what happens in the game, put your finger on the ñStartò box. Then follow one arrow from

the box to another box. Your finger is like the program execution. The program terminates when

your finger lands on the ñEndò box.

When you get to the ñCheck for friendly or hungry dragonò box, you can go to the ñPlayer winsò

box or the ñPlayer losesò box. This branching point shows how the program can do different

things. Either way, both paths will end up at the ñAsk to play againò box.

Summary

In the Dragon Realm game, you created your own functions. Functions are a mini-program within

your program. The code inside the function runs when the function is called. By breaking up your

code into functions, you can organize your code into smaller and easier to understand sections.

Arguments are values copied to the functionôs parameters when the function is called. The

function call itself evaluates to the return value.

Chapter 6 ɀ Dragon Realm 61

Figure 6-2: Flow chart for the Dragon Realm game.

You also learned about variable scopes. Variables created inside of a function exist in the local

scope, and variables created outside of all functions exist in the global scope. Code in the global

scope cannot make use of local variables. If a local variable has the same name as a variable in

the global scope, Python considers it a separate variable and assigning new values to the local

variable wonôt change the value in the global variable.

Variable scopes might seem complicated, but they are useful for organizing functions as separate

pieces of code from the rest of the program. Because each function has its own local scope, you

can be sure that the code in one function wonôt cause bugs in other functions.

Almost every program uses functions because they are so useful. By understanding how functions

work, you can save yourself a lot of typing and make bugs easier to fix.

62 http://inventwithpython.com

Post questions to http://invpy.com/forum

Chapter 7

USING THE DEBUGGER

Topics Covered In This Chapter:

¶ 3 Different Types of Errors

¶ IDLEôs Debugger

¶ Stepping Into, Over, and Out

¶ Go and Quit

¶ Break Points

Bugs!

ñOn two occasions I have been asked, 'Pray, Mr. Babbage, if you put into the machine wrong

figures, will the right answers come out?' I am not able rightly to apprehend the kind of confusion

of ideas that could provoke such a question.ò

-Charles Babbage, 19th century originator the concept of a programmable computer.

If you enter the wrong code, the computer wonôt give you the right program. A computer program

will always do what you tell it to, but what you tell the program to do might not be the same as

what you wanted the program to do. These errors are bugs in a computer program. Bugs happen

when the programmer has not carefully thought about what exactly the program is doing. There

are three types of bugs that can happen with your program:

¶ Syntax Errors are a type of bug that comes from typos. When the Python interpreter sees

a syntax error, it is because your code isnôt written in proper Python language. A Python

program with even a single syntax error wonôt run.

¶ Runtime Errors are bugs that happen while the program is running. The program will

work up until it reaches the line of code with the error, and then the program terminates

with an error message (this is called crashing). The Python interpreter will display a

ñtracebackò and show the line where the problem happens.

¶ Semantic Errors are the trickiest to fix. These bugs donôt crash the program, but it isnôt

doing what the programmer intended for the program to do. For example, if the

programmer wants the variable total to be the sum of the values in variables a, b, and c

but writes total = a * b * c , then the value in total will be wrong. This could crash

the program later on, but it is not immediately obvious where the semantic bug happened.

Chapter 7 ɀ Using the Debugger 63

Finding bugs in a program can be hard, if you even notice them at all! When running your

program, you may discover that sometimes functions are not called when they are supposed to be,

or maybe they are called too many times. You may code the condition for a while loop wrong, so

that it loops the wrong number of times. (A loop in your program that never exits is a kind of bug

called an infinite loop. To stop this program, you can press Ctrl -C in the interactive shell to

terminate the program.) Any of these things could mistakenly happen in your code if you are not

careful.

In fact, from the interactive shell, go ahead and create an infinite loop by typing this code in (you

have to press ENTER twice to let the interactive shell know you are done typing in the while-

block:

>>> while True:

... print('Press Ctrl - C to stop this i nfinite loop!!!')

...

Now press and hold down the Ctrl key and press the C key to stop the program. The interactive

shell will look like this:

Press Ctrl - C to stop this infinite loop!!!

Press Ctrl - C to stop this infinite loop!!!

Press Ctrl - C to stop this i nfinite loop!!!

Press Ctrl - C to stop this infinite loop!!!

Press Ctrl - C to stop this infinite loop!!!

Traceback (most recent call last):

 File "<pyshell#1>", line 1, in <module>

 while True: print('Press Ctrl - C to stop this infinite loop!!!')

KeyboardInterrupt

The Debugger

It can be hard to figure out how your code could be causing a bug. The lines of code get executed

quickly and the values in variables change so often. A debugger is a program that lets you step

through your code one line at a time in the same order that Python executes them. The debugger

also shows you what values are stored in variables at each step.

Starting the Debugger

In IDLE, open the Dragon Realm game you made in the last chapter. After opening the dragon.py

file, click on the Debug Ʒ Debugger to make the Debug Control window appear (Figure 7-1).

64 http://inventwithpython.com

Post questions to http://invpy.com/forum

Figure 7-1: The Debug Control window.

Figure 7-2: Running the Dragon Realm game under the debugger.

Chapter 7 ɀ Using the Debugger 65

Now when you run the Dragon Realm game by pressing F5, IDLEôs debugger will activate. This

is called running a program ñunder a debuggerò. In the Debug Control window, check the Source

and Globals checkboxes.

When you run Python programs under the debugger, the program will stop before it executes the

first instruction. If you click on the file editor window's title bar (and youôve checked the Source

checkbox in the Debug Control window), the first instruction is highlighted in gray. The Debug

Control window shows the execution is on line 1, which is the impo rt random line.

Stepping

The debugger lets you execute one instruction at a time. This is called stepping. To execute a

single instruction, click the Step button in the Debug Window. Go ahead and do this now. Python

will execute the import random instruction, and then stop before it executes the next instruction.

The Debug Control window will show the execution is now on line 2, the import time line.

Click the Quit button to terminate the program for now.

Here is a summary of what happens when you click the Step button when you run the Dragon

Realm game under a debugger. Press F5 to start running Dragon Realm again, then follow these

instructions:

1. Click the Step button twice to run the two import lines.

2. Click the Step button three more times to execute the three def statements.

3. Click the Step button again to define the playAgain variable.

4. Click Go to run the rest of the program, or click Quit to terminate the program.

The Debug Control window will show you what line is about to be executed when you click the

Step button in the Debug Control window. The debugger skipped line 3 because itôs a blank line.

Notice you can only step forward with the debugger, you cannot go backwards.

Globals Area

The Globals area in the Debug Control window is where all the global variables can be seen.

Remember, global variables are the variables that are created outside of any functions (that is, in

the global scope).

As the three def statements execute and define functions, they will appear in the Globals area of

the Debug Control window.

The text next to the function names in the Globals area will look like ñ<function checkCave at

0x012859B0>ñ. The module names also have confusing looking text next to them, such as

ñ<module 'random' from 'C:\\Python31\\lib\\random.pyc'>ñ. You donôt need to know what it

66 http://inventwithpython.com

Post questions to http://invpy.com/forum

means to debug your programs. Just seeing that the functions and modules are there in the Global

area will tell you if the function has been defined or the module has been imported.

You can also ignore the __builtins__ , __doc__ , and __name__ lines in the Global area. (Those

are variables that appear in every Python program.)

When the playAgain variable is created it will show up in the Global area. Next to the variable

name will be the string 'yes' . The debugger lets you see the values of all the variables in the

program as the program runs. This is useful for fixing bugs.

Locals Area

There is also a Locals area, which shows you the local scope variables and their values. The local

area will only have variables in it when the program execution is inside of a function. When the

execution is in the global scope, this area is blank.

The Go and Quit Buttons

If you get tired of clicking the Step button repeatedly and just want the program to run normally,

click the Go button at the top of the Debug Control window. This will tell the program to run

normally instead of stepping.

To terminate the program entirely, just click the Quit button at the top of the Debug Control

window. The program will exit immediately. This is helpful if you must start debugging again

from the beginning of the program.

Stepping Into, Over, and Out

Start the Dragon Realm program with the debugger. Keep stepping until the debugger is at line

38. As shown in Figure 7-3, this is the line with displayIntro() . When you click Step again,

the debugger will jump into this function call and appear on line 5, the first line in the

displayIntro() function. The kind of stepping you have been doing is called stepping into.

This is different from stepping over, explained next.

Chapter 7 ɀ Using the Debugger 67

Figure 7-3: Keep stepping until you reach line 38.

When the execution is paused at line 5, clicking Step one more time will step into the print()

function. The print() function is one of Pythonôs built-in functions, so it isnôt useful to step

through with the debugger. Pythonôs own functions such as print() , input() , str() , or

random.randint() have been carefully checked for errors. You can assume theyôre not the parts

causing bugs in your program.

So you donôt want to waste time stepping through the internals of the print() function. So

instead of clicking Step to step into the print() functionôs code, click Over. This will step over

the code inside the print() function. The code inside print() will be executed at normal speed,

and then the debugger will pause once the execution returns from print() .

Stepping over is a convenient way to skip stepping through code inside a function. The debugger

will now be paused at line 40, caveNumber = chooseC ave() .

Click Step one more time to step into the chooseCave() function. Keep stepping through the

code until line 15, the input() call. The program will wait until you type a response into the

interactive shell, just like when you run the program normally. If you try clicking the Step button

now, nothing will happen because the program is waiting for a keyboard response.

68 http://inventwithpython.com

Post questions to http://invpy.com/forum

Click back on the interactive shell window and type which cave you want to enter. The blinking

cursor must be on the bottom line in the interactive shell before you can type. Otherwise the text

you type will not appear.

Once you press ENTER, the debugger will continue to step lines of code again. Click the Out

button on the Debug Control window. This is called stepping out, because it will cause the

debugger to step over as many lines as it needs to until execution has returned from the function it

is in. After it jumps out, the execution will be on the line after the line that called the function.

For example, clicking Out inside the display Intro() function on line 6 would step until the

function returned to the line after the call to displayIntro() . Stepping out can save you from

having to click Step repeatedly to jump out of the function.

If you are not inside a function, clicking Out will cause the debugger will execute all the

remaining lines in the program. This is the same behavior as clicking the Go button.

Hereôs a recap of what each button does:

¶ Go - Executes the rest of the code as normal, or until it reaches a break point. (Break

points are described later.)

¶ Step - Step one instruction. If the line is a function call, the debugger will step into the

function.

¶ Over - Step one instruction. If the line is a function call, the debugger wonôt step into the

function, but instead step over the call.

¶ Out - Keeps stepping over lines of code until the debugger leaves the function it was in

when Out was clicked. This steps out of the function.

¶ Quit - Immediately terminates the program.

Find the Bug

The debugger can help you find the cause of bugs in your program. As an example, here is a

small program with a bug. The program comes up with a random addition problem for the user to

solve. In the interactive shell window, click on File, then New Window to open a new file editor

window. Type this program into that window, and save the program as buggy.py.

buggy.py

1. import random

2. number1 = random.randint(1, 10)

3. number2 = random.randint(1, 10)

4. print('What is ' + str(number1) + ' + ' + str(number2) + '?')

5. answer = input()

6. if answer == number1 + number2:

Chapter 7 ɀ Using the Debugger 69

7. print('Correct!')

8. else:

9. print('Nope! The answer is ' + str(number1 + number2))

Type the program as it is above, even if you can already tell what the bug is. Then trying running

the program by pressing F5. This is a simple arithmetic quiz that comes up with two random

numbers and asks you to add them. Hereôs what it might look like when you run the program:

What is 5 + 1?

6

Nope! The answer is 6

Thatôs a bug! The program doesnôt crash but it is not working correctly. The program says the

user is wrong even if they type the correct answer.

Running the program under a debugger will help find the bugôs cause. At the top of the

interactive shell window, click on Debug Ʒ Debugger to display the Debug Control window. In

the Debug Control window, check all four checkboxes (Stack, Source, Locals, and Globals). This

makes the Debug Control window provide the most information. Then press F5 in the file editor

window to run the program. This time it will be run under the debugger.

1. import random

The debugger starts at the import random line. Nothing special happens here, so just click Step

to execute it. You will see the random module added to the Globals area.

2. number1 = random.randint(1, 10)

Click Step again to run line 2. A new file editor window will appear with the random.py file. You

have stepped inside the randint() function inside the random module. Pythonôs built-in

functions wonôt be the source of your bugs, so click Out to step out of the randint() function

and back to your program. Then close the random.py file's window.

3. number2 = random.randint(1, 10)

Next time, you can click Over to step over the randint() function instead of stepping into it.

Line 3 is also a randint() function call. Skip stepping into this code by clicking Over.

4. print('What is ' + str(number1) + ' + ' + str(number2) + '?')

70 http://inventwithpython.com

Post questions to http://invpy.com/forum

Line 4 is a print() call to show the player the random numbers. You know what numbers the

program will print even before it prints them! Just look at the Globals area of the Debug Control

window. You can see the number1 and number2 variables, and next to them are the integer values

stored in those variables.

The number1 variable has the value 4 and the number2 variable has the value 8. When you click

Step, the program will display the string in the print() call with these values. The str()

function will concatenate the string version of these integers. When I ran the debugger, it looked

like Figure 7-4. (Your random numbers will probably be different.)

Figure 7-4: number1 is set to 4 and number2 is set to 8.

5. answer = input()

Clicking on Step from line 5 will execute input() . The debugger waits until the player enters a

response into the program. Enter the correct answer (in my case, 12) into the interactive shell

window. The debugger will resume and move down to line 6.

6. if answer == number1 + number2:

7. print('Correct!')

Line 6 is an if statement. The condition is that the value in answer must match the sum of

number1 and number2 . If the condition is True , then the debugger will move to line 7. If the

Chapter 7 ɀ Using the Debugger 71

condition is False , the debugger will move to line 9. Click Step one more time to find out where

it goes.

8. else:

9. print('Nope! The answer is ' + str(number1 + number2))

The debugger is now on line 9! What happened? The condition in the if statement must have

been False . Take a look at the values for number1 , number2 , and answer . Notice that number1

and number2 are integers, so their sum would have also been an integer. But answer is a string.

That means that answer == number1 + number2 would have evaluated to ' 12' == 12. A string

value and an integer value will always not equal each other, so the condition evaluated to False .

That is the bug in the program. The bug is that the code has answer when it should have

int(answer) . Change line 6 to int(answer) == number1 + numb er2 , and run the program

again.

What is 2 + 3?

5

Correct!

This time, the program worked correctly. Run it one more time and enter a wrong answer on

purpose. This will completely test the program. Youôve now debugged this program! Remember,

the computer will run your programs exactly as you type them, even if what you type isnôt what

you intend.

Break Points

Stepping through the code one line at a time might still be too slow. Often youôll want the

program to run at normal speed until it reaches a certain line. A break point is set on a line when

you want the debugger to take control once execution reaches that line. If you think thereôs a

problem with your code on, say, line 17, just set a break point on line 17 (or maybe a few lines

before that).

When execution reaches that line, the debugger will ñbreak into the debuggerò. Then you can step

through lines one at a time to see what is happening. Clicking Go will execute the program

normally until it reaches another break point or the end of the program.

To set a break point, right-click on the line in the file editor and select Set Breakpoint from the

menu that appears. The file editor will highlight that line with yellow. You can set break points

on as many lines as you want. To remove the break point, click on the line and select Clear

Breakpoint from the menu that appears.

72 http://inventwithpython.com

Post questions to http://invpy.com/forum

Figure 7-5: The file editor with two break points set.

Example Using Break Points

Here is a program that simulates coin flips by calling random.randint(0, 1) . The function

returning the integer 1 will be ñheadsò and returning the integer 0 will be ñtailsò. The flips

variable will track how many coin flips have been done. The heads variable will track how many

came up heads.

The program will do ñcoin flipsò one thousand times. This would take a person over an hour to

do, but the computer can do it in one second! Type in the following code into the file editor and

save it as coinFlips.py. If you get errors after typing this code in, compare the code you typed to

the bookôs code with the online diff tool at http://invpy.com/diff/coinflips.

coinFlips.py

 1. import random

 2. print('I will flip a coin 1000 times. Guess how many times it will come up

heads. (Press enter to begin)')

 3. input()

 4. flips = 0

 5. heads = 0

 6. while flips < 1000:

 7. if random.randint(0, 1) == 1:

 8. heads = heads + 1

 9. flips = flips + 1

10.

11. if flips == 900:

12. print('900 flips and there have been ' + str(heads) + ' heads.')

13. if flips == 100 :

14. print('At 100 tosses, heads has come up ' + str(heads) + ' times so

far.')

15. if flips == 500:

Chapter 7 ɀ Using the Debugger 73

16. print('Half way done, and heads has come up ' + str(heads) + '

times.')

17.

18. print()

19. print('Out of 1000 coin tosses, heads came up ' + str(heads) + ' times!')

20. print('Were you close?')

The program runs pretty fast. It spent more time waiting for the user to press ENTER than doing

the coin flips. Letôs say you wanted to see it do coin flips one by one. On the interactive shell's

window, click on Debug Ʒ Debugger to bring up the Debug Control window. Then press F5 to

run the program.

The program starts in the debugger on line 1. Press Step three times in the Debug Control

window to execute the first three lines (that is, lines 1, 2, and 3). Youôll notice the buttons become

disabled because input() was called and the interactive shell window is waiting for the user to

type something. Click on the interactive shell window and press ENTER. (Be sure to click beneath

the text in the interactive shell window, otherwise IDLE might not receive your keystrokes.)

You can click Step a few more times, but youôll find that it would take quite a while to get

through the entire program. Instead, set a break point on lines 12, 14, and 16. The file editor will

highlight these lines as shown in Figure 7-6.

Figure 7-6: Three break points set.

After setting the breakpoints, click Go in the Debug Control window. The program will run at

normal speed until it reaches the next break point. When flip is set to 100 , the condition for the

if statement on line 13 is True . This causes line 14 (where thereôs a break point set) to execute,

which tells the debugger to stop the program and take over. Look at the Debug Control window in

the Globals section to see what the value of flips and heads are.

Click Go again and the program will continue until it reaches the next break point on line 16.

Again, see how the values in flips and heads have changed.

If you click Go again, the execution will continue until the next break point is reached, which is

on line 12.

74 http://inventwithpython.com

Post questions to http://invpy.com/forum

Summary

Writing programs is only the first part of programming. The next part is making sure the code you

wrote actually works. Debuggers let you step through the code one line at a time. You can

examine which lines execute in what order, and what values the variables contain. When this is

too slow, you can set break points to stop the debugger only at the lines you want.

Using the debugger is a great way to understand what a program is doing. While this book

provides explanations of all the game code in it, the debugger can help you find out more on your

own.

Chapter 8 ɀ Flow Charts 75

Chapter 8

FLOW CHARTS

Topics Covered In This Chapter:

¶ How to play Hangman

¶ ASCII art

¶ Designing a program with flow charts

In this chapter, youôll design a Hangman game. This game is more complicated than our previous

game, but also more fun. Because the game is advanced, you should first carefully plan it out by

creating a flow chart (explained later). In the next chapter, youôll actually write out the code for

Hangman.

How to Play Hangman

Hangman is a game for two people usually played with paper and pencil. One player thinks of a

word, and then draws a blank on the page for each letter in the word. Then the second player tries

to guess letters that might be in the word.

If they guess correctly, the first player writes the letter in the proper blank. If they guess

incorrectly, the first player draws a single body part of the hanging man. If the second player can

guess all the letters in the word before the hangman is completely drawn, they win. But if they

canôt figure it out in time, they lose.

Sample Run of Hangman

Here is an example of what the player might see when they run the Hangman program youôll

write in the next chapter. The text that the player enters in shown in bold.

H A N G M A N

 +--- +

 | |

 |

 |

 |

 |

=========

Missed letters:

_ _ _

76 http://inventwithpython.com

Post questions to http://invpy.com/forum

Guess a letter.

a

 +--- +

 | |

 |

 |

 |

 |

=========

Missed letters:

_ a _

Guess a letter.

o

 +--- +

 | |

 O |

 |

 |

 |

=========

Missed letters: o

_ a _

Guess a letter.

r

 +--- +

 | |

 O |

 | |

 |

 |

=========

Missed letters: or

_ a _

Guess a letter.

t

 +--- +

 | |

 O |

 | |

 |

 |

=========

Missed letters: or

_ a t

Guess a letter.

a

You have already guessed that letter. Choose again.

Chapter 8 ɀ Flow Charts 77

Guess a letter.

c

Yes! The secret word is "cat"! You have won!

Do you want to play a gain? (yes or no)

no

ASCII Art

The graphics for Hangman are keyboard characters printed on the screen. This type of graphics is

called ASCII art (pronounced ñask-eeò), which was a sort of precursor to emojii. Here is a cat

drawn in ASCII art:

 _____/ xx xxx \ _____

 _/xxx xx xxx xxx \ __

 __/ xxx xxx xx xxx \ __

 /xxxxxxxxx xx xx xx xx xxx \

 / xx / \ xx xx \

 / / \ x xx \

 | / \ | \ xx x \

 | | \ | \ ____ Z x \

 | | \ ____/ \ z xxx |

 | | \ z |

 \ / \ \

 / ____/ | |

 __| \ ____ | xxx|

 / | ___ ___ ------- __/ x|

 / | | | _______ ____/ |

 | o \ -------- \ _/ _/ ___/ xx /

 |oo \ _____/ _/______/ xx/

 \ \ __ __/ xx /

 \ \ ______________/ x_/

 \ ____ _______/

 \ _______________________________/

Designing a Program with a Flowchart

This game is a bit more complicated than the ones youôve seen so far, so take a moment to think

about how itôs put together. First youôll create a flow chart (like the one at the end of the Dragon

Realm chapter) to help visualize what this program will do. This chapter will go over what flow

charts are and why they are useful. The next chapter will go over the source code to the Hangman

game.

A flow chart is a diagram that shows a series of steps as boxes connected with arrows. Each box

represents a step, and the arrows show the steps leads to which other steps. Put your finger on the

78 http://inventwithpython.com

Post questions to http://invpy.com/forum

ñStartò box of the flow chart and trace through the program by following the arrows to other

boxes until you get to the ñEndò box.

Figure 8-1 is a complete flow chart for Hangman. You can only move from one box to another in

the direction of the arrow. You can never go backwards unless thereôs a second arrow going back,

like in the ñPlayer already guessed this letterò box.

Figure 8-1: The complete flow chart for what happens in the Hangman game.

Of course, you donôt have to make a flow chart. You could just start writing code. But often once

you start programming youôll think of things that must be added or changed. You may end up

Chapter 8 ɀ Flow Charts 79

having to delete a lot of your code, which would be a waste of effort. To avoid this, itôs always

best to plan how the program will work before you start writing it.

Creating the Flow Chart

Your flow charts donôt always have to look like this one. As long as you understand the flow

chart you made, it will be helpful when you start coding. A flow chart that begins with just a

ñStartò and an ñEndò box, as shown in Figure 8-2:

Figure 8-2: Begin your flow chart with a Start and End box.

80 http://inventwithpython.com

Post questions to http://invpy.com/forum

Now think about what happens when you play Hangman. First, the computer thinks of a secret

word. Then the player will guess letters. Add boxes for these events, as shown in Figure 8-3. The

new boxes in each flow chart have a dashed outline around them.

The arrows show the order that the program should move. That is, first the program should come

up with a secret word, and after that it should ask the player to guess a letter.

Figure 8-3: Draw out the first two steps of Hangman as boxes with descriptions.

But the game doesnôt end after the player guesses one letter. It needs to check if that letter is in

the secret word or not.

Chapter 8 ɀ Flow Charts 81

Branching from a Flowchart Box

There are two possibilities: the letter is either in the word or not. Youôll add two new boxes to the

flowchart, one for each case. This creates a branch in the flow chart, as show in Figure 8-4:

Figure 8-4: The branch has two arrows going to separate boxes.

82 http://inventwithpython.com

Post questions to http://invpy.com/forum

If the letter is in the secret word, check if the player has guessed all the letters and won the game.

If the letter isnôt in the secret word, another body part is added to the hanging man. Add boxes for

those cases too.

You donôt need an arrow from the ñLetter is in secret wordò box to the ñPlayer has run out of

body parts and losesò box, because itôs impossible to lose as long as the player guesses correctly.

Itôs also impossible to win as long as the player is guessing incorrectly, so you donôt need to draw

that arrow either. The flow chart now looks like Figure 8-5.

Figure 8-5: After the branch, the steps continue on their separate paths.

Chapter 8 ɀ Flow Charts 83

Ending or Restarting the Game

Once the player has won or lost, ask them if they want to play again with a new secret word. If

the player doesnôt want to play again, the program will end. If the program doesnôt end, it thinks

up a new secret word. This is shown in Figure 8-6.

Figure 8-6: The flow chart branches when asking the player to play again.

84 http://inventwithpython.com

Post questions to http://invpy.com/forum

Guessing Again

The player doesnôt guess a letter just once. They have to keep guessing letters until they win or

lose. Youôll draw two new arrows, as shown in Figure 8-7.

Figure 8-7: The new arrows (outlined) show the player can guess again.

Chapter 8 ɀ Flow Charts 85

What if the player guesses the same letter again? Rather than have them win or lose in this case,

allow them to guess a different letter instead. This new box is shown in Figure 8-8.

Figure 8-8: Adding a step in case the player guesses a letter they already guessed.

Offering Feedback to the Player

The player needs to know how theyôre doing in the game. The program should show them the

hangman board and the secret word (with blanks for the letters they haven't guessed yet). These

visuals will let them see how close they are to winning or losing the game.

86 http://inventwithpython.com

Post questions to http://invpy.com/forum

This information is updated every time the player guesses a letter. Add a ñShow the board and

blanks to the player.ò box to the flow chart between the ñCome up with a secret wordò and the

ñAsk player to guess a letterò boxes. These boxes are shown in Figure 8-9.

Figure 8-фΥ !ŘŘƛƴƎ ά{Ƙƻǿ ǘƘŜ ōƻŀǊŘ ŀƴŘ ōƭŀƴƪǎ ǘƻ ǘƘŜ ǇƭŀȅŜǊΦέ ǘƻ ƎƛǾŜ ǘƘŜ ǇƭŀȅŜǊ ŦŜŜŘōŀŎƪΦ

That looks good! This flow chart completely maps out everything that can happen in Hangman

and in what order. When you design your own games, a flow chart can help you remember

everything you need to code.

Chapter 8 ɀ Flow Charts 87

Summary

It may seem like a lot of work to sketch out a flow chart about the program first. After all, people

want to play games, not look at flowcharts! But it is much easier to make changes and notice

problems by thinking about how the program works before writing the code for it.

If you jump in to write the code first, you may discover problems that require you to change the

code youôve already written. Every time you change your code, you are taking a chance you

create new bugs by changing too little or too much. It is much better to know what you want to

build before you build it.

88 http://inventwithpython.com

Post questions to http://invpy.com/forum

Chapter 9

HANGMAN

Topics Covered In This Chapter:

¶ Multi -line Strings

¶ Methods

¶ Lists

¶ The append() and reverse() list methods

¶ The lower() , upper() , split () , startswith() , and endswith() string methods

¶ The in and not in operators

¶ The range() and list() functions

¶ del statements

¶ for loops

¶ elif statements

This chapterôs game introduces many new concepts, but donôt worry. Youôll experiment with

these programming concepts in the interactive shell first. Youôll learn about methods, which are

functions attached to values. Youôll also learn about a new type of loop called a for loop and a

new data type called a list. Once you understand these concepts, it will be much easier to program

Hangman.

Source Code of Hangman

This chapterôs game is a bit longer than the previous games, but much of it is the ASCII art for

the hangman pictures. Enter the following into the file editor and save it as hangman.py.

hangman.py

 1. import random

 2. HANGMANPICS = ['''

 3.

 4. +--- +

 5. | |

 6. |

 7. |

 8. |

 9. |

 10. =========''', '''

 11.

 12. +--- +

Chapter 9 ɀ Hangman 89

 13. | |

 14. O |

 15. |

 16. |

 17. |

 18. =========''', '''

 19.

 20. +--- +

 21. | |

 22. O |

 23. | |

 24. |

 25. |

 26. =========''', '''

 27.

 28. +--- +

 29. | |

 30. O |

 31. /| |

 32. |

 33. |

 34. =========''', '''

 35.

 36. +--- +

 37. | |

 38. O |

 39. /| \ |

 40. |

 41. |

 42. =========''', '''

 43.

 44. +--- +

 45. | |

 46. O |

 47. /| \ |

 48. / |

 49. |

 50. =========''', '''

 51.

 52. +--- +

 53. | |

 54. O |

 55. /| \ |

 56. / \ |

 57. |

 58. =========''']

90 http://inventwithpython.com

Post questions to http://invpy.com/forum

 59. words = 'ant baboon badger bat bear beaver camel cat clam cobra cougar

coyote crow deer dog donkey duck eagle ferret fox frog goat goose hawk lion

lizard llama mole monkey moose mouse mule newt otter owl panda parrot pigeon

python rabbit ram rat raven rhino salmon seal shark sheep skunk sloth snake

spider stork swan tiger toad trout turkey turtle weasel whale wolf womba t

zebra'.split()

 60.

 61. def getRandomWord(wordList):

 62. # This function returns a random string from the passed list of

strings.

 63. wordIndex = random.randint(0, len(wordList) - 1)

 64. return wordList[wordIndex]

 65.

 66. def displayBoard(HANGMANPICS, missedLetters, correctLetters, secretWord):

 67. print(HANGMANPICS[len(missedLetters)])

 68. print()

 69.

 70. print('Missed letters:', end=' ')

 71. for letter in missedLetters:

 72. print(letter, end=' ')

 73. print()

 74.

 75. blanks = '_' * len(secretWord)

 76.

 77. for i in range(len(secretWord)): # replace blanks with correctly

guessed letters

 78. if secretWord[i] in correctLetters:

 79. blanks = blanks[:i] + secretWord[i] + blanks[i+1:]

 80.

 81. for letter in blanks: # show the secret word with spaces in between

each letter

 82. print(letter, end=' ')

 83. print()

 84.

 85. def getGuess(alreadyGuessed):

 86. # Retu rns the letter the player entered. This function makes sure the

player entered a single letter, and not something else.

 87. while True:

 88. print('Guess a letter.')

 89. guess = input()

 90. guess = guess.lower()

 91. if len(guess) != 1:

 92. print('Please enter a single letter.')

 93. elif guess in alreadyGuessed:

 94. print('You have already guessed that letter. Choose again.')

 95. elif guess not in 'abcdefghijklmnopqrstuvwxyz' :

 96. print('Please enter a LETTER.')

Chapter 9 ɀ Hangman 91

 97. else:

 98. return guess

 99.

100. def playAgain():

101. # This function returns True if the player wants to play again,

otherwise it returns False.

102. print('Do you want to play again? (yes or no)')

103. return input().lower().startswith('y')

104.

105.

106. print('H A N G M A N')

107. missedLetters = ''

108. correctLetters = ''

109. secretWord = getRandomWord(words)

110. gameIsDone = False

111.

112. while True:

113. displayBoard(HANGMANPICS, missedLetters, correctLetters, secretWord)

114.

115. # Let the player type in a letter.

116. guess = getGuess(missedLetters + correctLetters)

117.

118. if guess in secretWord:

119. correctLetters = correctLetters + guess

120.

121. # Check if the player has won

122. foundAllLetters = True

123. for i in range(len(secretWord)):

124. if secretWord[i] not in correctLetters:

125. fo undAllLetters = False

126. break

127. if foundAllLetters:

128. print('Yes! The secret word is "' + secretWord + '"! You have

won!')

129. gameIsDone = True

130. else:

131. missedLetters = missedLetters + guess

132.

133. # Check if player has guessed too many times and lost

134. if len(missedLetters) == len(HANGMANPICS) - 1:

135. displayBoard(HANGMANPICS, missedLetters, correctLetters,

se cretWord)

136. print('You have run out of guesses! \ nAfter ' +

str(len(missedLetters)) + ' missed guesses and ' + str(len(correctLetters)) + '

correct guesses, the word was "' + secretWord + '"')

137. gameIsDone = True

138.

92 http://inventwithpython.com

Post questions to http://invpy.com/forum

139. # Ask the player if they want to play again (but only if the game is

done).

140. if gameIsDone:

141. if playAgain():

142. missedLetters = ''

143. correctLetters = ''

144. gameIsDone = False

145. secretWord = getRandomWord(words)

146. else:

147. break

How the Code Works

 1. import random

The Hangman program randomly selected a secret word from a list of secret words. The random

module will provide this ability, so line 1 imports it.

 2. HANGMANPICS = ['''

 3.

 4. +--- +

 5. | |

 6. |

 7. |

 8. |

 9. |

 10. =========''', '''

...the rest of the code is too big to show here...

This one assignment statement stretches over lines 2 to 58 in the source code. To help you

understand what this code means, letôs learn about multi-line strings.

Multi -line Strings

So far all strings have been on one line and had one quote character at the start and end. However,

if you use three quotes at the start and end then the string can go across several lines:

>>> fizz = '''Dear Alice,

I will return to Carol's house at the end of the month. I will see you then.

Your friend,

Bob'''

>>> print(fizz)

Chapter 9 ɀ Hangman 93

Dear Alice,

I will return to Carol's house at the end of the mo nth. I will see you then.

Your friend,

Bob

These are multi-line strings. In a multi-line string, the newline characters are included as part of

the string. You donôt have to use the \ n escape character, or escape quotes as long as you donôt

use three of them together. This makes the code easier to read for large amounts of text.

Constant Variables

The HANGMANPICS variableôs name is in all capitals. This is the programming convention for

constant variables. Constants are variables meant to have values that never changes from their

first assignment statement. Although you can change the value in HANGMANPICS just like any other

variable, the all-caps name reminds you to not do so. Since the HANGMANPICS variable never needs

to change, itôs marked as a constant.

Like all conventions, you donôt have to follow it. But following this convention makes it easier

for other programmers to read your code. Theyôll know that HANGMANPICS will always have the

value it was assigned on line 2.

Lists

A list value can contain several other values inside it. Try entering this into the interactive shell:.

>>> spam = [' Life ', ' The Universe ', ' Everything ' , 42]

>>> spam

['Life', 'The Universe', 'Everything', 42]

This list value in spam contains four values. When typing the list value into your code, it begins

with a [square bracket and ends with a] square bracket. This is like how strings begin and end

with a quote character.

Commas separate the individual values inside of a list. These values are also called items.

Indexes

Try entering animals = ['aardvark', 'anteater', 'antelope', 'albert'] into the

interactive shell to store a list in the variable animals . The square brackets are also used to access

94 http://inventwithpython.com

Post questions to http://invpy.com/forum

an item inside a list. Try entering animals[0] , animals[1] , animals[2] , and animals[3] into

the interactive shell to see how they evaluate:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']

>>> animals[0]

'aardvark'

>>> animals[1]

'anteater'

>>> animals[2]

'antelope'

>>> animals[3]

'albert '

The number between the square brackets is the index. In Python, the index of the first item in a

list is 0. The second item is at index 1, the third item is at index 2, and so on. Because the indexes

begin at 0, not 1, we say that Python lists are zero-indexed.

Lists are good for storing several values without using a variable for each one. Otherwise, the

code would look like this:

>>> animals1 = 'aardvark'

>>> animals2 = 'anteater'

>>> animals3 = 'antelope'

>>> animals4 = 'albert'

This code would be hard to manage if you have hundreds or thousands of strings. But a list can

easily contain any number of values. Using the square brackets, you can treat items in the list just

like any other value. Try entering animals[0] + animals[2] into the interactive shell:

>>> animals[0] + animals[2]

'aardvarkantelope'

The evaluation looks like this:

animals[0] + animals[2]

 Ƹ

'aardvark' + animals[2]

 Ƹ

'aardvark' + 'antelope'

 Ƹ

 'aardvarkantelope'

IndexError

Chapter 9 ɀ Hangman 95

If you try accessing an index that is too large, youôll get an IndexError that will crash your

program. Try entering the following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']

>>> animals[9999]

Traceback (most re cent call last):

File "", line 1, in

animals[9 999]

IndexError: list index out of range

Changing the Values of List Items with Index Assignment

You can also use the square brackets to change the value of an item in a list. Try entering the

following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']

>>> animals[1] = 'ANTEATER'

>>> animals

['aardvark', 'ANTEATER', 'antelope', 'albert']

The new 'ANTEATER' string overwrites the second item in the animals list. So animals[1] will

evaluate to the listôs second item in expressions, but you can also use it on the left side of an

assignment statement to assign a value as the listôs second item.

List Concatenation

You can join lists into one list with the + operator, just like you can join strings. Joining lists with

the + operator is list concatenation. Try entering the following into the interactive shell:

>>> [1, 2, 3, 4] + ['apples', 'oranges'] + ['Alice', 'Bob']

[1, 2, 3, 4, 'apples', 'oranges', 'Alice', 'Bob']

['apples'] + ['oranges'] will evaluate to ['apples', 'oranges'] . But ['apples'] +

'oranges' will result in an error. You cannot add a list value and string value instead of two list

values. If you want to add non-list values to a list, use the append() method (described later).

The in Operator

The in operator can tell you if a value is in a list or not. Expressions that use the in operator

return a Boolean value: True if the value is in the list and False if it isnôt. Try entering the

following into the interactive shell:

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']

>>> 'antelope' in animals

96 http://inventwithpython.com

Post questions to http://invpy.com/forum

True

The expression 'antelope' in animals returns True because the string 'antelope' is one of

the values in the animals list. It is located at index 2.

But if you type the expression 'ant' in animals , this will return False because the string

'ant' doesnôt exist in the list.

>>> animals = ['aardvark', 'anteater', 'antelope', 'albert']

>>> 'antelope' in animals

True

>>> 'ant' in animals

False

The in operator also works for strings. It checks if one string exists in another. Try entering the

following into the interactive shell:

>>> 'hello' in 'Alice said hello to Bob.'

True

Deleting Items from Lists with del Statements

A del statement will delete an item at a certain index from a list. Try entering the following into

the interactive shell:

>>> spam = [2, 4, 6, 8, 10]

>>> del spam[1]

>>> spam

[2, 6, 8, 10]

Notice that when you deleted the item at index 1, the item that used to be at index 2 became the

new value at index 1. The item that used to be at index 3 moved to be the new value at index 2.

Everything above the deleted item moved down one index.

You can type del spam[1] again and again to keep deleting items from the list:

>>> spam = [2, 4, 6, 8, 10]

>>> del spam[1]

>>> spam

[2, 6, 8, 10]

>>> del spam[1]

>>> spam

[2, 8, 10]

>>> del spam[1]

>>> spam

Chapter 9 ɀ Hangman 97

[2, 10]

The del statement is a statement, not a function or an operator. It doesnôt have parentheses or

evaluate to a return value.

Lists of Lists

Lists can contain other values, including other lists. Letôs say you have a list of groceries, a list of

chores, and a list of your favorite pies. You can put all three lists into another list. Try entering

the following into the interactive shell:

>>> groceries = ['eggs', 'milk', 'soup', 'apples', 'bread']

>>> chores = ['clean', 'mow the lawn', 'go grocery shopping']

>>> favoritePies = ['apple', 'frumbleberry']

>>> listOfLists = [groceries, chores, favoritePies]

>>> listOfLists

[['eggs', 'milk', 'soup', 'apples', 'b read'], ['clean', 'mow the lawn', 'go

grocery shopping'], ['apple', 'frumbleberry']]

To get an item inside the list of lists, you would use two sets of square brackets like this:

listOfLists[1][2] which would evaluate to the string 'go grocery shopping' .

This is because listOfLists[1] [2] evaluates to ['clean', 'mow the lawn', 'go grocery

shopping'][2] . That finally evaluates to 'go grocery shopping' :

listOfLists[1][2]

 Ƹ

[['eggs', 'milk', 'soup', 'apples', 'bread'], ['clean', 'mow the lawn', 'go

grocery shopping'], ['apple', 'frumbleberry']][1][2]

 Ƹ

['clean', 'mow the lawn', 'go grocery shopping'][2]

 Ƹ

'go grocery shopping'

Figure 9-1 is another example of a list of lists, along with some of the indexes that point to the

items. The arrows point to indexes of the inner lists themselves. The image is also flipped on its

side to make it easier to read.

Methods

Methods are functions attached to a value. For example, all string values have a lower()

method, which returns a copy of the string value in lowercase. You can call it like

'Hello'.lower() , which returns 'hello' . You cannot call lower() by itself and you do not

98 http://inventwithpython.com

Post questions to http://invpy.com/forum

pass a string argument to lower() (as in lower('Hello')). You must attach the method call to a

specific string value using a period. The next section describes string methods further.

Figure 9-1: The indexes of a list of lists.

The lower() and upper() String Methods

Try entering 'Hello world!'.lower() into the interactive shell to see an example of this

method:

>>> 'Hello world ! '.lower()

'hello world!'

There is also an upper() method for strings, which returns a string with all the characters in

uppercase. Try entering 'Hello world ! '.upper() into the interactive shell:

>>> 'Hello world ! '.upper()

'HELLO WORLD! '

Chapter 9 ɀ Hangman 99

Because the upper() method returns a string, you can call a method on that string also. Try

entering 'Hello world!'.upper().lower() into the interactive shell:

>>> 'Hello world ! '.upper().lower()

'hello world!'

'Hello world!'.upper() evaluates to the string 'HEL LO WORLD!' , and then string's lower()

method is called. This returns the string 'hello world!' , which is the final value in the

evaluation.

'Hello world ! '.upper().lower()

 Ƹ

 'HELLO WORLD!'.lower()

 Ƹ

 'hello world ! '

The order is important. 'Hello world!'.lower().upper() isnôt the same as 'Hello

world!'.upper().lower() :

>>> 'Hello world ! '.lower().upper()

'HELLO WORLD!'

That evaluation looks like this:

'Hello world ! '.lower().upper()

 Ƹ

 'hello world ! '.upper()

 Ƹ

 'HELLO WORLD!'

If a string is stored in a variable, you can call a string method on that variable. Look at this

example:

>>> spam = 'Hello world ! '

>>> spam.upper()

'HELLO WORLD! '

This does not change the value in spam. The spam variable will still contain 'Hello world!' .

Note that the integer and float data types donôt have any methods.

100 http://inventwithpython.com

Post questions to http://invpy.com/forum

The reverse() and append() List Methods

The list data type also has methods. The reverse () method will reverse the order of the items in

the list. Try entering spam = [1, 2, 3, 4, 5, 6, 'meow', 'woof'] , and then

spam.reverse() to reverse the list. Then enter spam to view the contents of the variable.

>>> spam = [1, 2, 3, 4, 5, 6, 'meow', 'woo f']

>>> spam.reverse()

>>> spam

['woof', 'meow', 6, 5, 4, 3, 2, 1]

The most common list method youôll use is append() . This method will add the value you pass

as an argument to the end of the list. Try entering the following into the interactive shell:

>>> eggs = []

>>> eggs.append('hovercraft')

>>> eggs

['hovercraft']

>>> eggs.append('eels')

>>> eggs

['hovercraft', 'eels']

>>> eggs.append(42)

>>> eggs

['hovercraft', 'eels', 42]

These methods do change the lists they are called on. They donôt return a new list. We say that

these methods change the list in-place.

The split() List Method

Line 59 is a long line of code, but it is really just a simple assignment statement. This line also

uses the split() method, which is a method for the string data type like the lower() and

upper() methods.

59. words = 'ant baboon badger bat bear beaver camel cat clam cobra cougar

coyote crow deer dog donkey duck eagle ferret fox frog goat goose hawk lion

lizard llama mo le monkey moose mouse mule newt otter owl panda parrot pigeon

python rabbit ram rat raven rhino salmon seal shark sheep skunk sloth snake

spider stork swan tiger toad trout turkey turtle weasel whale wolf wombat

zebra'.split()

Chapter 9 ɀ Hangman 101

This assignment statement has just one long string, full of words separated by spaces. And at the

end of the string is a split() method call. The split() method evaluates to a list with each

word in the string as a single list item. The ñsplitò occurs wherever a space occurs in the string.

It is easier to type the code using split() . If you created it as a list to begin with, you would

have to type: ['ant' , 'baboon', 'badger', ... and so on, with quotes and commas for every

word.

For example, try entering the following into the interactive shell:

>>> sentence = input()

My very energetic mother just served us nachos.

>>> sentence.split()

['My', 'very', 'energ etic', 'mother', 'just', 'served', 'us', 'nachos.']

The result is a list of nine strings, one string for each of the words in the original string. The

spaces are not included in any of the items in the list.

You can also add your own words to the string on line 59, or remove any you donôt want to be in

the game. Just make sure that spaces separate the words.

How the Code Works

Line 61 defines the getRandomWord() function. A list argument will be passed for its wordList

parameter. This function will return a single secret word from the list in wordList .

 61. def getRandomWord(wordList):

 62. # This function returns a random string from the passed list of

strings.

 63. wordIndex = random.randint(0, len(wordList) - 1)

 64. return wordList[wordIndex]

Line 63 stores a random index for this list in the wordIndex variable. You do this by calling

randint() with two arguments. The first argument is 0 (for the first possible index) and the

second argument is the value that the expression len(wordList) - 1 evaluates to (for the last

possible index in a wordList).

List indexes start at 0, not 1. If you have a list of three items, the index of the first item is 0, the

index of the second item is 1, and the index of the third item is 2. The length of this list is 3, but

the index 3 would be after the last index. This is why line 63 subtracts 1 from the length. The

code on line 63 will work no matter what the size of wordList is. Now you can add or remove

strings to wordList if you like.

102 http://inventwithpython.com

Post questions to http://invpy.com/forum

The wordIndex variable will be set to a random index for the list passed as the wordlist

parameter. Line 64 will return the element in wordList at the integer index stored in wordIndex .

Letôs pretend ['apple', 'orange', grape'] was passed as the argument to getRandomWord()

and that randint(0, 2) returned the integer 2. That would mean that line 64 would evaluate to

return wordList[2] , and then evaluate to return 'grape' . This is how the getRandomWord()

returns a random string in the wordList list.

So the input to getRandomWord() is a list of strings, and the return value output is a randomly

selected string from that list. This will be useful for the Hangman game to select a secret word for

the player to guess.

Displaying the Board to the Player

Next, you need a function to print the hangman board on the screen. It will also display how

many letters the player has correctly (and incorrectly) guessed.

 66. def displayBoard(HANGMANPICS, missedLetters, correctLetters, secretWord):

 67. print(HANGMANPICS[le n(missedLetters)])

 68. print()

This code defines a new function named displayBoard() . This function has four parameters:

¶ HANGMANPICS - A list of multi-line strings that will display the board as ASCII art. (The

global HANGMANPICS variable will be passed for this parameter.)

¶ missedLetters - A string of the letters the player has guessed that are not in the secret

word.

¶ correctLetters - A string of the letters the player has guessed that are in the secret

word.

¶ secretWord ï A string of the secret word that the player is trying to guess.

The first print() function call will display the board. HANGMANPICS will be a list of strings for

each possible board. HANGMANPICS[0] shows an empty gallows, HANGMANPICS[1] shows the head

(when the player misses one letter), HANGMANPICS[2] shows a head and body (when the player

misses two letters), and so on until HANGMANPICS[6] which shows the full hangman.

The number of letters in missedLetters will reflect how many incorrect guesses the player has

made. Call len(missedLetters) to find out this number. So, if missedLetters is 'aetr' then

len('aetr') will return 4. Printing HANGMANPICS[4] will display the appropriate hangman board

for 4 misses. This is what HANGMANPICS[len(missedLetters)] on line 67 evaluates to.

Chapter 9 ɀ Hangman 103

 70. print('Missed letters:', end=' ')

 71. for letter in missedLetters:

 72. print(letter, end=' ')

 73. print()

Line 70 prints the string 'Missed letters:' with a space character at the end instead of a

newline. Remember that the keyword argument end=' ' uses only one = sign (like =), not two

(like ==).

Line 71 is a new type of loop, called a for loop. A for loop often uses the range() function.

Both are explained in the next two sections.

The r ange() and list() Functions

When called with one argument, range() will return a range object of integers from 0 up to (but

not including) the argument. This range object can be converted to the more familiar list data type

with the list() function. Try entering list(range(10)) into the interactive shell:

>>> list(range(10))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

>>> list('Hello')

['H', 'e', 'l', 'l', 'o']

The list() function is similar to the str() or int() functions. It takes the value it is passed and

returns a list. Itôs easy to generate huge lists with the range() function. Try entering in

list(range(10000)) into the interactive shell:

>>> list(range(10000))

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15,...

 ...skipped for brevity. ..

...9989, 9990, 9991, 9992, 9993, 9994, 9995, 9996, 9997, 9998, 9999]

The list is so huge, that it wonôt even all fit onto the screen. But you can store the list into a

variable:

>>> spam = list(range(10000))

If you pass two integer arguments to range() , the range object it returns is from the first integer

argument up to (but not including) the second integer argument. Try entering list(range(10,

20)) into the interactive shell:

>>> list(range(10, 20))

[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]

104 http://inventwithpython.com

Post questions to http://invpy.com/forum

The range() function is often used in for loops, which are much like the while loops youôve

already seen.

for Loops

The for loop is useful for looping over a list of values. This is different from the while loop,

which loops as long as a certain condition is True . A for statement begins with the for keyword,

followed by a new variable name, followed by the in keyword, followed by an iterable value, and

ending with a colon.

An iterable is a value of the list, range, or string data types. There are also other data types that

are considered iterables which will be introduced later.

Each time the program execution iterates through the loop the new variable in the for statement

is assigned the value of the next item in the list.

>>> for i in range(5):

... print('i is set to ' + str(i))

...

i is set to 0

i is set to 1

i is set to 2

i is set to 3

i is set to 4

The range object returned by range(5) is equivalent to the list [0, 1, 2, 3, 4] in a for

statement. The first time the execution goes through the code in the for -block, the variable i will

be set to 0. On the next iteration, i will be set to 1, and so on.

The for statement automatically converts the range object returned by range() into a list, so

thereôs no need for list(range(5)) in the for statement. Just use ra nge(5) .

Lists and strings are also iterable data types. You can use them in for statements. Try entering

the following into the interactive shell:

>>> for thing in ['cats', 'pasta', 'programming', 'spam']:

... print('I really like ' + thing)

...

I really like cats

I really like pasta

I really like programming

I really like spam

>>> for i in 'Hello':

... print(i)

Chapter 9 ɀ Hangman 105

...

H

e

l

l

o

A while Loop Equivalent of a for Loop

The for loop is similar to the while loop, but when you only need to iterate over items in a list,

using a for loop is much less code to type. This is a while loop that acts the same as the previous

for loop by adding extra code:

>>> iterableVal = ['cats', 'pasta', 'programming', 'spam']

>>> index = 0

>>> while (index < len(iterableVal)):

... thing = iterableVal [index]

... print('I really like ' + thing)

... index = index + 1

...

I really like cats

I really like pasta

I really like programming

I really like spam

But using the for statement automatically does this extra code and makes programming easier

since you have less to type.

The rest of the displayBoard() function displays the missed letters and creates the string of the

secret word with all the not yet guessed letters as blanks.

 70. print('Missed letters:', end=' ')

 71. for letter in missedLetters:

 72. print(letter, end=' ')

 73. print()

The for loop on line 71 will iterate over each character in the missedLetters string and print

them on the screen. Remember that the end=' ' will replace the newline character that is printed

after the string with a single space character.

For example, if missedLetters was 'ajtw' this for loop would display a j t w .

106 http://inventwithpython.com

Post questions to http://invpy.com/forum

Slicing

List slicing creates a new list value with a subset of another listôs items. In code, specify two

indexes (the beginning and end) with a colon in the square brackets after a list. For example, try

entering the following into the interactive shell:

>>> spam = ['a pples', 'bananas', 'carrots', 'dates']

>>> spam[1:3]

['bananas', 'carrots']

The expression spam[1: 3] evaluates to a list with items from index 1 up to (but not including)

index 3 in spam.

If you leave out the first index, Python will automatically think you want index 0 for the first

index:

>>> spam = ['apples', 'bananas', 'carrots', 'dates']

>>> spam[:2]

['apples', 'bananas']

If you leave out the second index, Python will automatically think you want the rest of the list:

>>> spam = ['apples', 'bananas', ' carrots', 'dates']

>>> spam[2:]

['carrots', 'dates']

Slicing is a simple way to get a subset of the items in a list. You use slices with strings in the

same way you use them with lists. Each character in the string is like an item in the list. Try

entering the following into the interactive shell:

>>> myName = 'Zophie the Fat Cat'

>>> myName[4:12]

'ie the F'

>>> myName[:10]

'Zophie the'

>>> myName[7:]

'the Fat Cat'

The next part of the code in Hangman uses slicing.

Displaying the Secret Word with Blanks

Now you want code to print the secret word, but with blank lines for the letters that have not been

guessed. You can use the _ character (called the underscore character) for this. First create a

Chapter 9 ɀ Hangman 107

string with nothing but one underscore for each letter in the secret word. Then replace the blanks

for each letter in correctLetters .

So if the secret word was 'otter' then the blanked out string would be '_____' (five _

characters). If correctLetters was the string 'rt' you would change the string to '_tt_r' .

Line 75 to 79 is the code that does that.

 75. blanks = '_' * len(secretWord)

Line 75 creates the blanks variable full of _ underscores using string replication. Remember that

the * operator can also be used on a string and an integer, so the expression ' _' * 5 evaluates to

' _____ ' . This will make sure that blanks has the same number of underscores as secretWord

has letters.

 77. for i in range(len(secretWord)): # replace blanks with correctly

guessed letters

 78. if secretWord[i] in correctLett ers:

 79. blanks = blanks[:i] + secretWord[i] + blanks[i+1:]

Line 77 has a for loop to go through each letter in secretWord and replace the underscore with

the actual letter if it exists in correctLetters .

For example, pretend the value of secretWord is 'otter' and the value in correctLetters is

'tr' . You would want the string '_tt_r' displayed to the player. Letôs figure out how to create

this string.

Line 77ôs len(secretWord) call would return 5. The range(len(secretWord)) call becomes

ran ge(5) , which makes the for loop iterate over 0, 1, 2, 3, and 4.

Because the value of i will take on each value in [0, 1, 2, 3, 4] , the code in the for loop is

the same as this:

if secretWord[0] in correctLetters:

 blanks = blanks[:0] + secretWord[0] + b lanks[1:]

if secretWord[1] in correctLetters:

 blanks = blanks[:1] + secretWord[1] + blanks[2:]

if secretWord[2] in correctLetters:

 blanks = blanks[:2] + secretWord[2] + blanks[3:]

if secretWord[3] in correctLetters:

 blanks = blanks[:3] + sec retWord[3] + blanks[4:]

108 http://inventwithpython.com

Post questions to http://invpy.com/forum

if secretWord[4] in correctLetters:

 blanks = blanks[:4] + secretWord[4] + blanks[5:]

If you are confused as to what the value of something like secretWord[0] or blanks[3:] is, then

look at Figure 9-2. It shows the value of the secretWord and blanks variables, and the index for

each letter in the string.

Figure 9-2: The indexes of the blanks and secretWord strings.

If you replace the list slices and the list indexes with the values that they represent, the loop code

would be the same as this:

if 'o' in 'tr': # False

 blanks = '' + 'o' + '____' # This line is skipped.

if 't' in 'tr': # True

 blanks = '_' + 't' + '___' # This line is executed.

if 't' in 'tr': # True

 blanks = '_t' + 't' + '__' # This line is executed.

if 'e' in 'tr': # False

 blanks = '_tt' + 'e' + '_' # This line is skipped.

if 'r' in 'tr': # True

 blanks = '_tt_' + 'r' + '' # This line is executed.

bla nks now has the value '_tt_r'

The above code examples all do the same thing when secretWord is 'otter' and

correctLetters is 'tr' . The next few lines of code print the new value of blanks with spaces

between each letter.

Chapter 9 ɀ Hangman 109

 81. for letter in blanks: # sh ow the secret word with spaces in between

each letter

 82. print(letter, end=' ')

 83. print()

DŜǘ ǘƘŜ tƭŀȅŜǊΩǎ DǳŜǎǎ

The getGuess() function will be called so that the player can enter a letter to guess. The function

returns the letter the player guessed as a string. Further, getGuess() will make sure that the

player types a valid letter before returning from the function.

 85. def getGuess(alreadyGuessed):

 86. # Returns the letter the player entered. This function makes sure the

player entered a single letter, and not something else.

A string of the letters the player has guessed is passed as the argument for the alreadyGuessed

parameter. Then the getGuess() function asks the player to guess a single letter. This single

letter will be getGuess() ôs return value.

 87. while True:

 88. print('Guess a letter.')

 89. guess = input()

 90. guess = guess.lower()

Line 87ôs while loop will keep asking the player for a letter until they enter text that is:

1. A single letter.

2. A letter they have not guessed previously.

The condition for the while loop is simply the Boolean value True . That means the only way

execution will ever leave this loop is by executing a break statement (which leaves the loop) or a

return statement (which leaves not just the loop but the entire function).

The code inside the loop asks the player to enter a letter, which is stored in the variable guess . If

the player entered a capitalized letter, it will be overwritten with a to lowercase letter on line 90.

elif όά9ƭǎŜ LŦέύ {ǘŀǘŜƳŜƴǘǎ

The next part of the Hangman program uses elif statements. You can think of elif ñelse ifò

statements as saying ñIf this is true, do this. Or else if this next condition is true, do that. Or else if

none of them are true, do this last thing.ò

110 http://inventwithpython.com

Post questions to http://invpy.com/forum

Take a look at the following code:

if catName == 'Fuzzball':

 print('Your cat is fuzzy.')

elif catName == 'Spots' :

 print('Your cat is spotted.')

else:

 print('Your cat is not fuzzy or spotted .')

If the catName variable is equal to the string 'Fuzzball' , then the if statementôs condition is

True and the if-block tells the user that their cat is fuzzy. However, if this condition is False ,

then Python tries the elif (ñelse ifò) statementôs condition next. If catName is 'Spots' , then the

'Your cat is spotted.' string is printed to the screen. If both are False , then the code tells

the user their cat isnôt fuzzy or spotted.

You can have as many elif statements as you want:

if catName == 'Fuzzball':

 print('Your cat is fuzzy.')

elif catName == 'Spots' :

 print('Your cat is spotted.')

elif catName == 'Chubs' :

 print('Your cat is chubby.')

elif catName == 'Puff' :

 print('Your cat is puffy.')

else:

 print('Your cat is neither fuzzy nor spotted nor chubby nor puffy.')

When one of the elif conditions is True , its code is executed and then execution jumps to the

first line past the else-block. So one and only one of the blocks in the if -elif -else statements

will be executed. You can also leave off the else -block if you donôt need one, and just have if -

el if statements.

Making Sure the Player Entered a Valid Guess

 91. if len(guess) != 1:

 92. print('Please enter a single letter.')

 93. elif guess in alreadyGuessed:

 94. print('You have already guessed that letter. Choose again.')

 95. elif guess not in 'abcdefghijklmnopqrstuvwxyz':

 96. print('Please enter a LETTER.')

 97. else:

 98. return guess

Chapter 9 ɀ Hangman 111

The guess variable contains playerôs letter guess. The program needs to make sure they typed in

a valid guess: one and only one lowercase letter. If they didn't, the execution should loop back

and ask them for a letter again.

Line 91ôs condition checks if guess is not one character long. Line 93ôs condition checks if

guess already exists inside the alreadyGuessed variable. Line 95ôs condition checks if guess is

not a lowercase letter.

If all of these conditions are False , then the else statementôs block executes and getGuess()

returns the value in guess on line 98.

Remember, only one of the blocks in if -elif -else statements will be executed.

Asking the Player to Play Again

100. def playAgain():

101. # This function returns True if the player wants to play again,

otherwise it r eturns False.

102. print('Do you want to play again? (yes or no)')

103. return input().lower().startswith('y')

The playAgain() function has just a print() function call and a return statement. The return

statement has an expression that looks complicated, but you can break it down. Hereôs a step by

step look at how Python evaluates this expression if the user types in YES.

input().lower().startswith('y')

 Ƹ

 'YES'.lower().startswith('y')

 Ƹ

 'yes'.startswith('y')

 Ƹ

 True

The point of the playAgain() function is to let the player type in yes or no to tell the program if

they want to play another round of Hangman. The player should be able to type YES, yes, Y, or

anything else that begins with a ñYò in order to mean ñyesò. If the player types in YES, then the

return value of input() is the string 'YES' . And 'YES'.lower() returns the lowercase version of

the attached string. So the return value of 'YES '.lower() is 'yes' .

But thereôs the second method call, startswith('y') . This function returns True if the

associated string begins with the string parameter between the parentheses, and False if it

doesnôt. The return value of 'yes'.startswith('y') is Tru e.

112 http://inventwithpython.com

Post questions to http://invpy.com/forum

Now you have evaluated this expression! What it does is let the player type in a response,

lowercases the response, checks if it begins with the letter 'y' , then returns True if it does and

False if it doesnôt.

On a side note, thereôs also an endswith(s omeString) string method that will return True if the

string ends with the string in someString and False if it doesnôt. endswith() is sort of like the

opposite of startswith() .

Review of the Hangman Functions

Thatôs all the functions we are creating for this game! Letôs review them:

¶ getRandomWord(wordList) will take a list of strings passed to it, and return one string

from it. That is how a word is chosen for the player to guess.

¶ displayBoard(HANGMANPICS, missedLetters, correctLetters, secretWord) will

show the current state of the board, including how much of the secret word the player has

guessed so far and the wrong letters the player has guessed. This function needs four

parameters passed to work correctly. HANGMANPICS is a list of strings that hold the ASCII

art for each possible hangman board. correctLetters and missedLetters are strings

made up of the letters that the player has guessed that are in and not in the secret word,

respectively. And secretWord is the secret word the player is trying to guess. This

function has no return value.

¶ getGuess(alreadyGuessed) takes a string of letters the player has already guessed and

will keep asking the player for a letter that isnôt in alreadyGuessed .) This function

returns the string of the valid letter the player guessed.

¶ playAgain() is a function that asks if the player wants to play another round of

Hangman. This function returns True if the player does and False if the player doesnôt.

After the functions is the code for the main part of the program at line 106. Everything previous

was just function definitions and a large assignment statement for HANGMANPICS.

Setting Up the Variables

106. print('H A N G M A N')

107. missedLetters = ''

108. correctLetters = ''

109. secretWord = getRandomWord(words)

110. gameIsDone = False

