

C Standard Library

i

About the Tutorial

C is a general-purpose, procedural, imperative computer programming language

developed in 1972 by Dennis M. Ritchie at the Bell Telephone Laboratories to develop the
Unix operating system.

C is the most widely used computer language that keeps fluctuating at number one scale

of popularity along with Java programming language which is also equally popular and
most widely used among modern software programmers.

The C Standard Library is a set of C built-in functions, constants and header files
like <assert.h>, <ctype.h>, etc. This library will work as a reference manual for C

programmers.

Audience

The C Standard Library is a reference for C programmers to help them in their projects

related to system programming. All the C functions have been explained in a user-
friendly way and they can be copied and pasted in your C projects.

Prerequisites

A basic understanding of the C Programming language will help you in understanding the
C built-in functions covered in this library.

Copyright & Disclaimer

 Copyright 2014 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point

(I) Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or

republish any contents or a part of contents of this e-book in any manner without written
consent of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely

as possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I)

Pvt. Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of

our website or its contents including this tutorial. If you discover any errors on our
website or in this tutorial, please notify us at contact@tutorialspoint.com

mailto:contact@tutorialspoint.com

C Standard Library

ii

Table of Contents

About the Tutorial .. i

Audience .. i

Prerequisites .. i

Copyright & Disclaimer ... i

Table of Contents .. ii

1. / [L.w!w¸ ғ!{{9w¢ΦH> ... 1

Introduction .. 1

Library Macros .. 1

2. / [L.w!w¸ ғ/¢¸t9ΦI> ... 3

Introduction .. 3

Library Functions ... 3

Character Classes .. 24

3. / [L.w!w¸ ғ9wwbhΦI> .. 26

Introduction .. 26

Library Macros .. 26

4. / [L.w!w¸ ғC[h!¢ΦI> ... 31

Introduction .. 31

Library Macros .. 31

5. / [L.w!w¸ ғ[LaL¢{ΦH> .. 34

Introduction .. 34

Library Macros .. 34

6. / [L.w!w¸ ғ[h/![9ΦH> ... 37

Introduction .. 37

Library Macros .. 37

C Standard Library

iii

Library Functions ... 38

Library Structure ... 42

7. / [L.w!w¸ ғa!¢IΦIҔ ... 45

Introduction .. 45

Library Macros .. 45

Library Functions ... 45

8. / [L.w!w¸ ғ{9¢WatΦH> ... 68

Introduction .. 68

Library Variables ... 68

Library Macros .. 68

Library Functions ... 70

9. / [L.w!w¸ ғ{LDb![ΦH> ... 72

Introduction .. 72

Library Variables ... 72

Library Macros .. 72

Library Functions ... 73

10. / [L.w!w¸ ғ{¢5!wDΦH> .. 78

Introduction .. 78

Library Variables ... 78

Library Macros .. 78

11. / [L.w!w¸ ғ{¢559CΦH> ... 83

Introduction .. 83

Library Variables ... 83

Library Macros .. 83

C Standard Library

iv

12. / [L.w!w¸ ғ{¢5LhΦI> ... 87

Introduction .. 87

Library Variables ... 87

Library Macros .. 87

Library Functions ... 88

13. / [L.w!w¸ ғ{¢5[L.ΦH> .. 167

Introduction .. 167

Library Variables ... 167

Library Macros .. 167

Library Functions ... 168

14. / [L.w!w¸ ғ{¢wLbDΦH> ... 205

Introduction .. 205

Library Variables ... 205

Library Macros .. 205

Library Functions ... 205

15. / [L.w!w¸ ғ¢La9ΦIҔ ... 233

Introduction .. 233

Library Variables ... 233

Library Macros .. 234

Library Functions ... 234

 C Standard Library

1

Introduction

The assert.h header file of the C Standard Library provides a macro called assert which

can be used to verify assumptions made by the program and print a diagnostic message

if this assumption is false.

The defined macro assert refers to another macro NDEBUG which is not a part of

<assert.h>. If NDEBUG is defined as a macro name in the source file, at the point where
<assert.h> is included, the assert macro is defined as follows:

#define assert (ignore) ((void) 0)

Library Macros

Following is the only function defined in the header assert.h:

S.N. Function & Description

1 void assert(int expression)

This is actually a macro and not a function, which can be used to add
diagnostics in your C program.

void assert(int expression)

Description

The C library macro void assert(int expression) allows diagnostic information to be

written to the standard error file. In other words, it can be used to add diagnostics in

your C program.

Declaration

Following is the declaration for assert() Macro.

void assert (int expression);

Parameters

 expression -- This can be a variable or any C expression.

If expression evaluates to TRUE, assert() does nothing. If expression evaluates

to FALSE, assert() displays an error message on stderr (standard error stream to
display error messages and diagnostics) and aborts program execution.

Return Value

This macro does not return any value.

1. C Library <assert.h>

 C Standard Library

2

Example

The following example shows the usage of assert() macro:

#include <assert.h>

#include <stdio.h>

int main()

{

 int a;

 char str [50];

 printf ("Enter an integer value: ");

 scanf ("%d\ n" , &a);

 assert (a >= 10);

 printf ("Integer entered is %d \ n" , a);

 printf ("Enter string: ");

 scanf ("%s\ n" , &str);

 assert (str != NULL);

 printf ("String entere d is: %s \ n" , str);

 return (0);

}

Let us compile and run the above program in the interactive mode as shown below:

Enter an integer value : 11

Integer entered is 11

Enter string : tutorialspoint

String entered is : tutorialspoint

 C Standard Library

3

Introduction

The ctype.h header file of the C Standard Library declares several functions that are

useful for testing and mapping characters.

All the functions accepts int as a parameter, whose value must be EOF or representable

as an unsigned char.

All the functions return non-zero (true) if the argument c satisfies the condition

described, and zero (false) if not.

Library Functions

Following are the functions defined in the header ctype.h:

S.N. Function & Description

1
int isalnum(int c)

This function checks whether the passed character is alphanumeric.

2
int isalpha(int c)

This function checks whether the passed character is alphabetic.

3
int iscntrl(int c)

This function checks whether the passed character is control character.

4
int isdigit(int c)

This function checks whether the passed character is decimal digit.

5

int isgraph(int c)

This function checks whether the passed character has graphical representation
using locale.

6
int islower(int c)

This function checks whether the passed character is lowercase letter.

7
int isprint(int c)

This function checks whether the passed character is printable.

2. / [ƛōǊŀǊȅ <ctype.h>

 C Standard Library

4

8
int ispunct(int c)

This function checks whether the passed character is a punctuation character.

9
int isspace(int c)

This function checks whether the passed character is white-space.

10
int isupper(int c)

This function checks whether the passed character is an uppercase letter.

11
int isxdigit(int c)

This function checks whether the passed character is a hexadecimal digit.

int isalnum(int c)

Description

The C library function void isalnum(int c) checks if the passed character is

alphanumeric.

Declaration

Following is the declaration for isalnum() function.

int isalnum (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns non-zero value if c is a digit or a letter, else it returns 0.

Example

The following example shows the usage of isalnum() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 int var1 = 'd' ;

 int var2 = '2' ;

 int var3 = ' \ t' ;

 int var4 = ' ' ;

 C Standard Library

5

 if (isalnum (var1))

 {

 printf ("var1 = |%c| is alphanumeric \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| is not alphanumeric \ n" , var1);

 }

 if (isalnum (var2))

 {

 printf ("var2 = |%c| is alp hanumeric \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| is not alphanumeric \ n" , var2);

 }

 if (isalnum (var3))

 {

 printf ("var3 = |%c| is alphanumeric \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| is not alphanumeric \ n" , var 3);

 }

 if (isalnum (var4))

 {

 printf ("var4 = |%c| is alphanumeric \ n" , var4);

 }

 else

 {

 printf ("var4 = |%c| is not alphanumeric \ n" , var4);

 }

 return (0);

}

 C Standard Library

6

Let us compile and run the above program to produce the following result:

var1 = | d| is alphanumeric

var2 = | 2| is alphanumeric

var3 = | | is not alphanumeric

var4 = | | is not alphanumeric

int isalpha(int c)

Description

The C library function void isalpha(int c) checks if the passed character is alphabetic.

Declaration

Following is the declaration for isalpha() function.

int isalpha (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns non-zero value if c is an alphabet, else it returns 0.

Example

The following example shows the usage of isalpha() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 int var1 = 'd' ;

 int var2 = '2' ;

 int var3 = ' \ t' ;

 int var4 = ' ' ;

 if (isalpha (var1))

 {

 printf ("var1 = |%c| is an alphabet \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| is not an alphabet \ n" , var1);

 C Standard Library

7

 }

 if (isalpha (var2))

 {

 printf ("var2 = |%c| is an alphabet \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| is not an alphabet \ n" , var2);

 }

 if (isalpha (var3))

 {

 printf ("var3 = |%c| is an alphabet \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| is not an alphabet \ n" , var3);

 }

 if (isalpha (var4))

 {

 printf ("var4 = |%c| is an alphabet \ n" , var4);

 }

 else

 {

 prin tf ("var4 = |%c| is not an alphabet \ n" , var4);

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

var1 = | d| is an alphabet

var2 = | 2| is not an alphabet

var3 = | | is not an alphabet

var4 = | | is not an alphabet

int iscntrl(int c)

Description

 C Standard Library

8

The C library function void iscntrl(int c) checks if the passed character is a control

character.

According to standard ASCII character set, control characters are between ASCII codes

0x00 (NUL), 0x1f (US), and 0x7f (DEL). Specific compiler implementations for certain

platforms may define additional control characters in the extended character set (above

0x7f).

Declaration

Following is the declaration for iscntrl() function.

int iscntrl (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns non-zero value if c is a control character, else it returns 0.

Example

The following example shows the usage of iscntrl() function.

#include <stdio.h>

#include <ctype.h>

int main ()

{

 int i = 0, j = 0;

 char str1 [] = "all \ a about \ t programming" ;

 char str2 [] = "tutorials \ n point" ;

 /* Prints string till control character \ a */

 while (! iscntrl (str1 [i]))

 {

 putchar (str1 [i]);

 i ++;

 }

 /* Pri nts string till control character \ n */

 while (! iscntrl (str2 [j]))

 {

 putchar (str2 [j]);

 j ++;

 }

 C Standard Library

9

 return (0);

}

Let us compile and run the above program to produce the following result:

all tutorials

int isdigit(int c)

Description

The C library function void isdigit(int c) checks if the passed character is a decimal

digit character.

Decimal digits are (numbers): 0 1 2 3 4 5 6 7 8 9.

Declaration

Following is the declaration for isdigit() function.

int isdigit (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns non-zero value if c is a digit, else it returns 0.

Example

The following example shows the usage of isdigit() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 in t var1 = 'h' ;

 int var2 = '2' ;

 if (isdigit (var1))

 {

 printf ("var1 = |%c| is a digit \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| is not a digit \ n" , var1);

 C Standard Library

10

 }

 if (isdigit (var2))

 {

 printf ("var2 = |%c| is a digit \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| is not a digit \ n" , var2);

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

var1 = | h| is not a digit

var2 = | 2| is a digit

int isgraph(int c)

Description

The C library function void isgraph(int c) checks if the character has graphical

representation.

The characters with graphical representations are all those characters that can be

printed except for whitespace characters (like ' '), which is not considered as isgraph
characters.

Declaration

Following is the declaration for isgraph() function.

int isgraph (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns non-zero value if c has a graphical representation as character, else
it returns 0.

Example

The following example shows the usage of isgraph() function.

#include <stdio.h>

 C Standard Library

11

#include <ctype.h>

int main()

{

 int var1 = '3' ;

 int var2 = 'm' ;

 int var3 = ' ' ;

 if (isgraph (var1))

 {

 printf ("var1 = |%c| can be printed \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| can't be printed \ n" , var1);

 }

 if (isgraph (var2))

 {

 printf ("var2 = |%c| can be printed \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| ca n't be printed \ n" , var2);

 }

 if (isgraph (var3))

 {

 printf ("var3 = |%c| can be printed \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| can't be printed \ n" , var3);

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

var1 = | 3| can be printed

var2 = | m| can be printed

 C Standard Library

12

var3 = | | can't be printed

int islower(int c)

Description

The C library function int islower(int c) checks whether the passed character is a

lowercase letter.

Declaration

Following is the declaration for islower() function.

int islower (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns a non-zero value(true) if c is a lowercase alphabetic letter else,
zero (false).

Example

The following example shows the usage of islower() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 int var1 = 'Q' ;

 int var2 = 'q' ;

 int var3 = '3' ;

 if (islower (var1))

 {

 printf ("var1 = |%c| is lowercase character \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| is not lowercase character \ n" , var1);

 }

 if (islower (var2))

 {

 C Standard Library

13

 printf ("var2 = |%c| is lowercase character \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| is not lowercase characte r \ n" , var2);

 }

 if (islower (var3))

 {

 printf ("var3 = |%c| is lowercase character \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| is not lowercase character \ n" , var3);

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

var1 = | Q| is not lowercase character

var2 = | q| is lowercase character

var3 = | 3| is not lowercase character

int isprint(int c)

Description

The C library function int isprint(int c) checks whether the passed character is

printable. A printable character is a character that is not a control character.

Declaration

Following is the declaration for isprint() function.

int isprint (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns a non-zero value(true) if c is a printable character else, zero
(false).

 C Standard Library

14

Example

The following example shows the usage of isprint() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 int var1 = 'k' ;

 int var2 = '8' ;

 int var3 = ' \ t' ;

 int var4 = ' ' ;

 if (isprint (var1))

 {

 printf ("var1 = |%c| can be printed \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| can't be printed \ n" , var1);

 }

 if (isprint (var2))

 {

 printf ("var2 = |%c| can be prin ted \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| can't be printed \ n" , var2);

 }

 if (isprint (var3))

 {

 printf ("var3 = |%c| can be printed \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| can't be printed \ n" , var3);

 }

 if (isprint (var4))

 C Standard Library

15

 {

 printf ("var4 = |%c| can be printed \ n" , var4);

 }

 else

 {

 printf ("var4 = |%c| can't be printed \ n" , var4);

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

var1 = | k| can be printed

var2 = | 8| can be printed

var3 = | | can't be printed

var4 = | | can be printed

int ispunct(int c)

Description

The C library function int ispunct(int c) checks whether the passed character is a

punctuation character. A punctuation character is any graphic character (as in isgraph)
that is not alphanumeric (as in isalnum).

Declaration

Following is the declaration for ispunct() function.

int ispunct (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns a non-zero value(true) if c is a punctuation character else, zero
(false).

Example

The following example shows the usage of ispunct() function.

 C Standard Library

16

#include <stdio.h>

#include <ctype.h>

int main()

{

 int var1 = 't' ;

 int var2 = '1' ;

 int var3 = '/' ;

 int var4 = ' ' ;

 if (ispunct (var1))

 {

 printf ("var1 = |%c| is a punctuation character \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| is not a punctuation character \ n" , var1);

 }

 if (ispunct (var2))

 {

 printf ("var2 = |%c| is a punctuation character \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| is not a punctuation character \ n" , var2);

 }

 if (ispunct (var3))

 {

 printf ("var3 = |%c| is a punctuation character \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| is not a punctuation character \ n" , var3);

 }

 if (ispunct (var4))

 {

 printf ("var4 = |%c| is a punctuation character \ n" , var4);

 }

 C Standard Library

17

 else

 {

 printf ("var4 = |%c| is not a punctuation charact er \ n" , var4);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

var1 = | t | is not a punctuation character

var2 = | 1| is not a punctuation character

var3 = |/| is a punctuation character

var4 = | | is not a punctuation character

int isspace(int c)

Description

The C library function int isspace(int c) checks whether the passed character is white-

space.

Standard white-space characters are:

' ' (0x20) space (SPC)

' \ t' (0x09) horizontal tab (TAB)

' \ n' (0x0a) newline (LF)

' \ v' (0x0b) vertical tab (VT)

' \ f' (0x0c) feed (FF)

' \ r' (0x0d) carriage return (CR)

Declaration

Following is the declaration for isspace() function.

int isspace (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns a non-zero value(true) if c is a white-space character else, zero

(false).

 C Standard Library

18

Example

The following example shows the usage of isspace() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 int var1 = 't' ;

 int var2 = '1' ;

 int var3 = ' ' ;

 if (isspace (var1))

 {

 printf ("var1 = |%c| is a white - space character \ n" , var1);

 }

 else

 {

 printf ("var1 = |%c| is not a white - space character \ n" , var1);

 }

 if (isspace (var2))

 {

 pr intf ("var2 = |%c| is a white - space character \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| is not a white - space character \ n" , var2);

 }

 if (isspace (var3))

 {

 printf ("var3 = |%c| is a white - space character \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| is not a white - space character \ n" , var3);

 }

 return (0);

 C Standard Library

19

}

Let us compile and run the above program that will produce the following result:

var1 = | t | is not a white - space character

var2 = | 1| is not a white - space character

var3 = | | is a white - space character

int isupper(int c)

Description

The C library function int isupper(int c) checks whether the passed character is

uppercase letter.

Declaration

Following is the declaration for isupper() function.

int isu pper (int c);

Parameters

 c -- This is the character to be checked.

Return Value

This function returns a non-zero value(true) if c is an uppercase alphabetic letter else,
zero (false).

Example

The following example shows the usage of isupper() function.

#in clude <stdio.h>

#include <ctype.h>

int main()

{

 int var1 = 'M' ;

 int var2 = 'm' ;

 int var3 = '3' ;

 if (isupper (var1))

 {

 printf ("var1 = |%c| is uppercase character \ n" , var1);

 }

 else

 C Standard Library

20

 {

 printf ("var1 = |%c| is not upper case character \ n" , var1);

 }

 if (isupper (var2))

 {

 printf ("var2 = |%c| is uppercase character \ n" , var2);

 }

 else

 {

 printf ("var2 = |%c| is not uppercase character \ n" , var2);

 }

 if (isupper (var3))

 {

 printf ("va r3 = |%c| is uppercase character \ n" , var3);

 }

 else

 {

 printf ("var3 = |%c| is not uppercase character \ n" , var3);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

var1 = | M| is uppercase character

var2 = | m| is not uppercase character

var3 = | 3| is not uppercase character

int isxdigit(int c)

Description

The C library function int isxdigit(int c) checks whether the passed character is a

hexadecimal digit.

Declaration

Following is the declaration for isxdigit() function.

int isxdigit (int c);

Parameters

 C Standard Library

21

 c -- This is the character to be checked.

Return Value

This function returns a non-zero value(true) if c is a hexadecimal digit else, zero (false).

Example

The following example shows the usage of isxdigit() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 char var1 [] = "tuts" ;

 char var2 [] = "0xE" ;

 if (isxdigit (var1 [0]))

 {

 printf ("var1 = |%s| is hexadecimal character \ n" , var1);

 }

 else

 {

 printf ("var1 = |%s| is not hexadecimal character \ n" , var1);

 }

 if (isxdigit (var2 [0]))

 {

 printf ("var2 = |%s| is hexadecimal character \ n" , var2);

 }

 else

 {

 printf ("var2 = |%s| is not hexadecimal character \ n" , var2);

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

var1 = | tuts | is not hexadecimal character

var2 = | 0xE| is hexadecimal character

 C Standard Library

22

The library also contains two conversion functions that accepts and returns an "int".

S.N. Function & Description

1
int tolower(int c)

This function converts uppercase letters to lowercase.

2
int toupper(int c)

This function converts lowercase letters to uppercase.

int tolower(int c)

Description

The C library function int tolower(int c) converts a given letter to lowercase.

Declaration

Following is the declaration for tolower() function.

int tolower (int c);

Parameters

 c -- This is the letter to be converted to lowercase.

Return Value

This function returns lowercase equivalent to c, if such value exists, else c remains

unchanged. The value is returned as an int value that can be implicitly casted to char .

Example

The following example shows the usage of tolower() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 int i = 0;

 char c;

 char str [] = "TUTORIALS POINT";

 while (str [i])

 {

 putchar (tolower (str [i]));

 C Standard Library

23

 i ++;

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

tutorials point

int toupper(int c)

Description

The C library function int toupper(int c) converts lowercase letter to uppercase.

Declaration

Following is the declaration for toupper() function.

int toupper (int c);

Parameters

 c -- This is the letter to be converted to uppercase.

Return Value

This function returns uppercase equivalent to c, if such value exists, else c remains
unchanged. The value is returned as an int value that can be implicitly casted to char .

Example

The following example shows the usage of toupper() function.

#include <stdio.h>

#include <ctype.h>

int main()

{

 int i = 0;

 char c;

 char str [] = "Tutorials Point" ;

 while (str [i])

 {

 putchar (toupper (str [i]));

 i ++;

 C Standard Library

24

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

TUTORIALS POINT

Character Classes

S.N. Character Class & Description

1
Digits

This is a set of whole numbers { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }.

2
Hexadecimal digits

This is the set of - { 0 1 2 3 4 5 6 7 8 9 A B C D E F a b c d e f }.

3

Lowercase letters

This is a set of lowercase letters { a b c d e f g h i j k l m n o p q r s t u v w x y

z }.

4

Uppercase letters

This is a set of uppercase letters {A B C D E F G H I J K L M N O P Q R S T U V
W X Y Z }.

5
Letters

This is a set of lowercase and uppercase letters.

6
Alphanumeric characters

This is a set of Digits, Lowercase letters and Uppercase letters.

7
Punctuation characters

This is a set of ! " # $ % & ' () * + , - . / : ; < = > ? @ [\] ^ _ ` { | } ~

8
Graphical characters

This is a set of Alphanumeric characters and Punctuation characters.

 C Standard Library

25

9
Space characters

This is a set of tab, newline, vertical tab, form feed, carriage return, and space.

10

Printable characters

This is a set of Alphanumeric characters, Punctuation characters and Space
characters.

11
Control characters

In ASCII, these characters have octal codes 000 through 037, and 177 (DEL).

12
Blank characters

These are spaces and tabs.

13
Alphabetic characters

This is a set of Lowercase letters and Uppercase letters.

 C Standard Library

26

Introduction

The errno.h header file of the C Standard Library defines the integer variable errno ,

which is set by system calls and some library functions in the event of an error to

indicate what went wrong. This macro expands to a modifiable lvalue of type int,

therefore it can be both read and modified by a program.

The errno is set to zero at program startup. Certain functions of the standard C library

modify its value to other than zero to signal some types of error. You can also modify its
value or reset to zero at your convenience.

The errno.h header file also defines a list of macros indicating different error codes,

which will expand to integer constant expressions with type int .

Library Macros

Following are the macros defined in the header errno.h:

S.N. Macro & Description

1 extern int errno

This is the macro set by system calls and some library functions in the event of
an error to indicate what went wrong.

2 EDOM Domain Error

This macro represents a domain error, which occurs if an input argument is

outside the domain, over which the mathematical function is defined and errno
is set to EDOM.

3 ERANGE Range Error

This macro represents a range error, which occurs if an input argument is

outside the range, over which the mathematical function is defined and errno is

set to ERANGE.

extern int errno

Description

The C library macro extern int errno is set by system calls and some library functions in

the event of an error to indicate if anything went wrong.

3. C Library <errno.h>

 C Standard Library

27

Declaration

Following is the declaration for errno macro.

extern int errno

Parameters

 NA

Return Value

 NA

Example

The following example shows the usage of errno Macro.

#include <stdio.h>

#include <errno.h>

#include <string.h>

extern int errno ;

int main ()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "r");

 if (fp == NULL)

 {

 fprintf (stderr , "Value of errno: %d \ n" , errno);

 fprintf (stderr , "Error opening file: %s \ n" , strerror (errno));

 }

 else

 {

 fclose (fp);

 }

 return (0);

}

 C Standard Library

28

Let us compile and run the above program that will produce the following result in case
file file.txt does not exist:

Value of errno : 2

Error opening file : No such file or directory

EDOM Domain Error

Description

As mentioned above, the C library macro EDOM represents a domain error, which occurs

if an input argument is outside the domain, over which the mathematical function is
defined and errno is set to EDOM.

Declaration

Following is the declaration for EDOM Macro.

#define EDOM some_value

Parameters

 NA

Return Value

 NA

Example

The following example shows the usage of EDOM Macro.

#include <stdio.h>

#include <errno.h>

#include <math.h>

int main()

{

 double val ;

 errno = 0;

 val = sqrt (- 10);

 if (errno == EDOM)

 {

 print f ("Invalid value \ n");

 }

 else

 {

 C Standard Library

29

 printf ("Valid value \ n");

 }

 errno = 0;

 val = sqrt (10);

 if (errno == EDOM)

 {

 printf ("Invalid value \ n");

 }

 else

 {

 printf ("Valid value \ n");

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

Invalid value

Valid value

ERANGE Range Error

Description

As mentioned above, the C library macro ERANGE represents a range error, which

occurs if an input argument is outside the range, over which the mathematical function
is defined and errno is set to ERANGE.

Declaration

Following is the declaration for ERANGE Macro.

#define ERANGE some_value

Parameters

 NA

Return Value

 NA

 C Standard Library

30

Example

The following example shows the usage of ERANGE Macro.

#include <stdio.h>

#include <errno.h>

#include <math.h>

int main()

{

 double x;

 double value ;

 x = 1.000000 ;

 value = log (x);

 if (errno == ERANGE)

 {

 printf ("Log(%f) is out of range \ n" , x);

 }

 else

 {

 print f ("Log(%f) = %f \ n" , x, value);

 }

 x = 0.000000 ;

 value = log (x);

 if (errno == ERANGE)

 {

 printf ("Log(%f) is out of range \ n" x);

 }

 else

 {

 printf ("Log(%f) = %f \ n" , x, value);

 }

 return 0;

}

Let us compile and run the above program that will produce the following result:

Log(1.000000) = 1.609438

Log(0.000000) is out of range

 C Standard Library

31

Introduction

The float.h header file of the C Standard Library contains a set of various platform-

dependent constants related to floating point values. These constants are proposed by

ANSI C. They allow making more portable programs. Before checking all the constants, it

is good to understand that floating-point number is composed of following four
elements:

Component Component Description

S sign (+/-)

b
base or radix of the exponent representation, 2 for binary, 10 for
decimal, 16 for hexadecimal, and so on...

e exponent, an integer between a minimum emin and a maximum emax .

p precision, the number of base-b digits in the significand

Based on the above 4 components, a floating point will have its value as follows:

floating - point = (S) p x b e

or

floating - point = (+/ -) precision x base exponent

Library Macros

The following values are implementation-specific and defined with the #define directive,

but these values may not be any lower than what is given here. Note that in all instances
FLT refers to type float , DBL refers to double , and LDBL refers to long double .

Macro Description

FLT_ROUNDS

Defines the rounding mode for floating point addition and it
can have any of the following values:

-1 - indeterminable

0 - towards zero

4. C Library <float.h>

 C Standard Library

32

1 - to nearest

2 - towards positive infinity

3 - towards negative infinity

FLT_RADIX 2
This defines the base radix representation of the exponent.

A base-2 is binary, base-10 is the normal decimal
representation, base-16 is Hex.

FLT_MANT_DIG

DBL_MANT_DIG

LDBL_MANT_DIG

These macros define the number of digits in the number (in
the FLT_RADIX base).

FLT_DIG 6

DBL_DIG 10

LDBL_DIG 10

These macros define the maximum number decimal digits

(base-10) that can be represented without change after
rounding.

FLT_MIN_EXP

DBL_MIN_EXP

LDBL_MIN_EXP

These macros define the minimum negative integer value
for an exponent in base FLT_RADIX.

FLT_MIN_10_EXP -37

DBL_MIN_10_EXP -37

LDBL_MIN_10_EXP -37

These macros define the minimum negative integer value
for an exponent in base 10.

FLT_MAX_EXP

DBL_MAX_EXP

LDBL_MAX_EXP

These macros define the maximum integer value for an
exponent in base FLT_RADIX.

FLT_MAX_10_EXP +37

DBL_MAX_10_EXP +37

LDBL_MAX_10_EXP +37

These macros define the maximum integer value for an

exponent in base 10.

FLT_MAX 1E+37

DBL_MAX 1E+37

LDBL_MAX 1E+37

These macros define the maximum finite floating-point

value.

FLT_EPSILON 1E-5 These macros define the least significant digit

 C Standard Library

33

DBL_EPSILON 1E-9

LDBL_EPSILON 1E-9

representable.

FLT_MIN 1E-37

DBL_MIN 1E-37

LDBL_MIN 1E-37

These macros define the minimum floating-point values.

Example

The following example shows the usage of few of the constants defined in float.h file.

#include <stdio.h>

#include <float.h>

int main()

{

 printf ("The maximum value of float = %.10e \ n" , FLT_MAX);

 printf ("The minimum value of float = %.10e \ n" , FLT_MIN);

 printf ("The number of digits in the number = %.10e \ n" , FLT_MANT_DIG);

}

Let us compile and run the above program that will produce the following result:

The maximum value of float = 3.4028234664e+38

The minimum value of float = 1.1754943508e - 38

The number of digits in the number = 7.2996655210e - 312

 C Standard Library

34

Introduction

The limits.h header determines various properties of the various variable types. The

macros defined in this header, limits the values of various variable types like char, int
and long.

These limits specify that a variable cannot store any value beyond these limits, for

example an unsigned character can store up to a maximum value of 255.

Library Macros

The following values are implementation-specific and defined with the #define directive,
but these values may not be any lower than what is given here.

Macro Value Description

CHAR_BIT 8 Defines the number of bits in a byte.

SCHAR_MIN -128
Defines the minimum value for a signed
char.

SCHAR_MAX 127
Defines the maximum value for a signed
char.

UCHAR_MAX 255
Defines the maximum value for an
unsigned char.

CHAR_MIN 0

Defines the minimum value for type char

and its value will be equal to SCHAR_MIN

if char represents negative values,
otherwise zero.

CHAR_MAX 127

Defines the value for type char and its

value will be equal to SCHAR_MAX if char

represents negative values, otherwise
UCHAR_MAX.

MB_LEN_MAX 1
Defines the maximum number of bytes in
a multi-byte character.

SHRT_MIN -32768 Defines the minimum value for a short int.

5. C Library <limits.h>

 C Standard Library

35

SHRT_MAX +32767
Defines the maximum value for a short
int.

USHRT_MAX 65535
Defines the maximum value for an
unsigned short int.

INT_MIN -32768 Defines the minimum value for an int.

INT_MAX +32767 Defines the maximum value for an int.

UINT_MAX 65535
Defines the maximum value for an
unsigned int.

LONG_MIN -2147483648 Defines the minimum value for a long int.

LONG_MAX +2147483647 Defines the maximum value for a long int.

ULONG_MAX 4294967295
Defines the maximum value for an
unsigned long int.

Example

The following example shows the usage of few of the constants defined in limit.h file.

#include <stdio.h>

#include <limits.h>

int main()

{

 printf ("The number of bits in a byte %d \ n" , CHAR_BIT);

 printf ("The minimum value of SIGNED CHAR = %d \ n" , SCHAR_MIN);

 printf ("The maximum value of SIGNED CHAR = % d\ n" , SCHAR_MAX);

 printf ("The maximum value of UNSIGNED CHAR = %d \ n" , UCHAR_MAX);

 printf ("The minimum value of SHORT INT = %d \ n" , SHRT_MIN);

 printf ("The maximum value of SHORT INT = %d \ n" , SHRT_MAX);

 printf ("The minimum value of INT = %d \ n" , INT_MIN);

 printf ("The maximum value of INT = %d \ n" , INT_MAX);

 C Standard Library

36

 printf ("The minimum value of CHAR = %d \ n" , CHAR_MIN);

 printf ("The maximum value of CHAR = %d \ n" , CHAR_MAX);

 printf ("The minimum value of LONG = %ld \ n" , LONG_MIN);

 printf ("The maximum value of LONG = %ld \ n" , LONG_MAX);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The number of bits in a byte 8

The minimum value of SIGNED CHAR = - 128

The maximum value of SIGNED CHAR = 127

The maximum value of UNSIGNED CHAR = 255

The minimum value of SHORT INT = - 32768

The maximum value of SHORT INT = 32767

The minimum value of INT = - 32768

The maximum value of INT = 32767

The minimum value of CHAR = - 128

The maximum value of CHAR = 127

The minimum value of LONG = - 2147483648

The maximum value of LONG = 2147483647

 C Standard Library

37

Introduction

The locale.h header defines the location specific settings, such as date formats and

currency symbols. You will find several macros defined along with an important
structure struct lconv and two important functions listed below.

Library Macros

Following are the macros defined in the header and these macros will be used in two
functions listed below:

S.N. Macro & Description

1
LC_ALL

Sets everything.

2
LC_COLLATE

Affects strcoll and strxfrm functions.

3
LC_CTYPE

Affects all character functions.

4
LC_MONETARY

Affects the monetary information provided by localeconv function.

5

LC_NUMERIC

Affects decimal-point formatting and the information provided by localeconv
function.

6
LC_TIME

Affects the strftime function.

6. C Library <locale.h>

 C Standard Library

38

Library Functions

Following are the functions defined in the header locale.h:

S.N. Function & Description

1
char *setlocale(int category, const char *locale)

Sets or reads location dependent information.

2
struct lconv *localeconv(void)

Sets or reads location dependent information.

char *setlocale(int category, const char *locale)

Description

The C library function char *setlocale(int category, const char *locale) sets or

reads location dependent information.

Declaration

Following is the declaration for setlocale() function.

char * setlocale (int category , const char * locale)

Parameters

 category -- This is a named constant specifying the category of the functions

affected by the locale setting.

o LC_ALL for all of the below.

o LC_COLLATE for string comparison. See strcoll().

o LC_CTYPE for character classification and conversion. For example:

strtoupper().

o LC_MONETARY for monetary formatting for localeconv().

o LC_NUMERIC for decimal separator for localeconv().

o LC_TIME for date and time formatting with strftime().

o LC_MESSAGES for system responses.

 locale -- If locale is NULL or the empty string "", the locale names will be set

from the values of environment variables with the same names as the above

categories.

Return Value

A successful call to setlocale() returns an opaque string that corresponds to the locale

set. The return value is NULL if the request cannot be honored.

 C Standard Library

39

Example

The following example shows the usage of setlocale() function.

#include <locale.h>

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t curr time ;

 struct tm * timer ;

 char buffer [80];

 time (&currtime);

 timer = localtime (&currtime);

 printf ("Locale is: %s \ n" , setlocale (LC_ALL, "en_GB"));

 strftime (buffer , 80, "%c", timer);

 printf ("Date is: %s \ n" , buffer);

 printf ("Loca le is: %s \ n" , setlocale (LC_ALL, "de_DE"));

 strftime (buffer , 80, "%c", timer);

 printf ("Date is: %s \ n" , buffer);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Locale is : en_GB

Date is : Thu 23 Aug 2012 06: 39: 32 MST

Locale is : de_DE

Date is : Do 23 Aug 2012 06: 39: 32 MST

 C Standard Library

40

struct lconv *localeconv(void)

Description

The C library function struct lconv *localeconv(void) sets or reads location dependent

information. These are returned in an object of the lconv structure type.

Declaration

Following is the declaration for localeconv() function.

struct lconv * localeconv (void)

Parameters

 NA

Return Value

This function returns a pointer to a struct lconv for the current locale, which has the

following structure:

typedef struct {

 char * decimal_point ;

 char * thousands_sep ;

 char * grouping ;

 char * int_curr_symbol ;

 char * currency_symbol ;

 char * mon_decimal_point ;

 char * mon_thousands_sep;

 char * mon_grouping ;

 char * positive_sign ;

 char * negat ive_sign ;

 char int_frac_digits ;

 char frac_digits ;

 char p_cs_precedes ;

 char p_sep_by_space ;

 char n_cs_precedes ;

 char n_sep_by_space ;

 char p_sign_posn ;

 char n_sign_posn ;

} lconv

 C Standard Library

41

Example

The following example shows the usage of localeconv() function.

#include <locale.h>

#include <stdio.h>

int main ()

{

 struct lconv * lc ;

 setlocale (LC_MONETARY, "it_IT");

 lc = localeconv ();

 printf ("Local Currency Symbol: %s \ n" , lc - >currency_symbol);

 printf ("International Currency Symbol : %s \ n" , lc - >int_curr_symbol);

 setlocale (LC_MONETARY, "en_US");

 lc = localeconv ();

 printf ("Local Currency Symbol: %s \ n" , lc - >currency_symbol);

 printf ("International Currency Symbol: %s \ n" , lc - >int_curr_symbol);

 setlocale (LC_MONETARY, "en_GB") ;

 lc = localeconv ();

 printf ("Local Currency Symbol: %s \ n" , lc - >currency_symbol);

 printf ("International Currency Symbol: %s \ n" , lc - >int_curr_symbol);

 printf ("Decimal Point = %s \ n" , lc - >decimal_point);

 return 0;

}

Let us compile and run the above program that will produce the following result:

Local Currency Symbol: EUR

International Currency Symbol: EUR

Local Currency Symbol: $

International Currency Symbol: USD

Local Currency Symbol: £

International Currency Symbol: GBP

Decimal Poin t = .

 C Standard Library

42

Library Structure

typedef struct {

 char * decimal_point ;

 char * thousands_sep ;

 char * grouping ;

 char * int_curr_symbol ;

 char * currency_symbol ;

 char * mon_decimal_point ;

 char * mon_thousands_sep;

 char * mon_grouping ;

 char * positiv e_sign ;

 char * negative_sign ;

 char int_frac_digits ;

 char frac_digits ;

 char p_cs_precedes ;

 char p_sep_by_space ;

 char n_cs_precedes ;

 char n_sep_by_space ;

 char p_sign_posn ;

 char n_sign_posn ;

} lconv

Following is the description of each of the fields:

S.N. Field & Description

1
decimal_point

Decimal point character used for non-monetary values.

2
thousands_sep

Thousands place separator character used for non-monetary values.

3

grouping

A string that indicates the size of each group of digits in non-monetary

quantities. Each character represents an integer value, which designates the

number of digits in the current group. A value of 0 means that the previous

value is to be used for the rest of the groups.

4 int_curr_symbol

 C Standard Library

43

It is a string of the international currency symbols used. The first three

characters are those specified by ISO 4217:1987 and the fourth is the
character, which separates the currency symbol from the monetary quantity.

5
currency_symbol

The local symbol used for currency.

6
mon_decimal_point

The decimal point character used for monetary values.

7
mon_thousands_sep

The thousands place grouping character used for monetary values.

8

mon_grouping

A string whose elements defines the size of the grouping of digits in monetary

values. Each character represents an integer value which designates the

number of digits in the current group. A value of 0 means that the previous

value is to be used for the rest of the groups.

9
positive_sign

The character used for positive monetary values.

10
negative_sign

The character used for negative monetary values.

11

int_frac_digits

Number of digits to show after the decimal point in international monetary
values.

12
frac_digits

Number of digits to show after the decimal point in monetary values.

13

p_cs_precedes

If equals to 1, then the currency_symbol appears before a positive monetary

value. If equals to 0, then the currency_symbol appears after a positive
monetary value.

14

p_sep_by_space

If equals to 1, then the currency_symbol is separated by a space from a

positive monetary value. If equals to 0, then there is no space between the

 C Standard Library

44

currency_symbol and a positive monetary value.

15

n_cs_precedes

If equals to 1, then the currency_symbol precedes a negative monetary

value. If equals to 0, then the currency_symbol succeeds a negative
monetary value.

16

n_sep_by_space

If equals to 1, then the currency_symbol is separated by a space from a

negative monetary value. If equals to 0, then there is no space between the
currency_symbol and a negative monetary value.

17
p_sign_posn

Represents the position of the positive_sign in a positive monetary value.

18
n_sign_posn

Represents the position of the negative_sign in a negative monetary value.

The following values are used for p_sign_ posn and n_sign_posn :

Value Description

0 Parentheses encapsulates the value and the currency_symbol.

1 The sign precedes the value and currency_symbol.

2 The sign succeeds the value and currency_symbol.

3 The sign immediately precedes the value and currency_symbol.

4 The sign immediately succeeds the value and currency_symbol.

 C Standard Library

45

Introduction

The math.h header defines various mathematical functions and one macro. All the

functions available in this library take double as an argument and return double as the

result.

Library Macros

There is only one macro defined in this library:

S.N. Macro & Description

1

HUGE_VAL

This macro is used when the result of a function may not be representable as

a floating point number. If magnitude of the correct result is too large to be

represented, the function sets errno to ERANGE to indicate a range error, and

returns a particular, very large value named by the macro HUGE_VAL or its
negation (- HUGE_VAL).

If the magnitude of the result is too small, a value of zero is returned instead.
In this case, errno might or might not be set to ERANGE.

Library Functions

Following are the functions defined in the header math.h:

S.N. Function & Description

1
double acos(double x)

Returns the arc cosine of x in radians.

2
double asin(double x)

Returns the arc sine of x in radians.

3
double atan(double x)

Returns the arc tangent of x in radians.

4
double atan2(doubly y, double x)

Returns the arc tangent in radians of y/x based on the signs of both values to

7. C Library <math.h>

 C Standard Library

46

determine the correct quadrant.

5
double cos(double x)

Returns the cosine of a radian angle x.

6
double cosh(double x)

Returns the hyperbolic cosine of x.

7
double sin(double x)

Returns the sine of a radian angle x.

8
double sinh(double x)

Returns the hyperbolic sine of x.

9
double tanh(double x)

Returns the hyperbolic tangent of x.

10
double exp(double x)

Returns the value of e raised to the xth power.

11

double frexp(double x, int *exponent)

The returned value is the mantissa and the integer pointed to by exponent is
the exponent. The resultant value is x = mantissa * 2 ^ exponent.

12
double ldexp(double x, int exponent)

Returns x multiplied by 2 raised to the power of exponent.

13
double log(double x)

Returns the natural logarithm (base-e logarithm) of x .

14
double log10(double x)

Returns the common logarithm (base-10 logarithm) of x .

15

double modf(double x, double *integer)

The returned value is the fraction component (part after the decimal), and
sets integer to the integer component.

16 double pow(double x, double y)

 C Standard Library

47

Returns x raised to the power of y .

17
double sqrt(double x)

Returns the square root of x .

18
double ceil(double x)

Returns the smallest integer value greater than or equal to x .

19
double fabs(double x)

Returns the absolute value of x .

20
double floor(double x)

Returns the largest integer value less than or equal to x .

21
double fmod(double x, double y)

Returns the remainder of x divided by y .

double acos(double x)

Description

The C library function double acos(double x) returns the arc cosine of x in radians.

Declaration

Following is the declaration for acos() function.

double acos(double x)

Parameters

 x -- This is the floating point value in the interval [-1, +1].

Return Value

This function returns principal arc cosine of x, in the interval [0, pi] radians.

Example

The following example shows the usage of acos() function.

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

 C Standard Library

48

int main ()

{

 double x, ret , val ;

 x = 0.9 ;

 val = 180.0 / PI ;

 ret = acos(x) * val ;

 printf ("The arc cosine of %lf is %lf degrees" , x, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The arc cosine of 0.900000 is 25.855040 degrees

double asin(double x)

Description

The C library function double asin(double x) returns the arc sine of x in radians.

Declaration

Following is the declaration for asin() function.

double asin (double x)

Parameters

 x -- This is the floating point value in the interval [-1,+1].

Return Value

This function returns the arc sine of x, in the interval [-pi/2,+pi/2] radians.

Example

The following example shows the usage of asin() function.

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

int main ()

{

 C Standard Library

49

 double x, ret , val ;

 x = 0.9 ;

 val = 180.0 / PI ;

 ret = asin (x) * val ;

 printf ("The arc sine of %lf is %lf degrees" , x, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The arc sine of 0.900000 is 64.190609 degrees

double atan(double x)

Description

The C library function double atan(double x) returns the arc tangent of x in radians.

Declaration

Following is the declaration for atan() function.

double atan (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns the principal arc tangent of x, in the interval [-pi/2,+pi/2] radians.

Example

The following example shows the usage of atan() function.

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

int main ()

{

 double x, ret , val ;

 x = 1.0 ;

 val = 180.0 / PI ;

 C Standard Library

50

 ret = atan (x) * val ;

 printf ("The arc tangent of %lf is %lf degrees" , x, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The arc tangent of 1.000000 is 45.000000 degrees

double atan2(doubly y, double x)

Description

The C library function d ouble atan2(doubly y, double x) returns the arc tangent in

radians of y/x based on the signs of both values to determine the correct quadrant.

Declaration

Following is the declaration for atan2() function.

double atan2 (doubly y , double x)

Parameters

 x -- This is the floating point value representing an x-coordinate.

 y -- This is the floating point value representing a y-coordinate.

Return Value

This function returns the principal arc tangent of y/x, in the interval [-pi,+pi] radians.

Example

The following example shows the usage of atan2() function.

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

int main ()

{

 double x, y, ret , val ;

 x = - 7.0 ;

 y = 7.0 ;

 C Standard Library

51

 val = 180.0 / PI ;

 ret = atan2 (y, x) * val ;

 printf ("The arc tangent of x = %lf, y = %lf " , x, y);

 printf ("is %lf degrees \ n" , ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The arc tangent of x = - 7.000000 , y = 7.000000 is 135.000000 degrees

double cos(double x)

Description

The C library function double cos(double x) returns the cosine of a radian angle x .

Declaration

Following is the declaration for cos() function.

double cos(double x)

Parameters

 x -- This is the floating point value representing an angle expressed in radians.

Return Value

This function returns the cosine of x.

Example

The following example shows the usage of cos() function.

#include <stdio.h>

#include <math.h>

#define PI 3.14159265

int main ()

{

 double x, ret , val ;

 x = 60.0 ;

 val = PI / 180.0 ;

 C Standard Library

52

 ret = cos(x* val);

 printf ("The cosine of %lf is %lf degrees \ n" , x, ret);

 x = 90.0 ;

 val = PI / 180.0 ;

 ret = cos(x* val);

 printf ("The cosine of %lf is %lf degrees \ n" , x, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The cosine of 60.000000 is 0.500000 degrees

The cosine of 90.000000 is 0.000000 degrees

double cosh(double x)

Description

The C library function double cosh(double x) returns the hyperbolic cosine of x .

Declaration

Following is the declaration for cosh() function.

double cosh(double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns hyperbolic cosine of x.

Example

The following example shows the usage of cosh() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x;

 x = 0.5 ;

 C Standard Library

53

 printf ("The hyperbolic cosine of %lf is %lf \ n" , x, cosh(x));

 x = 1.0 ;

 printf ("The hyperbolic cosine of %lf is %lf \ n" , x, cosh(x));

 x = 1.5 ;

 printf ("The hy perbolic cosine of %lf is %lf \ n" , x, cosh(x));

 return (0);

}

Let us compile and run the above program to produce the following result:

The hyperbolic cosine of 0.500000 is 1.127626

The hyperbolic cosine of 1.000000 is 1.543081

The hyperbolic cosine of 1.500000 is 2.352410

double sin(double x)

Description

The C library function double sin(double x) returns the sine of a radian angle x .

Declaration

Following is the declaration for sin() function.

double sin (double x)

Parameters

 x -- This is the floating point value representing an angle expressed in radians.

Return Value

This function returns sine of x.

Example

The following example shows the usage of sin() function.

#include <stdio.h>

#include <math.h>

 C Standard Library

54

#define PI 3.14159265

int main ()

{

 double x, ret , val ;

 x = 45.0 ;

 val = PI / 180;

 ret = sin (x* val);

 printf ("The sine of %lf is %lf degrees" , x, ret);

 return (0);

}

Let us compile and run the above program to produce the following result:

The sine of 45.000000 is 0.707107 degrees

double sinh(double x)

Description

The C library function double sinh(double x) returns the hyperbolic sine of x .

Declaration

Following is the declaration for sinh() function.

double sinh (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns hyperbolic sine of x.

Example

The following example shows the usage of sinh() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 C Standard Library

55

 double x, ret ;

 x = 0.5 ;

 ret = sinh (x);

 printf ("The hyperb olic sine of %lf is %lf degrees" , x, ret);

 return (0);

}

Let us compile and run the above program, this will produce the following result:

The hyperbolic sine of 0.500000 is 0.521095 degrees

double tanh(double x)

Description

The C library function do uble tanh(double x) returns the hyperbolic tangent of x .

Declaration

Following is the declaration for tanh() function.

double tanh (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns hyperbolic tangent of x.

Example

The following example shows the usage of tanh() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x, ret ;

 x = 0.5 ;

 ret = tanh (x);

 printf ("The hyperbolic tangent of %lf is %lf degrees" , x, ret);

 C Standard Library

56

 return (0);

}

Let us compile and run the above program that will produce the following result:

The hyperbolic tangent of 0.500000 is 0.462117 degrees

double exp(double x)

Description

The C library function double exp(double x) returns the value of e raised to

the xth power.

Declaration

Following is the declaration for exp() function.

double exp(double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns the exponential value of x.

Example

The following example shows the usage of exp() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x = 0;

 printf ("The exponential value of %lf is %lf \ n" , x, exp(x));

 printf ("The exponential value of %lf is %lf \ n" , x+1, exp(x+1));

 printf ("The exponential value of %lf is %lf \ n" , x+2, exp(x+2));

 return (0);

}

Let us compile and run the above program that will produce the following result:

The exponential value of 0.000000 is 1.000000

 C Standard Library

57

The exponential value of 1.000000 is 2.718282

The exponential value of 2.000000 is 7.389056

double frexp(double x, int *exponent)

Description

The C library function double frexp(double x, int *exponent) return value is the

mantissa, and the integer pointed to by exponent is the exponent. The resultant value

is x = mantissa * 2 ^ exponen t .

Declaration

Following is the declaration for frexp() function.

double frexp (double x, int * exponent)

Parameters

 x -- This is the floating point value to be computed.

 exponent -- This is the pointer to an int object where the value of the exponent

is to be stored.

Return Value

This function returns the normalized fraction. If the argument x is not zero, the

normalized fraction is x times a power of two, and its absolute value is always in the

range 1/2 (inclusive) to 1 (exclusive). If x is zero, then the normalized fraction is zero
and zero is stored in exp.

Example

The following example shows the usage of frexp() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x = 1024, fraction ;

 int e;

 fraction = frexp (x, &e);

 printf ("x = %.2lf = %.2lf * 2^%d \ n" , x, fraction , e);

 return (0);

}

Let us compile and run the above program to produce the following result:

 C Standard Library

58

x = 1024.00 = 0.50 * 2^11

double ldexp(double x, int exponent)

Description

The C library function double ldexp(double x, int exponent) returns x multiplied by 2

raised to the power of exponent .

Declaration

Following is the declaration for ldexp() function.

double ldexp (double x, int exponent)

Parameters

 x -- This is the floating point value representing the significand.

 exponent -- This is the value of the exponent.

Return Value

This function returns x * 2 exp

Example

The following example shows the usage of ldexp() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x, ret ;

 int n;

 x = 0.65 ;

 n = 3;

 ret = ldexp (x , n);

 printf ("%f * 2^%d = %f \ n" , x, n, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

0.650000 * 2^3 = 5.200000

 C Standard Library

59

double log(double x)

Description

The C library function double log(double x) returns the natural logarithm (base-e

logarithm) of x .

Declaration

Following is the declaration for log() function.

double log (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns natural logarithm of x.

Example

The following example shows the usage of log() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x, ret ;

 x = 2.7 ;

 /* finding log(2.7) */

 ret = log (x);

 printf ("log(%lf) = %lf" , x, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

log (2.700000) = 0.993252

double log10(double x)

Description

The C library function double log10(double x) returns the common logarithm (base-10

logarithm) of x .

Declaration

 C Standard Library

60

Following is the declaration for log10() function.

double log10 (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns the common logarithm of x, for values of x greater than zero.

Example

The following example shows the usage of log10() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x, ret ;

 x = 10000;

 /* finding value of log1010000 */

 ret = log10 (x);

 printf ("log10(%lf) = %lf \ n" , x, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

log10 (10000.000000) = 4.000000

double modf(double x, double *integer)

Description

The C library function double modf(double x, double *integer) returns the fraction

component (part after the decimal), and sets integer to the integer component.

Declaration

Following is the declaration for modf() function.

double modf(double x, double * integer)

Parameters

 C Standard Library

61

 x -- This is the floating point value.

 integer -- This is the pointer to an object where the integral part is to be stored.

Return Value

This function returns the fractional part of x, with the same sign.

Example

The following example shows the usage of modf() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 double x, fractpart , intpart ;

 x = 8.123456 ;

 fractpart = modf(x, &intpart);

 printf ("Integral part = %lf \ n" , intpart);

 printf ("Fraction Part = %lf \ n" , fractpart);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Integral part = 8.000000

Fraction Part = 0.123456

double pow(double x, double y)

Description

The C library function double pow(double x, double y) returns x raised to the power

of y i.e. xy.

Declaration

Following is the declaration for pow() function.

double pow(double x, double y)

Parameters

 x -- This is the floating point base value.

 C Standard Library

62

 y -- This is the floating point power value.

Return Value

This function returns the result of raising x to the power y .

Example

The following example shows the usage of pow() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 printf ("Value 8.0 ^ 3 = %lf \ n" , pow(8.0 , 3));

 printf ("Value 3.05 ^ 1.98 = %lf" , pow(3.05 , 1.98));

 return (0);

}

Let us compile and run the above program that will produce the following result:

Value 8.0 ^ 3 = 512.000000

Value 3.05 ^ 1.98 = 9.097324

double sqrt(double x)

Description

The C library function double sqrt(double x) returns the square root of x .

Declaration

Following is the declaration for sqrt() function.

double sqrt (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns the square root of x.

Example

The following example shows the usage of sqrt() function.

 C Standard Library

63

#include <stdio.h>

#include <math.h>

int main ()

{

 printf ("Square root of %lf is %lf \ n" , 4.0 , sqrt (4.0));

 printf ("Square root of %lf is %lf \ n" , 5.0 , sqrt (5.0));

 return (0);

}

Let us compile and run the above program that will produce the following result:

Square root of 4.0000 00 is 2.000000

Square root of 5.000000 is 2.236068

double ceil(double x)

Description

The C library function double ceil(double x) returns the smallest integer value greater

than or equal to x .

Declaration

Following is the declaration for ceil() function.

double ceil (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns the smallest integral value not less than x .

Example

The following example shows the usage of ceil() function.

#include <stdio.h>

#include <math.h>

i nt main ()

{

 float val1 , val2 , val3 , val4 ;

 C Standard Library

64

 val1 = 1.6 ;

 val2 = 1.2 ;

 val3 = 2.8 ;

 val4 = 2.3 ;

 printf ("value1 = %.1lf \ n" , ceil (val1));

 printf ("value2 = %.1lf \ n" , ceil (val2));

 printf ("value3 = %.1lf \ n" , ceil (val3));

 printf ("valu e4 = %.1lf \ n" , ceil (val4));

 return (0);

}

Let us compile and run the above program that will produce the following result:

value1 = 2.0

value2 = 2.0

value3 = 3.0

value4 = 3.0

double fabs(double x)

Description

The C library function double fabs(double x) returns the absolute value of x .

Declaration

Following is the declaration for fabs() function.

double fabs (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns the absolute value of x.

Example

The following example shows the usage of fabs() function.

#include <stdio.h>

#include <math.h>

 C Standard Library

65

int main ()

{

 int a, b;

 a = 1234;

 b = - 344;

 printf ("The absolute value of %d is %lf \ n" , a, fabs (a));

 printf ("The absolute value of %d is %lf \ n" , b, fabs (b));

 return (0);

}

Let us compile and run the above program that will produce the following result:

The absolute value of 1234 is 1234.000000

The absolute value of - 344 is 344.000000

double floor(double x)

Description

The C library function dou ble floor(double x) returns the largest integer value less

than or equal to x .

Declaration

Following is the declaration for floor() function.

double floor (double x)

Parameters

 x -- This is the floating point value.

Return Value

This function returns the largest integral value not greater than x .

Example

The following example shows the usage of floor() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 C Standard Library

66

 float val1 , val2 , val3 , val4 ;

 val1 = 1.6 ;

 val2 = 1.2 ;

 val3 = 2.8 ;

 val4 = 2.3 ;

 printf ("Value1 = %.1lf \ n" , floor (val1));

 printf ("Value2 = %.1lf \ n" , floor (val2));

 printf ("Value3 = %.1lf \ n" , floor (val3));

 printf ("Value4 = %.1lf \ n" , floor (val4));

 return (0);

}

Let us compile and run the above program that will produce the following result:

Value1 = 1.0

Value2 = 1.0

Value3 = 2.0

Value4 = 2.0

double fmod(double x, double y)

Description

The C library function double fmod(double x, double y) returns the remainder

of x divided by y .

Declaration

Following is the declaration for fmod() function.

double fmod(double x, double y)

Parameters

 x -- This is the floating point value with the division numerator i.e. x.

 y -- This is the floating point value with the division denominator i.e. y.

Return Value

This function returns the remainder of dividing x/y.

 C Standard Library

67

Example

The following example shows the usage of fmod() function.

#include <stdio.h>

#include <math.h>

int main ()

{

 float a, b;

 int c;

 a = 9.2 ;

 b = 3.7 ;

 c = 2;

 printf ("Remainder of %f / %d is %lf \ n" , a, c, fmod(a, c));

 printf ("Remainder of %f / %f is %lf \ n" , a, b, fmod(a, b));

 return (0);

}

Let us compile and run the above program that will produce the following result:

Remainder of 9.200000 / 2 is 1.200000

Remainder of 9.200000 / 3.700000 is 1. 800000

 C Standard Library

68

Introduction

The setjmp.h header defines the macro setjmp() , one function longjmp() , and one

variable type jmp_buf , for bypassing the normal function call and return discipline.

Library Variables

Following is the variable type defined in the header setjmp.h:

S.N. Variable & Description

1 jmp_buf

This is an array type used for holding information for macro setjmp() and

function longjmp() .

Library Macros

There is only one macro defined in this library:

S.N. Macro & Description

1

int setjmp(jmp _buf environment)

This macro saves the current environment into the variable environment for

later use by the function longjmp() . If this macro returns directly from the

macro invocation, it returns zero but if it returns from a longjmp() function

call, then a non-zero value is returned.

int setjmp(jmp_buf environment)

Description

The C library macro int setjmp(jmp_buf environment) , saves the current environment

into the variable environment for later use by the function longjmp() . If this macro returns

directly from the macro invocation, it returns zero but if it returns from a longjmp() function

call, then it returns the value passed to longjmp as a second argument.

Declaration

Following is the declaration for setjmp() macro.

int setjmp (jmp_buf environme nt)

8. C Library <setjmp.h>

 C Standard Library

69

Parameters

 environment -- This is the object of type jmp_buf where the environment

information is stored.

Return Value

This macro may return more than once. First time, on its direct invocation, it always

returns zero. When longjmp is called with the information set to the environment, the
macro returns again; now it returns the value passed to longjmp as second argument.

Example

The following example shows the usage of setjmp() macro.

#include <stdio.h>

#include <stdlib.h>

#include <setjmp.h>

int main ()

{

 int val ;

 jmp_buf env_buffer ;

 /* save calling environment for longjmp */

 val = setjmp (env_buffer);

 if (val != 0)

 {

 printf ("Returned from a longjmp() with value = %s \ n" , val);

 exit (0);

 }

 printf ("Jump function call \ n");

 jmpfunction (env_buffer);

 return (0);

}

void jmpfunction (jmp_buf env_buf)

{

 longjmp (env_buf , "tutorialspoint.com");

}

Let us compile and run the above program, this will produce the following result:

Jump function call

Returned from a longjmp () with value = tutorialspoint . com

 C Standard Library

70

Library Functions

Following is the only one function defined in the header setjmp.h:

S.N. Function & Description

1

void longjmp(jmp_buf environment, int value)

This function restores the environment saved by the most recent call to
setjmp() macro in the same invocation of the program with the

corresponding jmp_buf argument.

void longjmp(jmp_buf environment, int value)

Description

The C library function void longjmp(jmp_buf environment, int value) restores the

environment saved by the most recent call to setjmp() macro in the same invocation of

the program with the corresponding jmp_buf argument.

Declaration

Following is the declaration for longjmp() function.

void longjmp (jmp_buf environment , int value)

Parameters

 environment -- This is the object of type jmp_buf containing information to

restore the environment at the setjmp's calling point.

 value -- This is the value to which the setjmp expression evaluates.

Return Value

This function does not return any value.

Example

The following example shows the usage of longjmp() function.

#include <stdio.h>

#include <stdlib.h>

#include <setjmp.h>

int main()

{

 int val ;

 jmp_buf env_buffer ;

 /* save calling environment for longjmp */

 C Standard Library

71

 val = setjmp (env_buffer);

 if (val != 0)

 {

 printf ("Returned from a longjmp() with value = %s \ n" , val);

 exit (0);

 }

 printf ("Jump function call \ n");

 jmpfunction (env_buffer);

 return (0);

}

void jmpfunction (jmp_buf env_buf)

{

 longjmp (env_buf , "tuto rialspoint.com");

}

Let us compile and run the above program that will produce the following result:

Jump function call

Returned from a longjmp () with value = tutorialspoint . com

 C Standard Library

72

Introduction

The signal.h header defines a variable type sig_atomic_t , two function calls, and

several macros to handle different signals reported during a program's execution.

Library Variables

Following is the variable type defined in the header signal.h:

S.N. Variable & Description

1

sig_atomic_t

This is of int type and is used as a variable in a signal handler. This is an

integral type of an object that can be accessed as an atomic entity, even in
the presence of asynchronous signals.

Library Macros

Following are the macros defined in the header signal.h and these macros will be used in
two functions listed below. The SIG_ macros are used with the signal function to define

signal functions.

S.N. Macro & Description

1
SIG_DFL

Default signal handler.

2
SIG_ERR

Represents a signal error.

3
SIG_IGN

Signal ignore.

9. / [ƛōǊŀǊȅ <signal.h>

 C Standard Library

73

The SIG macros are used to represent a signal number in the following conditions:

S.N. Macro & Description

1 SIGABRT

Abnormal program termination.

2 SIGFPE

Floating-point error like division by zero.

3 SIGILL

Illegal operation.

4 SIGINT

Interrupt signal such as ctrl-C.

5 SIGSEGV

Invalid access to storage like segment violation.

6 SIGTERM

Termination request.

Library Functions

Following are the functions defined in the header signal.h:

S.N. Function & Description

1
void (*signal(int sig, void (*func)(int)))(int)

This function sets a function to handle signal i.e. a signal handler.

2

int raise(int sig)

This function causes signal sig to be generated. The sig argument is

compatible with the SIG macros.

void (*signal(int sig, void (*func)(int)))(int)

Description

The C library function void (*signal(int sig, void (*func)(int)))(int) sets a function

to handle signal i.e. a signal handler with signal number sig .

 C Standard Library

74

Declaration

Following is the declaration for signal() function.

void (* si gnal (int sig , void (* func)(int)))(int)

Parameters

 sig -- This is the signal number to which a handling function is set. The following

are few important standard signal numbers:

macro signal

SIGABRT (Signal Abort) Abnormal termination, such as is initiated by the function.

SIGFPE (Signal Floating-Point Exception) Erroneous arithmetic operation, such as

zero divide or an operation resulting in overflow (not necessarily with a
floating-point operation).

SIGILL (Signal Illegal Instruction) Invalid function image, such as an illegal

instruction. This is generally due to a corruption in the code or to an

attempt to execute data.

SIGINT (Signal Interrupt) Interactive attention signal. Generally generated by the
application user.

SIGSEGV (Signal Segmentation Violation) Invalid access to storage: When a program

tries to read or write outside the memory it is allocated for it.

SIGTERM (Signal Terminate) Termination request sent to program.

 func -- This is a pointer to a function. This can be a function defined by the

programmer or one of the following predefined functions:

SIG_DFL Default handling: The signal is handled by the default action for that

particular signal.

SIG_IGN Ignore Signal: The signal is ignored.

Return Value

This function returns the previous value of the signal handler, or SIG_ERR on error.

 C Standard Library

75

Example

The following example shows the usage of signal() function.

#include <stdio.h>

#include <unistd.h>

#include <stdlib.h>

#include <signal.h>

void sighandler (int);

int main()

{

 signal (SIGINT, sighandler);

 while (1)

 {

 printf ("Going to sleep for a second... \ n");

 sleep (1);

 }

 return (0);

}

void sighandler (int signum)

{

 printf ("Caught signal %d, coming out... \ n" , signum);

 exit (1);

}

Let us compile and run the above program that will produce the following result and
program will go in infinite loop. To come out of the program we used CTRL + C keys.

Going to sleep for a second ...

Going to sleep for a second ...

Going to sleep for a second ...

Going to sleep for a s econd...

Going to sleep for a second ...

Caught signal 2, coming out ...

 C Standard Library

76

int raise(int sig)

Description

The C library function int raise(int sig) causes signal sig to be generated.

The sig argument is compatible with the SIG macros.

Declaration

Following is the declaration for signal() function.

int raise (int sig)

Parameters

 sig -- This is the signal number to send. Following are few important standard

signal constants:

macro signal

SIGABRT (Signal Abort) Abnormal termination, such as is initiated by
the abort function.

SIGFPE (Signal Floating-Point Exception) Erroneous arithmetic operation, such as

zero divide or an operation resulting in overflow (not necessarily with a

floating-point operation).

SIGILL (Signal Illegal Instruction) Invalid function image, such as an illegal

instruction. This is generally due to a corruption in the code or to an

attempt to execute data.

SIGINT (Signal Interrupt) Interactive attention signal. Generally generated by the
application user.

SIGSEGV (Signal Segmentation Violation) Invalid access to storage: When a program
tries to read or write outside the memory it is allocated for it.

SIGTERM (Signal Terminate) Termination request sent to program.

Return Value

This function returns zero if successful, and non-zero otherwise.

Example

The following example shows the usage of signal() function.

#include <signal.h>

#include <stdio.h>

void signal_catchfunc (int);

 C Standard Library

77

int main()

{

 int ret ;

 ret = signal (SIGINT, signal_catchfunc);

 if (ret == SIG_ERR)

 {

 printf ("Erro r: unable to set signal handler. \ n");

 exit (0);

 }

 printf ("Going to raise a signal \ n");

 ret = raise (SIGINT);

 if (ret != 0)

 {

 printf ("Error: unable to raise SIGINT signal. \ n");

 exit (0);

 }

 printf ("Exiting... \ n");

 ret urn (0);

}

void signal_catchfunc (int signal)

{

 printf ("!! signal caught !! \ n");

}

Let us compile and run the above program to produce the following result:

Going to raise a signal

!! signal caught !!

Exiting ...

 C Standard Library

78

Introduction

The stdarg.h header defines a variable type va_list and three macros which can be

used to get the arguments in a function when the number of arguments are not known

i.e. variable number of arguments.

A function of variable arguments is defined with the ellipsis (,...) at the end of the
parameter list.

Library Variables

Following is the variable type defined in the header stdarg.h:

S.N. Variable & Description

1

va_list

This is a type suitable for holding information needed by the three macros
va_sta rt(), va_arg() and va_end() .

Library Macros

Following are the macros defined in the header stdarg.h:

S.N. Macro & Description

1

void va_start(va_list ap, last_arg)

This macro initializes ap variable to be used with the va_arg and va_end

macros. The last_ arg is the last known fixed argument being passed to the

function i.e. the argument before the ellipsis.

2

type va_arg(va_list ap, type)

This macro retrieves the next argument in the parameter list of the function
with type type .

3

void va_end(va_list ap)

This macro allows a function with variable arguments which used
the va_start macro to return. If va_end is not called before returning from

the function, the result is undefined.

10. / [ƛōǊŀǊȅ <stdarg.h>

 C Standard Library

79

void va_start(va_list ap, last_arg)

Description

The C library macro void va_start(va_list ap, last_arg) initializes ap variable to be

used with the va_arg and va_end macros. The last_arg is the last known fixed

argument being passed to the function i.e. the argument before the ellipsis.

This macro must be called before using va_arg and va_end .

Declaration

Following is the declaration for va_start() macro.

void va_start(va_list ap, last_arg);

Parameters

 ap -- This is the object of va_list and it will hold the information needed to

retrieve the additional arguments with va _arg .

 last_arg -- This is the last known fixed argument being passed to the function.

Return Value

NA

Example

The following example shows the usage of va_start() macro.

#include <stdarg.h>

#include <stdio.h>

int sum(int , ...);

int main(void)

{

 printf ("Sum of 10, 20 and 30 = %d \ n" , sum(3, 10, 20, 30));

 printf ("Sum of 4, 20, 25 and 30 = %d \ n" , sum(4, 4, 20, 25, 30));

 return 0;

}

int sum(int num_args, ...)

{

 int val = 0;

 va_list ap ;

 int i ;

 C Standard Library

80

 va_start (ap, num_args);

 for (i = 0; i < num_args; i ++)

 {

 val += va_arg (ap, int);

 }

 va_end(ap);

 return val ;

}

Let us compile and run the above program to produce the following result:

Sum of 10, 20 and 30 = 60

Sum of 4, 20, 25 and 30 = 79

type va_arg(va_list ap, type)

Description

The C library macro type va_arg(va_list ap, type) retrieves the next argument in the

parameter list of the function with type . This does not determine whether the retrieved

argument is the last argument passed to the function.

Declaration

Following is the declaration for va_arg() macro.

type va_arg (va_list ap , type)

Parameters

 ap -- This is the object of type va_list with information about the additional

arguments and their retrieval state. This object should be initialized by an initial
call to va_start before the first call to va_arg.

 type -- This is a type name. This type name is used as the type of the

expression, this macro expands to.

Return Value

This macro returns the next additional argument as an expression of type type .

Example

The following example shows the usage of va_arg() macro.

#include <stdarg.h>

#include <stdio.h>

int sum(int , ...);

 C Standard Library

81

int main()

{

 printf ("Sum of 15 and 56 = %d \ n" , sum(2, 15, 56));

 return 0;

}

int sum(int num_args, ...)

{

 int val = 0;

 va_list ap ;

 int i ;

 va_start (ap, num_args);

 for (i = 0; i < num_args; i ++)

 {

 val += va_arg (ap, int);

 }

 va_end(ap);

 return val ;

}

Let us compile and run the above program to produce the following result:

Sum of 15 and 56 = 71

void va_end(va_list ap)

Description

The C library macro void va_end(va_list ap) allows a function with variable arguments

which used the va_start macro to return. If va_end is not called before returning from

the function, the result is undefined.

Declaration

Following is the declaration for va_end() macro.

void va_end(va_list ap)

Parameters

 C Standard Library

82

 ap -- This is the va_list object previously initialized by va_start in the same

function.

Return Value

This macro does not return any value.

Example

The following example shows the usage of va_end() macro.

#include <stdarg.h>

#include <stdio.h>

int mul(int , ...);

int main()

{

 printf ("15 * 12 = %d \ n" , mul(2, 15, 12));

 return 0;

}

int mul(int num_args, ...)

{

 int val = 1;

 va_list ap;

 int i ;

 va_start (ap, num_args);

 for (i = 0; i < num_args; i ++)

 {

 val *= va_arg (ap, int);

 }

 va_end(ap);

 return val ;

}

Let us compile and run the above program to produce the following result:

15 * 12 = 180

 C Standard Library

83

Introduction

The stddef .h header defines various variable types and macros. Many of these

definitions also appear in other headers.

Library Variables

Following are the variable types defined in the header stddef.h:

S.N. Variable & Description

1
ptrdiff_t

This is the signed integral type and is the result of subtracting two pointers.

2
size_t

This is the unsigned integral type and is the result of the sizeof keyword.

3
wchar_t

This is an integral type of the size of a wide character constant.

Library Macros

Following are the macros defined in the header stddef.h:

S.N. Macro & Description

1
NULL

This macro is the value of a null pointer constant.

2

offsetof(type, member - designator)

This results in a constant integer of type size_t which is the offset in bytes of

a structure member from the beginning of the structure. The member is given
by member -designator , and the name of the structure is given in type .

11. C Library <stddef.h>

 C Standard Library

84

NULL

Description

The C library Macro NULL is the value of a null pointer constant. It may be defined as

((void*)0), 0 or 0L depending on the compiler vendor.

Declaration

Following may be the declaration for NULL Macro depending on the compiler.

#define NULL ((char *) 0)

or

#define NULL 0L

or

#define NULL 0

Parameters

 NA

Return Value

 NA

Example

The following example shows the usage of NULL Macro.

#include <stddef.h>

#include <stdio.h>

int main ()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "r");

 if (fp != NULL)

 {

 printf ("Opend file file.txt successfully \ n");

 fclose (fp);

 }

 C Standard Library

85

 fp = fopen ("nofile.txt" , "r");

 if (fp == NULL)

 {

 printf ("Could not open file nofile.txt \ n");

 }

 return (0);

}

Assuming we have an existing file file.txt but nofile.txt does not exist. Let us compile

and run the above program that will produce the following result:

Opend file file . txt successfully

Could not open file nofile . txt

offsetof(type, member-designator)

Description

The C library macro offsetof(type, member - designator) results in a constant integer

of type size_t which is the offset in bytes of a structure member from the beginning of

the structure. The member is given by member-designator, and the name of the
structure is given in type.

Declaration

Following is the declaration for offsetof() Macro.

offsetof (type , member- designator)

Parameters

 type -- This is the class type in which member-designator is a valid member

designator.

 member - designator -- This is the member designator of class type.

Return Value

This macro returns the value of type size_t which is the offset value of member in type.

Example

The following example shows the usage of offsetof() Macro.

#include <stddef.h>

#include <stdio.h>

struct address {

 char name[50];

 C Standard Library

86

 char street [50];

 int phone;

};

int main()

{

 printf ("name offset = %d by te in address structure. \ n" ,

 offsetof (struct address , name));

 printf ("street offset = %d byte in address structure. \ n" ,

 offsetof (struct address , street));

 printf ("phone offset = %d byte in address structure. \ n" ,

 offsetof (struct addre ss, phone));

 return (0);

}

Let us compile and run the above program, this will produce the following result:

name offset = 0 byte in address structure .

street offset = 50 byte in address structure .

phone offset = 100 byte in address structure .

 C Standard Library

87

Introduction

The stdio .h header defines three variable types, several macros, and various functions

for performing input and output.

Library Variables

Following are the variable types defined in the header stdio.h:

S.N. Variable & Desc ription

1
size_t

This is the unsigned integral type and is the result of the sizeof keyword.

2
FILE

This is an object type suitable for storing information for a file stream.

3
fpos_t

This is an object type suitable for storing any position in a file.

Library Macros

Following are the macros defined in the header stdio.h:

S.N. Macro & Description

1
NULL

This macro is the value of a null pointer constant.

2

_IOFBF, _IOLBF and _IONBF

These are the macros which expand to integral constant expressions with
distinct values and suitable for the use as third argument to the setvbuf

function.

3

BUFSIZ

This macro is an integer, which represents the size of the buffer used by the
setbuf function.

12. C [ƛōǊŀǊȅ <stdio.h>

 C Standard Library

88

4

EOFM

This macro is a negative integer, which indicates that the end-of-file has been
reached.

5

FOPEN_MAX

This macro is an integer, which represents the maximum number of files that
the system can guarantee to be opened simultaneously.

6

FILENAME_MAX

This macro is an integer, which represents the longest length of a char array

suitable for holding the longest possible filename. If the implementation

imposes no limit, then this value should be the recommended maximum
value.

7

L_tmpnam

This macro is an integer, which represents the longest length of a char array

suitable for holding the longest possible temporary filename created by the
tmpnam function.

8

SEEK_CUR, SEEK_END, and SEEK_SET

These macros are used in the fseek function to locate different positions in a

file.

9

TMP_MAX

This macro is the maximum number of unique filenames that the function
tmpnam can generate.

10

stderr, stdin, and stdout

These macros are pointers to FILE types which correspond to the standard
error, standard input, and standard output streams.

Library Functions

Following are the functions defined in the header stdio.h:

Follow the same sequence of functions for better understanding and to make use of Try
it (online compiler) option, because file created in the first function will be used in

subsequent functions.

S.N. Function & D escription

1 int fclose(FILE *stream)

 C Standard Library

89

Closes the stream. All buffers are flushed.

2
void clearerr(FILE *stream)

Clears the end-of-file and error indicators for the given stream.

3
int feof(FILE *stream)

Tests the end-of-file indicator for the given stream.

4
int ferror(FILE *stream)

Tests the error indicator for the given stream.

5
int fflush(FILE *stream)

Flushes the output buffer of a stream.

6
int fgetpos(FILE *stream, fpos_t *pos)

Gets the current file position of the stream and writes it to pos.

7
FILE *fopen(const char *filename, const char *mode)

Opens the filename pointed to by filename using the given mode.

8
size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)

Reads data from the given stream into the array pointed to by ptr.

9

FILE *freopen(const char *filename, const char *mode, FILE *stream)

Associates a new filename with the given open stream and same time closing
the old file in stream.

10

int fseek(FILE *stream, long int offset, int whence)

Sets the file position of the stream to the given offset. The argument offset

signifies the number of bytes to seek from the given whence position.

11

int fsetpos(FILE *stream, const fpos_t *pos)

Sets the file position of the given stream to the given position. The argument
pos is a position given by the function fgetpos.

12
long int ftell(FILE *stream)

Returns the current file position of the given stream.

 C Standard Library

90

13
size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)

Writes data from the array pointed to by ptr to the given stream.

14
int remove(const char *filename)

Deletes the given filename so that it is no longer accessible.

15

int rename(const char *old_filename, const char *new_filename)

Causes the filename referred to, by old_filename to be changed to
new_filename.

16
void rewind(FILE *stream)

Sets the file position to the beginning of the file of the given stream.

17
void setbuf(FILE *stream, char *buffer)

Defines how a stream should be buffered.

18
int setvbuf(FILE *stream, char *buffer, int mode, size_t size)

Another function to define how a stream should be buffered.

19
FILE *tmpfile(void)

Creates a temporary file in binary update mode (wb+).

20
char *tmpnam(char *str)

Generates and returns a valid temporary filename which does not exist.

21
int fprintf(FILE *stream, const char *format, ...)

Sends formatted output to a stream.

22
int printf(const char *format, ...)

Sends formatted output to stdout.

23
int sprintf(char *str, const char *format, ...)

Sends formatted output to a string.

24
int vfprintf(FILE *stream, const char *format, va_list arg)

Sends formatted output to a stream using an argument list.

 C Standard Library

91

25
int vprintf(const char *format, va_list arg)

Sends formatted output to stdout using an argument list.

26
int vsprintf(char *str, const char *format, va_list arg)

Sends formatted output to a string using an argument list.

27
int fscanf(FILE *stream, const char *format, ...)

Reads formatted input from a stream.

28
int scanf(const char *format, ...)

Reads formatted input from stdin.

29
int sscanf(const char *str, const char *format, ...)

Reads formatted input from a string.

30

int fgetc(FILE *stream)

Gets the next character (an unsigned char) from the specified stream and

advances the position indicator for the stream.

31

char *fgets(char *str, int n, FILE *stream)

Reads a line from the specified stream and stores it into the string pointed to

by str. It stops when either (n-1) characters are read, the newline character
is read, or the end-of-file is reached, whichever comes first.

32

int fputc(int char, FILE *stream)

Writes a character (an unsigned char) specified by the argument char to the

specified stream and advances the position indicator for the stream.

33

int fputs(const char *str, FILE *stream)

Writes a string to the specified stream up to but not including the null
character.

34

int getc(FILE *stream)

Gets the next character (an unsigned char) from the specified stream and

advances the position indicator for the stream.

35
int getchar(void)

Gets a character (an unsigned char) from stdin.

 C Standard Library

92

36

char *gets(char *str)

Reads a line from stdin and stores it into the string pointed to, by str. It stops

when either the newline character is read or when the end-of-file is reached,
whichever comes first.

37

int putc(int char, FILE *stream)

Writes a character (an unsigned char) specified by the argument char to the

specified stream and advances the position indicator for the stream.

38

int putchar(int char)

Writes a character (an unsigned char) specified by the argument char to
stdout.

39

int puts(const char *str)

Writes a string to stdout up to but not including the null character. A newline
character is appended to the output.

40

int ungetc(int char, FILE *stream)

Pushes the character char (an unsigned char) onto the specified stream so
that the next character is read.

41

void perror(const char *str)

Prints a descriptive error message to stderr. First the string str is printed
followed by a colon and then a space.

int fclose(FILE *stream)

Description

The C library function int fclose(F ILE *stream) closes the stream. All buffers are

flushed.

Declaration

Following is the declaration for fclose() function.

int fclose (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that specifies the stream to be

closed.

Return Value

This method returns zero if the stream is successfully closed. On failure, EOF is returned.

 C Standard Library

93

Example

The following example shows the usage of fclose() function.

#include <stdio.h>

int main()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "w");

 fprintf (fp , "%s", "This is tutorialspoint.com");

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file file.txt , and then it will

write following text line and finally it will close the file using fclose() function.

This is tutorialspoint . com

void clearerr(FILE *stream)

Description

The C library function void clearerr(FILE *stream) clears the end-of-file and error

indicators for the given stream.

Declaration

Following is the declaration for clearerr() function.

void clearerr (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

Return Value

This should not fail and do not set the external variable errno but in case it detects that
its argument is not a valid stream, it must return -1 and set errno to EBADF.

 C Standard Library

94

Example

The following example shows the usage of clearerr() function.

#include <stdio.h>

int main()

{

 FILE * fp ;

 char c;

 fp = fopen ("file.txt" , "w");

 c = fgetc (fp);

 if (ferror (fp))

 {

 printf ("Error in reading from file : file.txt \ n");

 }

 clearerr (fp);

 if (ferror (fp))

 {

 printf ("Error in reading from file : file.txt \ n");

 }

 fclose (fp);

 return (0);

}

Assuming we have a text file file.txt , which is an empty file, let us compile and run the

above program, this will produce the following result because we try to read a file which
we opened in write only mode.

Error reading from file "file.txt"

int feof(FILE *stream)

Description

The C library function int feof(FILE *stream) tests the end-of-file indicator for the

given stream.

Declaration

Following is the declaration for feof() function.

int feof (FILE * stream)

 C Standard Library

95

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

Return Value

This function returns a non-zero value when End-of-File indicator associated with the

stream is set, else zero is returned.

Example

The following example shows the usage of feof() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 if (fp == NULL)

 {

 perror ("Error in opening file");

 return (- 1);

 }

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

Assuming we have a text file file.txt , which has the following content. This file will be

used as an input for our example program:

This is tutorialspoint . com

 C Standard Library

96

Let us compile and run the above program, this will produce the following result:

This is tutori alspoint . com

int ferror(FILE *stream)

Description

The C library function int ferror(FILE *stream) tests the error indicator for the given

stream.

Declaration

Following is the declaration for ferror() function.

int ferror (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

Return Value

If the error indicator associated with the stream was set, the function returns a non-zero
value else, it returns a zero value.

Example

The following example shows the usage of ferror() function.

#include <stdio.h>

int main()

{

 FILE * fp ;

 char c;

 fp = fopen ("file.txt" , "w");

 c = fgetc (fp);

 if (ferror (fp))

 {

 printf ("Error in reading from file : file.txt \ n");

 }

 clearerr (fp);

 if (ferror (fp))

 {

 printf ("Error in reading from file : file.txt \ n");

 C Standard Library

97

 }

 fclose (fp);

 return (0);

}

Assuming we have a text file file.txt , which is an empty file. Let us compile and run the

above program that will produce the following result because we try to read a file which
we opened in write only mode.

Error reading from file "file.txt"

int fflush(FILE *stream)

Description

The C library function int fflush(FILE *stream) flushes the output buffer of a stream.

Declaration

Following is the declaration for fflush() function.

int fflush (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that specifies a buffered stream.

Return Value

This function returns a zero value on success. If an error occurs, EOF is returned and the

error indicator is set (i.e. feof).

Example

The following example shows the usage of fflush() function.

#include <stdio.h>

#include <string.h>

int main()

{

 char buff [1024];

 memset(buff , ' \ 0' , sizeof (buff));

 fprintf (stdout , "Going to set full buffering on \ n");

 setvbuf (stdout , buff , _IOFBF, 1024);

 C Standard Library

98

 fprintf (stdout , "This is tutorialspoint.com \ n");

 fprintf (stdout , "This output will go into buff \ n");

 fflush (stdout);

 fprintf (stdout , "and this will appear when programm \ n");

 fprintf (stdout , "will come after sleeping 5 seconds \ n");

 sleep (5);

 return (0);

}

Let us compile and run the above program that will produce the following result. Here
program keeps buffering the output into buff until it faces first call to fflush() , after

which it again starts buffering the output and finally sleeps for 5 seconds. It sends

remaining output to the STDOUT before program comes out.

Going to set full buffering on

This is tutorialspoint . com

This output will go into buff

and this wi ll appear when programm

will come after sleeping 5 seconds

int fgetpos(FILE *stream, fpos_t *pos)

Description

The C library function int fgetpos(FILE *stream, fpos_t *pos) gets the current file

position of the stream and writes it to pos .

Declaration

Following is the declaration for fgetpos() function.

int fgetpos (FILE * stream , fpos_t * pos)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

 pos -- This is the pointer to a fpos_t object.

Return Value

This function returns zero on success, else non-zero value in case of an error.

Example

 C Standard Library

99

The following example shows the usage of fgetpos() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 fpos_t position ;

 fp = fopen ("file.txt" , "w+");

 fgetpos (fp , &posit ion);

 fputs ("Hello, World!" , fp);

 fsetpos (fp , &position);

 fputs ("This is going to override previous content" , fp);

 fclose (fp);

 return (0);

}

Let us compile and run the above program to create a file file.txt which will have the

following content. First of all we get the initial position of the file
using fgetpos() function and then we write Hello, World! in the file, but later we have

used fsetpos() function to reset the write pointer at the beginning of the file and then

over-write the file with the following content:

This is going to override previous content

Now let us see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 int n = 0;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 C Standard Library

100

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

FILE *fopen(const char *filename, const char *mode)

Description

The C library function FILE *fopen(const char *filename, const char *mode) opens

the filename pointed to, by filename using the given mode .

Declaration

Following is the declaration for fopen() function.

FILE * fopen (const char * filename , const char * mode)

Parameters

 filen ame -- This is the C string containing the name of the file to be opened.

 mode -- This is the C string containing a file access mode. It includes:

mode Description

"r" Opens a file for reading. The file must exist.

"w"
Creates an empty file for writing. If a file with the same name already exists,

its content is erased and the file is considered as a new empty file.

"a"
Appends to a file. Writing operations, append data at the end of the file. The
file is created if it does not exist.

"r+" Opens a file to update both reading and writing. The file must exist.

"w+" Creates an empty file for both reading and writing.

 C Standard Library

101

"a+" Opens a file for reading and appending.

Return Value

This function returns a FILE pointer. Otherwise, NULL is returned and the global variable
errno is set to indicate the error.

Example

The following example shows the usage of fopen() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "w+");

 fprintf (fp , "%s %s %s %d", "We", "a re" , "in" , 2012);

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file file.txt with the

following content:

We are in 2012

Now let us see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 C Standard Library

102

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

size_t fread(void *ptr, size_t size, size_t nmemb, FILE *stream)

Description

The C library function size_t fread(void *ptr, size_t size, size_t nmemb, FILE

*stream) reads data from the given stream into the array pointed to, by ptr .

Declaration

Following is the declaration for fread() function.

size_t fread (void * ptr , size_t size , size_t nmemb, FILE * stream)

Parameters

 ptr -- This is the pointer to a block of memory with a minimum size

of size*nmemb bytes.

 size -- This is the size in bytes of each element to be read.

 nm emb -- This is the number of elements, each one with a size of size bytes.

 stream -- This is the pointer to a FILE object that specifies an input stream.

Return Value

The total number of elements successfully read are returned as a size_t object, which is

an integral data type. If this number differs from the nmemb parameter, then either an
error had occurred or the End Of File was reached.

Example

The following example shows the usage of fread() function.

#include <stdio.h>

#include <string.h>

in t main()

{

 FILE * fp ;

 char c[] = "this is tutorialspoint" ;

 C Standard Library

103

 char buffer [20];

 /* Open file for both reading and writing */

 fp = fopen ("file.txt" , "w+");

 /* Write data to the file */

 fwrite (c, strlen (c) + 1, 1, fp);

 /* Seek to the be ginning of the file */

 fseek (fp , SEEK_SET, 0);

 /* Read and display data */

 fread (buffer , strlen (c)+ 1, 1, fp);

 printf ("%s\ n" , buffer);

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file fil e.txt and write a

content this is tutorialspoint . After that, we use fseek() function to reset writing pointer

to the beginning of the file and prepare the file content which is as follows:

this is tutorialspoint

FILE *freopen(const char *filename, const char *mode, FILE *stream)

Description

The C library function FILE *freopen(const char *filename, const char *mode,

FILE *stream) associates a new filename with the given open stream and at the same

time closes the old file in the stream.

Declaration

Following is the declaration for freopen() function.

FILE * freopen (const char * filename , const char * mode, FILE * stream)

Parameters

 filename -- This is the C string containing the name of the file to be opened.

 mode -- This is the C string containing a file access mode. It includes:

 C Standard Library

104

mode Description

"r" Opens a file for reading. The file must exist.

"w" Creates an empty file for writing. If a file with the same name already exists
then its content is erased and the file is considered as a new empty file.

"a" Appends to a file. Writing operations appends data at the end of the file. The
file is created if it does not exist.

"r+" Opens a file to update both reading and writing. The file must exist.

"w+" Creates an empty file for both reading and writing.

"a+" Opens a file for reading and appending.

 stream -- This is the pointer to a FILE object that identifies the stream to be re-

opened.

Return Value

If the file was re-opened successfully, the function returns a pointer to an object
identifying the stream or else, null pointer is returned.

Example

The following example shows the usage of freopen() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 printf ("This text is redirected to stdout \ n");

 fp = freopen ("file.txt" , "w+" , stdout);

 printf ("This text is redirected to file.txt \ n");

 fclose (fp);

 return (0);

 C Standard Library

105

}

Let us compile and run the above program that will send the following line at STDOUT

because initially we did not open stdout:

This text is redirected to stdout

After a call to freopen() , it associates STDOUT to file file.txt , so whatever we write at

STDOUT, goes inside file.txt . So, the file file.txt will have the following content.

This text is redirected to file . txt

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

int fseek(FILE *stream, long int offset, int whence)

Description

The C library function int fseek(FILE *stream, long int offset, int whence) sets the

file position of the stream to the given offset .

Declaration

 C Standard Library

106

Following is the declaration for fseek() function.

int fseek (FILE * stream , long int offset , int whence)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

 offset -- This is the number of bytes to offset from whence.

 whence -- This is the position from where offset is added. It is specified by one

of the following constants:

Constant Description

SEEK_SET Beginning of file

SEEK_CUR Current position of the file pointer

SEEK_END End of file

Return ValueThis function returns zero if successful, or else it returns a non-zero value.

Example

The following example shows the usage of fseek() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "w+");

 fputs ("This is tutorialspoint.com" , fp);

 fsee k(fp , 7, SEEK_SET);

 fputs (" C Programming Langauge" , fp);

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file file.txt with the

following content. Initially program creates the file and writes This is tutorialspoint.com ,

but later we had reset the write pointer at 7th position from the beginning and used
puts() statement which over-write the file with the following content:

 C Standard Library

107

This is C Programming Langauge

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

int fsetpos(FILE *stream, const fpos_t *pos)

Description

The C library function int fsetpos(FILE *stream, const fpos_t *pos) sets the file

position of the given stream to the given position. The argument pos is a position given

by the function fgetpos.

Declaration

Following is the declaration for fsetpos() function.

int fsetpos (FILE * stream , const fpos_t * pos)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

 C Standard Library

108

 pos -- This is the pointer to a fpos_t object containing a position previously

obtained with fgetpos.

Return Value

This function returns zero value if successful, or else it returns a non-zero value and sets
the global variable errno to a positive value, which can be interpreted with perror.

Example

The following example shows the usage of fsetpos() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 fpos_t position ;

 fp = fopen ("file.txt" , "w+");

 fgetpos (fp , &position);

 fputs ("Hello, World!" , fp);

 fsetpos (fp , &position);

 fputs ("This is going to override previous content" , fp);

 fclose (fp);

 return (0);

}

Let us compile and run the above program to create a file file.txt which will have the

following content. First of all we get the initial position of the file
using fgetpos() function, and then we write Hello, World! in the file but later we

used fsetpos() function to reset the write pointer at the beginning of the file and then

over-write the file with the following content:

This is going to override previous content

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 C Standard Library

109

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

long int ftell(FILE *stream)

Description

The C library function long int ftell(FILE *stream) returns the current file position of

the given stream.

Declaration

Following is the declaration for ftell() function.

long int ftell (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

Return Value

This function returns the current value of the position indicator. If an error occurs, -1L is
returned, and the global variable errno is set to a positive value.

Example

The following example shows the usage of ftell() function.

#include <stdio.h>

int main ()

{

 C Standard Library

110

 FILE * fp ;

 int len ;

 fp = fopen ("file.txt" , "r");

 if (fp == NULL)

 {

 perror ("Error opening file");

 return (- 1);

 }

 fseek (fp , 0, SEEK_END);

 len = ftell (fp);

 fclose (fp);

 printf ("Total size of file.txt = %d bytes \ n" , len);

 return (0);

}

Let us assume we have a text file file.txt , which has the following content:

This is tutorialspoint . com

Now let us compile and run the above program that will produce the following result if

file has above mentioned content otherwise it will give different result based on the file

content:

Total size of file . txt = 27 bytes

size_t fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)

Description

The C library function size_t fwrite(const void *ptr, size_t size, size_t nmemb,

FILE *stream) writes data from the array pointed to, by ptr to the given stream .

Declaration

Following is the declaration for fwrite() function.

size_t fwrite (const void * ptr , size_t size , size_t nmemb, FILE * stream)

Parameters

 ptr -- This is the pointer to the array of elements to be written.

 C Standard Library

111

 size -- This is the size in bytes of each element to be written.

 nmemb -- This is the number of elements, each one with a size of size bytes.

 stream -- This is the pointer to a FILE object that specifies an output stream.

Return Value

This function returns the total number of elements successfully returned as a size_t

object, which is an integral data type. If this number differs from the nmemb parameter,
it will show an error.

Example

The following example shows the usage of fwrite() function.

#include <stdi o.h>

int main ()

{

 FILE * fp ;

 char str [] = "This is tutorialspoint.com" ;

 fp = fopen ("file.txt" , "w");

 fwrite (str , 1 , sizeof (str) , fp);

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file file.txt which will have

following content:

This is tutorialspoint . com

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 C Standard Library

112

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

int remove(const char *filename)

Description

The C library function int remove(const char *filename) deletes the given filename

so that it is no longer accessible.

Declaration

Following is the declaration for remove() function.

int remove(const char * filename)

Parameters

 filename -- This is the C string containing the name of the file to be deleted.

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Example

The following example shows the usage of remove() function.

#include <stdio.h>

#include <string.h>

 C Standard Library

113

int main ()

{

 int ret ;

 FILE * fp ;

 char filename [] = "file.t xt" ;

 fp = fopen (filename , "w");

 fprintf (fp , "%s", "This is tutorialspoint.com");

 fclose (fp);

 ret = remove(filename);

 if (ret == 0)

 {

 printf ("File deleted successfully");

 }

 else

 {

 printf ("Error: unable to delet e the file");

 }

 return (0);

}

Let us assume we have a text file file.txt having some content. So we are going to

delete this file, using the above program. Let us compile and run the above program to
produce the following message and the file will be deleted permanently.

File deleted successfully

int rename(const char *old_filename, const char *new_filename)

Description

The C library function int rename(const char *old_filename, const char *new_filename)

causes the filename referred to by old_filename to be changed to new_filename.

Declaration

Following is the declaration for rename() function.

 C Standard Library

114

int rename(const char * old_filename , const char * new_filename)

Parameters

 old_filename -- This is the C string containing the name of the file to be

renamed and/or moved.

 new_filename -- This is the C string containing the new name for the file.

Return Value

On success, zero is returned. On error, -1 is returned, and errno is set appropriately.

Example

The following example shows the usage of rename() function.

#include <stdio.h>

int main ()

{

 int ret ;

 char oldname[] = "file.txt" ;

 char newname[] = "newfile.txt" ;

 ret = rename(oldname, newname);

 if (ret == 0)

 {

 printf ("File renamed successfully");

 }

 else

 {

 printf ("Error: unable to rename the file");

 }

 return (0);

}

Let us assume we have a text file file.txt , having some content. So, we are going to

rename this file, using the above program. Let us compile and run the above program to
produce the following message and the file will be renamed to newfile.txt file.

File renamed successfully

 C Standard Library

115

void rewind(FILE *stream)

Description

The C library function void rewind(FILE *stream) sets the file position to the

beginning of the file of the given stream .

Declaration

Following is the declaration for rewind() function.

void rewind (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

Return Value

This function does not return any value.

Example

The following example shows the usage of rewind() function.

#include <stdio.h>

int main()

{

 char str [] = "This is tutorialspoint.com" ;

 FILE * fp ;

 int ch;

 /* First let's write some content in the file */

 fp = fopen ("file.txt" , "w");

 fwrite (st r , 1 , sizeof (str) , fp);

 fclose (fp);

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 ch = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", ch);

 C Standard Library

116

 }

 rewind (fp);

 printf (" \ n");

 while (1)

 {

 ch = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", ch);

 }

 fclose (fp);

 return (0);

}

Let us assume we have a text file file.txt that have the following content:

This is tutorialspoint . com

Now let us compile and run the above program to produce the following result:

This is tutorialspoint . com

This is tutorialspoint . com

void setbuf(FILE *stream, char *buffer)

Description

The C library function void setbuf(FILE *stream, char *buffer) defines how a stream

should be buffered. This function should be called once the file associated with the stream
has already been opened, but before any input or output operation has taken place.

Declaration

Following is the declaration for setbuf() function.

void setbuf (FILE * stream , char * buffer)

Parameters

 stream -- This is the pointer to a FILE object that identifies an open stream.

 buffer -- This is the user allocated buffer. This should have a length of at least

BUFSIZ bytes, which is a macro constant to be used as the length of this array.

Return Value

 C Standard Library

117

This function does not return any value.

Example

The following example shows the usage of setbuf() function.

#include <stdio.h>

int main()

{

 char buf [BUFSIZ];

 setbuf (stdout , buf);

 puts ("This is tutorialspoint");

 fflush (stdout);

 return (0);

}

Let us compile and run the above program to produce the following result. Here program

sends output to the STDOUT just before it comes out, otherwise it keeps buffering the
output. You can also use fflush() function to flush the output.

This is tutorialspoint

int setvbuf(FILE *stream, char *buffer, int mode, size_t size)

Description

The C library function int setvbuf(FILE *stream, char *buffer, int mode, size_t

size) defines how a stream should be buffered.

Declaration

Following is the declaration for setvbuf() function.

int setvbuf (FILE * stream , char * buffer , int mode, size_t size)

Parameters

 stream -- This is the pointer to a FILE object that identifies an open stream.

 buffer -- This is the user allocated buffer. If set to NULL, the function

automatically allocates a buffer of the specified size.

 mode -- This specifies a mode for file buffering:

mode Description

 C Standard Library

118

_IOFBF
Full buffering : On output, data is written once the buffer is full. On Input

the buffer is filled when an input operation is requested and the buffer is
empty.

_IOLBF

Line buffering : On output, data is written when a newline character is

inserted into the stream or when the buffer is full, whatsoever happens first.

On Input, the buffer is filled till the next newline character when an input
operation is requested and buffer is empty.

_IONBF
No buffering : No buffer is used. Each I/O operation is written as soon as
possible. The buffer and size parameters are ignored.

 size -- This is the buffer size in bytes

Return Value

This function returns zero on success else, non-zero value is returned.

Example

The following example shows the usage of setvbuf() function.

#include <stdio.h>

int main()

{

 char buff [1024];

 memset (buff , ' \ 0' , sizeof (buff));

 fprintf (stdout , "Going to set full buffering on \ n");

 setvbuf (stdout , buff , _IOFBF, 1024);

 fprintf (stdout , "This is tutorialspoint.com \ n");

 fprintf (stdout , "This output will go into buff \ n");

 fflush (stdout);

 fprintf (stdout , "and this will appear when programm \ n");

 fprintf (stdout , "will come after sleeping 5 seconds \ n");

 sleep (5);

 C Standard Library

119

 return (0);

}

Let us compile and run the above program to produce the following result. Here program
keeps buffering the output into buff until it faces first call to fflush(), after which it again

starts buffering the output and finally sleeps for 5 seconds. It sends remaining output to
the STDOUT before the program comes out.

Going to set full buffering on

This is tutorialspoint . com

This output will go into buff

and this will appear when programm

will come after sleeping 5 seconds

FILE *tmpfile(void)

Description

The C library function FILE *tmpfile(void) creates a temporary file in binary update

mode (wb+). The temporary file created is automatically deleted when the stream is
closed (fclose) or when the program terminates.

Declaration

Following is the declaration for tmpfile() function.

FILE * tmpfile (void)

Parameters

 NA

Return Value

If successful, the function returns a stream pointer to the temporary file created. If the
file cannot be created, then NULL is returned.

Example

The following example shows the usage of tmpfile() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 fp = tmpfile ();

 printf ("Temporary file created \ n");

 C Standard Library

120

 /* you can use tmp file here */

 fclose (fp);

 return (0);

}

Let us compile and run the above program to create a temporary file in /tmp folder but

once your program is out, it will be deleted automatically and the program will produce

the following result:

Temporary file created

char *tmpnam(char *str)

Description

The C library function char *tmpnam(char *str) generates and returns a valid

temporary filename which does not exist. If str is null then it simply returns the tmp file

name.

Declaration

Following is the declaration for tmpnam() function.

char * tmpnam(char * str)

Parameters

 str -- This is the pointer to an array of chars where the proposed temp name will

be stored as a C string.

Return Value

 Return value is a pointer to the C string containing the proposed name for a

temporary file. If str was a null pointer, this points to an internal buffer that will
be overwritten the next time this function is called.

 If str was not a null pointer, str is returned. If the function fails to create a
suitable filename, it returns a null pointer.

Example

The following example shows the usage of tmpnam() function.

#include <stdio.h>

int main()

{

 C Standard Library

121

 char buffer [L_tmpnam];

 char * ptr ;

 tmpnam(buffer);

 printf ("Temporary name 1: %s \ n" , buffer);

 ptr = tmpnam(NULL);

 printf ("Temporary name 2: %s \ n" , ptr);

 return (0);

}

Let us compile and run the above program to produce the following result:

Temporary name 1: /tmp/ filebaalTb

Temporary name 2: /tmp/ filedCIbb0

int fprintf(FILE *stream, const char *format, ...)

Description

The C library function int fprintf(FILE *stream, const char *format, ...) sends

formatted output to a stream.

Declaration

Following is the declaration for fprintf() function.

int fprintf (FILE * stream , const char * format , ...)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

 format -- This is the C string that contains the text to be written to the stream.

It can optionally contain embedded format tags that are replaced by the values

specified in subsequent additional arguments and formatted as requested. Format
tags prototype is %[flags][width][.precision][length]specifier , which is

explained below:

specifier Output

c Character

d or i Signed decimal integer

 C Standard Library

122

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

p Pointer address

n Nothing printed

% Character

flags Description

- Left-justifies within the given field width; Right justification is the default
(see width sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for

positive numbers. By default, only negative numbers are preceded with a

-ve sign.

(space) If no sign is written, a blank space is inserted before the value.

Used with o, x or X specifiers. The value is preceded with 0, 0x or 0X

respectively for values different than zero. Used with e, E and f, it forces

the written output to contain a decimal point even if no digits would

follow. By default, if no digits follow then no decimal point is written.

Used with g or G the result is the same as with e or E but trailing zeros

 C Standard Library

123

are not removed.

0 Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width Description

(number) Minimum number of characters to be printed. If the value to be printed is

shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be
formatted.

.precision Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum

number of digits to be written. If the value to be written is shorter than

this number, the result is padded with leading zeros. The value is not

truncated even if the result is longer. A precision of 0 means that no

character is written for the value 0. For e, E and f specifiers: this is the

number of digits to be printed after the decimal point. For g and G

specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By

default all characters are printed until the ending null character is

encountered. For c type: it has no effect. When no precision is specified,

the default is 1. If the period is specified without an explicit value for
precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be

formatted.

length Description

h The argument is interpreted as a short int or unsigned short int (only

applies to integer specifiers: i, d, o, u, x and X).

l The argument is interpreted as a long int or unsigned long int for integer

specifiers (i, d, o, u, x and X), and as a wide character or wide character
string for specifiers c and s.

L The argument is interpreted as a long double (only applies to floating

point specifiers: e, E, f, g and G).

 C Standard Library

124

 additional arguments -- Depending on the format string, the function may

expect a sequence of additional arguments, each containing one value to be

inserted instead of each %-tag specified in the format parameter, if any. There

should be the same number of these arguments as the number of %-tags that

expect a value.

Return Value

If successful, the total number of characters written is returned otherwise, a negative
number is returned.

Example

The following example shows the usage of fprintf() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "w+");

 fprintf (fp , "%s %s %s %d", "We", "are" , "in " , 2012);

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file file.txt with the

following content:

We are in 2012

Now let's see the content of the above file using the following program:

#includ e <stdio.h>

int main ()

{

 FILE * fp ;

 C Standard Library

125

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

int printf(const char *format, ...)

Description

The C library function int printf(const char *format, ...) sends formatted output to

stdout.

Declaration

Following is the declaration for printf() function.

int printf (const char * format , ...)

Parameters

 format -- This is the string that contains the text to be written to stdout. It can

optionally contain embedded format tags that are replaced by the values specified

in subsequent additional arguments and formatted as requested. Format tags
prototype is %[flags][width][.precision][l ength]specifier , which is

explained below:

specifier Output

c Character

d or i Signed decimal integer

 C Standard Library

126

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

f Decimal floating point

g Uses the shorter of %e or %f.

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

p Pointer address

n Nothing printed

% Character

flags Description

- Left-justify within the given field width; Right justification is the default
(see width sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for

positive numbers. By default, only negative numbers are preceded with a -

ve sign.

(space) If no sign is going to be written, a blank space is inserted before the value.

Used with o, x or X specifiers the value is preceded with 0, 0x or 0X

respectively for values different than zero. Used with e, E and f, it forces

the written output to contain a decimal point even if no digits would follow.

By default, if no digits follow, no decimal point is written. Used with g or G

 C Standard Library

127

the result is the same as with e or E but trailing zeros are not removed.

0 Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width Description

(number) Minimum number of characters to be printed. If the value to be printed is

shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional integer
value argument preceding the argument that has to be formatted.

.precision Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum

number of digits to be written. If the value to be written is shorter than

this number, the result is padded with leading zeros. The value is not

truncated even if the result is longer. A precision of 0 means that no

character is written for the value 0. For e, E and f specifiers: this is the

number of digits to be printed after the decimal point. For g and G

specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By default

all characters are printed until the ending null character is encountered.

For c type: it has no effect. When no precision is specified, the default is

1. If the period is specified without an explicit value for precision, 0 is

assumed.

.* The precision is not specified in the format string, but as an additional
integer value argument preceding the argument that has to be formatted.

length Description

h The argument is interpreted as a short int or unsigned short int (only
applies to integer specifiers: i, d, o, u, x and X).

l The argument is interpreted as a long int or unsigned long int for integer

specifiers (i, d, o, u, x and X), and as a wide character or wide character

string for specifiers c and s.

L The argument is interpreted as a long double (only applies to floating
point specifiers: e, E, f, g and G).

 C Standard Library

128

 additional arguments -- Depending on the format string, the function may

expect a sequence of additional arguments, each containing one value to be

inserted instead of each %-tag specified in the format parameter (if any). There

should be the same number of these arguments as the number of %-tags that

expect a value.

Return Value

If successful, the total number of characters written is returned. On failure, a negative
number is returned.

Example

The following example shows the usage of printf() function.

#include <stdio.h>

int main ()

{

 int ch;

 for (ch = 75 ; ch <= 100; ch++) {

 pr intf ("ASCII value = %d, Character = %c \ n" , ch , ch);

 }

 return (0);

}

Let us compile and run the above program to produce the following result:

ASCII value = 75, Character = K

ASCII value = 76, Character = L

ASCII value = 77, Character = M

ASCII value = 78, Character = N

ASCII value = 79, Character = O

ASCII value = 80, Character = P

ASCII value = 81, Character = Q

ASCII value = 82, Character = R

ASCII value = 83, Character = S

ASCII value = 84, Character = T

ASCII value = 85, Character = U

ASCII value = 86, Character = V

ASCII value = 87, Character = W

ASCII value = 88, Character = X

ASCII value = 89, Character = Y

 C Standard Library

129

ASCII value = 90, Character = Z

ASCII value = 91, Character = [

ASCII value = 92, Character = \

ASCII value = 93, Character =]

ASCII value = 94, Character = ^

ASCII value = 95, Character = _

ASCII value = 96, Character = `

ASCII value = 97, Character = a

ASCII value = 98, Character = b

ASCII value = 99, Character = c

ASCII value = 100, Character = d

int sprintf(char *str, const char *format, ...)

Description

The C library function int sprintf(char *str, const char *format, ...) sends formatted

output to a string pointed to, by str .

Declaration

Following is the declaration for sprintf() function.

int sprintf (char * str , const char * format , ...)

Parameters

 str -- This is the pointer to an array of char elements where the resulting C string

is stored.

 format -- This is the String that contains the text to be written to buffer. It can

optionally contain embedded format tags that are replaced by the values specified

in subsequent additional arguments and formatted as requested. Format tags
prototype: %[flags][width][.precision][length]specifier , as explained

below:

specifier Output

c Character

d or i Signed decimal integer

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

 C Standard Library

130

f Decimal floating point

g Uses the shorter of %e or %f.

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

p Pointer address

n Nothing printed

% Character

flags Description

- Left-justify within the given field width; Right justification is the default

(see width sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for

positive numbers. By default, only negative numbers are preceded with a
-ve sign.

(space) If no sign is going to be written, a blank space is inserted before the
value.

Used with o, x or X specifiers the value is preceded with 0, 0x or 0X

respectively for values different than zero. Used with e, E and f, it forces

the written output to contain a decimal point even if no digits would

follow. By default, if no digits follow, no decimal point is written. Used

with g or G the result is the same as with e or E but trailing zeros are not
removed.

0 Left-pads the number with zeroes (0) instead of spaces, where padding is

 C Standard Library

131

specified (see width sub-specifier).

width Description

(number) Minimum number of characters to be printed. If the value to be printed is

shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be

formatted.

.precision Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum

number of digits to be written. If the value to be written is shorter than

this number, the result is padded with leading zeros. The value is not

truncated even if the result is longer. A precision of 0 means that no

character is written for the value 0. For e, E and f specifiers: this is the

number of digits to be printed after the decimal point. For g and G

specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By

default all characters are printed until the ending null character is

encountered. For c type: it has no effect. When no precision is specified,

the default is 1. If the period is specified without an explicit value for
precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be
formatted.

length Description

h The argument is interpreted as a short int or unsigned short int (only
applies to integer specifiers: i, d, o, u, x and X).

l The argument is interpreted as a long int or unsigned long int for integer

specifiers (i, d, o, u, x and X), and as a wide character or wide character
string for specifiers c and s.

L The argument is interpreted as a long double (only applies to floating
point specifiers: e, E, f, g and G).

 additional arguments -- Depending on the format string, the function may

expect a sequence of additional arguments, each containing one value to be

inserted instead of each %-tag specified in the format parameter (if any). There

 C Standard Library

132

should be the same number of these arguments as the number of %-tags that
expect a value.

Return Value

If successful, the total number of characters written is returned excluding the null-

character appended at the end of the string, otherwise a negative number is returned in
case of failure.

Example

The following example shows the usage of sprintf() function.

#include <stdio.h>

#include <math.h>

int main()

{

 char str [80];

 sprintf (str , "Value of Pi = %f" , M_PI);

 puts (str);

 return (0);

}

Let us compile and run the above program, this will produce the following result:

Value of Pi = 3.141593

int vfprintf(FILE *stream, const char *format, va_list arg)

Description

The C library function int vfprintf(FILE *stream, const char *f ormat, va_list

arg) sends formatted output to a stream using an argument list passed to it.

Declaration

Following is the declaration for vfprintf() function.

int vfprintf (FILE * stream , const char * format , va_list arg)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

 format -- This is the C string that contains the text to be written to the stream.

It can optionally contain embedded format tags that are replaced by the values

specified in subsequent additional arguments and formatted as requested. Format
tags prototype: %[flags][width][.precision][length]specifier , as explained

below:

 C Standard Library

133

specifier Output

c Character

d or i Signed decimal integer

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

p Pointer address

n Nothing printed

% Character

flags Description

- Left-justify within the given field width; Right justification is the default

(see width sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for

positive numbers. By default, only negative numbers are preceded with a
-ve sign.

 C Standard Library

134

(space) If no sign is going to be written, a blank space is inserted before the
value.

Used with o, x or X specifiers the value is preceded with 0, 0x or 0X

respectively for values different than zero. Used with e, E and f, it forces

the written output to contain a decimal point even if no digits would

follow. By default, if no digits follow, no decimal point is written. Used

with g or G the result is the same as with e or E but trailing zeros are not

removed.

0 Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width Description

(number) Minimum number of characters to be printed. If the value to be printed is

shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be
formatted.

.precision Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum

number of digits to be written. If the value to be written is shorter than

this number, the result is padded with leading zeros. The value is not

truncated even if the result is longer. A precision of 0 means that no

character is written for the value 0. For e, E and f specifiers: this is the

number of digits to be printed after the decimal point. For g and G

specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By

default all characters are printed until the ending null character is

encountered. For c type: it has no effect. When no precision is specified,

the default is 1. If the period is specified without an explicit value for

precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be
formatted.

length Description

h The argument is interpreted as a short int or unsigned short int (only
applies to integer specifiers: i, d, o, u, x and X).

 C Standard Library

135

l The argument is interpreted as a long int or unsigned long int for integer

specifiers (i, d, o, u, x and X), and as a wide character or wide character
string for specifiers c and s.

L The argument is interpreted as a long double (only applies to floating

point specifiers: e, E, f, g and G).

 arg -- An object representing the variable arguments list. This should be

initialized by the va_start macro defined in <stdarg>.

Return Value

If successful, the total number of characters written is returned otherwise, a negative
number is returned.

Example

The following example shows the usage of vfprintf() function.

#include <stdio.h>

#include <stdarg.h>

void WriteFrmtd (FILE * stream , char * format , ...)

{

 va_list args ;

 va_start (args , format);

 vfprintf (stream , format , args);

 va_end(args);

}

int main ()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "w");

 WriteFrmtd (fp , "This is just one argument %d \ n" , 10);

 fclose (fp);

 return (0);

 C Standard Library

136

}

Let us compile and run the above program that will open a file file.txt for writing in the

current directory and will write the following content:

This is just one argument 10

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp) ;

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

int vprintf(const char *format, va_list arg)

Description

The C library function int vprintf(const char *format, va_list arg) sends formatted

output to stdout using an argument list passed to it.

Declaration

Following is the declaration for vprintf() function.

int vprintf (const char * format , va_list arg)

Parameters

 C Standard Library

137

 format -- This is the String that contains the text to be written to buffer. It can

optionally contain embedded format tags that are replaced by the values specified

in subsequent additional arguments and formatted as requested. Format tags
prototype would be: %[flags][width][.precision][length]specifier , as

explained below:

specifier Output

c Character

d or i Signed decimal integer

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

p Pointer address

n Nothing printed

% Character

flags Description

- Left-justify within the given field width; Right justification is the default

(see width sub-specifier).

 C Standard Library

138

+ Forces to precede the result with a plus or minus sign (+ or -) even for

positive numbers. By default, only negative numbers are preceded with a
-ve sign.

(space) If no sign is going to be written, a blank space is inserted before the

value.

Used with o, x or X specifiers the value is preceded with 0, 0x or 0X

respectively for values different than zero. Used with e, E and f, it forces

the written output to contain a decimal point even if no digits would

follow. By default, if no digits follow, no decimal point is written. Used

with g or G the result is the same as with e or E but trailing zeros are not
removed.

0 Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width Description

(number) Minimum number of characters to be printed. If the value to be printed is

shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be

formatted.

.precision Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum

number of digits to be written. If the value to be written is shorter than

this number, the result is padded with leading zeros. The value is not

truncated even if the result is longer. A precision of 0 means that no

character is written for the value 0. For e, E and f specifiers: this is the

number of digits to be printed after the decimal point. For g and G

specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By

default all characters are printed until the ending null character is

encountered. For c type: it has no effect. When no precision is specified,

the default is 1. If the period is specified without an explicit value for
precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be
formatted.

 C Standard Library

139

length Description

h The argument is interpreted as a short int or unsigned short int (only
applies to integer specifiers: i, d, o, u, x and X).

l The argument is interpreted as a long int or unsigned long int for integer

specifiers (i, d, o, u, x and X), and as a wide character or wide character
string for specifiers c and s.

L The argument is interpreted as a long double (only applies to floating
point specifiers: e, E, f, g and G).

 arg -- An object representing the variable arguments list. This should be

initialized by the va_start macro defined in <stdarg>.

Return Value

If successful, the total number of characters written is returned otherwise a negative
number is returned.

Example

The following example shows the usage of vprintf() function.

#include <stdio.h>

#include <stdarg.h>

void WriteFrmtd (char * format , ...)

{

 va_l ist args ;

 va_start (args , format);

 vprintf (format , args);

 va_end(args);

}

int main ()

{

 WriteFrmtd ("%d variable argument \ n" , 1);

 WriteFrmtd ("%d variable %s \ n" , 2, "arguments");

 return (0);

}

 C Standard Library

140

Let us compile and run the above program that will produce the following result:

1 variable argument

2 variable arguments

int vsprintf(char *str, const char *format, va_list arg)

Description

The C library function int vsprintf(char *str, const char *format, va_list arg) sends

formatted output to a string using an argument list passed to it.

Declaration

Following is the declaration for vsprintf() function.

int vsprintf (char * str , const char * format , va_list arg)

Parameters

 str -- This is the array of char elements where the resulting string is to be stored.

 format -- This is the C string that contains the text to be written to the str. It can

optionally contain embedded format tags that are replaced by the values specified

in subsequent additional arguments and are formatted as requested. Format tags
prototype: %[flags][width][.precision][length]specifier , as explained

below:

specifier Output

c Character

d or i Signed decimal integer

e Scientific notation (mantissa/exponent) using e character

E Scientific notation (mantissa/exponent) using E character

f Decimal floating point

g Uses the shorter of %e or %f

G Uses the shorter of %E or %f

o Signed octal

s String of characters

 C Standard Library

141

u Unsigned decimal integer

x Unsigned hexadecimal integer

X Unsigned hexadecimal integer (capital letters)

p Pointer address

n Nothing printed

% Character

flags Description

- Left-justify within the given field width; Right justification is the default

(see width sub-specifier).

+ Forces to precede the result with a plus or minus sign (+ or -) even for

positive numbers. By default, only negative numbers are preceded with a
-ve sign.

(space) If no sign is going to be written, a blank space is inserted before the
value.

Used with o, x or X specifiers the value is preceded with 0, 0x or 0X

respectively for values different than zero. Used with e, E and f, it forces

the written output to contain a decimal point even if no digits would

follow. By default, if no digits follow, no decimal point is written. Used

with g or G the result is the same as with e or E but trailing zeros are not
removed.

0 Left-pads the number with zeroes (0) instead of spaces, where padding is
specified (see width sub-specifier).

width Description

(number) Minimum number of characters to be printed. If the value to be printed is

shorter than this number, the result is padded with blank spaces. The
value is not truncated even if the result is larger.

* The width is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be
formatted.

 C Standard Library

142

.precision Description

.number For integer specifiers (d, i, o, u, x, X): precision specifies the minimum

number of digits to be written. If the value to be written is shorter than

this number, the result is padded with leading zeros. The value is not

truncated even if the result is longer. A precision of 0 means that no

character is written for the value 0. For e, E and f specifiers: this is the

number of digits to be printed after the decimal point. For g and G

specifiers: This is the maximum number of significant digits to be printed.

For s: this is the maximum number of characters to be printed. By

default all characters are printed until the ending null character is

encountered. For c type: it has no effect. When no precision is specified,

the default is 1. If the period is specified without an explicit value for
precision, 0 is assumed.

.* The precision is not specified in the format string, but as an additional

integer value argument preceding the argument that has to be

formatted.

length Description

h The argument is interpreted as a short int or unsigned short int (only

applies to integer specifiers: i, d, o, u, x and X).

l The argument is interpreted as a long int or unsigned long int for integer

specifiers (i, d, o, u, x and X), and as a wide character or wide character
string for specifiers c and s.

L The argument is interpreted as a long double (only applies to floating
point specifiers: e, E, f, g and G).

 arg -- An object representing the variable arguments list. This should be

 initialized by the va_start macro defined in <stdarg>.

Return Value

If successful, the total number of characters written is returned, otherwise a negative

number is returned.

Example

The following example shows the usage of vsprintf() function.

#include <stdio.h>

 C Standard Library

143

#include <stdarg.h>

char buffer [80];

int vspfunc (char * format , ...)

{

 va_list aptr ;

 int ret ;

 va_start (aptr , format);

 ret = vsprintf (buffer , format , aptr);

 va_end(aptr);

 return (ret);

}

int main()

{

 int i = 5;

 float f = 27.0 ;

 char str [50] = "tutoriaspoint.com" ;

 vspfunc ("%d %f %s" , i , f , str);

 printf ("%s\ n" , buffer);

 return (0);

}

Let us compile and run the above program, this will produce the following result:

5 27.000000 tutorias point . com

int fscanf(FILE *stream, const char *format, ...)

Description

The C library function int fscanf(FILE *stream, const char *format, ...) reads

formatted input from a stream.

Declaration

Following is the declaration for fscanf() function.

 C Standard Library

144

int fscanf (FILE * stream , const char * format , ...)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream.

 format -- This is the C string that contains one or more of the following items:

Whitespace character, Non -whitespace character and Format specifiers . A format

specifier will be as [=%[*][width][modifiers]type=] , which is explained

below:

argument Description

* This is an optional starting asterisk indicates that the data is to be read

from the stream but ignored, i.e. it is not stored in the corresponding
argument.

width This specifies the maximum number of characters to be read in the
current reading operation.

modifiers Specifies a size different from int (in the case of d, i and n), unsigned int

(in the case of o, u and x) or float (in the case of e, f and g) for the data

pointed by the corresponding additional argument: h : short int (for d, i

and n), or unsigned short int (for o, u and x) l : long int (for d, i and n),

or unsigned long int (for o, u and x), or double (for e, f and g) L : long
double (for e, f and g)

type A character specifying the type of data to be read and how it is expected
to be read. See next table.

fscanf type specifiers:

type Qualifying Input Type of

argument

c Single character: Reads the next character. If a width

different from 1 is specified, the function reads width

characters and stores them in the successive locations of

the array passed as argument. No null character is
appended at the end.

char *

d Decimal integer: Number optionally preceded with a + or
- sign

int *

e, E, f, g, G Floating point: Decimal number containing a decimal

point, optionally preceded by a + or - sign and optionally

followed by the e or E character and a decimal number.
Two examples of valid entries are -732.103 and 7.12e4

float *

 C Standard Library

145

o Octal Integer: int *

s String of characters. This will read subsequent characters

until a whitespace is found (whitespace characters are
considered to be blank, newline and tab).

char *

u Unsigned decimal integer. unsigned int
*

x, X Hexadecimal Integer int *

 additional arguments -- Depending on the format string, the function may

expect a sequence of additional arguments, each containing one value to be

inserted instead of each %-tag specified in the format parameter(if any). There

should be the same number of these arguments as the number of %-tags that
expect a value.

Return Value

This function returns the number of input items successfully matched and assigned,

which can be fewer than provided for, or even zero in the event of an early matching
failure.

Example

The following example shows the usage of fscanf() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char str1 [10], str2 [10], str3 [10];

 int year ;

 FILE * fp ;

 fp = fopen ("file.tx t" , "w+");

 fputs ("We are in 2012" , fp);

 rewind (fp);

 fscanf (fp , "%s %s %s %d", str1 , str2 , str3 , &year);

 printf ("Read String1 |%s| \ n" , str1);

 printf ("Read String2 |%s| \ n" , str2);

 C Standard Library

146

 printf ("Read String3 |%s| \ n" , str3);

 printf ("Read Integer |%d| \ n" , year);

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Read String1 | We|

Read String2 | are |

Read String3 | in |

Read Integer | 2012|

int scanf(const char *format, ...)

Description

The C library function int scanf(const char *format, ...) reads formatted input from

stdin.

Declaration

Following is the declaration for scanf() function.

int scanf (const char * format , ...)

Parameters

 format -- This is the C string that contains one or more of the following items:

 Whitespace character, Non -whitespace character and Format specifiers . A format
specifier will be like [=%[*][width][modifiers]type=] as explained below:

argument Description

* This is an optional starting asterisk indicates that the data is to be read

from the stream but ignored, i.e. it is not stored in the corresponding
argument.

width This specifies the maximum number of characters to be read in the

current reading operation.

modifiers Specifies a size different from int (in the case of d, i and n), unsigned int

(in the case of o, u and x) or float (in the case of e, f and g) for the data

pointed by the corresponding additional argument: h : short int (for d, i

and n), or unsigned short int (for o, u and x) l : long int (for d, i and n),

 C Standard Library

147

or unsigned long int (for o, u and x), or double (for e, f and g) L : long
double (for e, f and g)

type A character specifying the type of data to be read and how it is expected
to be read. See next table.

fscanf type spe cifiers:

type Qualifying Input Type of
argument

c Single character: Reads the next character. If a width

different from 1 is specified, the function reads width

characters and stores them in the successive locations of

the array passed as argument. No null character is
appended at the end.

char *

d Decimal integer: Number optionally preceded with a + or
- sign

int *

e, E, f, g, G Floating point: Decimal number containing a decimal

point, optionally preceded by a + or - sign and optionally

followed by the e or E character and a decimal number.
Two examples of valid entries are -732.103 and 7.12e4

float *

o Octal Integer: int *

s String of characters. This will read subsequent characters

until a whitespace is found (whitespace characters are
considered to be blank, newline and tab).

char *

u Unsigned decimal integer. unsigned int
*

x, X Hexadecimal Integer int *

 additional arguments -- Depending on the format string, the function may

expect a sequence of additional arguments, each containing one value to be

inserted instead of each %-tag specified in the format parameter, if any. There

should be the same number of these arguments as the number of %-tags that
expect a value.

Return Value

If successful, the total number of characters written is returned, otherwise a negative
number is returned.

 C Standard Library

148

Example

The following example shows the usage of scanf() function.

#include <stdio.h>

int main()

{

 char str1 [20], str2 [30];

 printf ("Enter name: ");

 scanf ("%s", &str1);

 printf ("Enter your website name: ");

 scanf ("%s", &str2);

 printf ("Entered Name: %s \ n" , str1);

 printf ("Entered Website:%s" , str2);

 return (0);

}

Let us compile and run the above program that will produce the following result in
interactive mode:

Enter name: admin

Enter your website name : www. tutorialspoint . com

Entered Name: admin

Entered Website : www. tutorialspoint . com

int sscanf(const char *str, const char *format, ...)

Description

The C library function int sscanf(const char *str, const char *format, ...) reads

formatted input from a string.

Declaration

Following is the declaration for sscanf() function.

int sscanf (const char * str , const char * format , ...)

Parameters

 C Standard Library

149

 str -- This is the C string that the function processes as its source to retrieve the

data.

 format -- This is the C string that contains one or more of the following items:

Whitespace character, Non -whitespace character and Format specifiers

 A format specifier follows this prototype: [=%[*][width][modifiers]type=]

argument Descri ption

* This is an optional starting asterisk, which indicates that the data is to be

read from the stream but ignored, i.e. it is not stored in the
corresponding argument.

width This specifies the maximum number of characters to be read in the
current reading operation.

modifiers Specifies a size different from int (in the case of d, i and n), unsigned int

(in the case of o, u and x) or float (in the case of e, f and g) for the data

pointed by the corresponding additional argument: h : short int (for d, i

and n), or unsigned short int (for o, u and x) l : long int (for d, i and n),

or unsigned long int (for o, u and x), or double (for e, f and g) L : long
double (for e, f and g)

type A character specifying the type of data to be read and how it is expected

to be read. See next table.

fscanf type specifiers:

type Qualifying Input Type of
argument

c Single character: Reads the next character. If a width

different from 1 is specified, the function reads width

characters and stores them in the successive locations of

the array passed as argument. No null character is
appended at the end.

char *

d Decimal integer: Number optionally preceded with a + or
- sign

int *

e, E, f, g, G Floating point: Decimal number containing a decimal

point, optionally preceded by a + or - sign and optionally

followed by the e or E character and a decimal number.
Two examples of valid entries are -732.103 and 7.12e4

float *

o Octal Integer: int *

 C Standard Library

150

s String of characters. This will read subsequent characters

until a whitespace is found (whitespace characters are
considered to be blank, newline and tab).

char *

u Unsigned decimal integer. unsigned int

*

x, X Hexadecimal Integer int *

 other arguments -- This function expects a sequence of pointers as additional

arguments, each one pointing to an object of the type specified by their

corresponding %-tag within the format string, in the same order.

For each format specifier in the format string that retrieves data, an additional

argument should be specified. If you want to store the result of a sscanf

operation on a regular variable you should precede its identifier with the
reference operator, i.e. an ampersand sign (&), like: int n; sscanf (str,"%d",&n);

Return Value

On success, the function returns the number of variables filled. In the case of an input

failure before any data could be successfully read, EOF is returned.

Example

The following example shows the usage of sscanf() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int day, year ;

 char weekday[20], month[20], dtm[100];

 strcpy (dtm, "Saturday March 25 1989");

 sscanf (dtm, "%s %s %d %d" , weekday, month, &day, &year);

 printf ("%s %d, %d = %s \ n" , month, day, year , weekday);

 return (0);

}

Let us compile and run the above program that will produce the following result:

 C Standard Library

151

March 25, 1989 = Saturday

int fgetc(FILE *stream)

Description

The C library function int fgetc(FILE *stream) gets the next character (an unsigned

char) from the specified stream and advances the position indicator for the stream.

Declaration

Following is the declaration for fgetc() function.

int fgetc (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream on which

the operation is to be performed.

Return Value

This function returns the character read as an unsigned char cast to an int or EOF on end
of file or error.

Example

The following example shows the usage of fgetc() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 int n = 0;

 fp = fopen ("file.txt" , "r");

 if (fp == NULL)

 {

 perror ("Error in opening file");

 return (- 1);

 }

 do

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 C Standard Library

152

 break ;

 }

 printf ("%c", c);

 } while (1);

 fclose (fp);

 return (0);

}

Let us assume, we have a text file file.txt , which has the following content. This file will

be used as an input for our example program:

We are in 2012

Now, let us compile and run the above program that will produce the following result:

We are in 2012

char *fgets(char *str, int n, FILE *stream)

Description

The C library function char *fgets(char *str, int n, FILE *stream) reads a line from

the specified stream and stores it into the string pointed to by str . It stops when

either (n - 1) characters are read, the newline character is read, or the end-of-file is

reached, whichever comes first.

Declaration

Following is the declaration for fgets() function.

char * fgets (char * str , int n, FILE * stream)

Parameters

 str -- This is the pointer to an array of chars where the string read is stored.

 n -- This is the maximum number of characters to be read (including the final

null-character). Usually, the length of the array passed as str is used.

 stream -- This is the pointer to a FILE object that identifies the stream where

characters are read from.

Return Value

On success, the function returns the same str parameter. If the End-of-File is

encountered and no characters have been read, the contents of str remain unchanged

and a null pointer is returned.

If an error occurs, a null pointer is returned.

Example

The following example shows the usage of fgets() function.

 C Standard Library

153

#include <stdio.h>

int main()

{

 FILE * fp ;

 char str [60];

 /* opening file for reading */

 fp = fopen ("file.txt" , "r ");

 if (fp == NULL) {

 perror ("Error opening file");

 return (- 1);

 }

 if (fgets (str , 60, fp)!= NULL) {

 /* writing content to stdout */

 puts (str);

 }

 fclose (fp);

 return (0);

}

Let us assume, we have a text file fi le.txt , which has the following content. This file will

be used as an input for our example program:

We are in 2012

Now, let us compile and run the above program that will produce the following result:

We are in 2012

int fputc(int char, FILE *stream)

Description

The C library function int fputc(int char, FILE *stream) writes a character (an

unsigned char) specified by the argument char to the specified stream and advances the

position indicator for the stream.

Declaration

Following is the declaration for fputc() function.

 C Standard Library

154

int fputc (int char , FILE * stream)

Parameters

 char -- This is the character to be written. This is passed as its int promotion.

 stream -- This is the pointer to a FILE object that identifies the stream where the

character is to be written.

Return Value

If there are no errors, the same character that has been written is returned. If an error
occurs, EOF is returned and the error indicator is set.

Example

The following example shows the usage of fputc() function.

#include <stdio.h>

in t main ()

{

 FILE * fp ;

 int ch;

 fp = fopen ("file.txt" , "w+");

 for (ch = 33 ; ch <= 100; ch++)

 {

 fputc (ch, fp);

 }

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file file.txt in the current

directory, which will have following content:

! "#$%&'()*+, - ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcd

Now let's see the content of the above file using the following program:

#include <stdio.h>

 C Standard Library

155

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

int fputs(const char *str, FILE *stream)

Description

The C library function int fputs(const char *str, FILE *stream) writes a string to the

specified stream up to but not including the null character.

Declaration

Following is the declaration for fputs() function.

int fputs (const char * str , FILE * stream)

Parameters

 str -- This is an array containing the null-terminated sequence of characters to be

written.

 stream -- This is the pointer to a FILE object that identifies the stream where the

string is to be written.

Return Value

This function returns a non-negative value, or else on error it returns EOF.

Example

 C Standard Library

156

The following example shows the usage of fputs() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "w+");

 fputs ("This is c programming." , fp);

 fputs ("This is a system programming la nguage." , fp);

 fclose (fp);

 return (0);

}

Let us compile and run the above program, this will create a file file.txt with the

following content:

This is c programming . This is a system programming language .

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 C Standard Library

157

 fclose (fp);

 return (0);

}

int getc(FILE *stream)

Description

The C library function int getc(FILE *stream) gets the next character (an unsigned

char) from the specified stream and advances the position indicator for the stream.

Declaration

Following is the declaration for getc() function.

int getc (FILE * stream)

Parameters

 stream -- This is the pointer to a FILE object that identifies the stream on which

the operation is to be performed.

Return Value

This function returns the character read as an unsigned char cast to an int or EOF on end

of file or error.

Example

The following example shows the usage of getc() function.

#include <stdio.h>

int main()

{

 char c;

 printf ("Enter character: ");

 c = getc (stdin);

 printf ("Character entered: ");

 putc (c, stdout);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Enter character : a

 C Standard Library

158

Character entered : a

int getchar(void)

Description

The C library function int getchar(void) gets a character (an unsigned char) from stdin.

This is equivalent to getc with stdin as its argument.

Declaration

Following is the declaration for getchar() function.

int getchar (void)

Parameters

 NA

Return Value

This function returns the character read as an unsigned char cast to an int or EOF on end
of file or error.

Example

The following example shows the usage of getchar() function.

#include <stdio.h>

int main ()

{

 char c;

 printf ("Enter character: ");

 c = getchar ();

 printf ("Character entered: ");

 putchar (c);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Enter character : a

Character entered : a

 C Standard Library

159

char *gets(char *str)

Description

The C library function char *gets(char *str) reads a line from stdin and stores it into

the string pointed to by str. It stops when either the newline character is read or when
the end-of-file is reached, whichever comes first.

Declaration

Following is the declaration for gets() function.

char * gets (char * str)

Parameters

 str -- This is the pointer to an array of chars where the C string is stored.

Return Value

This function returns str on success, and NULL on error or when end of file occurs, while
no characters have been read.

Example

The following example shows the usage of gets() function.

#include <stdio.h>

int main()

{

 char str [50];

 printf ("Enter a string : ");

 gets (str);

 printf ("You entered: %s" , str);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Enter a string : tut orialspoint . com

You entered : tutorialspoint . com

 C Standard Library

160

int putc(int char, FILE *stream)

Description

The C library function int putc(int char, FILE *stream) writes a character (an

unsigned char) specified by the argument char to the specified stream and advances the

position indicator for the stream.

Declaration

Following is the declaration for putc() function.

int putc (int char , FILE * stream)

Parameters

 char -- This is the character to be written. The character is passed as its int

promotion.

 stream -- This is the pointer to a FILE object that identifies the stream where the

character is to be written.

Return Value

This function returns the character written as an unsigned char cast to an int or EOF on
error.

Example

The following example shows the usage of putc() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int ch;

 fp = fopen ("file.txt" , "w");

 for (ch = 33 ; ch <= 100; ch++)

 {

 putc (ch, fp);

 }

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will create a file file.txt in the current

directory which will have following content:

! "#$%&'()*+, - ./0123456789:;<=>?@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\]^_`abcd

 C Standard Library

161

Now let's see the content of the above file using the following program:

#include <stdio.h>

int main ()

{

 FILE * fp ;

 int c;

 fp = fopen ("file.txt" , "r");

 while (1)

 {

 c = fgetc (fp);

 if (feof (fp))

 {

 break ;

 }

 printf ("%c", c);

 }

 fclose (fp);

 return (0);

}

int putchar(int char)

Description

The C library function int putchar(int char) writes a character (an unsigned char)

specified by the argument char to stdout.

Declaration

Following is the declaration for putchar() function.

int putchar (int char)

Parameters

 char -- This is the character to be written. This is passed as its int promotion.

Return Value

This function returns the character written as an unsigned char cast to an int or EOF on

error.

 C Standard Library

162

Example

The following example shows the usage of putchar() function.

#include <stdio.h>

int main ()

{

 char ch;

 for (ch = 'A' ; ch <= 'Z' ; ch++) {

 putchar (ch);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

ABCDEFGHIJKLMNOPQRSTUVWXYZ

int puts(const char *str)

Description

The C library function int puts(const char *str) writes a string to stdout up to but not

including the null character. A newline character is appended to the output.

Declaration

Following is the declaration for puts() function.

int puts (const char * str)

Parameters

 str -- This is the C string to be written.

Return Value

If successful, non-negative value is returned. On error, the function returns EOF.

Example

The following example shows the usage of puts() function.

#include <stdio.h>

#include <string.h>

int main()

{

 C Standard Library

163

 char str1 [15];

 char str2 [15];

 strcpy (str1 , "tutorialspoint");

 strcpy (str2 , "compileonline");

 puts (str1);

 puts (str2);

 return (0);

}

Let us compile and run the above program to produce the following result:

tutorialspoint

compileonline

int ungetc(int char, FILE *stream)

Description

The C library function int ungetc(int char, FILE *stream) pushes the character char

(an unsigned char) onto the specified stream so that the this is available for the next

read operation.

Declaration

Following is the declaration for ungetc() function.

int ungetc (int char , FILE * stream)

Parameters

 char -- This is the character to be put back. This is passed as its int promotion.

 stream -- This is the pointer to a FILE object that identifies an input stream.

Return Value

If successful, it returns the character that was pushed back otherwise, EOF is returned

and the stream remains unchanged.

Example

The following example shows the usage of ungetc() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 C Standard Library

164

 int c;

 char buffer [256];

 fp = fopen ("file.txt" , "r");

 if (fp == NULL)

 {

 perror ("Error in opening file");

 return (- 1);

 }

 while (! feof (fp))

 {

 c = getc (fp);

 /* replace ! with + */

 if (c == '!')

 {

 ungetc ('+' , fp);

 }

 else

 {

 ungetc (c, fp);

 }

 fgets (buffer , 255, fp);

 fputs (buffer , stdout);

 }

 return (0);

}

Let us assume, we have a text file file.txt , which contains the following data. This file

will be used as an input for our example program:

this is tutorials point

! c standard library

! library functions and macros

Now let us compile and run the above program that will produce the following result:

this is tutorials point

+c s tandard library

+library functions and macros

 C Standard Library

165

void perror(const char *str)

Description

The C library function void perror(const char *str) prints a descriptive error message

to stderr. First the string str is printed, followed by a colon then a space.

Declaration

Following is the declaration for perror() function.

void perror (const char * str)

Parameters

 str -- This is the C string containing a custom message to be printed before the

error message itself.

Return Value

This function does not return any value.

Example

The following example shows the usage of perror() function.

#include <stdio.h>

int main ()

{

 FILE * fp ;

 /* first rename if there is any file */

 rename("file.txt" , "newfile.txt");

 /* now let's try to open same file */

 fp = fopen ("file.txt" , "r");

 if (fp == NULL) {

 perror ("Error: ");

 return (- 1);

 }

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will produce the following result because
we are trying to open a file which does not exist:

Error : : No such file or directory

 C Standard Library

166

 C Standard Library

167

Introduction

The stdlib .h header defines four variable types, several macros, and various functions

for performing general functions.

Library Variables

Following are the variable types defined in the header stdlib.h:

S.N. Variable & Description

1 size_t

This is the unsigned integral type and is the result of the sizeof keyword.

2 wchar_t

This is an integer type of the size of a wide character constant.

3 div_t

This is the structure returned by the div function.

4 ldiv_t

This is the structure returned by the ldiv function.

Library Macros

Following are the macros defined in the header stdlib.h:

S.N. Macro & Description

1 NULL

This macro is the value of a null pointer constant.

2 EXIT_FAILURE

This is the value for the exit function to return in case of failure.

3 EXIT_SUCCESS

13. C Library <stdlib.h>

 C Standard Library

168

This is the value for the exit function to return in case of success.

4 RAND_MAX

This macro is the maximum value returned by the rand function.

5 MB_CUR_MAX

This macro is the maximum number of bytes in a multi-byte character set
which cannot be larger than MB_LEN_MAX.

Library Functions

Following are the functions defined in the header stdio.h:

S.N. Function & Description

1 double atof(const char *str)

Converts the string pointed to, by the argument str to a floating-point number

(type double).

2 int atoi(const char *str)

Converts the string pointed to, by the argument str to an integer (type int).

3 long int atol(const char *str)

Converts the string pointed to, by the argument str to a long integer (type

long int).

4 double strtod(const char *str, char **endptr)

Converts the string pointed to, by the argument str to a floating-point number

(type double).

5 long int strtol(const char *str, char **endptr, int base)

Converts the string pointed to, by the argument str to a long integer (type

long int).

6 unsigned long int strtoul(const char *str, char **endptr, int base)

Converts the string pointed to, by the argument str to an unsigned long

integer (type unsigned long int).

7 void *calloc(size_t nitems, size_t size)

 C Standard Library

169

Allocates the requested memory and returns a pointer to it.

8 void free(void *ptr

Deallocates the memory previously allocated by a call to calloc,

malloc, orrealloc .

9 void *malloc(size_t size)

Allocates the requested memory and returns a pointer to it.

10 void *realloc(void *ptr, size_t size)

Attempts to resize the memory block pointed to by ptr that was previously
allocated with a call to malloc or calloc .

11 void abort(void)

Causes an abnormal program termination.

12 int atexit(void (*func)(void))

Causes the specified function func to be called when the program terminates

normally.

13 void exit(int status)

Causes the program to terminate normally.

14 char *getenv(const char *name)

Searches for the environment string pointed to by name and returns the
associated value to the string.

15 int system(const char *string)

The command specified by string is passed to the host environment to be
executed by the command processor.

16 void *bsearch(const void *key, const void *base, size_t nitems, size_t size,
int (*compar)(const void *, const void *))

Performs a binary search.

17 void qsort(void *base, size_t nitems, size_t size, int (*compar)(const void *,
const void*))

Sorts an array.

 C Standard Library

170

18 int abs(int x)

Returns the absolute value of x.

19 div_t div(int numer, int denom)

Divides numer (numerator) by denom (denominator).

20 long int labs(long int x)

Returns the absolute value of x.

21 ldiv_t ldiv(long int numer, long int denom)

Divides numer (numerator) by denom (denominator).

22 int rand(void)

Returns a pseudo-random number in the range of 0 to RAND_MAX .

23 void srand(unsigned int seed)

This function seeds the random number generator used by the function rand .

24 int mblen(const char *str, size_t n)

Returns the length of a multibyte character pointed to by the argument str .

25 size_t mbstowcs(schar_t *pwcs, const char *str, size_t n)

Converts the string of multibyte characters pointed to by the argument str to

the array pointed to by pwcs .

26 int mbtowc(whcar_t *pwc, const char *str, size_t n)

Examines the multibyte character pointed to by the argument str .

27 size_t wcstombs(char *str, const wchar_t *pwcs, size_t n)

Converts the codes stored in the array pwcs to multibyte characters and

stores them in the string str .

28 int wctomb(char *str, wchar_t wchar)

Examines the code which corresponds to a multibyte character given by the
argument wchar .

 C Standard Library

171

double atof(const char *str)

Description

The C library function double atof (const char *str) converts the string argument str

to a floating-point number (type double).

Declaration

Following is the declaration for atof() function.

double atof (const char * str)

Parameters

 str -- This is the string having the representation of a floating-point number.

Return Value

This function returns the converted floating point number as a double value. If no valid
conversion could be performed, it returns zero (0.0).

Example

The following example shows the usage of atof() function.

#include <stdio .h>

#include <stdlib.h>

#include <string.h>

int main()

{

 float val ;

 char str [20];

 strcpy (str , "98993489");

 val = atof (str);

 printf ("String value = %s, Float value = %f \ n" , str , val);

 strcpy (str , "tutorialspoint.com");

 val = atof (str);

 printf ("String value = %s, Float value = %f \ n" , str , val);

 return (0);

}

Let us compile and run the above program that will produce the following result:

String value = 98993489, Float value = 98993488.000000

String value = tutorialspoint . com, Float value = 0.000000

 C Standard Library

172

int atoi(const char *str)

Description

The C library function int atoi(const char *str) converts the string argument str to an

integer (type int).

Declaration

Following is the declaration for atoi() function.

int atoi (const char * str)

Parameters

 str -- This is the string representation of an integral number.

Return Value

This function returns the converted integral number as an int value. If no valid
conversion could be performed, it returns zero.

Example

The following example shows the usage of atoi() function.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 int val ;

 char str [20];

 strcpy (str , "98993489");

 val = atoi (str);

 printf ("String value = %s, Int value = %d \ n" , str , val);

 strc py(str , "tutorialspoint.com");

 val = atoi (str);

 printf ("String value = %s, Int value = %d \ n" , str , val);

 return (0);

}

 C Standard Library

173

Let us compile and run the above program that will produce the following result:

String value = 98993489, Int value = 98993489

String value = tutorialspoint . com, Int value = 0

long int atol(const char *str)

Description

The C library function long int atol(const char *str) converts the string argument str

to a long integer (type long int).

Declaration

Following is the declaration for atol() function.

long int atol (const char * str)

Parameters

 str -- This is the string containing the representation of an integral number.

Return Value

This function returns the converted integral number as a long int. If no valid conversion

could be performed, it returns zero.

Example

The following example shows the usage of atol() function.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 long val ;

 char str [20];

 strcpy (str , "98993489");

 val = atol (str);

 pr intf ("String value = %s, Long value = %ld \ n" , str , val);

 strcpy (str , "tutorialspoint.com");

 val = atol (str);

 printf ("String value = %s, Long value = %ld \ n" , str , val);

 C Standard Library

174

 return (0);

}

Let us compile and run the above program, this will produce the following result:

String value = 98993489, Long value = 98993489

String value = tutorialspoint . com, Long value = 0

double strtod(const char *str, char **endptr)

Description

The C library function double strtod(const char *str, char **endptr) converts the

string pointed to by the argument str to a floating-point number (type double).

If endptr is not NULL, a pointer to the character after the last character used in the

conversion is stored in the location referenced by endptr.

Declaration

Following is the declaration for strtod() function.

double strtod (const char * str , char ** endptr)

Parameters

 str -- This is the value to be converted to a string.

 endptr -- This is the reference to an already allocated object of type char*,

whose value is set by the function to the next character in str after the numerical

value.

Return Value

This function returns the converted floating point number as a double value, else zero
value (0.0) is returned.

Example

The following example shows the usage of strtod() function.

#in clude <stdio.h>

#include <stdlib.h>

int main()

{

 char str [30] = "20.30300 This is test" ;

 char * ptr ;

 double ret ;

 ret = strtod (str , &ptr);

 C Standard Library

175

 printf ("The number(double) is %lf \ n" , ret);

 printf ("String part is |%s|" , ptr);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The number(double) is 20.303000

String part is | This is test |

long int strtol(const char *str, char **endptr, int base)

Description

The C library function long int strtol(const char *str, char **endptr, int

base) converts the initial part of the string in str to a long int value according to the

given base , which must be between 2 and 36 inclusive, or be the special value 0.

Declaration

Following is the declaration for strtol() function.

long int strtol (const char * str , char ** endptr , int base)

Parameters

 str -- This is the string containing the representation of an integral number.

 endptr -- This is the reference to an object of type char*, whose value is set by

the function to the next character in str after the numerical value.

 base -- This is the base, which must be between 2 and 36 inclusive, or be the

special value 0.

Return Value

This function returns the converted integral number as a long int value, else zero value
is returned.

Example

The following example shows the usage of strtol() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char str [30] = "2030300 This is test" ;

 char * ptr ;

 C Standard Library

176

 long ret ;

 ret = strtol (str , &ptr , 10);

 printf ("The number (unsigned long integer) is %ld \ n" , ret);

 printf ("String part is |%s|" , ptr);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The number(unsigned long integer) is 2030300

String part is | This is te st |

unsigned long int strtoul(const char *str, char **endptr, int base)

Description

The C library function unsigned long int strtoul(const char *str, char **endptr, int

base) function converts the initial part of the string in str to an unsigned long int value

according to the given base , which must be between 2 and 36 inclusive, or be the

special value 0.

Declaration

Following is the declaration for strtoul() function.

unsigned long int strtoul (const char * str , char ** endptr , int base)

Parameters

 str -- This is the string containing the representation of an unsigned integral

number.

 endptr -- This is the reference to an object of type char*, whose value is set by

the function to the next character in str after the numerical value.

 base -- This is the base, which must be between 2 and 36 inclusive, or be the

special value 0.

Return Value

This function returns the converted integral number as a long int value. If no valid
conversion could be performed, a zero value is returned.

Example

The following example shows the usage of strtoul() function.

 C Standard Library

177

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char str [30] = "2030300 This is test" ;

 char * ptr ;

 long ret ;

 ret = strtoul (str , &ptr , 10);

 printf ("The number(unsigned long integer) is %lu \ n" , ret);

 printf ("String part is |%s|" , ptr);

 return (0);

}

Let us compile and run the above program that will produce the following result:

The number(unsigned long integer) is 2030300

String part is | This is test |

void *calloc(size_t nitems, size_t size)

Description

The C library function void *calloc(size_t nitems, size_t size) allocates the requested

memory and returns a pointer to it. The difference in malloc and calloc is that malloc

does not set the memory to zero whereas calloc sets allocated memory to zero.

Declaration

Following is the declaration for calloc() function.

void * calloc (size_t nitems , size_t size)

Parameters

 nitems -- This is the number of elements to be allocated.

 size -- This is the size of elements.

Return Value

This function returns a pointer to the allocated memory, or NULL if the request fails.

Example

The following example shows the usage of calloc() function.

 C Standard Library

178

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i , n;

 int * a;

 printf ("Number of elements to be enter ed:");

 scanf ("%d",& n);

 a = (int *) calloc (n, sizeof (int));

 printf ("Enter %d numbers: \ n" , n);

 for (i =0 ; i < n ; i ++)

 {

 scanf ("%d",& a[i]);

 }

 printf ("The numbers entered are: ");

 for (i =0 ; i < n ; i ++) {

 printf ("%d " , a[i]);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

Number of elements to be entered : 3

Enter 3 numbers:

22

55

14

The numbers entered are : 22 55 14

void free(void *ptr)

Description

 C Standard Library

179

The C library function void free(void *ptr) deallocates the memory previously allocated

by a call to calloc, malloc, or realloc.

Declaration

Following is the declaration for free() function.

void free (void * ptr)

Parameters

 ptr -- This is the pointer to a memory block previously allocated with malloc,

calloc or realloc to be deallocated. If a null pointer is passed as argument, no
action occurs.

Return Value

This function does not return any value.

Example

The following example shows the usage of free() function.

#incl ude <stdio.h>

#include <stdlib.h>

int main()

{

 char * str ;

 /* Initial memory allocation */

 str = (char *) malloc (15);

 strcpy (str , "tutorialspoint");

 printf ("String = %s, Address = %u \ n" , str , str);

 /* Reallocating memory */

 str = (char *) realloc (str , 25);

 strcat (str , ".com");

 printf ("String = %s, Address = %u \ n" , str , str);

 /* Deallocate allocated memory */

 free (str);

 return (0);

}

Let us compile and run the above program that will produce the following result:

String = tutorialspoint , Address = 355090448

 C Standard Library

180

String = tutorialspoint . com, Address = 355090448

void *malloc(size_t size)

Description

The C library function void *malloc(size_t size) allocates the requested memory and

returns a pointer to it.

Declaration

Following is the declaration for malloc() function.

void * malloc (size_t size)

Parameters

 size -- This is the size of the memory block, in bytes.

Return Value

This function returns a pointer to the allocated memory, or NULL if the request fails.

Example

The following example shows the usage of malloc() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char * str ;

 /* Initial memory allocation */

 str = (char *) malloc (15);

 strcpy (str , "tutorialspoint");

 printf ("String = %s, Addr ess = %u \ n" , str , str);

 /* Reallocating memory */

 str = (char *) realloc (str , 25);

 strcat (str , ".com");

 printf ("String = %s, Address = %u \ n" , str , str);

 free (str);

 return (0);

 C Standard Library

181

}

Let us compile and run the above program that will produce the following result:

String = tutorialspoint , Address = 355090448

String = tutorialspoint . com, Address = 355090448

void *realloc(void *ptr, size_t size)

Description

The C library function void *realloc(void *ptr, size_t size) attempts to resize the

memory block pointed to by ptr that was previously allocated with a call

to malloc or calloc .

Declaration

Following is the declaration for realloc() function.

void * realloc (void * ptr , size_t size)

Parameters

 ptr -- This is the pointer to a memory block previously allocated with malloc,

calloc or realloc to be reallocated. If this is NULL, a new block is allocated and a
pointer to it is returned by the function.

 size -- This is the new size for the memory block, in bytes. If it is 0 and ptr

points to an existing block of memory, the memory block pointed by ptr is
deallocated and a NULL pointer is returned.

Return Value

This function returns a pointer to the newly allocated memory, or NULL if the request
fails.

Example

The following example shows the usage of realloc() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 char * str ;

 /* Initial memory allocation */

 str = (char *) malloc (15);

 strcpy (str , "tutorialspoint");

 printf ("String = %s, Address = %u \ n" , str , str);

 C Standard Library

182

 /* Real locating memory */

 str = (char *) realloc (str , 25);

 strcat (str , ".com");

 printf ("String = %s, Address = %u \ n" , str , str);

 free (str);

 return (0);

}

Let us compile and run the above program that will produce the following result:

St ring = tutorialspoint , Address = 355090448

String = tutorialspoint . com, Address = 355090448

void abort(void)

Description

The C library function void abort(void) aborts the program execution and comes out

directly from the place of the call.

Declaration

Following is the declaration for abort() function.

void abort (void)

Parameters

 NA

Return Value

This function does not return any value.

Example

The following example shows the usage of abort() function.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

 FILE * fp ;

 C Standard Library

183

 printf ("Going to open nofile.txt \ n");

 fp = fopen ("nofile.txt" , "r");

 if (fp == NULL)

 {

 printf ("Going to abort the program \ n");

 abort ();

 }

 printf ("Going to close nofile.txt \ n");

 fclose (fp);

 return (0);

}

Let us compile and run the above program that will produce the following result when it
tries to open nofile.txt file, which does not exist:

Going to open nofile . txt

Going to abort the program

Aborted (core dumped)

int atexit(void (*func)(void))

Description

The C library function int atexit(void (*func)(void)) causes the specified

function func to be called when the program terminates. You can register your

termination function anywhere you like, but it will be called at the time of the program
termination.

Declaration

Following is the declaration for atexit() function.

int atexit (void (* func)(void))

Parameters

 func -- This is the function to be called at the termination of the program.

Return Value

This function returns a zero value if the function is registered successfully, otherwise a
non-zero value is returned if it is failed.

Example

The following example shows the usage of atexit() function.

#include <stdio.h>

 C Standard Library

184

#include <stdlib.h>

void functionA ()

{

 printf ("This is functionA \ n");

}

int main ()

{

 /* register the termination function */

 atexit (functionA);

 printf ("Starting main program... \ n");

 printf ("Exiting main program... \ n");

 return (0);

}

Let us compile and run the above program that will produce the following result:

Starting main program ...

Exiting main program ...

This is functionA

void exit(int status)

Description

The C library function void exit(int status) terminates the calling process immediately.

Any open file descriptors belonging to the process are closed and any children of the

process are inherited by process 1, init, and the process parent is sent a SIGCHLD
signal.

Declaration

Following is the declaration for exit() function.

void exit (int status)

Parameters

 status -- This is the status value returned to the parent process.

Return Value

 C Standard Library

185

This function does not return any value.

Example

The following example shows the usage of exit() function.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

 printf ("Start of the program.... \ n");

 printf ("Exiting the program.... \ n");

 exit (0);

 printf ("End of the program.... \ n");

 return (0);

}

Let us compile and run the above program that will produce the following result:

Start of the program

Exiting the program

char *getenv(const char *name)

Description

The C library function char *getenv(const char *name) searches for the environment

string pointed to, by name and returns the associated value to the string.

Declaration

Following is the declaration for getenv() function.

char * getenv (const char * name)

Parameters

 name -- This is the C string containing the name of the requested variable.

Return Value

This function returns a null-terminated string with the value of the requested
environment variable, or NULL if that environment variable does not exist.

 C Standard Library

186

Example

The following example shows the usage of getenv() function.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

 printf ("PATH : %s \ n" , getenv ("PATH"));

 printf ("HOME : %s\ n" , getenv ("HOME"));

 printf ("ROOT : %s\ n" , getenv ("ROOT"));

 return (0);

}

Let us compile and run the above program that will produce the following result:

PATH : /sbin:/ usr / sbin : /bin:/ usr / bin : /usr/ local / bin

HOME : /

ROOT : (null)

int system(const char *string)

Description

The C library function int system(const char *command) passes the command name

or program name specified by command to the host environment to be executed by the

command processor and returns after the command has been completed.

Declaration

Following is the declaration for system() function.

int system (const char * command)

Parameters

 command -- This is the C string containing the name of the requested variable.

Return Value

The value returned is -1 on error, and the return status of the command otherwise.

Example

The following example shows the usage of system() function to list down all the files and

directories in the current directory under unix machine.

 C Standard Library

187

#include <stdio.h>

#include <string.h>

int main ()

{

 char command[50];

 strcpy (command, "ls - l");

 system (command);

 return (0);

}

Let us compile and run the above program that will produce the following result on my

unix machine:

drwxr - xr - x 2 apache apache 4096 Aug 22 07: 25 hsperfdata_apache

drwxr - xr - x 2 railo railo 4096 Aug 21 18: 48 hsperfdata_railo

rw------ 1 apache apache 8 Aug 21 18: 48 mod_mono_dashboard_XXGLOBAL_1

rw------ 1 apache apache 8 Aug 21 18: 48 mod_mono_dashboard_asp_2

srwx ---- 1 apache apache 0 Aug 22 05: 28 mod_mono_server_asp

rw------ 1 apache apache 0 Aug 22 05: 28 mod_mono_server_asp_1280495620

srwx ---- 1 apache apache 0 Aug 21 18: 48 mod_mono_server_global

The following example shows the usage of system() function to list down all the files and
directories in the current directory under windows machine.

#include <stdio.h>

#include <string.h>

in t main ()

{

 char command[50];

 strcpy (command, "dir");

 system (command);

 return (0);

}

 C Standard Library

188

Let us compile and run the above program that will produce the following result on my
windows machine:

a. txt

amit . doc

sachin

saurav

file . c

void *bsearch(const void *key, const void *base, size_t nitems, size_t
size, int (*compar)(const void *, const void *))

Description

The C library function void *bsearch(const void *key, const void *base, size_t nitems,

size_t size, int (*compar)(const void *, const void *)) function searches an array of

nitems objects, the initial member of which is pointed to by base, for a member that

matches the object pointed to, by key. The size of each member of the array is specified

by size.

The contents of the array should be in ascending sorted order according to the
comparison function referenced by compar .

Declaration

Following is the declaration for bsearch() function.

void * bsearch (const void * key, const void * base, size_t nitems , size_t size ,
int (* compar)(const void *, const void *))

Parameters

 key -- This is the pointer to the object that serves as key for the search, type-

casted as a void*.

 base -- This is the pointer to the first object of the array where the search is

performed, type-casted as a void*.

 nitems -- This is the number of elements in the array pointed by base.

 size -- This is the size in bytes of each element in the array.

 compar -- This is the function that compares two elements.

Return Value

This function returns a pointer to an entry in the array that matches the search key. If
key is not found, a NULL pointer is returned.

Example

The following example shows the usage of bsearch() function.

#include <stdio.h>

 C Standard Library

189

#include <stdlib.h>

int cmpfunc(const void * a, const void * b)

{

 return (*(int *) a - *(in t *) b);

}

int values [] = { 5, 20, 29, 32, 63 };

int main ()

{

 int * item ;

 int key = 32;

 /* using bsearch() to find value 32 in the array */

 item = (int *) bsearch (&key, values , 5, sizeof (int), cmpfunc);

 if (item != NULL)

 {

 prin tf ("Found item = %d \ n" , * item);

 }

 else

 {

 printf ("Item = %d could not be found \ n" , * item);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

Found item = 32

void qsort(void *base, size_t nitems, size_t size, int (*compar)(const
void *, const void*))

Description

The C library function void qsort(void *base, size_t nitems, size_t size, int

(*compar)(const void *, const void*)) sorts an array.

 C Standard Library

190

Declaration

Following is the declaration for qsort() function.

void qsort (void * base, size_t nitems , size_t size , int (* compar)(const void *,
const void *))

Parameters

 base -- This is the pointer to the first element of the array to be sorted.

 nitems -- This is the number of elements in the array pointed by base.

 size -- This is the size in bytes of each element in the array.

 compar -- This is the function that compares two elements.

Return Value

This function does not return any value.

Example

The following example shows the usage of qsort() function.

#include <stdio.h>

#include <stdlib.h>

int values [] = { 88, 56, 100, 2, 25 };

int cmpfunc (const void * a, const void * b)

{

 return (*(int *) a - *(int *) b);

}

int main()

{

 int n;

 printf ("Before sorting the list is: \ n");

 for (n = 0 ; n < 5; n++) {

 printf ("%d " , values [n]);

 }

 qsort (values , 5, sizeof (int), cmpfunc);

 printf (" \ nAfter sorting the list is: \ n");

 for (n = 0 ; n < 5; n++) {

 C Standard Library

191

 printf ("%d " , values [n]);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

Before sorting the list is :

88 56 100 2 25

After sorting the list is :

2 25 56 88 100

int abs(int x)

Description

The C library function int abs(int x) returns the absolute value of int x .

Declaration

Following is the declaration for abs() function.

int abs(int x)

Parameters

 x -- This is the integral value.

Return Value

This function returns the absolute value of x.

Example

The following example shows the usage of abs() function.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

 int a, b;

 a = abs(5);

 printf ("value of a = %d \ n" , a);

 b = abs(- 10);

 C Standard Library

192

 printf ("value of b = %d \ n" , b);

 return (0);

}

Let us compile and run the above program, this will produce the following result:

value of a = 5

value of b = 10

div_t div(int numer, int denom)

Description

The C library function div_t div(int numer, int denom) divides numer (numerator) by

denom (denominator).

Declaration

Following is the declaration for div() function.

div_t div (int numer, int denom)

Parameters

 numer -- This is the numerator.

 denom -- This is the denominator.

Return Value

This function returns the value in a structure defined in <cstdlib>, which has two
members. For div_t: int quot; int rem;

Example

The following example shows the usage of div() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 div_t output ;

 output = div (27, 4);

 printf ("Quotient part of (27/ 4) = %d \ n" , output . quot);

 printf ("Remainder part of (27/4) = %d \ n" , output . rem);

 C Standard Library

193

 out put = div (27, 3);

 printf ("Quotient part of (27/ 3) = %d \ n" , output . quot);

 printf ("Remainder part of (27/3) = %d \ n" , output . rem);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Quotient part of (27/ 4) = 6

Remainder part of (27/ 4) = 3

Quotient part of (27/ 3) = 9

Remainder part of (27/ 3) = 0

long int labs(long int x)

Description

The C library function long int labs(long int x) returns the absolute value of x .

Declaration

Following is the declaration for labs() function.

long int labs (long int x)

Parameters

 x -- This is the integral value.

Return Value

This function returns the absolute value of x .

Example

The following example shows the usage of labs() function.

#include <stdio.h>

#include <stdlib .h>

int main ()

{

 long int a, b;

 a = labs (65987L);

 printf ("Value of a = %ld \ n" , a);

 C Standard Library

194

 b = labs (- 1005090L);

 printf ("Value of b = %ld \ n" , b);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Value of a = 65987

Value of b = 1005090

ldiv_t ldiv(long int numer, long int denom)

Description

The C library function div_t div(long int numer, long int denom) divides numer

(numerator) by denom (denominator).

Declaration

Following is the declaration for ldiv() function.

div_t div (long int numer, long int denom)

Parameters

 numer -- This is the numerator.

 denom -- This is the denominator.

Return Value

This function returns the value in a structure defined in <cstdlib>, which has two
members. For ldiv_t: long quot; long rem;

Example

The following example shows the usage of ldiv() function.

#include <stdio.h>

#include <stdlib.h>

int main ()

{

 ldiv_t output ;

 output = ldiv (100000L, 30000L);

 printf ("Quotient = %ld \ n" , output . quot);

 C Standard Library

195

 printf ("Remainder = %ld \ n" , output . rem);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Quotient = 3

Remainder = 10000

int rand(void)

Description

The C library function int rand(void) returns a pseudo-random number in the range of

0 to RAND_MAX .

RAND_MAX is a constant whose default value may vary between implementations but it
is granted to be at least 32767.

Declaration

Following is the declaration for rand() function.

int rand (void)

Parameters

 NA

Return Value

This function returns an integer value between 0 and RAND_MAX.

Example

The following example shows the usage of rand() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i , n;

 time_t t ;

 n = 5;

 C Standard Library

196

 /* Intializes random n umber generator */

 srand ((unsigned) time (&t));

 /* Print 5 random numbers from 0 to 49 */

 for (i = 0 ; i < n ; i ++) {

 printf ("%d\ n" , rand () % 50);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

38

45

29

29

47

void srand(unsigned int seed)

Description

The C library function void srand(unsigned int seed) seeds the random number

generator used by the function rand .

Declaration

Following is the declaration for srand() function.

void srand (unsigned int seed)

Parameters

 seed -- This is an integer value to be used as seed by the pseudo-random

number generator algorithm.

Return Value

This function does not return any value.

Example

The following example shows the usage of srand() function.

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

 C Standard Library

197

int main()

{

 int i , n;

 time_t t ;

 n = 5;

 /* Intializes random number generator */

 srand ((unsigned) time (&t));

 /* Print 5 random numbers from 0 to 50 */

 for (i = 0 ; i < n ; i ++) {

 printf ("%d\ n" , rand () % 50);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

38

45

29

29

47

int mblen(const char *str, size_t n)

Description

The C library function int mble n(const char *str, size_t n) returns the length of a

multi-byte character pointed to, by the argument str .

Declaration

Following is the declaration for mblen() function.

int mblen(const char * str , size_t n)

Parameters

 str -- This is the pointer to the first byte of a multibyte character.

 n -- This is the maximum number of bytes to be checked for character length.

 C Standard Library

198

Return Value

The mblen() function returns the number of bytes passed from the multi-byte sequence

starting at str, if a non-null wide character was recognized. It returns 0, if a null wide

character was recognized. It returns -1, if an invalid multi-byte sequence was
encountered or if it could not parse a complete multi-byte character.

Example

The following example shows the usage of mblen() function.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 int len ;

 char * pmbnull = NULL;

 char * pmb = (char *) malloc (MB_CUR_MAX);

 wchar_t * pwc = L"Hi" ;

 wchar_t * pwcs = (wchar_t *) malloc (sizeof (wchar_t));

 printf ("Converting to multibyte string \ n");

 len = wcstombs(pmb, pwc, MB_CUR_MAX);

 printf ("Characters converted %d \ n" , len);

 printf ("Hex value of first multibyte character: %#.4x \ n" , pmb);

 len = mblen(pmb, MB_CUR_MAX);

 printf ("Length in bytes of multibyte character %x: %u \ n" , pmb, len);

 pmb = NULL;

 len = mblen(pmb, MB_CUR_MAX);

 printf ("Length in bytes of multibyte character %x: %u \ n" , pmb, len);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Converting to multibyte string

Characters converted 1

 C Standard Library

199

Hex value of first multibyte character : 0x168c6010

Length in bytes of multibyte character 168c6010: 1

Length in bytes of multibyte character 0: 0

size_t mbstowcs(schar_t *pwcs, const char *str, size_t n)

Description

The C library function size_t mbstowcs(schar_t *pwcs, const char *str, size_t

n) converts the string of multi-byte characters pointed to, by the argument str to the

array pointed to by pwcs .

Declaration

Following is the declaration for mbstowcs() function.

size_t mbstowcs(schar_t * pwcs, const char * str , size_t n)

Parameters

 pwcs -- This is the pointer to an array of wchar_t elements that is long enough to

store a wide string max characters long.

 str -- This is the C multibyte character string to be interpreted.

 n -- This is the maximum number of wchar_t characters to be interpreted.

Return Value

This function returns the number of characters translated, excluding the ending null-
character. If an invalid multi-byte character is encountered, a -1 value is returned.

Example

The following example shows the usage of mbstowcs() function.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main()

{

 int len ;

 char * pmbnull = NULL;

 char * pmb = (char *) malloc (MB_CUR_MAX);

 wchar_t * pwc = L"Hi" ;

 wchar_t * pwcs = (wchar_t *) malloc (sizeof (wchar_t));

 printf ("Converting to multibyte string \ n");

 len = wcstombs(pmb, pwc, MB_CUR_MAX);

 C Standard Library

200

 printf ("Characters converted %d \ n" , len);

 printf ("Hex value o f first multibyte character: %#.4x \ n" , pmb);

 printf ("Converting back to Wide - Character string \ n");

 len = mbstowcs(pwcs, pmb, MB_CUR_MAX);

 printf ("Characters converted %d \ n" , len);

 printf ("Hex value of first wide character %#.4x \ n\ n" , pwcs) ;

 return (0);

}

Let us compile and run the above program that will produce the following result:

Converting to multibyte string

Characters converted 1

Hex value of first multibyte character : 0x19a60010

Converting back to Wide- Character string

Characters converted 1

Hex value of first wide character 0x19a60030

int mbtowc(whcar_t *pwc, const char *str, size_t n)

Description

The C library function int mbtowc(whcar_t *pwc, const char *str, size_t

n) converts a multibyte sequence to a wide character.

Declaration

Following is the declaration for mbtowc() function.

int mbtowc(whcar_t * pwc, const char * str , size_t n)

Parameters

 pwc -- This is the pointer to an object of type wchar_t.

 str -- This is the pointer to the first byte of a multi-byte character.

 n -- This is the maximum number of bytes to be checked for character length.

Return Value

 If str is not NULL, the mbtowc() function returns the number of consumed bytes
starting at str, or 0 if s points to a null byte, or -1 upon failure.

 If str is NULL, the mbtowc() function returns non-zero if the encoding has non-
trivial shift state, or zero if the encoding is stateless.

 C Standard Library

201

Example

The following example shows the usage of mbtowc() function.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

int main ()

{

 char * str = "This is tutorialspoint.com" ;

 wchar_t mb[100];

 int len ;

 len = mblen(NULL, MB_CUR_MAX);

 mbtowc(mb, str , len * strlen (str));

 wprintf (L"%ls \ n" , mb);

 return (0);

}

Let us compile and run the above program that will produce the following result which

will be in multi-byte, a kind of binary output.

???

size_t wcstombs(char *str, const wchar_t *pwcs, size_t n)

Description

The C library function size_t wcs tombs(char *str, const wchar_t *pwcs, size_t

n) converts the wide-character string pwcs to a multibyte string starting at str . At

most n bytes are written to str .

Declaration

Following is the declaration for wcstombs() function.

size_t wcstombs(char * str , const wchar_t * pwcs, size_t n)

Parameters

 C Standard Library

202

 str -- This is the pointer to an array of char elements at least n bytes long.

 pwcs -- This is wide-character string to be converted.

 n -- This is the maximum number of bytes to be written to str.

Return Value

This function returns the number of bytes (not characters) converted and written to str,

excluding the ending null-character. If an invalid multibyte character is encountered, -1
value is returned.

Example

The following example shows the usage of wcstombs() function.

#include <stdio.h>

#include <stdlib.h>

#define BUFFER_SIZE 50

int main()

{

 size_t ret ;

 char * MB = (char *) malloc (BUFFER_SIZE);

 wchar_t * WC = L"http://www.tutorialspoint.com" ;

 /* converting wide - character string */

 ret = wcstombs(MB, WC, BUFFER_SIZE);

 printf ("Characters converted = %u \ n" , ret);

 printf ("Multibyte character = %s \ n\ n" , MB);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Characters converted = 29

Multibyte character = http : //www.tutorialspoint.com

int wctomb(char *str, wchar_t wchar)

Description

The C library function int wctomb(char *str, wchar_t wchar) function converts the

wide character wchar to its multibyte representation and stores it at the beginning of

the character array pointed to by str .

 C Standard Library

203

Declaration

Following is the declaration for wctomb() function.

int wctomb(char * str , wchar_t wchar)

Parameters

 str -- This is the pointer to an array large enough to hold a multibyte character,

 wchar -- This is the wide character of type wchar_t.

Return Value

 If str is not NULL, the wctomb() function returns the number of bytes that have

been written to the byte array at str. If wchar cannot be represented as a
multibyte sequence, -1 is returned.

 If str is NULL, the wctomb() function returns non-zero if the encoding has non-
trivial shift state, or zero if the encoding is stateless.

Example

The following example shows the usage of wctomb() function.

#include <stdio.h>

#include <stdlib.h>

int main()

{

 int i ;

 wchar_t wc = L'a' ;

 char * pmbnull = NULL;

 char * pmb = (char *) malloc (sizeof (char));

 printf ("Converting wide character: \ n");

 i = wctomb(pmb, wc);

 printf ("Characters converted: %u \ n" , i);

 printf ("Multibyte character: %.1s \ n" , pmb);

 printf ("Trying to convert when target is NULL: \ n");

 i = wctomb(pmbnull , wc);

 printf ("Characters converted: %u \ n" , i);

 /* this will not print any value */

 printf ("Multibyte character: %.1s \ n" , pmbnull);

 return (0);

 C Standard Library

204

}

Let us compile and run the above program that will produce the following result:

Converting wide character :

Characters converted : 1

Multibyte character : a

Trying to convert when target is NULL:

Characters converted : 0

Multibyte character :

 C Standard Library

205

Introduction

The string .h header defines one variable type, one macro, and various functions for

manipulating arrays of characters.

Library Variables

Following is the variable type defined in the header string.h:

S.N. Variable & Description

1 size_t

This is the unsigned integral type and is the result of the sizeof keyword.

Library Macros

Following is the macro defined in the header string.h:

S.N. Macro & Description

1 NULL

This macro is the value of a null pointer constant.

Library Functions

Following are the functions defined in the header string.h:

S.N. Function & Description

1 void *memchr(const void *str, int c, size_t n)

Searches for the first occurrence of the character c (an unsigned char) in the
first n bytes of the string pointed to, by the argument str .

2 int memcmp(const void *str1, const void *str2, size_t n)

Compares the first n bytes of str1 and str2 .

3 void *memcpy(void *dest, const void *src, size_t n)

14. C Library <string.h>

 C Standard Library

206

Copies n characters from src to dest .

4 void *memmove(void *dest, const void *src, size_t n)

Another function to copy n characters from str2 to str1 .

5 void *memset(void *str, int c, size_t n)

Copies the character c (an unsigned char) to the first n characters of the
string pointed to, by the argument str .

6 char *strcat(char *dest, const char *src)

Appends the string pointed to, by src to the end of the string pointed to

by dest .

7 char *strncat(char *dest, const char *src, size_t n)

Appends the string pointed to, by src to the end of the string pointed to,

by dest up to n characters long.

8 char *strchr(const char *str, int c)

Searches for the first occurrence of the character c (an unsigned char) in the
string pointed to, by the argument str .

9 int strcmp(const char *str1, const char *str2)

Compares the string pointed to, by str1 to the string pointed to by str2 .

10 int strncmp(const char *str1, const char *str2, size_t n)

Compares at most the first n bytes of str1 and str2 .

11 int strcoll(const char *str1, const char *str2)

Compares string str1 to str2 . The result is dependent on the LC_COLLATE

setting of the location.

12 char *strcpy(char *dest, const char *src)

Copies the string pointed to, by src to dest .

13 char *strncpy(char *dest, const char *src, size_t n)

Copies up to n characters from the string pointed to, by src to dest .

14 size_t strcspn(const char *str1, const char *str2)

Calculates the length of the initial segment of str1 which consists entirely of

 C Standard Library

207

characters not in str2.

15 char *strerror(int errnum)

Searches an internal array for the error number errnum and returns a pointer
to an error message string.

16 size_t strlen(const char *str)

Computes the length of the string str up to but not including the terminating

null character.

17 char *strpbrk(const char *str1, const char *str2)

Finds the first character in the string str1 that matches any character specified

in str2 .

18 char *strrchr(const char *str, int c)

Searches for the last occurrence of the character c (an unsigned char) in the
string pointed to by the argument str .

19 size_t strspn(const char *str1, const char *str2)

Calculates the length of the initial segment of str1 which consists entirely of

characters in str2 .

20 char *strstr(const char *haystack, const char *needle)

Finds the first occurrence of the entire string needle (not including the

terminating null character) which appears in the string haystack .

21 char *strtok(char *str, const char *delim)

Breaks string str into a series of tokens separated by delim .

22 size_t strxfrm(char *dest, const char *src, size_t n)

Transforms the first n characters of the string src into corrent locale and

places them in the string dest .

void *memchr(const void *str, int c, size_t n)

Description

The C library function void *memchr(const void *str, int c, size_t n) searches for

the first occurrence of the character c (an unsigned char) in the first n bytes of the string

pointed to, by the argument str .

 C Standard Library

208

Declaration

Following is the declaration for memchr() function.

void * memchr(const void * str , int c, size_t n)

Parameters

 str -- This is the pointer to the block of memory where the search is performed.

 c -- This is the value to be passed as an int, but the function performs a byte per

byte search using the unsigned char conversion of this value.

 n -- This is the number of bytes to be analyzed.

Return Value

This function returns a pointer to the matching byte or NULL if the character does not
occur in the given memory area.

Example

The following example shows the usage of memchr() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 const char str [] = "http://www.tutorialspoint.com" ;

 const char ch = '.' ;

 char * ret ;

 ret = memchr(str , ch, strlen (str));

 printf ("String after |%c| is - |%s| \ n" , ch, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

String after |.| is - |. tutorialspoint . com|

int memcmp(const void *str1, const void *str2, size_t n)

Description

The C library function int memcmp(const void *str1, const void *str2, size_t n))

compares the first n bytes of memory area str1 and memory area str2 .

 C Standard Library

209

Declaration

Following is the declaration for memcmp() function.

int memcmp(const void * str1 , const void * str2 , size_t n)

Parameters

 str1 -- This is the pointer to a block of memory.

 str2 -- This is the pointer to a block of memory.

 n -- This is the number of bytes to be compared.

Return Value

 if Return value is < 0 then it indicates str1 is less than str2.

 if Return value is > 0 then it indicates str2 is less than str1.

 if Return value is = 0 then it indicates str1 is equal to str2.

Example

The following example shows the usage of memcmp() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 char str1 [15];

 char str2 [15];

 int ret ;

 memcpy(str1 , "abcdef" , 6);

 memcpy(str2 , "ABCDEF", 6);

 ret = memcmp(str1 , str2 , 5);

 if (ret > 0)

 {

 printf ("str2 is less than str1");

 }

 else if (ret < 0)

 {

 printf ("str1 is less than str2");

 }

 C Standard Library

210

 else

 {

 printf ("str1 is equal to str2");

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

str2 is less than str1

void *memcpy(void *dest, const void *src, size_t n)

Description

The C library function void *memcpy(void *str1, const void *str2, size_t

n) copies n characters from memory area str2 to memory area str1 .

Declaration

Following is the declaration for memcpy() function.

void * memcpy(void * str1 , const void * str2 , size_t n)

Parameters

 str1 -- This is pointer to the destination array where the content is to be copied,

type-casted to a pointer of type void*.

 str2 -- This is pointer to the source of data to be copied, type-casted to a pointer

of type void*.

 n -- This is the number of bytes to be copied.

Return Value

This function returns a pointer to destination, which is str1.

Example

The following example shows the usage of memcpy() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 const char src [50] = "http://www.tutorialspoint.com" ;

 char dest [50];

 C Standard Library

211

 printf ("Before memcpy dest = %s \ n" , dest);

 memcpy(dest , src , str len (src)+ 1);

 printf ("After memcpy dest = %s \ n" , dest);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Before memcpy dest =

After memcpy dest = http : //www.tutorialspoint.com

void *memmove(void *dest, const void *src, size_t n)

Description

The C library function void *memmove(void *str1, const void *str2, size_t

n) copies n characters from str2 to str1 , but for overlapping memory blocks,

memmove() is a safer approach than memcpy().

Declaration

Following is the declaration for memmove() function.

void * memmove(void * str1 , const void * str2 , size_t n)

Parameters

 str1 -- This is a pointer to the destination array where the content is to be

copied, type-casted to a pointer of type void*.

 str2 -- This is a pointer to the source of data to be copied, type-casted to a

pointer of type void*.

 n -- This is the number of bytes to be copied.

Return Value

This function returns a pointer to the destination, which is str1.

Example

The following example shows the usage of memmove() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 const char dest [] = "oldstring" ;

 const char src [] = "newstring" ;

 C Standard Library

212

 printf ("Before memmove dest = %s, src = %s \ n" , dest , src);

 memmove(dest , src , 9);

 printf ("Aft er memmove dest = %s, src = %s \ n" , dest , src);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Before memmove dest = oldstring , src = newstring

After memmove dest = newstring , src = newstring

void *memset(void *str, int c, size_t n)

Description

The C library function void *memset(void *str, int c, size_t n) copies the

character c (an unsigned char) to the first n characters of the string pointed to, by the

argument str .

Declaration

Following is the declaration for memset() function.

void * memset(void * str , int c, size_t n)

Parameters

 str -- This is a pointer to the block of memory to fill.

 c -- This is the value to be set. The value is passed as an int, but the function fills

the block of memory using the unsigned char conversion of this value.

 n -- This is the number of bytes to be set to the value.

Return Value

This function returns a pointer to the memory area str.

Example

The following example shows the usage of memset() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 char str [50];

 C Standard Library

213

 strcpy (str , "This is string.h library function");

 puts (str);

 memset(str , '$' , 7);

 puts (str);

 return (0);

}

Let us compile and run the above program that will produce the following result:

This is string . h library function

$$$$$$$ string . h library function

char *strcat(char *dest, const char *src)

Description

The C library function char *strcat(char *dest, const char *src) appends the string

pointed to by src to the end of the string pointed to by dest .

Declaration

Following is the declaration for strcat() function.

char * strcat (char * dest , const char * src)

Parameters

 dest -- This is pointer to the destination array, which should contain a C string,

and should be large enough to contain the concatenated resulting string.

 src -- This is the string to be appended. This should not overlap the destination.

Return Value

This function returns a pointer to the resulting string dest.

Example

The following example shows the usage of strcat() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 char src [50], dest [50];

 C Standard Library

214

 strcpy (src , "This is source");

 strcpy (dest , "This is destination");

 strcat (dest , src);

 printf ("Final destination string : |%s|" , dest);

 return (0) ;

}

Let us compile and run the above program that will produce the following result:

Final destination string : | This is destinationThis is source |

char *strncat(char *dest, const char *src, size_t n)

Description

The C library function char *strncat(char *dest, const char *src, size_t n) appends

the string pointed to by src to the end of the string pointed to by dest up to n characters

long.

Declaration

Following is the declaration for strncat() function.

char * strncat (char * dest , const char * src , siz e_t n)

Parameters

 dest -- This is pointer to the destination array, which should contain a C string,

and should be large enough to contain the concatenated resulting string which
includes the additional null-character.

 src -- This is the string to be appended.

 n -- This is the maximum number of characters to be appended.

Return Value

This function returns a pointer to the resulting string dest.

Example

The following example shows the usage of strncat() function.

#include <stdio.h>

#include <string.h>

int main ()

 C Standard Library

215

{

 char src [50], dest [50];

 strcpy (src , "This is source");

 strcpy (dest , "This is destination");

 strncat (dest , src , 15);

 printf ("Final destination string : |%s|" , dest);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Final destination string : | This is destinationThis is source |

char *strchr(const char *str, int c)

Description

The C library function char *strchr(const char *str, int c) searches for the first

occurrence of the character c (an unsigned char) in the string pointed to by the

argument str .

Declaration

Following is the declaration for strchr() function.

char * strchr (const char * str , int c)

Parameters

 str -- This is the C string to be scanned.

 c -- This is the character to be searched in str.

Return Value

This returns a pointer to the first occurrence of the character c in the string str, or NULL

if the character is not found.

Example

The following example shows the usage of strchr() function.

 C Standard Library

216

#include <stdio.h>

#incl ude <string.h>

int main ()

{

 const char str [] = "http://www.tutorialspoint.com" ;

 const char ch = '.' ;

 char * ret ;

 ret = strchr (str , ch);

 printf ("String after |%c| is - |%s| \ n" , ch, ret);

 return (0);

}

Let us compile and run the above program that will produce the following result:

String after |.| is - |. tutorialspoint . com|

int strcmp(const char *str1, const char *str2)

Description

The C library function int strcmp(const char *str1, const char *str2) compares the

string pointed to, by str1 to the string pointed to by str2 .

Declaration

Following is the declaration for strcmp() function.

int strcmp (const char * str1 , const char * str2)

Parameters

 str1 -- This is the first string to be compared.

 str2 -- This is the second string to be compared.

Return Value

This function return values that are as follows:

 if Return value is < 0 then it indicates str1 is less than str2.

 if Return value is > 0 then it indicates str2 is less than str1.

 if Return value is = 0 then it indicates str1 is equal to str2.

Example

 C Standard Library

217

The following example shows the usage of strncmp() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 char str1 [15];

 char str2 [15];

 int ret ;

 strcpy (str1 , "abcdef");

 strcpy (str2 , "ABCDEF");

 ret = str cmp(str1 , str2);

 if (ret < 0)

 {

 printf ("str1 is less than str2");

 }

 else if (ret > 0)

 {

 printf ("str2 is less than str1");

 }

 else

 {

 printf ("str1 is equal to str2");

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

str2 is less than str1

int strncmp(const char *str1, const char *str2, size_t n)

Description

 C Standard Library

218

The C library function int strncmp(const char *str1, const char *str2, size_t

n) compares at most the first n bytes of str1 and str2 .

Declaration

Following is the declaration for strncmp() function.

int strncmp (const char * str1 , const char * str2 , size_t n)

Parameters

 str1 -- This is the first string to be compared.

 str2 -- This is the second string to be compared.

 n -- The maximum number of characters to be compared.

Return Value

This function return values that are as follows:

 if Return value is < 0 then it indicates str1 is less than str2.

 if Return value is > 0 then it indicates str2 is less than str1.

 if Return value is = 0 then it indicates str1 is equal to str2.

Example

The following example shows the usage of strncmp() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 char str1 [15];

 char str2 [15];

 int ret ;

 strcpy (str 1, "abcdef");

 strcpy (str2 , "ABCDEF");

 ret = strncmp (str1 , str2 , 4);

 if (ret < 0)

 {

 printf ("str1 is less than str2");

 }

 C Standard Library

219

 else if (ret > 0)

 {

 printf ("str2 is less than str1");

 }

 else

 {

 printf ("str1 is equal to str2");

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

str2 is less than str1

int strcoll(const char *str1, const char *str2)

Description

The C library function int strcoll(const char *str1, const char *str2) compares

string str1 to str2 . The result is dependent on the LC_COLLATE setting of the location.

Declaration

Following is the declaration for strcoll() function.

int strcoll (const char * str1 , const char * str2)

Parameters

 str1 -- This is the first string to be compared.

 str2 -- This is the second string to be compared.

Return Value

This function return values that are as follows:

 if Return value is < 0 then it indicates str1 is less than str2.

 if Return value is > 0 then it indicates str2 is less than str1.

 if Return value is = 0 then it indicates str1 is equal to str2.

Example

The following example shows the usage of strcoll() function.

 C Standard Library

220

#include <stdio.h>

#include <string.h>

int main ()

{

 char str1 [15];

 char str2 [15];

 int re t ;

 strcpy (str1 , "abc");

 strcpy (str2 , "ABC");

 ret = strcoll (str1 , str2);

 if (ret > 0)

 {

 printf ("str1 is less than str2");

 }

 else if (ret < 0)

 {

 printf ("str2 is less than str1");

 }

 else

 {

 printf ("str1 is equal to str2");

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

str1 is less than str2

char *strcpy(char *dest, const char *src)

Description

The C library function char *strcpy(char *dest, c onst char *src) copies the string

pointed to, by src to dest .

 C Standard Library

221

Declaration

Following is the declaration for strcpy() function.

char * strcpy (char * dest , const char * src)

Parameters

 dest -- This is the pointer to the destination array where the content is to be

copied.

 src -- This is the string to be copied.

Return Value

This returns a pointer to the destination string dest.

Example

The following example shows the usage of strcpy() function.

#include <stdio.h>

#include <string.h>

int main()

{

 char src [40];

 char dest [100];

 memset(dest , ' \ 0' , sizeof (dest));

 strcpy (src , "This is tutorialspoint.com");

 strcpy (dest , src);

 printf ("Final copied string : %s \ n" , dest);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Final copied string : This is tutorialspoint . com

char *strncpy(char *dest, const char *src, size_t n)

Description

The C library function char *strncpy(char *dest, const char *src, size_t n) copies

up to n characters from the string pointed to, by src to dest . In a case where the length

of src is less than that of n, the remainder of dest will be padded with null bytes.

 C Standard Library

222

Declaration

Following is the declaration for strncpy() function.

char * strncpy (char * dest , const char * src , si ze_t n)

Parameters

 dest -- This is the pointer to the destination array where the content is to be copied.

 src -- This is the string to be copied.

 n -- The number of characters to be copied from source.

Return Value

This function returns the final copy of the copied string.

Example

The following example shows the usage of strncpy() function. Here we have used

function memset() to clear the memory location.

#include <stdio.h>

#include <string.h>

int main()

{

 char src [40];

 char dest [12];

 memset(dest , ' \ 0' , sizeof (dest));

 strcpy (src , "This is tutorialspoint.com");

 strncpy (dest , src , 10);

 printf ("Final copied string : %s \ n" , dest);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Fi nal copied string : This is tu

size_t strcspn(const char *str1, const char *str2)

Description

 C Standard Library

223

The C library function size_t strcspn(const char *str1, const char *str2) calculates

the length of the initial segment of str1 , which consists entirely of characters not

in str2 .

Declaration

Following is the declaration for strcspn() function.

size_t strcspn (const char * str1 , const char * str2)

Parameters

 str1 -- This is the main C string to be scanned.

 str2 -- This is the string containing a list of characters to match in str1.

Return Value

This function returns the number of characters in the initial segment of string str1, which
are not in the string str2.

Example

The following example shows the usage of strcspn() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 int len ;

 const char str1 [] = "ABCDEF4960910";

 const char str2 [] = "013" ;

 len = strcspn (str1 , str2);

 printf ("First matched character is at %d \ n" , len + 1);

 return (0);

}

Let us compile and run the above program that will produce the following result:

First matched character is at 10

char *strerror(int errnum)

Description

 C Standard Library

224

The C library function char *strerror(int errnum) searches an internal array for the

error number errnum and returns a pointer to an error message string. The error strings

produced by strerror depend on the developing platform and compiler.

Declaration

Following is the declaration for strerror() function.

char * strerror (int errnum)

Parameters

 errnum -- This is the error number, usually errno .

Return Value

This function returns a pointer to the error string describing error errnum.

Example

The following example shows the usage of strerror() function.

#include <stdio.h>

#include <string.h>

#include <errno.h>

int main ()

{

 FILE * fp ;

 fp = fopen ("file.txt" , "r");

 if (fp == NULL)

 {

 printf ("Error: %s \ n" , strerror (errno));

 }

 return (0);

}

Let us compile and run the above program that will produce the following result because
we are trying to open a file which does not exist:

Error : No such file or directory

size_t strlen(const char *str)

Description

 C Standard Library

225

The C library function size_t strlen(const char *str) computes the length of the

string str up to, but not including the terminating null character.

Declaration

Following is the declaration for strlen() function.

size_t strlen (const char * str)

Parameters

 str -- This is the string whose length is to be found.

Return Value

This function returns the length of string.

Example

The following example shows the usage of strlen() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 char str [50];

 int len ;

 strcpy (str , "This is tutorialspoint.com");

 len = strlen (str);

 printf ("Length of |%s| is |%d| \ n" , str , len);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Length of |This is tutorialspoint.com| is |26|

char *strpbrk(const char *str1, const char *str2)

Description

 C Standard Library

226

The C library function char *strpbrk(const char *str1, const char *str2) finds the

first character in the string str1 that matches any character specified in str2 . This does

not include the terminating null-characters.

Declaration

Following is the declaration for strpbrk() function.

char * strpbrk (const char * str1 , const char * str2)

Parameters

 str1 -- This is the C string to be scanned.

 str2 -- This is the C string containing the characters to match.

Return Value

This function returns a pointer to the character in str1 that matches one of the
characters in str2, or NULL if no such character is found.

Example

The following example shows the usage of strpbrk() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 const char str1 [] = "abcde2fghi3jk4l" ;

 const char str2 [] = "34" ;

 char * ret ;

 ret = strpbrk (str1 , str2);

 if (ret)

 {

 printf ("First matching character: %c \ n" , * ret);

 }

 else

 {

 printf ("Character not found");

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

 C Standard Library

227

First matching character : 3

char *strrchr(const char *str, int c)

Description

The C library function char *strrchr(const char *str, int c) searches for the last

occurrence of the character c (an unsigned char) in the string pointed to, by the

argument str .

Declaration

Following is the declaration for strrchr() function.

char * strrchr (const char * str , int c)

Parameters

 str -- This is the C string.

 c -- This is the character to be located. It is passed as its int promotion, but it is

internally converted back to char.

Return Value

This function returns a pointer to the last occurrence of character in str. If the value is

not found, the function returns a null pointer.

Example

The following example shows the usage of strrchr() function.

#include <stdio.h>

#include <string.h>

int main ()

{

 int len ;

 const char str [] = "http://www.tutorialspoint.com" ;

 const char ch = '.' ;

 char * ret ;

 ret = strrchr (str , ch);

 printf ("String after |%c| is - |%s| \ n" , ch, ret);

 return (0);

}

 C Standard Library

228

Let us compile and run the above program that will produce the following result:

String after |.| is - |. com|

size_t strspn(const char *str1, const char *str2)

Description

The C library function size_t strspn(const char *str1, const char *str2) calculates

the length of the initial segment of str1 which consists entirely of characters in str2 .

Declaration

Following is the declaration for strspn() function.

size_t strspn (const char * str1 , const char * str2)

Parameters

 str1 -- This is the main C string to be scanned.

 str2 -- This is the string containing the list of characters to match in str1.

Return Value

This function returns the number of characters in the initial segment of str1 which
consist only of characters from str2.

Example

The following example shows the usage of strspn() function.

#include <st dio.h>

#include <string.h>

int main ()

{

 int len ;

 const char str1 [] = "ABCDEFG019874";

 const char str2 [] = "ABCD";

 len = strspn (str1 , str2);

 printf ("Length of initial segment matching %d \ n" , len);

 return (0);

}

Let us compile and run the above program that will produce the following result:

 C Standard Library

229

Length of initial segment matching 4

char *strstr(const char *haystack, const char *needle)

Description

The C library function char *strstr(const char *haystack, const char

*needle) finds the first occurrence of the substring needle in the string haystack . The

terminating '\0' characters are not compared.

Declaration

Following is the declaration for strstr() function.

char * strstr (const char * haystack , const char * needle)

Parameters

 haystack -- This is the main C string to be scanned.

 needle -- This is the small string to be searched within haystack string.

Return Value

This function returns a pointer to the first occurrence in haystack of any of the entire

sequence of characters specified in needle, or a null pointer if the sequence is not

present in haystack.

Example

The following example shows the usage of strstr() function.

#include <stdio.h>

#include <string.h>

int main()

{

 const char haystack [20] = "TutorialsPoint" ;

 const char needle [10] = "Point" ;

 char * ret ;

 ret = strstr (haystack , needle);

 printf ("The substring is: %s \ n" , ret);

 return (0);

}

 C Standard Library

230

Let us compile and run the above program that will produce the following result:

The substring is : Point

char *strtok(char *str, const char *delim)

Description

The C library function char *strtok(char *str, const char *delim) breaks

string str into a series of tokens using the delimiter delim .

Declaration

Following is the declaration for strtok() function.

char * strtok (char * str , const char * delim)

Parameters

 str -- The contents of this string are modified and broken into smaller strings

(tokens).

 delim -- This is the C string containing the delimiters. These may vary from one

call to another.

Return Value

This function returns a pointer to the last token found in the string. A null pointer is

returned if there are no tokens left to retrieve.

Example

The following example shows the usage of strtok() function.

#include <string.h>

#include <stdio.h>

int main()

{

 const char str [80] = "This is - www.tutorialspoint.com - website" ;

 const char s[2] = " - " ;

 char * token ;

 /* get the first token */

 token = strtok (str , s);

 /* walk through other tokens */

 while (token != NULL)

 {

 printf (" %s \ n" , token);

 C Standard Library

231

 token = strtok (NULL, s);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

This is

www. tutorialspoint . com

website

size_t strxfrm(char *dest, const char *src, size_t n)

Description

The C library function size_t strxfrm(char *dest, const char *src, size_t

n) transforms the first n characters of the string src into current locale and place them in

the string dest .

Declaration

Following is the declaration for strxfrm() function.

size_t strxfrm (char * dest , const char * src , size_t n)

Parameters

 dest -- This is the pointer to the destination array where the content is to be

copied. It can be a null pointer if the argument for n is zero.

 src -- This is the C string to be transformed into current locale.

 n -- The maximum number of characters to be copied to str1.

Return Value

This function returns the length of the transformed string, not including the terminating

null-character.

Example

The following example shows the usage of strxfrm() function.

#include <stdio.h>

#include <string.h>

 C Standard Library

232

int main()

{

 char dest [20];

 char src [20];

 int len ;

 strcpy (src , "Tutorials Point");

 len = strxfrm (dest , src , 20);

 printf ("Length of string |%s| is: |%d|" , dest , le n);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Length of string | Tutorials Point | is : | 15|

 C Standard Library

233

Introduction

The time.h header defines four variable types, two macro and various functions for

manipulating date and time.

Library Variables

Following are the variable types defined in the header time.h:

S.N. Variable & Description

1 size_t

This is the unsigned integral type and is the result of the sizeof keyword.

2 clock_t

This is a type suitable for storing the processor time.

3 time_t is

This is a type suitable for storing the calendar time.

4 struct tm

This is a structure used to hold the time and date.

The tm structure has the following definition:

struct tm {

 int tm_sec; /* seconds, range 0 to 59 */

 int tm_min; /* minutes, range 0 to 59 */

 int tm_hour ; /* hours, range 0 to 23 */

 int tm_mday; /* day of the month, range 1 to 31 */

 int tm_mon; /* m onth, range 0 to 11 */

 int tm_year ; /* The number of years since 1900 */

 int tm_wday; /* day of the week, range 0 to 6 */

 int tm_yday; /* day in the year, range 0 to 365 */

 int tm_isdst ; /* daylight saving time */

};

15. C Library <time.h>

 C Standard Library

234

Library Macros

Following are the macros defined in the header time.h:

S.N. Macro & Description

1 NULL

This macro is the value of a null pointer constant.

2 CLOCKS_PER_SEC

This macro represents the number of processor clocks per second.

Library Functions

Following are the functions defined in the header time.h:

S.N. Function & Description

1

char *asctime(const struct tm *timeptr)

Returns a pointer to a string which represents the day and time of the
structure timeptr.

2

clock_t clock(void)

Returns the processor clock time used since the beginning of an
implementation defined era (normally the beginning of the program).

3
char *ctime(const time_t *timer)

Returns a string representing the localtime based on the argument timer.

4
double difftime(time_t time1, time_t time2)

Returns the difference of seconds between time1 and time2 (time1-time2).

5

struct tm *gmtime(const time_t *timer)

The value of timer is broken up into the structure tm and expressed in

Coordinated Universal Time (UTC), also known as Greenwich Mean Time

(GMT).

6

struct tm *localtime(const time_t *timer)

The value of timer is broken up into the structure tm and expressed in the
local time zone.

7
time_t mktime(struct tm *timeptr)

Converts the structure pointed to by timeptr into a time_t value according to

 C Standard Library

235

the local time zone.

8

size_t strftime(char *str, size_t maxsize, const char *format, const struct tm
*timeptr)

Formats the time represented in the structure timeptr according to the
formatting rules defined in format and stored into str.

9
time_t time(time_t *timer)

Calculates the current calender time and encodes it into time_t format.

char *asctime(const struct tm *timeptr)

Description

The C library function char *asctime(const struct tm *timeptr) returns a pointer to a

string which represents the day and time of the structure struct timeptr .

Declaration

Following is the declaration for asctime() function.

char * asctime (const struct tm * timeptr)

Parameters

The timeptr is a pointer to tm structure that contains a calendar time broken down into

its components as shown below:

struct tm {

 int tm_sec; /* seconds, range 0 to 59 */

 int tm_min; /* minutes, range 0 to 59 */

 int tm_hour ; /* hours, range 0 to 23 */

 int tm_mday; /* day of the month, range 1 to 31 */

 int tm_mon; /* month, range 0 to 11 */

 int tm_year ; /* The number of years since 1900 */

 int tm_wday; /* day of the week, range 0 to 6 */

 int tm_yday; /* day in the year, range 0 to 365 */

 int tm_isdst ; /* daylight saving time */

};

Return Value

This function returns a C string containing the date and time information in a human-
readable format Www Mmm dd hh:mm:ss yyyy , where Www is the

weekday, Mmm the month in letters, dd the day of the month, hh:mm:ss the time,

and yyyy the year.

 C Standard Library

236

Example

The following example shows the usage of asctime() function.

#include <stdio.h>

#include <string.h>

#include <time .h>

int main()

{

 struct tm t ;

 t . tm_sec = 10;

 t . tm_min = 10;

 t . tm_hour = 6;

 t . tm_mday = 25;

 t . tm_mon = 2;

 t . tm_year = 89;

 t . tm_wday = 6;

 puts (asctime (&t));

 return (0);

}

Let us compile and run the above program that will produce the following result:

Sat Mar 25 06: 10: 10 1989

clock_t clock(void)

Description

The C library function clock_t clock(void) returns the number of clock ticks elapsed

since the program was launched. To get the number of seconds used by the CPU, you
will need to divide by CLOCKS_PER_SEC.

On a 32 bit system where CLOCKS_PER_SEC equals 1000000 this function will return the

same value approximately every 72 minutes.

Declaration

Following is the declaration for clock() function.

clock _t clock (void)

 C Standard Library

237

Parameters

 NA

Return Value

This function returns the number of clock ticks elapsed since the start of the program.

On failure, the function returns a value of -1.

Example

The following example shows the usage of clock() function.

#inc lude <time.h>

#include <stdio.h>

int main()

{

 clock_t start_t , end_t , total_t ;

 int i ;

 start_t = clock ();

 printf ("Starting of the program, start_t = %ld \ n" , start_t);

 printf ("Going to scan a big loop, start_t = %ld \ n" , start_t);

 for (i =0; i < 10000000; i ++)

 {

 }

 end_t = clock ();

 printf ("End of the big loop, end_t = %ld \ n" , end_t);

 total_t = (double)(end_t - start_t) / CLOCKS_PER_SEC;

 printf ("Total time taken by CPU: %f \ n" , total_t);

 printf ("Exiting of the prog ram... \ n");

 return (0);

}

Let us compile and run the above program that will produce the following result:

Starting of the program , start_t = 0

Going to scan a big loop , start_t = 0

End of the big loop , end_t = 20000

Total time taken by CPU: 0.000 000

 C Standard Library

238

Exiting of the program ...

char *ctime(const time_t *timer)

Description

The C library function char *ctime(const time_t *timer) returns a string representing

the localtime based on the argument timer .

The returned string has the following format: Www Mm m dd hh:mm:ss

yyyy ,where Www is the weekday, Mmm the month in letters, dd the day of the

month, hh:mm:ss the time, and yyyy the year.

Declaration

Following is the declaration for ctime() function.

char * ctime (const time_t * timer)

Parameters

 timer -- This is the pointer to a time_t object that contains a calendar time.

Return Value

This function returns a C string containing the date and time information in a human-
readable format.

Example

The following example shows the usage of ctime() function.

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t curtime ;

 time (&curtime);

 printf ("Current time = %s" , ctime (&curtime));

 return (0);

}

Let us compile and run the above program that will produce the following result:

Current time = Mon Aug 13 08: 23: 14 2012

 C Standard Library

239

double difftime(time_t time1, time_t time2)

Description

The C library function double difftime(time_t time1, time_t time2) returns the

difference of seconds between time1 and time2 i.e. (time1 - time2) . The two times

are specified in calendar time, which represents the time elapsed since the Epoch

(00:00:00 on January 1, 1970, Coordinated Universal Time (UTC)).

Declaration

Following is the declaration for difftime() function.

double difftime (time_t time1 , time_t time2)

Parameters

 time1 -- This is the time_t object for end time.

 time2 -- This is the time_t object for start time.

Return Value

This function returns the difference of two times (time2 - time1) as a double value.

Example

The following example shows the usage of difftime() function.

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t start_t , end_t ;

 double diff_t ;

 printf ("Starting of the program... \ n");

 time (&start_t);

 printf ("Sleeping for 5 seconds... \ n");

 sleep (5);

 time (&end_t);

 diff_t = difft ime(end_t , start_t);

 printf ("Execution time = %f \ n" , diff_t);

 printf ("Exiting of the program... \ n");

 C Standard Library

240

 return (0);

}

Let us compile and run the above program that will produce the following result:

Starting of the program ...

Sleeping for 5 seconds...

Execution time = 5.000000

Exiting of the program ...

struct tm *gmtime(const time_t *timer)

Description

The C library function struct tm *gmtime(const time_t *timer) uses the value

pointed by timer to fill a tm structure with the values that represent the corresponding

time, expressed in Coordinated Universal Time (UTC) or GMT timezone.

Declaration

Following is the declaration for gmtime() function.

struct tm * gmtime(const time_t * timer)

Parameters

 timeptr -- This is the pointer to a time_t value representing a calendar time.

Return Value

This function returns pointer to a tm structure with the time information filled in. Below

is the detail of timeptr structure:

struct tm {

 int tm_sec; /* seconds, range 0 to 59 */

 int tm_min; /* minutes, range 0 to 59 */

 int tm_hour ; /* hours, range 0 to 23 */

 int tm_mday; /* day of the month, range 1 to 31 */

 int tm_mon; /* month, range 0 to 11 */

 int tm_year ; /* The number of years since 1900 */

 int tm_wday; /* day of the week, range 0 to 6 */

 int tm_yday; /* day in the year, range 0 to 365 */

 int tm_isdst ; /* daylight saving time */

};

Example

 C Standard Library

241

The following example shows the usage of gmtime() function.

#include <stdio.h>

#include <time.h>

#define BST (+ 1)

#define CCT (+ 8)

int main ()

{

 time_t rawtime ;

 struct tm * info ;

 time (&rawtime);

 /* Get GMT time */

 info = gmtime(&rawtime);

 printf ("Current world clock: \ n");

 printf ("London : %2d:%02d \ n" , (info - >tm_hour +BST)%24, info - >tm_min);

 printf ("China : %2d:%02d \ n" , (info - >tm_hour +CCT)%24, info - >tm_min);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Current world clock :

London : 14: 10

China : 21: 10

struct tm *localtime(const time_t *timer)

Description

The C library function struct tm *localtime(const time_t *timer) uses the time

pointed by timer to fill a tm structure with the values that represent the corresponding

local time. The value of timer is broken up into the structure tm and expressed in the

local time zone.

Declaration

 C Standard Library

242

Following is the declaration for localtime() function.

struct tm * localtime (const time_t * timer)

Parameters

 timer -- This is the pointer to a time_t value representing a calendar time.

Return Value

This function returns a pointer to a tm structure with the time information filled in.

Following is the tm structure information:

struct tm {

 int tm_sec; /* seconds, range 0 to 59 */

 int tm_min; /* minutes, range 0 to 59 */

 int tm_hour ; /* hours, range 0 to 23 */

 int tm_mday; /* day of the month, range 1 to 31 */

 int tm_mon; /* month , range 0 to 11 */

 int tm_year ; /* The number of years since 1900 */

 int tm_wday; /* day of the week, range 0 to 6 */

 int tm_yday; /* day in the year, range 0 to 365 */

 int tm_isdst ; /* daylight savi ng time */

};

Example

The following example shows the usage of localtime() function.

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t rawtime ;

 struct tm * info ;

 char buffer [80];

 time (&rawtime);

 info = localtime (&ra wtime);

 printf ("Current local time and date: %s" , asctime (info));

 return (0);

 C Standard Library

243

}

Let us compile and run the above program that will produce the following result:

Current local time and date : Thu Aug 23 09: 12: 05 2012

time_t mktime(struct tm *timeptr)

Description

The C library function time_t mktime(struct tm *timeptr) converts the structure

pointed to by timeptr into a time_t value according to the local time zone.

Declaration

Following is the declaration for mktime() function.

time_t mktime(stru ct tm * timeptr)

Parameters

 timeptr -- This is the pointer to a time_t value representing a calendar time,

broken down into its components. Below is the detail of timeptr structure

struct tm {

 int tm_sec; /* seconds, range 0 to 59 */

 int tm_min; /* minutes, range 0 to 59 */

 int tm_hour ; /* hours, range 0 to 23 */

 int tm_mday; /* day of the month, range 1 to 31 */

 int tm_mon; /* month, range 0 to 11 */

 int tm_year ; /* The number of years since 1900 */

 int tm_wday; /* day of the week, range 0 to 6 */

 int tm_yday; /* day in the year, range 0 to 365 */

 int tm_isdst ; /* daylight saving time */

};

Return Value

This function returns a time_t value corresponding to the calendar time passed as

argument. On error, a -1 value is returned.

Example

 C Standard Library

244

The following example shows the usage of mktime() function.

#include <stdio.h>

#include <time.h>

int main ()

{

 int ret ;

 struct tm info ;

 char buffer [80];

 info . tm_year = 2001 - 1900;

 info . tm_mon = 7 - 1;

 info . tm_mday = 4;

 info . tm_hour = 0;

 info . tm_min = 0;

 info . tm_sec = 1;

 info . tm_isdst = - 1;

 ret = mktime(&info);

 if (ret == - 1)

 {

 printf ("Error: unable to make time using mktime \ n");

 }

 else

 {

 strftime (buffer , sizeof (buffer), "%c", &info);

 print f (buffer);

 }

 return (0);

}

Let us compile and run the above program that will produce the following result:

Wed Jul 4 00: 00: 01 2001

 C Standard Library

245

size_t strftime(char *str, size_t maxsize, const char *format, const
struct tm *timeptr)

Description

The C library function size_t strftime(char *str, size_t maxsize, const char

*format, const struct tm *timeptr) formats the time represented in the

structure timeptr according to the formatting rules defined in format and stored

into str .

Declaration

Following is the declaration for strftime() function.

size_t strftime (char * str , size_t maxsize , const char * format , const struct t m
* timeptr)

Parameters

 str -- This is the pointer to the destination array where the resulting C string is

copied.

 maxsize -- This is the maximum number of characters to be copied to str.

 format -- This is the C string containing any combination of regular characters

and special format specifiers. These format specifiers are replaced by the function

to the corresponding values to represent the time specified in tm. The format

specifiers are:

Specifier Replaced By Example

%a Abbreviated weekday name Sun

%A Full weekday name Sunday

%b Abbreviated month name Mar

%B Full month name March

%c Date and time representation Sun Aug 19
02:56:02 2012

%d Day of the month (01-31) 19

%H Hour in 24h format (00-23) 14

%I Hour in 12h format (01-12) 05

%j Day of the year (001-366) 231

 C Standard Library

246

%m Month as a decimal number (01-12) 08

%M Minute (00-59) 55

%p AM or PM designation PM

%S Second (00-61) 02

%U Week number with the first Sunday as the first day
of week one (00-53)

33

%w Weekday as a decimal number with Sunday as 0
(0-6)

4

%W Week number with the first Monday as the first day

of week one (00-53)

34

%x Date representation 08/19/12

%X Time representation 02:50:06

%y Year, last two digits (00-99) 01

%Y Year 2012

%Z Timezone name or abbreviation CDT

%% A % sign %

 timeptr -- This is the pointer to a tm structure that contains a calendar time

broken down into its components as shown below:

struct tm {

 int tm_sec; /* seconds, range 0 to 59 */

 int tm_min; /* minutes, range 0 to 59 */

 int tm_hour ; /* hours, range 0 to 23 */

 int tm_mday; /* day of the month, range 1 to 31 */

 int tm_mon; /* month, range 0 to 11 */

 int tm_year ; /* The number of years since 1900 */

 int tm_wday; /* day of the week, range 0 to 6 */

 int tm_yday; /* day in the year, range 0 to 365 */

 C Standard Library

247

 int tm_isdst ; /* daylight saving time */

};

Return Value

If the resulting C string fits in less than size characters (which includes the terminating

null-character), the total number of characters copied to str (not including the

terminating null-character) is returned otherwise, it returns zero.

Example

The following example shows the usage of strftime() function.

#include <stdio.h>

#include <time.h>

int main ()

{

 time_t rawtime ;

 struct tm * info ;

 char buffer [80];

 time (&rawtime);

 info = localtime (&rawtime);

 strftime (buffer , 80, "%x - %I:%M%p", info);

 printf ("Formatted date & time : |%s| \ n" , buffer);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Formatted date & time : | 08/ 23/ 12 - 12: 40AM|

time_t time(time_t *timer)

Description

The C library function time_t time(ti me_t *seconds) returns the time since the Epoch

(00:00:00 UTC, January 1, 1970), measured in seconds. If seconds is not NULL, the

return value is also stored in variable seconds .

 C Standard Library

248

Declaration

Following is the declaration for time() function.

time_t time (tim e_t * t)

Parameters

 seconds -- This is the pointer to an object of type time_t, where the seconds

value will be stored.

Return Value

The current calendar time as a time_t object.

Example

The following example shows the usage of time() function.

#include <st dio.h>

#include <time.h>

int main ()

{

 time_t seconds ;

 seconds = time (NULL);

 printf ("Hours since January 1, 1970 = %ld \ n" , seconds / 3600);

 return (0);

}

Let us compile and run the above program that will produce the following result:

Hours since January 1, 1970 = 393923

