THE BOOK OF RUBY

Huw COLLINGBOURNE

THE BooK OF RuBY

Copyright © 2008iuw Collingbourne

The right of Huw Collingbourne to be identified as the Author of the Work has
beenasserted by him in accordance with the Copyright, Designs and Patents Act
1988.

All rights reserved. No part of this publication may be reproduced, stored inar

trieval system, or transmitted in any form or by any means without the fgrior wri

ten permigsen of the publisher, nor be otherwise circulated in any form of binding

or cover other than that in which it is published and without a similar coralition b
ing imposed on the subsequent purchaser.

Aut hor & sttpWew.sapphiresteel.com/

http://www.sapphiresteel.com/

ABOUT THE AUTHOR

ABOUT THE AUTHOR

Huw Collingbourne is Technology Director of SapphireSteel Software
(http://www.sapphiresteel.cojp/developers of Ul RubysIn Steelz w1l UEAa wEOE w1
IDE for Visual Studio and the sAmethystz w (# $dobedFléxu Huw is a well

known technology writer in the UK and has written numerous opinion and
programming columns, including tutorials on C#, Delphi, Java, Smalltalk and

Ruby for a number of computer magazines such as Computer Shopper, PC Pro

and PC Plus. He is author of the free ebook, The Little Book Of Ruby, and is the

editor the online computing magazine, Bitwise (www.bitwisemag.cojn Huw has

an MA in English from the University of Cambridge.

http://www.sapphiresteel.com/

THE BooK OF RuBY

INTRO DUCTION

Getting Started With Ruby

As you are now reading a book on Ruby, | think it is safe to work on the assum p-
UPOOwWUT E0wa OUwWEOOZ UwOI 1T Ewldl wURuaydanduagel EET w
(OUUI EEw(zOOWUEOI wUT 1 wedp OfGlarkniy &ithw WG O Y1 O
many people are attracted to Ruby by its simple syntax and its ease of use. They

EUIl wbhUOOT wlUEaAazUwUAOUERWOEaAaWOOOOwWUDPOX OI
know the language the more you will realize that it is, on the contrary, extremely
complex. The plain fact of the matter is that Ruby has a number of pitfalls just

waiting for unwary programmers to drop into.

In this book it is my aim to guide you safely over the pitfall s and lead you

OT UOUTT wOT T wET OxxawbEUI UUwOl wiUEazUwUaol
(7 OOWE T wébthithe Gréoot, @éll-paved highways and the gnarlier, bumpy

little byways of Ruby. By the end of the journey, you should be able to use Ruby

safely and effectively without getting caught out by any unexpected hazards

along the way.

The Book Of Ruby concentrates principally on version 1.8.x of the Ruby lan-
guage. While a version 1.9 of Ruby has been eleased, Ruby 1.8 is still far more
widely used. Ruby 1.9 may be regarded as a stepping stone towards Ruby 2.0In
most respects the syntax of Ruby 1.9is close to that of Ruby 1.8 but you should
be aware that there are some differences and complete compatibility is not
guaranteed.

THE BooK OF RuBY

How To READ THIS BOOK

The book is divided up into bite -sized chunks. Each chapter introduces a theme
which is subdivided into sub-topics. Each programming topic is accompanied by
one or more small self-contained, ready-to-run Ruby programs.

If you want to follow a well -structured souU U, Iread each chapter in sequence. If

you prefer a more hands-on approach, you can run the programs first and refer

to the text when you need an explanation. If you already have some experience

of Ruby, feel free to cherry-pick topics in any order that you find use ful. There

EUIl wOOwOOOOOPUT PEWEXxxOPEEUDPOOUWDPOWUT PUWEOOO WL
OPT T Ows OOUT wUOT 1 wxOOUz wbhbi wadOUwUI EEwWUT 1 wEl ExUI U

DIGGING DEEPER

Every chapter apart from the first includes Ew Ul EUDOOWEEOO]I Ews #D11 DO
This is where we explore specific aspecs of Ruby (including a few of those

gnarly byways | mentioned a moment ago) in greater depth. In many cases you

could skip the Digging Deeper sections and still learn all the Ruby you wi Il ever

need. On the other hand, it is in the Digging Deeper sections that we often get

closest tothe inner workings of Ruby so, if you skip them, you are going to miss

out on some pretty interesting stuff.

MAKING SENSE OF THE TEXT

In The Book Of Ruby, any Ruby source code is written like this:

def saysomething
puts("Hello")
end

When there is a sample program to accompany the code, the program name is
shown in a box on the right -hand side of the page, like this:

helloname.rb

INTRODUCT

Explanatory notes (which generally provide some hints or give a more in-depth

explanation of some point mentioned in the text) are shown in a box like this:

ION

This is an explanatory note . You can skip it if you like ¢ but if you do
UOOwa OUwWOEawOPUUwWUOO! UT BOT wOi wh(

[—;

H 0

C\

()

THE BooK OF RuBY

Ruby and Rails

W HAT ISRuBY?

Ruby is a crossplatform interpreted language which has many features in
EOOOOOwWwPPUT wOUT T UwsVUEUDxUDPOT zw OERE BET I UwUUET
s$01 OPUT wOEOT U &Hich lpakssohéehatrakaablike@atirst sight. | t
is thoroughly object oriented, and has a good dealin common with the great -
T UEOEEEEEa wOI nggages, Sinatltalk. It hadhdeen said that the lan-
guages which most influenced the development of Ruby were: Perl, Smalltalk,
Eiffel, Ada and Lisp. The Ruby language was created by Yukihiro Matsumoto
EOOOOO0AawWOOOPOWEVUWs, EVAZ AWEOEWPUWPEUwWI PUUCOwWUI

W HAT ISRAILS?

Currently much of the excitement surrounding Ruby can be attributed to a web

development framework called Rails ¢+ x Ox UOEUOa w OOOPOwEUws 1UEa w.
Rails is an impressive framework but it is not the be-all and end-all of Ruby.

Indeed, if you were to leap right into Rails development without first mastering

Ruby, you might find that you end up creating applicationsUT EUwa OUwWE OOz Uwli Y
understand (this is, in fact, all too common among Ruby On Rails novices).

Understanding Ruby is a necessary prerequisite of understanding Rails.

DownNLOAD RuBY

You can download the latest version of Ruby from http://www.ruby -lang.org. Be

sure to download the binaries (not merely the source code). On a PC you can

install Ruby using the Ruby Installer for Wi ndows:
http://rubyinstaller.rubyforge.org/wiki/wiki.pl

Alt ernatively, if you are using the Ruby In Steel IDE, you can install Ruby, Rails,

1VEaw(Qw2011 OWECEWEOOWUIT 1T woOUT T Uwl0OGiDUwa dUlwbbO

OO0l wbOUUEOOI Uz WEYEDPOEEO!I wOOwWUT T wUDPUI zUw# OPOOO
http://www.sapphiresteel.com/

INTRODUCTION

GET THE SOURCE CODE OF THE SAMPLE PROGRAMS

All the programs in every chapter in this book are available for download as a

Zip archive from http://www.sapphiresteel.com/The -Book-Of-Ruby. When you

unzip the pr ograms you will find that they a re grouped into a set of directories ¢

one for each chapter. For the benefit of programmers using Ruby In Steel (the
SDUUEOQW2UUEDOW(#$SWET YI OOx1 EwE a ywou vilb& UUT O
able to load the programs as Visual Sudio solution s into Ruby In Steel For Visual

Studio 2008 with the programs for each chapter arranged on the branches of a

tree in the Project Manager. If you are using another editor or IDE, load each

Ruby program, one by one, as it is needed.Users of Ruby In Steel for Visual

Studio 2005 may import or convert the projects (via the File New/Opermenu).

RUNNING RuUBY PROGRAMS

It is often useful to keep a command window open in the source directory
containing your Ruby pro gram files. Assuming that the Ruby interpreter is
correctly pathed on your system, you will then be able to run programs by
entering ruby <program name>like this:

ruby lhelloworld.rb

If you are using Ruby In Steel you can run the programs in the interactive
console by pressing CTRL+F5 or run them in the debugger by pressing F5.

THE RuBY LIBRARY DOCUMENTATION

The Book Of Ruby covers many of the classes and methods in the standard Ruby
library - but by no means all of them! At some stage, therefore, you will need to
refer to documentation on the full range of classes used by Ruby. Fortunately, the
Ruby class library contains embedded documentation which has been extracted
and compiled into an easily browsable reference which is available in several
formats. For example, refer to this online documentation which is shown in a
multi -pane web page:

http://www.ruby -doc.org/core/

http://www.sapphiresteel.com/The-Book-Of-Ruby

THE Book OF RuBY

Alternatively, here you can browse the library alphabetically:

http://www.ruby -doc.org/stdlib/

The above page contains instructions for downloading the documentation for

offline browsing. There is also a page from which the library (and other) doc u-

mentation may be downloaded in various formats, versions and languages:

http://mwww.ruby -doc.org/downloads

. *OwUl E0zUwl OOUT 1 wwOUw Uil wYWEBGBQIUW®OwWPOUOS w3b
UOUEDPT T OwOOwUOw" T ExUI Uw. O1 o

Vi

INTRODUCTION

The Book Of Ruby is sponsored by SapphireSteel Software, makers of the
Ruby In Steel IDE for Visual Studio.
http://www.sapphiresteel.com

Vi

http://www.sapphiresteel.com/

CHAPTER ONE

String s, Numbers, Classes and Objects

371 wi PUVOWUT POT WOOWODBOPWEEOUUWUT T wiUEawo
UT PUOwWOT Uz UwOOOOWEUwWUT T weOET woOi wOT 1 wOUEE!

lhelloworld.rb

puts 'hello world'

31 Bltzn its entirety. One method, putsOw EQOE w OO1 wUUUDPOT OQws i
ITEEI UUWOUWEOEUUWET I DOPUDPOOUOWOOWDOXx OUUW
as simple as it gets. Load up the code lhelloworld.rb , and try it out.

GETTING AND PUTTING INPUT

"EYDPOT ws xUUzZwEwWUUOUDOT wOOwWUT T wOUUxUO0wel 1 U
U0l xwbPUwUOOwsT 1 UzwEwWUOUDPOT 8w Uwa Odétu.drel T U w'
2helloname.rb prompts the user for his or her name + O1 Uz UwUUx x OUT wb(
EQEwUI | OWEPUxOEAUWEwWTI UT T UDPOT ow?2' 1 O00w%UI |

2helloname.rb

print('Enter your name: ")
name = gets()
puts("Hello #{name}")

While this is still very simple, there are a few important details that need to be
I Rx OEDOI ES w %D U U0 O wphird Gr@Hen thar) pus taudisglay ither U 0T E

1

THE BooK OF RuBY

prompt. This is because puts adds a linefeed at the end whereasprint does not;
in the present case | want the cursor to remain on the same line as the prompt.

On the next line | use gets() to read in a string when the user presses Enter. This

string is assigned to the variable, name. | have not pre-declared this variable, nor

have | specified its type. In Ruby you can create variables as and when you need

UT1 OWECEW1UEawsPOI 1T UUzwUT T PUwUaxT UBw(OQwUT T wx L
name so Ruby knows that the type of the name variable must be a string.

Note: Ruby is case sensitive. A variable called myvar is different
from one called myVar. A variable such asnamein our sample project
must begin with a lowercase character (if it begins with an uppercase
character Ruby will treat it as a constant ¢ (z OOwi EY] wOOUI wUOwUEa w
constants in a later chapter).

Incidentally, the brackets following gets() are optional as are the brackets
enclosing the strings after print and puts; the code would run just th e same if
you removed the brackets. However, brackets can help to resolve ambiguities
and, in some cases, the interpreter will warn you if you omit them.

STRINGS AND EMBEDDED EVALUATION

The last line in our sample code is rather interesting:
puts("Hello #{name}")

Here the namevariable is embedded into the string itself. This is done by placing

Uil wYEUPEEOI wEI UP1 1 OwUPOWEUUOAWEUEETI UwxUI EI E
#HWBw3T PUWOPOEWOI wsi OEI EEIl Ezwl YEOUEUPOOWOOOA w
double quotes. If you were to try this with a string delimited by single quotes,

the variable would not be evaluated and the string 6 He | | o #rpubddabene } 6

displayed exactly as entered.

(OwbUOZUwOOOawWYEUPEEOI Uwbp igited swiftgs GauEdn wi OEIT EEI E

also embed nonprint ing characters such as newlinesd n @nd tabsdt 6You can

I YI Owi OEIl EWEPUUwWOI wxUOT UEOQOWEOETI wEOEWOEUIT T OEU
...... - 51 u

that you have a method called shownameOQwpb i DET wUl O0UOUwWUT T wUUOUD
2

CHAPTER ONE

The following string would, in the process of evaluation, call the showname
Ol UT OEWEOEOWEUWEwWUI UUOUOwPUwPOUOEWEDUX OE:

puts "Hello #{showname}"

See if you can figure out what would be displayed by the following:

3string_eval.rb

puts("\ n\t#{(1 +2)* 3} \ nGoodbye")

Now run the 3string_eval.rb program to see if you were right.

N UMBERS

- UOEIl UUwWEUI wNRUUUOwWEUwWI EVAwU0OwUUTl wEUwUUUDC
UOWEEOEUOGEUI wUT I wUl O OfstneuitemUtaded an @sJextax] UE O
applicable tax rate and add the result to the value of the subtotal. Assuming the
subtotal to be $100 and the tax rate to be 17.5%, this Ruby prgram does the

calculation and displays the result:

4calctax.rb

subtotal = 100.00

taxrate = 0.175

tax = subtotal * taxrate

puts "Tax on $#{subtotal} is $#{tax}, so grand total is $#{subtotal+tax}"

Obviously, this program would be more useful if it could perform calculations
on a variety of subtotals rather than calculating the same value time after time!
Here is a simple version of a Calculator that prompts the user to enter a subtotal:

taxrate = 0.175

print "Enter price (ex tax): "

s = gets

subtotal = s.to_f

tax = subtotal * taxrate

puts " Tax on $#{subtotal} is $#{tax}, so grand total is $#{subtotal+tax}"

THE BooK OF RuBY

Here s.to_f is a method of the String class. It attempts to convert the string to a

i OOEUDPOT wxOPOUWOUOET U w%OUwlI REOxOI OwUI T wUOUD
the floating point number, 145.45. If the string cannot be converted, 0.0 is re-

turned. So, for instance,06 He | | o w owolldréturn0®. f

Comments...

Many of the source code examplesthat comes with this book are
documented with comments which are ignored by the Ruby inter-
xUl Ul UBw wWEOOO!I OUwOEaAa wWETl wxOEET EwWET Ul UwlOT 1 w
ter, # . The text on a line following this character is all treated as a
comment:

this is a comment
puts("hello") # this is also a comment

If you wish to comment out multiple lines of text you can place
=begin at the start and =end at the end (both =begin and =end must be
flush with the left mar gin):

=begin
Thisis a
multiline
comment
=end

TESTING A CONDITION :IFé& THEN

The problem with the simple tax calculator code shown above is that it accepts
minus subtotals and calculates minus tax on them ¢ a situation upon which the
Government is unlikely to look favourably! | therefore need to check for minus
figures and, when found, set them to zero. This is my new version of the code:

CHAPTER ONE

5taxcalculator.rb

taxrate = 0.175

print "Enter price (ex tax): "
S = gets

subtotal = s.to_f

if (subtotal < 0.0) then
subtotal = 0.0
end

tax = subtotal * taxrate
puts "Tax on $#{subtotal} i s $#{tax}, so grand total is $#{subtotal+tax}"

The Ruby if test is similar to an if test in other programming language s. Note,
however, that the brackets are once again (tional, as is the keyword then.
However, if you were to write the following, with no line break after the test
condition, the then would be obligatory:

if (subtotal < 0.0) then subtotal = 0.0 end

Putting everything on one line like this adds nothing to the clarity of the code,
which is why | prefer to avoid it. My long familiarity with Pascal instinctively
makes me want to add a then after the if condition but, as this really is not
required, you may look upon this as a wilful eccentricity of mine. The end
keyword that terminates the if block is not optional. Forget to add it and your
code will not run.

LocAL AND GLOBAL VARIABLES

In the previous example, | assigned values to variables such assubtotal , tax and
taxrate . Variables such as these which begin with a lowercase character are local
variables. This means thatthey only exist within a specific part of a program ¢ in
other words, they are restricted to a well -defined scope. Here is an example:

THE BooK OF RuBY

variables.rb

localvar = "hello"
$globalvar = "goodbye"
def amethod

localvar = 10

puts(localvar)

puts($globalvar)
end

def anotherMethod
localvar = 500
$globalvar = "bonjour"
puts(localvar)
puts($globalvar)

end

Here there are three local variables calledlocalvar. One is assigned the value,

211 O0O0wWwPOUOE?> wbhPUT POwWUT 1 ws OEPOWUEOxT zwOI wOT 1|
integers within the scope of two separatemethods: since each local variable has a

different scope, the assignments have no affect on the other localvariables with

the same name in different scopes You can verify this by calling the methods in

turn:

amethod #=> localvar = 10

anotherMethod #=> localvar = 500

amethod #=> localvar = 10

puts(localvar) #=> |l ocalvar = o0ohell o0bé

On the other hand, a global variable ¢+ one that begins with the dollar $ character
- has global scope. When an assignment is made to a global variable inside a
method, that affects the value of that variable elsewhere in the program too:

amethod #=>%$gl obal var = 0goodbyebod
anotherMethod #=>%$gl obal var = 0bonjouroéo
amethod #=>%$gl obal var = oO0Obonjourod

(@}

puts($globalvar) #=> $gl obal var Obonjour

CHAPTER ONE

CLASSES AND OBJECTS

Instead of going through all the rest of 1 U E a z U w dsatypés Hddps, modules
EQEWUOwWOOwWpEU VWi T EUWOOUO0OwWBI phevemadd O tauE E E O
take a look at how to create classes and objects.

Classes, Objects and Methods

>
an
m
O
m
C
C
N
£
o
C\
S
o
S
m
O\
c:
e
&
=
O
g—)\
&
E,
g
M-
O
S
@]
m
2

contains and the way it behaves. Many different objects can be cie-
ated from a single class. So you might have one Catlass but three cat
objects: tiddles cuddlesand flossy A method is like a function or su b-
routine that is defined inside the class.

(UDwOEawUi | OwOOWEDPT wEl EOwUOwUEawUT EVw1UEa
these days? Well, up to a point. Most modern s OE N1 E U uiebgudyes@lavak z w
C++, C#, Object Pascal and so on) have a greater or lesser degree of O@datures.

Ruby, on the other hand, is obsessively object ariented. In fact, unless you have
programmed in Smalltalk or Eiffel (languages which are even more obsessive

than Ruby about objects) it is likely to be the most object oriented language you

have ever used. Every chunk of datat from simple things like numbers and

strings to complicated things like files and modules ¢ is treated asan object. And

such asplus +and minus dare methods. Consider the following:
X=1+2

Here +is a method of the Fixnum (Integer) object, 1. The value 2 is sent to this
method; the result, 3, is returned and this is assigned to the object,x. Inciden-
tally, the operator, =OwD U wOOI woOi wUT T wUEUT wi REI xUDPOOU.
EQwbPBDUT wEOWOENIT EUwbB U w E Orinenu dpératoE isuddpetibl OE » 8
built -in ghingummy z(this is not the formal termino logy, | hasten to add) and it is

not a method of anything.

-OPwOl UzUwWUT T wi OPwUOOWEUT EUI wOENT EOUwWOI wod
a Ruby object is defined by a class. The class is like a blueprint from which
individual objects are constructed. For example, this class definesa dog:

THE BooK OF RuBY

class Dog
def set_name(aName)
@myname = aName
end
end

Note that the class definition begins with the keyword class (all lower case) and
the name of the class itself, which must begin with an uppercase letter. The class
contains a method set name. This takes an incoming argument, aName. The
body of the method assigns the value of aName to a variable called @myname

INSTANCE VARIABLES

necessary to predeclare instance variables.l can create instances of the Dog class
@UT E Uw b U O w byEélingut@ féin niethddz Hewa | am creating two dog
objects (note that while class hames begin uppercase letters, object names begin
with lowercase letters):

mydog = Dog.new
yourdog = Dog.new

At the moment, these two dogs have no names. So the next thing | do is call the
set_name method to give them names:

mydog.set_name('Fido')
yourdog.set_name('Bonzo')

Having given each dog a name, | need to have some way to find out its name

OEUIl UwOObw' OPwUT EOCOwW(WEOwWUT PUYywWw(WwEEOZzZ UwxOOI
@namevariable, since the internal details of each object are known only to the

object itself. ThisDPUwWE wi UOEEOI OUEOQwx UPOEDx Ol datdi ws x UUI 7z u
inside each object is private. There are precisely defined ways into each object

(for example, the method set_name) and precisely defined ways out. Only the

object itself can mess around with its internal state. The outside world cannot.

Thisis called s E E U E wanBiEi®part of the principleof s 1| OEExUUOEUDPOO7 8

8

CHAPTER ONE

Encapsulation

In Ruby, encapsulation is not quite as rigorously enforced as it ini-
tially appears. There are some very dirty tricks that you can do to
mess around inside an object. For the sake of clarity (and to make
sure you,and I, EOOz Uwil EYI wODPT T UOEUI UAOWDLI wUT E
pass over thesefeatures of the language.

Sncebl wOi T Ewl EET wEOT wU O w Opotide ure Ddg alddevitud E Ol C
get_name method:

def get_name
return @myname
end

The return keyword here is optional. When it is omitted, Ruby methods will
return the last expression evaluated.

For the sake of clarity (and to avoid unexpected results from methods of more
complexity than this onel!) | shall make a habit of explicitly returning any values
which | plan to use.

%D O E O Ogive thedod gotde behaviour by asking it to talk. Here is the fin-
ished class definition:

class Dog
def set_name(aName)
@myname = aName
end

def get_name
return @myname
end

def talk
return ‘woof!'
end
end

THE Book OF RuBY
Now, we can create a dog, name it, display its name and ask it to talk like this:

mydog = Dog.new
mydog.set_name('Fido')
puts(mydog.get_name)
puts(mydog.talk)

6dogs.rb

(zYl wbUDPUUI OWEOwI BRxEOEI| Bdoysirblptd@anOThi®blsa UT DU WE OE|
contains a Cat class which is similar to the Dog class apart fran the fact that its
talk method, naturally enough, returns a miaowinstead of a woot

Oops! It seems that this program contains an error.

The object named someotherdog never has a value assigned to its
@nameYEUDPEEOI w»OUUUOEU]I OaOwlUEawEOI UOz UWE O
EPUxOEawlUl PUWEOT zUwOEMZ @ wg 000 & E wd 0 wdwo s
EOWEwWUDPOxOl whEaAawOi wOEODPOT wUUUI wUOT EVwI UUOU
ET EDPOO

MESSAGES, METHODS AND POLYMORPHISM

This example, incidentally, is based on a classicSmalltalk demo program which
(such as cats and dogs), and each different object responds differently to the
same message with its own special method (here thetalk method). The ability to
have different classes containing methods with the same name goes by the fancy
Object Orientated name of golymorphism z¢ a term which, once remembered,
EEQwWUEI | GawEl wi 66Ul 6001 66

When you run a program such as6dogs.rb, the code is executed in sequence. The

code of the classes themselves is not executed until instances of those classesse(

objects) are created by the code at the bottom of theprogram. You will see that |

i Ul U1 OUOCa wOPRWEOEUUWEI ibis@fcodd Ol exécatdsl ws i UT T w!
when the program is run. This may not be the way you would want to write a

major appi EEUD OOQWE U0 wi OUwNUUUws OUabOl wUTl DOT UwdUUzZ u

10

CHAPTER ONE

Free-standing Bits Of Code...?

If Ruby is really an Object Orientated language, you may think it odd
that we caOw 1 OUI Uws i Ul | winb&€ iv @rod qutwt@d (0T OE U
when you run a program, Ruby creates a main object and any code
that appears inside a code unit is, in spite of apx | EUEOET UOwOO
i OOEUDPOT 7z wE U univudng dsic® theu aihCobjexO Yol ¢aki0 O w
easily verify this. Create a new source file, add the code below then
run it to view the output:

(@)
S
AN

puts self
puts self.class

One obvious defect of my program is that the two classes, Cat and Dog, are

highly repetitious. It would make more sense to have one class, Animal, which

hasget name and set name methods and two descendent classes, Cat and Dog,

which contain only the behaviour t woofing or miaowing ¢ specific to that

Uxl EDPT UwOi wEOPOEOBd w61 7 OOWET wi POEDPOT wdOUU w!

CONSTRUCTORS O NEW AND INITIALIZE

%OUwWwOOPOWOI Uz UwWwUEOI wE w OO GaeiineEdklass. @éxtd ipl Uwl
7treasure.rb. This is an adventure game in the making. It contains two classes,

Thing and Treasure. The Thing class is very similar to the Cat and Dog classes

from the last program + Ex EUU wi UOOwUT T wi EEVwUT thatisb UwE C
3T T w3UI EU0UI w E@Enadauand séOrmaraunetbddisu Instead, it
contains a method named initiali ze which takes two arguments whose values are
assigned to the @nameand @description variables:

Ttreasure.rb

def initialize(aName, aDescription)

@name = aName
@description = aDescription
end

11

THE BooK OF RuBY

When a class contains a method namedinitialize this will be automatically called
when an object is created using the new method. It is a good idea to use an
initialize O1 U7 OEwUOwWUTl OwUT 1 wYEOUT UwoOi wEOWOENIT EUz UwE

This has two clear benefits over setting each instance variabé using methods

such set_name. First of all, a complex class may contain numerous instance

variables and you can set the values of all of them with the single initialize

Ol U1l OEwWUEUT T UwUT EQOwPPUT wOEQOawUI xEUEUT ws Ul Uz w
are all automatically initialised at the time of object creation, you will never end

UxwbBUl wEOws I Ox U ant vaMesretbnEdwDén weptOed © displayf 1 w

the name of someotherdog in the previous program).

Finally, | have created a method called to_ s which is intended to return a string

representation of a Treasure object. The method nameto_s, is not arbitrary. The

same method name is used throughout the standard Ruby object hierarchy.

In fact, the to_s method is defined for the Object class itself which is the ultimate

ancestor of all other classes in Ruby. By redefining the to_s method, | have

added new behaviour which is more appropriate to the Treasure class than the

EI Il EUO0wWOI Ul OES w(OwoOUT 1 UucbOraethedOw(wi EYT ws OYI1 UU

ThenewO1l UT OEwWEUI EUIl UWEQWOENT EQwUOWPUWE-EQWET wUOT &
UOUz 6w OPI YI UOwaObUwUT OUCEWOOUwWOOUOE@Oa wbOx Ol C
method (this is possible but it is generally not advisable). Instead, when you
PEOUwWUOwxI Ul OUOw BAAMEY Wi B0 ux WulEpE (A0 Uwy EOUT Uw U
internal variables - you should do so in a method named initialize . Ruby ex-

ecutes theinitialize method immediate ly after a new object is created.

Garbage Collection

In many languages such as C++ and Delphifor Win32, it is the pro-
TUEOOI Uz UwUI UxOOUPEPOPUaAWUOWET UDUOawEOawlE
when it is no longer required. In other words, objects are given de-
structors as well as constructor§ w(Owl1 UEaAaQwa OUWEOOz Uwl EYIT wU
since Ruby has a builtP Ows T EUEET I wEOOOI EUGUZ wbi PET wEULC
stroys objects and reclaims the memory they used when they are no
longer referenced in your program.

12

CHAPTER ONE

INSPECTING OBJECTS

(OEPEI OUEOOAOWOOUPETl wUOOwWUT ECw(wi, Bswhy ws OC
the inspect method:

tl.inspect

The inspect method is defined for all Ruby objects. It r eturns a string containing
a human-readable representation of the object. In the present case, it displays
something like this:

#<Treasure:0x28962f8 @description="an Elvish weapon forged of gold",
@name="Sword">

This begins with the class name, Treasure;the name is followed by a number,

which may be different from the number shown abovet UT PUwbPUw1l UEaz U
identification code for this particular object; then there are the names and values

Ol wOT 1 wabigbed. E Uz U

Ruby also provides the p method as a shortcut to inspecting objects and printing
out their details, like this:

p.rb

p(anobject)

To see howto_s can be used with a variety of objects and to test how a Treasure
object would be converted to a string in the absence of an overridden to_s
method, try out the 8to_s.rb program.

8to_s.rb

puts(Class.to_s) #=> Class
puts(Object.to_s) #=> Object
puts(String.to_s) #=> String
puts(100.to_s) #=>100
puts(Treasure.to_s) #=> Treasure

13

THE BooK OF RuBY

As you will see, classes such as Class, Object, String and Treasure, simply return
their names when the to_s method is called. An object, such as the Treasure
object, t, returns its identifier ¢ which is the same identifier returned by the
inspect method:

t = Treasure.new("Sword", "A lovely Elvish weapon")
puts(t.to_s)
#=> #<Treasure:0x3308100>
puts(t.inspect)
#=> #<Treasure:0x3308100
@name="Sword", @description="A lovely Elvish weapon">

While the 7treasure.rb program may lay the foundations for a game containing a
variety of different types of object, its code is still repetitive. After all, why have a
Thing class which contains a name and a Treasure class which also contains a

name? It would make more sense Ow Ul T EUE WwE w 3ypd of WBUIO®E UwE ws

complete game, other objects such as Rooms and Weapons might be yet other
s Ua x wadbid tlearly time to start working on a proper class hierarchy.
3T EUOzUwbPl EVwhkIT wUdhd&p®® WEOwWDOwWUT I wdl RUw

14

CHAPTER TWO

Class Hierarchies, Attributes and Class Variables

We ended the last lesson by creating two new classes: a Thing and a Treasure . In
spite of the fact that these two classes shared some features (notably both had a
s OEOI z AOwUT 1 Ul wPEUWOOWEOOOI EUPOOWET UPI 1 O

Now, these two classes are so trivial thatUT DUwUDOa WwEDP O wOi wUl x1 I
matter much. However, when you start writing real programs of some comple x-
ity, your classes will frequently contain numerous variables and methods; and
a0lwUl EOCaWEOOz Uwbk E O U uttingswoVdr dnck aved agid ED OT w U]

It makes sense to create a class hierarchy in whichone classmay be Ews Ux 1 EDI
Uaxl zwOl wpdb O widss tWiick wase it will automatically inherit

the features of its ancestor. In our simple adventure game, for instance, a Treas-

ure is a special type of Thing so the Treasure class should inherit the features of

the Thing class.

Class Hierarchies + Ancestors and Descendants: In this book, | shall
Oi U1 OWUEOOWEEOUUwWsEI UEI OEEOUzwEOEUUI U
sEOCEI UUOUZWEOEUUI U w311 Ul wll UOBWET OPEI
OEUDPOOUT Dx wEIT UbI IE&ugasslinCRaky hdasqniw&® E UUT U B L
parent. It may, however, descend from a long and distinguished fa m-
ily tree with many generations of parents, grandparents, great-

T UEOExEUI OUUWEOEwWUOwWOOS

The behaviour of Things in general will be coded in the Thing class itself. The
Treasure class will automatically s DOT 1 UPUz wEOOwWUT 1T wi 1l EQUUIT
p O Oz éuoldde them all over again; it will then add some additional features,
specific to Treasures.

15

THE BooK OF RuBY

As a general rule, when creating a class hierarchy, the classes with the most
generalised behaviour are higher up the hierarchy than classes with more
specialist behaviour. So a Thing class with just a name and a description, would
be the ancestor of a Treasure class which has a name, a description and, add
tionally, a value; the Thing class might also be the ancestor of some other specia
ist class such as a Room which has a name, a description and also exits and so
000

One Parent, Many Children ...

Thing

name
description

This diagram shows a Thing class which has anameand a description
(in a Ruby program, these might be internal variables such as @name
and @description plus some methods to access them). The Treasurg
and Room classes both descend from the Thing class so they aut-
OEUPEEOOa wmagnPadd 4 dédriptioruTheuTreasure class adds
one new item: valuet so it now has name descriptionand value The
Room class addsexitst so it hasname descriptionand exits

ladventure.rb

~ s N A A

program. This starts simply enough with the definition of a Thing class which
has two instance variables, @name and @description . These variables are

assigned values in the initialize method when a new Thing object is created.
16

CHAPTER TWO

Instance variables generally cannot (and should not) be directly accessed from
the world outside the class itself due the principle of encapsulation as explained

in the last lesson. In order to obtain the value of each variable we need aget
accessor method such agyet_name; in order to assign a new value we need aset
accessor method such aset_name.

SUPERCLASSES AND SUBCLASSES

Now look at the Treasure class. Notice how this is declared:
class Treasure < Thing

The angle bracket, < POEPEEU]I Uw Ul ECw3 Ul EUUUT wbUwE w
Thing and therefore it inherits the data (variables) and behaviour (methods) from

the Thing class. Since the methods get name, set name, get description and
set_description alUl EEa wl R DUUwPOwUT | weEOETI UUOUWEOEU
re-coded in the descendant class (Treasure).

The Treasure class has one additional piece of data, its value @value) and | have

written getand setaccessors for this. When a new Treasure object is created, its
initialize method is automatically called. A Treasure has three variables to

initialize (@name @description and @value), so itsinitialize method takes three
arguments. The first two argument s are passed, using thesuper keyword, to the

initialize O1 U1 OEw Ol wUOT 1T wUUx1T UEOEUU w p3ihitRl2d Aw U O
method can deal with them:

super(aName, aDescription)

When used inside a method, the super keyword calls a method with the same

name as the current method D QwUT T WEOET UU OU wGuparkdywbrdl Uz wk
is used on its own, without any arguments being specified, all the arguments

sent to the current method are passed to the ancestor method. If, as in the presnt

case, a specific list of arguments (hereaName and aDescription) is supplied then

only these are passed to themethod of the ancestor class.

17

THE BooK OF RuBY

PASSING ARGUMENTS TO THE SUPERCLASS

Brackets matter when calling the superclass! If the argument list is empty and no
brackets are used,all arguments are passed to the superclass. But if the argument
list is empty and brackets are used,noarguments are passed to the superclass:

super_args.rb

This passes a, b, c to the supe rclass
def initialize(a, b, c, d, e, f)

super(a, b, c)
end

This passes a, b, c to the supe rclass
def initialize(a, b, ¢)

super
end

This passes no arguments to the superclass
def initialize(a, b, c¢)

super()
end

To gain a better understanding of the use of super seethe Digging
Deeper section at the end of this chapter

A CCESSOR METHODS

While the classes inthis would -be adventure game work well enough, they are
still fairly verbose due to all those getand setaccsU OU U8 w+1 Uz UwUIT | wkhT EVwP
to remedy this.

Instead of accessing the value of the @description instance variable with two
different methods, get_description and set_description OwOD Ol wUT U6

puts(tl.get _description)
tl.set_description(o0Some descriptiono)
18

CHAPTER TWO

OPUWPOUOEWET wUOWOUET wOPET UwUOwUI UUBI YI w
retrieve and assign values to and from a simple variable, like this:

puts(t1.description)
tl.description enéSome descripti

In order to be able to do this, we need to modify the Treasure class definition.
One way of accomplishing this would be to rewrite the accessor methods for
@description as follows:

def description
return @description
end

def description=(aDescription)
@description = aDescription
end

accessord.rb

I have added accessors similar to the above in theaccessord.rb program. Here,

the getaccessoris called description and the setaccessor is calleddescription=

(that is, it appends an equals sign (=) to the method name used by the corre-

sponding getaccessor) It is now possible to assign a new string like this:
t.description = "a bit faded and worn around the edges"

And you can retrieve the value like this:

puts(t.description)

(BETOA CCESSORS

When you write a set accessor in this way, you must append the = character to
the method name, not merely place it somewhere between the method name and
the arguments.

19

THE Book OF RuBY
So this is correct:

def name=(aName)
But this is an error:

def name = (aName)

ATTRIBUTE READERS AND W RITERS

In fact, there is a simpler and shorter way of achieving the same result. All you
have to do is use two special methods, attr_reader and attr_wr iter , followed
by a symbol like this:

attr_reader :description
attr_writer :description

You should add this code inside your class definition like this:

class Thing
attr_reader :description
attr_writer :description
maybesomemore met hods her eé
end

Calling attr_reader with a symbol has the effect of creatinga getaccessor (here
named description) for an instance variable (@description) with a name match-
ing the symbol (:description).

Calling attr_writer similarly creates a set accessorfor an instance variable.

Instance variables are considered tobe Ul 1 ws ECUUPEUUT Uz wOi wEOWOENI
the attr_reader and attr_writer methods are so named.

20

CHAPTER TWO

Symbols

In Ruby, a symbol is a name preceded by a colon (for example,

:description). The Symbol classis defined in the Ruby class library to

represent names inside the Ruby interpreter. When you pass one or
more symbols as arguments to attr_reader (which is a method of
the Module class), Ruby credes an instance variable and aget acces-
sor method. This accessor methodreturns the value of the corre-
sponding variable; both the instance variable and the accessor
method will take the name that was specified by the symbol. So,
attr_r eader(:description) creates an instance variable with the
name, @description , and an accessor method nameddescription() .

accessorg.rb

The accessor&.rb program contains someworking examples of attribute readers
and writers in action. The Thing class explicitly defines agetmethod accessor for
the @name attribute. The advantage of writing a complete method like this is
that it gives you the opportunity to do some extra processing rather than simply
reading and writin g an attribute value. Here the get accessor uses the
String.capitalize method to return the string value of @name with its initial
letter in uppercase:

def name
return @name. capitalize
end

When assigning a value to the @nameattribute, | EOOz Uw Ol | EwUOWE Ow
processing so | have given it an attribute writer:

attr_writer :name

The @description attribute needs no special processing so luse attr_reader
and attr_writer to get and set the value of the @description variable:

attr_re ader :description
attr_writer :description

21

THE BooK OF RuBY

Attributes or Properties?

#0060z OwET WEOSI VUI EwEawli 1 wii UOPOOOOT ad w(Owa
| equivalent of what many programming OEOT UET I UWEEOQwE ws x UOx1 UL

When you want both to read and to write a variable, the attr_accessor method

provides a shorter alternative to using both attr_reader and attr_writer . |

have made use of this to access the value attribute in the Treasure clas
attr_accessor :value

This is equivalent to:

attr_reader :value
attr_writer :value

Earlier | said that calling attr_reader with a symbol actually creates a variable
with the same name as the symbol. Theattr_accessor method also does this.

In the code for the Thing class, this behaviour is not obvious since the class has
an initialize method which explicitly creates the variables. The Treasure class,
however, makes no reference to the@value variable in its initia lize method. The
only indication that @value exists at all is this accessor defintion:

attr_accessor :value

My code down at the bottom of this source file sets the value of each Treasure
object as a separate operation, following the creation of the object itself:

tl.value = 800

Even though it has never been formally declared, the @value variable really does
exist, and we are able to retrieveits numerical value using the getaccessor:

tl.value

22

CHAPTER TWO

To be absolutely certain that the attribute accessor really has creted @value, you
can always look inside the object using the inspect method. | have done so in the
final two code lines in this program:

puts "This is treasurel: #{tl.inspect}"
puts "This is treasure2: #{t2.inspect}"

accessors3.rb

Attribute accessors can nitialize more than one attribute at a time if you send
them a list of symbols in the form of arguments separated by commas, like this:

attr_reader :name, :description
attr_writer(:name, :description)
attr_accessor(:value, :id, :owner)

As always, in Ruby, brackets around the arguments are optional but, in my view
(for reasons of clarity), are to be preferred.

2adventure.rb

-OpwOl UzUwWUIT T wl OPpwUOwWwxUUWEUUUPEUUT wul EEI
game. Load up the 2adventure.rb program. You will see that | have created two

readable attributes in the Thing class: name and description . | have also made
description writeableO wi Ob1 YT UOQWEU w(wEOOZ Uwx OEOwWUOWE
objects, thename attribute is not writeable:

attr_reader(:name, :description)
attr_writer(:description)

I have created a method calledto_s which returns a string de scribing the Treas-
ure object. Recall that all Ruby classes have ao_s method as standard. The
Thing.to_s method overrides (and so replaces) the default one. You can override
existing methods when you want to implement new behaviour appropriate to
the spedfic class type.

23

THE BooK OF RuBY

CALLING METHODS OF A SUPERCLASS

| have decided that my game will have two classes descending from Thing. The
Treasure class adds avalue attribute which can be both read and written. Note
that its initialize method calls its superclass in order to initialize the name and
description attributes before initializing the new @valuevariable:

super(aName, aDescription)
@value = aValue

Here, if | had omitted the call to the superclass, the name and description
attributes would never be initialized. This is because Treasure.initialize over-
rides Thing.initialize ; so when a Treasure object is created, the code in
Thing.initialize will not automatically be executed.

On the other hand, the Room class, which also descends from Thing, currently

has no initialize method; so when a new Room object is created Ruby goes

scrambling back up the class hierarchy in search of one. The first initialize

O1I U1 OEwbUwi DOEU WD U wb O nadné adddeseniptib® wttibu e OO wOENT E
are initialised there.

CLASS VARIABLES

There are a few other interesting things going on in this program. Right at the
top of the Thing class you will see this:

@@num_things =0

The two @ characters at the start of this variable name, @@num_things, define

variables, all objects derived from a specific class share the same class variables. |
have assigned 0 to the@@rum_things variable to ensure that it has a meaning-
ful value at the outset.

24

CHAPTER TWO

Here, the @@num_things class variable is used to keep a running total of the
number of Thing objects in the game. It does this simply by incrementing the
class variable (by adding 1to it: += J) in its initialize method every time a new
object is created:

@@num_things +=1

If you look lower down in my code, you will see that | have created a Map class

to contain an array of rooms. This includes a version of the to_s method which
xUPDOUUwWDOI OUOEUDPOOwWOOwW! EET wuOOOwbOwlT 1 wE
tation of the Map class; P1 7 OOWET wOOOOD O1 unkthbds EnthUsiea U w E C
chapter.

Scroll to the code down at the bottom of the file and run the program in order to

see how | have created and initialised all the objects and used the class variable,
@@num_things, to keepa tally of all the Thing objects that have been created.

25

THE BooK OF RuBY

26

Class Variables and Instance Variables

Thing
@@num_things =

@name/?

@name = "Mary" '

' . @@num_things =3_.:'

‘.__@@num_things =3__." _

@name = "Bert"

':.__@@num_things =3__.5

This diagram shows a Thing class (the rectangle) which contains a
class variable, @ @num_things and an instance variable, @name The
UT UITT wOYEOQWUT ExT UwUKRKMUEOWHBU a8 bt
Thing class. When one of these objects assigns a value to its instance
variable, @name that value only affects the @name variable in the
object itself ¢+ so here, each object hs a different value for @name But
when an object assigns a value to the class variable@ @num_things,
UT EUWYEOUI wsOPYI UwbOUPET zwOT 1T w3l
of that class. Here @ @num_things equals 3 and that is true for all the
Thing objects.

CHAPTER TWO

Digging Deeper

SUPERCLASSES

super.rb

To understand how the super keyword works, take a look at my sample pro-
gram, super.rb. This contains five related classes: the Thing class is the ancestor
of all the others; from Thing descends Thing2; from Thing2 descends Thing3,
then Thing4 and Thing5.

+]1 UZUwUEOI wWEWEOOUI UwOOOOWEUWUT T wi PUsgOwUI
has two instance variables, @name and @description ; Thing2 also defines
@fulldescription (a string which contains @name and @description); Thing3

adds on yet another variable, @value.

These three classes each contain aimitialize method which sets the values of the
variables when a new object is created; they also each have a method named
rather inventively, aMethod, which changes the value of one or more variables.
The descendant classes, Thing2 and Thing3, both use thesuper keyword in their
methods.

Run super.rb in a command window. To test out the various bits of
EOEIOwIOUIUwEwOUOEIUmewUOkawDIIOwXUC

1PT T OWEOPOWEUWUT T wEOUUOOWOT wiUT PUWHEOHET w U
executes when you runthe x UOT UE 06 w# OBHQ luwp @UIVaWEOUER wo
El wOOOOPOT wEUwWOOOXx UwPhOWEwWI UOUUT wOl UUOOB w
run the different bits of code contained in the methods, testl to test5 . When

you run this program for the first time, type the number 1 at the prompt and

press the Enter key. This will run the testl method containing these two lines of

code:

t = Thing.new("A Thing", "a lovely thing full of thinginess")
t.aMethod("A New Thing")

The first line here creates and initializes a Thing object ard the second line calls
its aMethod O1 Ul OE8dw UwUT 1T w31 DOT weOEUUWEOI UBZz U

27

THE BooK OF RuBY

(in fact, as with all Ruby classes, it descends from the Object classwhich is the
ultimate ancestor of all other classe9 nothing very new or interesting happens
here. The output uses theinspect method to display the internal structure of the
object when the Thing.initialize and Thing.aMethod methods are called. The
inspect method can be used with all objects and is an invaluable debugging aid.
Here, it shows us a hexadecimal number which identifies this specific object
followed by the string values of the @nameand @description variables.

Now, at the prompt, enter 2to run test2 containing this code to create a Thing2
object,t2, and call t2.aMethod :

t2 = Thing2.new("A Thing2", "a Thing2 thing of great beauty")
t2.aMethod("A New Thing2", "a new Thing2 description™")

Look carefully at the output. You will see that even though t2 is a Thing2 object,

def initialize(aNam e, aDescription)
super
@fulldescription = "This is #{@name}, which is #{@description}"
puts("Thing2.initialize: #{self.inspect} \n\n")

end

This uses thesuper keyword to call the initialize O1 UT OEwOi w31 DOT | zUwWEOQEI
sUUMEOEUUZzZB3wW3T 1T wUUx]T UECEUUWOT w31 pOTa&-wbUw3T BO
tion:

class Thing2 < Thing

In Ruby, when the super keyword is used on its own (that is, without any

arguments), it passes all the arguments from the current method (here
Thing2.initialize) to a method with the same name in its superclass (here
Thing.initialize). Alternatively, you can explicitly specify a list of arguments

following super. So, in the present case, the following code would have the same
effect:

super(aName, aDescription)

28

CHAPTER TWO

While it is permissible to use the super keyword all on its own, in my view it is
often preferable, for the sake of clarity, explicitly to specify the list of arguments
to be passed to the superclass. At any rate, if you want to pass only a limited
number of the arguments sent to the current method, an explicit argument list is
Ol El UUE U a amethdd Bfér iexampieuonly passes theaName argument to
the initialize method of its superclass, Thing1:

super(aNewName)

This explains why the @description variable is not changed when the method,
Thing2.aMethod , is called.

Now if you look at Thing3 you will see that this adds on one more variable,

@value. In its implementation of initialize it passes the two arguments, aName

and aDescription UOwbUOUwUUxT UEOEUUOwW3T DOT I Bw(OQwbh
31 b Oinitiatizé unethod passes these same arguments to thénitial ize method

of its superclass, Thing.

With the program running, enter 3 at the prompt to view the output. This is the
code which executes this time:

t3 = Thing3.new("A Thing 3", "a Thing3 full of Thing and
Thing2iness",500)
t3.aMethod("A New Thing3", "and a new Thing3 description”,1000)

Note how the flow of execution goes right up the hierarchy so that code in the

initialize and aMethod methods of Thing execute before code in the matching
methods of Thing2 and Thing3.

t DUwOOUWOEOPT EVOUAWUOWEwWOY I haveténke in the) x I UE
examples so far. This is only required when you want to add some new behav-

iour. Thing4 omits the initialize method but implements the aMethod method.

Enter 4 at the prompt to execute the following code:

t4 = Thing4.new("A Thing4", "the nicest Thing4 you will ever see", 10)
t4.aMethod

29

THE BooK OF RuBY

When you run it, notice that the first available initialize method is called when a
Thing4 object is created. This happens to beThing3.initialize which, once again,
also calls theinitialize methods of its ancestor classes, Thing2 and Thing.How-
ever, the aMethod method implemented by Thing4 has no call to its super-
classes, so this executes right away and the code in any otheeMethod methods
in the ancestor classes is ignored.

%POEOOaAaOwW3i POT kwbOl 1 UPUUwWi UOOwW3T POT KWEOEwWEOI
methods. Enter 5 at the prompt to execute the following :

t5 = Thing5.new("A Thing5", "a very simple Thing5", 40)
t5.aMethod

This time you will see that that the call to new causes Ruby to backtrack through
the class hierarchy until it finds the first initialize method. This happens to
belong to Thing3 (which also calls the initialize methods of Thing2 and Thing).
The first implementation of aMethod, however, occurs in Thing4 and there are
nocallstosuper UOQwUT EUz Uwbki 1T Ul wOT T wOUEDOwWI OEUS

superclasses.rb

Ultimately all Ruby classes descend from the Object class.

The Object class itself has no superclass and any attempt to locate itg
superclass will return nil.

begin
X = X.superclass
puts(x)

end until x == nil

30

CHAPTER TWO

CONSTANTS INSIDE CLASSES

There may be times when you need to access costants (identifiers beginning
with a capital letter) E] EOEUI EwDOUPEI WEWEOEUUd w+1 Uz Uuw

classconsts.rb

class X
A=10

class Y
end
end

In order to access the constantA, you would need to use the special scope
resolution operator :: like this:

XA
Class names are constants, so this same operator gives you access to classes
DOUPEI wOUIT | UWEOEUUI UB w3T PUwWOEOI UwbUwxOUU
such as classY inside classX:

ob = X::Y.new

PARTIAL CLASSES

In Ruby it is not obligatory to define a class all in one place. If you wish, you can
define a single class in se@rate parts of your program. When a class descends
from a specific superclass, each subsequent partial class diénition may optiona |-
ly repeat the superclass in its definition using the <operator.

31

THE BooK OF RuBY

Here | create two classes, A and B which descends from A:

partial_classes

class A
def a
puts("a")
end
end

classB <A
def bal
puts("bal")
end
end

class A
defb
puts("b")
end
end

class B < A
def ba2
puts("ba2")
end
end

Now, if | create a B object, all the methods of both A and B are available to it:

ob = B.new
ob.a

ob.b
ob.bal
ob.ba2

32

CHAPTER TWO

You can also use partialE OEUUWE]T | POPUDPOOUWUOWEEEwWI 1 EUL
classes such as Array:

class Array
def gribbit
puts("gribbit")
end
end

This adds the gribbit method to the Array class so that the following code can
now be executed:

[1,2,3].gribbit

33

THE BooK OF RuBY

34

CHAPTER THREE

Strings and Ranges
(zY!l wOEET wl Ul ECwUUT wOl wUOUDPOT UwbOwdawxUO
the very first program in the book. Here it is again:
puts 'hello world'

While that first program used a string enclosed within single quotes, my second
program rang the changes by using a string in double-quotes:

print(Enter your name: ")
name = gets()
puts("Hello #{name}")

1strings.rb

Double-quoted strings do more work than single -quoted strings. In particular,

they have the ability to evaluate bits of themselves as though they were pro-
gramming code. To have something evaluated, you need to place it between a
pair of curly br aces preceded by a# character.

In the example above, #{name} in a double-quoted string tells Ruby to get the

value of the name variable and insert that value into the string itself. So, if name

I GUEOUW? %UIT E2 OwUT 1 wUUUDOT whe 1btrings Ehustonple E 2 wb
x UOT UEOQwxUOYPEI UWEwWIi T PwOOUI wi BEOXxOI-UwOIi
guoted strings.

A double -quoted string is able not only to evaluate attributes or variables such as
ob.name but also expressions such as2*3 and bits of code such as the method-

35

THE BooK OF RuBY

call ob.ten (where ten is a method name)aOEws | UEExT wET EVEEWI UUz wUL
EOQBW? wUI xUI Ul OUPOT wEwOI PODPOI WEOEWEWUEEG w

A single-quoted string does no such evaluation. A single -quoted string can,

however, use a backslash to indicate that the next character should be used

literally. This is useful when a single -quoted string contains a single-quote

character, like this:

6NdGs my partydod

Assuming that the method named ten returns the value 10, you might write the
following code:

puts("Here's atab \ta new line\ na calculation #{2*3} and a method -call
#{ob.ten}")

As this is a double-quoted string, the embedded elements are evaluated and the
following is displayed:

Here's a tab a new line
a calculation 6 and a method -call 10

-OPwOl Uz UwUI 1 wki EUwhustedstri@Bused: | OWEwUDOT Ol

puts('Here \'s atab \ ta new line\ na calculation #{2*3} and a method -call
#{ob.ten}')

This time, no embedded evaluation is done and so, this is what is displayed:

Here's a tab \ta new line\ na calculation #{2*3} and a method -call
#{ob.ten}

USER-DEFINED STRING DELIMITERS

If, for some reason, single and double@ U OUI UwE UI 02 [tofekatpd, ODT OUw

putting backslashes in front of them ¢ you can also delimit strings in many other
ways.
36

CHAPTER THREE

2strings.rb

The standard alternative delimiters for double quoted strings are %Q and / or
%/ and / while for single -quoted strings they are %gand /6 ww3 1 UU 6

%Q/This is the same as a double -quoted string./
%/This is also the same as a double -quoted string./
%q/And this is the same as a single -quoted string/

You can even define your own string delimiters. These must be non-
alphanumeric characters and they may include non-printing characters such as
newlines and various characters which normally have a special meaning in Ruby
placed after %q or %Q and you should be sure to terminate the string with the

same character. If your delimiter is an opening bracket, the corresponding
closing bracket should be used at the end of the string, like this:

%QJ[This is a string]

3strings.rb

You will find examples of a broad range of user -selected string delimiters in the

sample program, 3strings.rb. Needless to say, whie there may be times when it

is useful to delimit a string by some esoteric character such as a newline or an
asterisk, in many cases the disadvantages (not least the mental anguish and
confusion) resulting from such arcane practices may significantly out weigh the

advantages.

BACKQUOTES

One other type of string deserves a special mention: a string enclosed by back
guotes ¢ that is, the inward -pointing quote character which is usually tucked
away up towards the top left -hand corner of the keyboard: *

Ruby considers anything enclosed by back-quotes to be a command which can be
passed for execution by the operating system using a method such asprint or
puts. By now, you will probably already have guessed that Ruby provides more

than one way of doing this. It turns out %x/some command/ has the same effect

37

THE BooK OF RuBY

as 'somecommand” and so does%x{some command} On the Windows operat-
ing system, for example, each of the three lines shown below would pass the
command dir to the operating system, causing a directory listing to be displayed:

4backquotes.rb

puts(‘dir’)
puts(%ox/dir/)
puts(%x{dir})

You can also embed commands inside double-quoted strings like this:
print("Goodbye #{%x{calc}}")
Be careful if you do this. The command itself is evaluated first. Your Ruby

program then waits until the process which starts has terminated. In the present
case, the calculator will pop up. You are now free to do some calculations, if you

PPUT w. OCawpli i OwadbUwWEOOUI wUT 1 WEEOEdJOEUOUwWDbPD
played.

STRING HANDLING
Before leaving ti T WUUENT EOwOl wUUOUPOT UOwbl zOOWUEOI WEWC

string operations.

CONCATENATION

string_concat.rb

You can concatenate strings using<<or + or just by placing a space between
them. Here are three examples of string concatenation; in each cases is assigned
Ul T wOOUDOT w?' 1 000w OUOE? 0

s ="Hello " << "world"

s = "Hello " + "world"
s ="Hello " "world"

38

CHAPTER THREE

Note, however, that when you use the <<method, you can append Fixnum
integers (in the range 0 to 255) without having to convert them to strings first;
using the + method or a space, Fixnums must be converted using the to_s
method.

What About Commas?

You may sometimes see Ruby code in which commas are used to
separate strings and other data types. In some circumstances, these
commas appear to have the effect of concatenating strings. For exm-

ple, the following code might, at first sight, seem to create and dis-

play a string from three substrings plus an integer:

s4 ="This","is ", " not a string!", 10
print("print (s4):", s4," \n")

In fact, a list separate by commas creates an array an ordered list of
the original strings. The string_concat.rb program contains examples
which prove this to be the case.

Note that when you pass an array to a method such asputs, each
element in that array will be treated separately. You could pass the
array, X, above, toputs like this:

puts(x)

In which case, the output would be:
This

is

not a string!

10

We'll look at arrays in more depth in the next chapter.

39

THE BooK OF RuBY

STRING ASSIGNMENT

The Ruby String class provides a number of useful string handling methods.
Most of these methods create new string objects. So, for example, in the following
code, the s on the left-hand side of the assignment on the second line is not the
same object as thes on the right-hand side:

s = "hello world"
S : S + Il!ll

string_assign .rb

A few string methods actually alter the string itself without creating a new
object. Thesemethods generally end wit h an exclamation mark (e.g. the capital-
ize! method).

If in doubt, y OUWEEOQWET I EOQOWEQwWOEN botietizdd @PE1 ObdWa Y UBOI
provided a few examples of operations which do and do not create new strings

in the string_assign.rb program. Run this and check the object_id of s after each

string operation is performed.

INDEXING INTO A STRING

You can treat a string as an array of characters and index into that array to find a
character at a specificindex using square brackets. Strings and arrays in Ruby are

a new character to index 1:
s[l]="a'

However, if you index into a string in order to find a character at a specific

s = "Hello world"
puts(s[1]) #printsout101 6t he ASCI Il wvalwue of

(@)
(¢}
O

40

CHAPTER THREE
In order to obtain the actual character, you can do this:

s = "Hello world"
puts(s[1,1]) # prints out 0eb0

This tells Ruby to index into the string at position 1 and return one character. If
you want to return three characters starting at position 1, you would enter this:

puts(s[1,3]) # prints o6ell d

This tells Ruby to start at position 1 and return the next 3 characters. Alternativ e-

puts(s[1..3]) # also prints O06ell &

For more on Ranges, sedigging Deeper at the end of this chapter.

Strings can also be indexed using minus values, in which case-1 is the index of
the last character and, once again, you can specify the number of characters to be
returned:

puts(s[-1,1]) # prints do
puts(s[-5,1]) # prints w0
puts(s[-5,5]) # prints o6worl do

o O

string_index.rb

When specifying ranges using a minus index, you must use minus values for
both the start and end indices:

puts(s[-5..5]) # this prints an empty s tring!
puts(s[-5.-1]) # pri ntdsd 6wor |

string_methods.rb

Finally, you may want to experiment with a few of the standard methods avail a-
ble for manipulating strings. These include methods to change the case of a
UOUDPOT OwUl YT UUT wbUOwHOUI UODWUUEUUUDLOI
provided a few examples in string_methods.rb .

UOuwU

41

THE BooK OF RuBY

REMOVING NEWLINE CHARCTERS) CHOP AND CHOMP

A couple of handy string processing methods deserve special mention. The chop

and chomp methods can be used to remove characters from the end of a string.

The chop method returns a string with the last character removed or with the

EEUUDPET I wUl OUUOWEOGEwWOI b\ IAuwBIi BEUUHE B 0d T WUEU T udi O&(
the end of the string. The chomp method returns a string with the terminating

carriage return or newline character removed (or both the carriage return andthe

newline character if both are found).

These methods are useful when you need to removing line feeds entered by the
user or read from a file. For instance, when you use gets to read in a line of text,
POwUI OUUOUwWUT T woObPOI wbpOEOGUEDPOT wUT 1T wUl UOPOEUDOI
is the newline character.

The Record Separator - $/
Ruby pre-defines a variable, 3/ OWE UwWE ws Ul EOUEwWUI xEUEUOUZ 6 w3
is used by methods such asgets and chomp. The gets method reads
in a string up to and including the record separator. The chomp
method returns a string with the re cord separator removed from the
end (if present) otherwise it returns the original string unmodified.
You can redefine the record separator if you wish, like this:

$/ =6*06 # the 0*6 character is now the reco

When you redefine the record separator, this new character (or
string) will now be used by methods such as gets and chomp. For ex-

ample:

$/ = oworl do

s = gets() # user enters oOHad we but world eno
ti meéod

puts(s) # di splays OHad we but worl do

You can remove the newline character using either chop or chomp. In most cases,
chompPUwx Ul I T UEEOT wEUwDUwP OOz UwUI OOYI wlOT 1T wi DOE

42

CHAPTER THREE

separator (a newline) whereas chop will remove the last character no matter
what it is. Here are some examples:

chop_chomp.rb

Note: sl includes a carriage return and linefeed
s1 ="Hello world

s2 = "Hello world"

sl.chop # returns OHell o worl do

sl.chomp # returns OHell o worl do

s2.chop # r et Heloworl6dnote the missing 6d
s2.chomp # returns dHel |l o wor |

The chomp method lets you specify a character or string to use as the separator:
s2.chomp (# rrledtduyyr ns oHel |l o wobé

FORMAT STRINGS

Ruby provides the printt O1 UT OEwUOwxUPOUwsi OUOEUwUUUD
starting with a percent sign, %. The format string may be followed by one or

more data items separated by commas; the ist of data items should match the

number and type of the format specifiers. The actual data items replace the
matching specifiers in the string and they are formatted accordingly. These are

some common formatting specifiers:

%d o decimal number

%f 0 floating point number
%0 0 octal number

%p 0 inspect object

%s 0 string

%x 0 hexadecimal number

You can control floating point precision by putting a point -number before the
floating point formatting specifier, %f. For example, this would display the
floating point value to two digits:

printf(0%0.02f &displyy®1012 945)
43

THE BooK OF RuBY

RANGES

Digging Deeper

In Ruby, a Range is a class which represents a set of values defined by a starting
and an ending value. Typically a range is defined using integers but it may also

be defined using other ordered values such as floating point numbers or charac-

ters. Values can be negative, though you should be careful that your starting
value is lower than your ending value!

Here are a few examples:

a=(1..10)
b=(-10.-1)
¢ =(-10..10)
d=(a..'z"

ranges.rb

You can also specify ranges using three dots instead of two: this create a range

which omits the final value:

d=(a'..'z"
e=(a..'z)

#thistwo -d o't

this three

-dot

range
range

You can create an array of the values defined by a range using theto_a method,

like this:

(1..10).to_a

Note that to_a is not defined for floating point numbers for the simple reason
that the number of possible values between two floating point numbers is not

finite.

44

CHAPTER THREE

str_range.rb

You can even create ranges of stringg though you would need to take great care
in so doing as you might end up with more than you bargain for. For example,
see if you can figure out which values are specified by this range:

str_range = (‘abc'..'def")

Uwi PUUOWUDT T OOWUT |1 wUEOT T wi UOOwWSEEEZwUO
EIl i POl UWEWUEOT T woOl wOOwOl UUwUT EQw! OhhuY w Y
SEEEZ COOBEEOw @EwWUOUPOWUT 1T wi CEwOl wUOT T ws Ez
SEEEZOWSEEEZ WEQEwWUOwWOOE w201 | PET wOOwUEa wU
rare requirement and are best used with extreme caution or not at all.

ITERATING WITH A RANGE

You may use a range to iterate from a start value to an end value. For example,
here is one way of printing all the numbers from 1 to 10:

for_to.rb

foriin (1..10) do

puts(i)
end

HEREDOCS

While you can write long strings spanning multiple lines between single or

double quotes, many Ruby programmers prefer to use an alternative type of
UOUDPOT WEEOOI EwEwWsT 1 UI EOEz6w wil Ul EOEwPUwW
end marker, which is simply an identifier of your choice. Here, | specify EODOC

as the end marker:

heredoc.rb

hdocl = <<EODOC

45

THE BooK OF RuBY

This tells Ruby that everything following the line above is a single string which
terminates when the end marker is located. The string is assigned to the variable,
hdocl. Here is an example of a complete heredoc assignment:

hdocl = <<EODOC

I wandered lonely as a #{"cloud".upcase},
That floats on high o'er vale and hill...
EODOC

By default, heredocs are treated as doublequoted strings so expressions such as
#{"cloud".upcase} will be evaluated. If you want a heredoc to be treated as
single-quoted string, specify its end marker between single -quotes:

hdoc2 = <<'EODOC'

| wandered lonely as a #{"cloud".upcase},
That floats on high o'er vale and hill...
EODOC

The end-marker of a heredoc must, by default, be placed flush with the left
margin. If you want to indent if you should use << rather than <<when assigning
the end marker:

hdoc3 = <<EODOC

| wandered lonely as a #{"cloud".upcase},

That floats on high o'er vale and hill...
EODOC

It is up to you to pick an appropriate end marker. It is even legitimate (though,
perhaps, not particularly sensible!) to use a reserved word:

hdoc4 = <<def

| wandered lonely as a #{"cloud".upcase},
That floa ts on high o'er vale and hill...
def

A variable to which a heredoc is assigned can be used just like any other string
variable:

puts(hdocl)

46

CHAPTER THREE

STRING LITERALS

As explained earlier in this chapter, you can optionally delimit strings by %.q/
and / for single-quoted strings and either %Q/ and / or %/ and / for double -
guoted strings.

Ruby provides similar means of delimiting back -quoted strings, regular expres-
sions, symbols and arrays of either single-quoted or double -quoted strings. The
ability to define arrays of strings in this way is particularly useful since it avoids
the necessity of entering string delimiters for each item. Here is a reference to
these string literal delimiters:

%q/ /
%Q/

%/

%w/

%W/

%or| |
%s/ /
%ox/ /

Note that you may choose which delimiters to use. | have used / except with the

regular expression where | have used| (since/ PUwU0T 1T ws OOUOEOz wUI 1
delimiter) but | could equally have used square brackets, asterisks ampersands

or other symbols (e.g. %W+*dog cat #{1+2}* or %s&dog&). Here is an example of

these literals in use:

literals.rb
p %q/dog cat #{1+2}/ #=>"dog cat \ #{1+2}"
p %Q/dog cat #{1+2}/ #=> "dog cat 3"
p %/dog cat #{1+2}/ #=> "dog cat 3"
p %w/dog cat #{1+2}/ #=> ["dog", "cat", " \ #{1+2}"]
p %W/dog cat #{1+2}/ #=> ["dog", "cat", "3"]
p %r|Na -z]*$| #=> ["a -z]*$/
p %s/d og/ #=> .dog
p Yox/vol/ #=>"Volumeindrive CisOS [et c. . .] O

47

THE BooK OF RuBY

48

CHAPTER FOUR

Arrays and Hashes

4xw0OwdOPOwWPl zYI wil 61 UEOOGAWET T OwlUDOT woE

type of list structure ¢ an array.

ARRAYS

arrayO0.rb

What is an Array?

An Array is a sequential collection of items in which each item can be

indexed. In Ruby, (unlike many other languages) a single Array can

contain items of mixed data types such as strings, integers and floats
or even a method-call which returns some value:

al =[1,'two’, 3.0, array_length(a0)]

The first item in an array has the index 0, which means that the final
item has an index equal to the total number of items in the array mi-
nus 1. Given the array, al, shown above, this is how to obtain the
values of the first and last items:

al[0] #returns 1 st item (at index 0)
al[3] #returns 4 th item (at index 3)

49

THE BooK OF RuBY

6 1 7 Y leady Bedl arrays a few times¢ for example, in 2adventure.rb in chap-
ter 2 we used an array to store a map of Rooms:

mymap = Map.new([room1,room2room3])

CREATINGARRAYS

In common with many other programming languages, Ruby uses square brack-
ets to delimit an array. You can easily create an array, fill it with some comma-
delimited values and assign it to a variable:

arr = ['one','two','three’,'four’]

arrayl.rb

As with most other things in Ruby, arrays are objects. They are defined, as you
might guess, by the Array class and, just like strings, they are indexed from O.
You can reference an item in an array by placing its index between square
brackets. If the index is invalid, nil is returned:

arr =['a','b', 'c]

puts(arr[0]) #shows 06ab
puts(arr[1]) # shows O0DbO
puts(arr[2]) # shows 06¢cb9
puts(arr[3]) # nil

array2.rb

It is permissible to mix data types in an array and even to include expressions

Pi DPEl wabl OEwUOO!I wYEOUI dw+1 UzUwWEUUUOI wlT E0wa U

def hello
return "hello world"
end
You can now declare this array:

X = [1+2, hello, "dir’]

50

CHAPTER FOUR

"T Ul OwUT | wi BUU0wWI O1 O OUwWPUWUT T wbdOUI TT UOW
(returned by the method hello). If you run this on Windows, the third arra y
element will be a string containing a directory listing. This is due to the fact that

‘dir is a backquoted string which is executed by the operating system (see
Chapter #6 w31 1 wi POEOws UOOUZz wbOwUT I wEUUEawbUO
by the dir command which happens to be a string of file names. If you are

running on a different operating system, you may need to substitute an appr o-

priate command at this point.

dir_array.rb

Creating an Array of File Names

A number of Ruby classes have methods which return arrays of val-
ues. For example, the Dir class, which is used to perform operations
on disk directories, has the entries method. Pass a directory name to
the method and it returns a list of files in an array:

Dir.entries('C: \\') #returns an array of filesinC: \

If you want to create an array of single-quoted UUUDOT UWEUUWEEOz U
typing all the quotation marks, a shortcut is to put u nquoted text separated by

spaces between round brackets preceded byw like this (or use a captal %W for
double-quoted strings, as explained in Chapter 3):

array2.rb

y = %w(this is an array of strings)

You can also create arrays using the usual object construction method, new.
Optionally, you can pass an integer to new to create an empty array of a specific
size (with each element set tonil), or you can pass two argumentst the first to set
the size of the array and the second to specify the element to place at each index
of the array, like this:

a = Array.new # an empty array
a = Array.new(2) # [nil,nil]

a = Array.new(2,"hello world") # ["hello world","hello world"]

51

THE BooK OF RuBY

MULTIDIMENSIONALARRAYS

To create a multi-dimensional array, you can create one array and then add other

elements, each of which is itself an array of two elements:

a = Array.new(2)
a[0]= Array.new(2,'hello")
a[1]= Array.new(2,'world’)

You can also create an Array object by passing an array as an arg-
ment to the new method. Be careful, though. It is a quirk of Ruby that,
while it is legitimate to pass an array argument either with or without
enclosing round brackets, Ruby considers it a syntax error if you fall
to leave a space between thenew method and the opening square
bracket + another good reason for making a firm habit of using
brackets when passing arguments!

It is also possible to nest arrays inside one another using square brackets. This
creates an array of four arrays, each of whichcontains four integers:

a=| [1,2,3,4],
[5,6,7,8],
[9,10,11,12],
[13,14,15,16]]

(Owl0T 1 WEOET wUT OPOWEEOYI OHUWEEYE wOOEBI K& UED i
This is not obligatory but it does help to clarify the structure of the multi -
dimensional array by displaying each sub-array as though it were a row, similar
to the rows in a spreadsheet. When talking about arrays within arrays, it is
EOOYI 0PI OUwUOwUIT i 1 UwlOwl EET wOl UUI EWEUUEawEUWE

52

CHAPTER FOUR

multi_array.rb

For some more examples of using multi-dimensional arrays, load up the
multi_array.rb program. This starts by creating an array, multiarr , containing
two other arrays. The first of these arrays is at index 0 of multiarr and the second
is at index 1:

multiarr = [['one','two’,'three’,'four,[1,2,3,4]]

ITERATINGOVERARRAYS

You can access the elements of an array by iterating over them using &or loop.
The loop will iterate over two elements here: namely, the two sub -arrays at index
0 and 1:

fori in multiarr
puts(i.inspect)
end

This displays:

['one", "two", "three", "four"]
[1, 2, 3, 4]

So, how do you iterate over the items (the strings and integers) in each of the two
sub-arrays? If there is a fixed number of items you could specify a different
iterator variable for each, in which case each variable will be assigned the value
from the matching array index.

Here we have four sub-array slots, so you could use four variables like this:
for (a,b,c,d) in multiarr

print("a =#{a}, b=#{b}, c=#{c}, d=#{d} \n")
end

53

THE BooK OF RuBY

Iterators and for loops

The code inside afor loop is executed for each element in some &-
pression. The syntax can be summarized like this:

for <one or more variables>in <expression>do
<code to run>
end

When more than one variable is supplied, these are passed to the
code inside the for..end block just as you would pass arguments to a
method. Here, for example, you can think of (a,b,c,d) as four argu-
ments which are initialised, at each turn through the for loop, by the
four values from a row of multiarr :

for (a,b,c,d) in multiarr
print("a=#{a}, b=#{b}, c=#{c}, d=#{d} \n")
end

61 zOOWE | uf@ (03 Brd btheEitdrators in more depth in the
next chapter.

multi_array2.rb

You could also use afor loop to iterate over all the items in each sub-array
individually:

for s in multiarr[0]
puts(s)

end

for s in multiarr[1]
puts(s)

end

Both of the above techniques (multiple iterator variables or multiple for loops)

have two requirements: a) that you know how many items there are either in the
sUOPUzwOUws EOOUOOZUwOl wUT T wi UPEwOi wWEUUEaUwE O
same number of items as each other.

54

CHAPTER FOUR

For a more flexible way of iterating over multidimensional arrays you could use
nested for loops. An outer loop iterates over each row (subarray) and an inner
loop iterates over each item in the current row. This technique works even when
subarrays have varying numbers of items:

for row in multiarr
for item in row
puts(item)
end
end

INDEXING INTO ARRAYS

As with strings (see Chapter Thrgeyou can index from the end of an array using
minus figures, where -1 is the index of the last element; and you can also use
ranges.

array_index.rb

arr =[h''e""I' 0", ",'w'",'0",'r','I','d"]

print(arr[0,5]) #=> O0hell 00
print(arr[-5,5]) #=> Ooworl do
print(arr[0..4]) #=> O0hell 00
print(arr[-5..-1]) #=> Oworl do

Notice that, as with strings, when provide two integers in order to return a
number of contiguous items from an array, the first integer is the start index
while the second is acountof the number of items (not an index):

arr[0,5] #returns 5 chars - ["h", "e", "I", "I", "0"]

array_assign.rb

You can also make assignments by indexing into an array. Here, for example, |
i PUUUWEUI EVUl wEOwW]I OxUawEUUEawUTI 1 OwxUUO0wHUI
slot at number 2 will be filled with a nil value:

55

THE BooK OF RuBY

arr =]

arr[0] = [0]
arr[1] = ["one"]
arr[3] = ["a", "b", "c"]

arr now contains:
[0}, ["one’], nil, 2", "b", "¢"]]

Once again, you can use startend indexes, ranges and negative index values:

arrz — [lhl,'e',lll,'ll,'ol,' ',IW',lol,lr',lll,ldl]

arr2[0] ='H'

arr2[2,2 |]="L", 'Ll
arr2[4..6] ='0, -,'W'
arr2[-4,4] ="a'I''d",'o’

arr2 now contains:
[IIHII’ IleII, IILII, IlLlI, IIOII, n _ll, IIWII’ Ilall, IIIII, lldll, IIOII]

COPYINGARRAYS

array_copy.rb

Note that when you use the assignment operator, =, to assign one array variable

to

another variable, you are actually assigning a reference to the array itselft you

are not making a copy. You can use theclone method to make a new copy of the
array:

56

arrl=['h''e"I''I''0"," ",\'w','0",'r'",'I','d"]
arr2=arrl

arr2 is now the same as arrl. Change arrl and arr2 changes too!
arr3=arrl.clone

arr3 is a copy of arrl. Change arrl and arr2 is unaffected

CHAPTER FOUR

TESTINGARRAYSOR EQUALITY

array_compare.rb

A few words need to be said about the comparison operator <=>This compares

two arrays + O1 Uz U w EaElCaOdiatid ;lit @wrns -1 if arrl is less thanarr2 ; it

returns 0 if arrl and arr2 are equal; it returns 1 if arr2 is greater than arrl. But

I OPwWEOI Uwl1UEawEI Ul UOPOI whi woOOl wEUUEawbUu
turns out that it compares each item in one array with the corresponding item in

the other. When two values are not equal, the result of their comparison is
returned. In other words if this compar ison were made:

[0,10,20] <=> [0,20,20]

60T 1 wHHOWPYOWOEWET wUl UUUOI EwpUT | wi PUVUOWEUU
the integer at index 1 is of lower value (10) in the first array than the integer at
the same indexin the second (20).

If you are comparing arrays of strings, then comparisons are made on ASCII

values. If one array is longer than another and the elements in both arrays are all

equal, then the longer aUEAa wDUWET I Ol EwUOOWET wsT UI EUI U
arrays are compared and one of the elements in the shorter array is greater than

the corresponding element in the longer array, then the shorterarray is deemed to

be greater.

SORTING ARRAYS

array_sort.rb

The sort method compares adjacent array elements using the comparison
operator <=> This operator is defined for many Ruby classes, including Array,
String, Float, Date and Fixnum. The sort operator is not, however, defined for all
classes (that is to say that it is not defined for the Object class from which all
other classes are derived). One of the unfortunate consequences of this is that it
cannot be used to sort arrays containing nil values. It is, however, possible to get
around this limitation by defining your own sorting routine. This is done by
sending a block to the sort method. Wez @G@kuat blocks in detail in Chapter 10.
For now, it is enough to know that the block here is a chunk of code which
determines the comparison used by the sort method.

57

THE BOook OF RuBY
This is my sort routine:

arr.sort{
|a,b]
ato s<=>b.to_ s

Here arr is an array object and the variablesa and b represent two contiguous

EUUEawi Ol Ol OUUGw(zYl wEOOYI UUI Baubk mdhoduYEUDEEOI 1
this converts nil UOWEOwl Ox UawUUUDOT wbl PET whDPOOWET wUOUU
my sorting block defines the sort order of the array items, it does not change the

array items themselves. Sonil will remain as nil and integers will remain as

integers. The string conversion is only used to implement the comparison, not to

change the array items.

COMPARINGVALUES

Ruby module named Comparable. For now, you can think of a module as a sort
Of wUl DUEEOT wWIEDED wiibu O @ @R ned@e® b IChaked
12.

8OUWEEOws DOE O thBlé madulelin yout Gwd xl&sses. When this is
done, you can override the <=>method to enable you to define exactly how
comparisons will be made between specific types of object. For example, you
may want to subclass Array so that comparisons are made bagd purely on the
length of two Arrays rather than on the values of each item in the Array (which

is the default, as explained earlier). This is how to might do this:

comparisons.rb

class MyArray < Array
include Comparable

def <=> (‘anotherArray)
self.length <=> anotherArray.length
end
end

58

CHAPTER FOUR
Now, you can initialize two MyArray objects like this:

myarrl = MyArray.new([0,1,2,3])
myarr2 = MyArray.new([1,2,3,4])

And you can use the <=>method defined in MyArray in order to make compar i-
sons:

Two MyArray objects
myarrl <=> myarr2 #returns O

This returns 0 which indicates that the two arrays are equal (since our <=>method
evaluates equality according to length alone). If, on the other hand, we were to
initialise two standard Arrays with e xactly the same integer values, the Array

Two Array objects
arrl <=> arr2 #returns -1

Here -WwDHD OEPEEUI UwUT E0wUT 1 wi PUUVUWEUUEA&a wl YEOU
UT 1 w UU E<s>umétid& ddrdpardsuthe numerical values of each item in arrl

and these are less than the values of the items at the same indexes iarr2 .

'UU0wpkPT E0wPi wabUwbEBOwOWIOB DF Qug OO VW HIOE ws 1
sons using the traditional programming notation:

< # less than
== # equal to
> # greater than

In the MyArray class, we can make comparisons of this sort without writing any
additional code. This is due to the fact that the Comparable module, which has
been included in the MyArray class, automatically supplies these three compar i-
son methods; each method makes its comparison based on the definition of the
<=>method. Since our <=>makes its evaluation based on the number of items in
an array, the <method evaluates to true when the first array is shorter than the
second,==evaluates to true when both arrays are of equal length and >evaluates
to true when the second array is longer than the first:

59

THE BooK OF RuBY

p(myarrl < myarr2) #=> false
p(myarrl == myarr2) #=> true

The standard Array, class, however, does not include the Comparable module so,
if you try to compare two ordinary arrays using < ==or > Ruby will display an
error message telling you that the method is undefined.

It turns out that it is easy to add these three methods to a subclass of Array. All
you have to do is include Comparable, like this:

class Array2 < Array
include Comparable
end

The Array2 class will now perform its comparisons b ased on the <=>method of
Array ¢ that is, by testing the values of the items stored in the array rather than
merely testing the length of the array. Assuming the Array2 objects, arrl and
arr2 , to be initialized with the same arrays which we previously used for myarrl
and myarr2 , we would now see these results:

p(arrl<arr2) #=> true
p(arrl>arr2) #=> false
ARRAYMETHODS

array_methods.rb

Several of the standard array methods modify the array itself rather than retur n-
ing a modified copy of the array. These include not only those methods marked
with a terminating exclamation such as flatten! and compact! but also the
method <<which modifies the array to its le ft by adding to it the array on its
right; the clear which removes all the elements from the array and delete and
delete_at remove selected elements.

60

CHAPTER FOUR

HASHES

While arrays provide a good way of indexing a collection of items by number,

there may be times when it would be more convenient to index them in some

other way. If, for example, you were creating a collection of recipes, it would be

more meaningful to havli wl EET wUI EDx1 wbOEI BRI EwEawbOEOI
"EOl 2 WEQEwW?" OGWEUwW5 P02 wUEUT T UwUT EOQOWEa wOU

1UEawl EUWEWEOEUVUUWUT E0wOl OUwaOUwWEOwRaW U U wC
lent of what some other languages call a Dictionary. Just like a real dictionary,

the entries are indexed by some unique key (in a dictionary, this would be a

word) which is associated with a value (in a dictionary, this would be the defin i-

tion of the word).

CREATINGHASHES

hashl.rb

Just like an array, you can create a hash by creating a new instance of the Hash
class:

hl = Hash.new
h2 = Hash.new("Some kind of ring")

Both the examples above create an empty Hash. A Hash object always has a
default value ¢ that is, a value that is returned when no specific value is found at

a given index. In these examples,n2 DPUwbD ODUDPEODPA&AT EwbDUT wOT I
O b 0 E wO ihlidhbt @itiadiz@dwith a value so its default value will be nil.

Having created a Hash object, you can add items to it using an array-like syntax

{ that is, by placing the index in square brackets and using = to assign a value.

31T 1T wOEYPOUUWEDI 11 Ul OETl wi 1 Ul wel 07T wUT EUOW
be an integer; with a Hash, it can be any unique data item:

61

THE BooK OF RuBY

h2['treasurel’] = 'Silver ring'
h2['treasure2’] = 'Gold ring'
h2['treasure3’] = 'Ruby ring'
h2['treasure4'] = 'Sapphire ring'

Often, the key may be a number or, as in the code above, a string. In principle,
however, a key can be any type of object.

Unique Keys?

Take care when assigning keys to Hashes. If you use the same key
twice in a Hash, you will end up over writing the original value. This
is just like assigning a value twice to the same index in an array. Con-
sider this example:

h2['treasurel’] = 'Silver ring’'
h2['treasure2’] = 'Gold ring'
h2['treasure3'] = 'Ruby ring'
h2['treasurel’] = 'Sapphire ring'

"T Ul wO0T 1T &0 WwkywWl EVWET 1 OwlUI EwO
OUPT POEOWYEOUI Ows2HOYI UwubOT 7 we-
sulting in this Hash:

{"treasurel"=>"Sapphire ring", "treasure2"=>"Gold ring", "trea s-
ure3"=>"Ruby ring"}

PPEI 6 w

EUwWET |

Given some class X, the following assignment is perfectly legal:

x1 = X.new('my Xobject")
h2[x1] = 'Diamond ring'

There is a shorthand way of creating Hashes and initializing them with key -
value pairs. Just add a key followed by =>and its associated value; each key
value pair should be separated by a comma and the whole lot placed inside a
pair of curly brackets:

62

CHAPTER FOUR
hl 'room1'=>'The Treasure Room',
'room2'=>"The Throne Room’,
'locl'=>'A Forest Glade',
'loc2'=>'A Mountain Stream' }

1
~—

INDEXING INTO A HASH

To access a value, place its key between square brackets:
puts(h1['room27) #=> 0The Throne Roombd

If you specify a key that does not exist, the default value is returned. Recall that
we have not specified a default value for hl but we have for h2:

p(h1['unknown_room') #=> nil
p(h2['unknown_treasure') #=>'Some k ind of ring'

Use the default method to get the default value and the default= method to set
it (see Chapter 2 for more information on getandsets EEET UUOU.z wOIl UT OE

p(hl.default)
hl.default ='A mysterious place'

CoPYINGA HASH

hash2.rb

As with an array, you can assign one Hash variable to another, in which case
both variables will refer to the same Hash and a change made using either
variable will affect that Hash:

h4 = hl
h4[" rooml'] =06A new Room'
puts(h1['room1T) #=> OA new Roombd

63

THE BooK OF RuBY

If you want the two variables to refer to the same items in different Hash objects,
use the clone method to make a new copy:

h5 = hl.clone
h5['room1 1="A n even newer Room'
puts(hl[rooml1) # = A ndw room' (i.e. its value is unchanged)

SORTING A HASH

hash_sort.rb

As with the Array class, you may find a slight problem with the sort method of

Hash. It expects to be dealingwith keys of the same data type soif, for example,

you merge two arrays, one of which uses integer keys and another of which uses

VOUDPOT UOwaOUwb OOz UwWET wEEOT wOOwWUOUOwWUT T wbl UT1 E
is, as with Array, to write some code to perform a custom type of comparison

and pass this to thesort method. You might give it a method, like this:

def sorted_hash(aHash)
return aHash.sort{
|a,b]
ato s<=>h.to s

}

end
This performs the sort based on the string representation (to_s) of each key in

the Hash. In fact, the Hash sort method converts the Hash to a nested array of
[key, valu¢ arrays and sorts them using the Array sort method.

64

CHAPTER FOUR

HASHMETHODS

hash_methods.rb

The Hash class has numerous builtin methods. For example, to delete an item

using its key (someKey) from a hash, aHash, use aHash.delete(someKey). To

test if a key or value exists use aHash.has key?(someKey) and
aHash.has_value?(someValue). Toreturn a new hash createdusing the original

I E U vatuésas keys, andits keys as values useaHash.invert ; to return an array

x Ox UOEUI Ew PPUT wUOTT wi EUI zUw GHaslikeysO&hdi PD U
aHash.values, and so on.

The hash_methods.rb program demonstrates a number of these methods.

65

THE BooK OF RuBY

Digging Deeper

TREATINGHASHESASARRAYS

hash_ops.rb

The keys and values methods of Hash each return an array so you can use
various Array methods to manipulate them. Here are a few simple examples:

hl ={keyl'=>'vall', 'key2'=>'val?', 'key3'=>'val3', 'key4'=>'val4'}
h2 = {'’keyl'=>'vall', 'KEY_TWO'=>'val2', 'key3'=>'VALUE_3',
'key4'=>'val4'}

p(hl.keys & h2.keys) # set intersection (keys)
#=>["keyl", "key3", "key4"]

p(hl.values & h2.values) # s et intersection (values)
#=> ["vall", "val2", "val4"]

p(hl.keys+h2.keys) # concatenation
#=>["keyl", "key2", "key3", "key4", ‘"keyl", "key3", "key4", "KEY_TWOQO"]

p(hl.values-h2.values) # difference
=>["val3"]
p((hl.keys << h2.keys)) # ap pend

#=>["keyl", "key2", "key3", "key4", ['keyl", "key3", "key4", "KEY_TWO"]]
p((hl.keys << h2.keysnesftlGatarernaysevaend er e Vv)e rs

#=> ["KEY_TWO", "key4", "key3", "keyl", "key4", "key3", "key2", "key1"]

APPENDING ANDCONCATENATING

Be careful to note the difference between concatenating using+to add the values
from the second array to the first and appending using <<to add the second array
as the final element of the first:

66

CHAPTER FOUR

append_concat.rb

a=[1,2,3]

b =[4,5,6]

c=a+b #=>c=[1, 2, 3, 4,5, 6] a=[1, 2, 3]
a<<b #=>a=[1, 2, 3, [4, 5, 6]]

In addition <<OOEDPI Pl UwUT 1T wi PUUUw pUiHretum&d iew DY 1 U
array but leaves the receiver array unchanged.

Receivers, Messages and Methods

In Object Oriented terminology, the object to which a method belongs
is called the receiverd w31 1 wPEI EwDUwUT ECwbOUUI EEwO
DPOwxUOEI EUUEOQWOEOT UETT UOws O UUET 1 Uz wEL
the message+ 1 might be sent to an integer object while the message
reverse might be sent to a string object. The obpctP T PET ws UILET BDYI U
messageUUDT UwUOwi b O E méhaody Bawbdd Wi UF Wux BXDE D3 w
message. A string object, for example, has areverse method so is
able to respond to the reverse message whereas an integer object hag
no such method so cannot regpond.

If, after appending an array with <<a OUwWE] EPEI wUl EQwadezEwWO
ments from the appended array to the receiver array rather than have the ap-

x1 OEl EWEUUEawbUOUI Of ws Ol UUI Ez wbOUHEtenuUT 1 w
method:

a=[1, 2, 3, [4, 5, 6]]
a.flatten #=>11, 2, 3,4,5, 6]

MATRICES ANDVECTORS

Ruby provides the Matrix class which may contain rows and columns of values
each of which can be represented as a vector (Ruby also supplies a Vector class).
Matrices allow you to perform matrix arithmetic. For example, give two Matrix

67

THE BooK OF RuBY

objects, m1 and m2,you can add the values of each corresponding cell in the
matrices like this:

matrix.rb

m3 = ml+m2

STS

The Set class implements a collection of unordered values with no duplicates.
You can initialize a Set with an array of values in which c ase, duplicates are
ignored:

Examples

sets.rb

sl = Set.new([1,2,3, 4,5,2])

s2 = Set.new([1,1,2,3,4,4,5,1])

s3 = Set.new([1,2,100])

weekdays = Set.new(%w(Monday, Tuesday, Wednesday, Thursday,

Friday, Saturday, Sunday))

You can add new values using the add method:

sl.add(1000)
The merge method combines values of one Set with another:

sl.merge(s2)
You can use == to test for equality. Two sets which contain the same values
(remembering that duplicates will be removed when a Set is created) are consid-

ered to be equal:

p(sl==s2) #=> true

68

CHAPTER FIVE

Loops and Iterators

Much of programming is concerned with repetition. Maybe y ou want your
program to beep ten times, read lines from a file just so long as there are more
lines to read or display a warning until the user presses a key. Ruby provides a
number of ways of performing this kind of repetition.

FOR LOOPS

In many programming languages, when you want to run a bit of code a certain

number of times you can just put it inside a for loop. In most languages, you

give a for loop a variable initialized with a starting value which is incremented

by 1 on each turn through the loop until it meets some specific ending value.

When the ending value is met, the for OOOx wUUOx UwUUOODPOT dw' |
this traditional type of for loop written in Pascal:

(* This is Pascal code, not Ruby! *)
fori:=1to 3 do
writeln(i);

for_loop.rb

8OUwWOEawUl EEOOwWi UOOwWUT forw@EW-OuEED 1Ex A Wuwrdd E
at all! Instead of giving it a starting and ending value, we give the for loop a list

of items and it iterates over them, one by one, assigning each value in turnto a

loop variable until it gets to the end of the list.

69

THE BooK OF RuBY

For example, here is afor loop that iterates over the items in an array, displaying
each in turn:

This is Ruby codeé
foriin[1,2,3] do

puts(i)
end

The for OOOx wPUwWOOUT woOPOl wUIT T wsi OUwl EEb-zwbUI UEUC
gramming languages. 31T 1 wbP Ul OUwOYI Uwbl PET wUé iowedOOx wbUI U
integers. This works just as well...

for sin ['one','two','three'] do
puts(s)
end

The author of Ruby describesfor E Uw? Ua O U E R w@dsh niethodwhich S w0 T 1T w
implemented by collection types such as Arrays, Sets, Hashes and Strings (a

String being, in effect, a collection of characters) For the sake of comparison, this

is one of the for loops shown above rewritten using the each method:

each_loop.rb

[1,2,3].each do |[i|

puts(i)
end

Uwa OUWEEOwWUI 1 OwUT 1 Ul whbUOZUwUI EO@®AIdmOOwUT E0wC
to an eachiterEUOUOWE OO w(z Y1 fori dadindndapteidiuebod wthé O1 U1 w
do. Compare these other examples to see just how similarfor loops are to each
iterators:

for_each.rb

--- Example 1---

#1) for

for s in ['one','two’,'three’] do
puts(s)

end

70

CHAPTER FIVE

#ii) each

['one','two','three’].each do |s|
puts(s)

end

--- Example 2 ---
#1) for
for x in [1, "two", [3,4,5]] do puts(x) end

#ii) each
[1, "two", [3,4,5]].each do |x| puts(x) end

Note, incidentally, that the do keyword is optional in a for loop that spans
multiple lines but it is obligatory when it is written on a single line:

Here the 6dod keyword can be omitted
for sin ['one','two','three']

puts(s)
end

But here it is required
for siin ['one','two’,'three’] do puts(s) end

for_to.rb

" OPwUOwWP UD U FoEMR-OOUOE Oz w

If you miss the traditional type of for loop, youcanE OPEa Uws I EOI z wE
Ruby by using a for loop to iterate over the values in a range. For ex-
ample, this is how to use afor loop variable to count up from 1 to 10,
displaying its value at each turn through the loop:

foriin (1..10) do

puts(i)
end

71

THE BooK OF RuBY

for_each2.rb

This example shows how both for and each can be used to iterate over the
values in a range:

for
forsin 1..3

puts(s)
end

each

(1..3).each do |s|
puts(s)

end

Note, incidentally, that a range expression such as1..3 must be enclosed between
round brackets when used with the each method, otherwise Ruby assumes that
you are attempting to use each as a method ofthe final integer (a Fixnum) rather
than of the entire expression (a Range). The brackets are optional when a range is
used in afor loop.

MULTIPLE ITERATOR ARGUMENTS

multi_array.rb

You may recall that in the last chapter we used afor loop with more than one
loop variable. We did this in order to iterate over a multi -dimensional array. On
each turn through the for loop, a variable was assigned one row (that is, one
sUBBHUEaz Awi UOOwWUT T wOUUI UWEUUEa

Here multiarr is an array containing two
(sub -arrays) at index 0 and 1
multiarr = [['one','two’,'three’,'four],

[1,2,3,4]

72

(@)

CHAPTER FIVE

This for | oop runs temdtar)(once for ea
for (a,b,c,d) in multiarr

print("a=#{a}, b=#{b}, c=#{c}, d=#{d} \n")
end

The above loop prints this:

a=one, b=two, c=three, d=four
a=1, b=2, c=3, d=4

We could use the each method to iterate over this four -item array by passing

each iteration:

multiarr.each do |a,b,c,d|
print("a=#{a}, b=#{b}, c=#{c}, d=#{d} \n")
end

Block Parameters

(Owl1UEawlOi | wEOCEAwWOI webOwbhUI UEUOUwWPUWEE
El EOEUI EwWEI UPI 1 OwUxUPT T UWEEUUWEDwWUOT T w
xEUEOI Ul UUz 8 w(OWEWPEAaOWEWEOOE Qaib OUOU wC
UEOI Ul UUwPOUOWODPOI wE wi ek dhddrgns wE UT UOI
the code inside the block and passes to it the aguments supplied by a
collection (such as the array, multiarr). In the example above, the
each method repeatedly passes an array of four elements to the block
and those elements initialize the four block parameters, a, b, c, d.
Blocks can be used for otherthings, in addition to iterating over col-
Ol EUPOOUB w(zOOwl E Yin Gha&p@r10. uwOUOwWUE a WOOWE OC

73

THE BooK OF RuBY

BLocksS

block_syntax.rb

Ruby has an alternative syntax for delimiting blocks. Instead of using do..end,
you can use curly braces{..} like this:

do..end
[[1,2,3],[3,4,5],[6,7,8]].each do
|a,b,c|
puts("#{a}, #{b}, #{c}")
end

curly braces {..}
[[1,2,3],[3,4,5].,[6,7,8]].each{
|a,b,c|
puts(“#{a}, #{b}, #{c}")
}

No matter which block delimiters you use, you must ensure that the opening
E1 Ob O Wi ddgisupkaced on the same line as theeach method. Inserting a
line break between each and the opening block delimiter is a syntax error.

W HILE LOOPS

Ruby has a few other loop constructs too. This is how to do awhile loop:

while tired
sleep
end

Or, to put it another way:

sleep while tired
Even though the syntax of these two examples is different they perform the same
function. I n the first example, the code between while and end (here a call to a

method named sleep) executes just as long as the Boolean condition (which, in
74

CHAPTER FIVE

this case, is the value returned by a method calledtired) evaluates to true. As in
for loops the keyword do may optionally be placed between the test condition
and the code to be executed when these appear on separate lines; thdo keyword
is obligatory when the test condition and the code to be executed appear on the
same line.

W HILE MODIFIERS

In the second version of the loop (sleep while tired), the code to be executed

(sleep) precedes the test condition hile tred A6 w3 T PUwUaOUERwWDUw
OOCEPI P11 Uzbw6el 1 OwaOUwPEOUWUOwWI BT EVUUT wUT YI
can put them between the begin and end keywords:

begin
sleep
snore
end while tired

lloops.rb

This is an example showing the various alternative syntaxes:
$hours_asleep =0

def tired
if $hours_asleep >= 8 then
$hours_asleep =0
return false
else
$hours_asleep +=1
return true
end
end

def snore
puts(‘snore....")

end

75

THE BooK OF RuBY

def sleep
puts("z" * $hours_asleep)
end

while tired do sleep end # a single -line while loop

while tired # a multi -line while loop
sleep
end

sleep while tired # single -line while modifier

begin # multi -line while modifier
sleep
snore

end while tired

The last example above (the multi-line while modifier) needs close consideration
as it introduces some important new behaviour. When a block of code delimited
by begin and end precedes thewhile test, that code always executes at least once.
In the other types of while loop, the code may never execute at all if the Boolean
condition initially evaluates to true.

Ensuring a Loop Executes At Least Once

Usually a while loops executes 0 or more times since the Boolean tes
is evaluated beforethe loop executes; if the test returns false at the
outset, the code inside the loop never runs.

However, when the while test follows a block of code enclosed he-
tween begin and end, the loop executes 1 or more times as the Bo-
lean expression is evaluated afterthe code inside the loop executes.

76

CHAPTER FIVE

2loops.rb

To appreciate the differences in behaviour of these two types of while
loop, run 2loops.rb.

These examples should help to clarify:
x =100

The code in this loop never runs
while (x < 100) do puts('x < 100" end

The code in this loop never runs
puts('x < 100" while (x < 100)

But the code in loop runs once
begin puts('x < 100" end while (x < 100)

UNTIL LOoPS

Ruby also has anuntil OOOx wbl DPET wEE O w E iwhidrio® WO Dw & iu
syntax and options are the same as those applying towhile t that is, the test
condition and the code to be executed can be placed on a single line (in which

case thedo keyword is obligatory) o r then can be placed on separate lines (in

which case do is optional).

There is also anuntil modifier which lets you put the code before the test cond i-

tion and an option to enclose the code betweenbegin and end in order to ensure
that the code block isrun at least once.

77

THE BooK OF RuBY

Here are some simple examples ofuntil loops:

i=10

until i == 10 do puts(i) end # never executes

until i == 10 # never executes
puts(i)
i+=1

end

puts(i) until i == 10 # never executes

begin # executes once
puts(i)

end until i == 10

until.rb

Both while and until loops can, just like afor loop, be used to iterate over arrays
and other collections. For example, this is how to iterate over all the elements in

an array:

while i < arr.length
puts(arr[i])
i+=1

end

until i == arr.length
puts(arr[i])
i+=1

end

78

CHAPTER FIVE

Loopr

3loops.rb

The examples in 3loops.rb should all look pretty familiar ¢ with the exception of
the last one:

loop {
puts(arrli])
i+=1
if (i == arr.length) then
break
end

This uses the loop method repeatedly to execute the block enclosed by curly
braces. This is just like the iterator blocks we used earlier with the each method.
Once again, we have a choice of block delimiterst either curly braces or do and
end:

puts("\ nloop")
i=0
loop do
puts(arr[i])
i+=1
if (i == arr.length) then
break
end
end

This code iterates through the array, arr, by incrementing a counter variable, i,
and breaking out of the loop when the (i == arr.length) condition evaluates to
true. You have to break out of a loop in this way since, unlike while or until , the
loop method does not evaluate a test condition to determine whether or not to
continue looping. Without a break it would loop forever.

79

THE Book OF RuBY
Digging Deeper

Hashes, Arrays, Ranges and Sets all include a Ruby module called Enumerable.

A modu le is a sort of code library (Iz OO wT E Y1 w éud hodule®inChap: w E
ter 12). In Chapter 4, | used the Comparable module to add comparison methods
such as<and >to an array. You may recall that | did this by subclassing the

class Array2 < Array
include Comparable
end

THE ENUMERABLE MODULE

enum.rb

The Enumerable module is already included into the Ruby Array class and it
provides arrays with a number of useful methods such as include? which returns
true if a specific value is found in an array, min which returns the smallest value,
max which returns the largest and collect which creates a new array made up of
values returned from a block:

arr =[1,2,3,4,5]
y = arr.collect{ |i| i } #=>y=1[1, 2, 3, 4]
z = arr.collect{ [i| i *i} #=>2z=[1, 4,9, 16, 25]

arr.include?(3) #=> true
arr.include?(6) #=> false
arr.min #=>1
arr.max #=>5

enum2.rb

These same methods are available to other collection classes just as long as those
classes include Enumerable. Hash is sucha class. Remember, however, that the
items in a Hash are nat indexed in sequential order so when you use the min and
max methods these return the items that are lowest and highest according to

80

CHAPTER FIVE

their numerical value ¢ here the items are strings and the numerical value is
determined by the ASCII codes of the charactrs in the key.

CustoM COMPARISONS

' U0wOIl Uz UwUUx x OU mimand tdax to Getid Eams hased dnlsome
other criterion (say the length of a string)? The easiest way to do this would be to
define the nature of the comparison inside a block. This is done in a similar
manner to the sorting blocks | defined in Chapter 4. You may recall that we
sorted a Hash (here the variable h) by passing a block to the sort method like
this:

h.sort{ |a,b| a.to_s <=>b.to_s }

The two parameters, a and b, represent two items from the Hash which are
compared using the <=>comparison method. We can similarly pass blocks to the
max and min methods:

h.min{ |a,b| a[0].length <=> b[0].length }
h.max{|a,b| a[0].length <=> b[0].length }

When a Hash passes items into a block it does so in the form of arrays, each of

6UT T wUOP OwE OO Ea@ndb wduld Kelindidlizé®toutwo arrays:

for sorrowd]
for joyd]

[@))
(@}
(@}

one
t wo

oV}
1

[
[

(o
|
[@))
(@]
(@]

This explains why the two blocks in which | have define d custom comparisons
for the max and min methods specifically compare the first elements, at index 0O,
of the two block parameters:

a[0].length <=> b[0].length

This ensures that the comparisons are based on theeysin the Hash.
81

THE BooK OF RuBY

If you want to compare the valuesrather than the keys, just set the array indexes
to 1:

enum3.rb

p(h.min{|a,b| a[1].length <=> b[1].length })
p(h.max{|a,b| a[1].length <=> b[1].length })

You could, of course, define other types of custom comparisons in your blocks.

+1 Uz 0wUUxxOUI Owi OUwi BREOx Ol OwUI E0wabUwpbEOUWUT |
on, to be evaluated in the order in which we would speak them. One way of

doing this would be to create an ordered array of strings:

str_arr=['one','two','three’,'four', five','six’,'seven’]

Now, if a Hash, h, contains these strings as keys, a block can usstr_array as a
reference in order to determine the minimum and maximum values:

h.min{|a,b| str_arr.inde x(a[0]) <=> str_arr.index(b[0])}
#=> ["one", "for sorrow"]

h.max{|a,b| str_arr.index(a[0]) <=> str_arr.index(b[0])}

#=> ["seven", "for a secret never to be told"]

All the examples above, use the min and max methods of the Array and Hash
classes. Remember that these methods are provided to those classes by the
Enumerable module.

There may be occasions when it would be useful to be able to apply Enumerable
methods such as max, min and collect to classes which do not descend from
existing classes (such as Array) which implement those methods. You can do that
by including the Enumerable module in your class and then writing an iterator
method called each like this:

82

CHAPTER FIVE

include_enuml.rb

class MyCollection
include Enumerable

def initialize(someltems)
@items = someltems
end

def each
@items.each{ |i|
yield(i)
}
end
end

Here you could initialize a MyCollection object with an array, which will be
stored in the instance variable, @items. When you call one of the methods
provided by the Enumerable module (such as min, max or collect) this will,
SsEITDPOEwWUT I wUdadh btiibg 10 ardeEt® Gbtaik) éachupiece of data
one at a time.

Now you can use the Enumerable methods with your MyCollection objects:
things = MyCaollection.new(['x','yz','defgh'","ij",'kimnao'])
p(things.min) #=> "defgh"
p(things.max) #=>"yz"

p(things.collect{ |i| i.upcase })
#=>["X", "YZ", "DEFGH", "1J", "KLMNQ"]

include_enum2.rb

You could similarly use your MyCollection class to process arrays such as the

keys or values of Hashes. Currently the min and max methods adopt the default
EITEYDPOUUWOI wxi Ul OUODOT WEOOXEUDPUOOUEEUI
EOOUDPEI Ul EwUOWEIT uos thebbbsis bfthe chardcter@ASEIEVAIGE. 7 w

If you want to perform some other type of comparison ¢ say, by string length, so

83

THE BooK OF RuBY

UTEVUWSEEEEZ wPOUOEWET wEI I- ¢ou Eam jugh ovéirideuthebT T 1T Vw01 E
min and max methods:

84

include_enum3.rb

def min
@items.to_a.min{|a,b| a.length <=> b.length }
end

def max
@items.to_a.max{|a,b| a.length <=> b.length }
end

$EET wEOEwWS8 DI OEO
So what is really going on when a method from the Enumerable

out that the Enumerable methods (min, max, collect and so forth)
pass to theeach method a block of code. This block of code expects to
receive one piece of data at a time (namely each item from a colle-
tion of some sort). Your each method supplies it with that item in the
form of a block parameter, such as the parameteri here:

def each
@items.each{ |i|
yield(i)
}

end

The keyword yield is a special bit of Ruby magic which here tells the
code to run the block that was passed to theeach method ¢ that is, to
UUOOwUT T wEOET wUUxxODPI E wE anin,hbax owedlOU O
lect methods. This means that the code of those methods can be used
with all kinds of different types of collection. All you have to do is, i)
include the Enumerable module into your class and ii) write an each
method which determines which values will be used by the Enume-
able methods.

module makes use of theeach O1 Ul OEwUT E Utter? @ tbgny | wpb UD

UEUOUwO

CHAPTER SIX

Conditional Statements

Computer programs, like Life Itself, are full of difficult decisions waiting to be
made. Things like: If | stay in bed | will get more sleep, else | will have to go to work; if
| go to work | will earn some money, else | will lose my O E wU Owd O 6

61 zY1l wWEOUI EEawxI UI iOtesB linEpravibus Progeink. Tautéké au
simple example, this is from the Tax calculator in chapter one:

if (subtotal < 0.0) then
subtotal = 0.0
end

In this program, the user was prompted to enter a value, subtotal , which was
then used in order to calculate the tax due on it. If the user, in a fit of madness,
enters a value less than 0, theif test spots this since thetest (subtotal < 0.0)

evaluates to true, which causes the body of the code between theif test and the
end keyword to be executed; here, this sets the value ofsubtotal to O.

Equals once = or equals twice ==7?

In common with many other programming languages, Ruby uses one
equals sign to assign a value=and two to test a value==

85

THE BooK OF RuBY

IF..THEN..ELSE

if_else.rb

A simple test like this has only one of two possible results. Either a bit of code is
U0OwOUwPUwbUOZz UOWET x1 OE P &tb twd @ uoe Ditelt) jou Uw 0T 1T wUI
PPOOwWOI I EwUOwWI EYT wOOUI wUI EQwUPOwWwx OUUPEOTI wOUUE
that your program needs to follow one course of action if the day is a weekday

and a different course of action if it is a weekend. You can test these conditions

by adding an else section after theif section, like this:

if aDay == 'Saturday' or aDay == 'Sunday’
daytype = 'weekend'

else
daytype = 'weekday'

end

The if condition here is straightforward. It tests two possible conditions: 1) if th e

value of the variable aDayPUwil GUEOwWwUOOwWUT I wUOUDPOT ws2EUUUEEaA
aDayPUwl GUEOQwWUOwWUT T wUUUDPOT ws2UO0EEazdw(i wi pUTT U
next line of code executes:daytype = 'weekend' ; in all other cases, the code after

else executes:daytype = 'weekday' .

if_then.rb

When an if test and the code to be executed are placed on separate
lines, the then keyword is o ptional. When the test and the code are
placed on a single line, the then keyword (or, if you prefer really
terse code, a colon character) is obligatory:

if x ==1 then puts('ok') end # with 'then'
if x==1": puts('ok') end # with colon
if x ==1 puts('ok') end # syntax error!

An if Ul U0wHPUOzUwUI UOUPEUI EwUOwWI YEOUEUDPOT wNUUUOwW
example, that your code needs to work out whether a certain day is a working

86

CHAPTER SIX

day or a holiday. All weekdays are working days; all Saturdays are holidays but
Sundays are only holidays when you are not working overtime. This is my first
attempt to write a test to evaluate all these conditions:

and_or_wrong.rb

working_overtime = true

if aDay == 'Saturday' or aDay == 'Sunday' and not working_overtime
daytype = 'holiday'
puts("Hu rrah!")

else
daytype = 'working day"'

end

401 OUUDUOGEUI 6aow UTI PUWEOSI UOzUwWITEYI wgUbUI u
2EVUVUEEaAawPUWEOPEAUWEwW! OOPEEadw! U0wUT PUWE
EEaS6 w3l PUwDUWET EEUUIT w1l UEha dayi& Saturday &nd | amU1 U U
OOUwPOUODOT wOYI UUPOI OwOUwWPhi wlT T wEEaAawDUw?2
PT 1T Ul EUwbPl EQw(wUl ECCawWwO] EQUWPEUW? (T wlOT 1 w
EQEwW(WEOwWOOU wb Othe Bedidésund@yytd resole Ghis ardbiguity is to

put brackets around any code to be evaluated as a single unit, like this:

and_or.rb

if aDay == 'Saturday' or (aDay == 'Sunday' and not working_overtime)

AND..OR..NoOT

Incidentally, Ruby has two different syntaxes for testing Boolean (true/false)
EOOEPUDPOOUS w(OwUT 1 wEEOY I whnBuadge sty operafors:Y 1 w U
and, or and not. If you prefer you could use alternative operators similar to those

used in many other programming languages, namely: && (and), || (or) and !

(not).

'T WEEUI 1 UOOwWUT OUTT OwUT T wOUPOWUTI OUwWOT woOx1I L
For one thing, they have different precedence which means that when multiple
operators are used in a single testthe parts of the test may be evaluated in

different orders depending on which operators you use. For example, look at this

test:

87

THE BooK OF RuBY

days.rb

if aDay == 'Saturday' or aDay == 'Sunday' and not ~ working_overtime
daytype = 'holiday’
end

Assuming that the Boolean variable, working_overtime , is true, would this test

succeed if the variable,aDayO wpb 1 Ul wbOPUPEOPUI EwbPDUT wUI T wUOUD
words, would daytype E1 wEUUDIT O] E ODEEaDdybs® PIEWSUIVE Ea z y w3 T 1 w
answer is: OO0 O0OwPUwbOUOEDZz UB w3 T | abaybUlwi DG O W@ @EWWWET
OU ws 2 U O BvBrking_ weriewis not true.

Now consider this test:

if aDay == 'Saturday' || aDay == 'Sunday' && !working_overtime
daytype = 'holiday’
end

On the face of it, this is the same test as the last one; the only difference being

UTEOwUO0T PUwUDPOT w(zYl wUOUT EwOT 1 weEOUT UBEUDPYI wUacC
change is more than cosmetic since, ifaDay PUw s 2 E U U s Evalgateshé ® U w U

true and daytype PUwWDODUDPEOPATI EwbPPUT wUIT T wYEQUI Ows T OOD
operator has a higher precedence than the or operator. So this test succeeds

either if aDay D Uw s 2 E & 0 alagR uus 2 U O EvBrking wverfirkewis not

true.

Refer to the Digging Deeper section at the end of this chapter for more on this.
As a general principle, you would do well to decide which set of operators you
prefer, stick to them and use brackets to avoid ambiguity.

IF..ELSIF

There will no doubt be occasions when you will need to take multiple different
actions based on several alternative conditions. One way of doing this is by
evaluating one if condition followed by a series of other test conditions p laced
after the keyword elsif . The whole lot must then be terminated using the end
keyword.

88

CHAPTER SIX

For example, here | am repeatedly taking input from a user inside a while loop;

anif EOCEPUPOOwW Ul UOUwWDBI wUT T adoothpl) t&) ranho@@theU U w s
carriagi wUI OUUOwWi UOGOwWUT T wb O x U U Al§fuchridition @stsifi® U w O
the integer value of the input (input.to_i) is greater than 800; if this test fails the

next elsif condition tests if it is less than or equal to 800:

if_elsif.rb

while input !="q' do
puts("Enter a number between 1 and 1000 (or 'g' to quit)")
print("? - ")
input = gets().chomp()
if input =="'qg'
puts("Bye")
elsif input.to_i > 800
puts("That's a high rate of pay!")
elsif input.to_i <= 800
puts("We can afford that")
end
end

The problem with this program is that, even though it asks the user to enter a
value between 1 and 1000, it accepts values less than 1 (incidentally, if you really
PEOUWEWUEOEUAWDOwWODOUUwWI BT UUI UOw(z OOWEI u
1000 (inPT PET WEEUI OWEOOZ UwoOOOOwUOwWOT wi OUwI Ox(

We can fix this by rewriting the two elsif conditions and adding an else section
which executes if all the preceding tests fail:

if_elsif2.rb

if input =="qg'
puts("Bye")
elsif input.to_i > 800 && input .to_i <=1000
puts("That's a high rate of pay!")
elsif input.to_i <= 800 && input.to_i >0
puts("We can afford that")
else
puts("l said: Enter a number between 1 and 1000!")
end

89

THE BooK OF RuBY

if else_alt.rb

Ruby also has a shortform notation for if..then..else in which a
guestion mark ? replaces theif..then part and a colon : acts aselseo

< Test Condition >? <if true do this> : <else do this>
For example:
x == 10 ? puts("it's 10") : puts("it's some ot her number")

When the test condition is complex (if it uses ands and ors) you
should enclose it in brackets. If the tests and code span several lines
the ? must be placed on the same line as the preceding condition and
the : must be placed on the same Ine as the code immediately follow-
ing the ?. In other words, if you put a newline before the ? or the :
you will generate a syntax error. This is an example of a valid multi -
line code block:

(aDay == 'Saturday' or aDay == 'Sunday') ?
daytype = 'weekend' :
daytype = 'weekday'

days2.rb

"1 Ul ZUWEOOUT T Uwli BREOxX Ol itudsif uséctiod Gofowedbywa) | g U1 OET w
catch-all else section. This time the trigger value, i, is an integer:

def showDay(i)
if i == 1 then puts("It' s Monday")
elsif i == 2 then puts("It's Tuesday")
elsif i == 3 then puts("It's Wednesday")
elsif i == 4 then puts("It's Thursday")
elsif i == 5 then puts("It's Friday")

elsif (6..7) ===i then puts("Yippee! It's the weekend! ")
else puts("That's not a real day!")
end

end

90

CHAPTER SIX

- OUPET wOT EVw(¢6Y7) o aich theuwauirieged Valuas for Saturday
and Sunday. The ===method (that is, three = characters) tests whether a value
(herei) is a memberof the range. In the above exanx O1 OwUT BDUO6

(6..7) ===i
OEOUOGEWET wUl pUBUUI OwEUO

(6..7).include?(i)
The ===method is defined by the Object class and overridden in descendent

classes. Its behaviour varies according to the class. As we shall see shortly, one of
its fundamental uses is to provide meaningful tests for case statements.

UNLESS

unless.rb

Ruby also can also perform unless tests, which are the exact opposite ofif tests:

unless aDay == 'Saturday' or aDay == 'Sunday’
daytype = 'weekday'

else
daytype = 'weekend'

end

Think of unlessEUwWE]T DOT wEOQWEOUI UBEUDPYI!T whEa w®dl wi R
is equivalent to the code above:

if I(aDay == 'Saturday' or aDay == 'Sunday")
daytype = 'weekday'

else
daytype = 'weekend'

end

91

THE BooK OF RuBY

IF AND UNLESS MODIFIERS

You may recall the alternative syntax for while loops mentioned in Chapter 5.
(OUUI EEwOl wbUDPUDOT wUI PUOG

while tired do sleep end
6 b I canwrite this:
sleep while tired
This alternative syntax, in which the while keyword is placed between the code

OOwi BT EVUUT wWEGEWUT T wUIPL BOE GOBHE @ris®duh@rd wE B @l Eu
Ruby hasif and unless modifiers too. Here are a few examples:

if _unless_mod.rb

sleep if tired

begin
sleep
snore

end if tired

sleep unless not tired
begin
sleep
snore
end unless not tired
The tersenessof this syntax is useful when you repeatedly need to take some
well -defined action if some condition is true. You might, for example, pepper

your code with debugging output if a constant called DEBUG:Is true:

puts("somevar = #{somevar}") if DEBUG

92

CHAPTER SIX

constants.rb

Constants

Constants in Ruby begin with a capital letter. Class nhames are cam-
stants. You can obtain a list of all defined constants using the con-
stants method:

Object.constants

Ruby provides the const_get and const_set methods to get and set
the value of named constants specified as symbols (identifiers pre-
ceded by a colon such & :RUBY_VERSION).

Note that, unlike the constants in many other programming la n-

TUETT UOwl1UEaAazUwWwEOOUUEOUUWOEAWET WEUUDT C

RUBY_VERSION ="1.8.7"
RUBY_VERSION = "2.5.6"

The above reassignment of theRUBY_VERSION constant produces

m
(@}
S

an
mr
g
-
S
m
Q
e
&
S
c

3
&
iv)
mr
C
(@]}
)
(@}
S

CASE STATEMENTS

When you need to take a variety of different actions based on the value of a
single variable, multiple if..elsif tests are verbose and repetitive.

A neater alternative is provided by a case statement. This begins with the word
case followed by the variable name to test. Then comes a series ofwhen sections,

each of which specifies as U U DValud fallqvad by some code

This code executes onlywhen the test variable equals the trigger value:

93

THE BooK OF RuBY

case.rb

case(i)
when 1 : puts("It's Monday")
when 2 : puts("lt's Tuesday")
when 3 : puts("lt's Wednesday")
when 4 : puts("lt's Thursday")
when 5 : puts("lt's Friday")
when (6..7) : puts("Yippee! It's the weekend! ")
else puts("That's not a real day!")
end

In the example aE OY 1T OQw(z Y1 wUUI Eewdeldndéh @t fudinGhe bodex E U E
to execute. Alternatively, you could use the then keyword :

when 1 then puts("It's Monday")

The colon or then can be omitted if the test and the code to be executed are on
separate lines. Unlike case statements in C-like languages, there is no need to
enter a break keyword when a match is made in order to prevent execution
trickling down through the remainder of the sections. In Ruby, once a match is
made the case statement exits:

case(i)
when 5 : puts("lt's Friday")
puts("...nearly the weekend!")
when 6 : puts("lt's Saturday!")
the following never executes
when 5 : puts("It's Friday all over again!")
end

You can include several lines of code between eachwhen condition and you can
include multiple values separated by commas to trigger a single when block, like

this:

when 6, 7 : puts("Yippee! It's the weekend! ")

94

CHAPTER SIX

case2.rb

The condition in a case statement is not obliged to be a simple variable; it can be
an expression like this:

case(i+1)
You can also use ron-integer types such as string. If multiple trigger values are
specified in a when section, they may be of varying types ¢ for example, both
string and integers:

when 1, 'Monday', 'Mon' : puts("Yup, '#{i}' is Monday")

Here is a longer example, illustrating some of the syntactical elements mentioned
above:

case3.rb

case(i)
when 1 : puts("lt's Monday")
when 2 : puts("lt's Tuesday")
when 3 : puts("lt's Wednesday")
when 4 : puts("lt's Thursday")
when 5 then puts("lt's Friday")
puts("...nearly the weekend!")
when 6, 7
puts("It's Saturday!") if i ==
puts(“lt's Sunday!") ifi==7
puts("Yippee! It's the weekend! ")
the following never executes
when 5 : puts("It's Friday all over again!")
else puts("That's not a real day!")
end

95

THE BooK OF RuBY

THE === METHOD

As mentioned earlier, the when tests on object used n a case statement are
performed using the ===method. So, for example, just as the===method returns
true when an integer forms part of a range, so awhen test returns true when an
integer variable in a case statement forms part of a range exprasion:

when (6..7) : puts("Yippee! It's the weekend! ")

If in doubt on the effect of the ===method for a specific object, refer to the Ruby
EOEUOI OUEUPOOwWOOwWUT EVWOENT EUZUWEOGEUUG

ALTERNATIVE CASE SYNTAX

There is an alternative form of the case statement which is like a shorthand form
of a series of if..then..else statements. Eachwhen section can perform some
arbitrary test and execute one or more lines of code. Nocase variable is required.
Each when sedion returns a value which, just like a method, is the result of the
OEUUw x D1 EIl us@valuated EHisuvalue Edd zoe assigned to a variable
preceding the case statement:

case4.rb

salary = 2000000
season = 'summer’

happy = case
when salary > 10000 && season == 'summer"
puts("Yes, | really am happy!")
‘Very happy' #=> This value is O6returned?o
when salary > 500000 && season == 'spring' : 'Pretty happy'
else puts('miserable’)
end

puts(happy) #=> oVery happyo

96

CHAPTER SIX

Digging Deeper
BOOLEAN CONDITIONS

and &&
These operators evaluate the left-hand side then, only if the result is true, they
evaluate the right-hand side; and has lower precedence than&&

or |
These operators evaluate the lefthand side then, if the result is false, they evalu-
ate the right-hand side; or has lower precedence than||

not !
This negatesa Boolean valuet i.e. returns true when fal se and false when true.

Be careful when using the alternative Boolean operators. Due to the differencein
precedence conditions will be evaluated in different orders and may yield

different results.

Consider the following:

boolean_ops.rb

Example 1

if (1==3) and (2==1) || (3==3) then
puts(‘true’)

else
puts(‘false’)

end

Example 2

if (1==3) and (2==1) or (3==3) then
puts(‘true’)

else
puts(‘false’)

end

97

THE BooK OF RuBY

3TT Ul wOEawoOOOOwUT T wUEOI wEUwWI PUUOwWUPT T UBw(Ow
example 2, prints true. This is entirely due to the fact that or has lower prece-

dence than|| . As a consequenceExample 101 U U U 6 w? bfalsgland (either2 OU wt wg
equals 1or 3equals 3) frueg 2 dw UwOOl wdi wOT T Ul wUOpPOwOI ET UUEU
the entire test returns false.

Now look at Example 3 w3 T DU wUT UOUO6 w? b i wihlsd br@ BgaasU wt wE OE wl
3true¢ 2 S w3 T PUwWUDOI Owbi wOOOa WOl 1 EwOO! woOi wUI T wlpC
evaluates to true so the entire tests returns true.

The side-effects of operator precedence in this kind of test can lead to very
obscure bugs. You can avad these by clarifying the meaning of the test using
brackets. Here, | have rewritten Examples 1 and 2above; in each case the add
tion of one pair of brackets has inverted the initial Boolean value returned by the
test:

Example 1 (b) 0 now returns true

if (1==3) and (2==1)) || (3==3) then
puts(‘true’)

else
puts(‘false’)

end

Example 2 (b) & now returns false
if (1==3) and ((2==1) or (3==3)) then
puts(‘true’)
else
puts(‘false’)
end

N EGATION

The negation operator, !, can be used at the start of an expression or, as an

hand side of an expression:

98

CHAPTER SIX

I(1==1) #=> false
11=1 #=> false

Alternatively, you can use not instead of !

not(1==1)

ECCENTRICITIES OF BOOLEAN OPERATORS

eccentricities.rb

' T whbEUOI EwUT EUw1UEazUw! 6001 EOwOx1 UEUOUU W
UOx Ul EPEUEEOI wOEOODI UB wnOUwl REOXx OI1 6

puts((not(1==1))) # This is ok
puts(not(1==1)) # This is a syntax error

puts(true && true && !(true)) # This is ok
puts(true && true and !(true)) # This is a syntax error

puts(((true) and (true))) # This is ok
puts(true && true) # This is ok
puts(true and true) # This is a syntax error

In many cases, problems can be avoided by sticking to one style of operator (that
is ¢ either and, or, not or &&, ||, !) rather than mixing the two. In addition, the
generous use of brackets is to be recommended!

CATCHAND THROW

Ruby provides a pair of methods, catch and throw , which can be used to break

out of a block of code when some conditionismet. 3T PUwbP U w1l UEazadwll E
lent to a goto in some other programming languages. The block must begin with

catch followed by a symbol (i.e. a unique identifier preceded by a colon), such as

:done or :finished . The block itself may either be delimited by curly brackets or

by the keywor ds do and end, like this:

99

THE BooK OF RuBY

think of this as a block called :done
catch(:done){
some code here

}

and this is a block called :finished
catch(:finished) do

some code here
end

Inside the block, you can call throw with a symbol as an argument. Normally

you would call throw when some specific condition is met which makes it

EIl UPUEEOI wUOOwWUOBXxwWEOOwWUTT wul OEDPOPOT WEOET wbOuw
the block contains some code that prompts the user to enter anumber, divides

some value by that number then goes on to do a multitude of other complex

calculations with the result. Obviously, if the user enters 0 then none of the

calculations that follow can be completed so you would want to skip them all by

jumping right out of the block and continuing with any code that follows it. This

is one way of doing that:

catch_throw.rb

catch(:finished) do
print('Enter a number: ")
num = gets().chomp.to_i
if num == 0 then
throw :finished # if numis 0, jump out of the block
end
Here there may be hundreds of lines of
calculations based on the value of num
if num is 0 this code will be skipped
end
the throw method causes execution to
jump to here 0 outside of the block
puts("Finished")

100

CHAP TER SIX
You can, in fact, have a call tothrow outside the block, like this:

def dothings(aNum)
i=0
while true
puts("I'm doing things...")
i+=1
throw(:go_for_tea) if (i == aNum)
#th rows to end of go_to_tea block
end
end

catch(:go_for_tea){ # this is the :go_to_tea block
dothings(5)

And you can have catch blocks nested inside other catch blocks, like this:

catch(:finished) do
print('Enter a number: ')
num = gets().chomp.to_i
if num == 0 then throw :finished end
puts(100 / num)

catch(:go_for_tea {
dothings(5)
}

puts("Things have all b een done. Time for tea!")
end

As with gotos and jumps in other programming languages, catch and throw in

Ruby should be used with great care as they break the logic of your code and
can, potentially, introduce hard -to-find bugs.

101

THE BooK OF RuBY

102

CHAPTER SEVEN

Methods

61 zZYI wOUT EwOUOTI UOUUWOT UT OEVUwWUT UOUT T OU0WU
particularly complicated things ¢ so you may wonder why the present chapter,

which is all about methods, is so long. As we shall discover, there is much more

to methods than meets the eye.

CLASS METHODS

37T woOl U OEUVUwPIT zYI wEl 1 OwUUDPOT wUOwi EVwI EVYI
method belongs to a specific instance of a clasg in other words, to an individual

object. It is also possible to writes EOEU U wOI U1 OE UzbélomgsuoBr@ E U U w
class itself. In order to define a class method youmay precede the method name

with the class name and a full stop:

class_methodsl.rb

class MyClass
def MyClass.classMethod
puts("This is a class method")
end

def instanceMethod
puts("This is an instance method")
end
end

103

THE Book OF RuBY
You should use the class name when calling a class method:
MyClass.classMethod

A specific object cannot cdl a class method. Nor can a class call an instance
method:

Error! This is an
Error! This i s an

MyClass.instanceMethod

#=>
ob.classMethod #=>

CLASS VARIABLES

Class methods may remind you of the class variables (that is, variables whose
names begin with @@). You may recall that we previously used class variables
in a simple adventure game (see:2adventure.rb in Chapter 2) to keep a tally of
the total number of objects in the game; each time a new Thing object was
created, 1 was added to the@@num_things class variable:

class Thing
@@num_things =0

def initialize(aName, aDescription)
@@num_things +=1
end

end

Unlike an instance variable (in an object derived from a class), a class variable
must be given a value when it is first declared:

@@classvar = 1000 # class variables must be initialized

Initialization of either instance or class variables within the body of the class only
affect the values stored by the class itself. Class variables are available both to the
class itself and to objects created from that class. However, each instance variable
is unique; each object has its own copy of any instance variablest andthe class
itself may also haviés own instance variables

104

undefi
undefi

CHAPTER SEVEN

Class and Instance Variables and Methods : Summary

Instance variables begin with @
@myinstvar # instance variable

Class variables begin with @ @
@ @myclassvar # class variable

Instance methods are defined by: def <MethodName>
def aninstanceMethod
some code
end

Class methods are defined by:def <ClassNamexMethodName>
def MyClass.aClassMethod
some code
end

class_methods2.rb

To understand how a class may have instance variables take a look at the
class_methods2.rb program. This declares and initializ es a class variable and an
instance variable:

@ @classvar = 1000
@instvar = 1000

It defines a class method, classMethod , which increments both these variables
by 10 and an instance method, instanceMethod , which increments both va-
riables by 1. Notice that | have also given a value to the instance variable,
@instvar . | said earlier that initial values are not normally assigned to instance
variables in this way. The exception to the rule is when you assign a value to an
instance variable of the class itseffather than to an object derived from that class.
The distinction should become clearer shortly.

(zYl wbUPUUI OWEwWi T PwOPOl UwoOi WEOET wbio®ET wE
variable is initialized with a new instance on each turn through the loop), then
calls both the class and instance methods:

105

THE BooK OF RuBY

foriin0..2 do
ob = MyClass.new
MyClass.classMethod
ob.instanceMethod
puts(MyClass.showVars)
puts(ob.showVars)

end

IZYl wEOUOwPUBUUI Ow E MyClads.showydEs) &t dnuir@tandd O E O w
method, showVars, to display the values of @instvar and @ @classvar at each

turn th rough the loop. When you run the code, these are the values that are
displayed:

(class method) @instvar = 1010, @ @classvar = 1011
(instance method) @instvar = 1, @@classvar = 1011
(class method) @instvar = 1020, @ @classvar = 1022
(instance method) @instvar = 1, @@classvar = 1022
(class method) @instvar = 1030, @@classvar = 10 33
(instance method) @instvar = 1, @@classvar = 1033

You may need to look at these results carefully in order to see what is going on
here. In summary, this is what is happening: the code in both the class method,
MyClass.classMethod and the instance method, instanceMethod , increments
both the class and instance variables,@ @classvar and @instvar .

You can see clearly that the class variable isncremented by both these methods
(the class method adds 10 to@ @classvar whenever a new object is created while
the instance method adds 1 to it). However, whenever a new object is created its
instance variable is initialized to 1 by the instanceMethod . This is the expected
behavior t+ since each object has its own cpy of an instance variable but all
objects share a unique class variable.

Perhaps less obvious is the fact that the class itself also has its own instance
variable, @instvar. This is because, in Ruby, a class imn object and therefore,
can contain instance variables, just like any other object. The MyClass variable,

@instvar , is incremented by the class nethod, MyClass.classMethod :

@instvar += 10

106

CHAPTER SEVEN

Notice when the instance method, showVars, prints the value of @instvar, it
prints the value stored in a specific object, ob; the value of obz @instvar is
initially nil (not the value 1000 with which the MyClass variable, @instvar, was
initialized) and this value is incremented by 1 in instanceMethod .

When the class method, MyClass.showVars, prints the value of @instvar, it

prints the value stored in the class itself B OwOUT | Uwb O @ihthauis aa " OE |
different variabldrom obz @instvar). But when either method prints the value of

the class variable, @ @classvar, the value is the same.

Just remember that there is only ever one copy of a class variable but there may
be many copies of instance variables.If this is still confusing, take a look at the
inst_vars.rb program:

inst_vars.rb

class MyClass
@@classvar = 1000
@instvar = 1000

def MyClass.classMethod
if @instvar == nil then

@instvar = 10
else
@instvar += 10
end
end

def instanceMethod
if @instvar == nil then
@instvar = 1
else
@instvar +=1
end
end
end

ob = MyClass.new
puts MyClass.instance_variable_get(:@instvar)

107

THE BooK OF RuBY

puts(' -------=mn-mm-)
foriin 0..2 do

MyClass.classMethod
ob.instanceMethod
puts("MyClass @instvar=#{MyClass.ins tance_variable_get(:@instvar)}")
puts("ob @instvar= #{ob.instance_variable_get(:@instvar)}")
end

This time, instead of creating a new object instance at each turn through the loop,
we create a single instance ¢b) at the outset. When the ob.instanceMethod is
called, @instvar is incremented by 1.

Here (z Y1 wUOUI EWEwWOPUUOT wOUPEOWUOWOOOOwWDAOUPET wUi
value of @instvar UU D O1 w indicfice zgé&t wariable method:

puts("MyClass @instvar= #{MyClass.instance_variable_get(:@instvar)}")
puts("ob @instvar= #{ob.instance_variable get(:@instvar)}")

As we only ever increment the @nstvar which belongs to the objectob, the value
of its @instvar goes up from 1 to 3 as thefor loop executes. But the @instvar
which belongs to the MyClass class is never incremented; it remains at its initial
value (1000)...

MyClass @instvar= 1000
ob @instvar=1
MyClass @instvar= 1000
ob @instvar= 2
MyClass @instvar= 1000
ob @instvar=3

But now, uncomment this line...
MyClass.classMethod

This now calls a class method which increments @instvar by 10. This time when
you run the program you see that, as before, the @instvar variable of ob is

108

CHAPTER SEVEN

incremented by 1 on each turn through the loop while the @instvar variable of
MyClass is incremented by 10...

MyClass @instvar= 1010
ob @instvar=1
MyClass @instvar= 1020
ob @instvar= 2
MyClass @instvar= 1030
ob @instvar= 3

A Class Is An Object

To understand this, just remember that a class is an objetE EOUE ©Oa Owb
an instance of theClassE OEUUn A6 w31 1T w, a" OEUUws EOEUU
instance variable (@instvar) just as the ob object hasits own instance

variable (which, here, also happens to be called @instvar). Instance
variables are always unique to an object instancet so no two objects
(not even an object like MyClass which also happens to be a class!)

can evershare a single nstance variable.

W HAT ARE CLASS METHODS FOR?

But why, one may reasonably ask, would you ever want to create a class method

rather than the more usual instance method? There are two main reasons: first, a
EOQOEUUwWOI Ul OE wE E O w B Udul 1 VEDE B DWW B @ sub 1D BHE 3 U U |
the bother of creating an object just to use it and, secondly, it can be used on

those occasions when you need to run a method before an object has been

created.

%OUWE Wi I Pwl REOxOT UwOil wUUDPOT woOl UT OEVUwWEUws
the File class. Many of its methods are class methods. This is because, most of the

time you will be using them to do something to or return information on an

existing file. 8 OUWE OOz Owdl 1 EwWUOOWEUI EUI WEwW%D Ol wOENR
file name as an argument to the class methods. Here are a few examples:

109

THE BooK OF RuBY

file_methods.rb

fn = 'file_methods.rb’

if File.exist?(fn) then
puts(File.expand_path(fn))
puts(File.basename(fn))
puts(File.dirname(fn))
puts(File.extname(fn))
puts(File.mtime(fn))
puts("#{File.size(fn)} bytes")

else
puts("Can't find file!")

end

The other occasion when a class method is vital is when you need to use a
method before an object has been created. The most important example of this is
the new method.

You call the new method every time you create an object. Until the object has
been created, you clearly cannot call one of its instance methodst because you
can only call instance methods from an object that already exists. When you use
new you are calling a method of the class itself and telling the class to create a
new instance of itself.

RuBY CONSTRUCTORS O NEW OR INITIALIZE ?

The method responsible for bringing an object into being is called the construc-
tor. In Ruby, the constructor method is called new. The new method is a class
method which, once it has created an object, will run an instance method named
initialize if such a method exits.

In brief then, the new method is the constructor and the initialize method is used
to initialize the values of any variables immediately after an object is created. But
PTAawEEOz Uwa OU wN U bdvunkthbd Bhid initalixe vatiablds uit?
61 OOOwWOl UzUwlUawlTl EUVO

110

CHAPTER SEVEN

new.rb

class MyClass
def initialize (aStr)
@avar = aStr
end

def MyClass.new(aStr)
super
@anewvar = aStr.swapcase
end
end

ob = MyClass.new("hello world")
puts(ob)
puts (ob.class)

"T Ul Ow(z Y1 wE En®vdorstuctdr Using=thel siper @dyword to invoke

the new Ol U7 OEwOl wOT 1 wUUxT UWEOEUUB w311 Ow(zVYI
@anewvar. So what do | end up with? Not, as you might suppose, a new
MyClass object containing a couple of string variables. Remember that the last
expression evaluated by a method in Ruby is the value returned by that method.

The last expression evaluated by the new method here is a string. So when |

I YEOUEUI wUI DU

ob = MyClass.new("hello world")
0 MyClass.newreturns a string; and it is this string (not a MyClass object) which

is assigned toob. As it is most unlikely that you would ever want to do som e-

thing like this, you would generally be wise to avoid trying to override the new
method.

111

THE BooK OF RuBY

SINGLETON METHOD S

class_classes.rb

A singleton method is a method which belong to a single object rather than to an

entire class. Many of the methods in the Ruby class library are singleton me-

thods. This is because, as rentioned earlier, each class is an object of the type
Class. Or, to put it simply: the class of every class is Class.This is true of all

classest both those you define yourself and those provided by the Ruby class

library:

class MyClass
end

puts(MyClass.class) #=> Class

puts(String.class) #=> Class
puts(Object.class) #=> Class
puts(Class.class) #=> Class
puts(10 .class) #=> Class

Now, some classes also have class methods that is, methods which belong to
the Class object itself. In that sense these are singleton methods of the Class
object. Indeed, if you evaluate the following, you will be shown an array of
method names which match the names of 10 class methods:

p(10.singleton_methods)

As explained earlier, when you write your own class methods you do so by
prefacing the method name with the name of the class:

def MyClass.classMethod
It turns out that you can use a similar syntax when creating singleton classes for
specific objects. This time you preface the method name with the name of the

object:

def myObject.objectMethod

112

CHAPTER SEVEN

class_hierarchy.rb

All Ruby objects are descendents of the Object class...

...and that includes the Class class! Curious as it may at first seem,
each class from which an object is created is itself an object which @-
scends from the Object class. To prove this, try out the
class_hierarchy.rb program:

def showFamily(aClass)
if (aClass != nil) then
puts("#{aClass} :: about to r ecurse with aClass.superclass
=#{aClass.superclass}")
showFamily(aClass.superclass)
end
end

+ 1 Ulgok at a concrete example. Suppose you have a program containing
Creature objects of many different species (maybe you are a veterinarian, the
head keeper or a zoo or, like the author of this book, an enthusiastic player of
adventure games); each creaturehas a method called talk which displays the
vocal noise which each creature usually makes.

singleton_meth1l.rb

class Creature
def initialize(aSpeech)
@speech = aSpeech
end

def talk
puts(@speech)
end
end

cat = Creature.new("miaow")
dog = Creature.new("woof")

113

THE BooK OF RuBY

budgie = Creat ure.new("Who's a pretty boy, then!")
werewolf = Creature.new("growl")

Then you suddenly realize that one of those creatures, and one alone, hasaddi-
tional special behavior. On the night of a full moon the werewolf not only talks
@? 1T UOP 02 A Owb U wdn0didd-ad!")Olbréaly wepds'a kbl method.

8OUVUWEOUOEwW!I OWEEEOWEOEWEEEWUUET wEwOI! U1 OEwUOwU

end up with ho wling dogs, cats and budgies too + which is not what you want.

You could create a new Werewolf class which descends from Creature, but you

will only ever have one werewolf (they are, alas, an endangered species) so why

do you want a whole class for just thEUy w6 OUOEOz UwbUwWOEOT wOOUIT wUI

werewolf objectwhich is the same as every other creature object apart from the

fact that it also has ahowl O1 U1 OEy w. * OwUOQwOl Uz UWEOwWUT EVWE & wl
very own singleton method. Here goes:

def werewo If.howl
puts("How -00-00-00-00!")
end

"1 EOOwb] WEEOWEOWET UOUT UwUT EQwUT EUnRw(OwbddOa wi OF
Ul EOOwDPi wEUOI EwUOwWT OpOwbi 1 OwlOT 1T wOOO6dwbhbUwWdI PO
method:

def werewolf.howl
if FULLMOON then
puts("How -00-00-00-00!")
else
talk
end
end

Notice that, even though this method has been declared outside of the Creature

class, it is able to call the instance methodtalk & w3 I E Uz U wEowlfngthbd T wOT 1T w
OOPwWOPYI Uws DPOUPET zwUOT 1T wbkpl Ul POOT wOERNT EQwUOwI EU
thetak O1 U7l OEB w(UWEOI UwdOOUOwWT Ol YI UOwWwODPYI wbOUDPE]
creatures; the howl method belongs to him and him alone. Try to make the

budgie.howl and Ruby will inform you that howl is an undefined method.

114

CHAPTER SEVEN

Now, if you are debugging your code for your own use, having your program
blow up thanks to an undefined method may be acceptable; but if your program

If you think undefined methods are likely to be a problem, you can take avoi d-
ance measures by testing if a singleton method exists before trying to use it. The
Object class has asingleton_methods method which ret urns an array of single-
ton method names. You can test a method name for inclusion using the Array

prize and given it a singleton method called congratulate :

singleton_meth2.rb

starprize = Box.new("Star Prize")
def starprize.congratulate

puts("You've won a fabulous holiday in Grimsby!")
end

The congratulate method should be called when the starprize box is opened.
This bit of code (in which item is a Box object) ensures that this method (which
does not exist in any other object) is not called when some other box is opened:

if item.singleton_methods.include?("congratulate") then
item.congratulate
end

An alternative way of checking the validity of a method would be to pass that

method name as a symbol (an identifier preceded by a colon) to the Objectt OE UU z U
respond_to? method:

if item.respond_to?(:congratulate) then
item.congr atulate
end

u(
M
(@)
)
O
c

61 zOOWOOOOWE UwE O O bdnieXister ethad® ih CHa: (
ter 20.

115

THE BooK OF RuBY

SINGLETON CLASSES

A singleton method is a method which belongs to a single object. A singleton

class, on the other hand, is a class which defines a single object. Confused? Me

U008 w2 Owll Uz UwUEOT WEWEOOUTI UwOOOOWEUwWUT 1 wEEUOZ
+1 Uz U0wUUxxOUl waObOUwWEUI EUIl wEwWi T PwEO4AT OwOENT EUUC
Object class. Naturally they all have access to the usual @ NT EUWEOEUUz Uw Ol U1
such asinspect and class. But now you decide that you want just one special

OENI EQwapi OUwUT 1T wUEOI abOwhighYhEslbBel speiid) meihod) z Uw EE O O w
@Ol Uz bather.O O wbd U w

S8OUWEOOZUwWwPEOUWUOWET | bOik an& abjedt $néd yaudniillb wE OEU U w i
never again create any more objects with the blather method. So you create a

class especially for little ob.

8OUWEOOZzZUwOI I EwUOWOEODT wUT DU wWE Gdb bypdtting O U wN U U U wl
a <<petween the keyword class and the name of the object. Then you add code to

the class in the usual way:

singleton_class.rb

ob = Object.new
singleton class
class << ob
def blather(aStr)
puts("blather, blather #{aStr}")
end
end

Now ob, and only ob, not only has all the usual methods of the Object class; it
also has the methods (here just theblather method but there could, in principle,
be many more) of its own special anonymous class:

ob.blather("weeble™") #=> oObl ather ,|l eébd at her weeb

H wadUzY]l wEll OwxEabOT wedOOUI weEOUU]I OUPOOOWaOdUwWOD
class seems to be doing something rather similar to a singleton method. With a
singleton class, | can create an object and then add on extra methods packaged

116

CHAPTER SEVEN

up inside an anonymous class. With singleton methods, | can create an object
then add on methods one by one:

ob2 = Object.new

def ob2.blather(aStr) # <= this is a singleton method
puts("grippity, grippity #{aStr}")

end

ob2.blather("ping!") #=> grippity, grippity ping!

singleton_class2.rb

2PDOPOEUOCaAOW(WEOUOEWUI PUPUT wUTT wsUUEUwW xU
added on a singleton method, congratulate , to an object named starprize . |

could just as easily have created a singleton class containing thecongratulate

method:

starprize = MyClass.new("Star Prize")

class << starprize
def congratulate
puts("You've won a fabulous holiday in Grimsby!")
end
end

In fact, the similarity is more than skin deep. The end result of the code above is
that congratulate becomes a singleton method ofstarprize EQE w(z YT wET 1 Ou
verify that using this test:

if item.singleton_methods.include?("congratulate")

Singleton Method, SingletonClass ¢ 6 T EUz Uw3 T T w# Bi i1 Ul OEI

The short answer is: not a lot. These two syntaxes provide different
ways of adding methods to a specific object rather than building
those methods into its defining class.

117

THE BooK OF RuBY

OVERRIDING METHODS

There are times when you may want to redefine a method that already exists in

UOOI wWEOEUUB wW6HIT Yl WEOOI wUT PUWET I OUI wkT 1T O0Owi OU
their own to_s methods to return a string representation. Every Ruby class, from

Object downwards, has a to_s method. The to_s method of the Object class

Ul O0UOUwWUT T wWEOEUUWOEODTI WEOCEWEwWI I REET EPDOEOWUI x
identifier. However, many Ruby classes have their own special versions of to_s.

For example, Array.to_s concatenates and returns the values in the array.

When a method in one class replaces a method of the same name in an ancestor

defined in the standard class library such as to_s as well as methods defined in
your own classes. If you need to add new behavior to an existing method,

the overridden method. Here is an example:

override .rb
class MyClass
def sayHello
return "Hello from MyClass"
end
def sayGoodbye
return "Goodbye from MyClass"
end
end
class MyOtherClass < MyClass
def sayHello #overrides (and replaces) MyClass.sayHello
return "Hello from MyOtherClass"
end

overrides MyClass.sayHello but first calls that method
with super. So this version "adds to" MyClass.sayHello
def sayGoodbye
return super << " and also from MyOtherClass"
end

118

CHAPTER SEVEN

ove rrides default to_s method
defto_s
return "l am an instance of the #{self.class} class"
end
end

PUBLIC , PRIVATE AND PROTECTE D

(OwUOOI WEEUI UOwaOUwWOE a wb E O U unethadstdo dnéiked E U w
that they cannot be called by code outside the class in which the methods occur.

3T PUWOEAWET wUOUIT T UOwPT 1 OwaOUUWEOEUUWEIT I B
requires in order to perform certain functions which it does not intend for p ublic
consumption. By imposing access restrictions on those methodsyou can prevent
programmers from using them for their own nefarious purposes. This means that

you will be able to change the implementation of those methods at a later stage

without having O Owpb OUUaA w0l ECwa OUwWEUI wl 60T wOOWEU

Ruby provides three levels of method accessibility:

public
protected
private

As the name suggests, public methods are the most accessible andprivate
methods are the least accessible. All your methods are public unless you specify
otherwise. When a method is public, it is available to be used by the world
outside the object in whose class it is defined.

When a method is private , it can only be used by other methods inside the object
in whose class it is defined.

A protected method generally works in the same way as a private method with
one tiny, but important difference: in addition to being visible to the methods of
the current object, a protected method is also visible to objects of the same type
when the second object is within the scope of the first object.

119

THE BooK OF RuBY

The distinction between private and protected methods will probably be easier to
understand when you see a working example. Consider this class:

pub_prot_priv.rb

class MyClass

private
def priv
puts("private”)
end

protected
def prot
puts("protected")
end

public
def pub
puts ("public")
end

def useOb(anOb)
anOb.pub
anOb.prot
anOb.priv
end
end

(zYl WEl EOEUI EwUT UT T wOl UT OEVUOWOO! wi OUwI EET wol
set by putting private , protected or public prior to one or more methods. The

specified accessibility level remains in force for all subsequent methods until

some other access level is specified.

Note: public, private and protected may look like keywords. But
they are, in fact, methods of the Module class.

Finally, my class has a public method, useOb, which takes a MyOb object as an
argument and calls the three methods, pub, prot and priv of that object. Now

120

CHAPTER SEVEN

Ol Uz UwUNMyClast @PNUEEW WEEOWET wUUI EG w%bP U U BWOI wl
the class:

myob = MyClass.new
myob2 = MyClass.new

-O0POwW(wWOVUaAwWUOWEEOOwW! EET woOl wUOT T wOT UT T wdl U]

myob.pub # This wor ks! Prints out oOopubli
myob.prot # This doesndt wor k! I get a O
myob.priv # This doesnodtanother k 6 NiotMeé hod Er

From the above, it would seem that the public method is (as expected) visible
from the world outside the object to which it applies. But both the private and
the protected methods are invisible. This being so, what is the protected method
for? Another example should help to clarify this:

myob.useOb(myob2)

This time, | am calling the public method useOb of the myob object and | am
passing to it a second object,myob2, as an argument. The important thing to note

is that myob and myob2 are instances of the same class. Now, recall what | said
earlier:

in addition to being visible to the methods of the current object, a protected
method is also visible to objects of the same type when the second object is within
the scope of the firebject.

3T PUWOEAWUOUOEwWODPO! wi OEEOI Eal 0608 w+1 Uz Uw
out of it.

In the program, the first MyClass object (here myob) has a second MyClass object

within its scope when myob2 is passed as an argument to a method ofmyob.

When this happens, you can think of myob2 EUT wEIT DOT w x Urhydh. O U w s
Now myob2 UT EUT Uw 0T 1 wWUEOxT woOi umydbl Inutti€PediBIE B &
circumstance ¢ when two objects of the same class are within the scope defined

by that classt the protected methods of any objects of this class become visible.

121

THE BooK OF RuBY

In the present case, the protected method,prot , of myob2 (or, at any rate, of the
argument - here calledanob - PT P ET ws Unydb2) becdmes visible and can
be executed. Its private arguments, however, are not visible:

def useOb(anOb)

anOb.pub

anOb.prot # protected method can be called

anOb.priv # but calling a private method results in an error
end

122

CHAPTER SEVEN

Digging Deeper
PROTECTED AND PRIVATE IN DESCENDENT CLASSES

The same access rules apply when calling the methods of ancestor and desae
dent objects. That is, when you pass to a method an object (as an argument)
which has the same class as the receiver object (i.e. the object to which the
method belongs), the argument object can call the public and protected methods
of the class but not its private methods.

protected.rb

For an example of this, take a look at the protected.rb program. Here | have
created a MyClass object calledmyob and a MyOtherClass object, myotherob ,
where MyOtherClass descends from MyClass. | try to pass myother ob as an
argument to the myob public method, shout:

myob.shout(myotherob)
But the shout method calls the private method, priv on the argument object:

def shout(anOb) # calls a private method

puts(anOb.priv("This is a #{anOb.class} - hurrah™))

end
3T PUwPOOz UwbpOUON wil Uik ndhodspivat® OU w0l EUwUT T
Similarly, wer e | to do it the other way around ¢ that is, by passing the ancestor
object, myob, as the argument and invoking the method shout on the descendent
object, | would encounter the same error:

myotherob.shout(myob)

The MyClass class also has another publc method, exclaim. This one calls a
protected method, prot :

def exclaim(anOb) # calls a protected method
puts(anOb.prot("This is a #{anOb.class} - hurrah™))
end
123

THE BooK OF RuBY

Now, | can pass either the MyClass object, myob, or the MyOtherClass object,
myother ob, as an argument to the exclaim method and no error will occur when
the protected method is called:

myob.exclaim(myotherob) # This is OK
myotherob.exclaim(myob) # And so is thisé

Needless to say, this only works when the two objects (the receiver and the
argument) share the same line of descent. If you send an unrelated object as an
argument, you would not be able to call methods of the receiver class, no matter
what their protection levels.

INVADING THE PRIVACY OF PRIVATE METHODS

The whole point of a private method is that it cannot be called from outside the
UEOxT wOi wOT T wOENT EQwUOwPT PET wbUWET 0601 Ud w2 OwU

send.rb

class X
private
def priv(aStr)
puts("I'm private, " << aStr)
end
end

ob = X.new
ob.priv("hello") # This fails

"OPT YT UOwWwPUwOUUOUwWOUUwWUT EVw1UEawxUOYPET UwEWZ
UEAwEwsT 1 OwbOz wEOEUUI vy AeePdwUT 1T wi OUQwWOI wEwOI U1
The send method invokes the method whose name matches that of a symbol (an

identifier beginning with a colon such as :priv), which is passed as the first
argument to send like this:

ob.send(:priv, "hello") # This succeeds

124

CHAPTER SEVEN

Any arguments supplied after the symbol (liket T 1 wUOUOUDOT Qw?21T 1 0007 ¢
the normal way to the specified method.

Suffice to say that using send to gain public access to a private method is not

generally a good idea (else, why would you have made the method private in the
first place), soshoWE wWET wUOUI EwPpDUT WwEEUUDOOWOUWOOU WE

SINGLETON CLASS METHODS

Earlier on, we created class methods by appending a method name to the name
of the class like this:

def MyClass.classMethod

3171 Ul wbUWE ws i déitythis.UHere isudh @x@rode R

class_methods3.rb

class MyClass

def MyClass.methodA
puts("a")
end

class << self
def methodB
puts("b™)
end

def methodC
puts("c")
end
end

end

Here, methodA, methodB and methodC are all class methods of MyClass;
methodA is declared using the syntax we used previously:

125

THE BoOK OF RuBY
def <ClassName>=<methodname>
But methodB and methodC are declared using the syntax of instance methods:

def <methodname>

20wl OPWEOOT wUTT awl OEWwUxwWEUWEOEUUWOI UT OEUY w ((
method declarations have been placed inside this code:

class << self
some method declarations
end

This may remind you of the syntax used for declaring sin gleton classes. For
example, in the singleton_class.rb program, you may recall that we first created
an object namedob and then gave it its very own method, blather :

class << ob
def blather(aStr)
puts("blather, blather #{aStr}")
end
end

The blather method here is singleton method of the ob object. Similarly, in the

class_methods3.rb program, the methodB and methodC methods are singleton
methods of self + and self happens to be the MyClass class. We can similarly
add singleton methods from outside the class definition by using <<followed by

the class name, like this:

class << MyClass
def methodD
puts("d")
end
end

126

CHAPTER SEVEN

N ESTED METHODS

You can nest methods (have one method nested inside another). This gives you a
way of dividing up a long method into reusable chunks. So, for example, if
method x needs to do calculation y at several different points, you can put the y
method inside the x method:

nested_methods.rb

class X

def x
print("x:"

defy
print("ha! ")
end

def z
print("z:"
y

end

y
z

end
end
Nested methods are not initially visible outside of the scope in which they are

defined. So, in the above example, while y and z may be called from inside x,
they may not be called by any other code:

ob = X.new
ob.y #<= error
ob.z # <= error

127

THE BooK OF RuBY

However, when you run a method that encloses nested methods, those nested
methods will be brought into scope outside that method!

nested_methods2.rb

class X
def x
print("x:")
defy
print("y:")
end
defz
print("z:")
y
end
end
end
ob = X.new
ob.x #=> X:
puts
ob.y #=>vy:
puts
ob.z #=>2z1y:

128

CHAPTER SEVEN
METHOD NAMES
UwEwWwi DOEOw xOPOUOwWHPUZUwPOUUT woOl OUPOODOI
always begin with a lowercase character like this:
def fred

However, that is a convention, not an obligation. It is also permissible to begin
method names with capital letters, like this:

def Fred

Since the Fred method looks like a constant (it starts with a capital letter) , you
would need to tell Ruby that it is a method when calling it by adding brackets:

method_names.rb

Fred # <= Ruby uwinitajzédaonstant 6
Fred() # <= Ruby calls the Fred method

On the whole it is better to stick to the convention of using method names that
begin with a lowercase character.

129

THE BooK OF RuBY

130

CHAPTER EIGHT

Passing Arguments and Returning Values

(OwUOT PUWET Ex Ul Uwbkl z @6 effécts and 6ideffedisiofupasing O E O a
EUT U0 OUUWEOGEwWUI OUUODOT wYEOUT UwUOOWEOEWI U

0001 OUWUOWUUOOEUDPUT wUT T wUaxl UwoOi wodil U1 OFE wl

methods.rb

1.INSTANCEMETHODS

An instance method is declared inside a class definition and is intended for use

EawEwUx1 EPI DPEWOENTI E0wOUwWws POUUEOGET z wOI wOT |
class MyClass
declare instance method
def instanceMethod
puts("This is an instance method")
end
end

create object
ob = MyClass.new

use instance method
ob.instanceMethod

131

THE BooK OF RuBY

2.CLASSMETHODS

A class method may be declared inside a class definition, in which case, a)the
method name may be preceded by the class name or b) alass << self block may

use by the class itself, not by a specific object, like this:

class MyClass
a class me thod
def MyClass.classmethod1
puts("This is a class method")
end

another class method
class << self
def classmethod?2
puts("This is another class method")
end
end
end

call class methods from the class itself

MyClass.classmethod1
MyClass.classmethod2

132

CHAPTER EIGHT

3.9NGLETON METHODS

Singleton methods are methods which are added to a single object and cannot be

used by other objects. A singleton method may be defined by appending the

Ol U1 OEwWOEOI wUOwUT | wOENI ECUwWwOEOI wi 60006PI E
method definition inside an <ObjectName><< selfblock like this:

create object
ob = MyClass.new

define a singleton method
def ob.singleton_method1

puts("This is a singleton method")
end

define another singleton method
class << ob
def singleton_method2
puts("This is another singleton method")
end
end

use the singleton methods
ob.singleton_method1
ob.singleton_method2

RETURNING VALUES

In many programming languages, a distinction is made between functions or

methods which return a value to the calling code and those which do not. In

Pascal, for example, a function returns avalue but a procedure does not. No such
distinction is made in Ruby. All methods always return a value though you are

not, of course, obliged to use it.

133

THE BooK OF RuBY

return_vals.rb

When no return value is specified, Ruby methods return the result of the last
expression evaluated. Consider this method:

def method1

a=1

b=2

c=a+b #returns 3
end

The last expression evaluated is a + b which happens to return 3, so that is the

value returned by this method. 31T 1 Ul wOEa woOi Ul OwETl wUBOI UwkT 1 Ow
to return the last expression evaluated. In such cases, you can specify the return

value using the return keyword:

def method2

a=1

b=2

c=a+b

return b # returns 2
end

A method is not obliged to make any assignments in order to return a value. A
simple piece of data (that is, something that evaluates to itself), if this happens to
be the last thing evaluated in a method, will be the value returned. When nothing

is evaluated, nil is returned:

def method3
"hell o" # returns oOohell ob
end

def method4

a=1+2

"goodbye" # returns oO0goodbyeo
end

def method5
end # returns nil

134

CHAPTER EIGHT

My own programming prejudice is to write code that is clear and unambiguous
whenever possible. For that reason, whenever | plan to use the value returned by
a method, | prefer to specify it using the return keyword; only when | do not
plan to use the returned value do | omit this. However, this is not obligatory
Ruby leaves the choice to you.

RETURNING MULTIPLE VALUES

But what about those occasions when you need a method to return more than

one value? Inotherx UOT UEOWOEOT UET 1 Uwa OUwOEawE] wWEE !
arguments by reference (pointers to the original data items) rather than by value
PEWEOxawoOi wiOi T wEEVEAOQwWPT 1 OwaObUWEOUI UwlT 1
alter the original values without explicitly having to return any values to the

calling code.

1UEAWEOI UGz UwWOEOI WEWEDPUUDPOEUDOOWET UbI 1 O
technique is not available to us (most of the time, anyway, though we shall see

some exceptions to the rule shortly). However, Ruby is capable of returning

multiple values all in one go, as shown here:

return_many.rb

def ret_things

greeting = "Hello world"

a=1

b=2.0

return a, b, 3, "four”, greeting, 6 * 10
end

Multiple return values are placed into an array. If you were to evaluate
ret_things.class , Ruby would inform you that the returned object is an Array.

You could, however, explicitly return a different collection type such as a Hash:

def ret_hash
retu rn {'a'=>'hello’, 'b'=>'goodbye’, 'c'=>'fare thee well'}
end

135

THE BooK OF RuBY

DEFAULT AND MULTIPLE ARGUMENTS

Ruby lets you specify default values for arguments. Default values can be as-
signed in the parameter list of a method using the usual assignment operator:

def aMethod(a=10, b=20)
If an unassigned variable is passed to that method, the default value will be
assigned to it. If an assigned variable is passed, however, the assigned value

takes precedenceover the default:

def aMethod(a=10, b=20)

return a, b
end
p(aMethod) #=> displays: [10, 20]
p(aMethod(1)) #=> displays: [1, 20]
p(aMethod(1, 2)) #=> displays: [1, 2]

In some cases, a method may need to be capable of receiving armuncertain

number of arguments ¢ say, for example, a method which processes a variable

Ol OT U1 woOPUOwWOT wbUT OUBw(OwUT PUWEEUI Owa OUwWEEOQuw
by preceding the final argument with an asterisk:

default_args.rb

def aMethod(a=10, b=2 0, ¢=100, *d)
returna, b, c, d
end

p(aMethod(1,2,3,4,6)) #=>displays: [1, 2, 3, [4, 6]]

A SSIGNMENT AND PARAMETER PASSING

Most of the time, Ruby methods come with two access points ¢ like the doors
into and out of a room. The argument list pro vides the way in; the return value
provides the way out. Modifications made to the input arguments do not affect
the original data for the simple reason that, when Ruby evaluates an expression,
136

CHAPTER EIGHT

the result of that evaluation creates a new objectt so any changes made to an
argument only affect the new object, not the original piece of data. But there are
I REI xUPOOUWUOWUT PUwWUUOGT OQwki PET wkhl zOOwWOOO

in_out.rb

named parameter and returns another value:

def change(x)
X+=1
return X

end

On the face of it, you might think that we are dealing with a single object, X,
here: the object, x, goes into the change method and the same objectx is re-
turned. In fact, that is not the case. One object goes in (the argument) and a
different object comes out (the return value). You can easily verify this using the
object_id method to show a number which uniquely identifies each object in
your program:

num = 10

puts("num.obje ct_id=#{num.object_id}")
num = change(num)

puts("num.object_id=#{num.object_id}")

The identifier of the variable, num, is different before and after we call the change
method. This shows that, even though the variable name remains the same, the
num object which is returned by the change method is different from the num
object which was sent to it.

method_call.rb

The method-call itself has nothing to do with the change of the object. You can
verify this by running method_call.rb . This simply passesthe num object to the
change method and returns it:

def nochange(x)
return x
end

137

THE BooK OF RuBY

In this case, theobject_id is the same afternumis returned as it was before num
was sent to the method. In other words, the object that went into the method is
exactly the same object as the one that came out again. Which leads to the inev
table conclusion that there is something about the assignmentin the change
method (x += 1) that caused the creation of a new object.

'U0wEUUDT 601 OU wb (explariion B yb® gintply kbign @ tafiabl© 1 w
OOwhbOUI O OwdOwdI pwOENT EVwPDUWEUI EUI Eb

assignment.rb

num = 10
num = num# a new num object is not created

So what if you assign to the object the same value which it already has?

num = 10
num =10 # a new num object is not created

This demonstrates that assignment alone does not necessarily create a new
OENI EUBw- ObpwoOl Uz UwlOUawEUUDPT OPOT wEwWO! PwYEOUI 6

num = 10
num +=1 # this time a new num object is created

By checking the object_id we are able to determine that when a new value is
assigned to an existing variable, a new object is created.

, OUUWEEUVUEwWHPU]I OUWEUT wlOUI EVUI EWEVUwWUOBZET wUOwWOOI
different from another string 211 000> WEOEwW OO01 wi OOEUVUw hYd k wbUL
different from another float 10.5. Thus, any string or float assignment will create

a new object.

But when working with integers, only when the assignment value is different

from the previous value is a new object created. You can do all kinds of compli-

cated operations on the right-hand part of the assignment but if the yielded value

PUwUT T wUEOT wEUwWUT T wOUDPT DPOEOWYEOUI OwbOOwodi PwdOHENR

num = (((num + 1- 1) * 100) / 100) # a new object is not create d!

138

CHAPTER EIGHT

object_ids.rb

INTEGERS ARE SPECIAL

In Ruby an integer (Fixnum) has a fixed identity. Every instance of the number

10 or every variable to which the value 10 is assigned will have the same -

ject_id. The same can not be saidf other data types. Each instance of a floating

x OPOUWOUOE]l UWwUUET WEUwWhY8skwOUwOi wEwUOUDOI
object with a unigue object _id. Be aware that when you assign an integer to a
variable, that variable will have the object_id of the integer itself. But when you

assign some other type of data to a variable, a new object will be created even if

the data itself is the same at each assignment:

10 and x after each assignment are the same object
puts(10.object_id)

x=10
puts(x.object_id)
x=10

puts(x.object_id)

10.5 and x after each assignment are 3 different objects!
puts(10.5.object_id)

x=10.5
puts(x.object_id)
x=10.5

puts(x.object_id)
But why does all this matter?

The answer is that it matters because of a few rare exceptions to the rule. As |

said earlier, most of the time, a method has a well-defined way in and a well -

defined way out. Once an argument goes inside a method, it enters a closed

room. Any code outside that method has no way of learning about any changes

that have been made to the argument until it comes out again in the form of a

Ul OUUOI EwYEOUT w3T PUwbUOwWDPOwWi EECOWOOT woli
The implementation details of method s should, in principle, be hidden away ¢

sl OEExUUOEUI Ez 8 w31 PUwi OUUUI UwUT EVWEOET wo
things that happen inside that object.

139

THE BooK OF RuBY

THE ONE-W AY -IN, ONE-W AY-OUT PRINCIPLE

In most modern OOP languages such as Java and C#, engesulation and inform a-
tion hiding are not rigorously enforced. In Smalltalk, on the other hand - that
most famous and influential of OOP la nguages- encapsulation and information
hiding are fundamental principles: if you send a variable, x, to a method y and
the value of x is changed inside y, you cannot obtain the changed value of x from
outside the method ¢ unlessthemethod explicitly returnshat value.

140

Ss$SOEEXUUOEUPOOz wOUws (O OUOGEUDPOOW' PEPOT zy w

Often these two terms are used interchangeably. To be nitpicking,
however, there is a difference.

Encapsulatiordl | T UUwO0OwUT T wi UOUxDOT wUO
data) and the operations which may alter or interrogate its state (its
methods).

Information hidingrefers to the fact that data is sealed off and can only
be accessed using welldefined routes in and out t in object oriented
Ul UOUwUT PUwWbOxOPI Uws EEET UUOUwWOI C

In procedural languages, information hiding may take other forms -
for example, you might have to define interfaces to retrieve data from
EOEI ws UOPUOKk wHwWwE OVEVUwWUT EOQwi UOOu

In OOP terms, encapsulation and information hiding are almost sy n-
onymous ¢ true encapsulation necessarily implies that the internal
EEVEwWOl wEOWOENT EOwPUwI PEET 08 w' OF
such as Java, C#, C++ ahObject Pascal are quite permissive in the
degree to which information hiding is enforced (if at all).

11071 U0Uwoi wE

)T OEUZ wUOOwT |

IOENT EOUG w

>] YT UOwOEODa

CHAPTER EIGHT

Usually, Ruby adheres to this principle: arguments go into a method but any
changes made inside the method cannot be accessed from the outside unless
Ruby returns the changed value:

hidden.rb

def hidden(aStr, anotherStr)
anotherStr = aStr + " " + anotherStr
return aStr + anotherStr.reverse
end

strl = "dlrow"

str2 = "olleh”

str3 = hidden(strl, str2) # str3 receives returned value

puts(strl) # input args: original values unchanged
puts(str2)

puts(str3) #returnedvalue (odl rowhel |l o

It turns out that there are occasions when arguments passed to a Ruby method
EEQwWET wUUI E wOb O languihknits wfwother larddadek (that B, Ehagges
made insidethe method may affect variables outsidethe method). This is due to
the fact that some Ruby methods modify the original object rather than yielding a
value and assigning this to a new object.

For example, there are some methods ending with an exclamation mark which
alter the original object. Similarly the String append method <<concatenates the
string on its right to the string on its left but does not create a new string object in
the process:so the value of the string on the left is modified but the string object
itself retains its original object_id .

The consequence of thg is that, if you use the <<operator instead of the + opera-
tor in a method, your results will change:

141

THE BooK OF RuBY

not_hidden.rb

def nothidden(aStr, anotherStr)
anotherStr = aStr << " " << anotherStr
return aStr << anotherStr.reverse

end

strl = "dlrow"

str2 = "olleh"

str3 = nothidden(strl, str2)

puts(strl) # i nput arg: changed (0dlrow
worl do)

puts(str2) # unchanged

puts(str3) # returned value(odlrow ol l eh

str_reverse.rb

The str_reverse.rb sample program should help to clarify this. This shows that

when you use the reverse method, for example, no change is made to the

sUIT EI BDYI UwOENI E Uz wostoll hers: at.téversd) OButvEdw yot Uw U UE T wE
use thereverse! method a changeis made to the object (its letters are reversed).

Even so, no new object is created:strl is the same object before and after the

reverse! method is called.

Here reverse operates like most Ruby methods ¢ it yields a value and, in order
to use that value, you must assign it to a new object. So...

strl = "hello"
strl.reverse

Here, strl is unaffected by calling reversed w(OwUUPOOwT EVUwWUT T wYEOUI u
still has its original object_id . But...

strl = "hello"
strl.reverse!

142

CHAPTER EIGHT

This time, strl ischanged (tET EOOT Uw? 0001 1 2 A ws Y]l OwUOOw:
strl has the sameobject_id with which it started. Then again...

strl = "hello"
strl = strl.reverse

This time, the value yielded by strl.reverse is assigned to strl. The yielded
value is a new object,sostrl PUwWOOPWEUUDT O EwUT 1T wUI YI UUI
now has a new object_id .

Refer to the sample program, concat.rb, for an example of the string concatera-
tion method, << which, just like those methods that end with !, modifies the
receiver object without creating a new object:

concat.rb

strl = "hello"

str2 = "world"
str3 = "goodbye"
str3 = str2 << strl

In this example, strl is never modified so it has the sameobject_id throughout;
str2 is modified through concatenation.

However, the <<operator does not create a new object sostr2 also retains its
original object_id . But str3 is a different object at the end than at the beginning:
that is because it is assigned the value yielded by this expression:str2 << strl.
This value happens to be the str2 object itself so the object_id of str3 is now
identical with that of str2 (i.e.str2 and str3 now reference the same object).

In summary, then, methods ending with a ! such asreverse!, plus some other
methods such as the <<concatenation method, change the value of the receiver
object itself. Most other methods do not change the value of the receiver object
and in order to make use of any new value yielded as a result of calling a
method, you have to assign that value to a variable (or pass the yielded value as
an argument to a method).

143

THE BooK OF RuBY

Modifying The Receiver Object Breaks Encapsulation

The fact that a few methods modify the receiver object whereas mog
do not may seem harmless enought but beware: this behaviour pr o-
YPEI UwaOUwkPbUT wlOT 1 wEEDPOPUAwWUOWH] OUDI YI wlOT 1
I Ul OETl ZwUEUTT UwUT EOQwUI UUDPI YDOT wYEOUI Uwbi Bl
Doing so breaks encapsulation by dlowing your code to rely upon
the internal implementation details of a method. This can potentially
lead to unpredictable side-effects and, in my view, should be
avoided.

side_effects.rb

For a simple (but, in real-world programming, potentially serious) example of

how the reliance on the modified values of arguments rather than on explicit

return values can introduce undesirable dependencies on implementation

details, seeside_effects.rb. Here we have a method called stringProcess which

takes two string arguments, messes about with them and returns the results.

+1 Uz UwEUUUO!T wUT EOwUT T wOENT EOwOl wUOT 1T wl RT UEDUI
return a single string which combines these two strings, separaed by a space and

with the first and last letters capitalized. So th e two original strings might be

211 0002 WECE W Hh QWO BUVWHEOE wUU 0T wbUw?' 1 000wk OUC

But nowwe haY1 WEOwDOxEUPI OUwxUOT UEOOT UwbT OWEEODOz Uwl
values. He notices that the modifications made inside the method change the

values of the ingoing arguments. So, heck! (he decides)he might as well use the

arguments themselves! He then goes away and writes a fabulously complicated

text processing system with thousands of bits of code reliant on the changed

values of those two arguments.

But now the programmer who originally wrote the stringProcess method
decides that the original implementation was inefficient or i nelegant and so
rewrites the code confident in the knowledge that the return value is unchanged
ebi w?T 1 00072 WEOEwW?POUOE? WEUT wUI OVwWEUWEUT UOI 60U

Aha! But the new implementation cause the values of theinput arguments to be

changed inside the body of the methodd w2 Qw UT | whbOxEUDPI OUwxUOT UE «
processing system, which relies on those argumentsrather than on the return
valueOwdb U wOOpbwi POOTI EwbPUT wEPUUwWOI wUIl ROWUEaDOAT w?
144

CHAPTER EIGHT

POUO# 2 wi 1 wpk Hatwdlly ixturis 0w B4t his program was processing

I EwOUwUOOwUOwI E O wlrhigi®thekindwundxpe@ed Bidedffett @6 6 6
which can easily be avoided by following the one -way-in and one-way-out
xUDOEDx Ol 6

PARALLEL ASSIGNMENT

I mentioned earlier that it is possible for a method to return multiple values,
separated by commas. Often you will want to assign these returned values to a
set of matching variables.

In Ruby, this can be done in a single operation by parallel assignment. This
means that you can have several variables to the left or an assignment operator
and several values to the right. The values to the right will be assigned, in order,
to the variables on the left, like this:

parallel_assign.rb

sl, s2, s3 = "Hickory", "Dickory", "Dock"

This ability not only gives you a shortcut way to make multiple assignments; it
also lets you swap the values of variables (you just change their orders on either
side of the assignment operator:

i1=1
i2=2
i1,i2=i2,il #=>ilisnow 2,i2is 1

And you can make multiple assignments from the values returned by a method:

def returnArray(a, b, c)
a="Hello," +a

b="Hi,"+ b
c="Good day, "+ c
return a, b, ¢

end

145

THE Book OF RuBY
X, Y, Z = returnArray("Fred", "Bert", "Mary")

If you specify more variables to the left than there are values on the right of an

EUUDPT 601 OUOWEOaws UUEDPODGIE zZ wYEUPEEOI UwbDOOWET w
X, Y, Z, extravar = returnArray("Fred", "Bert", "Mary") # extravar = nil

Multiple values returned by a method are put into an array. When you put an

array to the right of a multiple -variable assignment, its individual elements will

be assigned to each variable,and once again if too many variables are supplied,

the extra ones will be assignednil:

sl, s2, s3 =["Ding", "Dong", "Bell"]

146

CHAPTER EIGHT

Digging Deeper
BY REFERENCE ORBY VALUE ?

Search the Internetand 8 OUz OOw U OO0 wi POEwWUT ECw1UEa wx L
DOUOWEUT UOI OUUWEEOU OwWPTI T 0T T UwlUEawxEUUI L
1 OEIl z 6 w

In many procedural programming languages such as Pascal and C and their
derivatives there is a clear distinction between arguments passed by value or by
reference.

upg valug WEUT UOT OUWPUWEWEOxawoOl wUOI T wodubl b
procedure, mess around with it and the value of the original value remains
unchanged.

bgreference WEUT UO1 OUOwWOOwWUT 1T wdUT 1 Uwi ECEOwWwDH UL
When this gets passed to a procedure, you are not passing anew copy but a
reference to the bit of memory in which the original data is stored. So any
changes made inside the procedure are made to the original data and necessarily
affect the value of the original variable.

arg_passing.rb

makes a copy of the original variable and that copy will therefore have a differ-
ent object_id . In fact, this is not the case. Try out thearg_passing.rb program to
prove this point.

Now, it may well be that in certain circumstances the passing of arguments
EOUOEOWSEI T POE WO | he nflén@htedy (udsOmatueuBOU | BB
such implementation details should be of interest to writer s of Ruby interpreter s

and compilers rather than to Ruby programmer s. The plain fact of the matter is

that, il wa OUwx UOT UE Owb O w Byupassirgd Argumants info méttods w

but only subsequently using the values which those methods return ¢ the im-
plementation details (by value or by reference) will be of no consequence to you.

Nevertheless, due to the fact that Ruby can occasionally modify arguments (for
example using ! methods or <<as explained earlier), some programmers have

147

THE BooK OF RuBY

formed the habit of using the modified values of the arguments themselves
(equivalent to using By Referencarguments in C) rather than using the values
returned. In my view, this is a bad practice. It makes your programs reliant upon
the implementation details of methods and should therefore, be avoided.

ARE ASSIGNMENTS COPIES OR REFERENCES?

| said earlier that a new object is created when a value is yielded by some expres-
sion. So, for example, if you assign a new value to a variable calledx, the object
after the assignment will be a different object from the one before the assignment
(that is, it will have a different object id):

x =10 # this x has one object _id
X +=1 # and this x has a different one

' U0wPUwhbUOzOwUT T weUUDPT 001 OU0UwWUT ECwWEUT EUI UwEwOI
which causes a new object to be created. In the above example;+=1is an expres-
sion that yields a value (x+=1is equivalent to the expression x=x+1).

Simple assignment of one variable to another does not create a new object. So

Ol Uz UwWEUUUOI wadUuwi Eiinan® énothel dalledrii20lf youE E OOT E w
assign num2 to num, both variables will refer to the same object. You can test this

using the equals? method of the Object class:

assign_ref.rb

num =115
num2 =11.5

num and num 2 are not equal
puts("num.equal?(num?2) #{num.equal?(num2)}")

num = num2

but now they are equal
puts("num.equal?(numz2) #{num.equal?(hum?2)}")

148

CHAPTER EIGHT

equal_tests.rb

Tests for equality: == or equal?

l'AawEI T EUOUwW@EUWET | BDOI E @ B2£ usihg=E tez
turns true when both objects being tested are the same object. So i
will return false if the values are same but the objects are different:

ob1 = Object.new
ob2 = Object.new
puts(obl==0b2) #<=false

In fact ==is frequently overridden by classes such as String and will
then return true when the values are the sare but the objects are di-
ferent:

sl = "hello"
s2 = "hello"

puts(s1==s2) #<= true

For that reason, theequal? method is preferable when you want to e s-
tablish if two variables refer to the same object:

puts(sl.equal?(s2)) #<= false

Uw=*1 U0

149

THE BooK OF RuBY

W HEN ARETwWO OBJECTS IDENTICAL ?

As a general rule, if you initialize ten variables with ten values, each variable will
refer to a different object. For example, if you create two strings OD Ol wUT DU6

identical.rb

sl = "hello"
s2 = "hello"

6 Ul IsOand s2 will refer to independent objects. The same goes for two

f1 =10.00
f2 =10.00

But, as mentioned earlier, integers are different. Create two integers with the
same value and they will end up referencing the same object:

i1=10
i2=10

This is eventrue with plain integer values. If in doubt, use the equals? method to
test if two variables or values reference exactly the same object:

10.0.equal?(10.0) # compare floats 0 returns false
10.equal?(10) # compare integers (Fixnums) dreturns true

150

CHAPTER EIGHT

PARENTHESES AVOID AMBIGUITY

Methods may share the same name as a local variable. For example, you might
have a variable called name and a method called name. If it is your habit to call
methods without parentheses, it may not be obvious whether you are referring to
a method or a variable. Once again, paretheses avoid ambiguity...

parentheses.rb

greet = "Hello"
name = "Fred"

def greet
return "Good morning"
end

def name
return "Mary"
end

def sayHi(aName)
return "Hi, #{aName}"

end

puts(greet) #<=Hello
puts greet #<=Hello
puts(sayHi(name)) #<=Hi, Fred
puts(sayHi(name())) #<=Hi, Mary

151

THE BooK OF RuBY

152

CHAPTER NINE

Exception Handling

Even the most carefully written program will sometimes encounter unforeseen
errors. For example, if you write a program that needs to read some data from
disk, it works on the assumption that the specified disk is actually available and
the data is valid. If your program does calculations based on user input, it works
on the assumption that the input is suitable to be used in a calculation.

While you may try to anticipate some potential problems before they arise ¢ for
example, by writing code to check that a file exists before reading data from it or
checking that user input is numerical before doing a calculation + you will never
be able to predict every possible problem in advance.

3T T wUOUTl UwOEawUIl OOY!T wEw" #wEl Ul UwaOltgori weEO
example; or some obscure calculation may yield 0 just before your code attempts

to divide by this value. When you know that there is the possibility that your

EOEl wOEAWE]l wsEUOOI OZwEawUOO!l wUOI 6uUl Uil O
attempttoavoPE WEDUEUUI UwEaAawlUUDPOT wsi REI xUDPOOWI E

OwslI REI xUPOOzZ wPUWEQwWI UUOUwPT PET wbUwxEEC
instance of the Exception class (or one of its descendents). You can handle
exceptions by trapping the Exception object, optionally using information which
it contains (to print an appropriate error message, say) and taking any actions
needed to recover from the error ¢ perhaps by closing any files that are still open
or assigning a sensible value to a variable which may have been asgned some
nonsensical value as the result of an erroneous calculation.

153

THE BooK OF RuBY

RESCUE

The basic syntax of exception handling canbe summarised as follows:

begin

Some code which may cause an exception
rescue <Exception Class>

Code to recover from the exception
end

Here is an example of an exception handler which deals with an attempt to
divide by zero:

exceptionl.rb

begin
x =1/0

rescue Exception
x=0
puts($!.class)
puts($!)

end

div_by zero.rb

When this code is run, the attempt to divide by zero causes an exception. If

unhandled (as in the sample program, div_by_ zer o.rb), the program will crash.

However, by placing the troublesome code inside an exception handling block

(between begin and end), | have been able to trap the Exception in the section

beginning with rescued w3 1T 1T wi PUUOwWUT POT w(zYIiwHBAOI wbUwUO
meaningful value. Next come these two inscrutable statements:

puts($!.class)
puts($!)

In Ruby, $! is a global variable to which is assigned the last exception. Printing

variable $! alone has the effect of displaying the error message contained by the
$REI xUDOOWOENI EQwBiwb&uw? 8 Ul wbhUwW?EDYDEI

154

CHAPTER NINE

I am not generally too keen on relying upon global variables, particularly when

Uil awl EY] ws OEOI Uz fi Forwidt®y thdy &id)ad alteriatve. Xidi U w
EEQWEUUOEPEUI WEWYEUDEEOI wOEOI wbpbPUT wlOT T wl
=> after the class name of the exception and before the variable name:

exception2.rb

rescue Exception => exc
You can now use the variable name (hereexc) to refer to the Exception object:

puts(exc.class)
puts(exc)

exception_tree.rb

SREI xUDOOUW' EYI w wwEODPOaw3UI |l 6

To understand how rescue clauses trap exceptions, just remember
that, in Ruby, exceptions are objects and, like all other objects, they
EUIl wET I POl EWEAWEWEOEUUB wW3T T Ul whUOwWOOL
which starts, like all Ruby objects, with the Object class.

While it may seem pretty obvious that, when you divide by zero, you are going

to get a ZeroDivisionError exception, in real world code, there may be times

PT 1T OwlOT T wO0axl woOl wi RETI xUPOOwWPUwWOOUwWUOwWxUI
you have a method which does a division based on two values supplied by a

user:

def calc(vall, val2)
return vall / val2
end

This could potentially produce a variety of different exceptions. Obviously if the
second value entered by the user is 0, we will get a ZeroDivisionError.

However, if the secondvalue is a string, the exception will be a TypeError,
whereas is the first value is a string it will be a NoMethodError (as the String
"OEUUWEOI UwOOUWET i BOI ywuHdrd the se&cbeYodk babdes O x 1 U
all possible exceptions:

155

THE BooK OF RuBY

multi_except.rb

def calc(vall, val2)
begin
result = vall / val2
rescue Exception => e
puts(e.class)
puts(e)
result = nil
end
return result
end

Often it will be useful to take different action s for different exceptions. You can
do that by adding multiple rescue clauses. Eachrescue clause can handle
multiple exception types, with the exception class names separated by commas.
Here my calc method handle s TypeError and NoMethodError exceptions in one
clause with a catch-all Exception handler to deal with other exception types:

multi_except2.rb

def calc(vall, val2)
begin
result =vall/ val2
rescue TypeError, NoMethodError => e
puts(e.class)
puts(e)
puts(" One of the values is not a number!")
result = nil
rescue Exception => e
puts(e.class)
puts(e)
result = nil
end
return result
end

156

CHAPTER NINE

exception_tree.rb

The Object class is the ultimate ancestor of all exceptions.

From Object, descends Excetion, then StandardError and finally
more specific types of exception such as ZeroDivisionError. You
could, if you wished, write a rescue clause to deal with the Object
class and, Object being the ancestor of all objects, this would, indeed,
successfully match an exception object:

This is possible...
rescue Object => exc

However, it is generally more useful to try to match a relevant d e-

scendent of the Exception class. For good measure, it is often useful to
append a generalized rescue clause to handle StandardError or Ex-

El xUPOOWOENI EUUOQwWNUUUwWPOWEEUT wE ¢
manages to slip through. You may want to run the exception_tree.rb
program to view the family tree of the ZeroDivisionError exception.

dwi BREIT x

When handling multiple exception types you should always put the
clauses dealing with specific exceptions first, then follow these with
clauses dealing with more generalized exceptions.

rescue
rescue

When a specific exception, such as TypeError, is handled, thebegin..end excep-
tion EOOEOQuwi RPUUwWUOWUT T wi OOPwOI wi BT EU
rescue clauses. However, if you put a generalized exception handling rescue
clause first, that will handle all exceptions so any more specific clauses lower
down will never execute.

UPOOwb

If, for example, | had reversed the order of the rescue clauses in my calc method,
placing the generalized Exception handler first, this would match all exception
types so the clause for the specific TypeError and NoMethodError exceptions
would never be run:

157

THE BooK OF RuBY

multi_except_err.rb

This is incorrect...
rescue Exception => e
puts(e.class)
puts(e)
result = nil
rescue TypeError, NoMethodError => e
puts(e.class)
puts(e)
puts("Oops! This message will never be displayed!")
result = nil
end

ENSURE

There may be some circumstances in which you want to take some particular
action whether or not an exception occurs. For example, whenever you are
dealing with some kind of unpredictable input/output ¢ say, when working with
files and directories on disk ¥ there is always the possibility that the location (the
disk or directory) or the data source (the file) either may not be there at all or
may provide some other kinds of problems ¢ such the disk being full when you
attempt to wri te to it or the file containing the wrong kind of data when you
attempt to read from it.

8OUwWOEawlOl I EwUOwx1 Ui OUOwU O Osuchlabidd@ng angoE O1 EOQOU X 7 u
a specific working directory or closing a file which was previously opened -

whether or not you have encountered any problems. You can do this by follow-

ing a begin..rescue block of code with another block starting with the ensure

keyword. The code in the ensure block will always execute + whether or not an

exception has arisen beforehand.

+1 UzUwOOOOWEUwWwUPOWUDPOXxOl wi REOxOI UBw(OwUT T wi b
display the directory listing. At the end of this, | want to be sure that my working

directory (given by Dir.getwd) is always restored to its original location. | do this

by saving the original directory in the startdir variable and once again making

this the working directory in the ensure block:

158

CHAPTER NINE

ensure.rb

startdir = Dir.getwd

begin
Dir.chdir("X: \\")
puts(“dir’)
rescue Exception =>e
puts e.class
puts e
ensure
Dir.chdir(startdir)
end

+1 Uz U0wOOPwUI 1T wi OPwUOWET EOQOwPDPUT wUOT T wxUOEO
file. This might happen if the data is corrupt, if you accidentally open the wrong

file or ¢ quite simply ¢ if your program code contains a bug.

Here | have a file, test.txt, containing six lines. The first five lines are numbers;
the sixth line is not. My code opens this file and reads in all six lines:

ensure2.rb

f = File.new("test.txt")
begin
foriin (1..6) do
puts("line number : #{f.lineno}")
line = f.gets.chomp
num = line.to_i
puts("Line '#{line}' is converted to #{num}")
puts(100 / num)
end
rescue Exception => e
puts(e.class)
puts(e)
ensure
f.close
puts("File closed")
end

159

THE BooK OF RuBY

The lines are read in as strings (using gets) and the code attempts to convert
them to integers (using to_i). No error is produced when the conversion fails;
instead Ruby returns the value 0.

The problem arises in the next line of code which attempts a division by the

EOOYI UUI EwOUOCET UBw3T 1 wUPRUT wOPOT woOi wOT T wbOx UL
yields 0 when a conversion to integer is attempted ¢+ and that inevitably causes

an error when this value is used in a division.

Having opened the data file at the outset, | want to ensure that the file is closed
whether or not an error occurs. If, for example, | only read in the first five lines
by editing the range in the for loop to (1..5), then there would be no exception. |
would still want to close the file.

But it would be no good putting the file closing code (f.close) in the rescue
clause as it would not, in this case, be executed. By putting it in the ensure
clause, however, | can be certain that the file will be closed whether or not an
exception occurs.

ELSE

If the rescue section executes when an error occurs and ensure executes whether
or not an error occurs, how can we specifically execute some code only when an
error does not occur?

The way to do this is to add an optional else clause after therescue section and
before the ensure section (if there is one), like this:

begin
code which may cause an exception
rescue [Exception Type]

else # optional section executes if no exception occurs
ensure # optional exception always executes
end

160

CHAPTER NINE

This is an example:

else.rb
def doCalc(aNum)
begin
result = 100 / aNum.to_i
rescue Exception => e # executes when there is an error
result=0
msg = "Error: " + e
else # executes when there is no error
msg = "Result = #{result}"
ensure # always executes
msg = "You entered '#{aNum}'. " + msg
end
return msg
end

ERROR N UMBERS

If you ran the ensure.rb program earlier and you were watching closely you may

have noticed something unusual when you tried to log onto a non -existent drive

ol OUwl REOXxOI OwOOw OawUaU\Giudkud YE Kb @b Ti TOJ uDE
exception occurs, the exception class is an insnce of a specific named type such

as ZeroDivisionError or NoMethodError. In this case, however, the class of the
exception is shown to be:

Errno::ENOENT

It turns out that there is quite a variety of Errno errors in Ruby. Try out
disk_err.rb . This defines a method, chDisk, which attempts to log onto a disk

identified by the character, aChard w2 Owd i wa OU wx E U U w ehDiskutE U wE (
will try to log onto the A: \ EUDY I & w (z YdhDisk Béitdd freelimésw
passing to it a different string each time:

161

THE BooK OF RuBY

disk_err.rb

chDisk("D")
chDisk("X")
chDisk("ABC")

On my PC, D\ is my DVD drive. At the moment it is empty and when my
program tries to log onto it, Ruby returns an exception of this type:

Errno::EACCES

| have no X\ drive on my PC and when | try to log onto that, Ruby returns an
exception of this type:

Errno::ENOENT

Inthe OEVUUwWI REOx Ol Ow(wxEUUWEwWUUOUDOT wxEUEOI Ul UOw
identifier, and Ruby returns an exception of this type:

Errno::EINVAL
Errors of this type are descendents of the SystemCallError class. You can easily
YI UPi awUl PUWEaAawUOEOOOI OUPOT wUT 1T woODPOIl woi wEOGEI

indicated in the source code of disk_err.rb .

These classes, in effect, wrap up integer error values whichare returned by the
underlying operating system. Here Errno is the name of the module containing
the constants, such asEACCES and ENOENT, which match the integer error
values.

To see a complete list ofErrno constants, run this:

puts(Errno.constants)

To view the corresponding numerical value of any given constant, append
::Errno to the constant name, like this:

Errno::EINVAL::Errno

162

CHAPTER NINE

errno.rb

The following code can be used to display a list of all Errno constants along with
their numerical values:

for err in Errno.constants do
errnum = eval("Errno::#{err}.:Errno")
puts("#err}, #{errnum}")

end

RETRY

If you think an error condi tion may be transient or may be corrected (by the user,
perhaps?), you can rerun all the code in abegin..end block using the keyword
retry , as in this example which prompts the user to re-enter a value if an error
such asZeraDiv isionError occurs:

retry.rb

def doCalc
begin
print("Enter a number: ")
aNum = gets().chomp()
result = 100 / aNum.to_i
rescue Exception => e

result=0
puts("Error: " + e + " \ nPlease try again.")
retry # retry on exception
else
msg = "Result = #{result}"
ensure
msg = "You entered ‘#{aNum}'. " + msg
end
return msg
end

There is, of course, the danger that the error may not be as transient as you think
so, if you use retry , you may want to pro vide a clearly defined exit condition to
ensure that the code stops executing after a fixed number of attempts.

163

THE BooK OF RuBY

You could, for example, increment a local variable in the begin clause (if you do

this, make sure it is incremented beforeany code that is liable to generate an
exception since, once an exception occurs, the remainder of the code prior to the
rescue clause will be skipped!). Then test the value of that variable in the rescue

section, like this:

rescue Exception => e
if aValue < somé&/alue then
retry
end

Here is a complete example, in which | test the value of a variable namedtries to
ensure that no more than three tries to run the code without error before the
exception-handling block exits:

retry2.rb

def doCalc

tries =0

begin
print("Enter a number: ")
tries +=1
aNum = gets().chomp()
result = 100 / aNum.to_i

rescue Exception => e
msg = "Error: " + e

puts(msg)
puts("tries = #{tries}")
result =0
if tries < 3 then # set a fixed number of retries
retry
end
else
msg = "Result = #{result}"
ensure
msg = "You entered ‘#{aNum}'. " + msg
end
return msg
end

164

CHAPTER NINE

RAISE

2001 UPOT UwaObUlwOEaAawphrEOQUwWUOWOI I xwEOwWI REIT x
trapped in an exception-handling block. This can be used, for example, to defer

the handling of the exception ¢ say, by passing it on to some othermethod. You

can do this using the raise method. You need to be aware, however, that once

raised, an exception needs to be rehandled otherwise it may cause your program

to crash. Here is a simple example of raising aZeroDivisionError exception and

passing on the exception to a method called, in this case,handleError :

raise.rb

begin
divbyzero
rescue Exception => e
puts("A problem just occurred. Please wait...")
x=0
begin
raise
rescue
handleError(e)
end
end

Here divbyzero is the name of a method in which the divide -by-zero operation
takes place andhandleError is a method that prints more detailed information
on the exception:

def handleError(e)
puts("Error of type: #{e.class}")
puts(e)
puts("Here is a backtrace: ")
puts(e.backtrace)

end

Notice that this uses the backtrace method which displays an array of strings
showing the file names and line numbers where the error occurred and, in this

case, the line which called the error-producing divbyzero method.

165

THE BooK OF RuBY

raise2.rb

You can also specifically raise your exceptions to force en error condition even
when the program code itself has not caused an exception. Calling raise on its
own raises an exception of the type RuntimeError (or whatever exception is in
the global variable $!):

raise # raises RuntimeError

By default, this will have no descriptive message associated with it. You can add
a message as a parameter, like this:

raise "An unknown exception just occurr ed!"
S8OUWOEAWUEDPUI wEwUxT EPI PEwUaxIl woOi wi UudU-b
raise ZeroDivisionError

You may also create an object of a specific exception type and initialize it with a
EOCUUOOwWOI UUET T o

raise ZeroDivisionError.new("I'm afraid you divided by Zero")

raise3.rb

(T wOT 1 wOUEGEEUVUEWI RET xUPOOwUaxl UwEOOz Uwoli 1 Owa o
create new ones just by subclassing existing exceptions. Provide your classes
with a to_str method in order to give them a default message.

class NoNameError < Exception
def to_str
"No Name given!"
end
end

166

CHAPTER NINE
And this is an example of how you might raise a custom exception:

def sayHel lo(aName)

begin
if (@Name =="") or (aName == nil) then
raise NoNameError
end

rescue Exception => e
puts(e.class)
puts("message: "+ e)
puts(e.backtrace)

else
puts("Hello #{aName}")

end

end

167

THE BooK OF RuBY

Digging Deeper
OMITTING BEGINANDEN D

You may optionally omit begin and end when trapping exceptions inside a
method, a class or a module. For example, all the following are legal:

omit_begin_end.rb

def calc
result = 1/0
rescue Exception => e
puts(e.class)
puts(e)
result = nil
return result
end

class X
@@x=1/0
rescue Exception => e
puts(e.class)
puts(e)
end

module Y
@@x =1/0
rescue Exception => e
puts(e.class)
puts(e)
end

In all the cases shown above, the exceptiorhandling will also work if you place

the begin and end keywords at the start and end of the exception-handling code
in the usual way.

168

CHAPTER NINE

CATCH € THROW

In some languages, exceptions are trapped using the keyword catch and may be
raised using the keyword throw . While Ruby provides catch and throw me-
thods, these are not directly related to its exception handling. Instead, catch and
throw are used to break out of a defined block of code when some condition is
met. You could, of course, usecatch and throw to break out of a block of code
when an exception occurs (though this may not be the most elegant way of
handling errors). For example, this code will exit the block delimited by curly
brackets if a ZeroDivisionError occurs:

catch_except.rb

catch(:finished) {
print('Enter a number: ")
num = gets().chomp.to_i
begin
result = 100 / num
rescue Exception => e
throw :finished # jump to end of block
end
puts("The result of that calculation is #{result}")
} #end of :finished catch block

See Chapter 6 for more oncatch and throw .

169

THE BooK OF RuBY

170

CHAPTER TEN

Blocks, Procs and Lambdas

6171 OwxUOT UEOGOTI UUw UEOOWEEOUUW sEOOEOUZ Ow [
s ET UOO0UZz inRibw Bavé&/krGaublock is special. It is a unit of code that

works somewhat like a method but, unlike a method, it has no name. In order to

use blocks effectively, you need to understand how and why they are special.

That is what this chapter is all about...

W HAT ISA BLOCK ?

Consider this code:

1blocks.rb

3.times do |i|

puts(i)
end

What may less obvious is the value which i will have on each successive turn
through the loop. In fact, the values of i in this case will be 0, 1, and 2. Here is an
alternative form of the code above. This time the block is delimited by curly
brackets rather than by do and end:

3.times { [i|
puts(i)

171

THE BooK OF RuBY

According to the Ruby documentation, times is a method of Integer (letz call the
Integer int), which D01 UE Ul Unutines£ gaésiadinuwalues from zero to int ¢
tu? 6 w2 Otleucdde within the block is run 3 times; the first time it is run the

variable, i, is given the value 0; each subsequent timej is incremented by 1 until
the final value, 2 (i.e. int-1) is reached.

Note that the two code examples above are functionally identical. A block may
be enclosed either by curly brackets or by the do and end keywords and the
programmer may user either syntax according to personal preference.

Note: Some Ruby programmers like to delimit blocks with curly

brackets when the entire code of the block fits onto a single line and
with do..end when the block spans multiple lines. My personal

prejudice is to be consistent, irrespective of code layout, and sol gen-
erally use curly braces when delimiting blocks. Usually your choice
of delimiters make no difference to the behaviour of the code - but see
Ul 1T wUI EUPOOWOEUTI UwPOwUT PUWET ExUIlUwOOws xUI EI

If you are familiar with a C -like language such as C#or Java, you may, perhaps,

EUUUOT wUT EVw1UEazUwWEUUOAWEUEETI UwEEOWET wUUI EO
T UOUxwUOT 1T UT 1 Uuw E U E piUfar example s sEbdékEofOddde wotbé w E OET w
executed when a condition evaluates to true. This is not the case. In Riby, a block

is a special construct which can only be used in very specific circumstances.

LINE BREAKS ARE SIGNIFICANT

The opening block delimiter must be placed on the same line as the method with
which it is associated.

These are ok...
3.times do |i|
puts(i)

end

3.times { [i|
puts(i)

172

CHAPTER TEN
But these contain syntax errors...

3.times
do |i|

puts(i)
end

3.times
{ il
puts(i)

N AMELESS FUNCTIONS

A Ruby block may be regarded as a sort of nameless function or method and its

most frequent use is to provides a means of iterating over items from a list or

range of values. If you have never come across nameless functions previously,

this may sound like gobbledygook. With luck, by the end of this chapter, things

will have become a little clearer. + | Uz UWOOOOWEEEOQWEUOwWUT T wU
earlier. | said a block is like a nameless function. Take this block as an example:

{lil
puts(i)
}

If that were written as a normal Ruby method it would look something like this:

def aMethod(i)
puts(i)

end

To call that method three times and pass values from 0 to 2 we might write this:

foriin0..2
aMethod(i)
end

173

THE BooK OF RuBY

When you create a nameless method (that is, a block) variables declared between
upright bars such as|i| can be treated like the arguments to a named method.

61 wUTlT EOOwWUl i T UwOOwlaUBEGT uM BIUEBEDT UWEUws EOOEQuwx
Look again at my earlier example:

3.times { [i|

puts(i)

The times method of an integer passes values to a block from 0O to the specified
integer value minus 1.
So this:

3.times{ |i| }
OPUwYIl UawOUET woODPOI wUI UG

foriin0..2
aMethod(i)
end

The chief difference is that the second example has to call some other named
method to process the value of i whereas the first example uses the nameless
method (the code between curly braces) to process.

LooKS FAMILIAR ?

Now thE0wa OUw O0OpPwhPT EOUWEWEOOEOwWDPUOwWwaOUwlOEaAawWwOOI
before. Many times.
For example, we previously used do..end blocks to iterate over ranges like this:
(1..3).each do |i|
puts(i)

end

174

CHAPTER TEN

We have also useddo..end blocks to iterate over arrays (seefor_each2.rb in
Chapter 5):

arr = ['one','two','three’,'four’]
arr.each do |s|

puts(s)
end

And we have executed a block repeatedly by passing it to the loop method (see
3loops.rb in Chapter 5):

i=0
loop {
puts(arr[i])
i+=1
if (i == arr.length) then
break
end

The loop example above is notable for two things: 1) It has no list of items (such
EUWEOQWEUUEAWOUWEWUEOST T woOl wYEOUI UAWUOwWHU
These two features are not entirely unrelated! The loop method is part of the

sl OEWYEOUI zwbPUOwbbPOOwl RT EVUUT wOT 1 WEOOBEOwWI O
using the break keyword. Usually there are more elegant ways to perform this
kind of iteration ¢ by iterating over a sequence of values with a finite range.

BLOCKS AND ARRAYS

Blocks are commonly used to iterate over arrays. The Array class, consequently,
provides a number of methods to which blocks are passed.

One useful method is called collect ; this passes each element of the array to a
block and creates a new array to contin each of the values returned by the block.
Here, for example, a block is passed each of the integers in an array (each integer
is assigned to the variable,x), it doubles its value and returns it.

175

THE BooK OF RuBY

The collect method creates a new array containing eachof the returned integers
in sequence:

2blocks.rb

b3 =[1,2,3].collect{|x| x*2}
The example above returns this array: [2,4,6] .

In this next example, the block returns a version of the original str ings in which
each initial letter is capitalized:

b4 =["hello","good day","how do you do"].collect{|x| x.capitalize }
Sob4 is now...
['Hello", "Good day", "How do you do"]

The each method of the Array class may look rather similar to collect ; it too
passes each array element in turn to be processed by the block. However, unlike
collect, the each method does not create a new array to contain the returned
values:

b5 =["hello","good day","how do you do"].each{|x| x.capitalize }

This time, b5 is unchanged...

["hello", "good day", "how do you do"]

Recall, however that some methodst notably those ending with an exclamation
mark () + actually alter the original objects rather than yielding new values. If
you wanted to use the each method to capitalize the strings in the original array,
you could use the capitalize! method:

b6 =["hello","good day","how do you do"].each{|x| x.capit alize! }

So b6 is now...

['Hello", "Good day", "How do you do"]
176

CHAPTER TEN

With a bit of thought, you could also use a block to iterate over the characters in
a string. First, you need to split off each character from a string. This can be done
using the split method of the String class like this:

"hello world".split(//)

The split method divides a string into substrings based on a delimiter and
returns an array of these substrings. Here// is a regular expression that defines a
zero-length string; this has the effect of returning a single character, so we end up
creating an array of all the characters in the string. We can now iterate over this
array of characters, returning a capitalized version of each:

a = "hello world".split(//).each{ |x| newstr << x.capitalize }

So, at each iteration, a capitalized character is appended tonewstr, and the
following is displayed...

H

HE

HEL

HELL

HELLO
HELLO
HELLO W
HELLO WO
HELLO WOR
HELLO WORL
HELLO WORLD

As we are using the capitalize method here (with no terminating ! character), the

characters in the array, a, remain as they began, all lowercase, since the
capitalize method does not alter the receiver object (here the receiver objects are
the characters passed into the blo&).

Be aware, however, that this code would not work if you were to use the
capitalize! method to modify the original characters. This is because capitalize!
returns nil when no changes are made so when the space character is
encountered nil would be retu rned and our attempt to append (<< a nil value to
the string, newstr , would fail.

177

THE BOook OF RuBY

You could also capitalize a string using the each_byte method. This iterates

through the string characters, passing each byte to the block. These byes take the

i OUOwWOi w 2" ((WEOGET U w20w?2T1 OOOwPOUOE? wbhOUOEU
numeric values: 104 101 108 108 111 32 119 111 114 108 100

.EYPOUUOGAaOwWwaOUWEEOZUWEEXPUEODPA&AT WEOWDOLOUITIT Uwl
value to a character. Thechr method of String does this:

a = "hello world".each_byte{|x| newstr << (x.chr).capitalize }

PROCS AND LAMBDAS

In our examples up to now, blocks have been used in cahoots with methods. This
has been a requirement since nameless blocks cannot have an independent
existence in Ruby. You cannot, for example, create a standalone block like this:
{|x] x = x*10; puts(x)}
3T PUwWPUwWOOT woOl wOT T wi BREI xUDOOU WU @ENI IEWE GBI wli |

block clearly is not an object. Every object is created from a class and you can

#OwlOTl PUwbPPUT wEwW' EUT Owi OUwl BREOx Ol wEOEwWUT 1 wWwEOEU
puts({1=>2}.class)
Try this with a block, however, and you will only get an error message:

puts({|i| puts(i)}.class) #<= error!

178

CHAPTER

TEN

Block Or Hash?

Ruby uses curly brackets to delimit both blocks and Hashes. Sohow
can you (and Ruby) tell which is which? The answer, basically, is that
DUz UwWEwW' ElboksOP Ol @GE@OEUT OwodUI 1 UPD
looks like a Hash when curly brackets contain key-value pairs...

puts({1=>2}.class) #<= Hash

...or when they are empty:

puts({}.class) #<= Hash

However, once again, if you omit the brackets, there is an ambiguity.
Is this an empty Hash or is it a block associated with the puts
method?

puts{}.class

Frankly, | have tOWEEOPUwUT E0w(wEOGOz OwobO
ECOEwWw(WEEOZUwl Il Uwl1UEaAawOOwUI O0wOI
does not, in fact, display anything when the code executes. While,
this...

print{}.class

...prints nil (not, you will notice the actual class ofnil, which is Ni l-
Class, but nil itself). If you find all this confusing (as | do!) just r e-

member that this can all be clarified by the judicious use of brackets:

print({}.class) #<= Hash

Ul wbUz

b wUT 1T weE
dwl UEa

179

THE BooK OF RuBY

CREATING OBJECTS FROM BLOCKS

proc_create.rb

61 POl WEOOEOUWOEAawWOOUWET woOENTI EVUUWEaAWEI I EUOUOuU
There are three ways of creating objects from blocks and assigning them to
variablest T 1 Ul z Uwi ObPo w

a = Proc.new{|x| x = x*10; puts(x) }
b = lambda{|x| x = x*10; puts(x) }
¢ = proc{|x| x.capitalize! }

Note that, in each of the three cases above, you will end up creating an instance

ofthe Procclasst PT PET whUwUT T wi1UEaws OENI EQwPUExx1 Uz wi C
+] Uz UwUEOI WEWEOOUI UwOOOOWEUwWUT TsyYoutahl whEaUwOl
create an object callingProc.new and passing to it a block as an argument:

3blocks.rb

a = Proc.new{|x| x = x*10; puts(x)}

You can execute the code in the block to whichaUl I T UUwUUDOT wall T w/ UOEWE
method with one or more arguments (matching the block parameters) to be

passed into the block; in the code above, you could pass an integer such as 100

and this would be assigned to the block variable, x:

a.call(100)

You can also create a Proc object by calling thdambda or proc methods. These
methods (supplied by the Kernel class) are identical. The name lambda is taken
from the Scheme (Lisp) language and is a term used to describe an anonymous
Ol U1l OEwbUws EOOUUUI 76

There is one important difference between creating a Proc object usingProc.new
and creating a Proc object using theproc or lambda methods ¢ Proc.new does not
check that the number or arguments passed to the block match the number of
block parameters ¢ both proc and lambda do:

180

CHAPTER TEN

proc_lamba.rb

a = Proc.new{|x,y,z| X = y*z; puts(x) }
a.call(2,5,10,100) # This is not an error

b = lambda{|x,y,z| x = y*z; puts(x) }
b.call(2,5,10,100) # This is an error

puts(’ --- Block #2 ---")
¢ = proc{|x,y,z| X = y*z; puts(x) }
c.call(2,5,10,100) # This is an error

block_closure.rb

W HATISA CLOSURE?

s" OOUUUI zwbUwUIT Inctich &itidh hak Beyabildytdisédna BhatiisUto
EUI EUOI EwpUTl DPOOwWOT wUl PUWEUWUT 1T wEOOEOZ7z Uws O
understand this, look at this example:

x = "hello world"
ablock = Proc.new { puts(x) }

def aMethod(aBlockArg)
x = "goodbye"
aBlockArg.call

end

puts(x)
ablock.call
aMethod(ablock)
ablock.call

puts(x)

Here, the value of the local variable, x PUw?2 T 1 OOOwWwPOUOE> wbbUI
ablock. Inside aMethod, however, a local variable named x has the value

181

THE BooK OF RuBY

21 OOEEal 2 6 w(OwU adbeklispdsseditddMERDLO and talle® within

the scope ofaMethod OwBD U wx UPDOUUwW?1T 1 OO O wb & withié theu pUT EUw D U (
EOOEOzZUws OEUDPYIT wUEOxIT zwUEUT IxWithhith®€épE al » wbl DEIT
of aMethod 6 w3 T 1 WEEOYI wEOEI OQwUOT 1 Ul 1 OUIl OwdOOawl YI Uwx

SeeDigging Deeper at the end of this chapter for more on closures.

YIELD

+1 Uz U0wUIl T wEwi 1 pw OO ydlookerd Prégeat untoGueet) £bmé-w 3 1 1 w
thing new ¢ namely, a way of executing a nameless block when it is passed to a

method. This is done using the keyword yield. In the first example, | define this

simple method:

4blocks.rb

def aMethod
yield
end

(DwEOI UOzUwUI EGCawl EYT WEQAWEOET wOl wbUUwOPOSE w
and the yield keyword causes the block to execute. This is how | pass a block to
it:

aMethod{ puts("Good mo rning") }

Notice that this time the block is not passed as a named argument. It would be an
error to try to pass the block between round brackets, like this:

aMethod({ puts("Good morning”")}) # Thi s wondt wor k!
Instead we simply put the block right next to the method to which we are pas s-
ing it, just as we did in the very first example in this chapter. That method

receives the block without having to declared a named parameter for it and it
calls the block with yield.

182

CHAPTER TEN
Here is a slightly more useful example:

def caps(anarg)
yield(anarg)
end

caps("a lowercase string"){ |x| x.capitalize! ; puts(x) }

Here the caps method receives one argument,anarg, and passes this argument to
a nameless block which is then executed byyield. When | call the caps method, |
pass it a string argument ("a lowercase string") using the normal parameter-
passing syntax. The nameless block is passeafter the enaf the parameter list.

When the caps method callsyield(anarg) UT T wUUOUDPOT wEUITcaEdl OUC
UOUDOT »wbUwx EVUUT EwbOUOWUIT 1 wE O OE thidcamdl wd U w
izes it and displays it with puts(s).

BLOCKS W ITHIN BLOCKS

example, | use one block to iterate over an array of strings, assigning each string
in turn to the block variable, s. A second block is then passed to thecaps method
in order to capitalise the string:

["hello”,"good day","how do you do"].each{
|s|
caps(s { |x| x.capitalize!
puts(x)
}
}

This results in this output:
Hello

Good day
How do you do

183

THE BooK OF RuBY

PAsSSING NAMED PROC ARGUMENTS

Up to now, we have passed blocks to procedures either anonymously (in which

case the block is executed with theyield keyword) or in the form of a named

argument, in which case it is executed using the call method. There is another

way to pass a block. WheQ wUT I wOEUUwWEUT UO1 OUwPOwWEwWOI U1 6Ez U
preceded by an ampersand (&) it is considered to be a Proc object. This gives you

the option of passing an anonymous block to a procedure using the same syntax

as when passing a block to an iterator; and yet the procedure itself can receive

the block as a named argument. Load5blocks.rb to see some examples of this.

5blocks.rb

%OUUUOwW!I T Ul wPUwEwWU]I OPOET UwoOi wiOT T wOpPOwbPEaAaUwPRT
blocks. This method has three parameters, a, b, C

defabc(a, b, c)
a.call
b.call
c.call
yield
end

We call this method with three named arguments (which here happen to be
blocks but could, in principle, be anything) plus an unnamed block:

abc(a, b, ¢){ puts "four" }

The abc method executes the named block arguments using the call method and
the unnamed block using the yield keyword:

a.call #<= call block a
b.call #<= call block b
c.call #<= call block c
yield #<=yield unnamed block: { puts "four" }

The next method, abc2, takes a single argument,&d:

def abc2(&d)

184

CHAPTER TEN

The ampersand here is significant as it indicates that the &d parameter is a block.
61 WEOOZzUOwWT OPI YI UOQwOT 1 EwUOwWUI OEwUT PUWE OC
pass the unnamed block simply by appending it to the method name:

abc2{ puts "four" }

Instead of using the yield keyword, the abc2 method is able to execute the block
using the name of the argument (without the ampersand):

def abc2(&d)
d.call
end

You can think of ampersand-arguments as type-checked block parameters. That
is, ampersand arguments are formally declared so unlike nameless blocks (those

PT PET wEUI wsabl OEIl Ez AwUT 1 wEOOEOWEOI UOz UwWE
unlike normal arguments (without an ampe rsand) they must match blocks. You
cannot pass some other type of object toabc2:

abc2(10) # This wondot wor k!

The abc3 method is essentially the same as theabc method apart from the fact
that it specifies a fourth formal argument (&d):

def abc3(a, b, c, &d)

The arguments, a, b and c¢ are called, while the argument &d may be called or
yielded, as you prefer:

def abc3(a, b, c, &d)

a.call

b.call

c.call

d.call #<= block &d
yield #<= also block &d

end

185

THE BooK OF RuBY

This means that the calling code must pass to this method three formal argu-
ments plus a block, which may be nameless:

abc3(a, b, ¢c){ puts "five" }

You can also use a preceding ampersand in order to pas a named block to a
method, when the receiving method has no matching named argument, like this:

abc3(a, b, ¢, &myproc)

When an ampersanded block variable is passed to a method (as in the code
above) it may be yielded. This gives the choice of passingeither an unnamed
block or a Proc object:

xyz{ |a,b,c| puts(a+b+c) }
xyz(&myproc)

Be careful, however! Notice in one of the examples above, | have used block
parameters (|a,b,c|)with the same names as the three Ieal variables to which |
previously assigned Proc objects:a, b, c:

a = lambda{ puts "one" }
b = lambda{ puts "two" }
¢ = proc{ puts "three" }

xyz{ |a,b,c| puts(a+b+c) }
Now, in principle, block parameters should be visible only within the block itself.
However, it turns out that assignment to block parameters can initialize the
YEOUI UwOi wEOawWOOEEOQWYEUDEEOI UwbBUT wUOT 1T wUEOT w(
U IWhatils A Closure2 wi EUODT UwROwUT PUWET Ex Ul Uw

Even though the variables in the xyz method are named x, y and z, it turns out
that the integer assignments in that method are actually made to the variables a,
bandcpi I OwUT PUWEOOEO0S

{|a,b,c| puts(a+b+c) }
OwhbUwx EVUUI E wyiandmY EOUT Uwli

186

CHAPTER TEN

def xyz

x=1

y=2

z=3

yield(x,y,z) # 1,2,3 assigned to block parameters a,b,c
end

main scope of my program) are initialized with the values of the block variables
once the code in block has been run:

xyz{ |a,b,c| puts(a+b+c) }
puts(a, b, c) # displays 1, 2, 3

To clarify this, try out the simple program in 6blocks.rb :

6blocks.rb

a = "hello world"

def foo
yield 100
end

puts(a)
foof |a] puts(a) }

puts(a) #<aisnow 100

This is an example of one of the pitfalls into which it is all to easy to fall in Ruby.
As a general rule, when variables share the same scope (e.g. a block declared
within the scope of the main program here), it is best to make their names unique
in order to avoid any unforeseen side effects.

Note that the block scoping described here applies to versions of Ruby up to and
including Ruby 1.8.x which, at the time of writing, may be considered to be the
SUUEOEEUEZwWYI UUPOOwWOIT w1l UEwy dhadé ih BeORuby1.@ U O w U
and will be incorporated in Ruby 2.0. For more on scoping seeBlocks and Local
Variableg wDOwUT T w# BT 1 BOT w#l I xI UwUIl EUDOOWE O wWOT

187

THE BooK OF RuBY

PRECEDENCE RULES

Blocks within curly braces have stronger precedence than blocks within do and
endd w+1 Uz UwUI 1T whpi EQwUT EQwOl EOUwWPOwWXxUEEUDPEIT dw" O

foo bar do |s| puts(s) end
foo bar{ |s| puts(s) }

Here, foo and bar are methods. So to which method is the block passed? It turns
out that the do..end block would be passed to the leftmost method, foo, whereas
the block in curly braces would be sent to the rightmost method, bar. This is
because curly braces are said to have higher precedence. Consider this program...

precedence.rb

def foo(b)
puts(" --- in foo --- ")
a = 'foo’

if block_given?
puts("(Block passed to foo)")
yield(a)

else
puts("(no block passed to foo)")

end

puts("in foo, arg b = #{b}")

return "returned by " << a

end

def bar
puts(" --- in bar--- ")
a ='bar'
if block_given?
puts("(Block passed to bar)")
yield(a)
else
puts("(no block passed to bar)")
end
return "returned by " << a
end

188

CHAPTER TEN
foo bar do |s| puts(s) end # 1) do..end block
foo bar{ |s| puts(s) } # 2) {..} block

Here the do..end block has lower precedence and the method, foo, is given
priority. This means that both bar and the do..end block are passed tofoo. Thus,
these two expressions are equivalent:

foo bar do |s| puts(s) end
foo(bar) do |s| puts(s) end

A curly brace block, on the other hand, has stronger precedence so it tries to
execute immediately and is passed to the first possible receiver method (bar).
The result (that is, the value returned by bar) is then passed as an argument to
foo; but this time, foo does not receive the block itself. Thus, the two following

expressions are equivalent:

foo bar{ |s| puts(s) }
foo(bar{ |s| puts(s) })

If you are confused by all this, take comfort in the fact t hat you are not alone! The
behaviour of Ruby blocks is far from transparent. The potential ambiguities
result from the fact that, in Ruby, the parentheses around argument lists are
optional. As you can see from the alternative versions | give above, the ambigui-
ties disappear when you use parentheses.

Hint...

A method can test if it has received a block using the block_given?
method. You can find examples of this in the precedence.rb program.

189

THE BooK OF RuBY

BLoCkS ASITERATORS

As mentioned earlier, one of the primary uses of blocks in Ruby is to provide
iterators to which a range or list of items can be passed. Many standard classes
such as Integer and Array have methods which can supply items over which a
block can iterate. For example:

3.times{ [i| puts(i)}
[1,2,3].each{|i| puts(i) }

You can, of course, create your own iterator methods to provide a series of values
to a block. In the iteratel.rb program, | have defined a simple timesRepeat
method which executes a block a specified number of times. This is similar to the
times method of the Integer class apart from the fact that it begins at index 1
rather than at index O (here the variable i is displayed in order to demonstrate
this fact):

iteratel.rb

def timesRepeat(aNum)
foriin 1..aNum do
yield i
end
end

Here is an example of how this method might be called:
timesRepeat(3){ [i| puts("[#{i}] hello world") }
(Z YT wE OU tmeERepeail) hefhadHaliterate over an array:
def timesRepeat2(aNum, anArray)
anArray.each{ |anitem|

yield(anitem)

}

end

190

CHAPTER TEN
This could be called in this manner:
timesRepeat2(3, ['hello","good day","how do you do"] ¥ |X| puts(x) }

In fact, of course, it would be better (truer to the spirit of object orientation) if an

OENI EQwbPUUI Oi WEOOUEDO
example. here | have created MyArray, a subclass of Array:

iterate2.rb

class MyArray < Array
It is initialized with an array when a new MyArray object is created:

def initialize(anArray)
super(anArray)
end

It relies upon its own (sel) each method, which is provided by its ancestor,
Array, to iterate over the items in the array and it uses the times method of
Integer to do this a certain number of times. This is the complete class definition:

class MyArray < Array
def initialize(anArray)
super(anArray)
end

def timesRepeat(aNum)
aNum.times{ # start block 1...
| num |
self.each{ # start block 2...
| anitem |
yield("[#{num}] :: '‘#{anitem}™)
} # ...end block 2
} # ...end block 1
end
end

191

THE BoOK OF RuBY
Notice that, as | have used two iterators (aNum.times and self.each), the time s-
Repeat method comprises two nested blocks. This is an example of how you

might use this...

numarr = MyArray.new([1,2,3])
numarr.timesRepeat(2){ |x| puts(x) }

This would output the following:

[0] =1
[0]::'2'
[0] :: '3
[1] 1
[1] 22"
[1] :: '3

In iterate3.rb | have set myself the problem of defining an iterator for an array

containing an arbitrary number of sub -arrays, in which each sub-array has the

same number of items. In other words it will be like a table or matrix with a fixed

number of rows and a fixed number of columns. Here, for example, is a multi -

EPOI OUPOOEOWEUUE a wHERWIEW W AW E]Outsud @HWaug gWOWE) OO U 7 u

iterate3.rb

multiarr =
[[one','twa','three’,'four 1,
[k, 2, 3 4],
[a, b, :«c, d]
]
(zYl wOUPT EwOU0wWUT U1 1 WwEOUI UGEUDYI wYI UUDOOUWOI v
limitation of only working with a pre -defined number (here 2 at indexes [0] and

Zhg KwOIl ws UOPUZO

multiarr[0].length.times{|i|
puts(multiarr[O][i], multiarr[1][i])
}

192

CHAPTER TEN

The second version gets around this limitation by iterating over each element (or
s U O b muttiar® and then iteration along each item in that row by obtaining the
row lengthand us® OT wUT 1 uiined thetholl with tHauvalue:

multiarr.each{ |arr|
multiarr[0].length.times{]i|
puts(arrli])
}

The third version reverses these operations: the outer block iterates along the
length of row 0 and the inner block obtains the item at index i in each row:

multiarr[0].length.times{]i|
multiarr.each{ |arr|
puts(arr[i])
}
}

While versions 2 and 3 work in a similar way, you will find that they iterate
through the items in a different order. Run the program to verify that. You could
try creating your own subclass of Array and adding iterator methods like this ¢
one method to iterate through the rows in sequence (like Version 2, above) and
one to iterate through the columns in sequence (like Version 3).

193

THE BooK OF RuBY

Digging Deeper
RETURNING BLOCKS FROM METHODS

$EUOPTI UOw(wi RxOEPOI EwUTl EVDWEOOEOUwWPOwWw1UEawOEa
UEPEwWUOwWI OEOOUT wUOT 1 wsi OYPUOOOI OUz wbOwbkpi PET wh
way, it carries the values of local variables from its original scope into a different

scope. The example | gave previously showed how the block named ablock

captures the value of the local variable x...

block_closure.rb

x = "hello world"

ablock = Proc.new { puts(x) }
668 ECEWPUwWwPUwWUT T OWEEOIl wUOwsEEUUazwUlI ECwYEUD
example, ablock is passed toaMethod . When ablock is called inside that method

it runs the code puts(x) 8 w3 T PUWEBDUx OEaUw?1 1 OOOwhPOUOE>? wEOE w

def aMethod(aBlo ckArg)

X = "goodbye"
aBlockArg.call #<= displays Ohell o worl dbo¢
end

In this particular example, this behaviour may seem like a curiosity of no great
interest. In fact, block/closures can be used more creatively.

For example, instead of creating a block and sending it to a method, you could
create a block inside a methodnd return that block to the calling code. If the
method in which the block is created happens to take an argument, the block
could be initialized with that argument.

This gveUw UUWEwWUDOx Ol whEawoOi wEUI EUPOT wOUOUDXx Ol w
Ul Ox OE U lingtéanae lofEvéhichuwis initialize d with different data. Here, for

example, | have created two blocks, assigned to the variablessalesTax and vat,
each ofwhich calculate s results based on different values (0.10) and (0.175):

194

CHAPTER TEN

block_closure2.rb

def calcTax(taxRate)
return lambda{
|subtotal|
subtotal * taxRate

}

end

salesTax = calcTax(0.10)
vat = calcTax(0.175)

print("Tax due on book = ")
print(salesTax.call(10)) #<= prints: 1.0

print(" \ nVat due on DVD ="
print(vat.call(10)) #<= prints: 1.75

BLOCKS AND INSTANCE VARIABLES

One of the less obvious features of blocks is the way in which they use variables.
If a block may truly be regarded asa namelessfunction or method then, log i-
cally, it should be able 1) to contain its own local variables and 2) to have access
to the instance variables of the object to which the block belongs.

providers another illustration of a block acting as a closure t by capturing the
values of the local variables in the scope in which it was created. Here | have
created block using the lambda method:

closuresl.rb

aClos = lambda{
@hello << " yikes!"

}
31T PUWEOOEOQWExx1 OEUWEwWUUUDPOT @hdlouBidid® thatn, » wU
at this stage in the proceedings,no value has previously been assigned to@hello.
195

THE BooK OF RuBY

I have, however, created a separate method,aFunc, which does assign a value to
a variable called @hello:

def aFunc(aClosure)
@hello = "hello world"
aClosure.call

end

When | pass my block to this method (the aClosure argument), the aFunc method
brings @hello into being. | can now execute the code inside the block using the
The same variable can also be used by calling theblock outside of the method.
Indeed, now, by repeatedly calling the block, | will end up repeatedly appending
Ul T wOOUDOT @hefowa DOI Un? wUOw

aFunc(aClos) #t<=@hell o = o0hello world yikes! o
aClos.call #<= @hell o = oO0hello world yikes!
aClos.call #<= @hell o = oO0hello world yikes!
aClos.call # ...and so on

aClos.call

If you think about it, this is not really too surprising. After all, @hello is an
instance variable so it exists within the scope of an object. When we run a Ruby
program, an object called main is automatically created. So we shauld expect any
instance variable created within that object (our program) to be available to
everything inside it.

The question, now arises: what would happen if you were to send the block to a

method of some otherobject? If that object has its own instance variable, @hello,

which variable will the block use ¢ the @hello from the scope in which th e block

was created or the @hello from the scope of the object in which the block is

EEOOI Eyw+1 Uz UwlUUawUl ECwOUUB w6l zOOwWUUI wOT 1T wUE
will display a bit of information about the object to which the block belongs and

the value of @hello:

aClos = lambda{
@hello << " yikes!"
puts("in #{self} object of class #{self.class}, @hello = #{@hello}")

}
196

CHAPTER TEN

Now to create a new object from a new class(X) and give it a method which will
receive our block, b, and call the block:

class X
defy(b)
@hello ="l say, | say, | say!!"
puts(" [In X.y]")
puts("in #{self} object of class #{self.class}, @hello = #{@hello}")
puts(" [In X.y] when block is called...")
b.call
end
end

X = X.new
To test it out, just pass the block,aClos, to the y method of x:
x.y(aClos)

And this is wh at is displayed:

[In X.y]
in #<X:0x32a6e64> object of class X, @hello = | say, | say, | say!!!

[In X.y] when block is called...
in main object of class Object, @hello = hello world yikes! yikes! yikes!
yikes! yikes! yikes!

So, it is clear that the block executes in the scope of the object in which it was
createdmain) and retains the instance variable from that object even though the
object in whose scope the block iscalledhas an instance variable with the same
name and a different value.

BLOCKS AND LOCAL VARIABLES

-O0PwOl UzUwUTT wi OPWEWEOOEOYEOOUUUI wkl EOU L
sures2.rb program. First | declare a variable, x, which is local to the context of the
program itself:

197

THE BooK OF RuBY

closures2.rb

X = 3000

The first block/closure is called cl. Each time | call this block, it picks up the
value of x defined outside the block itself (3000) and returns x + 100:

cl = lambda{
return x + 100

}

This block has no block parameters (that is, there are nos EOOEQwWOOBEEOZ wYEUDI
between upright bars) so when it is called with a variable, someval, that variable

is discarded, unused. In other words, cl.call(someval) has the same effect as

cl.call().

So when you call the block cl, it returns x+100 (i.e. 3100), this value is then
assigned to someval When you call cl a second time, exactly the same thing
happens all over again, so once againsomevalis assigned 3100:

someval=1000
someval=cl.call(someval); puts(someval) #<=someval is now 3100
someval=cl.call(someval); puts(someval) #<= someval is now 3100

Note: Instead of repeating the call to c1, as show above,you could
place the call inside a block and pass this to thetimes method of In-
teger like this:

2.times{ someval=cl.call(someval); puts(someval) }

However, as it can be hard enough to work what just oneblock is up

to (such as thecLEOOEOw I 1 Ul Aw(zYl wEl OPE|I UEUI QawEYC
more blocks than are absolutely necessary in this program!

198

CHAPTER TEN

The second block isnamed c26 w3 T PUwWETI EOEUI Uw E.usEtéadOE O w
returns a value:

c2 = lambda{
|z|
return z + 100

However, this time the returned value can be reused since the block parameter
acts like an incoming argument to a method ¢ so when the value of someval is
changed after it is assigned the return value of c2 this changed value is subse-
guently passed as an argument:

someval=1000
someval=c2.call(someval); puts(someval) #<=someval is now 1100
someval=c2.call(someval); puts(someval) #<= someval is now 1200

The third block, ¢3, looks, at first sight, pretty much the same as the secord
block, c2. In fact, the only difference is that its block parameter is called x instead
of z:

c3 = lambda{
x|
return X + 100

The name of the block parameter has no effect on the reurn value. As before,
someval is first assigned the value 1100 (that is, its original value, 1000, plus the
100added inside the block) then, when the block is called a semnd time, someval
is assigned the value 1200 (its previous value, 1100, plus 100 aggined inside the
block).

But now look at what happens to the value of the local variable x. This was
assigned 3MO0 at the top of the unit. Simply by giving the block parameter the
same name,x, we have altered the value of the local variable, x. It now has the
value, 1100¢ that is, the value that the block parameter, x, last had when the c3
block was called:

199

THE BoOk OF RuBY
x = 3000

¢3 = lambda{
x|
return x + 100

someval=1000

someval=c3.call(someval); puts(someval)
someval=c3.call(someval); puts(someval)

puts(x) #<=x is now 1100

Incidentally, even though b lock-local variables and block parameters can affect

similarly named local variables outside the block, the block va riables themselves

TEYT wdAuw HDERHF wOUUUPET wUTfy thi€ BifpEtieddefited wWEEOw YI U
keyword to attempt to display the type of variable if it is, indeed, defined:

print("x=[#{defined?(x)}],z=[#{defined?(2)}]")

Matz, the creator of Ruby, has described the scoping of local variables within a

variables within a block invisible to the method containing that block. For an
example of this, seelocal_var_scope.rb:

local_var_scope.rb

def foo
a=100
[1,2,3].each do |b|
c=b
a=b
print("a=#{a}, b=#{b}, c=#{c} \n")
end
print("Outside block: a=#{a} \n") # Can't print #{b} and #{c} here!!l
end

Here, the block parameter, b, and the block-local variable, c, are both visible only
when inside the block itself. The block has access to both these variables and to

200

CHAPTER TEN

the variable a (local to the foo method). However, outside of the block, b and c
are inaccessible and onlyais visible.

Just to add to the confusion, whereas the block-local variable, ¢ and the block
parameter, b, are both inaccessble outside the block in the example above, they
are accessiblevhen you iterate a block with for as in the example below:

def foo2
a =100
forbin[1,2,3] do
c=b
a=b
print("a=#{a}, b=#{b}, c=#{c} \n")
end
print("Outside block: a=#{a}, b=#{b}, c=#{b} \n")
end

In future versions of Ruby, local variables to which values are assigned inside a

block (as with c) will also be local to the method (such as foo) outside the block.
Formal block parameters, like b, will be local to the block.

201

THE BooK OF RuBY

202

CHAPTER ELEVEN

Symbols

Many newcomers to Ruby are confused by symbols. A symbol is an identifier
whose first character is a colon (:), so:this is a symbol and so is:that . Symbols
are, in fact, not at all complicated + and, in certain circumstances, they may be
extremely useful, as we shall see shortly.

+ 1 U z theudleBr @hdut what a symbol is not: it is not a string, it is not a constant
and it is not a variable. A symbol is, quite simply, an identifier with no intrinsic
meaning other than its own name. Whereas you might assign a value to a varia-
ble like this...

name = OFredo

...you would not assign a value to a symbol. The value of a symbol called:name
is :name.

For a more technical account of what a symbol is, refer to the Dlgglng
Deeper section at the end of the chapter.

We have, of course, used symbols before. In Chapter 2, for instance, we created
attribute readers and writers by passing symbols to the attr reader and
attr_writer methods, like this:

attr_reader(:description)
attr_writer(:description)

203

THE BooK OF RuBY

You may recall that the above code causes Ruby to create a@description in-
stance variable plus a pair of getter (reader) and setter (writer) methods called
description . Ruby takes the value of a symbol literally. Its value is its name
(:description). The attr_rea der and attr_writer methods create, from that
name, variables and methods with matching names.

SYMBOLS AND STRINGS

It is a common misconception that a symbol is a type of stringd w | U1 UWEOOOwhUODz
symbol, :hello pretty similar to the string, ? T I @0 0>

In fact, symbols are quite unlike strings. For one thing, each string is different ¢
so,?2 11 QODP Cadd? 1 1 Oddelrhree semrate objects with three separate
object_id s.

symbol_ids.rb

puts("hello".object_id) # These 3 strings have 3 differentob ject_ids
puts("hello".object_id)
puts("hello".object_id)

But a symbol is unique, so :hello, :hello and :hello all refer to the same object
with the same object id . In this respect, a symbol has more in conmon with an
integer than with a string. Each occurrence of a given integer value, you may
recall, refers to the same object so10, 10 and 10 may be considered to be the same
objectand they have the sameobject_id :

ints_and_symbols.rb

These three symbols have the same object_id
puts(:ten.object_id)
puts(:ten.object_id)
puts(:ten.object_id)

These three integers have the same object_id
puts(10.object_id)
puts(10.object_id)
puts(10.object_id)

204

CHAPTER ELEVEN

Or you could test for equality using the equal? method:

symbols_strings.rb

puts(:helloworld.equal?(:helloworld)) #=> true
puts("helloworld".equal?("helloworld")) #=> false
puts(1.equal?(1)) #=> true

Being unique, a symbol provides an unambiguous identifier. You can pass
symbols asarguments to methods, like this:

amethod(:deletefiles)

A method might contain code to test the value of the incoming argument:

symbols_1.rb

def amethod(doThis)
if (doThis == :deletefiles) then
puts('Now deleting files...")
elsif (doThis == :formatdisk) then
puts('Now formatting disk...")
else
puts("Sorry, command not understood.")
end
end

Symbols could also be used incase statements where they would provide both
the readability of strings and the uniqueness of integers:

case doThis
when :deletefiles : puts('Now deleting files...")
when :formatdisk : puts(‘'Now formatting disk...")
else puts("Sorry, command not understood .")
end

The scope inwhich a symbol is declared does not affect its uniqueness.

205

THE BooK OF RuBY

Consider the following...

symbol_ref.rb

module One
class Fred
end
$f1 = :Fred
end

module Two
Fred=1
$f2 = :Fred
end

def Fred()
end

$f3 = :Fred

Here, the variables $f1, $f2 and $f3 are assigned the symbol :Fred in three

EDPIi T 1 UI OUWUEOxT UowOOEUOT w. Ol OWwOOEUO]I w3pPOwWEOE U
UDOWUEAwWOOWOOEUOTI UwbhOw" T ExUT Uwhl 8 wewkd Wy @wdpb Ow RN C
which define different scopes. And yet each variable refers to the same symbol,

:Fred, and has the sameobiject_id :

All three display the same id!

puts($f1.object_id)

puts($f2.object_id)

puts($f3.object_id)
$YI OwUOOWUT 1T ws O1 EOPOT z wOi wlOT 1T wUaOEOOWET EOT T Uuw
In other words, in module One, :Fred refers to the classFred, in module Two, it
refers to the constant, Fred = 1, and in the main scope it refers to the method

Fred.

A rewritten vers ion of the previous program demonstrates this:

206

CHAPTER ELEVEN

symbol_ref2.rb

module One
class Fred
end
$f1 = :Fred
def self.evalFred(aSymbol)
puts(eval(aSymbol.id2name))
end
end

module Two
Fred=1
$f2 = :Fred
def self.evalFred(aS ymbol)
puts(eval(aSymbol.id2name))
end
end

def Fred()
puts("hello from the Fred method")
end

$f3 = :Fred

One::evalFred($f1) #=> displays the module::class name: One::Fred
Two::evalFred($f2) #=> displays the Fred constant value: 1
method($f3).call #=> calls Fred method: displays:

ohell®@ from t h

Naturally, sinc e the variables $f1 , $f2 and $f3 reference the same symbol, it
EOI U8z OWOEUUI Uwhi PET wiVel pobETObIanand fitad) 61 wE O
es exactly the same results:

One::evalFred($f3)

Two::evalFred($f1)
method($f2).call

207

