

THE BOOK OF RUBY

HUW COLLINGBOURNE

THE BOOK OF RUBY

Copyright © 2009 Huw Collingbourne

The right of Huw Collingbourne to be identified as the Author of the Work has
been asserted by him in accordance with the Copyright, Designs and Patents Act

1988.

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted in any form or by any means without the prior writ-

ten permission of the publisher, nor be otherwise circulated in any form of binding
or cover other than that in which it is published and without a similar condition be-

ing imposed on the subsequent purchaser.

Authorõs web site: http://www.sapphiresteel.com/

http://www.sapphiresteel.com/

ABOUT THE AUTHOR

ABOUT THE AUTHOR

Huw Collingbourne is Technology Director of SapphireSteel Software

(http://www.sapphiresteel.com/), developers of ÛÏÌɯȿRuby In Steelɀɯ1ÜÉàɯÈÕËɯ1ÈÐÓÚɯ

IDE for Visual Studio and the ȿAmethystɀɯ(#$ɯÍÖÙɯAdobe Flex. Huw is a well

known technology writer in the UK and has written numerous opinion and

programming columns, including tutorials on C#, Delphi, Java, Smalltalk and

Ruby for a number of computer magazines such as Computer Shopper, PC Pro

and PC Plus. He is author of the free ebook, The Little Book Of Ruby, and is the

editor the online computing magazine, Bitwise (www.bitwisemag.com). Huw ha s

an MA in English from the University of Cambridge.

http://www.sapphiresteel.com/

THE BOOK OF RUBY

i

INTRO DUCTION

Getting Started With Ruby

As you are now reading a book on Ruby, I think it is safe to work on the assump-

ÛÐÖÕɯÛÏÈÛɯàÖÜɯËÖÕɀÛɯÕÌÌËɯÔÌɯÛÖɯ×ÌÙÚÜÈËÌɯàÖÜɯÖÍɯÛÏÌɯÔÌÙÐÛÚɯÖÍɯÛÏÌɯRuby language.

(ÕÚÛÌÈËɯ(ɀÓÓɯÛÈÒÌɯÛÏÌɯÚÖÔÌÞÏÈÛɯÜÕÊÖÕÝÌÕÛÐÖÕÈÓɯÚÛep of starting with a warning:

many people are attracted to Ruby by its simple syntax and its ease of use. They

ÈÙÌɯÞÙÖÕÎȭɯ1ÜÉàɀÚɯÚàÕÛÈßɯÔÈàɯÓÖÖÒɯÚÐÔ×ÓÌɯÈÛɯÍÐÙÚÛɯÚÐÎÏÛɯÉÜÛȮɯÛÏÌɯÔÖÙÌɯàÖÜɯÎÌÛɯÛÖɯ

know the language the more you will realize that it is, on the contrary, extremely

complex. The plain fact of the matter is that Ruby has a number of pit falls just

waiting for unwary programmers to drop into.

In this book it is my aim to guide you safely over the pitfall s and lead you

ÛÏÙÖÜÎÏɯÛÏÌɯÊÏÖ××àɯÞÈÛÌÙÚɯÖÍɯ1ÜÉàɀÚɯÚàÕÛÈßɯÈÕËɯÊÓÈÚÚɯÓÐÉÙÈÙÐÌÚȭɯ(ÕɯÛÏÌɯ×ÙÖÊÌÚÚȮɯ

(ɀÓÓɯÉÌɯÌß×ÓÖÙÐÕÎ both the smooth, well -paved highways and the gnarlier, bumpy

little byways of Ruby. By the end of the journey, you should be able to use Ruby

safely and effectively without getting caught out by any unexpected hazards

along the way.

The Book Of Ruby concentrates principally on version 1.8.x of the Ruby lan-

guage. While a version 1.9 of Ruby has been released, Ruby 1.8 is still far more

widely used. Ruby 1.9 may be regarded as a stepping stone towards Ruby 2.0. In

most respects the syntax of Ruby 1.9 is close to that of Ruby 1.8 but you should

be aware that there are some differences and complete compatibility is not

guaranteed.

THE BOOK OF RUBY

ii

HOW TO READ THIS BOOK

The book is divided up into bite -sized chunks. Each chapter introduces a theme

which is subdivided into sub-topics. Each programming topic is accompanied by

one or more small self-contained, ready-to-run Ruby programs.

If you want to follow a well -structured ȿcouÙÚÌɀ, read each chapter in sequence. If

you prefer a more hands-on approach, you can run the programs first and refer

to the text when you need an explanation. If you already have some experience

of Ruby, feel free to cherry-pick topics in any order that you find use ful. There

ÈÙÌɯÕÖɯÔÖÕÖÓÐÛÏÐÊɯÈ××ÓÐÊÈÛÐÖÕÚɯÐÕɯÛÏÐÚɯÉÖÖÒɯÚÖɯàÖÜɯËÖÕɀÛɯÏÈÝÌɯÛÖɯÞÖÙÙàɯÛÏÈÛɯàÖÜɯ

ÔÐÎÏÛɯȿÓÖÚÌɯÛÏÌɯ×ÓÖÛɀɯÐÍɯàÖÜɯÙÌÈËɯÛÏÌɯÊÏÈ×ÛÌÙÚɯÖÜÛɯÖÍɯÖÙËÌÙȵ

D IGGING DEEPER

Every chapter apart from the first includes ÈɯÚÌÊÛÐÖÕɯÊÈÓÓÌËɯȿ#ÐÎÎÐÕÎɯ#ÌÌ×ÌÙɀȭɯ

This is where we explore specific aspects of Ruby (including a few of those

gnarly byways I mentioned a moment ago) in greater depth. In many cases you

could skip the Digging Deeper sections and still learn all the Ruby you wi ll ever

need. On the other hand, it i s in the Digging Deeper sections that we often get

closest to the inner workings of Ruby so, if you skip them, you are going to miss

out on some pretty interesting stuff.

MAKING SENSE OF THE TEXT

In The Book Of Ruby, any Ruby source code is written like this:

def saysomething

 puts("Hello")

end

When there is a sample program to accompany the code, the program name is

shown in a box on the right -hand side of the page, like this:

helloname.rb

INTRODUCTION

iii

Explanatory notes (which generally provide some hints or give a more in-depth

explanation of some point mentioned in the text) are shown in a box like this:

This is an explanatory note . You can skip it if you like ɬ but if you do

ÚÖȮɯàÖÜɯÔÈàɯÔÐÚÚɯÚÖÔÌÛÏÐÕÎɯÖÍɯÐÕÛÌÙÌÚÛȱȵ

THE BOOK OF RUBY

iv

Ruby and Rails

W HAT IS RUBY ?

Ruby is a cross-platform interpreted language which has many features in

ÊÖÔÔÖÕɯÞÐÛÏɯÖÛÏÌÙɯȿÚÊÙÐ×ÛÐÕÎɀɯÓÈÕÎÜÈÎÌÚɯÚÜÊÏɯÈÚɯ/ÌÙÓɯÈÕËɯ/àÛÏÖÕȭɯIt has an

ȿ$ÕÎÓÐÚÏɯÓÈÕÎÜÈÎÌɀɯÚÛàÓÌɯÚàÕÛÈß which looks somewhat Pascal-like at first sight. I t

is thoroughly object oriented, and has a good deal in common with the great -

ÎÙÈÕËËÈËËàɯÖÍɯȿ×ÜÙÌɀɯ..ɯÓÈnguages, Smalltalk. It has been said that the lan-

guages which most influenced the development of Ruby were: Perl, Smalltalk,

Eiffel, Ada and Lisp. The Ruby language was created by Yukihiro Matsumoto

(ÊÖÔÔÖÕÓàɯÒÕÖÞÕɯÈÚɯȿ,ÈÛáɀȺɯÈÕËɯÐÛɯÞÈÚɯÍÐÙÚÛɯÙÌÓÌÈÚÌËɯÐÕɯƕƝƝƙȭɯ

W HAT IS RAILS ?

Currently much of the excitement surrounding Ruby can be attributed to a web

development framework called Rails ɬ ×Ö×ÜÓÈÙÓàɯÒÕÖÞÕɯÈÚɯȿ1ÜÉàɯ.Õɯ1ÈÐÓÚɀȭɯ

Rails is an impressive framework but it is not the be-all and end-all of Ruby.

Indeed, if you were to leap right into Rails development without first mastering

Ruby, you might find that you end up creating application s ÛÏÈÛɯàÖÜɯËÖÕɀÛɯÌÝÌÕɯ

understand (this is, in fact, all too common among Ruby On Rails novices).

Understanding Ruby is a necessary prerequisite of understanding Rails.

DOWNLOAD RUBY

You can download the latest version of Ruby from http://www.ruby -lang.org . Be

sure to download the binaries (not merely the source code). On a PC you can

install Ruby using the Ruby Installer for Wi ndows:

 http://rubyinstaller.rubyforge.org/wiki/wiki.pl

Alt ernatively, if you are using the Ruby In Steel IDE, you can install Ruby, Rails,

1ÜÉàɯ(Õɯ2ÛÌÌÓɯÈÕËɯÈÓÓɯÛÏÌɯÖÛÏÌÙɯÛÖÖÓÚɯàÖÜɯÞÐÓÓɯÕÌÌËɯÜÚÐÕÎɯÛÏÌɯ1ÜÉàɯ(Õɯ2ÛÌÌÓɯȿ ÓÓ-in-

ÖÕÌɯÐÕÚÛÈÓÓÌÙɀɯÈÝÈÐÓÈÉÓÌɯÖÕɯÛÏÌɯÚÐÛÌɀÚɯ#ÖÞÕÓÖÈËɯ×ÈÎÌȯ

 http://www.sapphiresteel.com/

INTRODUCTION

v

GET THE SOURCE CODE OF THE SAMPLE PROGRAMS

All the programs in every chapter in this book are available for download as a

Zip archive from http://www.sapphiresteel.com/The -Book-Of -Ruby . When you

unzip the pr ograms you will find that they a re grouped into a set of directories ɬ

one for each chapter. For the benefit of programmers using Ruby In Steel (the

5ÐÚÜÈÓɯ2ÛÜËÐÖɯ(#$ɯËÌÝÌÓÖ×ÌËɯÉàɯÛÏÌɯÈÜÛÏÖÙɯÖÍɯÛÏÐÚɯÉÖÖÒɀÚɯÊÖÔ×ÈÕàȺ, you will be

able to load the programs as Visual Studio solution s into Ruby In Steel For Visual

Studio 2008, with the programs for each chapter arranged on the branches of a

tree in the Project Manager. If you are using another editor or IDE, load each

Ruby program, one by one, as it is needed. Users of Ruby In Steel for Visual

Studio 2005 may import or convert the projects (via the File New/Open menu).

RUNNING RUBY PROGRAMS

It is often useful to keep a command window open in the source directory

containing your Ruby pro gram files. Assuming that the Ruby interpreter is

correctly pathed on your system, you will then be able to run programs by

entering ruby <program name> like this:

ruby 1helloworld.rb

If you are using Ruby In Steel you can run the programs in the interactive

console by pressing CTRL+F5 or run them in the debugger by pressing F5.

THE RUBY LIBRARY DOCUMENTATION

The Book Of Ruby covers many of the classes and methods in the standard Ruby

library - but by no means all of them! At some stage, therefore, you will need to

refer to documentation on the full range of classes used by Ruby. Fortunately, the

Ruby class library contains embedded documentation which has been extracted

and compiled into an easily browsable ref erence which is available in several

formats. For example, refer to this online documentation which is shown in a

multi -pane web page:

http://www.ruby -doc.org/core/

http://www.sapphiresteel.com/The-Book-Of-Ruby

THE BOOK OF RUBY

vi

Alternatively, here you can browse the library alphabetically:

http://www.ruby -doc.org/stdlib/

The above page contains instructions for downloading the documentation for

offline browsing. There is also a page from which the library (and other) doc u-

mentation may be downloaded in various formats, versions and languages:

http://www.ruby -doc.org/downloads

.*ȮɯÛÏÈÛɀÚɯÌÕÖÜÎÏɯÖÍɯÛÏÌɯ×ÙÌÈÔÉÓÌɯɬ ÓÌÛɀÚɯÎÌÛɯËÖÞÕɯÛÖɯÞÖÙÒȭɯ3ÐÔÌɯÛÖɯÔÖÝÌɯ

ÚÛÙÈÐÎÏÛɯÖÕɯÛÖɯ"ÏÈ×ÛÌÙɯ.ÕÌȱ

INTRODUCTION

vii

The Book Of Ruby is sponsored by SapphireSteel Software, makers of the

Ruby In Steel IDE for Visual Studio.

http://www.sapphiresteel.com

http://www.sapphiresteel.com/

1

CHAPTER ONE

String s, Numbers, Classes and Objects

3ÏÌɯÍÐÙÚÛɯÛÏÐÕÎɯÛÖɯÒÕÖÞɯÈÉÖÜÛɯÛÏÌɯ1ÜÉàɯÓÈÕÎÜÈÎÌɯÐÚɯÛÏÈÛɯÐÛɀÚɯÌÈÚàɯÛÖɯÜÚÌȭɯ3Öɯ×ÙÖÝÌɯ

ÛÏÐÚȮɯÓÌÛɀÚɯÓÖÖÒɯÈÛɯÛÏÌɯÊÖËÌɯÖÍɯÛÏÌɯÛÙÈËÐÛÐÖÕÈÓɯȿ'ÌÓÓÖɯÞÖÙÓËɀɯ×ÙÖÎÙÈÔȭɯ'ÌÙÌɯɯÐÛɯÐÚȯ

1helloworld.rb

puts 'hello world'

3ÏÈÛɀs it in i ts entirety. One method, putsȮɯÈÕËɯÖÕÌɯÚÛÙÐÕÎȮɯȿÏÌÓÓÖɯÞÖÙÓËɀȭɯ-Öɯ
ÏÌÈËÌÙÚɯÖÙɯÊÓÈÚÚɯËÌÍÐÕÐÛÐÖÕÚȮɯÕÖɯÐÔ×ÖÙÛɯÚÌÊÛÐÖÕÚɯÖÙɯȿÔÈÐÕɀɯÍÜÕÊÛÐÖÕÚȭɯ3ÏÐÚɯÙÌÈÓÓàɯÐÚɯ

as simple as it gets. Load up the code, 1helloworld.rb , and try it out.

GETTING AND PUTTING INPUT

'ÈÝÐÕÎɯȿ×ÜÛɀɯÈɯÚÛÙÐÕÎɯÛÖɯÛÏÌɯÖÜÛ×ÜÛɯȹÏÌÙÌȮɯÈɯÊÖÔÔÈÕËɯÞÐÕËÖÞȺȮɯÛÏÌɯÖÉÝÐÖÜÚɯÕÌßÛɯ

ÚÛÌ×ɯÐÚɯÛÖɯȿÎÌÛɀɯÈɯÚÛÙÐÕÎȭɯ ÚɯàÖÜɯÔÐÎÏÛɯÎÜÌÚÚȮɯÛÏÌɯ1ÜÉàɯÔÌÛÏÖËɯÍÖÙɯÛÏÐÚɯÐÚɯgets . The

2helloname.rb prompts the user for his or her name ɬ ÓÌÛɀÚɯÚÜ××ÖÚÌɯÐÛɀÚɯɁ%ÙÌËɂɯ-

ÈÕËɯÛÏÌÕɯËÐÚ×ÓÈàÚɯÈɯÎÙÌÌÛÐÕÎȯɯɁ'ÌÓÓÖɯ%ÙÌËɂȭɯ'ÌÙÌɯÐÚɯÛÏÌɯÊÖËÌȯ

2helloname.rb

print('Enter your name: ')

name = gets()

puts("Hello #{name}")

While this is still very simple, there are a few important details that need to be

Ìß×ÓÈÐÕÌËȭɯ%ÐÙÚÛȮɯÕÖÛÐÊÌɯÛÏÈÛɯ(ɀÝÌɯÜÚÌËɯprint rather than puts to display the

THE BOOK OF RUBY

2

prompt. This is because puts adds a linefeed at the end whereas print does not;

in the present case I want the cursor to remain on the same line as the prompt.

On the next line I use gets() to read in a string when the user presses Enter. This

string is assigned to the variable, name. I have not pre-declared this variable, nor

have I specified its type. In Ruby you can create variables as and when you need

ÛÏÌÔɯÈÕËɯ1ÜÉàɯȿÐÕÍÌÙÚɀɯÛÏÌÐÙɯÛà×ÌÚȭɯ(ÕɯÛÏÌɯ×ÙÌÚÌÕÛɯÊÈÚÌɯ(ɯÏÈÝÌɯÈÚÚÐÎÕÌËɯÈɯÚÛÙÐÕÎɯÛÖɯ

name so Ruby knows that the type of the name variable must be a string.

Note : Ruby is case sensitive. A variable called myvar is different

from one called myVar. A variable such as name in our sample project

must begin with a lowercase character (if it begins with an uppercase

character Ruby will treat it as a constant ɬ (ɀÓÓɯÏÈÝÌɯÔÖÙÌɯÛÖɯÚÈàɯÖÕɯ

constants in a later chapter).

Incidentally, the brackets following gets() are optional as are the brackets

enclosing the strings after print and puts ; the code would run just th e same if

you removed the brackets. However, brackets can help to resolve ambiguities

and, in some cases, the interpreter will warn you if you omit them.

STRINGS AND EMBEDDED EVALUATION

The last line in our sample code is rather interesting:

puts("Hello #{name}")

Here the name variable is embedded into the string itself. This is done by placing

ÛÏÌɯÝÈÙÐÈÉÓÌɯÉÌÛÞÌÌÕɯÛÞÖɯÊÜÙÓàɯÉÙÈÊÌÚɯ×ÙÌÊÌËÌËɯÉàɯÈɯÏÈÚÏɯȹȿ×ÖÜÕËɀȺɯÊÏÈÙÈÊÛÌÙɯ

#{ }ȭɯ3ÏÐÚɯÒÐÕËɯÖÍɯȿÌÔÉÌËËÌËɀɯÌÝÈÓÜÈÛÐÖÕɯÖÕÓàɯÞÖÙÒÚɯÞÐÛÏɯÚÛÙÐÕÎÚɯËÌÓÐÔÐÛÌËɯÉàɯ
double quotes. If you were to tr y this with a string delimited by single quotes,

the variable would not be evaluated and the string ôHello #{name}õ would be

displayed exactly as entered.

(ÛɯÐÚÕɀÛɯÖÕÓàɯÝÈÙÐÈÉÓÌÚɯÞÏÐÊÏɯÊÈÕɯÉÌɯÌÔÉÌËËÌËɯÐÕɯËÖÜÉÓÌ-quoted strings. You can

also embed non-print ing characters such as newlines ò\nó and tabs ò\tó. You can

ÌÝÌÕɯÌÔÉÌËɯÉÐÛÚɯÖÍɯ×ÙÖÎÙÈÔɯÊÖËÌɯÈÕËɯÔÈÛÏÌÔÈÛÐÊÈÓɯÌß×ÙÌÚÚÐÖÕÚȭɯ+ÌÛɀÚɯÈÚÚÜÔÌɯ

that you have a method called shownameȮɯÞÏÐÊÏɯÙÌÛÜÙÕÚɯÛÏÌɯÚÛÙÐÕÎɯȿ%ÙÌËɀȭɯ

CHAPTER ONE

3

The following string would, in the process of evaluation, call the showname
ÔÌÛÏÖËɯÈÕËȮɯÈÚɯÈɯÙÌÚÜÓÛȮɯÐÛɯÞÖÜÓËɯËÐÚ×ÓÈàɯÛÏÌɯÚÛÙÐÕÎɯɁ'ÌÓÓÖɯ%ÙÌËɂȯ

puts "Hello #{showname}"

See if you can figure out what would be displayed by the following:

3string_eval.rb

puts(" \ n\ t#{(1 + 2) * 3} \ nGoodbye")

Now run the 3string_eval.rb program to see if you were right.

NUMBERS

-ÜÔÉÌÙÚɯÈÙÌɯÑÜÚÛɯÈÚɯÌÈÚàɯÛÖɯÜÚÌɯÈÚɯÚÛÙÐÕÎÚȭɯ%ÖÙɯÌßÈÔ×ÓÌȮɯÓÌÛɀÚɯÚÜ××ÖÚÌɯàÖÜɯÞÈÕÛɯ

ÛÖɯÊÈÓÊÜÓÈÛÌɯÛÏÌɯÚÌÓÓÐÕÎɯ×ÙÐÊÌɯÖÙɯȿÎÙÈÕËɯÛÖÛÈÓɀɯof some item based on its ex-tax

ÝÈÓÜÌɯÖÙɯȿÚÜÉÛÖÛÈÓɀȭɯ3ÖɯËÖɯÛÏÐÚɯàÖÜɯÞÖÜÓËɯÕÌÌËɯÛÖɯÔÜÓÛÐ×ÓàɯÛÏÌɯÚÜÉÛÖÛÈÓɯÉàɯÛÏÌɯ

applicable tax rate and add the result to the value of the subtotal. Assuming the

subtotal to be $100 and the tax rate to be 17.5%, this Ruby program does the

calculation and displays the result:

4calctax.rb

subtotal = 100.00

taxrate = 0.175

tax = subtotal * taxrate

puts "Tax on $#{subtotal} is $#{tax}, so grand total is $#{subtotal+tax}"

Obviously, this program would be more useful if it could perform calculations

on a variety of subtotals rather than calculating the same value time after time!

Here is a simple version of a Calculator that prompts the user to enter a subtotal:

taxrate = 0.175

print "Enter price (ex tax): "

s = gets

subtotal = s.to_f

tax = subtotal * taxrate

puts " Tax on $#{subtotal} is $#{tax}, so grand total is $#{subtotal+tax}"

THE BOOK OF RUBY

4

Here s.to_f is a method of the String class. It attempts to convert the string to a

ÍÓÖÈÛÐÕÎɯ×ÖÐÕÛɯÕÜÔÉÌÙȭɯ%ÖÙɯÌßÈÔ×ÓÌȮɯÛÏÌɯÚÛÙÐÕÎɯɁƕƘƙȭƘƙɂɯÞÖÜÓËɯÉÌɯÊÖÕÝÌÙÛÌËɯÛÖɯ

the floating point number, 145.45. If the string cannot be converted, 0.0 is re-

turned. So, for instance, òHello worldó.to_f would return 0.0.

Comments...

Many of the source code examples that comes with this book are

documented with comments which are ignored by the Ruby inter-

×ÙÌÛÌÙȭɯ ɯÊÖÔÔÌÕÛɯÔÈàɯÉÌɯ×ÓÈÊÌËɯÈÍÛÌÙɯÛÏÌɯ×ÖÜÕËɯȹÖÙɯȿÏÈÚÏɀȺɯÊÏÈÙÈc-

ter, # . The text on a line following this cha racter is all treated as a

comment:

this is a comment

puts("hello") # this is also a comment

If you wish to comment out multiple lines of text you can place

=begin at the start and =end at the end (both =begin and =end must be

flush with the left mar gin):

=begin

 This is a

 multiline

 comment

=end

TESTING A CONDITION : IF é THEN

The problem with the simple tax calculator code shown above is that it accepts

minus subtotals and calculates minus tax on them ɬ a situation upon which the

Government is unlikely to look favourably! I therefore need to check for minus

figures and, when found, set them to zero. This is my new version of the code:

CHAPTER ONE

5

5taxcalculator.rb

taxrate = 0.175

print "Enter price (ex tax): "

s = gets

subtotal = s.to_f

if (subtotal < 0.0) then

 subtotal = 0.0

end

tax = subtotal * taxrate

puts "Tax on $#{subtotal} i s $#{tax}, so grand total is $#{subtotal+tax}"

The Ruby if test is similar to an if test in other programming language s. Note,

however, that the brackets are once again optional, as is the keyword then .

However, if you were to write the following, with no line break after the test

condition, the then would be obligatory:

if (subtotal < 0.0) then subtotal = 0.0 end

Putting everything on one line like this adds nothing to the clarity of the code,

which is why I prefer to avoid it. My long familiarity with Pascal instinctively

makes me want to add a then after the if condition but, as this really is not

required, you may look upon this as a wilful eccentricity of mine. The end

keyword that terminates the if block is not optional. Forget to add it and your

code will not run.

LOCAL AND GLOBAL VARIABLES

In the previous example, I assigned values to variables such as subtotal , tax and

taxrate . Variables such as these which begin with a lowercase character are local

variables. This means that they only exist within a specific part of a program ɬ in

other words, they are restricted to a well -defined scope. Here is an example:

THE BOOK OF RUBY

6

variables.rb

localvar = "hello"

$globalvar = "goodbye"

def amethod

 localvar = 10

 puts(localvar)

 puts($globalvar)

end

def anotherMethod

 localvar = 500

 $globalvar = "bonjour"

 puts(localvar)

 puts($globalvar)

end

Here there are three local variables called localvar . One is assigned the value,

ɁÏÌÓÓÖɯÞÖÙÓËɂɯÞÐÛÏÐÕɯÛÏÌɯȿÔÈÐÕɯÚÊÖ×ÌɀɯÖÍɯÛÏÌɯ×ÙÖÎÙÈÔȰɯÛÞÖɯÖÛÏÌÙÚɯÈÙÌɯÈÚÚÐÎÕÌËɯ

integers within the scope of two separate methods: since each local variable has a

different scope, the assignments have no affect on the other local variables with

the same name in different scopes. You can verify this by calling the methods in

turn:

amethod #=> localvar = 10

anotherMethod #=> localvar = 500

amethod #=> localvar = 10

puts(localvar) #=> localvar = òhelloó

On the other hand, a global variable ɬ one that begins with the dol lar $ character

- has global scope. When an assignment is made to a global variable inside a

method, that affects the value of that variable elsewhere in the program too:

amethod # => $globalvar = ògoodbyeó

anotherMethod # => $globalvar = òbonjouró

amethod # => $globalvar = òbonjouró

puts($globalvar) #=> $globalvar = òbonjouró

CHAPTER ONE

7

CLASSES AND OBJECTS

Instead of going through all the rest of 1ÜÉàɀÚɯÚàÕÛÈßɯ- its types, loops, modules

ÈÕËɯÚÖɯÖÕɯȹÉÜÛɯÍÌÈÙɯÕÖÛȮɯÞÌɀÓÓɯÊÖÔÌɯÉÈÊÒɯÛÖɯÛÏÖÚÌɯÚÖÖÕȺɯ- ÓÌÛɀÚɯmove rapidly on to

take a look at how to create classes and objects.

Classes, Objects and Methods

A ȿÊÓÈÚÚɀɯÐÚɯÛÏÌɯÉÓÜÌ×ÙÐÕÛɯÍÖÙɯÈÕɯÖÉÑÌÊÛȭɯ(ÛɯËÌÍÐnes the data an object

contains and the way it behaves. Many different objects can be cre-

ated from a single class. So you might have one Cat class but three cat

objects: tiddles, cuddles and flossy. A method is like a function or su b-

routine that is defined inside the class.

(ÛɯÔÈàɯÚÌÌÔɯÕÖɯÉÐÎɯËÌÈÓɯÛÖɯÚÈàɯÛÏÈÛɯ1ÜÉàɯÐÚɯÖÉÑÌÊÛɯÖÙÐÌÕÛÌËȭɯ ÙÌÕɀÛɯÈÓÓɯÓÈÕÎÜÈÎÌÚȮɯ

these days? Well, up to a point. Most modern ȿÖÉÑÌÊÛɯÖÙÐÌÕÛÌËɀɯlanguages (Java,

C++, C#, Object Pascal and so on) have a greater or lesser degree of OOP features.

Ruby, on the other hand, is obsessively object oriented. In fact, unless you have

programmed in Smalltalk or Eiffel (languages which are even more obsessive

than Ruby about objects), it is likely to be the most object oriented language you

have ever used. Every chunk of data ɬ from simple things like numbers and

strings to complicated things like files and modules ɬ is treated as an object. And

ÈÓÔÖÚÛɯÌÝÌÙàÛÏÐÕÎɯàÖÜɯËÖɯÞÐÛÏɯÈÕɯÖÉÑÌÊÛɯÐÚɯËÖÕÌɯÉàɯÈɯÔÌÛÏÖËȭɯ$ÝÌÕɯȿÖ×ÌÙÈÛÖÙÚɀɯ

such as plus + and minus ð are methods. Consider the following:

x = 1 + 2

Here + is a method of the Fixnum (Integer) object, 1. The value 2 is sent to this

method; the result, 3, is returned and this is assigned to the object, x . Inciden-

tally, the operator, =ȮɯÐÚɯÖÕÌɯÖÍɯÛÏÌɯÙÈÙÌɯÌßÊÌ×ÛÐÖÕÚɯÛÖɯÛÏÌɯÙÜÓÌɯÛÏÈÛɯɁÌÝÌÙàÛÏÐÕÎɯàÖÜɯ
ËÖɯÞÐÛÏɯÈÕɯÖÉÑÌÊÛɯÐÚɯËÖÕÌɯÉàɯÈɯÔÌÛÏÖËɂȭɯ3ÏÌɯÈÚÚÐÎnment operator is a special

built -in ȿthingummy ɀ (this is not the formal termino logy, I hasten to add) and it is

not a method of anything.

-ÖÞɯÓÌÛɀÚɯÚÌÌɯÏÖÞɯÛÖɯÊÙÌÈÛÌɯÖÉÑÌÊÛÚɯÖÍɯÖÜÙɯÖÞÕȭɯ ÚɯÐÕɯÔÖÚÛɯÖÛÏÌÙɯ../ɯÓÈÕÎÜÈÎÌÚȮɯ

a Ruby object is defined by a class. The class is like a blueprint from which

individual objects are constructed. For example, this class defines a dog:

THE BOOK OF RUBY

8

class Dog

 def set_name(aName)

 @myname = aName

 end

end

Note that the class definition begins with the keyword class (all lower case) and

the name of the class itself, which must begin with an uppercase letter. The class

contains a method set_name . This takes an incoming argument, aName. The

body of the method assigns the value of aName to a variable called @myname.

INSTANCE VARIABLES

Variables beginning with the @ ÊÏÈÙÈÊÛÌÙɯÈÙÌɯȿÐÕÚÛÈÕÊÌɯÝÈÙÐÈÉÓÌÚɀɯɬ that means

that they belong to individuals objects ɬ ÖÙɯȿÐÕÚÛÈÕÊÌÚɀɯÖÍɯÛÏÌɯÊÓÈÚÚȭɯ(ÛɯÐÚɯÕÖÛɯ

necessary to pre-declare instance variables. I can create instances of the Dog class

ȹÛÏÈÛɯÐÚȮɯȿËÖÎɯÖÉÑÌÊÛÚɀȺɯby calling the new method. Here I am creating two dog

objects (note that while class names begin uppercase letters, object names begin

with lowercase letters):

mydog = Dog.new

yourdog = Dog.new

At the moment, these two dogs have no names. So the next thing I do is call the

set_name method to give them names:

mydog.set_name('Fido')

yourdog.set_name('Bonzo')

Having given each dog a name, I need to have some way to find out its name

ÓÈÛÌÙɯÖÕȭɯ'ÖÞɯÚÏÈÓÓɯ(ɯËÖɯÛÏÐÚȳɯ(ɯÊÈÕɀÛɯ×ÖÒÌɯÈÉÖÜÛɯÐÕÚÐËÌɯÈÕɯÖÉÑÌÊÛɯÛÖɯÎÌÛɯÈÛɯÛÏÌɯ

@name variable, since the internal details of each object are known only to the

object itself. This ÐÚɯÈɯÍÜÕËÈÔÌÕÛÈÓɯ×ÙÐÕÊÐ×ÓÌɯÖÍɯȿ×ÜÙÌɀɯÖÉÑÌÊÛɯÖÙÐÌÕÛÈÛÐÖÕȯɯÛÏÌɯdata

inside each object is private. There are precisely defined ways into each object

(for example, the method set_name) and precisely defined ways out. Only the

object itself can mess around with its internal state. The outside world cannot.

This is called ȿËÈÛÈɯÏÐËÐÕÎɀɯand it is part of the principle of ȿÌÕÊÈ×ÚÜÓÈÛÐÖÕɀȭ

CHAPTER ONE

9

Encapsulation

In Ruby, encapsulation is not quite as rigorously enforced as it in i-

tially appears. There are some very dirty tricks that you can do to

mess around inside an object. For the sake of clarity (and to make

sure you, and I, ËÖÕɀÛɯÏÈÝÌɯÕÐÎÏÛÔÈÙÌÚȺȮɯÞÌɯÚÏÈÓÓȮɯÍÖÙɯÕÖÞȮɯÚÐÓÌÕÛÓàɯ

pass over these features of the language.

Since ÞÌɯÕÌÌËɯÌÈÊÏɯËÖÎɯÛÖɯÒÕÖÞɯÐÛÚɯÖÞÕɯÕÈÔÌȮɯÓÌÛɀÚɯprovide the Dog class with a

get_name method:

def get_name

 return @myname

end

The return keyword here is optional. When it is omitted, Ruby methods will

return the last expression evaluated.

For the sake of clarity (and to avoid unexpected results from methods of more

complexity than this one!) I shall make a habit of explicitly returning any values

which I plan to use.

%ÐÕÈÓÓàȮɯÓÌÛɀÚ give the dog some behaviour by asking it to talk. Here is the fi n-

ished class definition:

class Dog

 def set_name(aName)

 @myname = aName

 end

 def get_name

 return @myname

 end

 def talk

 return 'woof!'

 end

end

THE BOOK OF RUBY

10

Now, we can create a dog, name it, display its name and ask it to talk like this:

mydog = Dog.new

mydog.set_name('Fido')

puts(mydog.get_name)

puts(mydog.talk)

6dogs.rb

(ɀÝÌɯÞÙÐÛÛÌÕɯÈÕɯÌß×ÈÕËÌËɯÝÌÙÚÐÖÕɯÖÍɯÛÏÐÚɯÊÖËÌɯÐÕɯÛÏÌɯ6dogs.rb program. This also

contains a Cat class which is similar to the Dog class apart from the fact that its

talk method, naturally enough, returns a miaow instead of a woof.

Oops! It seems that this program contains an error.

The object named someotherdog never has a value assigned to its

@name ÝÈÙÐÈÉÓÌȭɯ%ÖÙÛÜÕÈÛÌÓàȮɯ1ÜÉàɯËÖÌÚÕɀÛɯÉÓÖÞɯÜ×ɯÞÏÌÕɯÞÌɯÛÙàɯÛÖɯ
ËÐÚ×ÓÈàɯÛÏÐÚɯËÖÎɀÚɯÕÈÔÌȭɯ(ÕÚÛÌÈËɯÐÛɯÑÜÚÛɯ×ÙÐÕÛÚɯȿnilɀȭɯ6ÌɀÓÓɯÚÏÖÙÛÓàɯÓÖÖÒɯ

ÈÛɯÈɯÚÐÔ×ÓÌɯÞÈàɯÖÍɯÔÈÒÐÕÎɯÚÜÙÌɯÛÏÈÛɯÌÙÙÖÙÚɯÓÐÒÌɯÛÏÐÚɯËÖÕɀÛɯÏÈ××ÌÕɯ

ÈÎÈÐÕȱ

MESSAGES, METHODS AND POLYMORPHISM

This example, incidentally, is based on a classic Smalltalk demo program which

ÐÓÓÜÚÛÙÈÛÌÚɯÏÖÞɯÛÏÌɯÚÈÔÌɯȿÔÌÚÚÈÎÌɀɯȹÚÜÊÏɯÈÚɯtalk) can be sent to different objects

(such as cats and dogs), and each different object responds differently to the

same message with its own special method (here the talk method). The ability to

have different classes containing methods with the same name goes by the fancy

Object Orientated name of ȿpolymorphism ɀ ɬ a term which, once remembered,

ÊÈÕɯÚÈÍÌÓàɯÉÌɯÍÖÙÎÖÛÛÌÕȱ

When you run a program such as 6dogs.rb, the code is executed in sequence. The

code of the classes themselves is not executed until instances of those classes (i.e.

objects) are created by the code at the bottom of the program . You will see that I

ÍÙÌØÜÌÕÛÓàɯÔÐßɯÊÓÈÚÚɯËÌÍÐÕÐÛÐÖÕÚɯÞÐÛÏɯȿÍÙÌÌɯÚÛÈÕËÐÕÎɀɯbits of code which executes

when the program is run. This may not be the way you would want to write a

major appliÊÈÛÐÖÕɯÉÜÛɯÍÖÙɯÑÜÚÛɯȿÛÙàÐÕÎɯÛÏÐÕÎÚɯÖÜÛɀɯÐÛɯÐÚɯÌßÛÙÌÔÌÓàɯÊÖÕÝÌÕÐÌÕÛȭ

CHAPTER ONE

11

Free-standing Bits Of Code...?

If Ruby is really an Object Orientated language, you may think it odd

that we caÕɯÌÕÛÌÙɯȿÍÙÌÌɯÍÓÖÈÛÐÕÎɀɯÔÌÛÏÖËÚ. In fact, it turns out that

when you run a program, Ruby creates a main object and any code

that appears inside a code unit is, in spite of ap×ÌÈÙÈÕÊÌÚȮɯÕÖÛɯȿÍÙÌÌɯ

ÍÓÖÈÛÐÕÎɀɯÈÛɯÈÓÓȰɯÐÛɯÐÚȮɯÐÕɯÍÈÊÛȮɯrunning inside the main object. You can

easily verify this. Create a new source file, add the code below then

run it to view the output:

 puts self

 puts self.class

One obvious defect of my program is that the two classes, Cat and Dog, are

highly repetitious. It would make more sense to have one class, Animal, which

has get_name and set_name methods and two descendent classes, Cat and Dog,

which contain only the behaviour ɬ woofing or miaowing ɬ specific to that

Ú×ÌÊÐÌÚɯÖÍɯÈÕÐÔÈÓȭɯ6ÌɀÓÓɯÉÌɯÍÐÕËÐÕÎɯÖÜÛɯÏÖÞɯÛÖɯËÖɯÛÏÐÚɯÐÕɯÛÏÌɯÕÌßÛɯÊÏÈ×ÛÌÙȭ

CONSTRUCTORS ð NEW AND INITIALIZE

%ÖÙɯÕÖÞȮɯÓÌÛɀÚɯÛÈÒÌɯÈɯÓÖÖÒɯÈÛɯÈÕÖÛÏÌÙɯÌßÈÔ×ÓÌɯÖÍɯÈɯÜÚÌÙ-defined class. Load up

7treasure.rb. This is an adventure game in the making. It contains two classes,

Thing and Treasure. The Thing class is very similar to the Cat and Dog classes

from the last program ɬ È×ÈÙÛɯÍÙÖÔɯÛÏÌɯÍÈÊÛɯÛÏÈÛɯÐÛɯËÖÌÚÕɀÛɯÞÖÖÍɯÖÙɯÔÐÈÖÞȮɯthat is.

3ÏÌɯ3ÙÌÈÚÜÙÌɯÊÓÈÚÚɯÏÈÚÕɀÛɯÎÖÛɯget_name and set_name methods. Instead, it

contains a method named initiali ze which takes two arguments whose values are

assigned to the @name and @description variables:

7treasure.rb

def initialize(aName, aDescription)

 @name = aName

 @description = aDescription

end

THE BOOK OF RUBY

12

When a class contains a method named initialize this will be automatically called

when an object is created using the new method. It is a good idea to use an

initialize ÔÌÛÏÖËɯÛÖɯÚÌÛɯÛÏÌɯÝÈÓÜÌÚɯÖÍɯÈÕɯÖÉÑÌÊÛɀÚɯÐÕÚÛÈÕÊÌɯÝÈÙÐÈÉÓÌÚȭɯ

This has two clear benefits over setting each instance variable using methods

such set_name . First of all, a complex class may contain numerous instance

variables and you can set the values of all of them with the single initialize

ÔÌÛÏÖËɯÙÈÛÏÌÙɯÛÏÈÕɯÞÐÛÏɯÔÈÕàɯÚÌ×ÈÙÈÛÌɯȿÚÌÛɀɯÔÌÛÏÖËÚȰɯÚÌÊÖÕËÓàȮɯÐÍɯÛÏÌɯÝÈÙÐÈÉÓÌÚɯ

are all automatically initialised at the time of object creation, you will never end

Ü×ɯÞÐÛÏɯÈÕɯȿÌÔ×ÛàɀɯÝÈÙÐÈÉÓÌɯȹÓÐÒÌɯÛÏÌɯnil value returned when we tried to display

the name of someotherdog in the previous program).

Finally, I have created a method called to_ s which is intended to return a string

representation of a Treasure object. The method name, to_s , is not arbitrary. The

same method name is used throughout the standard Ruby object hierarchy.

In fact, the to_s method is defined for the Object class itself which is the ultimate

ancestor of all other classes in Ruby. By redefining the to_s method, I have

added new behaviour which is more appropriate to the Treasure class than the

ËÌÍÈÜÓÛɯÔÌÛÏÖËȭɯ(ÕɯÖÛÏÌÙɯÞÖÙËÚȮɯ(ɯÏÈÝÌɯȿÖÝÌÙÙÐËËÌÕɀɯÐÛÚɯto_s method.

The new ÔÌÛÏÖËɯÊÙÌÈÛÌÚɯÈÕɯÖÉÑÌÊÛɯÚÖɯÐÛɯÊÈÕɯÉÌɯÛÏÖÜÎÏÛɯÖÍɯÈÚɯÛÏÌɯÖÉÑÌÊÛɀÚɯȿÊÖÕÚÛÙÜc-

ÛÖÙɀȭɯ'ÖÞÌÝÌÙȮɯàÖÜɯÚÏÖÜÓËɯÕÖÛɯÕÖÙÔÈÓÓàɯÐÔ×ÓÌÔÌÕÛɯàÖÜÙɯÖÞÕɯÝÌÙÚÐÖÕɯÖÍɯÛÏÌɯnew

method (this is possible but it is generally not advisable). Instead, when you

ÞÈÕÛɯÛÖɯ×ÌÙÍÖÙÔɯÈÕàɯȿÚÌÛÜ×ɀɯÈÊÛÐÖÕÚɯɬ ÚÜÊÏɯÈÚɯÈÚÚÐÎÕÐÕÎɯÝÈÓÜÌÚɯÛÖɯÈÕɯÖÉÑÌÊÛɀÚɯ

internal variables - you should do so in a method named initialize . Ruby ex-

ecutes the initialize method immediate ly after a new object is created.

Garbage Collection

In many languages such as C++ and Delphi for Win32, it is the pro-

ÎÙÈÔÔÌÙɀÚɯÙÌÚ×ÖÕÚÐÉÐÓÐÛàɯÛÖɯËÌÚÛÙÖàɯÈÕàɯÖÉÑÌÊÛɯÛÏÈÛɯÏÈÚɯÉÌÌÕɯÊÙÌÈÛÌËɯ

when it is no longer required. In other words, objects are given de-

structors as well as constructorsȭɯ(Õɯ1ÜÉàȮɯàÖÜɯËÖÕɀÛɯÏÈÝÌɯÛÖɯËÖɯÛÏÐÚɯ

since Ruby has a built-ÐÕɯȿÎÈÙÉÈÎÌɯÊÖÓÓÌÊÛÖÙɀɯÞÏÐÊÏɯÈÜÛÖÔÈÛÐÊÈÓÓàɯËe-

stroys objects and reclaims the memory they used when they are no

longer referenced in your program.

CHAPTER ONE

13

INSPECTING OBJECTS

(ÕÊÐËÌÕÛÈÓÓàȮɯÕÖÛÐÊÌɯÛÖÖɯÛÏÈÛɯ(ɯÏÈÝÌɯȿÓÖÖÒÌËɯÐÕÚÐËÌɀɯÛÏÌɯ3ÙÌÈÚÜÙÌɯÖÉÑÌÊÛȮɯt1, using

the inspect method:

t1.inspect

The inspect method is defined for all Ruby objects. It r eturns a string containing

a human-readable representation of the object. In the present case, it displays

something like this:

#<Treasure:0x28962f8 @description="an Elvish weapon forged of gold",

@name="Sword">

This begins with the class name, Treasure; the name is followed by a number,

which may be different from the number shown above ɬ ÛÏÐÚɯÐÚɯ1ÜÉàɀÚɯÐÕÛÌÙÕÈÓɯ

identification code for this particular object; then there are the names and values

ÖÍɯÛÏÌɯÖÉÑÌÊÛɀÚ variables.

Ruby also provides the p method as a shortcut to inspecting objects and printing

out their details, like this:

p.rb

p(anobject)

To see how to_s can be used with a variety of objects and to test how a Treasure

object would be converted to a string in the absence of an overridden to_s

method, try out the 8to_s.rb program.

8to_s.rb

puts(Class.to_s) #=> Class

puts(Object.to_s) #=> Object

puts(String.to_s) #=> String

puts(100.to_s) #=> 100

puts(Treasure.to_s) #=> Treasure

THE BOOK OF RUBY

14

As you will see, classes such as Class, Object, String and Treasure, simply return

their names when the to_s method is called. An object, such as the Treasure

object, t , returns its identifier ɬ which is the same identifier ret urned by the

inspect method:

t = Treasure.new("Sword", "A lovely Elvish weapon")

puts(t.to_s)

 #=> #<Treasure:0x3308100>

puts(t.inspect)

 #=> #<Treasure:0x3308100

 @name="Sword", @description="A lovely Elvish weapon">

While the 7treasure.rb program may lay the foundations for a game containing a

variety of different types of object, its code is still repetitive. After all, why have a

Thing class which contains a name and a Treasure class which also contains a

name? It would make more sense tÖɯÙÌÎÈÙËɯÈɯ3ÙÌÈÚÜÙÌɯÈÚɯÈɯȿtype ofɀɯ3ÏÐÕÎ. In a

complete game, other objects such as Rooms and Weapons might be yet other

ȿÛà×ÌÚɯÖÍɀɯ3ÏÐÕÎ. It is clearly time to start working on a proper class hierarchy.

3ÏÈÛɀÚɯÞÏÈÛɯÞÌɯÚÏÈÓÓɯËÖɯÐÕɯÛÏÌɯÕÌßÛɯchapterȱ

15

CHAPTER TWO

Class Hierarchies, Attributes and Class Variables

We ended the last lesson by creating two new classes: a Thing and a Treasure . In

spite of the fact that these two classes shared some features (notably both had a

ȿÕÈÔÌɀȺȮɯÛÏÌÙÌɯÞÈÚɯÕÖɯÊÖÕÕÌÊÛÐÖÕɯÉÌÛÞÌÌÕɯÛÏÌÔȭɯ

Now, these two classes are so trivial that ÛÏÐÚɯÛÐÕàɯÉÐÛɯÖÍɯÙÌ×ÌÛÐÛÐÖÕɯËÖÌÚÕɀÛɯÙÌÈÓÓàɯ

matter much. However, when you start writing real programs of some comple x-

ity, your classes will frequently contain numerous variables and methods; and

àÖÜɯÙÌÈÓÓàɯËÖÕɀÛɯÞÈÕÛɯÛÖɯÒÌÌ×ɯÙÌÊÖËÐÕÎɯÛÏÌɯÚÈÔÌɯthings over and over again.

It makes sense to create a class hierarchy in which one class may be ÈɯȿÚ×ÌÊÐÈÓɯ

Ûà×ÌɀɯÖÍɯÚÖÔÌɯÖÛÏÌÙɯȹȿÈÕÊÌÚÛÖÙɀȺɯclass, in which case it will automatically inherit

the features of its ancestor. In our simple adventure game, for instance, a Treas-

ure is a special type of Thing so the Treasure class should inherit the features of

the Thing class.

Class Hierarchies ɬ Ancestors and Descendants: In this book, I shall

ÖÍÛÌÕɯÛÈÓÒɯÈÉÖÜÛɯȿËÌÚÊÌÕËÈÕÛɀɯÊÓÈÚÚÌÚɯȿÐÕÏÌÙÐÛÐÕÎɀɯÍÌÈÛÜÙÌÚɯÍÙÖÔɯÛÏÌÐÙɯ

ȿÈÕÊÌÚÛÖÙɀɯÊÓÈÚÚÌÚȭɯ3ÏÌÚÌɯÛÌÙÔÚɯËÌÓÐÉÌÙÈÛÌÓàɯÚÜÎÎÌÚÛɯÈɯÒÐÕËɯÈɯÍÈÔÐÓàɯÙe-

ÓÈÛÐÖÕÚÏÐ×ɯÉÌÛÞÌÌÕɯȿÙÌÓÈÛÌËɀɯÊÓÈÚÚÌÚȭɯEach class in Ruby has only one

parent. It may, however, descend from a long and distinguished fa m-

ily tree with many generations of parents, grandparents, great-

ÎÙÈÕË×ÈÙÌÕÛÚɯÈÕËɯÚÖɯÖÕȱ

The behaviour of Things in general will be coded in the Thing class itself. The

Treasure class will automatically ȿÐÕÏÌÙÐÛɀɯÈÓÓɯÛÏÌɯÍÌÈÛÜÙÌÚɯÖÍɯÛÏÌɯ3ÏÐÕÎɯÊÓÈÚÚȮɯÚÖɯÞÌ

ÞÖÕɀÛɯÕÌed to code them all over again; it will then add some additional features,

specific to Treasures.

THE BOOK OF RUBY

16

As a general rule, when creating a class hierarchy, the classes with the most

generalised behaviour are higher up the hierarchy than classes with more

specialist behaviour. So a Thing class with just a name and a description, would

be the ancestor of a Treasure class which has a name, a description and, addi-

tionally, a value; the Thing class might also be the ancestor of some other special-

ist class such as a Room which has a name, a description and also exits ɬ and so

ÖÕȱ

One Parent, Many Children ...

This diagram shows a Thing class which has a name and a description

(in a Ruby program, these might be internal variables such as @name

and @description plus some methods to access them). The Treasure

and Room classes both descend from the Thing class so they auto-

ÔÈÛÐÊÈÓÓàɯȿÐÕÏÌÙÐÛɀɯÈɯname and a description. The Treasure class adds

one new item: value ɬ so it now has name, description and value; The

Room class adds exits ɬ so it has name, description and exits.

1adventure.rb

+ÌÛɀÚɯÚÌÌɯÏÖÞɯÛÖɯÊÙÌÈÛÌɯÈɯËÌÚÊÌÕËÈÕÛɯÊÓÈÚÚɯÐÕɯ1ÜÉàȭɯ+ÖÈËɯÜ×ɯÛÏÌɯ1adventure.rb

program. This starts simply enough with the definition of a Thing class which

has two instance variables, @name and @description . These variables are

assigned values in the initialize method when a new Thing object is created.

CHAPTER TWO

17

Instance variables generally cannot (and should not) be directly accessed from

the world outside the class itself due the principle of encapsulation as explained

in the last lesson. In order to obtain the value of each variable we need a get

accessor method such as get_name ; in order to assign a new value we need a set

accessor method such as set_name .

SUPERCLASSES AND SUBCLASSES

Now look at the Treasure class. Notice how this is declared:

class Treasure < Thing

The angle bracket, < ,ÐÕËÐÊÈÛÌÚɯÛÏÈÛɯ3ÙÌÈÚÜÙÌɯÐÚɯÈɯȿÚÜÉÊÓÈÚÚɀȮɯÖÙɯËÌÚÊÌÕËÈÕÛȮɯÖÍɯ

Thing and therefore it inherits the data (variables) and behaviour (methods) from

the Thing class. Since the methods get_name , set_name , get_description and

set_description alÙÌÈËàɯÌßÐÚÛɯÐÕɯÛÏÌɯÈÕÊÌÚÛÖÙɯÊÓÈÚÚɯȹ3ÏÐÕÎȺɯÛÏÌÚÌɯËÖÕɀÛɯÕÌÌËɯÛÖɯÉÌɯ

re-coded in the descendant class (Treasure).

The Treasure class has one additional piece of data, its value (@value) and I have

written get and set accessors for this. When a new Treasure object is created, its

initialize method is automatically called. A Treasure has three variables to

initialize (@name, @description and @value), so its initialize method takes three

arguments. The first two argument s are passed, using the super keyword, to the

initialize ÔÌÛÏÖËɯÖÍɯÛÏÌɯÚÜ×ÌÙÊÓÈÚÚɯȹ3ÏÐÕÎȺɯÚÖɯÛÏÈÛɯÛÏÌɯ3ÏÐÕÎɯÊÓÈÚÚɀÚɯinitialize

method can deal with them:

super(aName, aDescription)

When used inside a method, the super keyword calls a method with the same

name as the current method ÐÕɯÛÏÌɯÈÕÊÌÚÛÖÙɯÖÙɯȿÚÜ×ÌÙɀɯÊÓÈÚÚȭɯ(ÍɯÛÏÌɯsuper keyword

is used on its own, without any arguments being specified, all the arguments

sent to the current method are passed to the ancestor method. If, as in the present

case, a specific list of arguments (here aName and aDescription) is supplied then

only these are passed to the method of the ancestor class.

THE BOOK OF RUBY

18

PASSING ARGUMENTS TO THE SUPERCLASS

Brackets matter when calling the superclass! If the argument list is empty and no

brackets are used, all arguments are passed to the superclass. But if the argument

list is empty and brackets are used, no arguments are passed to the superclass:

super_args.rb

This passes a, b, c to the supe r class

def initialize(a, b, c, d, e, f)

 super(a, b, c)

end

This passes a, b, c to the supe r class

def initialize(a, b, c)

 super

end

This passes no arguments to the superclass

def initialize(a, b, c)

 super()

end

To gain a better understanding of the use of super see the Digging

Deeper section at the end of this chapter

ACCESSOR METHODS

While the classes in this would -be adventure game work well enough, they are

still fairly verbose due to all those get and set accesÚÖÙÚȭɯ+ÌÛɀÚɯÚÌÌɯÞÏÈÛɯÞÌɯÊÈÕɯËÖɯ

to remedy this.

Instead of accessing the value of the @description instance variable with two

different methods, get_description and set_description ȮɯÓÐÒÌɯÛÏÐÚȱ

puts(t1.get _description)

t1.set_description(òSome descriptionó)

CHAPTER TWO

19

ȱÐÛɯÞÖÜÓËɯÉÌɯÚÖɯÔÜÊÏɯÕÐÊÌÙɯÛÖɯÙÌÛÙÐÌÝÌɯÈÕËɯÈÚÚÐÎÕɯÝÈÓÜÌÚɯÑÜÚÛɯÈÚɯàÖÜɯÞÖÜÓËɯ

retrieve and assign values to and from a simple variable, like this:

puts(t1.description)

t1.description = òSome descriptionó

In order to be able to do this, we need to modify the Treasure class definition.

One way of accomplishing this would be to rewrite the accessor methods for

@description as follows:

def description

 return @description

end

def description=(aDescription)

 @description = aDescription

end

accessors1.rb

I have added accessors similar to the above in the accessors1.rb program. Here,

the get accessor is called description and the set accessor is called description=

(that is, it appends an equals sign (=) to the method name used by the corre-

sponding get accessor). It is now possible to assign a new string like this:

t.description = "a bit faded and worn around the edges"

And you can retrieve the value like this:

puts(t.description)

ôSETõ ACCESSORS

When you write a set accessor in this way, you must append the = character to

the method name, not merely place it somewhere between the method name and

the arguments.

THE BOOK OF RUBY

20

So this is correct:

def name=(aName)

But this is an error:

def name = (aName)

ATTRIBUTE READERS AND W RITERS

In fact, there is a simpler and shorter way of achieving the same result. All you

have to do is use two special methods, attr_reader and attr_wr iter , followed

by a symbol like this:

attr_reader :description

attr_writer :description

You should add this code inside your class definition like this:

class Thing

 attr_reader :description

 attr_writer :description

 # maybe some more methods hereé

end

Calling attr_reader with a symbol has the effect of creating a get accessor (here

named description) for an instance variable (@description) with a name match-

ing the symbol (:description).

Calling attr_writer simil arly creates a set accessor for an instance variable.

Instance variables are considered to be ÛÏÌɯȿÈÛÛÙÐÉÜÛÌÚɀɯÖÍɯÈÕɯÖÉÑÌÊÛȮɯÞÏÐÊÏɯÐÚɯÞÏàɯ

the attr_reader and attr_writer methods are so named.

CHAPTER TWO

21

Symbols

In Ruby, a symbol is a name preceded by a colon (for example,

:description). The Symbol class is defined in the Ruby class library to

represent names inside the Ruby interpreter. When you pass one or

more symbols as arguments to attr_reader (which is a method of

the Module class), Ruby creates an instance variable and a get acces-

sor method. This accessor method return s the value of the corre-

sponding variable; both the instance variable and the accessor

method will take the name that was specified by the symbol. So,

attr_r eader(:description) creates an instance variable with the

name, @description , and an accessor method named description() .

accessors2.rb

The accessors2.rb program contains some working examples of attribute readers

and writers in action. The Thing class explicitly defines a get method accessor for

the @name attribute. The advantage of writing a complete method like this is

that it gives you the opportunity to do some extra processing rather than simply

reading and writin g an attribute value. Here the get accessor uses the

String.capitalize method to return the string value of @name with its initial

letter in uppercase:

def name

 return @name. capitalize

end

When assigning a value to the @name attribute, I ËÖÕɀÛɯÕÌÌËɯÛÖɯËÖɯÈÕàɯÚ×ÌÊÐÈÓɯ

processing so I have given it an attribute writer:

attr_writer :name

The @description attribute needs no special processing so I use attr_reader

and attr_writer to get and set the value of the @description variable:

attr_re ader :description

attr_writer :description

THE BOOK OF RUBY

22

Attributes or Properties?

#ÖÕɀÛɯÉÌɯÊÖÕÍÜÚÌËɯÉàɯÛÏÌɯÛÌÙÔÐÕÖÓÖÎàȭɯ(Õɯ1ÜÉàȮɯÈÕɯȿÈÛÛÙÐÉÜÛÌɀɯÐÚɯÛÏÌɯ

equivalent of what many programming ÓÈÕÎÜÈÎÌÚɯÊÈÓÓɯÈɯȿ×ÙÖ×ÌÙÛàɀȭ

When you want both to read and to write a variable, the attr_accessor method

provides a shorter alternative to using both attr_reader and attr_writer . I

have made use of this to access the value attribute in the Treasure class:

attr_accessor :value

This is equivalent to:

attr_reader :value

attr_writer :value

Earlier I said that calling attr_reader with a symbol actually creates a variable

with the same name as the symbol. The attr_accessor method also does this.

In the code for the Thing class, this behaviour is not obvious since the class has

an initialize method which explicitly creates the variables. The Treasure class,

however, makes no reference to the @value variable in its initia lize method. The

only indication that @value exists at all is this accessor definition:

attr_accessor :value

My code down at the bottom of this source file sets the value of each Treasure

object as a separate operation, following the creation of the object itself:

t1.value = 800

Even though it has never been formally declared, the @value variable really does

exist, and we are able to retrieve its numerical value using the get accessor:

t1.value

CHAPTER TWO

23

To be absolutely certain that the attribute accessor really has created @value, you

can always look inside the object using the inspect method. I have done so in the

final two code lines in this program:

puts "This is treasure1: #{t1.inspect}"

puts "This is treasure2: #{t2.inspect}"

accessors3.rb

Attribute accessors can initialize more than one attribute at a time if you send

them a list of symbols in the form of arguments separated by commas, like this:

attr_reader :name, :description

attr_writer(:name, :description)

attr_accessor(:value, :id, :owner)

As always, in Ruby, brackets around the arguments are optional but, in my view

(for reasons of clarity), are to be preferred.

2adventure.rb

-ÖÞɯÓÌÛɀÚɯÚÌÌɯÏÖÞɯÛÖɯ×ÜÛɯÈÛÛÙÐÉÜÛÌɯÙÌÈËÌÙÚɯÈÕËɯÞÙÐÛÌÙÚɯÛÖɯÜÚÌɯÐÕɯÔàɯÈËÝÌÕÛÜÙÌɯ

game. Load up the 2adventure.rb program. You will see that I have created two

readable attributes in the Thing class: name and description . I have also made

description writeableȰɯÏÖÞÌÝÌÙȮɯÈÚɯ(ɯËÖÕɀÛɯ×ÓÈÕɯÛÖɯÊÏÈÕÎÌɯÛÏÌɯÕÈÔÌÚɯÖÍɯÈÕàɯ3ÏÐÕÎɯ

objects, the name attribute is not writeable:

attr_reader(:name, :description)

attr_writer(:description)

I have created a method called to_s which returns a string de scribing the Treas-

ure object. Recall that all Ruby classes have a to_s method as standard. The

Thing.to_s method overrides (and so replaces) the default one. You can override

existing methods when you want to implement new behaviour appropriate to

the specific class type.

THE BOOK OF RUBY

24

CALLING METHODS OF A SUPERCLASS

I have decided that my game will have two classes descending from Thing. The

Treasure class adds a value attribute which can be both read and written. Note

that its initialize method calls its superclass in order to initialize the name and

description attributes before initializing the new @value variable:

super(aName, aDescription)

@value = aValue

Here, if I had omitted the call to the superclass, the name and description

attributes would never be initialized. This is because Treasure.initialize over-

rides Thing.initialize ; so when a Treasure object is created, the code in

Thing.initialize will not automatically be executed.

On the other hand, the Room class, which also descends from Thing, currently

has no initialize method; so when a new Room object is created Ruby goes

scrambling back up the class hierarchy in search of one. The first initialize

ÔÌÛÏÖËɯÐÛɯÍÐÕËÚɯÐÚɯÐÕɯ3ÏÐÕÎȰɯÚÖɯÈɯ1ÖÖÔɯÖÉÑÌÊÛɀÚɯname and description attribu tes

are initialised there.

CLASS VARIABLES

There are a few other interesting things going on in this program. Right at the

top of the Thing class you will see this:

@@num_things = 0

The two @ characters at the start of this variable name, @@num_things, define

this ÛÖɯÉÌɯÈɯȿÊÓÈÚÚɯÝÈÙÐÈÉÓÌɀȭɯ3ÏÌɯÝÈÙÐÈÉÓÌÚɯÞÌɀÝÌɯÜÚÌËɯÐÕÚÐËÌɯÊÓÈÚÚÌÚɯÜ×ɯÛÖɯÕÖÞɯ

have been instance variables, preceded by a single @, like @name. Whereas each

ÕÌÞɯÖÉÑÌÊÛɯȹÖÙɯȿÐÕÚÛÈÕÊÌɀȺɯÖÍɯÈɯÊÓÈÚÚɯÈÚÚÐÎÕÚɯÐÛÚɯÖÞÕɯÝÈÓÜÌÚɯÛÖɯÐÛÚɯÖÞÕɯÐÕÚÛÈÕÊÌɯ

variables, all objects derived from a specific class share the same class variables. I

have assigned 0 to the @@num_things variable to ensure that it has a meaning-

ful value at the outset.

CHAPTER TWO

25

Here, the @@num_things class variable is used to keep a running total of the

number of Thing objects in the game. It does this simply by incrementing the

class variable (by adding 1 to it: += 1) in its initialize method every time a new

object is created:

@@num_things +=1

If you look lower down in my code, you will see that I have created a Map class

to contain an array of rooms. This includes a version of the to_s method which

×ÙÐÕÛÚɯÐÕÍÖÙÔÈÛÐÖÕɯÖÕɯÌÈÊÏɯÙÖÖÔɯÐÕɯÛÏÌɯÈÙÙÈàȭɯ#ÖÕɀÛɯÞÖÙÙàɯÈÉÖÜÛɯÛÏÌɯÐÔ×ÓÌÔÌn-

tation of the Map class; ÞÌɀÓÓɯÉÌɯÓÖÖÒÐÕÎɯÈÛɯÈÙÙÈàÚɯÈÕËɯÛÏÌÐÙ methods in a later

chapter.

Scroll to the code down at the bottom of the file and run the program in order to

see how I have created and initialised all the objects and used the class variable,

@@num_things, to keep a tally of all the Thing objects that have been created.

THE BOOK OF RUBY

26

Class Variables and Instance Variables

This diagram shows a Thing class (the rectangle) which contains a

class variable, @@num_things and an instance variable, @name. The

ÛÏÙÌÌɯÖÝÈÓɯÚÏÈ×ÌÚɯÙÌ×ÙÌÚÌÕÛɯȿ3ÏÐÕÎɯÖÉÑÌÊÛÚɀɯɬ ÛÏÈÛɯÐÚȮɯȿÐÕÚÛÈÕÊÌÚɀɯÖÍɯÛÏÌɯ

Thing class. When one of these objects assigns a value to its instance

variable, @name, that value only affects the @name variable in the

object itself ɬ so here, each object has a different value for @name. But

when an object assigns a value to the class variable, @@num_things,

ÛÏÈÛɯÝÈÓÜÌɯȿÓÐÝÌÚɯÐÕÚÐËÌɀɯÛÏÌɯ3ÏÐÕÎɯÊÓÈÚÚɯÈÕËɯÐÚɯȿÚÏÈÙÌËɀɯÉàɯÈÓÓɯÐÕÚÛÈÕÊÌÚɯ

of that class. Here @@num_things equals 3 and that is true for all the

Thing objects.

CHAPTER TWO

27

Digging Deeper

SUPERCLASSES

super.rb

To understand how the super keyword works, take a look at my sample pro-

gram, super.rb . This contains five related classes: the Thing class is the ancestor

of all the others; from Thing descends Thing2; from Thing2 descends Thing3,

then Thing4 and Thing5.

+ÌÛɀÚɯÛÈÒÌɯÈɯÊÓÖÚÌÙɯÓÖÖÒɯÈÛɯÛÏÌɯÍÐÙÚÛɯÛÏÙÌÌɯÊÓÈÚÚÌÚɯÐÕɯÛÏÐÚɯÏÐÌÙÈÙÊÏàȯɯÛÏÌɯ3ÏÐÕÎɯÊÓÈss

has two instance variables, @name and @description ; Thing2 also defines

@fulldescription (a string which contains @name and @description); Thing3

adds on yet another variable, @value.

These three classes each contain an initialize method which sets the values of the

variables when a new object is created; they also each have a method named,

rather inventively, aMethod , which changes the value of one or more variables.

The descendant classes, Thing2 and Thing3, both use the super keyword in their

methods.

Run super.rb in a command window. To test out the various bits of

ÊÖËÌȮɯÌÕÛÌÙɯÈɯÕÜÔÉÌÙȮɯƕɯÛÖɯƙȮɯÞÏÌÕɯ×ÙÖÔ×ÛÌËɯÖÙɯȿØɀɯÛÖɯØÜÐÛ.

1ÐÎÏÛɯËÖÞÕɯÈÛɯÛÏÌɯÉÖÛÛÖÔɯÖÍɯÛÏÐÚɯÊÖËÌɯÜÕÐÛȮɯ(ɀÝÌɯÞÙÐÛÛÌÕɯÈɯȿÔÈÐÕɀɯÓÖÖ×ɯwhich

executes when you run the ×ÙÖÎÙÈÔȭɯ#ÖÕɀÛɯÞÖÙÙàɯÈÉÖÜÛɯÛÏÌɯÚàÕÛÈßɯÖÍɯÛÏÐÚȰɯÞÌɀÓÓɯ

ÉÌɯÓÖÖÒÐÕÎɯÈÛɯÓÖÖ×ÚɯÐÕɯÈɯÍÜÛÜÙÌɯÓÌÚÚÖÕȭɯ(ɀÝÌɯÈËËÌËɯÛÏÐÚɯÓÖÖ×ɯÚÖɯÛÏÈÛɯàÖÜɯÊÈÕɯÌÈÚÐÓàɯ

run the different bits of code contained in the methods, test1 to test5 . When

you run this program for the first time, type the number 1 at the prompt and

press the Enter key. This will run the test1 method containing these two lines of

code:

t = Thing.new("A Thing", "a lovely thing full of thinginess")

t.aMethod("A New Thing")

The first line here creates and initializes a Thing object and the second line calls

its aMethod ÔÌÛÏÖËȭɯ ÚɯÛÏÌɯ3ÏÐÕÎɯÊÓÈÚÚɯËÖÌÚÕɀÛɯËÌÚÊÌÕËɯÍÙÖÔɯÈÕàÛÏÐÕÎɯÚ×ÌÊÐÈÓɯ

THE BOOK OF RUBY

28

(in fact, as with all Ruby classes, it descends from the Object class which is the

ultimate ancestor of all other classes) nothing very new or interesting happens

here. The output uses the inspect method to display the internal structure of the

object when the Thing.initialize and Thing.aMethod methods are called. The

inspect method can be used with all objects and is an invaluable debugging aid.

Here, it shows us a hexadecimal number which identifies this specific object

followed by the string values of the @name and @description variables.

Now, at the prompt, enter 2 to run test2 containing this code to create a Thing2

object, t2 , and call t2.aMethod :

t2 = Thing2.new("A Thing2", "a Thing2 thing of great beauty")

t2.aMethod("A New Thing2", "a new Thing2 description")

Look carefully at the output. You will see that even though t2 is a Thing2 object,

ÐÛɯÐÚɯÛÏÌɯ3ÏÐÕÎɯÊÓÈÚÚɀÚɯinitialize method that is called first. To understand why this

ÐÚɯÚÖȮɯÓÖÖÒɯÈÛɯÛÏÌɯÊÖËÌɯÖÍɯÛÏÌɯ3ÏÐÕÎƖɯÊÓÈÚÚɀÚɯinitialize method:

def initialize(aNam e, aDescription)

 super

 @fulldescription = "This is #{@name}, which is #{@description}"

 puts("Thing2.initialize: #{self.inspect} \ n\ n")

end

This uses the super keyword to call the initialize ÔÌÛÏÖËɯÖÍɯ3ÏÐÕÎƖɀÚɯÈÕÊÌÚÛÖÙɯÖÙɯ

ȿÚÜ×ÌÙÊÓÈÚÚɀȭɯ3ÏÌɯÚÜ×ÌÙÊÓÈÚÚɯÖÍɯ3ÏÐÕÎƖɯÐÚɯ3ÏÐÕÎɯÈÚɯàÖÜɯÊÈÕɯÚÌÌɯÍÙÖÔɯÐÛÚɯËÌÊÓÈÙa-

tion:

class Thing2 < Thing

In Ruby, when the super keyword is used on its own (that is, without any

arguments), it passes all the arguments from the current method (here

Thing2.initialize) to a method with the same name in its superclass (here

Thing.initialize). Alternatively, you can explicitly specify a list of arguments

following super. So, in the present case, the following code would have the same

effect:

super(aName, aDescription)

CHAPTER TWO

29

While it is permissible to use the super keyword all on its own, in my view it is

often preferable, for the sake of clarity, explicitly to specify the list of arguments

to be passed to the superclass. At any rate, if you want to pass only a limited

number of the arguments sent to the current method, an explicit argument list is

ÕÌÊÌÚÚÈÙàȭɯ3ÏÐÕÎƖɀÚɯaMethod , for example, only passes the aName argument to

the initialize method of its superclass, Thing1:

super(aNewName)

This explains why the @description variable is not changed when the method,

Thing2.aMethod , is called.

Now if you look at Thing3 you will see that this adds on one more variable,

@value. In its implementation of initialize it passes the two arguments, aName

and aDescription ÛÖɯÐÛÚɯÚÜ×ÌÙÊÓÈÚÚȮɯ3ÏÐÕÎƖȭɯ(ÕɯÐÛÚɯÛÜÙÕȮɯÈÚɯÞÌɀÝÌɯÈÓÙÌÈËàɯÚÌÌÕȮɯ

3ÏÐÕÎƖɀÚɯinitialize method passes these same arguments to the initial ize method

of its superclass, Thing.

With the program running, enter 3 at the prompt to view the output. This is the

code which executes this time:

t3 = Thing3.new("A Thing 3", "a Thing3 full of Thing and

 Thing2iness",500)

t3.aMethod("A New Thing3", "and a new Thing3 description",1000)

Note how the flow of execution goes right up the hierarchy so that code in the

initialize and aMethod methods of Thing execute before code in the matching

methods of Thing2 and Thing3.

It ÐÚɯÕÖÛɯÖÉÓÐÎÈÛÖÙàɯÛÖɯÈɯÖÝÌÙÙÐËÌɯÚÜ×ÌÙÊÓÈÚÚɀÚɯÔÌÛÏÖËÚɯÈÚɯI have done in the

examples so far. This is only required when you want to add some new behav-

iour. Thing4 omits the initialize method but implements the aMethod method.

Enter 4 at the prompt to execute the following code:

t4 = Thing4.new("A Thing4", "the nicest Thing4 you will ever see", 10)

t4.aMethod

THE BOOK OF RUBY

30

When you run it, notice that the first available initialize method is called when a

Thing4 object is created. This happens to be Thing3.initialize which, once again,

also calls the initialize methods of its ancestor classes, Thing2 and Thing. How-

ever, the aMethod method implemented by Thing4 has no call to its super-

classes, so this executes right away and the code in any other aMethod methods

in the ancestor classes is ignored.

%ÐÕÈÓÓàȮɯ3ÏÐÕÎƙɯÐÕÏÌÙÐÛÚɯÍÙÖÔɯ3ÏÐÕÎƘɯÈÕËɯËÖÌÚÕɀÛɯÐÕÛÙÖËÜÊÌɯÈÕàɯÕÌÞɯËÈÛÈɯÖÙɯ

methods. Enter 5 at the prompt to execute the following :

t5 = Thing5.new("A Thing5", "a very simple Thing5", 40)

t5.aMethod

This time you will see that that the call to new causes Ruby to backtrack through

the class hierarchy until it finds the first initialize method. This happens to

belong to Thing3 (which also calls the initialize methods of Thing2 and Thing).

The first implementation of aMethod , however, occurs in Thing4 and there are

no calls to super ÚÖɯÛÏÈÛɀÚɯÞÏÌÙÌɯÛÏÌɯÛÙÈÐÓɯÌÕËÚȭ

superclasses.rb

Ultimately all Ruby classes descend from the Object class.

The Object class itself has no superclass and any attempt to locate its

superclass will return nil .

begin

 x = x.superclass

 puts(x)

end until x == nil

CHAPTER TWO

31

CONSTANTS INSIDE CLASSES

There may be times when you need to access constants (identifiers beginning

with a capital letter) ËÌÊÓÈÙÌËɯÐÕÚÐËÌɯÈɯÊÓÈÚÚȭɯ+ÌÛɀÚɯÈÚÚÜÔÌɯàÖÜɯÏÈÝÌɯÛÏÐÚɯÊÓÈÚÚȯ

classconsts.rb

class X

 A = 10

 class Y

 end

end

In order to access the constant A, you would need to use the special scope

resolution operator :: like this:

X::A

Class names are constants, so this same operator gives you access to classes

ÐÕÚÐËÌɯÖÛÏÌÙɯÊÓÈÚÚÌÚȭɯ3ÏÐÚɯÔÈÒÌÚɯÐÛɯ×ÖÚÚÐÉÓÌɯÛÖɯÊÙÌÈÛÌɯÖÉÑÌÊÛÚɯÍÙÖÔɯȿÕÌÚÛÌËɀɯÊÓÈÚÚÌÚɯ

such as class Y inside class X:

ob = X::Y.new

PARTIAL CLASSES

In Ruby it is not obligatory to define a class all in one place. If you wish, you can

define a single class in separate parts of your program. When a class descends

from a specific superclass, each subsequent partial class definition may optiona l-

ly repeat the superclass in its definition using the < operator.

THE BOOK OF RUBY

32

Here I create two classes, A and B which descends from A:

partial_classes

class A

 def a

 puts("a")

 end

end

class B < A

 def ba1

 puts("ba1")

 end

end

class A

 def b

 puts("b")

 end

end

class B < A

 def ba2

 puts("ba2")

 end

end

Now, if I create a B object, all the methods of both A and B are available to it:

ob = B.new

ob.a

ob.b

ob.ba1

ob.ba2

CHAPTER TWO

33

You can also use partial ÊÓÈÚÚɯËÌÍÐÕÐÛÐÖÕÚɯÛÖɯÈËËɯÍÌÈÛÜÙÌÚɯÖÕÛÖɯ1ÜÉàɀÚɯÚÛÈÕËÈÙËɯ

classes such as Array:

class Array

 def gribbit

 puts("gribbit")

 end

end

This adds the gribbit method to the Array class so that the following code can

now be executed:

[1,2,3].gribbit

THE BOOK OF RUBY

34

35

CHAPTER THREE

Strings and Ranges

(ɀÝÌɯÔÈËÌɯÎÙÌÈÛɯÜÚÌɯÖÍɯÚÛÙÐÕÎÚɯÐÕɯÔàɯ×ÙÖÎÙÈÔÚɯÚÖɯÍÈÙȭɯ(ÕɯÍÈÊÛȮɯÈɯÚÛÙÐÕÎɯÍÌÈÛÜÙÌËɯÐÕɯ

the very first program in the book. Here it is again:

puts 'hello world'

While that first program used a string enclosed within single quotes, my second

program rang the changes by using a string in double-quotes:

print('Enter your name: ')

name = gets()

puts("Hello #{name}")

1strings.rb

Double-quoted strings do more work than single -quoted strings. In particular,

they have the ability to evaluate bits of themselves as though they were pro-

gramming code. To have something evaluated, you need to place it between a

pair of curly br aces preceded by a # character.

In the example above, #{name} in a double-quoted string tells Ruby to get the

value of the name variable and insert that value into the string itself. So, if name
ÌØÜÈÓÚɯɁ%ÙÌËɂȮɯÛÏÌɯÚÛÙÐÕÎɯɁ'ÌÓÓÖɯ%ÙÌËɂɯÞÐÓÓɯÉÌɯËÐÚ×ÓÈàÌËȭɯ3he 1strings.rb sample

×ÙÖÎÙÈÔɯ×ÙÖÝÐËÌÚɯÈɯÍÌÞɯÔÖÙÌɯÌßÈÔ×ÓÌÚɯÖÍɯȿÌÔÉÌËËÌËɯÌÝÈÓÜÈÛÐÖÕɀɯÐÕɯËÖÜÉÓÌ-

quoted strings.

A double -quoted string is able not only to evaluate attributes or variables such as

ob.name but also expressions such as 2*3 and bits of code such as the method-

THE BOOK OF RUBY

36

call ob.ten (where ten is a method name) aÕËɯȿÌÚÊÈ×ÌɯÊÏÈÙÈÊÛÌÙÚɀɯÚÜÊÏɯÈÚɯɁ\ Õɂɯ

ÈÕËɯɁ\ ÛɂɯÙÌ×ÙÌÚÌÕÛÐÕÎɯÈɯÕÌÞÓÐÕÌɯÈÕËɯÈɯÛÈÉȭɯ

A single-quoted string does no such evaluation. A single -quoted string can,

however, use a backslash to indicate that the next character should be used

literally. This is useful when a single -quoted string contains a single-quote

character, like this:

ôIt\õs my partyõ

Assuming that the method named ten returns the value 10, you might write the

following code:

puts("Here's a tab \ ta new line \ na calculation #{2*3} and a method -call

#{ob.ten}")

As this is a double-quoted string, the embedded elements are evaluated and the

following is displayed:

Here's a tab a new line

a calculation 6 and a method -call 10

-ÖÞɯÓÌÛɀÚɯÚÌÌɯÞÏÈÛɯÏÈ××ÌÕÚɯÞÏÌÕɯÈɯÚÐÕÎÓÌ-quoted string is used:

puts('Here \ 's a tab \ ta new line \ na calculation #{2*3} and a method -call

#{ob.ten}')

This time, no embedded evaluation is done and so, this is what is displayed:

Here's a tab \ ta new line \ na calculation #{2*3} and a method -call

#{ob.ten}

USER-DEFINED STRING DELIMITERS

If, for some reason, single and double-ØÜÖÛÌÚɯÈÙÌÕɀÛɯÊÖÕÝÌÕÐÌÕÛɯɬ if, for example,

àÖÜÙɯÚÛÙÐÕÎÚɯÊÖÕÛÈÐÕɯÓÖÛÚɯÖÍɯØÜÖÛÌɯÊÏÈÙÈÊÛÌÙÚɯÈÕËɯàÖÜɯËÖÕɀÛɯÞÈÕÛɯÛÖɯÏÈÝÌɯÛÖɯÒÌÌ×ɯ

putting backslashes in front of them ɬ you can also delimit strings in many other

ways.

CHAPTER THREE

37

2strings.rb

The standard alternative delimiters for double quoted strings are %Q and / or

%/ and / while for single -quoted strings they are %q and /ȭɯɯ3ÏÜÚȱ

%Q/This is the same as a double -quoted string./

%/This is also the same as a double -quoted string./

%q/And this is the same as a single -quoted string/

You can even define your own string delimiters. These must be non-

alphanumeric characters and they may include non-printing characters such as

newlines and various characters which normally have a special meaning in Ruby

ÚÜÊÏɯÈÚɯÛÏÌɯȿ×ÖÜÕËɀɯÖÙɯȿÏÈÚÏɀɯÊÏÈÙÈÊÛÌÙɯȹ#). Your chosen character should be

placed after %q or %Q and you should be sure to terminate the string with the

same character. If your delimiter is an opening bracket, the corresponding

closing bracket should be used at the end of the string, like this:

%Q[This is a string]

3strings.rb

You will find examples of a broad range of user -selected string delimiters in the

sample program, 3strings.rb . Needless to say, while there may be times when it

is useful to delimit a string by some esoteric character such as a newline or an

asterisk, in many cases the disadvantages (not least the mental anguish and

confusion) resulting from such arcane practices may significantly out weigh the

advantages.

BACKQUOTES

One other type of string deserves a special mention: a string enclosed by back-

quotes ɬ that is, the inward -pointing quote character which is usually tucked

away up towards the top left -hand corner of the keyboard: `

Ruby considers anything enclosed by back-quotes to be a command which can be

passed for execution by the operating system using a method such as print or

puts . By now, you will probably already have guessed that Ruby provides more

than one way of doing this. It turns out %x/some command/ has the same effect

THE BOOK OF RUBY

38

as ̀ somecommand` and so does %x{some command}. On the Windows operat-

ing system, for example, each of the three lines shown below would pass the

command dir to the operating system, causing a directory listing to be displayed:

4backquotes.rb

puts(`dir`)

puts(%x/dir/)

puts(%x{dir})

You can also embed commands inside double-quoted strings like this:

print("Goodbye #{%x{calc}}")

Be careful if you do this. The command itself is evaluated first. Your Ruby

program then waits until the process which starts has terminated. In the present

case, the calculator will pop up. You are now free to do some calculations, if you

ÞÐÚÏȭɯ.ÕÓàɯÞÏÌÕɯàÖÜɯÊÓÖÚÌɯÛÏÌɯÊÈÓÊÜÓÈÛÖÙɯÞÐÓÓɯÛÏÌɯÚÛÙÐÕÎɯɁ&ÖÖËÉàÌɂɯÉÌɯËÐs-

played.

STRING HANDLING

Before leaving tÏÌɯÚÜÉÑÌÊÛɯÖÍɯÚÛÙÐÕÎÚȮɯÞÌɀÓÓɯÛÈÒÌɯÈɯØÜÐÊÒɯÓÖÖÒɯÈÛɯÈɯÍÌÞɯÊÖÔÔÖÕɯ

string operations.

CONCATENATION

string_concat.rb

You can concatenate strings using << or + or just by placing a space between

them. Here are three examples of string concatenation; in each case, s is assigned

ÛÏÌɯÚÛÙÐÕÎɯɁ'ÌÓÓÖɯ6ÖÙÓËɂȯ

s = "Hello " << "world"

s = "Hello " + "world"

s = "Hello " "world"

CHAPTER THREE

39

Note, however, that when you use the << method, you can append Fixnum

integers (in the range 0 to 255) without having to convert them to strings first;

using the + method or a space, Fixnums must be converted using the to_s

method.

What About Commas?

You may sometimes see Ruby code in which commas are used to

separate strings and other data types. In some circumstances, these

commas appear to have the effect of concatenating strings. For exam-

ple, the following code might, at first sight, seem to create and di s-

play a string from three substrings plus an integer:

s4 = "This " , "is " , " not a string!", 10

print("print (s4):" , s4, " \ n")

In fact, a list separate by commas creates an array ɬ an ordered list of

the original strings. The string_concat.rb program contains examples

which prove this to be the case.

Note that when you pa ss an array to a method such as puts , each

element in that array will be treated separately. You could pass the

array, x , above, to puts like this:

puts(x)

In which case, the output would be:

This

is

 not a string!

10

We'll look at arrays in more depth in the next chapter.

THE BOOK OF RUBY

40

STRING ASSIGNMENT

The Ruby String class provides a number of useful string handling methods.

Most of these methods create new string objects. So, for example, in the following

code, the s on the left-hand side of the assignment on the second line is not the

same object as the s on the right -hand side:

s = "hello world"

s = s + "!"

string_assign .rb

A few string methods actually alter the string itself without creating a new

object. These methods generally end wit h an exclamation mark (e.g. the capita l-

ize! method).

If in doubt, yÖÜɯÊÈÕɯÊÏÌÊÒɯÈÕɯÖÉÑÌÊÛɀÚɯÐËÌÕÛÐÛàɯÜÚÐÕÎɯÛÏÌɯobject_id ÔÌÛÏÖËȭɯ(ɀÝÌɯ

provided a few examples of operations which do and do not create new strings

in the string_assign.rb program. Run this and check the object_id of s after each

string operation is performed.

INDEXING INTO A STRING

You can treat a string as an array of characters and index into that array to find a

character at a specific index using square brackets. Strings and arrays in Ruby are

indexed from 0 (the first character). So, for inÚÛÈÕÊÌȮɯÛÖɯÙÌ×ÓÈÊÌɯÛÏÌɯÊÏÈÙÈÊÛÌÙɯȿÌɀɯ

ÞÐÛÏɯȿÈɀɯÐÕɯÛÏÌɯÚÛÙÐÕÎȮɯsȮɯÞÏÐÊÏɯÊÜÙÙÌÕÛÓàɯÊÖÕÛÈÐÕÚɯȿ'ÌÓÓÖɯÞÖÙÓËɀȮɯàÖÜɯÞÖÜÓËɯÈÚÚÐÎÕɯ
a new character to index 1:

s[1] = 'a'

However, if you index into a string in order to find a character at a specific

ÓÖÊÈÛÐÖÕȮɯ1ÜÉàɯËÖÌÚÕɀÛɯÙÌÛÜÙÕɯÛÏÌɯÊÏÈÙÈÊÛÌÙɯÐÛÚÌÓÍȰɯÐÛɯÙÌÛÜÙÕÚɯÐÛÚɯ 2"((ɯÝÈÓÜÌȯ

s = "Hello world"

puts(s[1]) # prints out 101 ð the ASCII value of ôeõ

CHAPTER THREE

41

In order to obtain the actual character, you can do this:

s = "Hello world"

puts(s[1,1]) # prints out ôeõ

This tells Ruby to index into the string at position 1 and return one character. If

you want to return three characters starting at position 1, you would enter this:

puts(s[1,3]) # prints ôellõ

This tells Ruby to start at position 1 and return the next 3 characters. Alternativ e-

ly, you could use the two -ËÖÛɯȿÙÈÕÎÌɀɯÕÖÛÈÛÐÖÕȯ

puts(s[1..3]) # also prints ôellõ

For more on Ranges, see Digging Deeper at the end of this chapter.

Strings can also be indexed using minus values, in which case -1 is the index of

the last character and, once again, you can specify the number of characters to be

returned:

puts(s[-1,1]) # prints ôdõ

puts(s[-5,1]) # prints ôwõ

puts(s[-5,5]) # prints ôworldõ

string_index.rb

When specifying ranges using a minus index, you must use minus values for

both the start and end indices:

puts(s[-5..5]) # this prints an empty s t ring!

puts(s[-5..-1]) # prints ôworldõ

string_methods.rb

Finally, you may want to experiment with a few of the standard methods avail a-

ble for manipulating strings. These include methods to change the case of a

ÚÛÙÐÕÎȮɯÙÌÝÌÙÚÌɯÐÛȮɯÐÕÚÌÙÛɯÚÜÉÚÛÙÐÕÎÚȮɯÙÌÔÖÝÌɯÙÌ×ÌÈÛÐÕÎɯÊÏÈÙÈÊÛÌÙÚɯÈÕËɯÚÖɯÖÕȭɯ(ɀÝÌ

provided a few examples in string_methods.rb .

THE BOOK OF RUBY

42

REMOVING NEWLINE CHARACTERS ð CHOP AND CHOMP

A couple of handy string processing methods deserve special mention. The chop

and chomp methods can be used to remove characters from the end of a string.

The chop method returns a string with the last character removed or with the

ÊÈÙÙÐÈÎÌɯÙÌÛÜÙÕɯÈÕËɯÕÌÞÓÐÕÌɯÊÏÈÙÈÊÛÌÙÚɯÙÌÔÖÝÌËɯȹɁ\ r\ ÕɂȺɯÐÍɯÛÏÌÚÌɯÈÙÌɯÍÖÜÕËɯÈÛɯ

the end of the string. The chomp method returns a string with the terminating

carriage return or newline character removed (or both the carriage return and the

newline character if both are found).

These methods are useful when you need to removing line feeds entered by the

user or read from a file. For instance, when you use gets to read in a line of text,

ÐÛɯÙÌÛÜÙÕÚɯÛÏÌɯÓÐÕÌɯÐÕÊÓÜËÐÕÎɯÛÏÌɯÛÌÙÔÐÕÈÛÐÕÎɯȿÙÌÊÖÙËɯÚÌ×ÈÙÈÛÖÙɀɯÞÏÐÊÏȮɯÉàɯËÌÍÈÜÓÛȮɯ

is the newline character.

The Record Separator - $/

Ruby pre-defines a variable, $/ ȮɯÈÚɯÈɯȿÙÌÊÖÙËɯÚÌ×ÈÙÈÛÖÙɀȭɯ3ÏÐÚɯÝÈÙÐÈÉÓÌɯ

is used by methods such as gets and chomp. The gets method reads

in a string up to and including the record separator. The chomp

method returns a string with the re cord separator removed from the

end (if present) otherwise it returns the original string unmodified.

You can redefine the record separator if you wish, like this:

$/=ó*ó # the ò*ó character is now the record separator

When you redefine the record separator, this new character (or

string) will now be used by methods such as gets and chomp. For ex-

ample:

$/= òworldó

s = gets() # user enters òHad we but world enough and

timeéó

puts(s) # displays òHad we but worldó

You can remove the newline character using either chop or chomp. In most cases,

chomp ÐÚɯ×ÙÌÍÌÙÈÉÓÌɯÈÚɯÐÛɯÞÖÕɀÛɯÙÌÔÖÝÌɯÛÏÌɯÍÐÕÈÓɯÊÏÈÙÈÊÛÌÙɯÜÕÓÌÚÚɯÐÛɯÐÚɯÛÏÌɯÙÌÊÖÙËɯ

CHAPTER THREE

43

separator (a newline) whereas chop will remove the last character no matter

what it is. Here are some examples:

chop_chomp.rb

Note: s1 includes a carriage return and linefeed

s1 = "Hello world

"

s2 = "Hello world"

s1.chop # returns òHello worldó

s1.chomp # returns òHello worldó

s2.chop # returns òHello worló ð note the missing ôdõ!

s2.chomp # returns òHello worldó

The chomp method lets you specify a character or string to use as the separator:

s2.chomp(ôrldõ) # returns òHello woó

FORMAT STRINGS

Ruby provides the printf ÔÌÛÏÖËɯÛÖɯ×ÙÐÕÛɯȿÍÖÙÔÈÛɯÚÛÙÐÕÎÚɀɯÊÖÕÛÈÐÕÐÕÎɯÚ×ÌÊÐÍÐÌÙÚɯ

starting with a percent sign, %. The format string may be followed by one or

more data items separated by commas; the list of data items should match the

number and type of the format specifiers. The actual data items replace the

matching specifiers in the string and they are formatted accordingly. These are

some common formatting specifiers:

%d ð decimal number

%f ð floa ting point number

%o ð octal number

%p ð inspect object

%s ð string

%x ð hexadecimal number

You can control floating point precision by putting a point -number before the

floating point formatting specifier, %f . For example, this would display the

floating point value to two digits:

printf(ò%0.02fó, 10.12945) # displays 10.13

THE BOOK OF RUBY

44

Digging Deeper

RANGES

In Ruby, a Range is a class which represents a set of values defined by a starting

and an ending value. Typically a range is defined using integers but it may also

be defined using other ordered values such as floating point numbers or charac-

ters. Values can be negative, though you should be careful that your starting

value is lower than your ending value!

ranges.rb

Here are a few examples:

a = (1..10)

b = (-10..-1)

c = (-10..10)

d = ('a'..'z')

You can also specify ranges using three dots instead of two: this create a range

which omits the final value:

d = ('a'..'z') # this two -dot range = ôaõ..õzõ

e = ('a'. ..'z') # this three -dot range = ôaõ..õyõ

You can create an array of the values defined by a range using the to_a method,

like this:

(1..10).to_a

Note that to_a is not defined for floating point numbers for the simple reason

that the number of p ossible values between two floating point numbers is not

finite.

CHAPTER THREE

45

str_range.rb

You can even create ranges of strings ɬ though you would need to take great care

in so doing as you might end up with more than you bargain for. For example,

see if you can figure out which values are specified by this range:

str_range = ('abc'..'def')

 ÛɯÍÐÙÚÛɯÚÐÎÏÛȮɯÛÏÌɯÙÈÕÎÌɯÍÙÖÔɯȿÈÉÊɀɯÛÖɯɀËÌÍɀɯÔÐÎÏÛɯÕÖÛɯÓÖÖÒɯÔÜÊÏȭɯ(ÕɯÍÈÊÛȮɯÛÏÐÚɯ

ËÌÍÐÕÌÚɯÈɯÙÈÕÎÌɯÖÍɯÕÖɯÓÌÚÚɯÛÏÈÕɯƖȮƕƕƔɯÝÈÓÜÌÚȵɯ3ÏÌàɯÈÙÌɯÖÙËÌÙÌËɯÓÐÒÌɯÛÏÐÚȯɯȿÈÉÊɀȮɯ

ȿÈÉËɀȮɯȿÈÉÌɀɯÈÕËɯÚÖɯÖÕɯÜÕÛÐÓɯÛÏÌɯÌÕËɯÖÍɯÛÏÌɯȿÈɀÚȰɯÛÏÌÕɯÞÌɯÚÛÈÙÛɯÖÕɯÛÏÌɯȿÉɀÚȯɯȿÉÈÈɀȮɯ

ȿÉÈÉɀȮɯȿÉÈÊɀɯÈÕËɯÚÖɯÖÕȭɯ2ÜÍÍÐÊÌɯÛÖɯÚÈàɯÛÏÈÛɯÙÈÕÎÌÚɯÖÍɯÛÏÐÚɯÚÖÙÛɯÈÙÌɯ×ÙÖÉÈÉÓàɯÙÈÛÏÌÙɯÈɯ

rare requirement and are best used with extreme caution or not at all.

ITERATING W ITH A RANGE

You may use a range to iterate from a start value to an end value. For example,

here is one way of printing all the numbers from 1 to 10:

for_to.rb

for i in (1..10) do

 puts(i)

end

HEREDOCS

While you can write long strings spanning multiple lines between single or

double quotes, many Ruby programmers prefer to use an alternative type of

ÚÛÙÐÕÎɯÊÈÓÓÌËɯÈɯȿÏÌÙÌËÖÊɀȭɯ ɯÏÌÙÌËÖÊɯÐÚɯÈɯÉÓÖÊÒɯÖÍɯÛÌßÛɯÛÏÈÛɯÚÛÈÙÛÚɯÉàɯÚ×ÌÊÐÍàÐÕÎɯÈÕɯ

end marker, which is simply an identifier of your choice. Here, I specify EODOC

as the end marker:

heredoc.rb

hdoc1 = <<EODOC

THE BOOK OF RUBY

46

This tells Ruby that everything following the line above is a single string which

terminates when the end marker is located. The string is assigned to the variable,

hdoc1. Here is an example of a complete heredoc assignment:

hdoc1 = <<EODOC

I wandered lonely as a #{"cloud".upcase},

That floats on high o'er vale and hill...

EODOC

By default, heredocs are treated as double-quoted strings so expressions such as

#{"cloud".upcase} will be evaluated. If you want a heredoc to be treated as

single-quoted string, specify its end marker between single-quotes:

hdoc2 = <<'EODOC'

I wandered lonely as a #{"cloud".upcase},

That floats on high o'er vale and hill...

EODOC

The end-marker of a heredoc must, by default, be placed flush with the left

margin. If you want to indent if you should use <<- rather than << when assigning

the end marker:

hdoc3 = <<-EODOC

I wandered lonely as a #{"cloud".upcase},

That floats on high o'er vale and hill...

 EODOC

It is up to you to pick an appropriate end marker. It is even legitimate (though,

perhaps, not particularly sensible!) to use a reserved word:

hdoc4 = <<def

I wandered lonely as a #{"cloud".upcase},

That floa ts on high o'er vale and hill...

def

A variable to which a heredoc is assigned can be used just like any other string

variable:

puts(hdoc1)

CHAPTER THREE

47

STRING LITERALS

As explained earlier in this chapter, you can optionally delimit strings by %q/

and / for single-quoted strings and either %Q/ and / or %/ and / for double -

quoted strings.

Ruby provides similar means of delimiting back -quoted strings, regular expres-

sions, symbols and arrays of either single-quoted or double -quoted strings. The

ability to define arrays of strings in this way is particularly useful since it avoids

the necessity of entering string delimiters for each item. Here is a reference to

these string literal delimiters:

%q/ /

%Q/ /

%/ /

%w/ /

%W/ /

%r| |

%s/ /

%x/ /

Note that you may choose which delimiters to use. I have used / except with the

regular expression where I have used | (since / ÐÚɯÛÏÌɯȿÕÖÙÔÈÓɀɯÙÌÎÜÓÈÙɯÌß×ÙÌÚÚÐÖÕɯ

delimiter) but I could equally have used square brackets, asterisks, ampersands

or other symbols (e.g. %W*dog cat #{1+2}* or %s&dog&). Here is an example of

these literals in use:

literals.rb

p %q/dog cat #{1+2}/ #=> "dog cat \ #{1+2}"

p %Q/dog cat #{1+2}/ #=> "dog cat 3"

p %/dog cat #{1+2}/ #=> "dog cat 3"

p %w/dog cat #{1+2}/ #=> ["dog", "cat", " \ #{1+2}"]

p %W/dog cat #{1+2}/ #=> ["dog", "cat", "3"]

p %r|^[a -z]*$| #=> /^[a -z]*$/

p %s/d og/ #=> :dog

p %x/vol/ #=> " Volume in drive C is OS [etc...]ó

THE BOOK OF RUBY

48

49

CHAPTER FOUR

Arrays and Hashes

4×ɯÛÖɯÕÖÞȮɯÞÌɀÝÌɯÎÌÕÌÙÈÓÓàɯÉÌÌÕɯÜÚÐÕÎɯÖÉÑÌÊÛÚɯÖÕÌɯÈÛɯÈɯÛÐÔÌȭɯ(ÕɯÛÏÐÚɯÊÏÈ×ÛÌÙɯÞÌɀÓÓɯ

find out how to create a ÓÐÚÛɯÖÍɯÖÉÑÌÊÛÚȭɯ6ÌɀÓÓɯÚÛÈÙÛɯÉàɯÓÖÖÒÐÕÎɯÈÛɯÛÏÌɯÔÖÚÛɯÊÖÔÔÖÕɯ

type of list structure ɬ an array.

ARRAYS

array0.rb

What is an Array?

An Array is a sequential collection of items in which each item can be

indexed. In Ruby, (unlike many other languages) a single Array can

contain items of mixed data types such as strings, integers and floats

or even a method-call which returns some value:

a1 = [1,'two', 3.0, array_length(a0)]

The first item in an array has the index 0, which means that the final

item has an index equal to the total number of items in the array mi-

nus 1. Given the array, a1, shown above, this is how to obtain the

values of the first and last items:

a1[0] # returns 1 st item (at index 0)

a1[3] # returns 4 th item (at index 3)

THE BOOK OF RUBY

50

6ÌɀÝÌɯÈÓÙeady used arrays a few times ɬ for example, in 2adventure.rb in chap-

ter 2 we used an array to store a map of Rooms:

mymap = Map.new([room1,room2,room3])

CREATING ARRAYS

In common with many other programming languages, Ruby uses square brack-

ets to delimit an array. You can easily create an array, fill it with some comma-

delimited values and assign it to a variable:

arr = ['one','two','three','four']

array1.rb

As with most other things in Ruby, arrays are objects. They are defined, as you

might guess, by the Array class and, just like strings, they are indexed from 0.

You can reference an item in an array by placing its index between square

brackets. If the index is invalid, nil is returned:

arr = ['a', 'b', 'c']

puts(arr[0]) # shows ôaõ

puts(arr[1]) # shows ôbõ

puts(arr[2]) # shows ôcõ

puts(arr[3]) # nil

array2.rb

It is permissible to mix data types in an array and even to include expressions

ÞÏÐÊÏɯàÐÌÓËɯÚÖÔÌɯÝÈÓÜÌȭɯ+ÌÛɀÚɯÈÚÚÜÔÌɯÛÏÈÛɯàÖÜɯÏÈÝÌɯÈÓÙÌÈËàɯÊÙÌÈÛÌËɯÛÏÐÚɯÔÌÛÏÖËȯ

def hello

 return "hello world"

end

You can now declare this array:

x = [1+2, hello, `dir`]

CHAPTER FOUR

51

'ÌÙÌȮɯÛÏÌɯÍÐÙÚÛɯÌÓÌÔÌÕÛɯÐÚɯÛÏÌɯÐÕÛÌÎÌÙȮɯƗɯÈÕËɯÛÏÌɯÚÌÊÖÕËɯÐÚɯÛÏÌɯÚÛÙÐÕÎɯɁÏÌÓÓÖɯÞÖÙÓËɂɯ

(returned by the method hello). If you run this on Windows, the third arra y

element will be a string containing a directory listing. This is due to the fact that

`dir` is a back-quoted string which is executed by the operating system (see

Chapter 3Ⱥȭɯ3ÏÌɯÍÐÕÈÓɯȿÚÓÖÛɀɯÐÕɯÛÏÌɯÈÙÙÈàɯÐÚȮɯÛÏÌÙÌÍÖÙÌȮɯÍÐÓÓÌËɯÞÐÛÏɯÛÏÌɯÝÈÓÜÌɯÙÌÛÜÙÕÌËɯ

by the dir command which happens to be a string of file names. If you are

running on a different operating system, you may need to substitute an appr o-

priate command at this point.

dir_array.rb

Creating an Array of File Names

A number of Ruby classes have methods which return arrays of val-

ues. For example, the Dir class, which is used to perform operations

on disk directories, has the entries method. Pass a directory name to

the method and it returns a list of files in an array:

Dir.entries('C: \ \ ') # returns an array of files in C: \

If you want to create an array of single-quoted ÚÛÙÐÕÎÚɯÉÜÛɯÊÈÕɀÛɯÉÌɯÉÖÛÏÌÙÌËɯ

typing all the quotation marks, a shortcut is to put u nquoted text separated by

spaces between round brackets preceded by %w like this (or use a capital %W for

double-quoted strings, as explained in Chapter 3):

array2.rb

y = %w(this is an array of strings)

You can also create arrays using the usual object construction method, new.

Optionally, you can pass an integer to new to create an empty array of a specific

size (with each element set to nil), or you can pass two arguments ɬ the first to set

the size of the array and the second to specify the element to place at each index

of the array, like this:

a = Array.new # an empty array

a = Array.new(2) # [nil,nil]

a = Array.new(2,"hello world") # ["hello world","hello world"]

THE BOOK OF RUBY

52

MULTI-DIMENSIONAL ARRAYS

To create a multi-dimensional array, you can create one array and then add other

ÈÙÙÈàÚɯÛÖɯÌÈÊÏɯÖÍɯÐÛÚɯȿÚÓÖÛÚɀȭɯ%ÖÙɯÌßÈÔ×ÓÌȮɯÛÏÐÚɯÊÙÌÈÛÌÚɯÈÕɯÈÙÙÈàɯÊÖÕÛÈÐÕÐÕÎɯÛÞÖɯ

elements, each of which is itself an array of two elements:

a = Array.new(2)

a[0]= Array.new(2,'hello')

a[1]= Array.new(2,'world')

You can also create an Array object by passing an array as an argu-

ment to the new method. Be careful, though. It is a quirk of Ruby that,

while it is legitimate to pass an array argument either with or without

enclosing round brackets, Ruby considers it a syntax error if you fail

to leave a space between the new method and the opening square

bracket ɬ another good reason for making a firm habit of using

brackets when passing arguments!

It is also possible to nest arrays inside one another using square brackets. This

creates an array of four arrays, each of which contains four integers:

a = [[1,2,3,4],

 [5,6,7,8],

 [9,10,11,12],

 [13,14,15,16]]

(ÕɯÛÏÌɯÊÖËÌɯÚÏÖÞÕɯÈÉÖÝÌȮɯ(ɯÏÈÝÌɯ×ÓÈÊÌËɯÛÏÌɯÍÖÜÙɯȿÚÜÉ-ÈÙÙÈàÚɀɯÖÕɯÚÌ×ÈÙÈÛÌɯÓÐÕÌÚȭɯ

This is not obligatory but it does help to clarify the structure of the multi -

dimensional array by displaying each sub-array as though it were a row, similar

to the rows in a spreadsheet. When talking about arrays within arrays, it is

ÊÖÕÝÌÕÐÌÕÛɯÛÖɯÙÌÍÌÙɯÛÖɯÌÈÊÏɯÕÌÚÛÌËɯÈÙÙÈàɯÈÚɯÈɯȿÙÖÞɀɯÖÍɯÛÏÌɯȿÖÜÛÌÙɀɯÈÙÙÈàȭ

CHAPTER FOUR

53

multi_array.rb

For some more examples of using multi-dimensional arrays, load up the

multi_array.rb program. This starts by creating an array, multiarr , containing

two other arrays. The first of these arrays is at index 0 of multiarr and the second

is at index 1:

multia rr = [['one','two','three','four'],[1,2,3,4]]

ITERATING OVER ARRAYS

You can access the elements of an array by iterating over them using a for loop.

The loop will iterate over two elements here: namely, the two sub -arrays at index

0 and 1:

for i in multiarr

 puts(i.inspect)

end

This displays:

["one", "two", "three", "four"]

[1, 2, 3, 4]

So, how do you iterate over the items (the strings and integers) in each of the two

sub-arrays? If there is a fixed number of items you could specify a different

iterator variable for each, in which case each variable will be assigned the value

from the matching array index.

Here we have four sub-array slots, so you could use four variables like this:

for (a,b,c,d) in multiarr

 print("a =#{a}, b=#{b}, c=#{c}, d=#{d} \ n")

end

THE BOOK OF RUBY

54

Iterators and for loops

The code inside a for loop is executed for each element in some ex-

pression. The syntax can be summarized like this:

for <one or more variables> in <expression> do

 <code to run>

end

When more than one variable is supplied, these are passed to the

code inside the for..end block just as you would pass arguments to a

method. Here, for example, you can think of (a,b,c,d) as four argu-

ments which are initialised, at each turn through the for loop, by the

four values from a row of multiarr :

for (a,b,c,d) in multiarr

 print("a=#{a}, b=#{b}, c=#{c}, d=#{d} \ n")

end

6ÌɀÓÓɯÉÌɯÓÖÖÒÐÕÎɯÈÛɯfor loops and other iterators in more depth in the

next chapter.

multi_array2.rb

You could also use a for loop to iterate over all the items in each sub-array

individually:

for s in multiarr[0]

 puts(s)

end

for s in multiarr[1]

 puts(s)

end

Both of the above techniques (multiple iterator variables or multiple for loops)

have two requirements: a) that you know how many items there are either in the

ȿÙÖÞÚɀɯÖÙɯȿÊÖÓÜÔÕɀÚɯÖÍɯÛÏÌɯÎÙÐËɯÖÍɯÈÙÙÈàÚɯÈÕËɯÉȺɯÛÏÈÛɯÌÈÊÏɯÚÜÉɯÈÙÙÈàɯÊÖÕÛÈÐÕÚɯÛÏÌɯ

same number of items as each other.

CHAPTER FOUR

55

For a more flexible way of iterating over multidimensional arrays you could use

nested for loops. An outer loop iterates over each row (subarray) and an inner

loop iterates over each item in the current row. This technique works even when

subarrays have varying numbers of items:

for row in multiarr

 for item in row

 puts(item)

 end

end

INDEXING INTO ARRAYS

As with strings (see Chapter Three) , you can index from the end of an array using

minus figures, where -1 is the index of the last element; and you can also use

ranges:

array_index.rb

arr = ['h','e','l','l','o',' ','w','o','r','l','d']

print(arr[0,5]) #=> ôhelloõ

print(arr[-5,5]) #=> ôworldõ

print(arr[0..4]) #=> ôhelloõ

print(arr[-5..-1]) #=> ôworldõ

Notice that, as with strings, when provide two integers in order to return a

number of contiguous items from an array, the first integer is the start index

while the second is a count of the number of items (not an index):

arr[0,5] # returns 5 chars - ["h", "e", "l", "l", "o"]

array_assign.rb

You can also make assignments by indexing into an array. Here, for example, I

ÍÐÙÚÛɯÊÙÌÈÛÌɯÈÕɯÌÔ×ÛàɯÈÙÙÈàɯÛÏÌÕɯ×ÜÛɯÐÛÌÔÚɯÐÕÛÖɯÐÕËÌßÌÚɯƔȮɯƕɯÈÕËɯƗȭɯ3ÏÌɯȿÌÔ×Ûàɀɯ

slot at number 2 will be filled with a nil value:

THE BOOK OF RUBY

56

arr = []

arr[0] = [0]

arr[1] = ["one"]

arr[3] = ["a", "b", "c"]

arr now contains:

[[0], ["one"], nil, ["a", "b", "c"]]

Once again, you can use start-end indexes, ranges and negative index values:

arr2 = ['h','e','l','l','o',' ','w','o','r','l','d']

arr2[0] = 'H'

arr2[2,2] = 'L', 'L'

arr2[4..6] = 'O',' - ','W'

arr2[-4,4] = 'a','l','d','o'

arr2 now contains:

["H", "e", "L", "L", "O", " -", "W", "a", "l", "d", "o"]

COPYING ARRAYS

array_copy.rb

Note that when you use the assignment operator, =, to assign one array variable

to another variable, you are actually assigning a reference to the array itself ɬ you

are not making a copy. You can use the clone method to make a new copy of the

array:

arr1 =['h','e','l','l','o',' ','w','o','r','l','d']

arr2=arr1

 # arr2 is now the same as arr1. Change arr1 and arr2 changes too!

arr3=arr1.clone

 # arr3 is a copy of arr1. Change arr1 and arr2 is unaffected

CHAPTER FOUR

57

TESTING ARRAYS FOR EQUALITY

array_compare.rb

A few words need to be said about the comparison operator <=>. This compares

two arrays ɬ ÓÌÛɀÚɯÊÈÓÓɯÛÏÌÔɯarr1 and arr2 ; it returns -1 if arr1 is less than arr2 ; it

returns 0 if arr1 and arr2 are equal; it returns 1 if arr2 is greater than arr1 . But

ÏÖÞɯËÖÌÚɯ1ÜÉàɯËÌÛÌÙÔÐÕÌɯÐÍɯÖÕÌɯÈÙÙÈàɯÐÚɯȿÎÙÌÈÛÌÙɯÛÏÈÕɀɯÖÙɯȿÓÌÚÚɯÛÏÈÕɀɯÈÕÖÛÏÌÙȳɯ(Ûɯ

turns out that it compares each item in one array with the corresponding item in

the other. When two values are not equal, the result of their comparison is

returned. In other words if this compar ison were made:

[0,10,20] <=> [0,20,20]

ȱÛÏÌɯÝÈÓÜÌɯ-ƕɯÞÖÜÓËɯÉÌɯÙÌÛÜÙÕÌËɯȹÛÏÌɯÍÐÙÚÛɯÈÙÙÈàɯÐÚɯȿÓÌÚÚɯÛÏÈÕɀɯÛÏÌɯÚÌÊÖÕËȺɯÚÐÕÊÌɯ

the integer at index 1 is of lower value (10) in the first array than the integer at

the same index in the second (20).

If you are comparing arrays of strings, then comparisons are made on ASCII

values. If one array is longer than another and the elements in both arrays are all

equal, then the longer arÙÈàɯÐÚɯËÌÌÔÌËɯÛÖɯÉÌɯȿÎÙÌÈÛÌÙɀȭɯ'ÖÞÌÝÌÙȮɯÐÍɯÛÞÖɯÚÜÊÏɯ

arrays are compared and one of the elements in the shorter array is greater than

the corresponding element in the longer array, then the shorter array is deemed to

be greater.

SORTING ARRAYS

array_sort.rb

The sort method compares adjacent array elements using the comparison

operator <=>. This operator is defined for many Ruby classes, including Array,

String, Float, Date and Fixnum. The sort operator is not, however, defined for all

classes (that is to say that it is not defined for the Object class from which all

other classes are derived). One of the unfortunate consequences of this is that it

cannot be used to sort arrays containing nil values. It is, however, possible to get

around this limitation by defining your own sorting routine. This is done by

sending a block to the sort method. WeɀÓÓɯlook at blocks in detail in Chapter 10.

For now, it is enough to know that the block here is a chunk of code which

determines the comparison used by the sort method.

THE BOOK OF RUBY

58

This is my sort routine:

arr.sort{

 |a,b|

 a.to_s <=> b.to_s

}

Here arr is an array object and the variables a and b represent two contiguous

ÈÙÙÈàɯÌÓÌÔÌÕÛÚȭɯ(ɀÝÌɯÊÖÕÝÌÙÛÌËɯÌÈÊÏɯÝÈÙÐÈÉÓÌɯÛÖɯÈɯÚÛÙÐÕÎɯÜÚÐÕÎɯÛÏÌɯto_ s method;

this converts nil ÛÖɯÈÕɯÌÔ×ÛàɯÚÛÙÐÕÎɯÞÏÐÊÏɯÞÐÓÓɯÉÌɯÚÖÙÛÌËɯȿÓÖÞɀȭɯ-ÖÛÌɯÛÏÈÛȮɯÞÏÐÓÌɯ
my sorting block defines the sort order of the array items, it does not change the

array items themselves. So nil will remain as nil and integers will remain as

integers. The string conversion is only used to implement the comparison, not to

change the array items.

COMPARING VALUES

The compariÚÖÕɯȿÖ×ÌÙÈÛÖÙɀɯ<=> (which is, in fact, a method) is defined in the

Ruby module named Comparable. For now, you can think of a module as a sort

ÖÍɯÙÌÜÚÈÉÓÌɯȿÊÖËÌɯÓÐÉÙÈÙàɀȭɯWÌɀÓÓɯÉÌɯÓÖÖÒÐÕÎɯÔÖÙÌɯÊÓosely at modules in Chapter

12.

8ÖÜɯÊÈÕɯȿÐÕÊÓÜËÌɀɯÛÏÌɯ"ÖÔ×Èrable module in your own classes. When this is

done, you can override the <=> method to enable you to define exactly how

comparisons will be made between specific types of object. For example, you

may want to subclass Array so that comparisons are made based purely on the

length of two Arrays rather than on the values of each item in the Array (which

is the default, as explained earlier). This is how to might do this:

comparisons.rb

class MyArray < Array

 include Comparable

 def <=> (anotherArray)

 self.length <=> anotherArray.length

 end

end

CHAPTER FOUR

59

Now, you can initialize two MyArray objects like this:

myarr1 = MyArray.new([0,1,2,3])

myarr2 = MyArray.new([1,2,3,4])

And you can use the <=> method defined in MyArray in order to make compar i-

sons:

 # Two MyArray objects

myarr1 <=> myarr2 # returns 0

This returns 0 which indicates that the two arrays are equal (since our <=> method

evaluates equality according to length alone). If, on the other hand, we were to

initialise two standard Arrays with e xactly the same integer values, the Array

ÊÓÈÚÚɀÚɯÖÞÕɯ<=> method would perform the comparsion:

 # Two Array objects

arr1 <=> arr2 # returns -1

Here -ƕɯÐÕËÐÊÈÛÌÚɯÛÏÈÛɯÛÏÌɯÍÐÙÚÛɯÈÙÙÈàɯÌÝÈÓÜÈÛÌÚɯÛÖɯȿÓÌÚÚɯÛÏÈÕɀɯÛÏÌɯÚÌÊÖÕËɯÈÙÙÈàɯÚÐÕÊÌɯ

ÛÏÌɯ ÙÙÈàɯÊÓÈÚÚɀÚɯ<=> method compares the numerical values of each item in arr1

and these are less than the values of the items at the same indexes in arr2 .

!ÜÛɯÞÏÈÛɯÐÍɯàÖÜɯÞÈÕÛɯÛÖɯÔÈÒÌɯȿÓÌÚÚɯÛÏÈÕɀȮɯȿÌØÜÈÓɯÛÖɀɯÈÕËɯȿÎÙÌÈÛÌÙɯÛÏÈÕɀɯÊÖÔ×ÈÙi-

sons using the traditional programming notation:

< # less than

== # equal to

> # greater than

In the MyArray class, we can make comparisons of this sort without writing any

additional code. This is due to the fact that the Comparable module, which has

been included in the MyArray class, automatically supplies these three compar i-

son methods; each method makes its comparison based on the definition of the

<=> method. Since our <=> makes its evaluation based on the number of items in

an array, the < method evaluates to true when the first array is shorter than the

second, == evaluates to true when both arrays are of equal length and > evaluates

to true when the second array is longer than the first:

THE BOOK OF RUBY

60

p(myarr1 < myarr2) #=> false

p(myarr1 == myarr2) #=> true

The standard Array, class, however, does not include the Comparable module so,

if you try to compare two ordinary arrays using <, == or >, Ruby will display an

error message telling you that the method is undefined.

It turns out that it is easy to add these three methods to a subclass of Array. All

you have to do is include Comparable, like this:

class Array2 < Array

 include Comparable

end

The Array2 class will now perform its comparisons b ased on the <=> method of

Array ɬ that is, by testing the values of the items stored in the array rather than

merely testing the length of the array. Assuming the Array2 objects, arr1 and

arr2 , to be initialized with the same arrays which we previously used for myarr1

and myarr2 , we would now see these results:

p(arr1 < arr2) #=> true

p(arr1 > arr2) #=> false

ARRAY METHODS

array_methods.rb

Several of the standard array methods modify the array itself rather than retur n-

ing a modified copy of the array. These include not only those methods marked

with a terminating exclamation such as flatten! and compact! but also the

method << which modifies the array to its le ft by adding to it the array on its

right; the clear which removes all the elements from the array and delete and

delete_at remove selected elements.

CHAPTER FOUR

61

HASHES

While arrays provide a good way of indexing a collection of items by number,

there may be times when it would be more convenient to index them in some

other way. If, for example, you were creating a collection of recipes, it would be

more meaningful to havÌɯÌÈÊÏɯÙÌÊÐ×ÌɯÐÕËÌßÌËɯÉàɯÕÈÔÌɯÚÜÊÏɯÈÚɯɁ1ÐÊÏɯ"ÏÖÊÖÓÈÛÌɯ

"ÈÒÌɂɯÈÕËɯɁ"ÖØɯÈÜɯ5ÐÕɂɯÙÈÛÏÌÙɯÛÏÈÕɯÉàɯÕÜÔÉÌÙÚȯɯƖƗȮɯƜƛɯÈÕËɯÚÖɯÖÕȭɯ

1ÜÉàɯÏÈÚɯÈɯÊÓÈÚÚɯÛÏÈÛɯÓÌÛÚɯàÖÜɯËÖɯÑÜÚÛɯÛÏÈÛȭɯ(ÛɀÚɯÊÈÓÓÌËɯÈɯ'ÈÚÏȭɯ3ÏÐÚɯÐÚɯÛÏÌɯÌØÜÐÝa-

lent of what some other languages call a Dictionary. Just like a real dictionary,

the entries are indexed by some unique key (in a dictionary, this would be a

word) which is associated with a value (in a dictionary, this would be the defin i-

tion of the word).

CREATING HASHES

hash1.rb

Just like an array, you can create a hash by creating a new instance of the Hash

class:

h1 = Hash.new

h2 = Hash.new("Some kind of ring")

Both the examples above create an empty Hash. A Hash object always has a

default value ɬ that is, a value that is returned when no specific value is found at

a given index. In these examples, h2 ÐÚɯÐÕÐÛÐÈÓÐáÌËɯÞÐÛÏɯÛÏÌɯËÌÍÈÜÓÛɯÝÈÓÜÌȮɯɁ2ÖÔÌɯ

ÒÐÕËɯÖÍɯÙÐÕÎɂȰɯh1 is not initialized with a value so its default value will be nil.

Having created a Hash object, you can add items to it using an array-like syntax

ɬ that is, by placing the index in square brackets and using = to assign a value.

3ÏÌɯÖÉÝÐÖÜÚɯËÐÍÍÌÙÌÕÊÌɯÏÌÙÌɯÉÌÐÕÎɯÛÏÈÛȮɯÞÐÛÏɯÈÕɯÈÙÙÈàȮɯÛÏÌɯÐÕËÌßɯȹÛÏÌɯȿÒÌàɀȺɯÔÜÚÛɯ

be an integer; with a Hash, it can be any unique data item:

THE BOOK OF RUBY

62

h2['treasure1'] = 'Silver ring'

h2['treasure2'] = 'Gold ring'

h2['treasure3'] = 'Ruby ring'

h2['treasure4'] = 'Sapphire ring'

Often, the key may be a number or, as in the code above, a string. In principle,

however, a key can be any type of object.

Unique Keys?

Take care when assigning keys to Hashes. If you use the same key

twice in a Hash, you will end up over writing the original value. This

is just like assigning a value twice to the same index in an array. Con-

sider this example:

h2['treasure1'] = 'Silver ring'

h2['treasure2'] = 'Gold ring'

h2['treasure3'] = 'Ruby ring'

h2['treasure1'] = 'Sapphire ring'

'ÌÙÌɯÛÏÌɯÒÌàɯȿÛÙÌÈÚÜÙÌƕɀɯÏÈÚɯÉÌÌÕɯÜÚÌËɯÛÞÐÊÌȭɯ ÚɯÈɯÊÖÕÚÌØÜÌÕÊÌȮɯÛÏÌɯ

ÖÙÐÎÐÕÈÓɯÝÈÓÜÌȮɯȿ2ÐÓÝÌÙɯÙÐÕÎɀɯÏÈÚɯÉÌÌÕɯÙÌ×ÓÈÊÌËɯÉàɯȿ2È××ÏÐÙÌɯÙÐÕÎɀȮɯÙe-

sulting in this Hash:

{"treasure1"=>"Sapphire ring", "treasure2"=>"Gold ring", "trea s-

ure3"=>"Ruby ring"}

Given some class, X, the following assignment is perfectly legal:

x1 = X.new('my Xobject')

h2[x1] = 'Diamond ring'

There is a shorthand way of creating Hashes and initializing them with key -

value pairs. Just add a key followed by => and its associated value; each key-

value pair should be separated by a comma and the whole lot placed inside a

pair of curly brackets:

CHAPTER FOUR

63

h1 = { 'room1'=>'The Treasure Room',

 'room2'=>'The Throne Room',

 'loc1'=>'A Forest Glade',

 'loc2'=>'A Mountain Stream' }

INDEXING INTO A HASH

To access a value, place its key between square brackets:

puts(h1['room2']) #=> ôThe Throne Roomõ

If you specify a key that does not exist, the default value is returned. Recall that

we have not specified a default value for h1 but we have for h2:

p(h1['unknown_room']) #=> nil

p(h2['unknown_treasure']) #=> 'Some k ind of ring'

Use the default method to get the default value and the default= method to set

it (see Chapter 2 for more information on get and set ȿÈÊÊÌÚÚÖÙɀɯÔÌÛÏÖËÚȺ:

p(h1.default)

h1.default = 'A mysterious place'

COPYING A HASH

hash2.rb

As with an array, you can assign one Hash variable to another, in which case

both variables will refer to the same Hash and a change made using either

variable will affect that Hash:

h4 = h1

h4['room1']=õA new Room'

puts(h1['room1']) #=> ôA new Roomõ

THE BOOK OF RUBY

64

If you want the two variables to refer to the same items in different Hash objects,

use the clone method to make a new copy:

h5 = h1.clone

h5['room1 '] = 'A n even newer Room'

puts(h1['room1 ']) #=> ôA new room' (i.e. its value is unchanged)

SORTING A HASH

hash_sort.rb

As with the Array class, you may find a slight problem with the sort method of

Hash. It expects to be dealing with keys of the same data type so if, for example,

you merge two arrays, one of which uses integer keys and another of which uses

ÚÛÙÐÕÎÚȮɯàÖÜɯÞÖÕɀÛɯÉÌɯÈÉÓÌɯÛÖɯÚÖÙÛɯÛÏÌɯÔÌÙÎÌËɯ'ÈÚÏȭɯ3ÏÌɯÚÖÓÜÛÐÖÕɯÛÖɯÛÏÐÚɯ×ÙÖÉÓÌÔɯ

is, as with Array, to write some code to perform a custom type of comparison

and pass this to the sort method. You might give it a method, like this:

def sorted_hash(aHash)

 return aHash.sort{

 |a,b|

 a.to_s <=> b.to_s

 }

end

This performs the sort based on the string representation (to_s) of each key in

the Hash. In fact, the Hash sort method converts the Hash to a nested array of

[key, value] arrays and sorts them using the Array sort method.

CHAPTER FOUR

65

HASH METHODS

hash_methods.rb

The Hash class has numerous built-in methods. For example, to delete an item

using its key (someKey) from a hash, aHash, use aHash.delete(someKey). To

test if a key or value exists use aHash.has_key?(someKey) and

aHash.has_value?(someValue). To return a new hash created using the original

ÏÈÚÏɀÚɯvalues as keys, and its keys as values use aHash.invert ; to return an array

×Ö×ÜÓÈÛÌËɯ ÞÐÛÏɯ ÛÏÌɯ ÏÈÚÏɀÚɯ ÒÌàÚɯ ÖÙɯ ÞÐÛÏɯ ÐÛÚɯ ÝÈÓÜÌÚɯ ÜÚÌɯaHash.keys and

aHash.values, and so on.

The hash_methods.rb program demonstrates a number of these methods.

THE BOOK OF RUBY

66

Digging Deeper

TREATING HASHES AS ARRAYS

hash_ops.rb

The keys and values methods of Hash each return an array so you can use

various Array methods to manipulate them. Here are a few simple examples:

h1 = {'key1'=>'val1', 'key2'=>'val2', 'key3'=>'val3', 'key4'=>'val4'}

h2 = {'key1'=>'val1', 'KEY_TWO'=>'val2', 'key3'=>'VALUE_3',

'key4'=>'val4'}

p(h1.keys & h2.keys) # set intersection (keys)

#=> ["key1", "key3", "key4"]

p(h1.values & h2.values) # s et intersection (values)

#=> ["val1", "val2", "val4"]

p(h1.keys+h2.keys) # concatenation

#=> ["key1", "key2", "key3", "key4", "key1", "key3", "key4", "KEY_TWO"]

p(h1.values-h2.values) # difference

=> ["val3"]

p((h1.keys << h2.keys)) # ap pend

#=> ["key1", "key2", "key3", "key4", ["key1", "key3", "key4", "KEY_TWO"]]

p((h1.keys << h2.keys).flatten.reverse) # ôun-nestõ arrays and reverse

#=> ["KEY_TWO", "key4", "key3", "key1", "key4", "key3", "key2", "key1"]

APPENDING AND CONCATENATING

Be careful to note the difference between concatenating using + to add the values

from the second array to the first and appending using << to add the second array

as the final element of the first:

CHAPTER FOUR

67

append_concat.rb

a =[1,2,3]

b =[4,5,6]

c = a + b #=> c=[1, 2, 3, 4, 5, 6] a=[1, 2, 3]

a << b #=> a=[1, 2, 3, [4, 5, 6]]

In addition << ÔÖËÐÍÐÌÚɯÛÏÌɯÍÐÙÚÛɯȹÛÏÌɯȿÙÌÊÌÐÝÌÙɀȺɯÈÙÙÈàɯÞÏÌÙÌÈÚɯ+ returns a new

array but leaves the receiver array unchanged.

Receivers, Messages and Methods

In Object Oriented terminology, the object to which a method belongs

is called the receiverȭɯ3ÏÌɯÐËÌÈɯÐÚɯÛÏÈÛɯÐÕÚÛÌÈËɯÖÍɯȿÊÈÓÓÐÕÎɯÍÜÕÊÛÐÖÕÚɀɯÈÚɯ

ÐÕɯ×ÙÖÊÌËÜÙÈÓɯÓÈÕÎÜÈÎÌÚȮɯȿÔÌÚÚÈÎÌÚɀɯÈÙÌɯÚÌÕÛɯÛÖɯÖÉÑÌÊÛÚȭɯ%ÖÙɯÌßÈÔ×ÓÌȮɯ

the message + 1 might be sent to an integer object while the message

reverse might be sent to a string object. The object ÞÏÐÊÏɯȿÙÌÊÌÐÝÌÚɀɯÈɯ

message ÛÙÐÌÚɯÛÖɯÍÐÕËɯÈɯÞÈàɯȹÛÏÈÛɯÐÚɯÈɯȿmethodɀȺɯÖÍɯÙÌÚ×ÖÕËÐÕÎɯÛÖɯÛÏÌɯ

message. A string object, for example, has a reverse method so is

able to respond to the reverse message whereas an integer object has

no such method so cannot respond.

If, after appending an array with << àÖÜɯËÌÊÐËÌɯÛÏÈÛɯàÖÜɀËɯÓÐÒÌɯÛÖɯÈËËɯÛÏÌɯÌÓe-

ments from the appended array to the receiver array rather than have the ap-

×ÌÕËÌËɯÈÙÙÈàɯÐÛÚÌÓÍɯȿÕÌÚÛÌËɀɯÐÕÚÐËÌɯÛÏÌɯÙÌÊÌÐÝÌÙȮɯàÖÜɯÊÈÕɯËÖɯÛÏÐÚɯÜÚÐÕÎɯÛÏÌɯflatten

method:

a=[1, 2, 3, [4, 5, 6]]

a.flatten #=> [1, 2, 3, 4, 5, 6]

MATRICES AND VECTORS

Ruby provides the Matrix class which may contain rows and columns of values

each of which can be represented as a vector (Ruby also supplies a Vector class).

Matrices allow you to perform matrix arithmetic. For example, give two Matrix

THE BOOK OF RUBY

68

objects, m1 and m2, you can add the values of each corresponding cell in the

matrices like this:

matrix.rb

m3 = m1+m2

SETS

The Set class implements a collection of unordered values with no duplicates.

You can initialize a Set with an array of values in which c ase, duplicates are

ignored:

Examples:

sets.rb

s1 = Set.new([1,2,3, 4,5,2])

s2 = Set.new([1,1,2,3,4,4,5,1])

s3 = Set.new([1,2,100])

weekdays = Set.new(%w(Monday, Tuesday, Wednesday, Thursday,

 Friday, Saturday, Sunday))

You can add new values using the add method:

s1.add(1000)

The merge method combines values of one Set with another:

s1.merge(s2)

You can use == to test for equality. Two sets which contain the same values

(remembering that duplicates will be removed when a Set is created) are consid-

ered to be equal:

p(s1 == s2) #=> true

69

CHAPTER FIVE

Loops and Iterators

Much of programming is concerned with repetition. Maybe y ou want your

program to beep ten times, read lines from a file just so long as there are more

lines to read or display a warning until the user presses a key. Ruby provides a

number of ways of performing this kind of repetition.

FOR LOOPS

In many programming languages, when you want to run a bit of code a certain

number of times you can just put it inside a for loop. In most languages, you

give a for loop a variable initialized with a starting value which is incremented

by 1 on each turn through the loop until it meets some specific ending value.

When the ending value is met, the for ÓÖÖ×ɯÚÛÖ×ÚɯÙÜÕÕÐÕÎȭɯ'ÌÙÌɀÚɯÈɯÝÌÙÚÐÖÕɯÖÍɯ

this traditional type of for loop written in Pascal:

(* This is Pascal code, not Ruby! *)

for i := 1 to 3 do

 writeln(i);

for_loop.rb

8ÖÜɯÔÈàɯÙÌÊÈÓÓɯÍÙÖÔɯÛÏÌɯÓÈÚÛɯÊÏÈ×ÛÌÙɯÛÏÈÛɯ1ÜÉàɀÚɯfor ÓÖÖ×ɯËÖÌÚÕɀÛɯÞÖÙÒɯÓÐÒÌɯÛÏÐÚɯ

at all! Instead of giving it a starting and ending value, we give the for loop a list

of items and it iterates over them, one by one, assigning each value in turn to a

loop variable until it gets to the end of the list.

THE BOOK OF RUBY

70

For example, here is a for loop that iterates over the items in an array, displaying

each in turn:

This is Ruby codeé

for i in [1,2,3] do

 puts(i)

end

The for ÓÖÖ×ɯÐÚɯÔÖÙÌɯÓÐÒÌɯÛÏÌɯȿÍÖÙɯÌÈÊÏɀɯÐÛÌÙÈÛÖÙɯ×ÙÖÝÐËÌËɯÉàɯÚÖÔÌɯÖÛÏÌÙɯ×Ùo-

gramming languages. 3ÏÌɯÐÛÌÔÚɯÖÝÌÙɯÞÏÐÊÏɯÛÏÌɯÓÖÖ×ɯÐÛÌÙÈÛÌÚɯËÖÕɀÛɯÏÈÝe to be

integers. This works just as well...

for s in ['one','two','three'] do

 puts(s)

end

The author of Ruby describes for ÈÚɯɁÚàÕÛÈßɯÚÜÎÈÙɂɯÍÖÙɯÛÏÌɯeach method which is

implemented by collection types such as Arrays, Sets, Hashes and Strings (a

String being, in effect, a collection of characters). For the sake of comparison, this

is one of the for loops shown above rewritten using the each method:

each_loop.rb

[1,2,3].each do |i|

 puts(i)

end

 ÚɯàÖÜɯÊÈÕɯÚÌÌȮɯÛÏÌÙÌɯÐÚÕɀÛɯÙÌÈÓÓàɯÈÓÓɯÛÏÈÛɯÔÜÊÏɯËÐÍÍÌÙÌÕÊÌȭɯ3ÖɯÊÖÕÝÌÙÛɯÛÏÌɯfor loop

to an each iterÈÛÖÙȮɯÈÓÓɯ(ɀÝÌɯÏÈËɯÛÖɯËÖɯÐÚɯËÌÓÌÛÌɯfor and in and append .each to the

ÈÙÙÈàȭɯ3ÏÌÕɯ(ɀÝÌɯ×ÜÛɯÛÏÌɯÐÛÌÙÈÛÖÙɯÝÈÙÐÈÉÓÌȮɯi, between a pair of upright bars after

do. Compare these other examples to see just how similar for loops are to each

iterators:

for_each.rb

--- Example 1 ---

i) for

for s in ['one','two','three'] do

 puts(s)

end

CHAPTER FIVE

71

ii) each

['one','two','three'].each do |s|

 puts(s)

end

--- Example 2 ---

i) for

for x in [1, "two", [3,4,5]] do puts(x) end

ii) each

[1, "two", [3,4,5]].each do |x| puts(x) end

Note, incidentally, that the do keyword is optional in a for loop that spans

multiple lines but it is obligatory when it is written on a single line:

Here the ôdoõ keyword can be omitted

for s in ['one','two','three']

 puts(s)

end

But here it is required

for s in ['one','two','three'] do puts(s) end

for_to.rb

'ÖÞɯÛÖɯÞÙÐÛÌɯÈɯȿÕÖÙÔÈÓɀɯfor ÓÖÖ×ȱ

If you miss the traditional type of for loop, you can ÈÓÞÈàÚɯȿÍÈÒÌɀɯÐÛɯÐÕɯ

Ruby by using a for loop to iterate over the values in a range. For ex-

ample, this is how to use a for loop variable to count up from 1 to 10,

displaying its value at each turn through the loop:

for i in (1..10) do

 puts(i)

end

THE BOOK OF RUBY

72

for_each2.rb

This example shows how both for and each can be used to iterate over the

values in a range:

for

for s in 1..3

 puts(s)

end

each

(1..3).each do |s|

 puts(s)

end

Note, incidentally, that a range expression such as 1..3 must be enclosed between

round brackets when used with the each method, otherwise Ruby assumes that

you are attempting to use each as a method of the final integer (a Fixnum) rather

than of the entire expression (a Range). The brackets are optional when a range is

used in a for loop.

MULTIPLE ITERATOR ARGUMENTS

multi_array.rb

You may recall that in the last chapter we used a for loop with more than one

loop variable. We did this in order to iterate over a multi -dimensional array. On

each turn through the for loop, a variable was assigned one row (that is, one

ȿÚÜÉ-ÈÙÙÈàɀȺɯÍÙÖÔɯÛÏÌɯÖÜÛÌÙɯÈÙÙÈà:

Here multiarr is an array containing two ôrowsõ

(sub -arrays) at index 0 and 1

multiarr = [['one','two','three','four'],

 [1,2,3,4]

]

CHAPTER FIVE

73

This for loop runs twice (once for each ôrowõ of multiarr)

for (a,b,c,d) in multiarr

 print("a=#{a}, b=#{b}, c=#{c}, d=#{d} \ n")

end

The above loop prints this:

a=one, b=two, c=three, d=four

a=1, b=2, c=3, d=4

We could use the each method to iterate over this four -item array by passing

ÍÖÜÙɯȿÉÓÖÊÒɯ×ÈÙÈÔÌÛÌÙÚɀɯ- a, b, c, d ɬ into the block delimited by do and end at

each iteration:

multiarr.each do |a,b,c,d|

 print("a=#{a}, b=#{b}, c=#{c}, d=#{d} \ n")

end

Block Parameters

(Õɯ1ÜÉàɯÛÏÌɯÉÖËàɯÖÍɯÈÕɯÐÛÌÙÈÛÖÙɯÐÚɯÊÈÓÓÌËɯÈɯȿÉÓÖÊÒɀɯÈÕËɯÈÕàɯÝÈÙÐÈÉÓÌÚɯ

ËÌÊÓÈÙÌËɯÉÌÛÞÌÌÕɯÜ×ÙÐÎÏÛɯÉÈÙÚɯÈÛɯÛÏÌɯÛÖ×ɯÖÍɯÈɯÉÓÖÊÒɯÈÙÌɯÊÈÓÓÌËɯȿÉÓÖÊÒɯ

×ÈÙÈÔÌÛÌÙÚɀȭɯ(ÕɯÈɯÞÈàȮɯÈɯÉÓÖÊÒɯÞÖÙÒÚɯÓÐÒÌɯÈɯÍÜÕÊÛÐÖÕɯÈÕËɯÛÏÌɯÉÓÖÊÒɯ×a-

ÙÈÔÌÛÌÙÚɯÞÖÙÒɯÓÐÒÌɯÈɯÍÜÕÊÛÐÖÕɀÚɯÈÙÎÜÔÌÕÛɯÓÐÚÛȭɯ3ÏÌɯeach method runs

the code inside the block and passes to it the arguments supplied by a

collection (such as the array, multiarr). In the example above, the

each method repeatedly passes an array of four elements to the block

and those elements initialize the four block parameters, a, b, c, d .

Blocks can be used for other things, in addition to iterating over co l-

ÓÌÊÛÐÖÕÚȭɯ(ɀÓÓɯÏÈÝÌɯÔÖÙÌɯÛÖɯÚÈàɯÖÕɯÉÓÖÊÒÚɯin Chapter 10.

THE BOOK OF RUBY

74

BLOCKS

block_syntax.rb

Ruby has an alternative syntax for delimiting blocks. Instead of using do..end,

you can use curly braces {..} like this:

do..end

[[1,2,3],[3,4,5],[6,7,8]].each do

 |a,b,c|

 puts("#{a}, #{b}, #{c}")

end

curly braces {..}

[[1,2,3],[3,4,5],[6,7,8]].each{

 |a,b,c|

 puts("#{a}, #{b}, #{c}")

}

No matter which block delimiters you use, you must ensure that the opening

ËÌÓÐÔÐÛÌÙȮɯȿ{ȿɯÖÙɯȿdoõ, is placed on the same line as the each method. Inserting a

line break between each and the opening block delimiter is a syntax error.

W HILE LOOPS

Ruby has a few other loop constructs too. This is how to do a while loop:

while tired

 sleep

end

Or, to put it another way:

sleep while tired

Even though the syntax of these two examples is different they perform the same

function. I n the first example, the code between while and end (here a call to a

method named sleep) executes just as long as the Boolean condition (which, in

CHAPTER FIVE

75

this case, is the value returned by a method called tired) evaluates to true. As in

for loops the keyword do may optionally be placed between the test condition

and the code to be executed when these appear on separate lines; the do keyword

is obligatory when the test condition and the code to be executed appear on the

same line.

W HILE MODIFIERS

In the second version of the loop (sleep while tired), the code to be executed

(sleep) precedes the test condition (while tired Ⱥȭɯ3ÏÐÚɯÚàÕÛÈßɯÐÚɯÊÈÓÓÌËɯÈɯȿÞÏÐÓÌɯ
ÔÖËÐÍÐÌÙɀȭɯ6ÏÌÕɯàÖÜɯÞÈÕÛɯÛÖɯÌßÌÊÜÛÌɯÚÌÝÌÙÈÓɯÌß×ÙÌÚÚÐÖÕÚɯÜÚÐÕÎɯÛÏÐÚɯÚàÕÛÈßȮɯàÖÜɯ

can put them between the begin and end keywords:

begin

 sleep

 snore

end while tired

1loops.rb

This is an example showing the various alternative syntaxes:

$hours_asleep = 0

def tired

 if $hours_asleep >= 8 then

 $hours_asleep = 0

 return false

 else

 $hours_asleep += 1

 return true

 end

end

def snore

 puts('snore....')

end

THE BOOK OF RUBY

76

def sleep

 puts("z" * $hours_asleep)

end

while tired do sleep end # a single -line while loop

while tired # a multi - line while loop

 sleep

end

sleep while tired # single -line while modifier

begin # multi - line while modifier

 sleep

 snore

end while tired

The last example above (the multi-line while modifier) needs close consideration

as it introduces some important new behaviour. When a block of code delimited

by begin and end precedes the while test, that code always executes at least once.

In the other types of while loop, the code may never execute at all if the Boolean

condition initially evaluates to true.

Ensuring a Loop Executes At Least Once

Usually a while loops executes 0 or more times since the Boolean test

is evaluated before the loop executes; if the test returns false at the

outset, the code inside the loop never runs.

However, when the while test follows a block of code enclosed be-

tween begin and end, the loop executes 1 or more times as the Boo-

lean expression is evaluated after the code inside the loop executes.

CHAPTER FIVE

77

2loops.rb

To appreciate the differences in behaviour of these two types of while

loop, run 2loops.rb .

These examples should help to clarify:

x = 100

 # The code in this loop never runs

while (x < 100) do puts('x < 100') end

 # The code in this loop never runs

puts('x < 100') while (x < 100)

 # But the code in loop runs once

begin puts('x < 100') end while (x < 100)

UNTIL LOOPS

Ruby also has an until ÓÖÖ×ɯÞÏÐÊÏɯÊÈÕɯÉÌɯÛÏÖÜÎÏÛɯÖÍɯÈÚɯÈɯȿwhile notɀɯÓÖÖ×ȭɯ(ÛÚɯ

syntax and options are the same as those applying to while ɬ that is, the test

condition and the code to be executed can be placed on a single line (in which

case the do keyword is obligatory) o r then can be placed on separate lines (in

which case do is optional).

There is also an until modifier which lets you put the code before the test cond i-

tion and an option to enclose the code between begin and end in order to ensure

that the code block is run at least once.

THE BOOK OF RUBY

78

until.rb

Here are some simple examples of until loops:

i = 10

until i == 10 do puts(i) end # never executes

until i == 10 # never executes

 puts(i)

 i += 1

end

puts(i) until i == 10 # never executes

begin # executes once

 puts(i)

end until i == 10

Both while and until loops can, just like a for loop, be used to iterate over arrays

and other collections. For example, this is how to iterate over all the elements in

an array:

while i < arr.length

 puts(arr[i])

 i += 1

end

until i == arr.length

 puts(arr[i])

 i +=1

end

CHAPTER FIVE

79

LOOP

3loops.rb

The examples in 3loops.rb should all look pretty familiar ɬ with the exception of

the last one:

loop {

 puts(arr[i])

 i+=1

 if (i == arr.length) then

 break

 end

}

This uses the loop method repeatedly to execute the block enclosed by curly

braces. This is just like the iterator blocks we used earlier with the each method.

Once again, we have a choice of block delimiters ɬ either curly braces or do and

end:

puts(" \ nloop")

i=0

loop do

 puts(arr[i])

 i+=1

 if (i == arr.length) then

 break

 end

end

This code iterates through the array, arr , by incrementing a counter variable, i,

and breaking out of the loop when the (i == arr.length) condition evaluates to

true. You have to break out of a loop in this way since, unlike while or until , the

loop method does not evaluate a test condition to determine whether or not to

continue looping. Without a break it would loop forever.

THE BOOK OF RUBY

80

Diggi ng Deeper

Hashes, Arrays, Ranges and Sets all include a Ruby module called Enumerable.

A modu le is a sort of code library (IɀÓÓɯÏÈÝÌɯÔÖÙÌɯÛÖɯÚÈàɯÈbout modules in Chap-

ter 12). In Chapter 4, I used the Comparable module to add comparison methods

such as < and > to an array. You may recall that I did this by subclassing the

 ÙÙÈàɯÊÓÈÚÚɯÈÕËɯȿÐÕÊÓÜËÐÕÎɀɯÛÏÌɯ"ÖÔ×ÈÙÈÉÓÌɯÔÖËÜÓÌɯÐÕÛÖɯÛÏÌɯÚÜÉÊÓÈÚÚȯ

class Array2 < Array

 include Comparable

end

THE ENUMERABLE MODULE

enum.rb

The Enumerable module is already included into the Ruby Array class and it

provides arrays with a number of useful methods such as include? which returns

true if a specific value is found in an array, min which returns the smallest value,

max which returns the largest and collect which creates a new array made up of

values returned from a block:

arr = [1,2,3,4,5]

y = arr.collect{ |i| i } #=> y = [1, 2, 3, 4]

z = arr.collect{ |i| i * i } #=> z = [1, 4, 9, 16, 25]

arr.include?(3) #=> true

arr.include?(6) #=> false

arr.min #=> 1

arr.max #=> 5

enum2.rb

These same methods are available to other collection classes just as long as those

classes include Enumerable. Hash is such a class. Remember, however, that the

items in a Hash are not indexed in sequential order so when you use the min and

max methods these return the items that are lowest and highest according to

CHAPTER FIVE

81

their numerical value ɬ here the items are strings and the numerical value is

determined by the ASCII codes of the characters in the key.

CUSTOM COMPARISONS

!ÜÛɯÓÌÛɀÚɯÚÜ××ÖÚÌɯàÖÜɯÞÖÜÓËɯ×ÙÌÍÌÙɯmin and max to return items based on some

other criterion (say the length of a string)? The easiest way to do this would be to

define the nature of the comparison inside a block. This is done in a similar

manner to the sorting blocks I defined in Chapter 4. You may recall that we

sorted a Hash (here the variable h) by passing a block to the sort method like

this:

h.sort{ |a,b| a.to_s <=> b.to_s }

The two parameters, a and b, represent two items from the Hash which are

compared using the <=> comparison method. We can similarly pass blocks to the

max and min methods:

h.min{ |a,b| a[0].length <=> b[0].length }

h.max{|a,b| a[0].length <=> b[0].length }

When a Hash passes items into a block it does so in the form of arrays, each of

which contains a key-value pair. 2ÖȮɯÐÍɯÈɯ'ÈÚÏɯÊÖÕÛÈÐÕÚɯÐÛÌÔÚɯÓÐÒÌɯÛÏÐÚȱ

{ôoneõ=>õfor sorrowõ, ôtwoõ=>õfor joyõ}

ȱÛÏÌɯÛÞÖɯÉÓÖÊÒɯÈÙÎÜÔÌÕÛÚȮɯa and b would be initialized to two arrays:

a = [ôoneõ,õfor sorrowõ]

b = [ôtwoõ,õfor joyõ]

This explains why the two blocks in which I have define d custom comparisons

for the max and min methods specifically compare the first elements, at index 0,

of the two block parameters:

a[0].length <=> b[0].length

This ensures that the comparisons are based on the keys in the Hash.

THE BOOK OF RUBY

82

If you want to compare the values rather than the keys, just set the array indexes

to 1:

enum3.rb

p(h.min{|a,b| a[1].length <=> b[1].length })

p(h.max{|a,b| a[1].length <=> b[1].length })

You could, of course, define other types of custom comparisons in your blocks.

+ÌÛɀÚɯÚÜ××ÖÚÌȮɯÍÖÙɯÌßÈÔ×ÓÌȮɯÛÏÈÛɯàÖÜɯÞÈÕÛɯÛÏÌɯÚÛÙÐÕÎÚɯȿÖÕÌɀȮɯȿÛÞÖɀȮɯȿÛÏÙÌÌɀɯÈÕËɯÚÖɯ

on, to be evaluated in the order in which we would speak them. One way of

doing this would be to create an ordered array of strings:

str_arr=['one','two','three','four','five','six','seven']

Now, if a Hash, h, contains these strings as keys, a block can use str_array as a

reference in order to determine the minimum and maximum values:

h.min{|a,b| str_arr.inde x(a[0]) <=> str_arr.index(b[0])}

 #=> ["one", "for sorrow"]

h.max{|a,b| str_arr.index(a[0]) <=> str_arr.index(b[0])}

 #=> ["seven", "for a secret never to be told"]

All the examples above, use the min and max methods of the Array and Hash

classes. Remember that these methods are provided to those classes by the

Enumerable module.

There may be occasions when it would be useful to be able to apply Enumerable

methods such as max, min and collect to classes which do not descend from

existing classes (such as Array) which implement those methods. You can do that

by including the Enumerable module in your class and then writing an iterator

method called each like this:

CHAPTER FIVE

83

include_enum1.rb

class MyCollection

 include Enumerable

 def initialize(someItems)

 @items = someItems

 end

 def each

 @items.each{ |i|

 yield(i)

 }

 end

end

Here you could initialize a MyCollection object with an array, which will be

stored in the instance variable, @items . When you call one of the methods

provided by the Enumerable module (such as min, max or collect) this will,

ȿÉÌÏÐÕËɯÛÏÌɯÚÊÌÕÌÚɀȮɯÊÈÓÓɯÛÏÌɯeach method in order to obtain each piece of data

one at a time.

Now you can use the Enumerable methods with your MyCollection objects:

things = MyCollection.new(['x','yz','defgh','ij','klmno'])

p(things.min) #=> "defgh"

p(things.max) #=> "yz"

p(things.collect{ |i| i.upcase })

 #=> ["X", "YZ", "DEFGH", "IJ", "KLMNO"]

include_enum2.rb

You could similarly use your MyCollection class to process arrays such as the

keys or values of Hashes. Currently the min and max methods adopt the default

ÉÌÏÈÝÐÖÜÙɯÖÍɯ×ÌÙÍÖÙÔÐÕÎɯÊÖÔ×ÈÙÐÚÖÕÚɯÉÈÚÌËɯÖÕɯÕÜÔÌÙÐÊÈÓɯÝÈÓÜÌÚɯÚÖɯȿßàɀɯÞÐÓl be

ÊÖÕÚÐËÌÙÌËɯÛÖɯÉÌɯȿÏÐÎÏÌÙɀɯÛÏÈÕɯȿÈÉÊËɀɯon the basis of the charactersɀ ASCII values.

If you want to perform some other type of comparison ɬ say, by string length, so

THE BOOK OF RUBY

84

ÛÏÈÛɯȿÈÉÊËɀɯÞÖÜÓËɯÉÌɯËÌÌÔÌËɯÛÖɯÉÌɯÏÐÎÏÌÙɯÛÏÈÕɯȿßáɀɯ- you can just override the

min and max methods:

include_enum3.rb

def min

 @items.to_a.min{|a,b| a.length <=> b.length }

end

def max

 @items.to_a.max{|a,b| a.length <=> b.length }

end

$ÈÊÏɯÈÕËɯ8ÐÌÓËȱ

So what is really going on when a method from the Enumerable

module makes use of the each ÔÌÛÏÖËɯÛÏÈÛɯàÖÜɀÝÌɯÞÙÐtten? It turns

out that the Enumerable methods (min, max, collect and so forth)

pass to the each method a block of code. This block of code expects to

receive one piece of data at a time (namely each item from a collec-

tion of some sort). Your each method supplies it with that item in the

form of a block parameter, such as the parameter i here:

def each

 @items.each{ |i|

 yield(i)

 }

end

The keyword yield is a special bit of Ruby magic which here tells the

code to run the block that was passed to the each method ɬ that is, to

ÙÜÕɯÛÏÌɯÊÖËÌɯÚÜ××ÓÐÌËɯÉàɯÛÏÌɯ$ÕÜÔÌÙÈÛÖÙɯÔÖËÜÓÌɀÚɯmin, max or col-

lect methods. This means that the code of those methods can be used

with all kinds of different types of collection. All you have to do is, i)

include the Enumerable module into your class and ii) write an each

method which determines which values will be used by the Enumer-

able methods.

85

CHAPTER SIX

Conditional Statements

Computer programs, like Life Itself, are full of difficult decisions waiting to be

made. Things like: If I stay in bed I will get more sleep, else I will have to go to work; if

I go to work I will earn some money, else I will lose my job - ÈÕËɯÚÖɯÖÕȱ

6ÌɀÝÌɯÈÓÙÌÈËàɯ×ÌÙÍÖÙÔÌËɯÈɯÕÜÔÉÌÙɯÖÍɯif tests in previous programs. To take a

simple example, this is from the Tax calculator in chapter one:

if (subtotal < 0.0) then

 subtotal = 0.0

end

In this program, the user was prompted to enter a value, subtotal , which was

then used in order to calculate the tax due on it. If the user, in a fit of madness,

enters a value less than 0, the if test spots this since the test (subtotal < 0.0)

evaluates to true, which causes the body of the code between the if test and the

end keyword to be executed; here, this sets the value of subtotal to 0.

Equals once = or equals twice == ?

In common with many other programming languages, Ruby uses one

equals sign to assign a value = and two to test a value ==.

THE BOOK OF RUBY

86

IF..THEN ..ELSE

if_else.rb

A simple test like this has only one of two possible results. Either a bit of code is

ÙÜÕɯÖÙɯÐÛɯÐÚÕɀÛȮɯËÌ×ÌÕËÐÕÎɯÖÕɯÞÏÌÛÏÌÙɯÛÏÌɯÛÌÚÛɯÌÝÈÓÜÈÛÌs to true or not. Often, you

ÞÐÓÓɯÕÌÌËɯÛÖɯÏÈÝÌɯÔÖÙÌɯÛÏÈÕɯÛÞÖɯ×ÖÚÚÐÉÓÌɯÖÜÛÊÖÔÌÚȭɯ+ÌÛɀÚɯÚÜ××ÖÚÌȮɯÍÖÙɯÌßÈÔ×ÓÌȮɯ

that your program needs to follow one course of action if the day is a weekday

and a different course of action if it is a weekend. You can test these conditions

by adding an else section after the if section, like this:

if aDay == 'Saturday' or aDay == 'Sunday'

 daytype = 'weekend'

else

 daytype = 'weekday'

end

The if condition here is straightforward. It tests two possible conditions: 1) if th e

value of the variable aDay ÐÚɯÌØÜÈÓɯÛÖɯÛÏÌɯÚÛÙÐÕÎɯȿ2ÈÛÜÙËÈàɀɯÖÙɯƖȺɯÐÍɯÛÏÌɯÝÈÓÜÌɯÖÍɯ

aDay ÐÚɯÌØÜÈÓɯÛÖɯÛÏÌɯÚÛÙÐÕÎɯȿ2ÜÕËÈàɀȭɯ(ÍɯÌÐÛÏÌÙɯÖÍɯÛÏÖÚÌɯÊÖÕËÐÛÐÖÕÚɯÐÚɯÛÙÜÌɯÛÏÌÕɯÛÏÌɯ

next line of code executes: daytype = 'weekend' ; in all other cases, the code after

else executes: daytype = 'weekday' .

if_then.rb

When an if test and the code to be executed are placed on separate

lines, the then keyword is o ptional. When the test and the code are

placed on a single line, the then keyword (or, if you prefer really

terse code, a colon character) is obligatory:

if x == 1 then puts('ok') end # with 'then'

if x == 1 : puts('ok') end # with colon

if x == 1 puts('ok') end # syntax error!

An if ÛÌÚÛɯÐÚÕɀÛɯÙÌÚÛÙÐÊÛÌËɯÛÖɯÌÝÈÓÜÈÛÐÕÎɯÑÜÚÛɯÛÞÖɯÊÖÕËÐÛÐÖÕÚȭɯ+ÌÛɀÚɯÚÜ××ÖÚÌȮɯÍÖÙɯ

example, that your code needs to work out whether a certain day is a working

CHAPTER SIX

87

day or a holiday. All weekdays are working days; all Saturdays are holidays but

Sundays are only holidays when you are not working overtime. This is my first

attempt to write a test to evaluate all these conditions:

and_or_wrong.rb

working_overtime = true

if aDay == 'Saturday' or aDay == 'Sunday' and not working_overtime

 daytype = 'holiday'

 puts("Hu rrah!")

else

 daytype = 'working day'

end

4ÕÍÖÙÛÜÕÈÛÌÓàȮɯ ÛÏÐÚɯ ËÖÌÚÕɀÛɯ ÏÈÝÌɯ ØÜÐÛÌɯ ÛÏÌɯ ÌÍÍÌÊÛɯ ÐÕÛÌÕËÌËȭɯ 1ÌÔÌÔÉÌÙɯ ÛÏÈÛɯ

2ÈÛÜÙËÈàɯÐÚɯÈÓÞÈàÚɯÈɯÏÖÓÐËÈàȭɯ!ÜÛɯÛÏÐÚɯÊÖËÌɯÐÕÚÐÚÛÚɯÛÏÈÛɯȿ2ÈÛÜÙËÈàɀɯÐÚɯÈɯÞÖÙÒÐÕÎɯ

ËÈàȭɯ3ÏÐÚɯÐÚɯÉÌÊÈÜÚÌɯ1ÜÉàɯÛÈÒÌÚɯÛÏÌɯÛÌÚÛɯÛÖɯÔÌÈÕȯɯɁ(ÍɯÛhe day is Saturday and I am

ÕÖÛɯÞÖÙÒÐÕÎɯÖÝÌÙÛÐÔÌȮɯÖÙɯÐÍɯÛÏÌɯËÈàɯÐÚɯ2ÜÕËÈàɯÈÕËɯ(ɯÈÔɯÕÖÛɯÞÖÙÒÐÕÎɯÖÝÌÙÛÐÔÌɂɯ

ÞÏÌÙÌÈÚɯÞÏÈÛɯ(ɯÙÌÈÓÓàɯÔÌÈÕÛɯÞÈÚɯɁ(ÍɯÛÏÌɯËÈàɯÐÚɯ2ÈÛÜÙËÈàȰɯÖÙɯÐÍɯÛÏÌɯËÈàɯÐÚɯ2ÜÕËÈàɯ

ÈÕËɯ(ɯÈÔɯÕÖÛɯÞÖÙÒÐÕÎɯÖÝÌÙÛÐÔÌɂȭɯThe easiest way to resolve this ambiguity is to

put brackets around any code to be evaluated as a single unit, like this:

and_or.rb

if aDay == 'Saturday' or (aDay == 'Sunday' and not working_overtime)

AND ..OR..NOT

Incidentally, Ruby has two different syntaxes for testing Boolean (true/false)

ÊÖÕËÐÛÐÖÕÚȭɯ(ÕɯÛÏÌɯÈÉÖÝÌɯÌßÈÔ×ÓÌȮɯ(ɀÝÌɯÜÚÌËɯÛÏÌɯ$ÕÎÓÐÚÏ-language style operators:

and, or and not . If you prefer you could use alternative operators similar to those

used in many other programming languages, namely: && (and), || (or) and !
(not).

!ÌɯÊÈÙÌÍÜÓȮɯÛÏÖÜÎÏȮɯÛÏÌɯÛÞÖɯÚÌÛÚɯÖÍɯÖ×ÌÙÈÛÖÙÚɯÈÙÌÕɀÛɯÊÖÔ×ÓÌÛÌÓàɯÐÕÛÌÙÊÏÈÕÎÌÈÉÓÌȭɯ

For one thing, they have different precedence which means that when multiple

operators are used in a single test the parts of the test may be evaluated in

different orders depending on which operators you use. For example, look at this

test:

THE BOOK OF RUBY

88

days.rb

if aDay == 'Saturday' or aDay == 'Sunday' and not working_overtime

 daytype = 'holiday'

end

Assuming that the Boolean variable, working_overtime , is true, would this test

succeed if the variable, aDayȮɯÞÌÙÌɯÐÕÐÛÐÈÓÐÚÌËɯÞÐÛÏɯÛÏÌɯÚÛÙÐÕÎȮɯȿ2ÈÛÜÙËÈàɀȳɯ(ÕɯÖÛÏÌÙɯ

words, would daytype ÉÌɯÈÚÚÐÎÕÌËɯÛÏÌɯÝÈÓÜÌɯȿÏÖÓÐËÈàɀɯÐÍɯaDay is ȿ2ÈÛÜÙËÈàɀȳɯ3ÏÌɯ

answer is: ÕÖȮɯÐÛɯÞÖÜÓËÕɀÛȭɯ3ÏÌɯÛÌÚÛɯÞÐÓÓɯÖÕÓàɯÚÜÊÊÌÚÚɯÐÍɯaDay ÐÚɯÌÐÛÏÌÙɯȿ2ÈÛÜÙËÈàɀɯ

ÖÙɯȿ2ÜÕËÈàɀɯÈÕËɯworking_overtime is not true.

Now consider this test:

if aDay == 'Saturday' || aDay == 'Sunday' && !working_overtime

 daytype = 'holiday'

end

On the face of it, this is the same test as the last one; the only difference being

ÛÏÈÛɯÛÏÐÚɯÛÐÔÌɯ(ɀÝÌɯÜÚÌËɯÛÏÌɯÈÓÛÌÙÕÈÛÐÝÌɯÚàÕÛÈßɯÍÖÙɯÛÏÌɯÖ×ÌÙÈÛÖÙÚȭɯ'ÖÞÌÝÌÙȮɯÛÏÌɯ

change is more than cosmetic since, if aDay ÐÚɯȿ2ÈÛÜÙËÈàɀɯÛÏÐÚɯÛest evaluates to

true and daytype ÐÚɯÐÕÐÛÐÈÓÐáÌËɯÞÐÛÏɯÛÏÌɯÝÈÓÜÌȮɯȿÏÖÓÐËÈàɀȭɯ3ÏÐÚɯÐÚɯÉÌÊÈÜÚÌɯÛÏÌɯ||

operator has a higher precedence than the or operator. So this test succeeds

either if aDay ÐÚɯȿ2ÈÛÜÙËÈàɀɯor if aDay ÐÚɯȿ2ÜÕËÈàɀɯÈÕËɯworking_overtime is not

true.

Refer to the Digging Deeper section at the end of this chapter for more on this.

As a general principle, you would do well to decide which set of operators you

prefer, stick to them and use brackets to avoid ambiguity.

IF..ELSIF

There will no doubt be occasions when you will need to take multiple different

actions based on several alternative conditions. One way of doing this is by

evaluating one if condition followed by a series of other test conditions p laced

after the keyword elsif . The whole lot must then be terminated using the end

keyword.

CHAPTER SIX

89

For example, here I am repeatedly taking input from a user inside a while loop;

an if ÊÖÕËÐÛÐÖÕɯÛÌÚÛÚɯÐÍɯÛÏÌɯÜÚÌÙɯÌÕÛÌÙÚɯȿØɀɯȹ(ɀÝÌɯÜÚÌËɯchomp() to remove the

carriagÌɯÙÌÛÜÙÕɯÍÙÖÔɯÛÏÌɯÐÕ×ÜÛȺȰɯÐÍɯȿØɀɯÐÚɯÕÖÛɯÌÕÛÌÙÌËɯÛÏÌɯÍÐÙÚÛɯelsif condition tests if

the integer value of the input (input.to_i) is greater than 800; if this test fails the

next elsif condition tests if it is less than or equal to 800:

if_elsif.rb

while input != 'q' do

 puts("Enter a number between 1 and 1000 (or 'q' to quit)")

 print("? - ")

 input = gets().chomp()

 if input == 'q'

 puts("Bye")

 elsif input.to_i > 800

 puts("That's a high rate of pay!")

 elsif input.to_i <= 800

 puts("We can afford that")

 end

end

The problem with this program is that, even though it asks the user to enter a

value between 1 and 1000, it accepts values less than 1 (incidentally, if you really

ÞÈÕÛɯÈɯÚÈÓÈÙàɯÐÕɯÔÐÕÜÚɯÍÐÎÜÙÌÚȮɯ(ɀÓÓɯÉÌɯÎÓÈËɯÛÖɯÖÍÍÌÙɯàÖÜɯÈɯÑÖÉȵȺɯÈÕËɯÎÙÌÈÛÌÙɯÛÏÈÕɯ

1000 (in ÞÏÐÊÏɯÊÈÚÌȮɯËÖÕɀÛɯÓÖÖÒɯÛÖɯÔÌɯÍÖÙɯÌÔ×ÓÖàÔÌÕÛȵȺȭɯ

We can fix this by rewriting the two elsif conditions and adding an else section

which executes if all the preceding tests fail:

if_elsif2.rb

if input == 'q'

 puts("Bye")

elsif input.to_i > 800 && input .to_i <= 1000

 puts("That's a high rate of pay!")

elsif input.to_i <= 800 && input.to_i > 0

 puts("We can afford that")

else

 puts("I said: Enter a number between 1 and 1000!")

end

THE BOOK OF RUBY

90

if_else_alt.rb

Ruby also has a short-form notation for if..then..else in which a

question mark ? replaces the if..then part and a colon : acts as elseȱ

< Test Condition > ? <if true do this> : <else do this>

For example:

x == 10 ? puts("it's 10") : puts("it's some ot her number")

When the test condition is complex (if it uses ands and ors) you

should enclose it in brackets. If the tests and code span several lines

the ? must be placed on the same line as the preceding condition and

the : must be placed on the same line as the code immediately follow-

ing the ?. In other words, if you put a newline before the ? or the :
you will generate a syntax error. This is an example of a valid multi -

line code block:

(aDay == 'Saturday' or aDay == 'Sunday') ?

 daytype = 'weekend' :

 daytype = 'weekday'

days2.rb

'ÌÙÌɀÚɯÈÕÖÛÏÌÙɯÌßÈÔ×ÓÌɯÖÍɯÈɯÓÖÕÎÌÙɯÚÌØÜÌÕÊÌɯÖÍɯif..elsif sections followed by a

catch-all else section. This time the trigger value, i, is an integer:

def showDay(i)

 if i == 1 then puts("It' s Monday")

 elsif i == 2 then puts("It's Tuesday")

 elsif i == 3 then puts("It's Wednesday")

 elsif i == 4 then puts("It's Thursday")

 elsif i == 5 then puts("It's Friday")

 elsif (6..7) === i then puts("Yippee! It's the weekend! ")

 else puts("That's not a real day!")

 end

end

CHAPTER SIX

91

-ÖÛÐÊÌɯÛÏÈÛɯ(ɀÝÌɯÜÚÌËɯÈɯÙÈÕÎÌɯ(6..7) to match the two integer values for Saturday

and Sunday. The === method (that is, three = characters) tests whether a value

(here i) is a member of the range. In the above exam×ÓÌȮɯÛÏÐÚȱ

(6..7) === i

ȱÊÖÜÓËɯÉÌɯÙÌÞÙÐÛÛÌÕɯÈÚȯ

(6..7).include?(i)

The === method is defined by the Object class and overridden in descendent

classes. Its behaviour varies according to the class. As we shall see shortly, one of

its fundamental uses is to provide meaningful tests for case statements.

UNLESS

unless.rb

Ruby also can also perform unless tests, which are the exact opposite of if tests:

unless aDay == 'Saturday' or aDay == 'Sunday'

 daytype = 'weekday'

else

 daytype = 'weekend'

end

Think of unless ÈÚɯÉÌÐÕÎɯÈÕɯÈÓÛÌÙÕÈÛÐÝÌɯÞÈàɯÖÍɯÌß×ÙÌÚÚÐÕÎɯȿÐÍɯÕÖÛɀȭɯ3ÏÌɯÍÖÓÓÖÞÐÕg

is equivalent to the code above:

if !(aDay == 'Saturday' or aDay == 'Sunday')

 daytype = 'weekday'

else

 daytype = 'weekend'

end

THE BOOK OF RUBY

92

IF AND UNLESS MODIFIERS

You may recall the alternative syntax for while loops mentioned in Chapter 5.

(ÕÚÛÌÈËɯÖÍɯÞÙÐÛÐÕÎɯÛÏÐÚȱ

while tired do sleep end

ȱÞÌɯcan write this:

sleep while tired

This alternative syntax, in which the while keyword is placed between the code

ÛÖɯÌßÌÊÜÛÌɯÈÕËɯÛÏÌɯÛÌÚÛɯÊÖÕËÐÛÐÖÕɯÐÚɯÊÈÓÓÌËɯÈɯȿÞÏÐÓÌɯÔÖËÐÍÐÌÙɀȭɯ(ÛɯÛurns out that

Ruby has if and unless modifiers too. Here are a few examples:

if_unless_mod.rb

sleep if tired

begin

 sleep

 snore

end if tired

sleep unless not tired

begin

 sleep

 snore

end unless not tired

The terseness of this syntax is useful when you repeatedly need to take some

well -defined action if some condition is true. You might, for example, pepper

your code with debugging output if a constant called DEBUG is true:

puts("somevar = #{somevar}") if DEBUG

CHAPTER SIX

93

constants.rb

Constants

Constants in Ruby begin with a capital letter. Class names are con-

stants. You can obtain a list of all defined constants using the con-

stants method:

Object.constants

Ruby provides the const_get and const_set methods to get and set

the value of named constants specified as symbols (identifiers pre-

ceded by a colon such as :RUBY_VERSION).

Note that, unlike the constants in many other programming la n-

ÎÜÈÎÌÚȮɯ1ÜÉàɀÚɯÊÖÕÚÛÈÕÛÚɯÔÈàɯÉÌɯÈÚÚÐÎÕÌËɯÕÌÞɯÝÈÓÜÌÚȯ

RUBY_VERSION = "1.8.7"

RUBY_VERSION = "2.5.6"

The above reassignment of the RUBY_VERSION constant produces

ÈÕɯȿÈÓÙÌÈËàɯÐÕÐÛÐÈÓÐáÌËɯÊÖÕÚÛÈÕÛɀɯÞÈÙÕÐÕÎɯɬ but not an error!

CASE STATEMENTS

When you need to take a variety of different actions based on the value of a

single variable, multiple if..elsif tests are verbose and repetitive.

A neater alternative is provided by a case statement. This begins with the word

case followed by the variable name to test. Then comes a series of when sections,

each of which specifies a ȿÛÙÐÎÎÌÙɀɯvalue followed by some code.

This code executes only when the test variable equals the trigger value:

THE BOOK OF RUBY

94

case.rb

case(i)

 when 1 : puts("It's Monday")

 when 2 : puts("It's Tuesday")

 when 3 : puts("It's Wednesday")

 when 4 : puts("It's Thursday")

 when 5 : puts("It's Friday")

 when (6..7) : puts("Yippee! It's the weekend! ")

 else puts("That's not a real day!")

end

In the example aÉÖÝÌȮɯ(ɀÝÌɯÜÚÌËɯÊÖÓÖÕÚɯÛÖɯÚÌ×ÈÙÈte each when test from the code

to execute. Alternatively, you could use the then keyword :

when 1 then puts("It's Monday")

The colon or then can be omitted if the test and the code to be executed are on

separate lines. Unlike case statements in C-like languages, there is no need to

enter a break keyword when a match is made in order to prevent execution

trickling down through the remainder of the sections. In Ruby, once a match is

made the case statement exits:

case(i)

 when 5 : puts("It's Friday")

 puts("...nearly the weekend!")

 when 6 : puts("It's Saturday!")

 # the following never executes

 when 5 : puts("It's Friday all over again!")

end

You can include several lines of code between each when condition and you can

include multiple values separated by commas to trigger a single when block, like

this:

when 6, 7 : puts("Yippee! It's the weekend! ")

CHAPTER SIX

95

case2.rb

The condition in a case statement is not obliged to be a simple variable; it can be

an expression like this:

case(i + 1)

You can also use non-integer types such as string. If multiple trigger values are

specified in a when section, they may be of varying types ɬ for example, both

string and integers:

when 1, 'Monday', 'Mon' : puts("Yup, '#{i}' is Monday")

Here is a longer example, illustrating some of the syntactical elements mentioned

above:

case3.rb

case(i)

 when 1 : puts("It's Monday")

 when 2 : puts("It's Tuesday")

 when 3 : puts("It's Wednesday")

 when 4 : puts("It's Thursday")

 when 5 then puts("It's Friday")

 puts("...nearly the weekend!")

 when 6, 7

 puts("It's Saturday!") if i == 6

 puts("It's Sunday!") if i == 7

 puts("Yippee! It's the weekend! ")

 # the following never executes

 when 5 : puts("It's Friday all over again!")

 else puts("That's not a real day!")

end

THE BOOK OF RUBY

96

THE === METHOD

As mentioned earlier, the when tests on object used in a case statement are

performed using the === method. So, for example, just as the === method returns

true when an integer forms part of a range, so a when test returns true when an

integer variable in a case statement forms part of a range expression:

when (6..7) : puts("Yippee! It's the weekend! ")

If in doubt on the effect of the === method for a specific object, refer to the Ruby

ËÖÊÜÔÌÕÛÈÛÐÖÕɯÖÕɯÛÏÈÛɯÖÉÑÌÊÛɀÚɯÊÓÈÚÚȭ

ALTERNATIVE CASE SYNTAX

There is an alternative form of the case statement which is like a shorthand form

of a series of if..then..else statements. Each when section can perform some

arbitrary test and execute one or more lines of code. No case variable is required.

Each when section returns a value which, just like a method, is the result of the

ÓÈÚÛɯ×ÐÌÊÌɯÖÍɯÊÖËÌɯÛÏÈÛɀs evaluated. This value can be assigned to a variable

preceding the case statement:

case4.rb

salary = 2000000

season = 'summer'

happy = case

 when salary > 10000 && season == 'summer':

 puts("Yes, I really am happy!")

 'Very happy' #=> This value is ôreturnedõ

 when salary > 500000 && season == 'spring' : 'Pretty happy'

 else puts('miserable')

end

puts(happy) #=> òVery happyó

CHAPTER SIX

97

Digging Deeper

BOOLEAN CONDITIONS

and &&
These operators evaluate the left-hand side then, only if the result is true, they

evaluate the right -hand side; and has lower precedence than &&

or ||
These operators evaluate the left-hand side then, if the result is false, they evalu-

ate the right-hand side; or has lower precedence than ||

not !
This negates a Boolean value ɬ i.e. returns true when fal se and false when true.

Be careful when using the alternative Boolean operators. Due to the difference in

precedence, conditions will be evaluated in different orders and may yield

different results.

Consider the following:

boolean_ops.rb

Example 1

if (1==3) and (2==1) || (3==3) then

 puts('true')

else

 puts('false')

end

Example 2

if (1==3) and (2==1) or (3==3) then

 puts('true')

else

 puts('false')

end

THE BOOK OF RUBY

98

3ÏÌÚÌɯÔÈàɯÓÖÖÒɯÛÏÌɯÚÈÔÌɯÈÛɯÍÐÙÚÛɯÚÐÎÏÛȭɯ(ÕɯÍÈÊÛȮɯ$ßÈÔ×ÓÌɯƕɯ×ÙÐÕÛÚɯȿÍÈÓÚÌɀɯÞÏÐÓÌɯ

example 2, prints true. This is entirely due to the fact that or has lower prece-

dence than || . As a consequence, Example 1 ÛÌÚÛÚȯɯɁÐÍɯƕɯÌØÜÈÓÚɯƗɯȻfalse] and (either 2

equals 1 or 3 equals 3) [trueȼɂȭɯ ÚɯÖÕÌɯÖÍɯÛÏÌÚÌɯÛÞÖɯÕÌÊÌÚÚÈÙàɯÊÖÕËÐÛÐÖÕÚɯÐÚɯÍÈÓÚÌȮɯ

the entire test returns false.

Now look at Example 2ȭɯ3ÏÐÚɯÛÌÚÛÚȯɯɁȹÐÍɯƕɯÌØÜÈÓÚɯƗɯÈÕËɯƖɯÌØÜÈÓÚɯƕȺɯȻfalse] or 3 equals

3 [trueȼɂȭɯ3ÏÐÚɯÛÐÔÌȮɯÞÌɯÖÕÓàɯÕÌÌËɯÖÕÌɯÖÍɯÛÏÌɯÛÞÖɯÛÌÚÛÚɯÛÖɯÚÜÊÊÌÌËȰɯÛÏÌɯÚÌÊÖÕËɯÛÌÚÛɯ

evaluates to true so the entire tests returns true.

The side-effects of operator precedence in this kind of test can lead to very

obscure bugs. You can avoid these by clarifying the meaning of the test using

brackets. Here, I have rewritten Examples 1 and 2 above; in each case the addi-

tion of one pair of brackets has inverted the initial Boolean value returned by the

test:

Example 1 (b) ð now returns true

if ((1==3) and (2== 1)) || (3==3) then

 puts('true')

else

 puts('false')

end

Example 2 (b) ð now returns false

if (1==3) and ((2==1) or (3==3)) then

 puts('true')

else

 puts('false')

end

N EGATION

The negation operator, !, can be used at the start of an expression or, as an

alternative, you can use the != ȹȿÕÖÛɯÌØÜÈÓÚɀȺɯÖ×ÌÙÈÛÖÙɯÉÌÛÞÌÌÕɯÛÏÌɯÓÌÍÛɯÈÕËɯÙÐÎÏÛɯ

hand side of an expression:

CHAPTER SIX

99

!(1==1) #=> false

1!=1 #=> false

Alternatively, you can use not instead of !

not(1==1)

ECCENTRICITIES OF BOOLEAN OPERATORS

eccentricities.rb

!ÌɯÞÈÙÕÌËɯÛÏÈÛɯ1ÜÉàɀÚɯ!ÖÖÓÌÈÕɯÖ×ÌÙÈÛÖÙÚɯÊÈÕɯÚÖÔÌÛÐÔÌÚɯÉÌÏÈÝÌɯÐÕɯÈɯÊÜÙÐÖÜÚɯÈÕËɯ

ÜÕ×ÙÌËÐÊÛÈÉÓÌɯÔÈÕÕÌÙȭɯ%ÖÙɯÌßÈÔ×ÓÌȱ

puts((not(1==1))) # This is ok

puts(not(1==1)) # This is a syntax error

puts(true && true && !(true)) # This is ok

puts(true && true and !(true)) # This is a syntax error

puts(((true) and (true))) # This is ok

puts(true && true) # This is ok

puts(true and true) # This is a syntax error

In many cases, problems can be avoided by sticking to one style of operator (that

is ɬ either and, or , not or &&, || , !) rather than mixing the two. In addition, the

generous use of brackets is to be recommended!

CATCH AND THROW

Ruby provides a pair of methods, catch and throw , which can be used to break

out of a block of code when some condition is met. 3ÏÐÚɯÐÚɯ1ÜÉàɀÚɯÕÌÈÙÌÚÛɯÌØÜÐÝa-

lent to a goto in some other programming languages. The block must begin with

catch followed by a symbol (i.e. a unique identifier preceded by a colon), such as

:done or :finished . The block itself may either be delimited by curly brackets or

by the keywor ds do and end, like this:

THE BOOK OF RUBY

100

think of this as a block called :done

catch(:done){

 # some code here

}

and this is a block called :finished

catch(:finished) do

 # some code here

end

Inside the block, you can call throw with a symbol as an argument. Normally

you would call throw when some specific condition is met which makes it

ËÌÚÐÙÈÉÓÌɯÛÖɯÚÒÐ×ɯÈÓÓɯÛÏÌɯÙÌÔÈÐÕÐÕÎɯÊÖËÌɯÐÕɯÛÏÌɯÉÓÖÊÒȭɯ%ÖÙɯÐÕÚÛÈÕÊÌȮɯÓÌÛɀÚɯÈÚÚÜÔÌɯ

the block contains some code that prompts the user to enter a number, divides

some value by that number then goes on to do a multitude of other complex

calculations with the result. Obviously, if the user enters 0 then none of the

calculations that follow can be completed so you would want to skip them all by

jumping right out of the block and continuing with any code that follows it. This

is one way of doing that:

catch_throw.rb

catch(:finished) do

 print('Enter a number: ')

 num = gets().chomp.to_i

 if num == 0 then

 throw :finished # if num is 0, jump out of the block

 end

 # Here there may be hundreds of lines of

 # calculations based on the value of num

 # if num is 0 this code will be skipped

end

 # the throw method causes execution to

 # jump to here ð outs ide of the block

puts("Finished")

CHAP TER SIX

101

You can, in fact, have a call to throw outside the block, like this:

def dothings(aNum)

 i = 0

 while true

 puts("I'm doing things...")

 i += 1

 throw(:go_for_tea) if (i == aNum)

 # th rows to end of go_to_tea block

 end

end

catch(:go_for_tea){ # this is the :go_to_tea block

 dothings(5)

}

And you can have catch blocks nested inside other catch blocks, like this:

catch(:finished) do

 print('Enter a number: ')

 num = gets().chomp.to_i

 if num == 0 then throw :finished end

 puts(100 / num)

 catch(:go_for_tea){

 dothings(5)

 }

 puts("Things have all b een done. Time for tea!")

end

As with gotos and jumps in other programming languages, catch and throw in

Ruby should be used with great care as they break the logic of your code and

can, potentially, introduce hard -to-find bugs.

THE BOOK OF RUBY

102

103

CHAPTER SEVEN

Methods

6ÌɀÝÌɯÜÚÌËɯÕÜÔÌÙÖÜÚɯÔÌÛÏÖËÚɯÛÏÙÖÜÎÏÖÜÛɯÛÏÐÚɯÉÖÖÒȭɯ.ÕɯÛÏÌɯÞÏÖÓÌȮɯÛÏÌàɯÈÙÌÕɀÛɯ

particularly complicated things ɬ so you may wonder why the present chapter,

which is all about methods, is so long. As we shall discover, there is much more

to methods than meets the eye.

CLASS METHODS

3ÏÌɯÔÌÛÏÖËÚɯÞÌɀÝÌɯÉÌÌÕɯÜÚÐÕÎɯÚÖɯÍÈÙɯÏÈÝÌɯÉÌÌÕɯȿÐÕÚÛÈÕÊÌɯÔÌÛÏÖËÚɀȭɯ ÕɯÐÕÚÛÈÕÊÌɯ

method belongs to a specific instance of a class ɬ in other words, to an individual

object. It is also possible to write ȿÊÓÈÚÚɯÔÌÛÏÖËÚɀȭɯ ɯÊÓÈÚÚɯÔÌÛÏÖË belongs to the

class itself. In order to define a class method you may precede the method name

with the class name and a full stop:

class_methods1.rb

class MyClass

 def MyClass.classMethod

 puts("This is a class method")

 end

 def instanceMethod

 puts("This is an instance method")

 end

end

THE BOOK OF RUBY

104

You should use the class name when calling a class method:

MyClass.classMethod

A specific object cannot call a class method. Nor can a class call an instance

method:

MyClass.instanceMethod #=> Error! This is an ôundefined methodõ

ob.classMethod #=> Error! This is an ôundefined methodõ

CLASS VARIABLES

Class methods may remind you of the class variables (that is, variables whose

names begin with @@). You may recall that we previously used class variables

in a simple adventure game (see: 2adventure.rb in Chapter 2) to keep a tally of

the total number of objects in the game; each time a new Thing object was

created, 1 was added to the @@num_things class variable:

class Thing

 @@num_things = 0

 def initialize(aName, aDescription)

 @@num_things +=1

 end

end

Unlike an instance variable (in an object derived from a class), a class variable

must be given a value when it is first declared:

@@classvar = 1000 # class variables must be initialized

Initialization of either instance or class variables within the body of the class only

affect the values stored by the class itself. Class variables are available both to the

class itself and to objects created from that class. However, each instance variable

is unique; each object has its own copy of any instance variables ɬ and the class

itself may also have its own instance variables.

CHAPTER SEVEN

105

Class and Instance Variables and Methods : Summary

Instance variables begin with @

 @myinstvar # instance variable

Class variables begin with @@

 @@myclassvar # class variable

Instance methods are defined by: def <MethodName>

 def anInstanceMethod

 # some code

 end

Class methods are defined by: def <ClassName>.<MethodName>

 def MyClass.aClassMethod

 # some code

 end

class_methods2.rb

To understand how a class may have instance variables, take a look at the

class_methods2.rb program. This declares and initializ es a class variable and an

instance variable:

@@classvar = 1000

@instvar = 1000

It defines a class method, classMethod , which increments both these variables

by 10 and an instance method, instanceMethod , which increments both v a-

riables by 1. Notice that I have also given a value to the instance variable,

@instvar . I said earlier that initial values are not normally assigned to instance

variables in this way. The exception to the rule is when you assign a value to an

instance variable of the class itself rather than to an object derived from that class.

The distinction should become clearer shortly.

(ɀÝÌɯÞÙÐÛÛÌÕɯÈɯÍÌÞɯÓÐÕÌÚɯÖÍɯÊÖËÌɯÞÏÐÊÏɯÊÙÌÈÛÌɯÛÏÙÌÌɯÐÕÚÛÈÕÊÌÚɯÖÍɯ,à"ÓÈÚÚɯȹÛÏÌɯob

variable is initialized with a new instance on each turn through the loop), then

calls both the class and instance methods:

THE BOOK OF RUBY

106

for i in 0..2 do

 ob = MyClass.new

 MyClass.classMethod

 ob.instanceMethod

 puts(MyClass.showVars)

 puts(ob.showVars)

end

IɀÝÌɯ ÈÓÚÖɯ ÞÙÐÛÛÌÕɯ ÈÕÖÛÏÌÙɯ ÊÓÈÚÚɯ ÔÌÛÏÖËȮɯMyClass.showVars, and an instance

method, showVars, to display the values of @instvar and @@classvar at each

turn th rough the loop. When you run the code, these are the values that are

displayed:

(class method) @instvar = 1010, @@classvar = 1011

(instance method) @instvar = 1, @@classvar = 1011

(class method) @instvar = 1020, @@classvar = 1022

(instance method) @instvar = 1, @@classvar = 1022

(class method) @instvar = 1030, @@classvar = 10 33

(instance method) @instvar = 1, @@classvar = 1033

You may need to look at these results carefully in order to see what is going on

here. In summary, this is what is happening: the code in both the class method,

MyClass.classMethod and the instance method, instanceMethod , increments

both the class and instance variables, @@classvar and @instvar .

You can see clearly that the class variable is incremented by both these methods

(the class method adds 10 to @@classvar whenever a new object is created while

the instance method adds 1 to it). However, whenever a new object is created its

instance variable is initialized to 1 by the instanceMethod . This is the expected

behavior ɬ since each object has its own copy of an instance variable but all

objects share a unique class variable.

Perhaps less obvious is the fact that the class itself also has its own instance

variable, @instvar . This is because, in Ruby, a class is an object and therefore,

can contain instance variables, just like any other object. The MyClass variable,

@instvar , is incremented by the class method, MyClass.classMethod :

@instvar += 10

CHAPTER SEVEN

107

Notice when the instance method, showVars, prints the value of @instvar , it

prints the value stored in a specific object, ob; the value of obɀÚɯ@instvar is

initially nil (not the value 1000 with which the MyClass variable, @instvar , was

initialized) and this value is incremented by 1 in instanceMethod .

When the class method, MyClass.showVars, prints the value of @instvar , it

prints the value stored in the class itself ȹÐÕɯÖÛÏÌÙɯÞÖÙËÚȮɯ,à"ÓÈÚÚɀÚɯ@instvar is a

different variable from obɀÚɯ@instvar). But when either method prints the value of

the class variable, @@classvar, the value is the same.

Just remember that there is only ever one copy of a class variable but there may

be many copies of instance variables. If this is still confusing, take a look at the

inst_vars.rb program:

inst_vars.rb

class MyClass

 @@classvar = 1000

 @instvar = 1000

 def MyClass.classMethod

 if @instvar == nil then

 @instvar = 10

 else

 @instvar += 10

 end

 end

 def instanceMethod

 if @instvar == nil then

 @instvar = 1

 else

 @instvar += 1

 end

 end

end

ob = MyClass.new

puts MyClass.instance_variable_get(:@instvar)

THE BOOK OF RUBY

108

puts(' -------------- ')

for i in 0..2 do

 # MyClass.classMethod

 ob.instanceMethod

 puts("MyClass @instvar= #{MyClass.ins tance_variable_get(:@instvar)}")

 puts("ob @instvar= #{ob.instance_variable_get(:@instvar)}")

end

This time, instead of creating a new object instance at each turn through the loop,

we create a single instance (ob) at the outset. When the ob.instanceMethod is

called, @instvar is incremented by 1.

Here (ɀÝÌɯÜÚÌËɯÈɯÓÐÛÛÓÌɯÛÙÐÊÒɯÛÖɯÓÖÖÒɯÐÕÚÐËÌɯÛÏÌɯÊÓÈÚÚɯÈÕËɯÔÌÛÏÖËɯÈÕËɯÙÌÛÙÐÌÝÌɯÛÏÌɯ

value of @instvar ÜÚÐÕÎɯ1ÜÉàɀÚɯinstance_get_variable method:

puts("MyClass @ins tvar= #{MyClass.instance_variable_get(:@instvar)}")

puts("ob @instvar= #{ob.instance_variable_get(:@instvar)}")

As we only ever increment the @instvar which belongs to the object ob, the value

of its @instvar goes up from 1 to 3 as the for loop executes. But the @instvar

which belongs to the MyClass class is never incremented; it remains at its initial

value (1000)...

1000

MyClass @instvar= 1000

ob @instvar= 1

MyClass @instvar= 1000

ob @instvar= 2

MyClass @instvar= 1000

ob @instvar= 3

But now, uncomment this line...

MyClass.classMethod

This now calls a class method which increments @instvar by 10. This time when

you run the program you se e that, as before, the @instvar variable of ob is

CHAPTER SEVEN

109

incremented by 1 on each turn through the loop while the @instvar variable of

MyClass is incremented by 10...

1000

MyClass @instvar= 1010

ob @instvar= 1

MyClass @instvar= 1020

ob @instvar= 2

MyClass @instvar= 1030

ob @instvar= 3

A Class Is An Object

To understand this, just remember that a class is an object ȹÈÊÛÜÈÓÓàȮɯÐÛɀÚɯ

an instance of the Class ÊÓÈÚÚȵȺȭɯ3ÏÌɯ,à"ÓÈÚÚɯȿÊÓÈÚÚɯÖÉÑÌÊÛɀɯÏÈÚɯÐÛÚɯÖÞÕɯ

instance variable (@instvar) just as the ob object has its own instance

variable (which, here, also happens to be called @instvar). Instance

variables are always unique to an object instance ɬ so no two objects

(not even an object like MyClass which also happens to be a class!)

can ever share a single instance variable.

W HAT ARE CLASS METHODS FOR?

But why, one may reasonably ask, would you ever want to create a class method

rather than the more usual instance method? There are two main reasons: first, a

ÊÓÈÚÚɯÔÌÛÏÖËɯÊÈÕɯɯÉÌɯÜÚÌËɯÈÚɯÈɯȿÙÌÈËà-to-ÙÜÕɯÍÜÕÊÛÐÖÕɀɯÞÐÛÏÖÜÛɯÏÈÝÐÕÎɯÛÖɯÎÖɯÛo

the bother of creating an object just to use it and, secondly, it can be used on

those occasions when you need to run a method before an object has been

created.

%ÖÙɯÈɯÍÌÞɯÌßÈÔ×ÓÌÚɯÖÍɯÜÚÐÕÎɯÔÌÛÏÖËÚɯÈÚɯȿÙÌÈËàɯÛÖɯÙÜÕɯÍÜÕÊÛÐÖÕÚɀȮɯÛÈÒÌɯÈɯÓÖÖÒɯÈÛɯ

the File class. Many of its methods are class methods. This is because, most of the

time you will be using them to do something to or return information on an

existing file. 8ÖÜɯËÖÕɀÛɯÕÌÌËɯÛÖɯÊÙÌÈÛÌɯÈɯ%ÐÓÌɯÖÉÑÌÊÛɯÛÖɯËÖɯÛÏÈÛȰɯÐÕÚÛÌÈËɯàÖÜɯ×ÈÚÚɯÛÏÌɯ

file name as an argument to the class methods. Here are a few examples:

THE BOOK OF RUBY

110

file_methods.rb

fn = 'file_methods.rb'

if File.exist?(fn) then

 puts(File.expand_path(fn))

 puts(File.basename(fn))

 puts(File.dirname(fn))

 puts(File.extname(fn))

 puts(File.mtime(fn))

 puts("#{File.size(fn)} bytes")

else

 puts("Can't find file!")

end

The other occasion when a class method is vital is when you need to use a

method before an object has been created. The most important example of this is

the new method.

You call the new method every time you create an object. Until the object has

been created, you clearly cannot call one of its instance methods ɬ because you

can only call instance methods from an object that already exists. When you use

new you are calling a method of the class itself and telling the class to create a

new instance of itself.

RUBY CONSTRUCTORS ð NEW OR INITIALIZE ?

The method responsible for bringing an object into being is called the construc-

tor. In Ruby, the constructor method is called new. The new method is a class

method which, once it has created an object, will run an instance method named

initialize if such a method exits.

In brief then, the new method is the constructor and the initialize method is used

to initialize the values of any variables immediately after an object is created. But

ÞÏàɯÊÈÕɀÛɯàÖÜɯÑÜÚÛɯÞÙÐÛÌɯàÖÜÙɯÖÞÕɯnew method and initialize variables in it?

6ÌÓÓȮɯÓÌÛɀÚɯÛÙàɯÛÏÈÛȯ

CHAPTER SEVEN

111

new.rb

class MyClass

 def initialize (aStr)

 @avar = aStr

 end

 def MyClass.new(aStr)

 super

 @anewvar = aStr.swapcase

 end

end

ob = MyClass.new("hello world")

puts (ob)

puts (ob.class)

'ÌÙÌȮɯ(ɀÝÌɯÊÈÓÓÌËɯÛÏÌɯËÌÍÈÜÓÛɯnew constructor using the super keyword to invoke

the new ÔÌÛÏÖËɯÖÍɯÛÏÌɯÚÜ×ÌÙɯÊÓÈÚÚȭɯ3ÏÌÕɯ(ɀÝÌɯÊÙÌÈÛÌËɯÈɯÚÛÙÐÕÎɯÐÕÚÛÈÕÊÌɯÝÈÙÐÈÉÓÌȮɯ

@anewvar. So what do I end up with? Not, as you might suppose, a new

MyClass object containing a couple of string variables. Remember that the last

expression evaluated by a method in Ruby is the value returned by that method.

The last expression evaluated by the new method here is a string. So when I

ÌÝÈÓÜÈÛÌɯÛÏÐÚȱ

ob = MyClass.new("hello world")

ȱMyClass.new returns a string; and it is this string (not a MyClass object) which

is assigned to ob. As it is most unlikely that you would ever want to do som e-

thing like this, you would generally be wise to avoid trying to override the new

method.

THE BOOK OF RUBY

112

SINGLETON METHOD S

class_classes.rb

A singleton method is a method which belong to a single object rather than to an

entire class. Many of the methods in the Ruby class library are singleton me-

thods. This is because, as mentioned earlier, each class is an object of the type

Class. Or, to put it simply: the class of every class is Class. This is true of all

classes ɬ both those you define yourself and those provided by the Ruby class

library:

class MyClass

end

puts(MyClass.class) #=> Class

puts(String.class) #=> Class

puts(Object.class) #=> Class

puts(Class.class) #=> Class

puts(IO .class) #=> Class

Now, some classes also have class methods ɬ that is, methods which belong to

the Class object itself. In that sense these are singleton methods of the Class

object. Indeed, if you evaluate the following, you will be shown an array of

method names which match the names of IO class methods:

p(IO.singleton_methods)

As explained earlier, when you write your own class methods you do so by

prefacing the method name with the name of the class:

def MyClass.classMethod

It turns out that you can use a similar syntax when creating singleton classes for

specific objects. This time you preface the method name with the name of the

object:

def myObject.objectMethod

CHAPTER SEVEN

113

class_hierarchy.rb

All Ruby objects are descendents of the Object class...

...and that includes the Class class! Curious as it may at first seem,

each class from which an object is created is itself an object which de-

scends from the Object class. To prove this, try out the

class_hierarchy.rb program:

def showFamily(aClass)

 if (aClass != nil) then

 puts("#{aClass} :: about to r ecurse with aClass.superclass

 = #{aClass.superclass}")

 showFamily(aClass.superclass)

 end

end

+ÌÛɀÚɯlook at a concrete example. Suppose you have a program containing

Creature objects of many different species (maybe you are a veterinarian, the

head keeper or a zoo or, like the author of this book, an enthusiastic player of

adventure games); each creature has a method called talk which displays the

vocal noise which each creature usually makes.

'ÌÙÌɀÚɯÔàɯ"ÙÌÈÛÜÙÌɯÊÓÈÚÚɯÈÕËɯÈɯÍÌÞɯÊÙÌÈÛÜÙÌɯÖÉÑÌÊÛÚȯ

singleton_meth1.rb

class Creature

 def initialize(aSpeech)

 @speech = aSpeech

 end

 def talk

 puts(@speech)

 end

end

cat = Creature.new("miaow")

dog = Creature.new("woof")

THE BOOK OF RUBY

114

budgie = Creat ure.new("Who's a pretty boy, then!")

werewolf = Creature.new("growl")

Then you suddenly realize that one of those creatures, and one alone, has addi-

tional special behavior. On the night of a full moon the werewolf not only talks

ȹɁÎÙÖÞÓɂȺȰɯÐÛɯÈÓÚÖɯÏÖÞÓÚɯȹɆ'ÖÞ-oo-oo-oo-oo!"). It really needs a howl method.

8ÖÜɯÊÖÜÓËɯÎÖɯÉÈÊÒɯÈÕËɯÈËËɯÚÜÊÏɯÈɯÔÌÛÏÖËɯÛÖɯÛÏÌɯ"ÙÌÈÛÜÙÌɯÊÓÈÚÚɯÉÜÛɯÛÏÌÕɯàÖÜɀËɯ

end up with ho wling dogs, cats and budgies too ɬ which is not what you want.

You could create a new Werewolf class which descends from Creature, but you

will only ever have one werewolf (they are, alas, an endangered species) so why

do you want a whole class for just thÈÛȳɯ6ÖÜÓËÕɀÛɯÐÛɯÔÈÒÌɯÔÖÙÌɯÚÌÕÚÌɯÛÖɯÏÈÝÌɯÈɯ

werewolf object which is the same as every other creature object apart from the

fact that it also has a howl ÔÌÛÏÖËȳɯ.*ȮɯÚÖɯÓÌÛɀÚɯËÖɯÛÏÈÛɯÉàɯÎÐÝÐÕÎɯÛÏÌɯÞÌÙÌÞÖÓÍɯÐÛÚɯ
very own singleton method. Here goes:

def werewo lf.howl

 puts("How -oo-oo-oo-oo!")

end

'ÌÊÒȮɯÞÌɯÊÈÕɯËÖɯÉÌÛÛÌÙɯÛÏÈÕɯÛÏÈÛȵɯ(ÛɯÖÕÓàɯÏÖÞÓÚɯÖÕɯÈɯÍÜÓÓɯÔÖÖÕɯÚÖɯÓÌÛɀÚɯÔÈÒÌɯÚÜÙÌɯ

ÛÏÈÛȮɯÐÍɯÈÚÒÌËɯÛÖɯÏÖÞÓɯÞÏÌÕɯÛÏÌɯÔÖÖÕɯÐÚɯÕÌÞȮɯÐÛɯÑÜÚÛɯÎÙÖÞÓÚȭɯ'ÌÙÌɀÚɯÔàɯÍÐÕÐÚÏÌËɯ

method:

def werewolf.howl

 if FULLMOON then

 puts("How -oo-oo-oo-oo!")

 else

 talk

 end

end

Notice that, even though this method has been declared outside of the Creature

class, it is able to call the instance method, talkȭɯ3ÏÈÛɀÚɯÉÌÊÈÜÚÌɯÛÏÌɯhowl method

ÕÖÞɯÓÐÝÌÚɯȿÐÕÚÐËÌɀɯÛÏÌɯÞÌÙÌÞÖÓÍɯÖÉÑÌÊÛɯÚÖɯÏÈÚɯÛÏÌɯÚÈÔÌɯÚÊÖ×ÌɯÞÐÛÏÐÕɯÛÏÈÛɯÖÉÑÌÊÛɯÈÚɯ

the talk ÔÌÛÏÖËȭɯ(ÛɯËÖÌÚɯÕÖÛȮɯÏÖÞÌÝÌÙȮɯÓÐÝÌɯÐÕÚÐËÌɯÈÕàɯÖÍɯÛÏÌɯÞÌÙÌÞÖÓÍɀÚɯÍÌÓÓÖÞɯ

creatures; the howl method belongs to him and him alone. Try to make the

budgie.howl and Ruby will inform you that howl is an undefined method.

CHAPTER SEVEN

115

Now, if you are debugging your code for your own use, having your program

blow up thanks to an undefined method may be acceptable; but if your program

ËÖÌÚɯÚÖɯÖÜÛɯÐÕɯÛÏÌɯÉÐÎȮɯÉÈËɯÞÖÙÓËɯÖÍɯÛÏÌɯȿÌÕË ÜÚÌÙɀȮɯÐÛɯÐÚɯËÌÍÐÕÐÛÌÓàɯnot acceptable.

If you think undefined methods are likely to be a problem, you can take avoi d-

ance measures by testing if a singleton method exists before trying to use it. The

Object class has a singleton_methods method which ret urns an array of single-

ton method names. You can test a method name for inclusion using the Array

ÊÓÈÚÚɀÚɯinclude? method. In singleton_meth2.rb ȮɯÍÖÙɯÌßÈÔ×ÓÌȮɯ(ɀÝÌɯ×ÙÖÎÙÈÔÔÌËɯ

ÈÕɯȿÖ×ÌÕɯÛÏÌɯÉÖßɀɯÎÈÔÌɯÞÏÐÊÏɯÏÈÚɯÈɯÕÜÔÉÌÙɯÖÍɯ!ÖßɯÖÉÑÌÊÛÚɯÖÕÓàɯÖÕÌɯÖÍɯÞÏÐÊÏȮɯ

when Ö×ÌÕÌËȮɯÊÖÕÛÈÐÕÚɯÛÏÌɯÚÛÈÙɯ×ÙÐáÌȭɯ(ɀÝÌɯÕÈÔÌËɯÛÏÐÚɯÚ×ÌÊÐÈÓɯ!ÖßɯÖÉÑÌÊÛɯsta r-

prize and given it a singleton method called congratulate :

singleton_meth2.rb

starprize = Box.new("Star Prize")

def starprize.congratulate

 puts("You've won a fabulous holiday in Grimsby!")

end

The congratulate method should be called when the starprize box is opened.

This bit of code (in which item is a Box object) ensures that this method (which

does not exist in any other object) is not called when some other box is opened:

if item.singleton_methods.include?("congratulate") then

 item.congratulate

end

An alternative way of checking the validity of a method would be to pass that

method name as a symbol (an identifier preceded by a colon) to the Object ÊÓÈÚÚɀÚɯ

respond_to? method:

if item.respond_to?(:congratulate) then

 item.congr atulate

end

6ÌɀÓÓɯÓÖÖÒɯÈÛɯÈÕÖÛÏÌÙɯÞÈàɯÖÍɯÏÈÕËÓÐÕÎɯnon-existent methods in Chap-

ter 20.

THE BOOK OF RUBY

116

SINGLETON CLASSES

A singleton method is a method which belongs to a single object. A singleton

class, on the other hand, is a class which defines a single object. Confused? Me

ÛÖÖȭɯ2ÖɯÓÌÛɀÚɯÛÈÒÌɯÈɯÊÓÖÚÌÙɯÓÖÖÒɯÈÛɯÛÏÌɯËÈÙÕɀɯÛÏÐÕÎÚȱ

+ÌÛɀÚɯÚÜ××ÖÚÌɯàÖÜɯÊÙÌÈÛÌɯÈɯÍÌÞɯËÖáÌÕɯÖÉÑÌÊÛÚȮɯÌÈÊÏɯÖÍɯÞÏÐÊÏɯÐÚɯÈÕɯÐÕÚÛÈÕÊÌɯÖÍɯÛÏÌɯ

Object class. Naturally they all have access to the usual OÉÑÌÊÛɯÊÓÈÚÚɀÚɯÔÌÛÏÖËÚɯ

such as inspect and class. But now you decide that you want just one special

ÖÉÑÌÊÛɯȹÍÖÙɯÛÏÌɯÚÈÒÌɯÖÍɯÝÈÙÐÌÛàȮɯÓÌÛɀÚɯÊÈÓÓɯÏÐÔɯob) which has one special method

ȹÓÌÛɀÚɯÊÈÓÓɯÐÛɯblather).

8ÖÜɯËÖÕɀÛɯÞÈÕÛɯÛÖɯËÌÍÐÕÌɯÈɯÞÏÖÓÌɯÕÌÞɯÊÓÈÚÚɯÍÖÙɯÛÏis one object since you will

never again create any more objects with the blather method. So you create a

class especially for little ob.

8ÖÜɯËÖÕɀÛɯÕÌÌËɯÛÖɯÕÈÔÌɯÛÏÐÚɯÊÓÈÚÚȭɯ8ÖÜɯÑÜÚÛɯÛÌÓÓɯÐÛɯÛÖɯÈÛÛÈÊÏɯÐÛÚÌÓÍɯÛÖɯob by putting

a << between the keyword class and the name of the object. Then you add code to

the class in the usual way:

singleton_class.rb

ob = Object.new

 # singleton class

class << ob

 def blather(aStr)

 puts("blather, blather #{aStr}")

 end

end

Now ob, and only ob, not only has all the usual methods of the Object class; it

also has the methods (here just the blather method but there could, in principle,

be many more) of its own special anonymous class:

ob.blather("weeble") #=> òblather, blather weebleó

IÍɯàÖÜɀÝÌɯÉÌÌÕɯ×ÈàÐÕÎɯÊÓÖÚÌɯÈÛÛÌÕÛÐÖÕȮɯàÖÜɯÔÐÎÏÛɯÏÈÝÌɯÕÖÛÐÊÌËɯÛÏÈÛɯÛÏÌɯÚÐÕÎÓÌÛÖÕɯ

class seems to be doing something rather similar to a singleton method. With a

singleton class, I can create an object and then add on extra methods packaged

CHAPTER SEVEN

117

up inside an anonymous class. With singleton methods, I can create an object

then add on methods one by one:

ob2 = Object.new

def ob2.blather(aStr) # <= this is a singleton method

 puts("grippity, grippity #{aStr}")

end

ob2.blather("ping!") #=> grippity, grippity ping!

singleton_class2.rb

2ÐÔÐÓÈÙÓàȮɯ(ɯÊÖÜÓËɯÙÌÞÙÐÛÌɯÛÏÌɯȿÚÛÈÙɯ×ÙÐáÌɀɯ×ÙÖÎÙÈÔȭɯ(ÕɯÛÏÌɯ×ÙÌÝÐÖÜÚɯÝÌÙÚÐÖÕɯ(ɯ

added on a singleton method, congratulate , to an object named starprize . I

could just as easily have created a singleton class containing the congratulate

method:

starprize = MyClass.new("Star Prize")

class << starprize

 def congratulate

 puts("You've won a fabulous holiday in Grimsby!")

 end

end

In fact, the similarity is more than skin deep. The end result of the code above is

that congratulate becomes a singleton method of starprize ÈÕËɯ(ɀÝÌɯÉÌÌÕɯÈÉÓÌɯÛÖɯ

verify that using this test:

if item.singleton_methods.include?("congratulate")

Singleton Method, Singleton Class ɬ 6ÏÈÛɀÚɯ3ÏÌɯ#ÐÍÍÌÙÌÕÊÌȭȭȭȳ

The short answer is: not a lot. These two syntaxes provide different

ways of adding methods to a specific object rather than building

those methods into its defining class.

THE BOOK OF RUBY

118

OVERRIDING METHODS

There are times when you may want to redefine a method that already exists in

ÚÖÔÌɯÊÓÈÚÚȭɯ6ÌɀÝÌɯËÖÕÌɯÛÏÐÚɯÉÌÍÖÙÌɯÞÏÌÕȮɯÍÖÙɯÌßÈÔ×ÓÌȮɯÞÌɯÊÙÌÈÛÌËɯÊÓÈÚÚÌÚɯÞÐÛÏɯ

their own to_s methods to return a string representation. Every Ruby class, from

Object downwards, has a to_s method. The to_s method of the Object class

ÙÌÛÜÙÕÚɯÛÏÌɯÊÓÈÚÚɯÕÈÔÌɯÈÕËɯÈɯÏÌßÈËÌÊÐÔÈÓɯÙÌ×ÙÌÚÌÕÛÈÛÐÖÕɯÖÍɯÛÏÌɯÖÉÑÌÊÛɀÚɯÜÕÐØÜÌɯ

identifier. However, many Ruby classes have their own special versions of to_s .

For example, Array.to_s concatenates and returns the values in the array.

When a method in one class replaces a method of the same name in an ancestor

ÊÓÈÚÚȮɯÐÛɯÐÚɯÚÈÐËɯÛÖɯȿÖÝÌÙÙÐËÌɀɯÛÏÈÛɯÔÌÛÏÖËȭɯ8ÖÜɯÊÈÕɯÖÝÌÙÙÐËÌɯÔÌÛÏÖËÚɯÛÏÈÛɯÈÙÌɯ

defined in the standard class library such as to_s as well as methods defined in

your own classes. If you need to add new behavior to an existing method,

ÙÌÔÌÔÉÌÙɯÛÖɯÊÈÓÓɯÛÏÌɯÚÜ×ÌÙÊÓÈÚÚɀÚɯÔÌÛÏÖËɯÜÚÐÕÎɯÛÏÌɯsuper keyword at the start of

the overridden method. Here is an example:

override .rb

class MyClass

 def sayHello

 return "Hello from MyClass"

 end

 def sayGoodbye

 return "Goodbye from MyClass"

 end

end

class MyOtherClass < MyClass

 def sayHello #overrides (and replaces) MyClass.sayHello

 return "Hello from MyOtherClass"

 end

 # overrides MyClass.sayHello but first calls that method

 # with super. So this version "adds to" MyClass.sayHello

 def sayGoodbye

 return super << " and also from MyOtherClass"

 end

CHAPTER SEVEN

119

 # ove rrides default to_s method

 def to_s

 return "I am an instance of the #{self.class} class"

 end

end

PUBLIC , PRIVATE AND PROTECTE D

(ÕɯÚÖÔÌɯÊÈÚÌÚȮɯàÖÜɯÔÈàɯÞÈÕÛɯÛÖɯÙÌÚÛÙÐÊÛɯÛÏÌɯȿÝÐÚÐÉÐÓÐÛàɀɯÖÍɯàÖÜÙɯmethods to ensure

that they cannot be called by code outside the class in which the methods occur.

3ÏÐÚɯÔÈàɯÉÌɯÜÚÌÍÜÓɯÞÏÌÕɯàÖÜÙɯÊÓÈÚÚɯËÌÍÐÕÌÚɯÝÈÙÐÖÜÚɯȿÜÛÐÓÐÛàɀɯÔÌÛÏÖËÚɯÞÏÐÊÏɯÐÛɯ

requires in order to perform certain functions which it does not intend for p ublic

consumption. By imposing access restrictions on those methods you can prevent

programmers from using them for their own nefarious purposes. This means that

you will be able to change the implementation of those methods at a later stage

without having ÛÖɯÞÖÙÙàɯÛÏÈÛɯàÖÜɯÈÙÌɯÎÖÐÕÎɯÛÖɯÉÙÌÈÒɯÚÖÔÌÉÖËàɯÌÓÚÌɀÚɯÊÖËÌȭ

Ruby provides three levels of method accessibility:

 public

 protected

 private

As the name suggests, public methods are the most accessible and private

methods are the least accessible. All your methods are public unless you specify

otherwise. When a method is public, it is available to be used by the world

outside the object in whose class it is defined.

When a method is private , it can only be used by other methods inside the object

in whose class it is defined.

A protected method generally works in the same way as a private method with

one tiny, but important difference: in addition to being visible to the methods of

the current object, a protected method is also visible to objects of the same type

when the second object is within the scope of the first object.

THE BOOK OF RUBY

120

The distinction between private and protected methods will probably be easier to

understand when you see a working example. Consider this class:

pub_prot_priv.rb

class MyClass

 private

 def priv

 puts("private")

 end

 protected

 def prot

 puts("protected")

 end

 public

 def pub

 puts ("public")

 end

 def useOb(anOb)

 anOb.pub

 anOb.prot

 anOb.priv

 end

end

(ɀÝÌɯËÌÊÓÈÙÌËɯÛÏÙÌÌɯÔÌÛÏÖËÚȮɯÖÕÌɯÍÖÙɯÌÈÊÏɯÓÌÝÌÓɯÖÍɯÈÊÊÌÚÚÐÉÐÓÐÛàȭɯ3ÏÌÚÌɯÓÌÝÌÓÚɯÈÙÌɯ

set by putting private , protected or public prior to one or more methods. The

specified accessibility level remains in force for all subsequent methods until

some other access level is specified.

Note : public , private and protected may look like keywords. But

they are, in fact, methods of the Module class.

Finally, my class has a public method, useOb, which takes a MyOb object as an

argument and calls the three methods, pub, prot and priv of that object. Now

CHAPTER SEVEN

121

ÓÌÛɀÚɯÚÌÌɯÏÖÞɯÈɯMyClass ÖÉÑÌÊÛɯÊÈÕɯÉÌɯÜÚÌËȭɯ%ÐÙÚÛɯÖÍɯÈÓÓȮɯ(ɀÓÓɯÊÙÌÈÛÌɯÛÞÖɯÐÕÚÛÈÕÊÌÚ of

the class:

myob = MyClass.new

myob2 = MyClass.new

-ÖÞȮɯ(ɯÛÙàɯÛÖɯÊÈÓÓɯÌÈÊÏɯÖÍɯÛÏÌɯÛÏÙÌÌɯÔÌÛÏÖËÚɯÐÕɯÛÜÙÕȱ

myob.pub # This works! Prints out òpublicó

myob.prot # This doesnõt work! I get a ôNoMethodErrorõ

myob.priv # This doesnõt work either - another ôNoMethodErrorõ

From the above, it would seem that the public method is (as expected) visible

from the world outside the object to which it applies. But both the private and

the protected methods are invisible. This being so, what is the protected method

for? Another example should help to clarify this:

myob.useOb(myob2)

This time, I am calling the public method useOb of the myob object and I am

passing to it a second object, myob2 , as an argument. The important thing to note

is that myob and myob2 are instances of the same class. Now, recall what I said

earlier:

 in addition to being visible to the methods of the current object, a protected

method is also visible to objects of the same type when the second object is within

the scope of the first object.

3ÏÐÚɯÔÈàɯÚÖÜÕËɯÓÐÒÌɯÎÖÉÉÓÌËàÎÖÖÒȭɯ+ÌÛɀÚɯÚÌÌɯÐÍɯÞÌɯÊÈÕɯÚÛÈÙÛɯÛÖɯÔÈÒÌɯÚÖÔÌɯÚÌÕÚÌɯ

out of it.

In the program, the first MyClass object (here myob) has a second MyClass object

within its scope when myob2 is passed as an argument to a method of myob.

When this happens, you can think of myob2 ÈÙÌɯÉÌÐÕÎɯ×ÙÌÚÌÕÛɯȿÐÕÚÐËÌɀɯmyob.

Now myob2 ÚÏÈÙÌÚɯÛÏÌɯÚÊÖ×ÌɯÖÍɯÛÏÌɯȿÊÖÕÛÈÐÕÐÕÎɀɯÖÉÑÌÊÛȮɯmyob. In this special

circumstance ɬ when two objects of the same class are within the scope defined

by that class ɬ the protected methods of any objects of this class become visible.

THE BOOK OF RUBY

122

In the present case, the protected method, prot , of myob2 (or, at any rate, of the

argument - here called anob - ÞÏÐÊÏɯȿÙÌÊÌÐÝÌÚɀɯmyob2) becomes visible and can

be executed. Its private arguments, however, are not visible:

def useOb(anOb)

 anOb.pub

 anOb.prot # protected method can be called

 anOb.priv # but calling a private method results in an error

end

CHAPTER SEVEN

123

Digging Deeper

PROTECTED AND PRIVATE IN DESCENDENT CLASSES

The same access rules apply when calling the methods of ancestor and descen-

dent objects. That is, when you pass to a method an object (as an argument)

which has the same class as the receiver object (i.e. the object to which the

method belongs), the argument object can call the public and protected methods

of the class but not its private methods.

protected.rb

For an example of this, take a look at the protected.rb program. Here I have

created a MyClass object called myob and a MyOtherClass object, myotherob ,

where MyOtherClass descends from MyClass. I try to pass myother ob as an

argument to the myob public method, shout :

myob.shout(myotherob)

But the shout method calls the private method, priv on the argument object:

def shout(anOb) # calls a private method

 puts(anOb.priv("This is a #{anOb.class} - hurrah"))

end

3ÏÐÚɯÞÖÕɀÛɯÞÖÙÒȵɯ1ÜÉàɯÊÖÔ×ÓÈÐÕÚɯÛÏÈÛɯÛÏÌɯpriv method is private.

Similarly, wer e I to do it the other way around ɬ that is, by passing the ancestor

object, myob, as the argument and invoking the method shout on the descendent

object, I would encounter the same error:

myotherob.shout(myob)

The MyClass class also has another public method, exclaim . This one calls a

protected method, prot :

def exclaim(anOb) # calls a protected method

 puts(anOb.prot("This is a #{anOb.class} - hurrah"))

end

THE BOOK OF RUBY

124

Now, I can pass either the MyClass object, myob, or the MyOtherClass object,

myother ob, as an argument to the exclaim method and no error will occur when

the protected method is called:

myob.exclaim(myotherob) # This is OK

myotherob.exclaim(myob) # And so is thisé

Needless to say, this only works when the two objects (the receiver and the

argument) share the same line of descent. If you send an unrelated object as an

argument, you would not be able to call methods of the receiver class, no matter

what their protection levels.

INVADING THE PRIVACY OF PRIVATE METHODS

The whole point of a private method is that it cannot be called from outside the

ÚÊÖ×ÌɯÖÍɯÛÏÌɯÖÉÑÌÊÛɯÛÖɯÞÏÐÊÏɯÐÛɯÉÌÓÖÕÎÚȭɯ2ÖɯÛÏÐÚɯÞÖÕɀÛɯÞÖÙÒȯ

send.rb

class X

 private

 def priv(aStr)

 puts("I'm private, " << aStr)

 end

end

ob = X.new

ob.priv("hello") # This fails

'ÖÞÌÝÌÙȮɯÐÛɯÛÜÙÕÚɯÖÜÛɯÛÏÈÛɯ1ÜÉàɯ×ÙÖÝÐËÌÚɯÈɯɀÎÌÛɯÖÜÛɯÊÓÈÜÚÌɀɯȹÖÙɯÔÈàÉÌɯ(ɯÚÏÖÜÓËɯ

ÚÈàɯÈɯȿÎÌÛɯÐÕɀɯÊÓÈÜÚÌȳȺɯÐÕɯÛÏÌɯÍÖÙÔɯÖÍɯÈɯÔÌÛÏÖËɯÊÈÓÓÌËɯsend.

The send method invokes the method whose name matches that of a symbol (an

identifier beginning with a colon such as :priv), which is passed as the first

argument to send like this:

ob.send(:priv, "hello") # This succeeds

CHAPTER SEVEN

125

Any arguments supplied after the symbol (like t ÏÌɯÚÛÙÐÕÎȮɯɁÏÌÓÓÖɂȺɯÈÙÌɯ×ÈÚÚÌËɯÐÕɯ

the normal way to the specified method.

Suffice to say that using send to gain public access to a private method is not

generally a good idea (else, why would you have made the method private in the

first place), so shouÓËɯÉÌɯÜÚÌËɯÞÐÛÏɯÊÈÜÛÐÖÕɯÖÙɯÕÖÛɯÈÛɯÈÓÓȱ

SINGLETON CLASS METHODS

Earlier on, we created class methods by appending a method name to the name

of the class like this:

def MyClass.classMethod

3ÏÌÙÌɯÐÚɯÈɯȿÚÏÖÙÛÊÜÛɀɯÚàÕÛÈß for doing this. Here is an example:

class_methods3.rb

class MyClass

 def MyClass.methodA

 puts("a")

 end

 class << self

 def methodB

 puts("b")

 end

 def methodC

 puts("c")

 end

 end

end

Here, methodA , methodB and methodC are all class methods of MyClass;

methodA is declared using the syntax we used previously:

THE BOOK OF RUBY

126

def <ClassName>.<methodname>

But methodB and methodC are declared using the syntax of instance methods:

def <methodname>

2ÖɯÏÖÞɯÊÖÔÌɯÛÏÌàɯÌÕËɯÜ×ɯÈÚɯÊÓÈÚÚɯÔÌÛÏÖËÚȳɯ(ÛɀÚɯÈÓÓɯËÖÞÕɯÛÖɯÛÏÌɯÍÈÊÛɯÛÏÈÛɯÛÏÌɯ

method declarations have been placed inside this code:

class << self

 # some method declarations

end

This may remind you of the syntax used for declaring sin gleton classes. For

example, in the singleton_class.rb program, you may recall that we first created

an object named ob and then gave it its very own method, blather :

class << ob

 def blather(aStr)

 puts("blather, blather #{aStr}")

 end

end

The blather method here is singleton method of the ob object. Similarly, in the

class_methods3.rb program, the methodB and methodC methods are singleton

methods of self ɬ and self happens to be the MyClass class. We can similarly

add singleton methods from outside the class definition by using << followed by

the class name, like this:

class << MyClass

 def methodD

 puts("d")

 end

end

CHAPTER SEVEN

127

NESTED METHODS

You can nest methods (have one method nested inside another). This gives you a

way of dividing up a long method into reusable chunks. So, for example, if

method x needs to do calculation y at several different points, you can put the y

method inside the x method:

nested_methods.rb

class X

 def x

 print("x:")

 def y

 print("ha! ")

 end

 def z

 print("z:")

 y

 end

 y

 z

 end

end

Nested methods are not initially visible outside of the scope in which they are

defined. So, in the above example, while y and z may be called from inside x ,

they may not be called by any other code:

ob = X.new

ob.y #<= error

ob.z # <= error

THE BOOK OF RUBY

128

However, when you run a method that encloses nested methods, those nested

methods will be brought into scope outside that method!

nested_methods2.rb

class X

 def x

 print("x:")

 def y

 print("y:")

 end

 def z

 print("z:")

 y

 end

 end

end

ob = X.new

ob.x #=> x:

puts

ob.y #=> y:

puts

ob.z #=> z:y:

CHAPTER SEVEN

129

METHOD NAMES

 ÚɯÈɯÍÐÕÈÓɯ×ÖÐÕÛȮɯÐÛɀÚɯÞÖÙÛÏɯÔÌÕÛÐÖÕÐÕÎɯÛÏÈÛɯÔÌÛÏÖËɯÕÈÔÌÚɯÐÕɯ1ÜÉàɯÈÓÔÖÚÛɯ

always begin with a lowercase character like this:

def fred

However, that is a convention, not an obligation. It is also permissible to begin

method names with capital letters, like this:

def Fred

Since the Fred method looks like a constant (it starts with a capital letter) , you

would need to tell Ruby that it is a method when calling it by adding brackets:

method_names.rb

Fred # <= Ruby complains ôuninitialized cons t ant

Fred() # <= Ruby calls the Fred method

On the whole it is better to stick to the convention of using method names that

begin with a lowercase character.

THE BOOK OF RUBY

130

131

CHAPTER EIGHT

Passing Arguments and Returning Values

(ÕɯÛÏÐÚɯÊÏÈ×ÛÌÙɯÞÌɀÓÓɯÉÌɯÓÖÖÒÐÕÎɯÈÛɯÔÈÕàɯÖÍɯthe effects and side-effects of passing

ÈÙÎÜÔÌÕÛÚɯÈÕËɯÙÌÛÜÙÕÐÕÎɯÝÈÓÜÌÚɯÛÖɯÈÕËɯÍÙÖÔɯÔÌÛÏÖËÚȭɯ%ÐÙÚÛȮɯÛÏÖÜÎÏȮɯÓÌÛɀÚɯÛÈÒÌɯÈɯ

ÔÖÔÌÕÛɯÛÖɯÚÜÔÔÈÙÐÚÌɯÛÏÌɯÛà×ÌÚɯÖÍɯÔÌÛÏÖËɯÞÏÐÊÏɯÞÌɀÝÌɯÜÚÌËɯÜ×ɯÛÖɯÕÖÞȯ

methods.rb

1. INSTANCE METHODS

An instance method is declared inside a class definition and is intended for use

ÉàɯÈɯÚ×ÌÊÐÍÐÊɯÖÉÑÌÊÛɯÖÙɯȿÐÕÚÛÈÕÊÌɀɯÖÍɯÛÏÌɯÊÓÈÚÚȮɯÓÐÒÌɯÛÏÐÚȯ

class MyClass

 # declare instance method

 def instanceMethod

 puts("This is an instance method")

 end

end

 # create object

ob = MyClass.new

 # use instance method

ob.instanceMethod

THE BOOK OF RUBY

132

2. CLASS METHODS

A class method may be declared inside a class definition, in which case, a) the

method name may be preceded by the class name or b) a class << self block may

ÊÖÕÛÈÐÕɯÈɯȿÕÖÙÔÈÓɀɯÔÌÛÏÖËɯËÌÍÐÕÐÛÐÖÕȰɯÌÐÛÏÌÙɯÞÈàȮɯÈɯÊÓÈÚÚɯÔÌÛÏÖËɯÐÚɯÐÕÛÌÕËÌËɯÍÖÙɯ

use by the class itself, not by a specific object, like this:

class MyClass

 # a class me thod

 def MyClass.classmethod1

 puts("This is a class method")

 end

 # another class method

 class << self

 def classmethod2

 puts("This is another class method")

 end

 end

end

 # call class methods from the class itself

MyClass.classmethod1

MyClass.classmethod2

CHAPTER EIGHT

133

3. SINGLETON METHODS

Singleton methods are methods which are added to a single object and cannot be

used by other objects. A singleton method may be defined by appending the

ÔÌÛÏÖËɯÕÈÔÌɯÛÖɯÛÏÌɯÖÉÑÌÊÛɯÕÈÔÌɯÍÖÓÓÖÞÌËɯÉàɯÈɯËÖÛɯÖÙɯÉàɯ×ÓÈÊÐÕÎɯÈɯȿÕÖÙÔÈÓɀɯ

method definition inside an <ObjectName> << self block like this:

 # create object

ob = MyClass.new

 # define a singleton method

def ob.singleton_method1

 puts("This is a singleton method")

end

 # define another singleton method

class << ob

 def singleton_method2

 puts("This is another singleton method")

 end

end

 # use the singleton methods

ob.singleton_method1

ob.singleton_method2

RETURNING VALUES

In many programming languages, a distinction is made between functions or

methods which return a value to the calling code and those which do not. In

Pascal, for example, a function returns a value but a procedure does not. No such

distinction is made in R uby. All methods always return a value though you are

not, of course, obliged to use it.

THE BOOK OF RUBY

134

return_vals.rb

When no return value is specified, Ruby methods return the result of the last

expression evaluated. Consider this method:

def method1

 a = 1

 b = 2

 c = a + b # returns 3

end

The last expression evaluated is a + b which happens to return 3, so that is the

value returned by this method. 3ÏÌÙÌɯÔÈàɯÖÍÛÌÕɯÉÌɯÛÐÔÌÚɯÞÏÌÕɯàÖÜɯËÖÕɀÛɯÞÈÕÛɯ

to return the last expression evaluated. In such cases, you can specify the return

value using the return keyword:

def method2

 a = 1

 b = 2

 c = a + b

 return b # returns 2

end

A method is not obliged to make any assignments in order to return a value. A

simple piece of data (that is, something that evaluates to itself), if this happens to

be the last thing evaluated in a method, will be the value returned. When nothing

is evaluated, nil is returned:

def method3

 "hello" # returns òhelloó

end

def method4

 a = 1 + 2

 "goodbye" # returns ògoodbyeó

end

def method5

end # returns nil

CHAPTER EIGHT

135

My own programming prejudice is to write code that is clear and unambiguous

whenever possible. For that reason, whenever I plan to use the value returned by

a method, I prefer to specify it using the return keyword; only when I do not

plan to use the returned value do I omit this. However, this is not obligatory ɬ

Ruby leaves the choice to you.

RETURNING MULTIPLE VALUES

But what about those occasions when you need a method to return more than

one value? In other ×ÙÖÎÙÈÔɯÓÈÕÎÜÈÎÌÚɯàÖÜɯÔÈàɯÉÌɯÈÉÓÌɯÛÖɯȿÍÈÒÌɀɯÛÏÐÚɯÉàɯ×ÈÚÚÐÕÎɯ

arguments by reference (pointers to the original data items) rather than by value

ȹÈɯÊÖ×àɯÖÍɯÛÏÌɯËÈÛÈȺȰɯÞÏÌÕɯàÖÜɯÈÓÛÌÙɯÛÏÌɯÝÈÓÜÌÚɯÖÍɯȿÉàɯÙÌÍÌÙÌÕÊÌɀɯÈÙÎÜÔÌÕÛÚȮɯàÖÜɯ

alter the original values without expli citly having to return any values to the

calling code.

1ÜÉàɯËÖÌÚÕɀÛɯÔÈÒÌɯÈɯËÐÚÛÐÕÊÛÐÖÕɯÉÌÛÞÌÌÕɯȿÉàɯÙÌÍÌÙÌÕÊÌɀɯÈÕËɯȿÉàɯÝÈÓÜÌɀɯÚÖɯÛÏÐÚɯ

technique is not available to us (most of the time, anyway, though we shall see

some exceptions to the rule shortly). However, Ruby is capable of returning

multiple values all in one go, as shown here:

return_many.rb

def ret_things

 greeting = "Hello world"

 a = 1

 b = 2.0

 return a, b, 3, "four", greeting, 6 * 10

end

Multiple return values are placed into an array. If you were to evaluate

ret_things.class , Ruby would inform you that the returned object is an Array.

You could, however, explicitly return a different collection type such as a Hash:

def ret_hash

 retu rn {'a'=>'hello', 'b'=>'goodbye', 'c'=>'fare thee well'}

end

THE BOOK OF RUBY

136

DEFAULT AND MULTIPLE ARGUMENTS

Ruby lets you specify default values for arguments. Default values can be as-

signed in the parameter list of a method using the usual assignment operator:

def aMethod(a=10, b=20)

If an unassigned variable is passed to that method, the default value will be

assigned to it. If an assigned variable is passed, however, the assigned value

takes precedence over the default:

def aMethod(a=10, b=20)

 return a, b

end

p(aMethod) #=> displays: [10, 20]

p(aMethod(1)) #=> displays: [1, 20]

p(aMethod(1, 2)) #=> displays: [1, 2]

In some cases, a method may need to be capable of receiving an uncertain

number of arguments ɬ say, for example, a method which processes a variable

ÓÌÕÎÛÏɯÓÐÚÛɯÖÍɯÐÛÌÔÚȭɯ(ÕɯÛÏÐÚɯÊÈÚÌȮɯàÖÜɯÊÈÕɯȿÔÖ×ɯÜ×ɀɯÈÕàɯÕÜÔÉÌÙɯÖÍɯÛÙÈÐÓÐÕÎɯÐÛÌÔÚɯ

by preceding the final argument with an asterisk:

default_args.rb

def aMethod(a=10, b=2 0, c=100, *d)

 return a, b, c, d

end

p(aMethod(1,2,3,4,6)) #=> displays: [1, 2, 3, [4, 6]]

ASSIGNMENT AND PARAMETER PASSING

Most of the time, Ruby methods come with two access points ɬ like the doors

into and out of a room. The argument list pro vides the way in; the return value

provides the way out. Modifications made to the input arguments do not affect

the original data for the simple reason that, when Ruby evaluates an expression,

CHAPTER EIGHT

137

the result of that evaluation creates a new object ɬ so any changes made to an

argument only affect the new object, not the original piece of data. But there are

ÌßÊÌ×ÛÐÖÕÚɯÛÖɯÛÏÐÚɯÙÜÓÌȮɯÞÏÐÊÏɯÞÌɀÓÓɯÓÖÖÒɯÈÛɯ×ÙÌÚÌÕÛÓàȭ

in_out.rb

+ÌÛɀÚɯÚÛÈÙÛɯÉàɯÓÖÖÒÐÕÎɯÈÛɯÛÏÌɯÚÐÔ×ÓÌÚÛɯÊÈÚÌȯɯÈɯÔÌÛÏÖËɯÞÏÐÊÏɯÛÈÒÌÚɯÖÕÌɯÝÈÓÜÌɯÈÚɯÈɯ

named parameter and returns another value:

def change(x)

 x += 1

 return x

end

On the face of it, you might think that we are dealing with a single object, x,

here: the object, x , goes into the change method and the same object x is re-

turned. In fact, that is not the case. One object goes in (the argument) and a

different object comes out (the return value). You can easily verify this using the

object_id method to show a number which uniquely identifies each object in

your program:

num = 10

puts("num.obje ct_id=#{num.object_id}")

num = change(num)

puts("num.object_id=#{num.object_id}")

The identifier of the variable, num, is different before and after we call the change

method. This shows that, even though the variable name remains the same, the

num object which is returned by the change method is different from the num

object which was sent to it.

method_call.rb

The method-call itself has nothing to do with the change of the object. You can

verify this by running method_call.rb . This simply passes the num object to the

change method and returns it:

def nochange(x)

 return x

end

THE BOOK OF RUBY

138

In this case, the object_id is the same after num is returned as it was before num

was sent to the method. In other words, the object that went into the method is

exactly the same object as the one that came out again. Which leads to the inevi-

table conclusion that there is something about the assignment in the change

method (x += 1) that caused the creation of a new object.

!ÜÛɯÈÚÚÐÎÕÔÌÕÛɯÐÛÚÌÓÍɯÐÚÕɀÛɯÛÏÌɯÞÏÖÓÌɯexplanation. If you simply assign a variable

ÛÖɯÐÛÚÌÓÍȮɯÕÖɯÕÌÞɯÖÉÑÌÊÛɯÐÚɯÊÙÌÈÛÌËȱ

assignment.rb

num = 10

num = num # a new num object is not created

So what if you assign to the object the same value which it already has?

num = 10

num = 10 # a new num object is not created

This demonstrates that assignment alone does not necessarily create a new

ÖÉÑÌÊÛȭɯ-ÖÞɯÓÌÛɀÚɯÛÙàɯÈÚÚÐÎÕÐÕÎɯÈɯÕÌÞɯÝÈÓÜÌȱ

num = 10

num += 1 # this time a new num object is created

By checking the object_id we are able to determine that when a new value is

assigned to an existing variable, a new object is created.

,ÖÚÛɯËÈÛÈɯÐÛÌÔÚɯÈÙÌɯÛÙÌÈÛÌËɯÈÚɯÜÕÐØÜÌɯÚÖɯÖÕÌɯÚÛÙÐÕÎɯɁÏÌÓÓÖɂɯÐÚɯÊÖÕÚÐËÌÙÌËɯÛÖɯÉe

different from another string ɁÏÌÓÓÖɂɯÈÕËɯÖÕÌɯÍÓÖÈÛɯƕƔȭƙɯÐÚɯÊÖÕÚÐËÌÙÌËɯÛÖɯÉÌɯ

different from another float 10.5. Thus, any string or float assignment will create

a new object.

But when working with integers, only when the assignment value is different

from the previous value is a new object created. You can do all kinds of compli-

cated operations on the right-hand part of the assignment but if the yielded value

ÐÚɯÛÏÌɯÚÈÔÌɯÈÚɯÛÏÌɯÖÙÐÎÐÕÈÓɯÝÈÓÜÌȮɯÕÖɯÕÌÞɯÖÉÑÌÊÛɯÐÚɯÊÙÌÈÛÌËȱ

num = (((num + 1 - 1) * 100) / 100) # a new object is not create d!

CHAPTER EIGHT

139

object_ids.rb

INTEGERS ARE SPECIAL

In Ruby an integer (Fixnum) has a fixed identity. Every instance of the number

10 or every variable to which the value 10 is assigned will have the same ob-

ject_id. The same can not be said of other data types. Each instance of a floating

×ÖÐÕÛɯÕÜÔÉÌÙɯÚÜÊÏɯÈÚɯƕƔȭƙɯÖÙɯÖÍɯÈɯÚÛÙÐÕÎɯÚÜÊÏɯÈÚɯɁÏÌÓÓÖɯÞÖÙÓËɂɯÞÐÓÓɯÉÌɯÈɯËÐÍÍÌÙÌÕÛɯ

object with a unique object_id. Be aware that when you assign an integer to a

variable, that variable will have the object_ id of the integer itself. But when you

assign some other type of data to a variable, a new object will be created even if

the data itself is the same at each assignment:

10 and x after each assignment are the same object

puts(10.object_id)

x = 10

puts(x.object_id)

x = 10

puts(x.object_id)

10.5 and x after each assignment are 3 different objects!

puts(10.5.object_id)

x = 10.5

puts(x.object_id)

x = 10.5

puts(x.object_id)

But why does all this matter?

The answer is that it matters because of a few rare exceptions to the rule. As I

said earlier, most of the time, a method has a well-defined way in and a well -

defined way out. Once an argument goes inside a method, it enters a closed

room. Any code outside that method has no way of learning about any changes

that have been made to the argument until it comes out again in the form of a

ÙÌÛÜÙÕÌËɯÝÈÓÜÌȭɯ3ÏÐÚɯÐÚȮɯÐÕɯÍÈÊÛȮɯÖÕÌɯÖÍɯÛÏÌɯËÌÌ×ɯÚÌÊÙÌÛÚɯÖÍɯȿ×ÜÙÌɀɯÖÉÑÌÊÛɯÖÙÐÌÕÛÈÛÐÖÕȭɯ

The implementation details of method s should, in principle, be hidden away ɬ

ȿÌÕÊÈ×ÚÜÓÈÛÌËɀȭɯ3ÏÐÚɯÌÕÚÜÙÌÚɯÛÏÈÛɯÊÖËÌɯÖÜÛÚÐËÌɯÈÕɯÖÉÑÌÊÛɯÊÈÕÕÖÛɯÉÌɯËÌ×ÌÕËÌÕÛɯÖÕɯ

things that happen inside that object.

THE BOOK OF RUBY

140

THE ONE-W AY -IN , ONE-W AY -OUT PRINCIPLE

In most modern OOP languages such as Java and C#, encapsulation and inform a-

tion hiding are not rigorously enforced. In Smalltalk, on the other hand - that

most famous and influential of OOP la nguages - encapsulation and information

hiding are fundamental principles: if you send a variable, x , to a method y and

the value of x is changed inside y, you cannot obtain the changed value of x from

outside the method ɬ unless the method explicitly returns that value.

ȿ$ÕÊÈ×ÚÜÓÈÛÐÖÕɀɯÖÙɯȿ(ÕÍÖÙÔÈÛÐÖÕɯ'ÐËÐÕÎɀȳɯ

Often these two terms are used interchangeably. To be nit-picking,

however, there is a difference.

Encapsulation ÙÌÍÌÙÚɯÛÖɯÛÏÌɯÎÙÖÜ×ÐÕÎɯÛÖÎÌÛÏÌÙɯÖÍɯÈÕɯÖÉÑÌÊÛɀÚɯȿÚÛÈÛÌɀɯȹÐÛÚɯ

data) and the operations which may alter or interrogate its state (its

methods).

Information hiding refers to the fact that data is sealed off and can only

be accessed using well-defined routes in and out ɬ in object oriented

ÛÌÙÔÚɯÛÏÐÚɯÐÔ×ÓÐÌÚɯȿÈÊÊÌÚÚÖÙɯÔÌÛÏÖËÚɀɯÛÖɯÎÌÛɯÖÙɯÙÌÛÜÙÕɯÝÈÓÜÌÚȭɯ

In procedural languages, information hiding may take other forms -

for example, you might have to define interfaces to retrieve data from

ÊÖËÌɯȿÜÕÐÛÚɀɯÖÙɯȿÔÖËÜÓÌÚɀɯÙÈÛÏÌÙɯÛÏÈÕɯÍÙÖÔɯÖÉÑÌÊÛÚȭɯ

In OOP terms, encapsulation and information hiding are almost sy n-

onymous ɬ true encapsulation necessarily implies that the internal

ËÈÛÈɯÖÍɯÈÕɯÖÉÑÌÊÛɯÐÚɯÏÐËËÌÕȭɯ'ÖÞÌÝÌÙȮɯÔÈÕàɯÔÖËÌÙÕɯȿ../ɯÓÈÕÎÜÈÎÌÚɀɯ

such as Java, C#, C++ and Object Pascal are quite permissive in the

degree to which information hiding is enforced (if at all).

CHAPTER EIGHT

141

Usually, Ruby adheres to this principle: arguments go into a method but any

changes made inside the method cannot be accessed from the outside unless

Ruby returns the changed value:

hidden.rb

def hidden(aStr, anotherStr)

 anotherStr = aStr + " " + anotherStr

 return aStr + anotherStr.reverse

end

str1 = "dlrow"

str2 = "olleh"

str3 = hidden(str1, str2) # str3 receives returned value

puts(str1) # input args: original values unchanged

puts(str2)

puts(str3) # returned value (òdlrowhello worldó)

It turns out that there are occasions when arguments passed to a Ruby method

ÊÈÕɯÉÌɯÜÚÌËɯÓÐÒÌɯÛÏÌɯȿÉàɯÙÌÍÌÙÌÕÊÌɀ arguments of other languages (that is, changes

made inside the method may affect variables outside the method). This is due to

the fact that some Ruby methods modify the original object rather than yielding a

value and assigning this to a new object.

For example, there are some methods ending with an exclamation mark which

alter the original object. Similarly the String append method << concatenates the

string on its right to the string on its left but does not create a new string object in

the process: so the value of the string on the left is modified but the string object

itself retains its original object_id .

The consequence of this is that, if you use the << operator instead of the + opera-

tor in a method, your results will change:

THE BOOK OF RUBY

142

not_hidden.rb

def nothidden(aStr, anotherStr)

 anotherStr = aStr << " " << anotherStr

 return aStr << anotherStr.reverse

end

str1 = "dlrow"

str2 = "olleh"

str3 = nothidden(str1, str2)

puts(str1) # input arg: changed (òdlrow ollehhello

worldó)

puts(str2) # unchanged

puts(str3) # returned value(òdlrow ollehhello worldó)

str_reverse.rb

The str_reverse.rb sample program should help to clarify this. This shows that

when you use the reverse method, for example, no change is made to the

ȿÙÌÊÌÐÝÌÙɯÖÉÑÌÊÛɀɯȹÛÏÈÛɯÐÚȮɯÈÕɯÖÉÑÌÊÛɯÚÜÊÏɯÈÚɯstr1 here: str1.reverse). But when you

use the reverse! method a change is made to the object (its letters are reversed).

Even so, no new object is created: str1 is the same object before and after the

reverse! method is called.

Here reverse operates like most Ruby methods ɬ it yields a value and, in order

to use that value, you must assign it to a new object. So...

str1 = "hello"

str1.reverse

Here, str1 is unaffected by calling reverseȭɯ(ÛɯÚÛÐÓÓɯÏÈÚɯÛÏÌɯÝÈÓÜÌɯɁÏÌÓÓÖɂɯÈÕËɯÐÛɯ

still has its original object_id . But...

str1 = "hello"

str1.reverse!

CHAPTER EIGHT

143

This time, str1 is changed (it ÉÌÊÖÔÌÚɯɁÖÓÓÌÏɂȺȭɯ$ÝÌÕɯÚÖȮɯÕÖɯÕÌÞɯÖÉÑÌÊÛɯÐÚɯÊÙÌÈÛÌËȯɯ

str1 has the same object_id with which it started. Then again...

str1 = "hello"

str1 = str1.reverse

This time, the value yielded by str1.reverse is assigned to str1 . The yielded

value is a new object, so str1 ÐÚɯÕÖÞɯÈÚÚÐÎÕÌËɯÛÏÌɯÙÌÝÌÙÚÌËɯÚÛÙÐÕÎɯȹɁÖÓÓÌÏɂȺɯÈÕËɯÐÛɯ

now has a new object_id .

Refer to the sample program, concat.rb, for an example of the string concatena-

tion method, <<, which, just like those methods that end with !, modifies the

receiver object without creating a new object:

concat.rb

str1 = "hello"

str2 = "world"

str3 = "goodbye"

str3 = str2 << str1

In this example, str1 is never modified so it has the same object_id throughout;

str2 is modified through concatenation.

However, the << operator does not create a new object so str2 also retains its

original object_id . But str3 is a different object at the end than at the beginning:

that is because it is assigned the value yielded by this expression: str2 << str1 .

This value happens to be the str2 object itself so the object_id of str3 is now

identical with that of str2 (i.e. str2 and str3 now reference the same object).

In summary, then, methods ending with a ! such as reverse! , plus some other

methods such as the << concatenation method, change the value of the receiver

object itself. Most other methods do not change the value of the receiver object

and in order to make use of any new value yielded as a result of calling a

method, you have to assign that value to a variable (or pass the yielded value as

an argument to a method).

THE BOOK OF RUBY

144

Modifying The Receiver Object Breaks Encapsulation

The fact that a few methods modify the receiver object whereas most

do not may seem harmless enough ɬ but beware: this behaviour pr o-

ÝÐËÌÚɯàÖÜɯÞÐÛÏɯÛÏÌɯÈÉÐÓÐÛàɯÛÖɯÙÌÛÙÐÌÝÌɯÛÏÌɯÝÈÓÜÌÚɯÖÍɯÈÙÎÜÔÌÕÛÚɯȿÉàɯÙÌf-

ÌÙÌÕÊÌɀɯÙÈÛÏÌÙɯÛÏÈÕɯÙÌÛÙÐÌÝÐÕÎɯÝÈÓÜÌÚɯÞÏÐÊÏɯÈÙÌɯÌß×ÓÐÊÐÛÓàɯÙÌÛÜÙÕÌËȭɯ

Doing so breaks encapsulation by allowing your code to rely upon

the internal implementation details of a method. This can potentially

lead to unpredictable side-effects and, in my view, should be

avoided.

side_effects.rb

For a simple (but, in real -world programming, potentially serious) example of

how th e reliance on the modified values of arguments rather than on explicit

return values can introduce undesirable dependencies on implementation

details, see side_effects.rb . Here we have a method called stringProcess which

takes two string arguments, messes about with them and returns the results.

+ÌÛɀÚɯÈÚÚÜÔÌɯÛÏÈÛɯÛÏÌɯÖÉÑÌÊÛɯÖÍɯÛÏÌɯÌßÌÙÊÐÚÌɯÐÚɯÛÖɯÛÈÒÌɯÛÞÖɯÓÖÞÌÙÊÈÚÌɯÚÛÙÐÕÎÚɯÈÕËɯ

return a single string which combines these two strings, separated by a space and

with the first and last letters capitalized. So th e two original strings might be

ɁÏÌÓÓÖɂɯÈÕËɯɁÞÖÙÓËɂɯÈÕË ÛÏÌɯÙÌÛÜÙÕÌËɯÚÛÙÐÕÎɯÐÚɯɁ'ÌÓÓÖɯÞÖÙÓ#ɂȭ

But now we h aÝÌɯÈÕɯÐÔ×ÈÛÐÌÕÛɯ×ÙÖÎÙÈÔÔÌÙɯÞÏÖɯÊÈÕɀÛɯÉÌɯÉÖÛÏÌÙÌËɯÞÐÛÏɯÙÌÛÜÙÕɯ

values. He notices that the modifications made inside the method change the

values of the ingoing arguments. So, heck! (he decides) he might as well use the

arguments themselves! He then goes away and writes a fabulously complicated

text processing system with thou sands of bits of code reliant on the changed

values of those two arguments.

But now the programmer who originally wrote the stringProcess method

decides that the original implementa tion was inefficient or i nelegant and so

rewrites the code confident in the knowledge that the return value is unchanged

ȹÐÍɯɁÏÌÓÓÖɂɯÈÕËɯɁÞÖÙÓËɂɯÈÙÌɯÚÌÕÛɯÈÚɯÈÙÎÜÔÌÕÛÚȮɯɁ'ÌÓÓÖɯÞÖÙÓ#ɂɯÞÐÓÓɯÉÌɯÙÌÛÜÙÕÌËȺ.

Aha! But the new implementation cause the values of the input arguments to be

changed inside the body of the methodȭɯ2ÖɯÛÏÌɯÐÔ×ÈÛÐÌÕÛɯ×ÙÖÎÙÈÔÔÌÙɀÚɯÛÌßÛɯ

processing system, which relies on those arguments rather than on the return

valueȮɯÐÚɯÕÖÞɯÍÐÓÓÌËɯÞÐÛÏɯÉÐÛÚɯÖÍɯÛÌßÛɯÚÈàÐÕÎɯɁÏÌÓÓÖɯ#ÓÙÖÞɂɯÐÕÚÛÌÈËɯÖÍɯÛÏÌɯɁ'ÌÓÓÖɯ

CHAPTER EIGHT

145

ÞÖÙÓ#ɂɯÏÌɯÞÈÚɯÌß×ÌÊÛÐÕÎ (actually, it turns out that his program was processing

the works of Shakespeare so a generatiÖÕɯÖÍɯÈÊÛÖÙÚɯÞÐÓÓɯÌÕËɯÜ×ɯËÌÊÓÈÐÔÐÕÎȯɯɁ3Öɯ

ÌÉɯÖÙɯÛÖÕɯÛÖɯÌÉȮɯÛÏÈÛɯÚÐɯÛÏÌɯÕÖÐÛÚÌÜØȭȭȭɂȺ. This is the kind of unexpected side-effect

which can easily be avoided by following the one -way-in and one-way-out

×ÙÐÕÊÐ×ÓÌȱ

PARALLEL ASSIGNMENT

I mentioned earlier that it is possible for a method to return multiple values,

separated by commas. Often you will want to assign these returned values to a

set of matching variables.

In Ruby, this can be done in a single operation by parallel assignment. This

means that you can have several variables to the left or an assignment operator

and several values to the right. The values to the right will be assigned, in order,

to the variables on the left, like this:

parallel_assign.rb

s1, s2, s3 = "Hickory", "Dickory", "Dock"

This ability not only gives you a shortcut way to make multiple assignments; it

also lets you swap the values of variables (you just change their orders on either

side of the assignment operator:

i1 = 1

i2 = 2

i1, i2 = i2, i1 #=> i1 is now 2, i2 is 1

And you can make multiple assignments from the values returned by a method:

def returnArray(a, b, c)

 a = "Hello, " + a

 b = "Hi, " + b

 c = "Good day, " + c

 return a, b, c

end

THE BOOK OF RUBY

146

x, y, z = returnArray("Fred", "Bert", "Mary")

If you specify more variables to the left than there are values on the right of an

ÈÚÚÐÎÕÔÌÕÛȮɯÈÕàɯȿÛÙÈÐÓÐÕÎɀɯÝÈÙÐÈÉÓÌÚɯÞÐÓÓɯÉÌɯÈÚÚÐÎÕÌËɯnil:

x, y, z, extravar = returnArray("Fred", "Bert", "Mary") # extravar = nil

Multiple values returned by a method are put into an array. When you put an

array to the right of a multiple -variable assignment, its individual elements will

be assigned to each variable, and once again if too many variables are supplied,

the extra ones will be assigned nil:

s1, s2, s3 = ["Ding", "Dong", "Bell"]

CHAPTER EIGHT

147

Digging Deeper

BY REFERENCE OR BY VALUE ?

Search the Internet and àÖÜɀÓÓɯÚÖÖÕɯÍÐÕËɯÛÏÈÛɯ1ÜÉàɯ×ÙÖÎÙÈÔÔÌÙÚɯÙÌÎÜÓÈÙÓàɯÎÌÛɯ

ÐÕÛÖɯÈÙÎÜÔÌÕÛÚɯÈÉÖÜÛɯÞÏÌÛÏÌÙɯ1ÜÉàɯ×ÈÚÚÌÚɯÈÙÎÜÔÌÕÛÚɯȿÉàɯÝÈÓÜÌɀɯÖÙɯȿÉàɯÙÌÍÌr-

ÌÕÊÌɀȭɯ

In many procedural programming languages such as Pascal and C and their

derivatives there is a clear distinction between arguments passed by value or by

reference.

 ɯȿby valueɀɯÈÙÎÜÔÌÕÛɯÐÚɯÈɯÊÖ×àɯÖÍɯÛÏÌɯÖÙÐÎÐÕÈÓɯÝÈÙÐÈÉÓÌȰɯàÖÜɯÊÈÕɯ×ÈÚÚɯÐÛɯÛÖɯÈɯ

procedure, mess around with it and the value of the original value remains

unchanged.

 ɯȿby referenceɀɯÈÙÎÜÔÌÕÛȮɯÖÕɯÛÏÌɯÖÛÏÌÙɯÏÈÕËȮɯÐÚɯÈɯ×ÖÐÕÛÌÙɯÛÖɯÛÏÌɯÖÙÐÎÐÕÈÓɯÝÈÙÐÈÉÓÌȭɯ

When this gets passed to a procedure, you are not passing a new copy but a

reference to the bit of memory in which the original data is stored. So any

changes made inside the procedure are made to the original data and necessarily

affect the value of the original variable.

arg_passing.rb

(ÛɀÚɯÈÊÛÜÈÓÓàɯ×ÙÌÛÛàɯÌÈÚàɯÛÖɯÙÌÚÖÓÝÌɯÛÏÐÚɯÐÚÚÜÌȭɯ(Íɯ1ÜÉàɯ×ÈÚÚÌÚɯÉàɯÝÈÓÜÌȮɯÛÏÌÕɯÐÛɯ

makes a copy of the original variable and that copy will therefore have a differ-

ent object_id . In fact, this is not the case. Try out the arg_passing.rb program to

prove this point.

Now, it may well be that in certain circumstances the passing of arguments

ÊÖÜÓËȮɯȿÉÌÏÐÕËɯÛÏÌɯÚÊÌÕÌÚɀɯÚÖɯÛÖɯÚ×ÌÈÒȮɯbe implemented ÈÚɯȿÉàɯÝÈÓÜÌɀȭɯ'ÖÞÌÝÌÙȮɯ

such implementation details should be of interest to writer s of Ruby interpreter s

and compilers rather than to Ruby programmer s. The plain fact of the matter is

that, iÍɯàÖÜɯ×ÙÖÎÙÈÔɯÐÕɯÈɯȿ×ÜÙÌɀɯ../ɯÞÈàɯɬ by passing arguments into methods

but only subsequently using the values which those methods return ɬ the im-

plementation details (by value or by reference) will be of no consequence to you.

Nevertheless, due to the fact that Ruby can occasionally modify arguments (for

example using ! methods or << as explained earlier), some programmers have

THE BOOK OF RUBY

148

formed the habit of using the modified values of the arguments themselves

(equivalent to using By Reference arguments in C) rather than using the values

returned . In my view, this is a bad practice. It makes your programs reliant upon

the implementation details of methods and should therefore, be avoided.

ARE ASSIGNMENTS COPIES OR REFERENCES?

I said earlier that a new object is created when a value is yielded by some expres-

sion. So, for example, if you assign a new value to a variable called x , the object

after the assignment will be a different object from the one before the assignment

(that is, it will have a different object_id):

x = 10 # this x has one object_id

x +=1 # and this x has a different one

!ÜÛɯÐÛɯÐÚÕɀÛɯÛÏÌɯÈÚÚÐÎÕÔÌÕÛɯÛÏÈÛɯÊÙÌÈÛÌÚɯÈɯÕÌÞɯÖÉÑÌÊÛȭɯ(ÛɯÐÚɯÛÏÌɯÝÈÓÜÌɯÛÏÈÛɯÐÚɯàÐÌÓËÌËɯ

which causes a new object to be created. In the above example, +=1 is an expres-

sion that yields a value (x+=1 is equivalent to the expression x=x+1).

Simple assignment of one variable to another does not create a new object. So

ÓÌÛɀÚɯÈÚÚÜÔÌɯàÖÜɯÏÈÝÌɯÖÕÌɯÝÈÙÐÈÉÓÌɯÊÈÓÓÌËɯnum and another called num2. If you

assign num2 to num, both variables will refer to the same object. You can test this

using the equals? method of the Object class:

assign_ref.rb

num = 11.5

num2 = 11.5

 # num and num 2 are not equal

puts("num.equal?(num2) #{num.equal?(num2)}")

num = num2

 # but now they are equal

puts("num.equal?(num2) #{num.equal?(num2)}")

CHAPTER EIGHT

149

equal_tests.rb

Tests for equality: == or equal?

!àɯËÌÍÈÜÓÛɯȹÈÚɯËÌÍÐÕÌËɯÐÕɯ1ÜÉàɀÚɯ*ÌÙÕÌÓɯÔÖËÜÓÌȺɯa test using == re-

turns true when both objects being tested are the same object. So it

will return false if the values are same but the objects are different:

ob1 = Object.new

ob2 = Object.new

puts(ob1==ob2) #<= false

In fact == is frequently overridden by classes such as String and will

then return true when the values are the same but the objects are dif-

ferent:

s1 = "hello"

s2 = "hello"

puts(s1==s2) #<= true

For that reason, the equal? method is preferable when you want to es-

tablish if two variables refer to the same object:

puts(s1.equal?(s2)) #<= false

THE BOOK OF RUBY

150

W HEN ARE TWO OBJECTS IDENTICAL ?

As a general rule, if you initialize ten variables with ten values, each variable will

refer to a different object. For example, if you create two strings ÓÐÒÌɯÛÏÐÚȱ

identical.rb

s1 = "hello"

s2 = "hello"

ȱÛÏÌÕɯs1 and s2 will refer to independent objects. The same goes for two

ÍÓÖÈÛÚȱ

f1 = 10.00

f2 = 10.00

But, as mentioned earlier, integers are different. Create two integers with the

same value and they will end up referencing the same object:

i1 = 10

i2 = 10

This is even true with plain integer values. If in doubt, use the equals? method to

test if two variables or values reference exactly the same object:

10.0.equal?(10.0) # compare floats ð returns false

10.equal?(10) # compare integers (Fixnums) ð returns true

CHAPTER EIGHT

151

PARENTHESES AVOID AMBIGUITY

Methods may share the same name as a local variable. For example, you might

have a variable called name and a method called name. If it is your habit to call

methods without parentheses, it may not be obvious whether you are referring to

a method or a variable. Once again, parentheses avoid ambiguity...

parentheses.rb

greet = "Hello"

name = "Fred"

def greet

 return "Good morning"

end

def name

 return "Mary"

end

def sayHi(aName)

 return "Hi, #{aName}"

end

puts(greet) #<= Hello

puts greet #<= Hello

puts(sayHi(name)) #<= Hi, Fred

puts(sayHi(name())) #<= Hi, Mary

THE BOOK OF RUBY

152

153

CHAPTER N INE

Exception Handling

Even the most carefully written program will sometimes encounter unforeseen

errors. For example, if you write a program that needs to read some data from

disk, it works on the assumption that the specified disk is actually available and

the data is valid. If your program does calculations based on user input, it works

on the assumption that the input is suitable to be used in a calculation.

While you may try to anticipate some potential problems before they arise ɬ for

example, by writing code to check that a file exists before reading data from it or

checking that user input is numerical before doing a calculation ɬ you will never

be able to predict every possible problem in advance.

3ÏÌɯÜÚÌÙɯÔÈàɯÙÌÔÖÝÌɯÈɯ"#ɯÈÍÛÌÙɯàÖÜɀÝÌɯÈÓÙÌÈËàɯÚÛÈÙÛÌËɯÙÌÈËÐÕÎɯËÈÛÈɯÍÙÖÔ it, for

example; or some obscure calculation may yield 0 just before your code attempts

to divide by this value. When you know that there is the possibility that your

ÊÖËÌɯÔÈàɯÉÌɯȿÉÙÖÒÌÕɀɯÉàɯÚÖÔÌɯÜÕÍÖÙÌÚÌÌÕɯÊÐÙÊÜÔÚÛÈÕÊÌÚɯÈÛɯÙÜÕÛÐÔÌȮɯàÖÜɯÊÈÕɯ

attempt to avoÐËɯËÐÚÈÚÛÌÙɯÉàɯÜÚÐÕÎɯȿÌßÊÌ×ÛÐÖÕɯÏÈÕËÓÐÕÎɀȭ

 ÕɯȿÌßÊÌ×ÛÐÖÕɀɯÐÚɯÈÕɯÌÙÙÖÙɯÞÏÐÊÏɯÐÚɯ×ÈÊÒÈÎÌËɯÜ×ɯÐÕÛÖɯÈÕɯÖÉÑÌÊÛȭɯ3ÏÌɯÖÉÑÌÊÛɯÐÚɯÈÕɯ

instance of the Exception class (or one of its descendents). You can handle

exceptions by trapping the Exception object, optionally using information which

it contains (to print an appropriate error message, say) and taking any actions

needed to recover from the error ɬ perhaps by closing any files that are still open

or assigning a sensible value to a variable which may have been assigned some

nonsensical value as the result of an erroneous calculation.

THE BOOK OF RUBY

154

RESCUE

The basic syntax of exception handling can be summarised as follows:

begin

 # Some code which may cause an exception

rescue <Exception Class>

 # Code to recover from the exception

end

Here is an example of an exception handler which deals with an attempt to

divide by zero:

exception1.rb

begin

 x = 1/0

rescue Exception

 x = 0

 puts($!.class)

 puts($!)

end

div_by_zero.rb

When this code is run, the attempt to divide by zero causes an exception. If

unhandled (as in the sample program, div_by_zer o.rb), the program will crash.

However, by placing the troublesome code inside an exception handling block

(between begin and end), I have been able to trap the Exception in the section

beginning with rescueȭɯ3ÏÌɯÍÐÙÚÛɯÛÏÐÕÎɯ(ɀÝÌɯËÖÕÌɯÐÚɯÛÖɯÚÌÛɯÛÏÌɯÝÈÙÐÈÉÓÌȮɯx , to a

meaningful value. Next come these two inscrutable statements:

puts($!.class)

puts($!)

In Ruby, $! is a global variable to which is assigned the last exception. Printing

$!.class ËÐÚ×ÓÈàÚɯÛÏÌɯÊÓÈÚÚɯÕÈÔÌȮɯÞÏÐÊÏɯÏÌÙÌɯÐÚɯɁ9ÌÙÖ#ÐÝÐÚÐÖÕ$ÙÙÖÙɂȰɯ×ÙÐÕÛÐÕÎɯÛÏÌɯ

variable $! alone has the effect of displaying the error message contained by the

$ßÊÌ×ÛÐÖÕɯÖÉÑÌÊÛɯÞÏÐÊÏɯÏÌÙÌɯÐÚɯɁËÐÝÐËÌËɯÉàɯƔɂȭ

CHAPTER N INE

155

I am not generally too keen on relying upon global variables, particularly when

ÛÏÌàɯÏÈÝÌɯȿÕÈÔÌÚɀɯÈÚɯÜÕËÌÚÊÙÐ×ÛÐÝÌɯÈÚɯ$!. Fortunately, ther e is an alternative. You

ÊÈÕɯÈÚÚÖÊÐÈÛÌɯÈɯÝÈÙÐÈÉÓÌɯÕÈÔÌɯÞÐÛÏɯÛÏÌɯÌßÊÌ×ÛÐÖÕɯÉàɯ×ÓÈÊÐÕÎɯÛÏÌɯȿÈÚÚÖÊɯÖ×ÌÙÈÛÖÙɀȮɯ

=>, after the class name of the exception and before the variable name:

exception2.rb

rescue Exception => exc

You can now use the variable name (here exc) to refer to the Exception object:

puts(exc.class)

puts(exc)

exception_tree.rb

$ßÊÌ×ÛÐÖÕÚɯ'ÈÝÌɯ ɯ%ÈÔÐÓàɯ3ÙÌÌȱ

To understand how rescue clauses trap exceptions, just remember

that, in Ruby, exceptions are objects and, like all other objects, they

ÈÙÌɯËÌÍÐÕÌËɯÉàɯÈɯÊÓÈÚÚȭɯ3ÏÌÙÌɯÐÚȮɯÔÖÙÌÖÝÌÙȮɯÈɯÊÓÌÈÙɯȿÓÐÕÌɯÖÍɯËÌÚÊÌÕÛɀɯ

which starts, like all Ruby objects, with the Object class.

While it may seem pretty obvious that, when you divide by zero, you are going

to get a ZeroDivisionError exception, in real world code, there may be times

ÞÏÌÕɯÛÏÌɯÛà×ÌɯÖÍɯÌßÊÌ×ÛÐÖÕɯÐÚɯÕÖÛɯÚÖɯ×ÙÌËÐÊÛÈÉÓÌȭɯ+ÌÛɀÚɯÚÜ××ÖÚÌɯÍÖÙɯÐÕÚÛÈÕÊÌȮɯÛÏÈÛɯ

you have a method which does a division based on two values supplied by a

user:

def calc(val1, val2)

 return val1 / val2

end

This could potentially produce a variety of different exceptions. Obviously if the

second value entered by the user is 0, we will get a ZeroDivisionError.

However, if the second value is a string, the exception will be a TypeError,

whereas is the first value is a string it will be a NoMethodError (as the String

"ÓÈÚÚɯËÖÌÚɯÕÖÛɯËÌÍÐÕÌɯÛÏÌɯȿËÐÝÐÚÐÖÕɯÖ×ÌÙÈÛÖÙɀɯ/). Here the rescue block handles

all possible exceptions:

THE BOOK OF RUBY

156

multi_except.rb

def calc(val1, val2)

 begin

 result = val1 / val2

 rescue Exception => e

 puts(e.class)

 puts(e)

 result = nil

 end

 return result

end

Often it will be useful to take different action s for different exceptions. You can

do that by adding multiple rescue clauses. Each rescue clause can handle

multiple exception types, with the exception class names separated by commas.

Here my calc method handles TypeError and NoMethodError exceptions in one

clause with a catch-all Exception handler to deal with other exception types:

multi_except2.rb

def calc(val1, val2)

 begin

 result = val1 / val2

 rescue TypeError, NoMethodError => e

 puts(e.class)

 puts(e)

 puts(" One of the values is not a number!")

 result = nil

 rescue Exception => e

 puts(e.class)

 puts(e)

 result = nil

 end

 return result

end

CHAPTER N INE

157

exception_tree.rb

The Object class is the ultimate ancestor of all exceptions.

From Object, descends Exception, then StandardError and finally

more specific types of exception such as ZeroDivisionError. You

could, if you wished, write a rescue clause to deal with the Object

class and, Object being the ancestor of all objects, this would, indeed,

successfully match an exception object:

This is possible...

rescue Object => exc

However, it is generally more useful to try to match a relevant d e-

scendent of the Exception class. For good measure, it is often useful to

append a generalized rescue clause to handle StandardError or Ex-

ÊÌ×ÛÐÖÕɯÖÉÑÌÊÛÚȮɯÑÜÚÛɯÐÕɯÊÈÚÌɯÈÕɯÌßÊÌ×ÛÐÖÕɯÞÏÐÊÏɯàÖÜɯÏÈËÕɀÛɯÛÏÖÜÎÏÛɯÖÍɯ

manages to slip through. You may want to run the exception_tree.rb

program to view the family tree of the ZeroDivisionError exception.

When handling multiple exception types you should always put the rescue

clauses dealing with specific exceptions first, then follow these with rescue

clauses dealing with more generalized exceptions.

When a specific exception, such as TypeError, is handled, the begin..end excep-

tion ÉÓÖÊÒɯÌßÐÛÚɯÚÖɯÛÏÌɯÍÓÖÞɯÖÍɯÌßÌÊÜÛÐÖÕɯÞÖÕɀÛɯȿÛÙÐÊÒÓÌɯËÖÞÕɀɯÛÖɯÔÖÙÌɯÎÌÕÌÙÈÓÐáÌËɯ

rescue clauses. However, if you put a generalized exception handling rescue

clause first, that will handle all exceptions so any more specific clauses lower

down will never execute.

If, for example, I had reversed the order of the rescue clauses in my calc method,

placing the generalized Exception handler first, this would match all exception

types so the clause for the specific TypeError and NoMethodError exceptions

would never be run:

THE BOOK OF RUBY

158

multi_except_err.rb

This is incorrect...

rescue Exception => e

 puts(e.class)

 puts(e)

 result = nil

 rescue TypeError, NoMethodError => e

 puts(e.class)

 puts(e)

 puts("Oops! This message will never be displayed!")

 result = nil

 end

ENSURE

There may be some circumstances in which you want to take some particular

action whether or not an exception occurs. For example, whenever you are

dealing with some kind of unpredictable input/output ɬ say, when working with

files and directories on disk ɬ there is always the possibility that the location (the

disk or directory) or the data source (the file) either may not be there at all or

may provide some other kinds of problems ɬ such the disk being full when you

attempt to wri te to it or the file containing the wrong kind of data when you

attempt to read from it.

8ÖÜɯÔÈàɯÕÌÌËɯÛÖɯ×ÌÙÍÖÙÔɯÚÖÔÌɯÍÐÕÈÓɯȿÊÓÌÈÕÜ×ɀɯ×ÙÖÊÌËÜÙÌÚɯɬ such as logging onto

a specific working directory or closing a file which was previously opened -

whether or not you have encountered any problems. You can do this by follow-

ing a begin..rescue block of code with another block starting with the ensure

keyword. The code in the ensure block will always execute ɬ whether or not an

exception has arisen beforehand.

+ÌÛɀÚɯÓÖÖÒɯÈÛɯÛÞÖɯÚÐÔ×ÓÌɯÌßÈÔ×ÓÌÚȭɯ(ÕɯÛÏÌɯÍÐÙÚÛɯÖÕÌȮɯ(ɯÛÙàɯÛÖɯÓÖÎɯÖÕÛÖɯÈɯËÐÚÒɯÈÕËɯ

display the directory listing. At the end of this, I want to be sure that my working

directory (given by Dir.getwd) is always restored to its original location. I do this

by saving the original directory in the startdir variable and once again making

this the working directory in the ensure block:

CHAPTER N INE

159

ensure.rb

startdir = Dir.getwd

begin

 Dir.chdir("X: \ \ ")

 puts(`dir`)

rescue Exception => e

 puts e.class

 puts e

ensure

 Dir.chdir(startdir)

end

+ÌÛɀÚɯÕÖÞɯÚÌÌɯÏÖÞɯÛÖɯËÌÈÓɯÞÐÛÏɯÛÏÌɯ×ÙÖÉÓÌÔɯÖÍɯÙÌÈËÐÕÎɯÛÏÌɯÐÕÊÖÙÙÌÊÛɯËÈÛÈɯÍÙÖÔɯÈɯ

file. This might happen if the data is corrupt, if you accidentally open the wrong

file or ɬ quite simply ɬ if your program code contains a bug.

Here I have a file, test.txt , containing six lines. The first five lines are numbers;

the sixth line is not. My code opens this file and reads in all six lines:

ensure2.rb

f = File.new("test.txt")

begin

 for i in (1..6) do

 puts("line number : #{f.lineno}")

 line = f.gets.chomp

 num = line.to_i

 puts("Line '#{line}' is converted to #{num}")

 puts(100 / num)

 end

rescue Exception => e

 puts(e.class)

 puts(e)

ensure

 f.close

 puts("File closed")

end

THE BOOK OF RUBY

160

The lines are read in as strings (using gets) and the code attempts to convert

them to integers (using to_i). No error is produced when the conversion fails;

instead Ruby returns the value 0.

The problem arises in the next line of code which attempts a division by the

ÊÖÕÝÌÙÛÌËɯÕÜÔÉÌÙȭɯ3ÏÌɯÚÐßÛÏɯÓÐÕÌɯÖÍɯÛÏÌɯÐÕ×ÜÛɯÍÐÓÌɯÊÖÕÛÈÐÕÚɯÛÏÌɯÚÛÙÐÕÎɯɁÚÐßɂɯÞÏÐÊÏɯ

yields 0 when a conversion to integer is attempted ɬ and that inevitably causes

an error when this value is used in a division.

Having opened the data file at the outset, I want to ensure that the file is closed

whether or not an error occurs. If, for example, I only read in the first five lines

by editing the range in the for loop to (1..5), then there would be no exception. I

would still want to close the file.

But it would be no good putting the file closing code (f.close) in the rescue

clause as it would not, in this case, be executed. By putting it in the ensure

clause, however, I can be certain that the file will be closed whether or not an

exception occurs.

ELSE

If the rescue section executes when an error occurs and ensure executes whether

or not an error occurs, how can we specifically execute some code only when an

error does not occur?

The way to do this is to add an optional else clause after the rescue section and

before the ensure section (if there is one), like this:

begin

 # code which may cause an exception

rescue [Exception Type]

else # optional section executes if no exception occurs

ensure # optional exception always executes

end

CHAPTER N INE

161

This is an example:

else.rb

def doCalc(aNum)

 begin

 result = 100 / aNum.to_i

 rescue Exception => e # executes when there is an error

 result = 0

 msg = "Error: " + e

 else # executes when there is no error

 msg = "Result = #{result}"

 ensure # always executes

 msg = "You entered '#{aNum}'. " + msg

 end

 return msg

end

ERROR N UMBERS

If you ran the ensure.rb program earlier and you were watching closely you may

have noticed something unusual when you tried to log onto a non -existent drive

ȹÍÖÙɯÌßÈÔ×ÓÌȮɯÖÕɯÔàɯÚàÚÛÌÔɯÛÏÈÛɯÔÐÎÏÛɯÉÌɯÛÏÌɯɁ7ȯ\ ɂɯËÙÐÝÌȺȭɯ.ÍÛÌÕȮɯÞÏÌÕɯÈÕɯ

exception occurs, the exception class is an instance of a specific named type such

as ZeroDivisionError or NoMethodError. In this case, however, the class of the

exception is shown to be:

Errno::ENOENT

It turns out that there is quite a variety of Errno errors in Ruby. Try out

disk_err.rb . This defines a method, chDisk, which attempts to log onto a disk

identified by the character, aCharȭɯ2ÖɯÐÍɯàÖÜɯ×ÈÚÚɯɁ ɂɯÈÚɯÈÕɯÈÙÎÜÔÌÕÛɯÛÖɯchDisk it

will try to log onto the A: \ ËÙÐÝÌȭɯ(ɀÝÌɯÊÈÓÓÌËɯÛÏÌɯchDisk method three times,

passing to it a different string each time:

THE BOOK OF RUBY

162

disk_err.rb

chDisk("D")

chDisk("X")

chDisk("ABC")

On my PC, D:\ is my DVD drive. At the moment it is empty and when my

program tries to log onto it, Ruby returns an exception of this type:

Errno::EACCES

I have no X:\ drive on my PC and when I try to log onto that, Ruby returns an

exception of this type:

Errno::ENOENT

In the ÓÈÚÛɯÌßÈÔ×ÓÌȮɯ(ɯ×ÈÚÚɯÈɯÚÛÙÐÕÎɯ×ÈÙÈÔÌÛÌÙȮɯɁ !"ɂɯÞÏÐÊÏɯÐÚɯÐÕÝÈÓÐËɯÈÚɯÈɯËÐÚÒɯ

identifier, and Ruby returns an exception of this type:

Errno::EINVAL

Errors of this type are descendents of the SystemCallError class. You can easily

ÝÌÙÐÍàɯÛÏÐÚɯÉàɯÜÕÊÖÔÔÌÕÛÐÕÎɯÛÏÌɯÓÐÕÌɯÖÍɯÊÖËÌɯÛÖɯÚÏÖÞɯÛÏÌɯÊÓÈÚÚɀÚɯÍÈÔÐÓàɯÞÏÌÙÌɯ

indicated in the source code of disk_err.rb .

These classes, in effect, wrap up integer error values which are returned by the

underlying operating system. Here Errno is the name of the module containing

the constants, such as EACCES and ENOENT , which match the integer error

values.

To see a complete list of Errno constants, run this:

puts(Errno.constants)

To view the corresponding numerical value of any given constant, append

::Errno to the constant name, like this:

Errno::EINVAL::Errno

CHAPTER N INE

163

errno.rb

The following code can be used to display a list of all Errno constants along with

their numerical values:

for err in Errno.constants do

 errnum = eval("Errno::#{err}::Errno")

 puts("#{err}, #{errnum}")

end

RETRY

If you think an error condi tion may be transient or may be corrected (by the user,

perhaps?), you can rerun all the code in a begin..end block using the keyword

retry , as in this example which prompts the user to re-enter a value if an error

such as ZeroDiv isionError occurs:

retry.r b

def doCalc

 begin

 print("Enter a number: ")

 aNum = gets().chomp()

 result = 100 / aNum.to_i

 rescue Exception => e

 result = 0

 puts("Error: " + e + " \ nPlease try again.")

 retry # retry on exception

 else

 msg = "Result = #{result}"

 ensure

 msg = "You entered '#{aNum}'. " + msg

 end

 return msg

end

There is, of course, the danger that the error may not be as transient as you think

so, if you use retry , you may want to pro vide a clearly defined exit condition to

ensure that the code stops executing after a fixed number of attempts.

THE BOOK OF RUBY

164

You could, for example, increment a local variable in the begin clause (if you do

this, make sure it is incremented before any code that is liable to generate an

exception since, once an exception occurs, the remainder of the code prior to the

rescue clause will be skipped!). Then test the value of that variable in the rescue

section, like this:

rescue Exception => e

 if aValue < someValue then

 retry

 end

Here is a complete example, in which I test the value of a variable named tries to

ensure that no more than three tries to run the code without error before the

exception-handling block exits:

retry2.rb

def doCalc

 tries = 0

 begin

 print("Enter a number: ")

 tries += 1

 aNum = gets().chomp()

 result = 100 / aNum.to_i

 rescue Exception => e

 msg = "Error: " + e

 puts(msg)

 puts("tries = #{tries}")

 result = 0

 if tries < 3 then # set a fixed number of retries

 retry

 end

 else

 msg = "Result = #{result}"

 ensure

 msg = "You entered '#{aNum}'. " + msg

 end

 return msg

end

CHAPTER N INE

165

RAISE

2ÖÔÌÛÐÔÌÚɯàÖÜɯÔÈàɯÞÈÕÛɯÛÖɯÒÌÌ×ɯÈÕɯÌßÊÌ×ÛÐÖÕɯȿÈÓÐÝÌɀɯÌÝÌÕɯÈÍÛÌÙɯÐÛɯÏÈÚɯÉÌÌÕɯ

trapped in an exception-handling block. This can be used, for example, to defer

the handling of the exception ɬ say, by passing it on to some other method. You

can do this using the raise method. You need to be aware, however, that once

raised, an exception needs to be re-handled otherwise it may cause your program

to crash. Here is a simple example of raising a ZeroDivisionError exception and

passing on the exception to a method called, in this case, handleError :

raise.rb

begin

 divbyzero

rescue Exception => e

 puts("A problem just occurred. Please wait...")

 x = 0

 begin

 raise

 rescue

 handleError(e)

 end

end

Here divbyzero is the name of a method in which the divide -by-zero operation

takes place and handleError is a method that prints more detailed information

on the exception:

def handleError(e)

 puts("Error of type: #{e.class}")

 puts(e)

 puts("Here is a backtrace: ")

 puts(e.backtrace)

end

Notice that this uses the backtrace method which displays an array of strings

showing the file names and line numbers where the error occurred and, in this

case, the line which called the error-producing divbyzero method.

THE BOOK OF RUBY

166

raise2.rb

You can also specifically raise your exceptions to force en error condition even

when the program code itself has not caused an exception. Calling raise on its

own raises an exception of the type RuntimeError (or whatever exception is in

the global variable $!):

raise # raises RuntimeError

By default, this will have no descriptive message associated with it. You can add

a message as a parameter, like this:

raise "An unknown exception just occurr ed!"

8ÖÜɯÔÈàɯÙÈÐÚÌɯÈɯÚ×ÌÊÐÍÐÊɯÛà×ÌɯÖÍɯÌÙÙÖÙȱ

raise ZeroDivisionError

You may also create an object of a specific exception type and initialize it with a

ÊÜÚÛÖÔɯÔÌÚÚÈÎÌȱ

raise ZeroDivisionError.new("I'm afraid you divided by Zero")

raise3.rb

(ÍɯÛÏÌɯÚÛÈÕËÈÙËɯÌßÊÌ×ÛÐÖÕɯÛà×ÌÚɯËÖÕɀÛɯÔÌÌÛɯàÖÜÙɯÙÌØÜÐÙÌÔÌÕÛÚȮɯàÖÜɯÊÈÕȮɯÖÍɯÊÖÜÙÚÌȮɯ

create new ones just by subclassing existing exceptions. Provide your classes

with a to_str method in order to give them a default message.

class NoNameError < Exception

 def to_str

 "No Name given!"

 end

end

CHAPTER N INE

167

And this is an example of how you might raise a custom exception:

def sayHel lo(aName)

 begin

 if (aName == "") or (aName == nil) then

 raise NoNameError

 end

 rescue Exception => e

 puts(e.class)

 puts("message: " + e)

 puts(e.backtrace)

 else

 puts("Hello #{aName}")

 end

end

THE BOOK OF RUBY

168

Digging Deeper

OMITTING BEGIN AND EN D

You may optionally omit begin and end when trapping exceptions inside a

method, a class or a module. For example, all the following are legal:

omit_begin_end.rb

def calc

 result = 1/0

 rescue Exception => e

 puts(e.class)

 puts(e)

 result = nil

 return result

end

class X

 @@x = 1/0

 rescue Exception => e

 puts(e.class)

 puts(e)

end

module Y

 @@x = 1/0

 rescue Exception => e

 puts(e.class)

 puts(e)

end

In all the cases shown above, the exception-handling will also work if you place

the begin and end keywords at the start and end of the exception-handling code

in the usual way.

CHAPTER N INE

169

CATCH éTHROW

In some languages, exceptions are trapped using the keyword catch and may be

raised using the keyword throw . While Ruby provides catch and throw me-

thods, these are not directly related to its exception handling. Instead, catch and

throw are used to break out of a defined block of code when some condition is

met. You could, of course, use catch and throw to break out of a block of code

when an exception occurs (though this may not be the most elegant way of

handling errors). For example, this code will exit the block delimited by curly

brackets if a ZeroDivisionError occurs:

catch_except.rb

catch(:finished) {

 print('Enter a number: ')

 num = gets().chomp.to_i

 begin

 result = 100 / num

 rescue Exception => e

 throw :finished # jump to end of block

 end

 puts("The result of that calculation is #{result}")

} # end of :finished catch block

See Chapter 6 for more on catch and throw .

THE BOOK OF RUBY

170

171

CHAPTER TEN

Blocks, Procs and Lambdas

6ÏÌÕɯ ×ÙÖÎÙÈÔÔÌÙÚɯ ÛÈÓÒɯ ÈÉÖÜÛɯ ȿÉÓÖÊÒÚɀȮɯ ÛÏÌàɯ ÜÚÜÈÓÓàɯ ÔÌÈÕɯ ÚÖÔÌɯ ÈÙÉÐÛÙÈÙàɯ

ȿÊÏÜÕÒÚɀɯÖÍɯÊÖËÌȭɯIn Ruby, however, a block is special. It is a unit of code that

works somewhat like a method but, unlike a method, it has no name. In order to

use blocks effectively, you need to understand how and why they are special.

That is what this chapter is all about...

W HAT IS A BLOCK ?

Consider this code:

1blocks.rb

3.times do |i|

 puts(i)

end

(ÛɀÚɯ×ÙÖÉÈÉÓàɯ×ÙÌÛÛàɯÖÉÝÐÖÜÚɯÛÏÈÛɯÛÏÐÚɯÊÖËÌɯÐÚɯÐÕÛÌÕËÌËɯÛÖɯÌßÌÊÜÛÌɯÛÏÙÌÌɯÛÐÔÌÚȭɯ

What may less obvious is the value which i will have on each successive turn

through the loop. In fact, the values of i in this case will be 0, 1, and 2. Here is an

alternative form of the code above. This time the block is delimited by curly

brackets rather than by do and end:

3.times { |i|

 puts(i)

}

THE BOOK OF RUBY

172

According to the Ruby documentation, times is a method of Integer (letɀs call the

Integer int), which ÐÛÌÙÈÛÌÚɯÈɯÉÓÖÊÒɯɁint times, passing in values from zero to int ɬ

ƕɂȭɯ2ÖȮɯÏÌÙÌ, the code within the block is run 3 times; the first time it is run the

variable, i, is given the value 0; each subsequent time, i is incremented by 1 until

the final value, 2 (i.e. int -1) is reached.

Note that the two code examples above are functionally identical. A block may

be enclosed either by curly brackets or by the do and end keywords and the

programmer may user either syntax according to personal preference.

Note : Some Ruby programmers like to delimit blocks with curly

brackets when the entire code of the block fits onto a single line and

with do..end when the block spans multiple lines. My personal

prejudice is to be consistent, irrespective of code layout, and so I gen-

erally use curly braces when delimiting blocks. Usually your choice

of delimiters make no difference to the behaviour of the code - but see

ÛÏÌɯÚÌÊÛÐÖÕɯÓÈÛÌÙɯÐÕɯÛÏÐÚɯÊÏÈ×ÛÌÙɯÖÕɯȿ×ÙÌÊÌËÌÕÊÌɯÙÜÓÌÚɀȭ

If you are familiar with a C -like language such as C# or Java, you may, perhaps,

ÈÚÚÜÔÌɯÛÏÈÛɯ1ÜÉàɀÚɯÊÜÙÓàɯÉÙÈÊÌÚɯÊÈÕɯÉÌɯÜÚÌËȮɯÈÚɯÐÕɯÛÏÖÚÌɯÓÈÕÎÜÈÎÌÚȮɯÚÐÔ×ÓàɯÛÖɯ

ÎÙÖÜ×ɯÛÖÎÌÛÏÌÙɯÈÙÉÐÛÙÈÙàɯȿÉÓÖÊÒÚɀɯÖÍɯÊÖËÌɯɬ for example, a block of code to be

executed when a condition evaluates to true. This is not the case. In Ruby, a block

is a special construct which can only be used in very specific circumstances.

LINE BREAKS ARE SIGNIFICANT

The opening block delimiter must be placed on the same line as the method with

which it is associated.

These are ok...

3.times do |i|

 puts(i)

end

3.times { |i|

 puts(i)

}

CHAPTER TEN

173

But these contain syntax errors...

3.times

do |i|

 puts(i)

end

3.times

{ |i|

 puts(i)

}

NAMELESS FUNCTIONS

A Ruby block may be regarded as a sort of nameless function or method and its

most frequent use is to provides a means of iterating over items from a list or

range of values. If you have never come across nameless functions previously,

this may sound like gobbledygook. With luck, by the end of this chapter, things

will have become a little clearer. +ÌÛɀÚɯÓÖÖÒɯÉÈÊÒɯÈÛɯÛÏÌɯÚÐÔ×ÓÌɯÌßÈÔ×ÓÌɯÎÐÝÌÕɯ

earlier. I said a block is like a nameless function. Take this block as an example:

{ |i|

 puts(i)

}

If that were written as a normal Ruby method it would look something like this:

def aMethod(i)

 puts(i)

end

To call that method three times and pass values from 0 to 2 we might write this:

for i in 0..2

 aMethod(i)

end

THE BOOK OF RUBY

174

When you create a nameless method (that is, a block) variables declared between

upright bars such as |i| can be treated like the arguments to a named method.

6ÌɯÚÏÈÓÓɯÙÌÍÌÙɯÛÖɯÛÏÌÚÌɯÝÈÙÐÈÉÓÌÚɯÈÚɯȿÉÓÖÊÒɯ×aÙÈÔÌÛÌÙÚɀȭɯ

Look again at my earlier example:

3.times { |i|

 puts(i)

}

The times method of an integer passes values to a block from 0 to the specified

integer value minus 1.

So this:

3.times{ |i| }

ȱÐÚɯÝÌÙàɯÔÜÊÏɯÓÐÒÌɯÛÏÐÚȯ

for i in 0..2

 aMethod(i)

end

The chief difference is that the second example has to call some other named

method to process the value of i whereas the first example uses the nameless

method (the code between curly braces) to process i.

LOOKS FAMILIAR ?

Now thÈÛɯàÖÜɯÒÕÖÞɯÞÏÈÛɯÈɯÉÓÖÊÒɯÐÚȮɯàÖÜɯÔÈàɯÕÖÛÐÊÌɯÛÏÈÛɯàÖÜɀÝÌɯÚÌÌÕɯÛÏÌÔɯ

before. Many times.

For example, we previously used do..end blocks to iterate over ranges like this:

(1..3).each do |i|

 puts(i)

end

CHAPTER TEN

175

We have also used do..end blocks to iterate over arrays (see for_each2.rb in

Chapter 5):

arr = ['one','two','three','four']

arr.each do |s|

 puts(s)

end

And we have executed a block repeatedly by passing it to the loop method (see

3loops.rb in Chapter 5):

i=0

loop {

 puts(arr[i])

 i+=1

 if (i == arr.length) then

 break

 end

}

The loop example above is notable for two things: 1) It has no list of items (such

ÈÚɯÈÕɯÈÙÙÈàɯÖÙɯÈɯÙÈÕÎÌɯÖÍɯÝÈÓÜÌÚȺɯÛÖɯÐÛÌÙÈÛÌɯÖÝÌÙɯÈÕËɯƖȺɯÐÛɯÐÚɯ×ÙÌÛÛàɯËÈÙÕɀɯÜÎÓàȭɯ

These two features are not entirely unrelated! The loop method is part of the

*ÌÙÕÌÓɯÊÓÈÚÚȮɯÞÏÐÊÏɯÐÚɯȿÈÜÛÖÔÈÛÐÊÈÓÓàɀɯÈÝÈÐÓÈÉÓÌɯÛÖɯàÖÜÙɯ×ÙÖÎÙÈÔÚȭɯAs it has no

ȿÌÕËɯÝÈÓÜÌɀɯÐÛɯÞÐÓÓɯÌßÌÊÜÛÌɯÛÏÌɯÉÓÖÊÒɯÍÖÙɯÌÝÌÙɯÜÕÓÌÚÚɯàÖÜɯÌß×ÓÐÊÐÛÓàɯÉÙÌÈÒɯÖÜÛɯÖÍɯÐÛɯ

using the break keyword. Usually there are more elegant ways to perform this

kind of iteration ɬ by iterating over a sequence of values with a finite range.

BLOCKS AND ARRAYS

Blocks are commonly used to iterate over arrays. The Array class, consequently,

provides a number of methods to which blocks are passed.

One useful method is called collect ; this passes each element of the array to a

block and creates a new array to contain each of the values returned by the block.

Here, for example, a block is passed each of the integers in an array (each integer

is assigned to the variable, x), it doubles its value and returns it.

THE BOOK OF RUBY

176

The collect method creates a new array containing each of the returned integers

in sequence:

2blocks.rb

b3 = [1,2,3].collect{|x| x*2}

The example above returns this array: [2,4,6] .

In this next example, the block returns a version of the original str ings in which

each initial letter is capitalized:

b4 = ["hello","good day","how do you do"].collect{|x| x.capitalize }

So b4 is now...

["Hello", "Good day", "How do you do"]

The each method of the Array class may look rather similar to collect ; it too

passes each array element in turn to be processed by the block. However, unlike

collect , the each method does not create a new array to contain the returned

values:

b5 = ["hello","good day","how do you do"].each{|x| x.capitalize }

This time, b5 is unchanged...

["hello", "good day", "how do you do"]

Recall, however that some methods ɬ notably those ending with an exclamation

mark (!) ɬ actually alter the original objects rather than yielding new values. If

you wanted to use the each method to capitalize the strings in the original array,

you could use the capitalize! method:

b6 = ["hello","good day","how do you do"].each{|x| x.capit alize! }

So b6 is now...

["Hello", "Good day", "How do you do"]

CHAPTER TEN

177

With a bit of thought, you could also use a block to iterate over the characters in

a string. First, you need to split off each character from a string. This can be done

using the split method of the String class like this:

"hello world".split(//)

The split method divides a string into substrings based on a delimiter and

returns an array of these substrings. Here // is a regular expression that defines a

zero-length str ing; this has the effect of returning a single character, so we end up

creating an array of all the characters in the string. We can now iterate over this

array of characters, returning a capitalized version of each:

a = "hello world".split(//).each{ |x| newstr << x.capitalize }

So, at each iteration, a capitalized character is appended to newstr , and the

following is displayed...

H

HE

HEL

HELL

HELLO

HELLO

HELLO W

HELLO WO

HELLO WOR

HELLO WORL

HELLO WORLD

As we are using the capitalize method here (with no terminating ! character), the

characters in the array, a, remain as they began, all lowercase, since the

capitalize method does not alter the receiver object (here the receiver objects are

the characters passed into the block).

Be aware, however, that this code would not work if you were to use the

capitalize! method to modify the original characters. This is because capitalize!

returns nil when no changes are made so when the space character is

encountered nil would be retu rned and our attempt to append (<<) a nil value to

the string, newstr , would fail.

THE BOOK OF RUBY

178

You could also capitalize a string using the each_byte method. This iterates

through the string characters, passing each byte to the block. These bytes take the

ÍÖÙÔɯÖÍɯ 2"((ɯÊÖËÌÚȭɯ2ÖɯɁÏÌÓÓÖɯÞÖÙÓËɂɯÞÖÜÓËɯÉÌɯ×ÈÚÚÌËɯÐÕɯÛÏÌɯÍÖÙÔɯÖÍɯÛÏÌÚÌɯ

numeric values: 104 101 108 108 111 32 119 111 114 108 100

.ÉÝÐÖÜÚÓàȮɯàÖÜɯÊÈÕɀÛɯÊÈ×ÐÛÈÓÐáÌɯÈÕɯÐÕÛÌÎÌÙɯÚÖɯÞÌɯÕÌÌËɯÛÖɯÊÖÕÝÌÙÛɯÌÈÊÏɯ 2"((ɯ

value to a character. The chr method of String does this:

a = "hello world".each_byte{|x| newstr << (x.chr).capitalize }

PROCS AND LAMBDAS

In our examples up to now, blocks have been used in cahoots with methods. This

has been a requirement since nameless blocks cannot have an independent

existence in Ruby. You cannot, for example, create a standalone block like this:

{|x| x = x*10; puts(x)}

3ÏÐÚɯÐÚɯÖÕÌɯÖÍɯÛÏÌɯÌßÊÌ×ÛÐÖÕÚɯÛÖɯÛÏÌɯÙÜÓÌɯÛÏÈÛɯȿÌÝÌÙàÛÏÐÕÎɯÐÕɯ1ÜÉàɯÐÚɯÈÕ ÖÉÑÌÊÛɀȭɯ ɯ

block clearly is not an object. Every object is created from a class and you can

ÍÐÕËɯÈÕɯÖÉÑÌÊÛɀÚɯÊÓÈÚÚɯÉàɯÊÈÓÓÐÕÎɯÐÛÚɯclass method.

#ÖɯÛÏÐÚɯÞÐÛÏɯÈɯ'ÈÚÏȮɯÍÖÙɯÌßÈÔ×ÓÌɯÈÕËɯÛÏÌɯÊÓÈÚÚɯÕÈÔÌȮɯȿ'ÈÚÏɀɯÞÐÓÓɯÉÌɯËÐÚ×ÓÈàÌËȯ

puts({1=>2}.class)

Try this with a block, however, and you will only get an error message:

puts({|i| puts(i)}.class) #<= error!

CHAPTER TEN

179

Block Or Hash?

Ruby uses curly brackets to delimit both blocks and Hashes. So how

can you (and Ruby) tell which is which? The answer, basically, is that

ÐÛɀÚɯÈɯ'ÈÚÏɯÞÏÌÕɯÐÛɯlooks ÓÐÒÌɯÈɯ'ÈÚÏȮɯÖÛÏÌÙÞÐÚÌɯÐÛɀÚɯÈɯÉÓÖÊÒȭɯ ɯ'ÈÚÏɯ

looks like a Hash when curly brackets contain key-value pairs...

puts({1=>2}.class) #<= Hash

...or when they are empty:

puts({}.class) #<= Hash

However, once again, if you omit the brackets, there is an ambiguity.

Is this an empty Hash or is it a block associated with the puts

method?

puts{}.class

Frankly, I have tÖɯÈËÔÐÛɯÛÏÈÛɯ(ɯËÖÕɀÛɯÒÕÖÞɯÛÏÌɯÈÕÚÞÌÙɯÛÖɯÛÏÈÛɯØÜÌÚÛÐÖÕɯ

ÈÕËɯ(ɯÊÈÕɀÛɯÎÌÛɯ1ÜÉàɯÛÖɯÛÌÓÓɯÔÌȭɯ1ÜÉàɯÈÊÊÌ×ÛÚɯÛÏÐÚɯÈÚɯÝÈÓÐËɯÚàÕÛÈßɯÉÜÛɯ

does not, in fact, display anything when the code executes. While,

this...

print{}.class

...prints nil (not, you will notice the actual class of nil, which is Ni l-

Class, but nil itself). If you find all this confusing (as I do!) just r e-

member that this can all be clarified by the judicious use of brackets:

print({}.class) #<= Hash

THE BOOK OF RUBY

180

CREATING OBJECTS FROM BLOCKS

proc_create.rb

6ÏÐÓÌɯÉÓÖÊÒÚɯÔÈàɯÕÖÛɯÉÌɯÖÉÑÌÊÛÚɯÉàɯËÌÍÈÜÓÛȮɯÛÏÌàɯÊÈÕɯÉÌɯȿÛÜÙÕÌËɯÐÕÛÖɀɯÖÉÑÌÊÛÚȭɯ

There are three ways of creating objects from blocks and assigning them to

variables ɬ ÏÌÙÌɀÚɯÏÖÞȯɯ

a = Proc.new{|x| x = x*10; puts(x) }

b = lambda{|x| x = x*10; puts(x) }

c = proc{|x| x.capitalize! }

Note that, in each of the three cases above, you will end up creating an instance

of the Proc class ɬ ÞÏÐÊÏɯÐÚɯÛÏÌɯ1ÜÉàɯȿÖÉÑÌÊÛɯÞÙÈ××ÌÙɀɯÍÖÙɯÈɯÉÓÖÊÒȭ

+ÌÛɀÚɯÛÈÒÌɯÈɯÊÓÖÚÌÙɯÓÖÖÒɯÈÛɯÛÏÌɯÛÏÙÌÌɯÞÈàÚɯÖÍɯÊÙÌÈÛÐÕÎɯÈɯ/ÙÖÊɯÖÉÑÌÊÛȭɯ%ÐÙst, you can

create an object calling Proc.new and passing to it a block as an argument:

3blocks.rb

a = Proc.new{|x| x = x*10; puts(x)}

You can execute the code in the block to which a ÙÌÍÌÙÚɯÜÚÐÕÎɯÛÏÌɯ/ÙÖÊɯÊÓÈÚÚɀÚɯcall
method with one or more arguments (matching the block parameters) to be

passed into the block; in the code above, you could pass an integer such as 100

and this would be assigned to the block variable, x :

a.call(100)

You can also create a Proc object by calling the lambda or proc methods. These

methods (supplied by the Kernel class) are identical. The name lambda is taken

from the Scheme (Lisp) language and is a term used to describe an anonymous

ÔÌÛÏÖËɯÖÙɯȿÊÓÖÚÜÙÌɀȭ

There is one important difference between creating a Proc object using Proc.new

and creating a Proc object using the proc or lambda methods ɬ Proc.new does not

check that the number or arguments passed to the block match the number of

block parameters ɬ both proc and lambda do:

CHAPTER TEN

181

proc_lamba.rb

a = Proc.new{|x,y,z| x = y*z; puts(x) }

a.call(2,5,10,100) # This is not an error

b = lambda{|x,y,z| x = y*z; puts(x) }

b.call(2,5,10,100) # This is an error

puts(' --- Block #2 --- ')

c = proc{|x,y,z| x = y*z; puts(x) }

c.call(2,5,10,100) # This is an error

block_closure.rb

W HAT IS A CLOSURE?

ȿ"ÓÖÚÜÙÌɀɯÐÚɯÛÏÌɯÕÈÔÌɯÎÐÝÌÕɯÛÖɯÈɯÍÜnction which has the ability to store (that is, to

ȿÌÕÊÓÖÚÌɀȺɯÝÈÓÜÌÚɯÖÍɯÓÖÊÈÓɯÝÈÙÐÈÉÓÌÚɯÞÐÛÏÐÕɯÛÏÌɯÚÊÖ×ÌɯÐÕɯÞÏÐÊÏɯÛÏÌɯÉÓÖÊÒɯÞÈÚɯ

ÊÙÌÈÛÌËɯȹÛÏÐÕÒɯÖÍɯÛÏÐÚɯÈÚɯÛÏÌɯÉÓÖÊÒɀÚɯȿÕÈÛÐÝÌɯÚÊÖ×ÌɀȺȭɯ1ÜÉàɀÚɯÉÓÖÊÒÚɯÈÙÌɯÊÓÖÚÜÙÌÚȭɯ3Öɯ

understand this, look at this example:

x = "hello world"

ablock = Proc.new { puts(x) }

def aMethod(aBlockArg)

 x = "goodbye"

 aBlockArg.call

end

puts(x)

ablock.call

aMethod(ablock)

ablock.call

puts(x)

Here, the value of the local variable, x ÐÚɯɁÏÌÓÓÖɯÞÖÙÓËɂɯÞÐÛÏÐÕɯÛÏÌɯÚÊÖ×ÌɯÖÍɯ

ablock. Inside aMethod , however, a local variable named x has the value

THE BOOK OF RUBY

182

ɁÎÖÖËÉàÌɂȭɯ(ÕɯÚ×ÐÛÌɯÖÍɯÛÏÈÛȮɯÞÏÌÕɯablock is passed to aMethod and called within

the scope of aMethodȮɯÐÛɯ×ÙÐÕÛÚɯɁÏÌÓÓÖɯÞÖÙÓËɂɯȹÛÏÈÛɯÐÚȮɯÛÏÌɯÝÈÓÜÌɯÖÍɯx within the

ÉÓÖÊÒɀÚɯȿÕÈÛÐÝÌɯÚÊÖ×ÌɀɯÙÈÛÏÌÙɯɁÎÖÖËÉàÌɂɯÞÏÐÊÏɯÐÚɯÛÏÌɯÝÈÓÜÌɯÖÍɯx within the scope

of aMethodȭɯ3ÏÌɯÈÉÖÝÌɯÊÖËÌȮɯÛÏÌÙÌÍÖÙÌȮɯÖÕÓàɯÌÝÌÙɯ×ÙÐÕÛÚɯɁÏÌÓÓÖɯÞÖÙÓËɂȭɯ

See Digging Deeper at the end of this chapter for more on closures.

YIELD

+ÌÛɀÚɯÚÌÌɯÈɯÍÌÞɯÔÖÙÌɯÉÓÖÊÒÚɯÐÕɯÜÚÌȭɯ3ÏÌɯ4blocks.rb program introduces som e-

thing new ɬ namely, a way of executing a nameless block when it is passed to a

method. This is done using the keyword yield . In the first example, I define this

simple method:

4blocks.rb

def aMethod

 yield

end

(ÛɯËÖÌÚÕɀÛɯÙÌÈÓÓàɯÏÈÝÌɯÈÕàɯÊÖËÌɯÖÍɯÐÛÚɯÖÞÕȭɯ(ÕÚÛÌÈËȮɯÐÛɯÌß×ÌÊÛÚɯÛÖɯÙÌÊÌÐÝÌɯÈɯÉÓÖÊÒɯ

and the yield keyword causes the block to execute. This is how I pass a block to

it:

aMethod{ puts("Good mo rning") }

Notice that this time the block is not passed as a named argument. It would be an

error to try to pass the block between round brackets, like this:

aMethod({ puts("Good morning") }) # This wonõt work!

Instead we simply put the block right next to the method to which we are pas s-

ing it, just as we did in the very first example in this chapter. That method

receives the block without having to declared a named parameter for it and it

calls the block with yield .

CHAPTER TEN

183

Here is a slightly more useful example:

def caps(anarg)

 yield(anarg)

end

caps("a lowercase string"){ |x| x.capitalize! ; puts(x) }

Here the caps method receives one argument, anarg, and passes this argument to

a nameless block which is then executed by yield . When I call the caps method, I

pass it a string argument ("a lowercase string") using the normal parameter-

passing syntax. The nameless block is passed after the end of the parameter list.

When the caps method calls yield(anarg) ÛÏÌɯÚÛÙÐÕÎɯÈÙÎÜÔÌÕÛȮɯɁÈɯÓÖÞÌÙcase

ÚÛÙÐÕÎɂɯÐÚɯ×ÈÚÚÌËɯÐÕÛÖɯÛÏÌɯÉÓÖÊÒȰɯÐÛɯÐÚɯÈÚÚÐÎÕÌËɯÛÖɯÛÏÌɯÉÓÖÊÒɯÝÈÙÐÈÉÓÌȮɯx , this capital-

izes it and displays it with puts(s) .

BLOCKS W ITHIN BLOCKS

6ÌɀÝÌɯÈÓÙÌÈËàɯÚÌÌÕɯÏÖÞɯÛÖɯÜÚÌɯÈɯÉÓÖÊÒɯÛÖɯÐÛÌÙÈÛÌɯÖÝÌÙɯÈÕɯÈÙÙÈàȭɯ(ÕɯÛÏÌɯÕÌßÛɯ

example, I use one block to iterate over an array of strings, assigning each string

in turn to the block variable, s. A second block is then passed to the caps method

in order to capitalise the string:

["hello","good day","how do you do"].each{

 |s|

 caps(s){ |x| x.capitalize!

 puts(x)

 }

}

This results in this output:

Hello

Good day

How do you do

THE BOOK OF RUBY

184

PASSING NAMED PROC ARGUMENTS

Up to now, we have passed blocks to procedures either anonymously (in which

case the block is executed with the yield keyword) or in the form of a named

argument, in which case it is executed using the call method. There is another

way to pass a block. WheÕɯÛÏÌɯÓÈÚÛɯÈÙÎÜÔÌÕÛɯÐÕɯÈɯÔÌÛÏÖËɀÚɯÓÐÚÛɯÖÍɯ×ÈÙÈÔÌÛÌÙÚɯÐÚɯ

preceded by an ampersand (&) it is considered to be a Proc object. This gives you

the option of passing an anonymous block to a procedure using the same syntax

as when passing a block to an iterator; and yet the procedure itself can receive

the block as a named argument. Load 5blocks.rb to see some examples of this.

5blocks.rb

%ÐÙÚÛȮɯÏÌÙÌɯÐÚɯÈɯÙÌÔÐÕËÌÙɯÖÍɯÛÏÌɯÛÞÖɯÞÈàÚɯÞÏÐÊÏɯÞÌɀÝÌɯÈÓÙÌÈËàɯÚÌÌÕɯÖÍɯ×ÈÚÚÐÕÎɯ

blocks. This method has three parameters, a, b, c:

def abc(a, b, c)

 a.call

 b.call

 c.call

 yield

end

We call this method with three named arguments (which here happen to be

blocks but could, in principle, be anything) plus an unnamed block:

abc(a, b, c){ puts "four" }

The abc method executes the named block arguments using the call method and

the unnamed block using the yield keyword:

a.call #<= call block a

b.call #<= call block b

c.call #<= call block c

yield #<= yield unnamed block: { puts "four" }

The next method, abc2, takes a single argument, &d:

def abc2(&d)

CHAPTER TEN

185

The ampersand here is significant as it indicates that the &d parameter is a block.

6ÌɯËÖÕɀÛȮɯÏÖÞÌÝÌÙȮɯÕÌÌËɯÛÖɯÚÌÕËɯÛÏÐÚɯÉÓÖÊÒɯÈÚɯÈɯÕÈÔÌËɯÈÙÎÜÔÌÕÛȭɯ(ÕÚÛÌÈËȮɯÞÌɯ

pass the unnamed block simply by appending it to the method name:

abc2{ puts "four" }

Instead of using the yield keyword, the abc2 method is able to execute the block

using the name of the argument (without the ampersand):

def abc2(&d)

 d.call

end

You can think of ampersand-arguments as type-checked block parameters. That

is, ampersand arguments are formally declared so unlike nameless blocks (those

ÞÏÐÊÏɯÈÙÌɯȿàÐÌÓËÌËɀȺɯÛÏÌɯÉÓÖÊÒɯËÖÌÚÕɀÛɯÈÙÙÐÝÌɯÈÛɯÛÏÌɯÔÌÛÏÖËɯȿÜÕÈÕÕÖÜÕÊÌËɀȭɯ!ÜÛɯ

unlike normal arguments (without an ampe rsand) they must match blocks. You

cannot pass some other type of object to abc2:

abc2(10) # This wonõt work!

The abc3 method is essentially the same as the abc method apart from the fact

that it specifies a fourth formal argument (&d):

def abc3(a, b, c, &d)

The arguments, a, b and c are called, while the argument &d may be called or

yielded, as you prefer:

def abc3(a, b, c, &d)

 a.call

 b.call

 c.call

 d.call #<= block &d

 yield #<= also block &d

end

THE BOOK OF RUBY

186

This means that the calling code must pass to this method three formal argu-

ments plus a block, which may be nameless:

abc3(a, b, c){ puts "five" }

You can also use a preceding ampersand in order to pass a named block to a

method, when the receiving method has no matching named argument, like this:

abc3(a, b, c, &myproc)

When an ampersanded block variable is passed to a method (as in the code

above) it may be yielded. This gives the choice of passing either an unnamed

block or a Proc object:

xyz{ |a,b,c| puts(a+b+c) }

xyz(&myproc)

Be careful, however! Notice in one of the examples above, I have used block

parameters (|a,b,c|)with the same names as the three local variables to which I

previously assigned Proc objects: a, b, c:

a = lambda{ puts "one" }

b = lambda{ puts "two" }

c = proc{ puts "three" }

xyz{ |a,b,c| puts(a+b+c) }

Now, in principle, block parameters should be visible only within the block itself.

However, it turns out that assignment to block parameters can initialize the

ÝÈÓÜÌÚɯÖÍɯÈÕàɯÓÖÊÈÓɯÝÈÙÐÈÉÓÌÚɯÞÐÛÏɯÛÏÌɯÚÈÔÌɯÕÈÔÌɯÞÐÛÏÐÕɯÛÏÌɯÉÓÖÊÒɀÚɯÕÈÛÐÝÌɯÚÊÖ×Ìɯ

ȹÚÌÌɯȿWhat Is A Closure?ɀɯÌÈÙÓÐÌÙɯÐÕɯÛÏÐÚɯÊÏÈ×ÛÌÙɯ).

Even though the variables in the xyz method are named x , y and z, it turns out

that the integer assignments in that method are actually made to the variables a,

b and c ÞÏÌÕɯÛÏÐÚɯÉÓÖÊÒȱ

{ |a,b,c| puts(a+b+c) }

ȱɯÐÚɯ×ÈÚÚÌËɯÛÏÌɯÝÈÓÜÌÚɯÖÍ x , y and z:

CHAPTER TEN

187

def xyz

 x = 1

 y = 2

 z = 3

 yield(x, y, z) # 1,2,3 assigned to block parameters a,b,c

end

As a consequence, the variables a, b and c ÞÐÛÏÐÕɯÛÏÌɯÉÓÖÊÒɀÚɯÕÈÛÐve scope (the

main scope of my program) are initialized with the values of the block variables

once the code in block has been run:

xyz{ |a,b,c| puts(a+b+c) }

puts(a, b, c) # displays 1, 2, 3

To clarify this, try out the simple program in 6blocks.rb :

6blocks.rb

a = "hello world"

def foo

 yield 100

end

puts(a)

foo{ |a| puts(a) }

puts(a) #< a is now 100

This is an example of one of the pitfalls into which it is all to easy to fall in Ruby.

As a general rule, when variables share the same scope (e.g. a block declared

within the scope of the main program here), it is best to make their names unique

in order to avoid any unforeseen side effects.

Note that the block scoping described here applies to versions of Ruby up to and

including Ruby 1.8.x which, at the time of writing, may be considered to be the

ȿÚÛÈÕËÈÙËɀɯÝÌÙÚÐÖÕɯÖÍɯ1ÜÉàȭɯ"ÏÈÕÎÌÚɯÛÖɯÚÊÖ×ÐÕÎɯÈÙÌɯÉÌÐng made in the Ruby 1.9

and will be incorporated in Ruby 2.0. For more on scoping see ȿBlocks and Local

VariablesɀɯÐÕɯÛÏÌɯ#ÐÎÎÐÕÎɯ#ÌÌ×ÌÙɯÚÌÊÛÐÖÕɯÈÛɯÛÏÌɯÌÕËɯÖÍɯÛÏÐÚɯÊÏÈ×ÛÌÙȭ

THE BOOK OF RUBY

188

PRECEDENCE RULES

Blocks within curly braces have stronger precedence than blocks within do and

endȭɯ+ÌÛɀÚɯÚÌÌɯÞÏÈÛɯÛÏÈÛɯÔÌÈÕÚɯÐÕɯ×ÙÈÊÛÐÊÌȭɯ"ÖÕÚÐËÌÙɯÛÏÌÚÌɯÛÞÖɯÌßÈÔ×ÓÌÚȯ

foo bar do |s| puts(s) end

foo bar{ |s| puts(s) }

Here, foo and bar are methods. So to which method is the block passed? It turns

out th at the do..end block would be passed to the leftmost method, foo , whereas

the block in curly braces would be sent to the rightmost method, bar . This is

because curly braces are said to have higher precedence. Consider this program...

precedence.rb

def foo(b)

 puts(" --- in foo --- ")

 a = 'foo'

 if block_given?

 puts("(Block passed to foo)")

 yield(a)

 else

 puts("(no block passed to foo)")

 end

 puts("in foo, arg b = #{b}")

 return "returned by " << a

end

def bar

 puts(" --- in bar --- ")

 a = 'bar'

 if block_given?

 puts("(Block passed to bar)")

 yield(a)

 else

 puts("(no block passed to bar)")

 end

 return "returned by " << a

end

CHAPTER TEN

189

foo bar do |s| puts(s) end # 1) do..end block

foo bar{ |s| puts(s) } # 2) {..} block

Here the do..end block has lower precedence and the method, foo , is given

priority. This means that both bar and the do..end block are passed to foo. Thus,

these two expressions are equivalent:

foo bar do |s| puts(s) end

foo(bar) do |s| puts(s) end

A curly brace block, on the other hand, has stronger precedence so it tries to

execute immediately and is passed to the first possible receiver method (bar).

The result (that is, the value returned by bar) is then passed as an argument to

foo ; but this time, foo does not receive the block itself. Thus, the two following

expressions are equivalent:

foo bar{ |s| puts(s) }

foo(bar{ |s| puts(s) })

If you are confused by all this, take comfort in the fact t hat you are not alone! The

behaviour of Ruby blocks is far from transparent. The potential ambiguities

result from the fact that, in Ruby, the parentheses around argument lists are

optional. As you can see from the alternative versions I give above, the ambigui-

ties disappear when you use parentheses.

Hint...

A method can test if it has received a block using the block_given?

method. You can find examples of this in the precedence.rb program.

THE BOOK OF RUBY

190

BLOCKS AS ITERATORS

As mentioned earlier, one of the primary uses of blocks in Ruby is to provide

iterators to which a range or list of items can be passed. Many standard classes

such as Integer and Array have methods which can supply items over which a

block can iterate. For example:

3.times{ |i| puts(i) }

[1,2,3].each{|i| puts(i) }

You can, of course, create your own iterator methods to provide a series of values

to a block. In the iterate1.rb program, I have defined a simple timesRepeat

method which executes a block a specified number of times. This is similar to the

times method of the Integer class apart from the fact that it begins at index 1

rather than at index 0 (here the variable i is displayed in order to demonstrate

this fact):

iterate1.rb

def timesRepeat(aNum)

 for i in 1..aNum do

 yield i

 end

end

Here is an example of how this method might be called:

timesRepeat(3){ |i| puts("[#{i}] hello world") }

(ɀÝÌɯÈÓÚÖɯÊÙÌÈÛÌËɯÈɯtimesRepeat2 method to iterate over an array:

def timesRepeat2(aNum, anArray)

 anArray.each{ |anitem|

 yield(anitem)

 }

end

CHAPTER TEN

191

This could be called in this manner:

timesRepeat2(3, ["hello","good day","how do you do"]){ |x| puts(x) }

In fact, of course, it would be better (true r to the spirit of object orientation) if an

ÖÉÑÌÊÛɯÐÛÚÌÓÍɯÊÖÕÛÈÐÕÌËɯÐÛÚɯÖÞÕɯÐÛÌÙÈÛÖÙɯÔÌÛÏÖËȭɯ(ɀÝÌɯÐÔ×ÓÌÔÌÕÛÌËɯÛÏÐÚɯÐÕɯÛÏÌɯÕÌßÛɯɯ

example. here I have created MyArray, a subclass of Array:

iterate2.rb

class MyArray < Array

It is initialized with an array when a new MyArray object is created:

def initialize(anArray)

 super(anArray)

end

It relies upon its own (self) each method, which is provided by its ancestor,

Array, to iterate over the items in the array and it uses the times method of

Integer to do this a certain number of times. This is the complete class definition:

class MyArray < Array

 def initialize(anArray)

 super(anArray)

 end

 def timesRepeat(aNum)

 aNum.times{ # start block 1...

 | num |

 self.each{ # start block 2...

 | anitem |

 yield("[#{num}] :: '#{anitem}'")

 } # ...end block 2

 } # ...end block 1

 end

end

THE BOOK OF RUBY

192

Notice that, as I have used two iterators (aNum.times and self.each), the time s-

Repeat method comprises two nested blocks. This is an example of how you

might use this...

numarr = MyArray.new([1,2,3])

numarr.timesRepeat(2){ |x| puts(x) }

This would output the following:

[0] :: '1'

[0] :: '2'

[0] :: '3'

[1] :: '1'

[1] :: '2'

[1] :: '3'

In iterate3.rb I have set myself the problem of defining an iterator for an array

containing an arbitrary number of sub -arrays, in which each sub-array has the

same number of items. In other words it will be like a table or matrix with a fixed

number of rows and a fixed number of columns. Here, for example, is a multi -

ËÐÔÌÕÚÐÖÕÈÓɯÈÙÙÈàɯÞÐÛÏɯÛÏÙÌÌɯȿÙÖÞÚɀɯȹÚÜÉ-ÈÙÙÈàÚȺɯÈÕËɯÍÖÜÙɯȿÊÖÓÜÔÕÚɀɯȹÐÛÌÔÚȺȯ

iterate3.rb

multiarr =

[['one','two','three','four '],

 [1, 2, 3, 4],

 [:a, :b, :c, :d]

]

(ɀÝÌɯÛÙÐÌËɯÖÜÛɯÛÏÙÌÌɯÈÓÛÌÙÕÈÛÐÝÌɯÝÌÙÚÐÖÕÚɯÖÍɯÛÏÐÚȭɯ3ÏÌɯÍÐÙÚÛɯÝÌÙÚÐÖÕɯÚÜÍÍÌÙÚɯÍÙÖÔɯÛÏÌɯ

limitation of only working with a pre -defined number (here 2 at indexes [0] and

ȻƕȼȺɯÖÍɯȿÙÖÞÚɀȯ

multiarr[0].length.times{|i|

 puts(multiarr[0][i], multiarr[1][i])

 }

CHAPTER TEN

193

The second version gets around this limitation by iterating over each element (or

ȿÙÖÞɀȺɯÖÍɯmultiarr and then iteration along each item in that row by obtaining the

row length and usÐÕÎɯÛÏÌɯ(ÕÛÌÎÌÙɀÚɯtimes method with that value:

multiarr.each{ |arr|

 multiarr[0].length.times{|i|

 puts(arr[i])

 }

 }

The third version reverses these operations: the outer block iterates along the

length of row 0 and the inner block obtains the item at index i in each row:

multiarr[0].length.times{|i|

 multiarr.each{ |arr|

 puts(arr[i])

 }

 }

While versions 2 and 3 work in a similar way, you will find that they iterate

through the items in a different order. Run the program to verify that. You could

try creating your own subclass of Array and adding iterator methods like this ɬ

one method to iterate through the rows in sequence (like Version 2, above) and

one to iterate through the columns in sequence (like Version 3).

THE BOOK OF RUBY

194

Digging Deeper

RETURNING BLOCKS FROM METHODS

$ÈÙÓÐÌÙȮɯ(ɯÌß×ÓÈÐÕÌËɯÛÏÈÛɯÉÓÖÊÒÚɯÐÕɯ1ÜÉàɯÔÈàɯÈÊÛɯÈÚɯȿÊÓÖÚÜÙÌÚɀȭɯ ɯÊÓÖÚÜÙÌɯÔÈàɯÉÌɯ

ÚÈÐËɯÛÖɯÌÕÊÓÖÚÌɯÛÏÌɯȿÌÕÝÐÙÖÕÔÌÕÛɀɯÐÕɯÞÏÐÊÏɯÐÛɯÐÚɯËÌÊÓÈÙÌËȭɯ.ÙȮɯÛÖɯ×ÜÛɯÐÛɯÈÕÖÛÏÌÙɯ

way, it carries the values of local variables from its original scope into a different

scope. The example I gave previously showed how the block named ablock

captures the value of the local variable x ...

block_closure.rb

x = "hello world"

ablock = Proc.new { puts(x) }

ȭȭȭÈÕËɯÐÛɯÐÚɯÛÏÌÕɯÈÉÓÌɯÛÖɯȿÊÈÙÙàɀɯÛÏÈÛɯÝÈÙÐÈÉÓÌɯÐÕÛÖɯÈɯËÐÍÍÌÙÌÕÛɯÚÊÖ×Ìȭɯ'ÌÙÌȮɯÍÖÙɯ

example, ablock is passed to aMethod . When ablock is called inside that method

it runs the code puts(x) ȭɯ3ÏÐÚɯËÐÚ×ÓÈàÚɯɁÏÌÓÓÖɯÞÖÙÓËɂɯÈÕËɯÕÖÛɯɁÎÖÖËÉàÌɂȭȭȭ

def aMethod(aBlo ckArg)

 x = "goodbye"

 aBlockArg.call #<= displays òhello worldó

end

In this particular example, this behaviour may seem like a curiosity of no great

interest. In fact, block/closures can be used more creatively.

For example, instead of creating a block and sending it to a method, you could

create a block inside a method and return that block to the calling code. If the

method in which the block is created happens to take an argument, the block

could be initialized with that argument.

This giveÚɯÜÚɯÈɯÚÐÔ×ÓÌɯÞÈàɯÖÍɯÊÙÌÈÛÐÕÎɯÔÜÓÛÐ×ÓÌɯÉÓÖÊÒÚɯÍÙÖÔɯÛÏÌɯÚÈÔÌɯȿÉÓÖÊÒɯ

ÛÌÔ×ÓÈÛÌɀȮɯÌÈÊÏɯinstance of which is initialize d with different data. Here, for

example, I have created two blocks, assigned to the variables salesTax and vat ,
each of which calculates results based on different values (0.10) and (0.175):

CHAPTER TEN

195

block_closure2.rb

def calcTax(taxRate)

 return lambda{

 |subtotal|

 subtotal * taxRate

 }

end

salesTax = calcTax(0.10)

vat = calcTax(0.175)

print("Tax due on book = ")

print(salesTax.call(10)) #<= prints: 1.0

print(" \ nVat due on DVD = ")

print(vat.call(10)) #<= prints: 1.75

BLOCKS AND INSTANCE VARIABLES

One of the less obvious features of blocks is the way in which they use variables.

If a block may truly be regarded as a nameless function or method then, log i-

cally, it should be able 1) to contain its own local variables and 2) to have access

to the instance variables of the object to which the block belongs.

+ÌÛɀÚɯÓÖÖÒɯÍÐÙÚÛɯÈÛɯÐÕÚÛÈÕÊÌɯÝÈÙÐÈÉÓÌÚȭɯɯ+ÖÈËɯÜ×ɯÛÏÌɯclosures1.rb program. This

providers another illustration of a block acting as a closure ɬ by capturing the

values of the local variables in the scope in which it was created. Here I have

created block using the lambda method:

closures1.rb

aClos = lambda{

 @hello << " yikes!"

}

3ÏÐÚɯÉÓÖÊÒɯÈ××ÌÕËÚɯÈɯÚÛÙÐÕÎȮɯɁɯàÐÒÌÚȵɂɯÛÖɯÈÕɯÐÕÚÛÈÕÊÌɯÝÈÙÐÈÉÓÌȮɯ@hello. Notice that

at this stage in the proceedings, no value has previously been assigned to @hello.

THE BOOK OF RUBY

196

I have, however, created a separate method, aFunc, which does assign a value to

a variable called @hello:

def aFunc(aClosure)

 @hello = "hello world"

 aClosure.call

end

When I pass my block to this method (the aClosure argument), the aFunc method

brings @hello into being. I can now execute the code inside the block using the

call method. And sure enough @hello ÝÈÙÐÈÉÓÌɯÊÖÕÛÈÐÕÚɯÛÏÌɯÚÛÙÐÕÎɯɁÏÌÓÓÖɯÞÖÙÓËɂȭɯ

The same variable can also be used by calling the block outside of the method.

Indeed, now, by repeatedly calling the block, I will end up repeatedly appending

ÛÏÌɯÚÛÙÐÕÎȮɯɁɯàÐÒÌÚȵɂɯÛÖɯ@hello:

aFunc(aClos) #<= @hello = òhello world yikes!ó

aClos.call #<= @hello = òhello world yikes! yikes!ó

aClos.call #<= @hello = òhello world yikes! yikes! yikes!ó

aClos.call # ...and so on

aClos.call

If you think about it, this is not really too surprising. After all, @hello is an

instance variable so it exists within the scope of an object. When we run a Ruby

program, an object called main is automatically created. So we should expect any

instance variable created within that object (our program) to be available to

everything inside it.

The question, now arises: what would happen if you were to send the block to a

method of some other object? If that object has its own instance variable, @hello,

which variable will the block use ɬ the @hello from the scope in which th e block

was created or the @hello from the scope of the object in which the block is

ÊÈÓÓÌËȳɯ+ÌÛɀÚɯÛÙàɯÛÏÈÛɯÖÜÛȭɯ6ÌɀÓÓɯÜÚÌɯÛÏÌɯÚÈÔÌɯÉÓÖÊÒɯÈÚɯÉÌÍÖÙÌȮɯÌßÊÌ×ÛɯÛÏÐÚɯÛÐÔÌɯÐÛɯ

will display a bit of information about the object to which the block belongs and

the value of @hello:

aClos = lambda{

 @hello << " yikes!"

 puts("in #{self} object of class #{self.class}, @hello = #{@hello}")

}

CHAPTER TEN

197

Now to create a new object from a new class (X) and give it a method which will

receive our block, b, and call the block:

class X

 def y(b)

 @hello = "I say, I say, I say!!!"

 puts(" [In X.y]")

 puts("in #{self} object of class #{self.class}, @hello = #{@hello}")

 puts(" [In X.y] when block is called...")

 b.call

 end

end

x = X.new

To test it out, just pass the block, aClos, to the y method of x :

x.y(aClos)

And this is wh at is displayed:

 [In X.y]

in #<X:0x32a6e64> object of class X, @hello = I say, I say, I say!!!

 [In X.y] when block is called...

in main object of class Object, @hello = hello world yikes! yikes! yikes!

yikes! yikes! yikes!

So, it is clear that the block executes in the scope of the object in which it was

created (main) and retains the instance variable from that object even though the

object in whose scope the block is called has an instance variable with the same

name and a different value.

BLOCKS AND LOCAL VARIABLES

-ÖÞɯÓÌÛɀÚɯÚÌÌɯÏÖÞɯÈɯÉÓÖÊÒɤÊÓÖÚÜÙÌɯËÌÈÓÚɯÞÐÛÏɯÓÖÊÈÓɯÝÈÙÐÈÉÓÌÚȭɯ+ÖÈËɯÜ×ɯÛÏÌ clo-

sures2.rb program. First I declare a variable, x , which is local to the context of the

program itself:

THE BOOK OF RUBY

198

closures2.rb

x = 3000

The first block/closure is called c1. Each time I call this block, it picks up the

value of x defined outside the block itself (3000) and returns x + 100:

c1 = lambda{

 return x + 100

}

This block has no block parameters (that is, there are no ȿÉÓÖÊÒɯÓÖÊÈÓɀɯÝÈÙÐÈÉÓÌs

between upright bars) so when it is called with a variable, someval, that variable

is discarded, unused. In other words, c1.call(someval) has the same effect as

c1.call().

So when you call the block c1, it returns x+100 (i.e. 3100), this value is then

assigned to someval. When you call c1 a second time, exactly the same thing

happens all over again, so once again someval is assigned 3100:

someval=1000

someval=c1.call(someval); puts(someval) #<= someval is now 3100

someval=c1.call(someval); puts(someval) #<= someval is now 3100

Note : Instead of repeating the call to c1, as show above, you could

place the call inside a block and pass this to the times method of In-

teger like this:

2.times{ someval=c1.call(someval); puts(someval) }

However, as it can be hard enough to work what just one block is up

to (such as the c1 ÉÓÖÊÒɯÏÌÙÌȺɯ(ɀÝÌɯËÌÓÐÉÌÙÈÛÌÓàɯÈÝÖÐËÌËɯÜÚÐÕÎɯÈÕàɯ

more blocks than are absolutely necessary in this program!

CHAPTER TEN

199

The second block is named c2ȭɯ3ÏÐÚɯËÌÊÓÈÙÌÚɯÈɯȿÉÓÖÊÒɯ×ÈÙÈÔÌÛÌÙɀȮɯz. This too

returns a value:

c2 = lambda{

 |z|

 return z + 100

}

However, this time the returned value can be reused since the block parameter

acts like an incoming argument to a method ɬ so when the value of someval is

changed after it is assigned the return value of c2 this changed value is subse-

quently passed as an argument:

someval=1000

someval=c2.call(someval); puts(someval) #<= someval is now 1100

someval=c2.call(someval); puts(someval) #<= someval is now 1200

The third block, c3, looks, at first sight, pretty much the same as the second

block, c2. In fact, the only difference is that its block parameter is called x instead

of z:

c3 = lambda{

 |x|

 return x + 100

}

The name of the block parameter has no effect on the return value. As before,

someval is first assigned the value 1100 (that is, its original value, 1000, plus the

100 added inside the block) then, when the block is called a second time, someval
is assigned the value 1200 (its previous value, 1100, plus 100 assigned inside the

block).

But now look at what happens to the value of the local variable x . This was

assigned 3000 at the top of the unit. Simply by giving the block parameter the

same name, x , we have altered the value of the local variable, x . It now has the

value, 1100 ɬ that is, the value that the block parameter, x , last had when the c3

block was called:

THE BOOK OF RUBY

200

x = 3000

c3 = lambda{

 |x|

 return x + 100

}

someval=1000

someval=c3.call(someval); puts(someval)

someval=c3.call(someval); puts(someval)

puts(x) #<= x is now 1100

Incidentally, even though b lock-local variables and block parameters can affect

similarly named local variables outside the block, the block va riables themselves

ÏÈÝÌɯÕÖɯȿÌßÐÚÛÌÕÊÌɀɯÖÜÛÚÐËÌɯÛÏÌɯÉÓÖÊÒȭɯ8ÖÜɯÊÈÕɯÝÌÙÐfy this using the defined?

keyword to attempt to display the type of variable if it is, indeed, defined:

print("x=[#{defined?(x)}],z=[#{defined?(z)}]")

Matz, the creator of Ruby, has described the scoping of local variables within a

ÉÓÖÊÒɯÈÚɯȿÙÌÎÙÌÛÛÈÉÓÌɀȭɯ(Õɯ×ÈÙÛÐÊÜÓÈÙȮɯÏÌɯÍÌÌÓÚɯÛÏÈÛɯÐÛɯÞÈÚɯɯÔÐÚÛÈÒÌɯÛÖɯÔÈÒÌɯÓÖÊÈÓɯ

variables within a block invisible to the method containing that block. For an

example of this, see local_var_scope.rb:

local_var_scope.rb

def foo

 a = 100

 [1,2,3].each do |b|

 c = b

 a = b

 print("a=#{a}, b=#{b}, c=#{c} \ n")

 end

 print("Outside block: a=#{a} \ n") # Can't print #{b} and #{c} here!!!

end

Here, the block parameter, b, and the block-local variable, c, are both visible only

when inside the block itself. The block has access to both these variables and to

CHAPTER TEN

201

the variable a (local to the foo method). However, outside of the block, b and c

are inaccessible and only a is visible.

Just to add to the confusion, whereas the block-local variable, c and the block

parameter, b, are both inaccessible outside the block in the example above, they

are accessible when you iterate a block with for as in the example below:

def foo2

 a = 100

 for b in [1,2,3] do

 c = b

 a = b

 print("a=#{a}, b=#{b}, c=#{c} \ n")

 end

 print("Outside block: a=#{a}, b=#{b}, c=#{b} \ n")

end

In future versions of Ruby, local variables to which values are assigned inside a

block (as with c) will also be local to the method (such as foo) outside the block.

Formal block parameters, like b, will be local to the block.

THE BOOK OF RUBY

202

203

CHAPTER ELEVEN

Symbols

Many newcomers to Ruby are confused by symbols. A symbol is an identifier

whose first character is a colon (:), so :this is a symbol and so is :that . Symbols

are, in fact, not at all complicated ɬ and, in certain circumstances, they may be

extremely useful, as we shall see shortly.

+ÌÛɀÚɯÍÐÙÚt be clear about what a symbol is not: it is not a string, it is not a constant

and it is not a variable. A symbol is, quite simply, an identifier with no intrinsic

meaning other than its own name. Whereas you might assign a value to a varia-

ble like this...

name = òFredó

...you would not assign a value to a symbol. The value of a symbol called :name

is :name.

For a more technical account of what a symbol is, refer to the Digging

Deeper section at the end of the chapter.

We have, of course, used symbols before. In Chapter 2, for instance, we created

attribute readers and writers by passing symbols to the attr_reader and

attr_writer methods, like this:

attr_reader(:description)

attr_writer(:description)

THE BOOK OF RUBY

204

You may recall that the above code causes Ruby to create a @description in-

stance variable plus a pair of getter (reader) and setter (writer) methods called

description . Ruby takes the value of a symbol literally. Its value is its name

(:description). The attr_rea der and attr_writer methods create, from that

name, variables and methods with matching names.

SYMBOLS AND STRINGS

It is a common misconception that a symbol is a type of stringȭɯ ÍÛÌÙɯÈÓÓȮɯÐÚÕɀÛɯÛÏÌɯ

symbol, :hello pretty similar to the string, ɁÏÌÓÓÖɂ?

In fact, symbols are quite unlike strings. For one thing, each string is different ɬ

so, ɁÏÌÓÓÖɂ, ɁÏÌÓÓÖɂ and ɁÏÌÓÓÖɂ are three separate objects with three separate

object_id s.

symbol_ids.rb

puts("hello".object_id) # These 3 strings have 3 different ob ject_ids

puts("hello".object_id)

puts("hello".object_id)

But a symbol is unique, so :hello , :hello and :hello all refer to the same object

with the same object_id . In this respect, a symbol has more in common with an

integer than with a string. Each occurrence of a given integer value, you may

recall, refers to the same object so 10, 10 and 10 may be considered to be the same

object and they have the same object_id :

ints_and_symbols.rb

These three symbols have the same object_id

puts(:ten.object_id)

puts(:ten.object_id)

puts(:ten.object_id)

These three integers have the same object_id

puts(10.object_id)

puts(10.object_id)

puts(10.object_id)

CHAPTER ELEVEN

205

Or you could test for equality using the equal? method:

symbols_strings.rb

puts(:helloworld.equal?(:helloworld)) #=> true

puts("helloworld".equal?("helloworld")) #=> false

puts(1.equal?(1)) #=> true

Being unique, a symbol provides an unambiguous identifier. You can pass

symbols as arguments to methods, like this:

amethod(:deletefiles)

A method might contain code to test the value of the incoming argument:

symbols_1.rb

def amethod(doThis)

 if (doThis == :deletefiles) then

 puts('Now deleting files...')

 elsif (doThis == :formatdisk) then

 puts('Now formatting disk...')

 else

 puts("Sorry, command not understood.")

 end

end

Symbols could also be used in case statements where they would provide both

the readability of strings and the uniqueness of integers:

case doThis

 when :deletefiles : puts('Now deleting files...')

 when :formatdisk : puts('Now formatting disk...')

 else puts("Sorry, command not understood .")

end

The scope in which a symbol is declared does not affect its uniqueness.

THE BOOK OF RUBY

206

Consider the following...

symbol_ref.rb

module One

 class Fred

 end

 $f1 = :Fred

end

module Two

 Fred = 1

 $f2 = :Fred

end

def Fred()

end

$f3 = :Fred

Here, the variables $f1 , $f2 and $f3 are assigned the symbol :Fred in three

ËÐÍÍÌÙÌÕÛɯÚÊÖ×ÌÚȯɯÔÖËÜÓÌɯ.ÕÌȮɯÔÖËÜÓÌɯ3ÞÖɯÈÕËɯÛÏÌɯȿÔÈÐÕɀɯÚÊÖ×Ìȭɯɯ(ɀÓÓɯÏÈÝÌɯÔÖÙÌɯ

ÛÖɯÚÈàɯÖÕɯÔÖËÜÓÌÚɯÐÕɯ"ÏÈ×ÛÌÙɯƕƖȭɯ%ÖÙɯÕÖÞȮɯÑÜÚÛɯÛÏÐÕÒɯÖÍɯÛÏÌÔɯÈÚɯȿÕÈÔÌÚ×ÈÊÌÚɀɯ

which define different scopes. And yet each variable refers to the same symbol,

:Fred , and has the same object_id :

All three display the same id!

puts($f1.object_id)

puts($f2.object_id)

puts($f3.object_id)

$ÝÌÕɯÚÖȮɯÛÏÌɯȿÔÌÈÕÐÕÎɀɯÖÍɯÛÏÌɯÚàÔÉÖÓɯÊÏÈÕÎÌÚɯÈÊÊÖÙËÐÕÎɯÛÖɯÐÛÚɯÚÊÖ×Ìȭɯ

In other words, in module One, :Fred refers to the class Fred , in module Two, it

refers to the constant, Fred = 1, and in the main scope it refers to the method

Fred .

A rewritten vers ion of the previous program demonstrates this:

CHAPTER ELEVEN

207

symbol_ref2.rb

module One

 class Fred

 end

 $f1 = :Fred

 def self.evalFred(aSymbol)

 puts(eval(aSymbol.id2name))

 end

end

module Two

 Fred = 1

 $f2 = :Fred

 def self.evalFred(aS ymbol)

 puts(eval(aSymbol.id2name))

 end

end

def Fred()

 puts("hello from the Fred method")

end

$f3 = :Fred

One::evalFred($f1) #=> displays the module::class name: One::Fred

Two::evalFred($f2) #=> displays the Fred constant value: 1

method($f3).call #=> calls Fred method: displays:

 # òhello from the Fred methodó

Naturally, sinc e the variables $f1 , $f2 and $f3 reference the same symbol, it

ËÖÌÚÕɀÛɯÔÈÛÛÌÙɯÞÏÐÊÏɯÝÈÙÐÈÉÓÌɯàÖÜɯÜÚÌɯÈÛɯÈÕàɯgiven point. The following produ c-

es exactly the same results:

One::evalFred($f3)

Two::evalFred($f1)

method($f2).call

