
BEST PRACTICES FOR RUNNING 
ORACLE DATABASES IN  
SOLARIS™ CONTAINERS
 
Ritu Kamboj, ISV Engineering
Roman Ivanov, ISV Engineering

Sun BluePrints™ Online

Part No 820-7195-10
Revision 1.0, 1/16/09



Sun Microsystems, Inc.

Table of Contents

Best Practices for Running Oracle Databases in Solaris™ Containers  . . . . . . . . . . . .1

Solaris Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Oracle License Model for Solaris Containers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Creating a Solaris 10 Container. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Special Considerations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

About the Authors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Acknowledgements. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

References  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

Ordering Sun Documents  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Accessing Sun Documentation Online  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Appendix A: Scripts to Create a Solaris Container. . . . . . . . . . . . . . . . . . . . . . . . . . 22

README.txt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

The setenv.sh File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

The zone_cmd_template.txt File. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

The create_zone_cmg.pl Script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The create_container.sh Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

Appendix B: Setting System V IPC Kernel Parameters  . . . . . . . . . . . . . . . . . . . . . . 30



1 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Best Practices for Running Oracle Databases in 
Solaris™ Containers

The Solaris™ Operating System (Solaris OS) includes support for Solaris Containers, a 

virtualization technology that provides isolated and secure runtime environments 

within a single Solaris OS instance. Using Solaris Containers, administrators can 

manage separate workloads, control resource usage, and maintain IP network 

separation. These features can enable multiple applications, or even multiple instances 

of the same application, to securely coexist on a single system, providing potential 

server consolidation savings.

Both Oracle 9i R2 and 10g R2 databases have been certified to run in a Solaris 

Container. A licensing agreement between Sun and Oracle recognizes Solaris 10 OS 

capped containers as hard partitions. The ability to license only the CPUs or cores 

configured in a Solaris Container provides flexibility, consolidation opportunities, and 

possible cost savings. 

This article addresses the following topics:

• “Solaris Containers” on page 1 provides an overview of Solaris Containers, including 

Solaris Zones and the Solaris Resource Manager.

• “Oracle License Model for Solaris Containers” on page 7 describes the licensing 

model supported by Oracle.

• “Creating a Solaris 10 Container” on page 8 provides directions for creating and 

configuring a non-global zone in a Solaris Container that is appropriate for deploying 

an Oracle database.

• “Special Considerations” on page 10 discusses guidelines for running an Oracle 

database in a Solaris Container.

Note – All Solaris OS features described in this document require the use of Solaris 10 10/08 
(U6) or later releases. This document does not address Oracle Real Application Cluster (RAC), 
but concentrates solely on non-RAC Oracle databases. It is also beyond the scope of this docu-
ment to explain how Solaris Containers technology can be used to consolidate multiple Ora-
cle database instances in separate containers on the same system. See references [1] and [3] 
for detailed information about using Solaris Containers technology for server consolidation.

Solaris Containers

Solaris Containers, Sun’s operating system level virtualization technology, provide 

complete, isolated, and secure runtime environments for applications. This technology 

allows application components to be isolated from each other using flexible, software-



2 Best Practices for Running Oracle Databases in Solaris Containers Sun Microsystems, Inc.
defined boundaries. Solaris Containers are designed to provide fine-grained control over 

resources that the applications use, allowing multiple applications to operate on a 

single Solaris 10 OS instance while maintaining specified service levels (Figure 1).

Figure 1. Multiple Solaris Containers on a single Solaris 10 OS instance.

Solaris Containers use Solaris Resource Manager (SRM) features along with Solaris 

Zones software partitioning technology to deliver a virtualized environment that can 

have fixed resource boundaries for application workloads. These two major components 

of Solaris Containers are discussed in the following sections. For more detailed 

information about these technologies, see references [2] and [4].

Solaris Zones Partitioning Technology
Solaris Zones, a component of the Solaris Containers environment, is a software 

partitioning technology that virtualizes operating system services and provides an 

isolated and secure environment for running applications. Solaris Zones are ideal for 

environments that consolidate multiple applications on a single server.

There are two types of zones: global zones and non-global zones. The underlying OS, 

which is the Solaris instance booted by the system hardware, is called the global zone. 

There is only one global zone per system, which is both the default zone for the system 

and the zone used for system-wide administrative control. One or more non-global 

zones can be created by an administrator of a global zone. Once created, these non-

global zones can be administered by individual non-global zone administrators, whose 

privileges are confined to that non-global zone.

Two types of non-global zones can be created using different root file system models: 

sparse root and whole root.

• Sparse root model — The sparse root zone model optimizes the sharing of objects by 

only installing a subset of the root packages and using a read-only loopback file 

system to gain access to other files. In this model, the directories /lib, /platform, 

/sbin, and /usr are mounted by default as loopback file systems. The advantages of 

this model are improved performance due to efficient sharing of executables and 

shared libraries, and a much smaller disk footprint for the zone itself.

Container

Users

Container

Users

Sun Fire x64 or UltraSPARC-Processor-Based Server

Container

Users

Single Solaris 10 Operating System Instance

Allocated
Resources

Allocated
Resources

Allocated
Resources

Applications Applications Applications



3 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
• Whole root model — The whole root zone model provides for maximum 

configurability by installing the required packages and any selected optional zones 

into the private file systems of the zone. The advantages of this model include the 

ability for zone administrators to customize their zone’s file system layout and add 

arbitrary unbundled or third-party packages.

Solaris Zones provide the standard Solaris interfaces and application environment; they 

do not impose a new ABI or API. In general, applications do not need to be ported to 

Solaris Zones. However, applications running in non-global zones may need to be aware 

of non-global zone behavior, depending on the Solaris interfaces they use. In particular:

• All processes running in a zone have a reduced set of privileges, which is a subset of 

the privileges available in the global zone. This set of privileges is available to the root 

user. Non-root users of a zone have a subset of those privileges. By default, non-

global zone non-root users have privileges that are the “logical AND” of the privileges 

available to non-root users in the global zone and the privileges available to that 

zone. 

Processes that require a privilege not available in a non-global zone can fail to 

run, or in a few cases fail to achieve full performance.

• Administrators can modify the privileges that a zone has, reducing or expanding the 

set. This provides the ability to enhance security by removing privileges not needed 

by applications running in that zone, or to give a zone a non-default privilege in order 

to improve the functionality or performance of an application. The privilege 

proc_lock_memory, required to use Dynamic Intimate Shared Memory (DISM), is 

now in the default privileges set of zones.

• Each non-global zone may have its own logical network and loopback interface. 

Bindings between upper-layer streams and logical interfaces are restricted such that 

a stream may only establish bindings to logical interfaces in the same zone. Likewise, 

packets from a logical interface can only be passed to upper-layer streams in the 

same zone as the logical interface. 

• Each zone can be configured with exclusive-IP privileges which allow it to have its 

own IP resources. This gives full functionality and independence from the global 

zone's IP. Specifically, an exclusive-IP zone can manage its own network interfaces, 

routing table, IPQoS configuration, and IP Filter rules.

• Non-global zones have access to a restricted set of devices. In general, devices are 

shared resources in a system. Therefore, restrictions within zones are put in place so 

that security is not compromised.

• Two categories of iSCSI storage are supported with zones. A zone can be installed into 

a directory which is mounted in the global zone and is backed by iSCSI storage. (See a 

description of Network-Attached Containers by Jeff Victor, documented at 

http://blogs.sun.com/jeffv/date/20080408.) Alternatively, iSCSI storage can 

be mounted into the global zone, and a directory from the file system can be 

loopback mounted into a zone.

http://blogs.sun.com/jeffv/date/20080408


4 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Solaris Resource Manager
By default, the Solaris OS provides all workloads running on the system equal access to 

all system resources. This default behavior of the Solaris OS can be modified by Solaris 

Resource Manager, which provides a way to control resource usage.

Solaris Resource Manager (SRM) provides the following functionality:

• A method to classify a workload, so the system knows which processes belong to a 

given workload.

• The ability to measure the workload to assess how much of the system resources the 

workload is actually using. 

• The ability to control the workloads so they do not interfere with one another and 

also get the required system resources to meet predefined service-level agreements.

SRM provides three types of workload control mechanisms:

• The constraint mechanism, which allows the Solaris system administrator to limit 

the resources a workload is allowed to consume. 

• The scheduling mechanism, which refers to the allocation decisions that 

accommodate the resource demands of all the different workloads in an under-

committed or over-committed scenario.

• The partitioning mechanism, which ensures that pre-defined system resources are 

assigned to a given workload.

Workload Identification

Solaris Resource Manager uses two levels of granularity, projects and tasks, to identify 

a workload:

• Projects

Projects are a facility that allow the identification and separation of workloads. A 

workload can be composed of several applications and processes belonging to 

different groups and users. The identification mechanism provided by projects 

serves as a tag for all the processes of a workload. This identifier can be shared 

across multiple machines through the project name service database. The location 

of this database can be in files, NIS, or LDAP, depending on the definition of 

projects database source in the /etc/nsswitch.conf file. Attributes assigned to 

the projects are used by the resource control mechanism to provide a resource 

administration context on a per-project basis.

• Tasks

Tasks provide a second level of granularity in identifying a workload. A task 

collects a group of processes into a manageable entity that represents a workload 

component. Each login creates a new task that belongs to the project, and all the 

processes started during that login session belong to the task. The concept of 

projects and tasks has been incorporated in several administrative commands 

such as ps, pgrep, pkill, prstat and cron.



5 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Resource Controls

It is possible to place bounds on resource usage, to control the resource usage of a 

workload. These bounds can be used to prevent a workload from over-consuming a 

particular resource and interfering with other workloads. The Solaris Resource Manager 

provides a resource control facility to implement constraints on resource usage.

Each resource control is defined by the following three values:

• Privilege level

• Threshold value 

• Action that is associated with the particular threshold

The privilege level indicates the privilege needed to modify the resource. It must be one 

of the following three types:

• Basic, which can be modified by the owner of the calling process

• Privileged, which can be modified only by privileged (superuser) callers

• System, which is fixed for the duration of the operating system instance

The threshold value on a resource control constitutes an enforcement point where 

actions can be triggered. The specified action is performed when a particular threshold 

is reached. Global actions apply to resource control values for every resource control on 

the system. Local action is taken on a process that attempts to exceed the control 

value. 

There are three types of local actions:

• None—No action is taken on resource requests for an amount that is greater than 

the threshold. 

• Deny—Deny resource requests for an amount that is greater than the threshold. 

• Signal—Enable a global signal message action when the resource control is 

exceeded.

For example, task.max-lwp=(privileged, 10, deny) would tell the resource 

control facility to deny more than 10 lightweight processes to any process in that task. 

CPU and Memory Management

SRM enables the end user to control the available CPU resources and physical memory 

consumption of different workloads on a system by providing Fair Share Scheduler 

(FSS), Resource Capping Daemon, CPU Caps and Dedicated CPUs facilities. 

• Fair Share Scheduler

The default scheduler in the Solaris OS provides every process equal access to CPU 

resources. However, when multiple workloads are running on the same system 

one workload can monopolize CPU resources. Fair Share Scheduler provides a 

mechanism to prioritize access to CPU resources based on the importance of the 

workload.



6 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
With FSS the importance of a workload is expressed by the number of shares the 

system administrator allocates to the project representing the workload. Shares 

define the relative importance of projects with respect to other projects. If project 

A is deemed twice as important as Project B, project A should be assigned twice as 

many shares as project B.

It is important to note that FSS only limits CPU usage if there is competition for 

CPU resources. If there is only one active project on the system, it can use 100% of 

the system CPUs resources, regardless of the number of shares assigned to it. 

• Resource Capping Daemon
The resource capping daemon (rcapd) can be used to regulate the amount of 

physical memory that is consumed by projects with resource caps defined. The 

rcapd daemon repeatedly samples the memory utilization of projects that are 

configured with physical memory caps. The sampling interval is specified by the 

administrator. When the system's physical memory utilization soft cap exceeds 

the threshold for cap enforcement and other conditions are met, the daemon 

takes action to reduce the memory consumption of projects with memory caps to 

levels at or below the caps.

Virtual memory (swap space) can also be capped. This is a hard cap. In a Container 

which has a swap cap, an attempt by a process to allocate more virtual memory 

than is allowed will fail.

With the Oracle Database it may be not appropriate to set the physical memory 

and swap limitation since the swapping of Oracle processes or System Global Area 

(SGA) is not desirable.

The third new memory cap is locked memory. This is the amount of physical 

memory that a Container can lock down, or prevent from being paged out. By 

default a Container now has the proc_lock_memory privilege, so it is wise to set 

this cap for all Containers. 

• CPU Caps

CPU caps provide absolute fine-grained limits on the amount of CPU resources 

that can be consumed by a project or a zone. CPU caps are provided as a zonecfg 

resource, and as project and zone-wide resource controls.

Administrators can use this feature to control upper limit of CPU usage by each 

zone. This is in contrast to FSS, which sets the minimum guaranteed portion of 

CPU time to a given zone if there is a competition for CPU.

For example: consider the following commands to set a CPU cap for a zone

zonecfg:myzone> add capped-cpu
zonecfg:myzone:capped-cpu> set ncpus=3.75
zonecfg:myzone:capped-cpu> end



7 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
The ncpus parameter indicates the percentage of a single CPU that can be used by 

all user threads in a zone, expressed as a fraction (for example, .75) or a mixed 

number (whole number and fraction, for example, 3.25). An ncpu value of 1 means 

100% of a CPU, a value of 3.25 means 325%, .75 mean 75%, and so forth. When 

projects within a capped zone have their own caps, the minimum value takes 

precedence.

• Dedicated CPUs

Administrators can use this feature to assign CPUs to zones dynamically within 

specified minimum and maximum limits per each zone. This eliminates the need 

to create CPU pools and assign pools to zones, leading to better resource usage 

and much simple administration.

For example, consider the following commands to set dedicated CPUs for a zone:

With this example, when the zone boots the system creates a temporary 

dedicated pool for this zone by taking CPUs from the global zone. If the zone will 

need more CPUs and there will be available CPUs, then the system will assign 

them to the zone within specified limits.

More examples of CPU and Memory Management in Solaris Containers are included in 

“New Zones Features” by Jeff Victor [10].

Note – Oracle users should consult with the current status of dynamic cpu_count changes 
supported by Oracle software. At the time of publication, some bugs prevented Oracle soft-
ware from working correctly with dynamic cpu_count changes.

Oracle License Model for Solaris Containers
Oracle now recognizes capped Solaris 10 Containers as licensable entities, known as 

hard partitions. Oracle customers running an Oracle database in a Solaris 10 OS 

environment can now license only the CPUs or cores that are in a capped Solaris 

container.

Oracle licensing policy defines hard partitioning as “a physical subset of a server that 

acts like a self-contained server” (for more details see reference [2]). The following 

example (Figure 2) illustrates how an 8-processor system can be partitioned into a 3-

processor sub-system using Solaris Containers technology in the Solaris 10 OS. 

zonecfg:myzone> add dedicated-cpu
zonecfg:myzone:dedicated-cpu> set ncpus=8-12
zonecfg:myzone:dedicated-cpu> end



8 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Figure 2. Example of a Container for Oracle in the Solaris 10 OS.

To create a Solaris 10 container that fits the licensing requirements set by Oracle, the 

Solaris system administrator needs to create a resource pool with the desired number 

of CPUs or cores and bind a zone to this resource pool. Alternatively, the administrator 

may set up a zone to use dynamic pool with specified CPU maximum limit. The license 

is driven by the number of CPUs or cores in this pool.

Creating a Solaris 10 Container
This section provides instructions for creating a Solaris 10 container appropriate for 

installing and running an Oracle database. These instructions have been followed in the 

sample scripts documented in Appendix A, “Scripts to Create a Solaris Container” on 

page 22, which provide a convenient way of creating such containers. 

Requirements
1. Ensure that the file system in which the root directory for the container will be 

placed has at least 6 GB of physical disk space. This disk space is required to create 

the container and install Oracle database binaries. This example uses a sparse root 

zone. 

2. Identify the physical interface that will be used to bring up the virtual interface for 

the container. Examples of common interfaces are ce0, bge0 and hme0.To find the 

physical interfaces available in the global container execute the command:

Alternatively, to configure exclusive-IP for a zone, consider using an interface 

that is listed among the output of the following dladm command, but is not 

listed by the output of the ifconfig -a command:

Examples may include hme1 or e1000g1.

# /usr/sbin/ifconfig -a 

# /usr/sbin/dladm show-link

Container Oracle

Zone Oracle

Pool Oracle - 3 CPUsPool Default - 5 CPUs

Zone Global



9 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
3. Obtain an IP address and a hostname for the container. 

a. If exclusive-IP is not being used, this IP address must be in the same subnet as 

the IP assigned to the physical interface selected in the previous step.

b. Or, if exclusive-IP is being used, then select any IP address (this address is not 

required to belong to the same subnet as global zone's IP).

4. If exclusive-IP is not being used, ensure that the netmask for the IP address of the 

container can be resolved in the global zone according to the databases used in the 

/etc/nsswitch.conf file. If this is not the case, update the file /etc/netmasks 

in the global container with the netmask desired for the subnet to which the IP 

address belongs.

5. If partitioning the CPUs into pools or using dedicated-CPUs, determine the quantity 

of CPUs to be reserved for the container. To find the quantity of CPUs available in 

the default pool, execute the command poolstat. The default pool will indicate 

the number of CPUs available. Keep in mind that the default pool must always have 

at least one CPU. If your system is not configured with pools then use psrinfo to 

find all available CPUs.

Enabling Resource Pools

Resource pools and dynamic resource pools have been integrated into the Solaris 

service management facility (SMF). Dynamic resource pools are enabled separately of 

the resource pools service.

The fault management resource identifier (FMRI) for the dynamic resource pools service 

is svc:/system/pools/dynamic. The FMRI for the resource pools service is 

svc:/system/pools.

To enable the pool facility, use the following commands:

To check the status, use the following command:

Creating a Non-Global Zone

Once the resource pools services are available, a non-global zone can be created and 

bound to it. For the purposes of installing and running an Oracle database, the non-

global zone can have either a whole root model or a sparse root model. Unless it 

conflicts with specific requirements, it is recommended to use the sparse root model as 

this creates a much smaller disk footprint for the zone. 

# svcadm enable svc:/system/pools:default
# svcadm enable svc:/system/pools/dynamic:default

# svcs -a | grep pool
STATE          STIME    FMRI 
online         11:21:40 svc:/system/pools:default
online         11:21:45 svc:/system/pools/dynamic:default



10 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
A non-global Solaris zone can be created as follows:

1. As root user, create a directory where the root directory of the non-global zone will 

be placed (for example, /zones/myzone) and set the access permissions to 700. 

The name of this directory should match the name of the zone (myzone, in this 

example). This directory can be also on ZFS filesystem (for example rpool/myzone 

or rpool/zones/myzone).

2. Unless special instructions are added, the directory /usr in the container will be a 

loopback file system (lofs). This means that the container will mount in read-only 

mode /usr from the global container into /usr of its own file system tree. By 

default, the Oracle installer requires root to create files in the /usr/local direc-

tory. Since /usr will be read-only in the container, this example creates a special 

mount point in /usr/local to allow root to create such files in the container. 

Check if the directory /usr/local exists in the global container, and if it is not 

present, create it.

3. Create a directory in the global container to mount /usr/local in the container. 

The recommendation is to create it in /opt/ZONE_NAME/local.

4. Use the setenv.sh file in Appendix A (“The setenv.sh File” on page 24) to create a 

settings file to create the zone and bind it to the resources. Set the values of the 

variables ZONE_DIR, ZONE_NAME, IP_TYPE, NET_IP, and NET_PHYSICAL with 

appropriate values. In the file zone_cmd_template.txt, the command create is 

used to create a sparse root. Replacing this command with create -b would cre-

ate a whole root. The zone will be created with a dynamic CPU pool within the 

NUM_CPUS_MIN and NUM_CPUS_MAX limits. If you want to have exclusive IP in your 

new zone then set IP_TYPE=EXCLUSIVE. The scheduling class and max-shm-mem-

ory for the zone can also be set in this file.

5. Create the zone by executing the following command as root (see “The 

create_container.sh Script” on page 26 of Appendix A):  

6. Finish the configuration of the container with the following command: 

Special Considerations
This section contains special considerations when running an Oracle database inside a 

Solaris container.

Devices in Containers

To guarantee that security and isolation are not compromised, certain restrictions 

regarding devices are placed on non-global zones:

# sh ./create_container.sh

# zlogin -C ZONE_NAME



11 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
• By default, only a restricted set of devices (which consist primarily of pseudo devices) 

such as /dev/null, /dev/zero, /dev/poll, /dev/random, and /dev/tcp, are 

accessible in the non-global zone. 

• Devices that expose system data like dtrace, kmem, and ksyms are not available in 

non-global zones.

• By default, physical devices are also not accessible by non-global zones. 

The global zone administrator can make physical devices available to non-global zones. 

It is the administrator's responsibility to ensure that the security of the system is not 

compromised by doing so, mainly for two reasons: 

• Placing a physical device into more than one zone can create a covert channel 

between zones.

• Global zone applications that use such a device risk the possibility of compromised 

data or data corruption by a non-global zone. 

The global zone administrator can use the add device sub-command of zonecfg to 

include additional devices in non-global zone. For example to add the block device 

/dev/dsk/c1t1d0s0 to the non-global zone my-zone, the administrator executes the 

following commands:

All slices of /dev/dsk/c1t1d0 could be added to the non-global zone by using 

/dev/dsk/c1t1d0* in the match command. This same procedure can be used for 

character devices (also known as raw devices) or any other kind of device.

If it is planned to install an Oracle database in a non-global zone by using Oracle 

installation CDs, the CD-ROM device must be made visible to the non-global zone. One 

recommended method is to loopback mount the /cdrom directory from the global 

zone. An alternative method of exporting the physical device from the global zone to 

the non-global zone is discouraged, as /cdrom is nearly always a system-wide shared 

device (and, furthermore, exporting the cdrom device requires stopping/disabling the 

Volume Management daemon vold in the global zone). For details about how to gain 

access to the CD-ROM device from a non-global zone, see reference [8].

UFS File Systems in Solaris Containers

Each zone has its own file system hierarchy, rooted at a directory known as zone root. 

Processes in a zone can access only files in the part of the file system hierarchy that is 

located under the zone root. 

# zonecfg -z my-zone
zonecfg:my-zone> add device
zonecfg:my-zone:device> set match=/dev/dsk/c1t1d0s0
zonecfg:my-zone:device> end
zonecfg:my-zone> exit
# zoneadm -z my-zone reboot 



12 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Three different ways of mounting a UFS file system in a non-global zone are described 

in the following examples:

• Method 1: Mount using loopback file system (lofs)

Create a file system in a global zone and mount it in a non-global zone as a 

loopback file system (lofs). This method is used to share a file system between 

global and non-global zones.

1. Log in as global zone administrator.

2. Create a file system in global zone: 

3. Mount the file system in the global zone: 

4. Add the file system of type lofs to the non-global zone: 

• Method 2: Mount file system as UFS
Create a file system in the global zone and mount it to the non-global zone as UFS.

1. Log in as global zone administrator.

2. Create a file system in the global zone: 

3. Add the file system of type ufs to the non-global zone:

• Method 3: Export a device from a global zone

Export a device from a global zone to a non-global zone and mount it from the 

non-global zone. Using this method, the file system that is created will not be 

shared between zones.

1. Log in as global zone administrator.

global# newfs /dev/rdsk/c1t0d0s0

global# mount /dev/dsk/c1t0d0s0 /mystuff

global# zonecfg -z my-zone 
zonecfg:my-zone> add fs 
zonecfg:my-zone:fs> set dir=/usr/mystuff 
zonecfg:my-zone:fs> set special=/mystuff 
zonecfg:my-zone:fs> set type=lofs 
zonecfg:my-zone:fs> end

global# newfs /dev/rdsk/c1t0d0s0

global# zonecfg -z my-zone 
zonecfg:my-zone> add fs 
zonecfg:my-zone:fs> set dir=/usr/mystuff 
zonecfg:my-zone:fs> set special=/dev/dsk/c1t0d0s0 
zonecfg:my-zone:fs> set raw=/dev/rdsk/c1t0d0s0 
zonecfg:my-zone:fs> set type=ufs 
zonecfg:my-zone:fs> end



13 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
2. Export a raw device to the non-global zone: 

3. Log in as root in non-global zone. 

4. Create a file system in the non-global zone:

5. Mount the file system in the non-global zone: 

ZFS File Systems in Containers

The Solaris Zones partitioning technology supports Solaris ZFS components, such as 

adding Solaris ZFS file systems and storage pools into a zone. The following sections 

describe how to add a ZFS file system and delegate a dataset to a non-global zone. For 

more detailed information, see the Solaris ZFS Administration Guide [11]. 

Adding a Single ZFS File System

This example illustrates adding a ZFS file system to a non-global zone. 

1. From the global zone, make sure the mount point is set to legacy:

2. From the global zone, make sure that mount point is set to legacy. Use the follow-

ing command to check the mount point, and confirm it is set to legacy:

3. Use the following commands to add a ZFS file system to the zone:

This syntax adds the ZFS file system tank/home to the myzone zone, mounted at 

/export/share. With this configuration, the zone administrator can create and 

destroy files within the file system. The file system cannot be remounted in a dif-
ferent location, nor can the zone administrator change properties on the file sys-

tem (such as compression, read-only, and so on). The global zone administrator is 
responsible for setting and controlling properties of the file system.

global# zonecfg -z my-zone 
zonecfg:my-zone> add device 
zonecfg:my-zone:device> set match=/dev/rdsk/c1t0d0s0 
zonecfg:my-zone:device> end 
zonecfg:my-zone> add device 
zonecfg:my-zone:device> set match=/dev/dsk/c1t0d0s0 
zonecfg:my-zone:device> end 

my-zone# my-zone# newfs /dev/rdsk/c1t0d0s0

my-zone# mount /dev/dsk/c1t0d0s0 /usr/mystuff

global# zfs set mountpoint=legacy tank/home

global# zfs get mountpoint tank/home

global# zonecfg -z myzone 
zonecfg:myzone> add fs
zonecfg:myzone:fs> set type=zfs
zonecfg:myzone:fs> set dir=/export/share
zonecfg:myzone:fs> set special=tank/home
zonecfg:myzone:fs> end



14 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Delegating Complete ZFS Dataset

If the primary goal is to delegate the administration of storage to a zone, a complete 

ZFS dataset can be delegated to a non-global zone. In the following example, a ZFS file 

system is delegated to a non-global zone by the global zone administrator.

1. First, create a ZFS file system in a global zone:

2. Second, add it to the zone as a dataset:

3. Third, restart the zone to get the ZFS file system in it. After restarting, the ZFS file 

system can be found inside a zone:

Because the directory distr/vol1 was imported in this example, it cannot be 

managed on the distr level. But, additional file systems can be created beneath the 

distr/vol1 directory, as seen in the following example:

Unlike the previous example of adding a single file system, this example causes the ZFS 

file system /distr/vol1 to be visible within the zone myzone. The zone administrator 

can set file system properties, create children, take snapshot, create clones, and 

otherwise control the entire ZFS file system hierarchy. This allows the administration of 

a ZFS file system (and any subordinate file systems created in the zone) to be delegated 

to a non-global zone.

After the ZFS dataset is delegated to a zone, the dataset property zoned=on will be 

set. This means that most of the ZFS properties, including mountpoint, cannot be 

used in global zone anymore. Effectively, it will look like mounpoint=legacy even if 

the mountpoint is set to any specific value.

# zfs create distr/vol1

# zonecfg -z myzone 
zonecfg:myzone> add dataset 
zonecfg:myzone:dataset> set name=distr/vol1 
zonecfg:myzone:dataset> end 
zonecfg:myzone> verify 
zonecfg:myzone> commit 
zonecfg:myzone> end

# zfs list 
NAME         USED  AVAIL  REFER  MOUNTPOINT 
distr       48,9G  18,3G  30,5K  /distr 
distr/vol1  24,5K  18,3G  24,5K  /distr/vol1 

# zfs create distr/vol2 
cannot create 'distr/vol2': permission denied 
# zfs create distr/vol1/vol2 



15 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Limiting ZFS cache

The ZFS cache limit in global zone can be set by specifying the zfs_arc_max parameter 

in the /etc/system file. For example, the following example sets the ZFS cache limit 

to 8 GB (0x200000000 in hexadecimal):

While ZFS sets its own limits on cache used, administrators can choose to monitor ZFS 

cache usage and set explicit limits. The blog article “Monitoring ZFS Statistic on the 

system loaded with Oracle database,” available online at 

http://blogs.sun.com/pomah/entry/monitoring_zfs_statistic_con_t, 

contains a script that can be used to monitor cache usage, and the cache limit should 

be planned to be below the value of the physical memory size less the sum of all SGAs 

for all Oracle instances.

Note – The “ZFS Evil Tuning Guide” provides additional information on limiting the ZFS cache 
and other ZFS tuning best practices: 
http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide

System V Resource Controls for Zones 
The Fair Share Scheduler (FSS) can be used to control the allocation of available CPU 

resources among zones, based on their importance.

If it is planned to set shares for each zone, they can be specified using the set cpu-

shares command. For example:

The more shares that are assigned, the more CPU cycles this zone's processes will get if 

there is competition for CPU.

Additionally, the maximum shared memory segment size needed can be set for an 

Oracle instance. For example: 

It is recommended to set FSS globally (unless specific configuration requirements make 

it undesirable to do so) and then reboot the global zone: 

In this case, it is not required to explicitly set the scheduling class to FSS for each zone 

(set scheduling-class=FSS) since it is inherited from global zone.

set zfs:zfs_arc_max = 0x200000000

zonecfg:myzone> set scheduling-class=FSS 

zonecfg:myzone> set cpu-shares=10

zonecfg:myzone> set max-shm-memory=4G 

global# dispadmin -d FSS

http://blogs.sun.com/pomah/entry/monitoring_zfs_statistic_con_t
http://www.solarisinternals.com/wiki/index.php/ZFS_Evil_Tuning_Guide


16 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Solaris Dynamic Intimate Shared Memory (DISM)
DISM provides shared memory that is dynamically resizable. A process that makes use 

of a DISM segment can lock and unlock parts of a memory segment while the process is 

running. By doing so, the application can dynamically adjust to the addition of physical 

memory to the system or prepare for the removal of it.

By default, Oracle uses intimate shared memory (ISM) instead of standard System V 

shared memory on the Solaris OS. When a shared memory segment is made into an 

ISM segment, it is mapped using large pages and the memory for the segment is locked 

(that is, it cannot be paged out). This greatly reduces the overhead due to process 

context switches, which improves Oracle's performance linearity under load. For more 

details about Oracle and DISM, see reference [5].

ISM certainly has benefits over standard System V shared memory. However, its 

disadvantage is that ISM segments cannot be resized. To change the size of an ISM 

database buffer cache, the database must be shut down and restarted. DISM 

overcomes this limitation as it provides shared memory that is dynamically resizable. 

DISM has been supported in Oracle databases since Oracle 9i. Oracle uses DISM instead 

of ISM if the maximum SGA size set by the sga_max_size parameter in init.ora is 

larger than the sum of its components (that is, db_cache_size, shared_pool_size, 

and other smaller SGA components).

In ISM, the kernel locks and unlocks memory pages. However, in DISM the locking and 

unlocking of memory pages is done by the Oracle process ora_dism_$ORACLE_SID. In 

order to lock memory, a process needs the proc_lock_memory privilege. This privilege 

is now available in a Solaris 10 non-global zone by default.

The following example shows configuring Oracle for DISM:

Dedicated CPU
With the introduction of the dedicated CPU feature, system administrators now have a 

much easier and also more effective way of managing pools of CPUs. In reality, system 

administrators do not even have to care about creating CPU pools. Of course, they must 

know how many CPUs are available and how they are used. With the dedicated CPU 

feature, administrators can assign CPUs right when they are creating a new zone and 

they can manage assigned CPUs by changing zone properties. 

SQL> alter system set sga_max_size=1000M scope=spfile; 
SQL> alter system set sga_target=600M scope=spfile;
SQL> shutdown immediate
SQL> startup
$ ps -ef|grep ism 
root 28976  5865   0 10:54:00 ?           0:17 ora_dism_mydb



17 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
For example, the following commands specifies a CPU range for use by the zone 

myzone:

IP Instances: LAN and VLAN Separation for Non-Global Zones

IP networking can now be configured in two different ways, depending on whether the 

zone is assigned an exclusive IP instance or shares the IP layer configuration and state 

with the global zone. IP types are configured by using the zonecfg command.

The shared-IP type is the default. These zones connect to the same VLANs or same LANs 

as the global zone and share the IP layer.

Full IP-level functionality is available in an exclusive-IP zone. If a zone must be isolated 

at the IP layer on the network, then the zone can have an exclusive IP. The exclusive-IP 

zone can be used to consolidate applications that must communicate on different 

subnets that are on different VLANs or different LANs.

Network interfaces should not be used by any other zone, including the global zone.

The following example configures the zone myzone for exclusive IP usage using the 

physical interface e1000g1:

Moving Solaris Containers

Solaris Containers can be moved, or migrated, from one server to another. This 

capability allows administrators to rapidly provision zones and relocate workloads as 

needed to meet changing requirements. 

In order to move a Solaris Container, the zone must be halted. In addition, both the old 

and new systems must have compatible levels of Solaris patches, and the location of 

devices must be the same if these devices were used in the configuration.

Basic steps include the following:

1. Create the container on the first system.

2. Detach the container.

3. Create an archive.

4. Move the archive to a new system, and unpack the archive.

5. Attach the container to the new system.

zonecfg:myzone> add dedicated-cpu
zonecfg:myzone:dedicated-cpu> set ncpus=8-12
zonecfg:myzone:dedicated-cpu> end

zonecfg:myzone> set ip-type=exclusive 
zonecfg:myzone> add net 
zonecfg:myzone:net> set physical=e1000g1
zonecfg:myzone:net> end 



18 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
The procedure for moving a Solaris Container depends, in part, on the type of file 

system used to hold the container’s private files. For example, the container can reside 

on a root file system; the container can reside on a ZFS file system; or, the container 

can reside in a UFS file system built on a Solaris Volume Manager metadevice. For 

detailed descriptions on procedures for these three scenarios, see [9]. 

Volume Management

Because various options are available for volume management, including third-party 

volume managers products, usability in containers cannot be completely generalized. 

As of this writing, volume managers cannot be installed or managed from non-global 

zones. Currently, the recommended approach is to install and manage volume manager 

software from a system's global zone. Once the devices, file systems, and volumes are 

created in the global zone, they can be made available to the non-global zones by using 

zonecfg subcommands.

For example, Solaris Volume Manager (SVM) should be installed and managed from 

global zones. Once the storage has been configured in the desired way from the global 

zone, the metadevices can then be made available to the non-global zones or used 

through mounted file systems.

Note – For the latest status of support and any published work-arounds for technical issues 
related to third-party volume management software, it is advised to consult with the third-
party support Web sites. 

CPU Visibility

Users can expect a virtualized view of the system in a Solaris container with respect to 

CPU visibility when the zone is bound to a resource pool. In these cases the zone will 

only see those CPUs associated with the resource pool it is bound to.

By default a container is bound the pool pool_default, which is the same set of 

processors that the global zone's processes use.

The Oracle database application mainly calls pset_info(2) and sysconf(3c) with 

the _SC_NPROCESSORS_ONLN argument to procure the number of CPUs it has 

available. Based on this number, Oracle will size internal resources and create threads 

for different purposes (for example, parallel queries and number of readers). These calls 

will return the expected value (that is, the number of CPUs in the resource pool) if the 

zone is bound to a resource pool with a pset associated with it. Table 1 shows the 

interfaces that have been modified in the Solaris OS and that will return the expected 

value in this scenario.



19 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Table 1. List of CPU-Related Solaris 10 Interfaces That Are Container-Aware

In addition to these interfaces, certain kernel statistics (kstats) are used commonly by 

tools such as psrinfo(1M) and mpstat(1M) to retrieve information about the 

system. All consumers of these kstats will only see information for a pset in the pool 

bound to the zone.

Summary
Solaris Containers provide a very flexible and secure method of managing multiple 

applications on a single Solaris OS instance. Solaris Containers use Solaris Zones 

software partitioning technology to virtualize the operating system and provide 

isolated and secure runtime environments for applications. Solaris Resource Manager 

can be used to control resource usage, such as capping memory and CPU usage, 

helping to ensure workloads get required system resources. By utilizing Solaris 

containers, multiple applications, or even multiple instances of the same application, 

can securely coexist on a single system, providing potential server consolidation 

savings.

INTERFACE TYPE

p_online(2) System Call

processor_bind(2) System Call

processor_info(2) System Call

pset_list(2) System Call

pset_info(2) System Call

pset_getattr(2) System Call

pset_getloadavg(3c) System Call

getloadavg(3c) System Call

sysconf(3c) System Call

p_online(2) System Call

_SC_NPROCESSORS_CONF sysconf(3c) arg

_SC_NPROCESSORS_ONLN sysconf(3c) arg

pbind(1M) Command

psrset(1M) Command

psrinfo(1M) Command

mpstat(1M) Command

vmstat(1M) Command

iostat(1M) Command

sar(1M) Command



20 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Oracle 9i R2 and 10g R2 databases have been certified to run in a Solaris container. This 

paper provides step-by-step directions for creating a non-global zone in a Solaris 

container that is appropriate for running a non-RAC Oracle database. In addition, it 

describes special considerations that apply when running an Oracle database within a 

Solaris container. 

About the Authors

Ritu Kamboj is a Staff Engineer in ISV Engineering's Open Source Team at Sun 

Microsystems. She has over 12 years of experience in software development with 

expertise on database design, performance, and high availability. She has worked 

extensively on Sybase, Oracle, and MySQL databases. Recently her primary focus has 

been making MySQL run best on the Solaris platform.

Roman Ivanov joined Sun in January 2006. He is working in the ISV Engineering 

department helping Independent Software Vendors adopt Sun's technology and 

improve performance on Sun's hardware. His blog is available online at 

http://blogs.sun.com/pomah/.

Acknowledgements 
The author would like to thank Alain Chéreau, Jeff Victor, and Fernando Castano for 

their contributions to this article.

References 

[1] Consolidating Applications with Solaris 10 Containers, Sun Microsystems, 2004. 

http://www.sun.com/datacenter/consolidation/solaris10_whitepaper

.pdf

[2] Solaris 10 System Administrator Collection — System Administration Guide: 

Solaris Containers-Resource Management and Solaris Zones, Sun Microsystems, 

2005.  
http://docs.sun.com/app/docs/doc/817-1592

[3] Lageman, Menno. “Solaris Containers—What They Are and How to Use Them,” 

Sun BluePrints OnLine, 2005. 
http://www.sun.com/blueprints/0505/819-2679.html

[4] Solaris Zones section on BigAdmin System Administration Portal, Sun 

Microsystems. 
http://www.sun.com/bigadmin/content/zones

http://blogs.sun.com/pomah/
http://www.sun.com/datacenter/consolidation/solaris10_whitepaper.pdf
http://docs.sun.com/app/docs/doc/817-1592
http://www.sun.com/blueprints/0505/819-2679.html
http://www.sun.com/bigadmin/content/zones


21 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
[5] Vanden Meersch, Erik and Hens, Kristien. “Dynamic Reconfiguration and Oracle 9i 

Dynamically Resizable SGA,” Sun BluePrints OnLine, 2004. 
http://www.sun.com/blueprints/0104/817-5209.pdf

[6] Oracle Pricing with Solaris 10 Containers. 
http://www.sun.com/third-

party/global/oracle/consolidation/solaris10.html

[7] Oracle's Partitioning document 
http://www.oracle.com/corporate/pricing/partitioning.pdf

[8] Lovvik, Paul and Balenzano, Joseph. “Bringing Your Application Into the Zone,” Sun 

Developer Network article, 2005.  
http://developers.sun.com/solaris/articles/application_in_zone.h

tml

[9] Victor, Jeff. “How to Migrate a Container to Another System,” Sun Microsystems, 
http://www.sun.com/software/solaris/howtoguides/moving_container

s.jsp

[10]Victor, Jeff. “New Zones Features,” Sun Microsystems, 

http://blogs.sun.com/JeffV/entry/new_zones_features

[11]Solaris ZFS Administration Guide, Sun Microsystems.  
http://opensolaris.org/os/community/zfs/docs/zfsadmin.pdf

Ordering Sun Documents 
The SunDocsSM program provides more than 250 manuals from Sun Microsystems, Inc. If 

you live in the United States, Canada, Europe, or Japan, you can purchase 

documentation sets or individual manuals through this program.

Accessing Sun Documentation Online 
The docs.sun.com web site enables you to access Sun technical documentation 

online. You can browse the docs.sun.com archive or search for a specific book title 

or subject. The URL is  
http://docs.sun.com/

To reference Sun BluePrints Online articles, visit the Sun BluePrints Online Web site at:  
http://www.sun.com/blueprints/online.html

http://docs.sun.com
http://www.sun.com/blueprints/online.html
http://opensolaris.org/os/community/zfs/docs/zfsadmin.pdf
http://www.sun.com/software/solaris/howtoguides/moving_containers.jsp
http://www.sun.com/third-party/global/oracle/consolidation/solaris10.html
http://www.oracle.com/corporate/pricing/partitioning.pdf
http://developers.sun.com/solaris/articles/application_in_zone.html
http://blogs.sun.com/JeffV/entry/new_zones_features
http://www.sun.com/blueprints/0104/817-5209.pdf


22 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Appendix A

Scripts to Create a Solaris Container

The scripts documented in this Appendix can be used to create a container appropriate 

for installing and running non-RAC instances of an Oracle database. These scripts do not 

represent the only way in which the container can be created. They are provided as 

sample code and should be modified to fit specific requirements and constraints.

In this example, a sparse root zone will be created with the root directory, IP address, 

and physical interface provided by the user. Users may choose to have exclusive IP and 

be independent from global zone. A special mount point for /usr/local will be 

created in /opt/zone_name/local to facilitate the Oracle installation, since 

/usr/local is the default directory for the installation of some of the Oracle utilities. 

To use these scripts, save all the files in the same directory and follow these steps:

1. Edit the file setenv.sh with appropriate values for the following variables:

– ZONE_NAME: hostname for the zone

– ZONE_DIR: directory for the root directory of the zone or ZFS pool name

– NET_IP : IP address for the zone, it is not necessary to set if using exclusive IP

– IP_TYPE: You may wish to have exclusive IP

– NET_PHYSICAL : physical interface in which the virtual interface for the zone 

will be created

– NUM_CPUS_MAX : maximum number of CPUs for the zone

– NUM_CPUS_MIN: minimum number of CPUs for the zone

– SCHEDULING_CLASS=FSS: To have FSS as default scheduling for the zone

– MAX_SHM_MEMORY=4GB: To specify Maximum Shared memory segment

2. Issue the following command from the global zone:

3. Configure this container by executing the following command from global zone, 

substituting the correct zone_name:

The files composing these scripts are presented and explained next.

# ./create_container.sh

# zlogin -C zone_name



23 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
README.txt
This file describes how a container is created when these scripts are used. It also gives 

some tips about how to execute some common operations such as giving the zone 

access to raw devices or removing resource pools.

The scripts in this directory can be used to create a container 
suitable for installing and running non-RAC instances of Oracle database. 
These scripts do not represent the only way in which you can create an 
appropriate container for Oracle; depending on your requirements and 
constrains you can modify these scripts to fit your needs.

1) creating a container for Oracle 
A sparse root zone will be created with the root directory, IP and 
interface provided by the user.  A special mount point for /usr/local will 
be created in /opt/<zone_name>/local to facilitate the oracle installation,
since /usr/local is the default directory for the installation of some of 
the oracle utilities. To use these scripts follow these 
steps: 

a) edit the file setenv.sh with appropriate values for:
- ZONE_NAME: hostname for the zone
- ZONE_DIR: directory for the root directory of the zone
- NET_IP:  IP for the zone
- NET_PHYSICAL: physical interface in which the virtual interface for

                      the zone will be created
- NUM_CPUS_MAX: maximum number of CPUs for the zone
- NUM_CPUS_MIN: minimum number of CPUs for the zone
- IP_TYPE: You may wish to have exclusive IP
- SCHEDULING_CLASS=FSS: To have FSS as default scheduling for the zone
- MAX_SHM_MEMORY=4GB: To specify Maximum Shared memory segment

b) from the global container run ./create_container.sh

c) Once the container has been created run "zlogin -C <zone_name>" 
     from the global container to finish configuring the zone. 

2) giving your container access to raw devices 
If you need to give your container access to a raw device
follow this example once the container has been created 
(these commands must be issued from the global container):

zonecfg -z my-zone
zonecfg:my-zone> add device
zonecfg:my-zone:device> set match=/dev/rdsk/c3t40d0s0
zonecfg:my-zone:device> end
zonecfg:my-zone> exit
zonecfg -z my-zone halt
zonecfg -z my-zone boot



24 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
The setenv.sh File
The setenv.sh file is used to define parameters used to create the Solaris container.

3) giving your container access to a file system
If you need to give your container access to a file system
created in the global container follow this example once the non-global
container has been created:

global# newfs /dev/rdsk/c1t0d0s0
global# zonecfg -z my-zone
zoncfg:my-zone> add fs
zoncfg:my-zone> set dir=/usr/mystuff
zoncfg:my-zone> set special=/dev/dsk/c1t0d0s0
zoncfg:my-zone> set raw=/dev/rdsk/c1t0d0s0
zoncfg:my-zone> set type=ufs
zoncfg:my-zone> end
zonecfg -z my-zone halt
zonecfg -z my-zone boot

4) to uninstall and delete a previously created zone use these commands:
zoneadm -z $ZONE_NAME halt
zoneadm -z $ZONE_NAME uninstall -F
zonecfg -z $ZONE_NAME delete -F

#!/usr/bin/sh 

# host name for the zone 
ZONE_NAME=myzone 

# directory where to place root dir for the zone 
# or ZFS pool 
#ZONE_DIR=/zones
ZONE_DIR=rpool

#IP for the zone (make sure netmask can be resolved for this IP according to 
# the databases defined in nsswitch.conf) 
# or use Exclusive-IP with its own IP stack 
#NET_IP=129.146.182.199 
IP_TYPE=EXCLUSIVE 

#interface used by the zone 
NET_PHYSICAL=e1000g1

#min and max CPUs for the dynamic pool bound to the zone 
NUM_CPUS_MIN=8 
NUM_CPUS_MAX=12 
SCHEDULING_CLASS=FSS 
MAX_SHM_MEMORY=4G YSICAL=e1000g1 

# do not make changes beyond this point 
export ZONE_NAME ZONE_DIR NET_IP NET_PHYSICAL 
export NUM_CPUS_MIN NUM_CPUS_MAX 
export MOUNT_ZFS SCHEDULING_CLASS MAX_SHM_MEMORY IP_TYPE 



25 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
The zone_cmd_template.txt File
The zone_cmd_template.txt file contains a template set of commands to create the 

zone. After replacing some strings by user-defined values, this file is used to create the 

zone.

create 
set zonepath=MOUNTPOINT 
set autoboot=true 
SCHEDULING_CLASS 
MAX_SHM_MEMORY 
IP_TYPE 
add net 
NET_IP 
set physical=NET_PHYSICAL 
end 
add fs 
set dir=/usr/local 
set special=/opt/ZONE_NAME/local 
set type=lofs 
end 
MOUNT_ZFS 
add dedicated-cpu 
set ncpus=NUM_CPUS_MIN-NUM_CPUS_MAX 
end 
verify 
commit 



26 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
The create_zone_cmg.pl Script
This script uses the perl utility to create a command file that creates the zone. This 

script replaces the user-given parameters in the zone command template file. It is 

called by create_container.sh.

The create_container.sh Script
This is the main script. It uses the parameters given in the setenv.sh file to create the 

container.

#!/usr/bin/perl 
# Copyright (c) 2005,2008 Sun Microsystems, Inc. All Rights Reserved. 
# 
# SAMPLE CODE 
# SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT 
# THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS 
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
# IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS 
# FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 
# SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED 
# BY LICENSEE AS A RESULT OF USING, MODIFYING OR 
# DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. 

while (<>){ 
    s/MOUNTPOINT/$ENV{'MOUNTPOINT'}/; 
    s/NET_IP/$ENV{'NET_IP'}/; 
    s/IP_TYPE/$ENV{'IP_TYPE'}/; 
    s/MOUNT_ZFS/$ENV{'MOUNT_ZFS'}/; 
    s/ZONE_NAME/$ENV{'ZONE_NAME'}/; 
    s/NET_PHYSICAL/$ENV{'NET_PHYSICAL'}/; 
    s/NUM_CPUS_MIN/$ENV{'NUM_CPUS_MIN'}/; 
    s/NUM_CPUS_MAX/$ENV{'NUM_CPUS_MAX'}/; 
    s/SCHEDULING_CLASS/$ENV{'SCHEDULING_CLASS'}/; 
    s/MAX_SHM_MEMORY/$ENV{'MAX_SHM_MEMORY'}/; 

    print; 
} 

#!/usr/bin/ksh 
# Copyright (c) 2005,2008 Sun Microsystems, Inc. All Rights Reserved. 
# 
# SAMPLE CODE 
# SUN MAKES NO REPRESENTATIONS OR WARRANTIES ABOUT 
# THE SUITABILITY OF THE SOFTWARE, EITHER EXPRESS 
# OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE 
# IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS 
# FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. 
# SUN SHALL NOT BE LIABLE FOR ANY DAMAGES SUFFERED 
# BY LICENSEE AS A RESULT OF USING, MODIFYING OR 
# DISTRIBUTING THIS SOFTWARE OR ITS DERIVATIVES. 

# script to create a container to run oracle RDBMS. 
# to use this script follow the instructions in the README.txt file 
# located in this directory. 

. ./setenv.sh



27 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
#zone already exists? 
zonecfg -z $ZONE_NAME info > /tmp/z.$$ 2>&1 
cat /tmp/z.$$ | grep "No such zone" > /dev/null 2>&1 

if [ $? -eq 1 ] 
then 
  echo "ERROR: zone $ZONE_NAME already exists. IF you want to remove it do:" 
  echo "use zoneadm -z $ZONE_NAME halt" 
  echo "use zoneadm -z $ZONE_NAME uninstall -F" 
  echo "use zonecfg -z $ZONE_NAME delete -F" 
  exit 1 
fi 

rm -rf /tmp/z.$$ > /dev/null 2>&1 

# 1)...............................  validate setenv.sh values 

if [ `expr ${ZONE_DIR} : '\(.\)'` = '/' ]; then 
echo Using standard directory for the zone 

#zone path exists? 
if [ ! -d $ZONE_DIR/$ZONE_NAME ] 
then 
  mkdir -p $ZONE_DIR/$ZONE_NAME 
  if [ $? = 1 ] 
  then 
    echo ERROR: could not create root directory 
    exit 1 
  fi 
fi 
MOUNTPOINT=$ZONE_DIR/$ZONE_NAME 

else 
echo Using ZFS for the zone 

MOUNTPOINT=`zfs get -H -o value mountpoint $ZONE_DIR/$ZONE_NAME 
2>/dev/null` 

if [ x$MOUNTPOINT = 'x' ]; then 
  echo zfs not exists. I will create $ZONE_DIR/$ZONE_NAME for you. 
  zfs create $ZONE_DIR/$ZONE_NAME 
  if [ $? -ne 0 ]; then 
    echo Failed to create $ZONE_DIR/$ZONE_NAME 
    exit 1 
  fi 
  MOUNTPOINT=`zfs get -H -o value mountpoint $ZONE_DIR/$ZONE_NAME 

2>/dev/null` 
else 
  echo $ZONE_DIR/$ZONE_NAME filesystem already exists 
fi 

if [ $MOUNTPOINT = 'legacy' ]; then 
  echo Legacy mounted ZFS is not supported. Exiting. 
  exit 1 
fi 

fi 

if [ x`ls $MOUNTPOINT` != 'x' ]; then 
echo ERROR:Directory $MOUNTPOINT is not empty. exiting. 
exit 1 

fi 

export MOUNTPOINT 
chmod 700 $MOUNTPOINT 



28 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
# Enabling Resource Pools 
svcadm enable svc:/system/pools:default 
svcadm enable svc:/system/pools/dynamic:default 

#/usr/local directory exists? 
if [ ! -d /usr/local ] 
then 
  mkdir /usr/local 
fi 

#special mnt point for /usr/local exists? 
if [ ! -d /opt/$ZONE_NAME/local ] 
then 
  mkdir -p /opt/$ZONE_NAME/local 
fi 

# 2)............................... pool creation 
# this section does not exist anymore since dynamic CPU pools is used 

if [ `expr $NUM_CPUS_MIN \* 2` -le $NUM_CPUS_MAX ]; then 
echo WARNING: Having NUM_CPUS_MIN less then a half of NUM_CPUS_MAX is not 

recommended by Oracle. 
echo Oracle bugs: 6309685 and 6309691 and ... 
echo You may adjust values before running Oracle or continue at your own 

risk 
fi 

if [ -n "$SCHEDULING_CLASS" ]; then 
SCHEDULING_CLASS="set scheduling-class=\"$SCHEDULING_CLASS\"" 

fi 

if [ -n "$MAX_SHM_MEMORY" ]; then 
MAX_SHM_MEMORY="set max-shm-memory=$MAX_SHM_MEMORY" 

fi 

if [ x"$IP_TYPE" = "xEXCLUSIVE" ]; then 
NET_IP="" 
IP_TYPE="set ip-type=exclusive" 

else 
NET_IP="set address=$NET_IP" 

fi 

# 3)............................... mounting zfs inside a zone 

MOUNT_ZFS='' 

if [ -n "$MOUNT_ZFS" ]; then 
echo WARNING: mounting ZFS before the zone is started is not supported 
echo ignoring MOUNT_ZFS settings 
echo 

# MOUNT_ZFS='' 

TMP_MOUNT='' 
for z in $MOUNT_ZFS; do 
  echo Changing mountpoint to legacy for $z 
  zfs set mountpoint=legacy `echo $z|awk -F= '{print $1}'` 
  TMP_MOUNT=${TMP_MOUNT}`echo $z|awk -F= '{print "\nadd fs\nset 

type=zfs\nset dir="$2"\nset special="$1"\nend\n"}'` 
done 
MOUNT_ZFS="$TMP_MOUNT" 

fi 

# 4)...............................  zone creation 



29 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
perl ./create_zone_cmd.pl < zone_cmd_template.txt > /tmp/zone_commands.txt 
zonecfg -z $ZONE_NAME -f /tmp/zone_commands.txt 
echo $ZONE_NAME was configured with this information: 
echo --------------------------------------------------------- 
zonecfg -z $ZONE_NAME info 

echo --------------------------------------------------------- 
zoneadm -z $ZONE_NAME install 
zoneadm -z $ZONE_NAME boot 

echo "to finish configuring your container please run: zlogin -C 
$ZONE_NAME" 



30 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Appendix B

Setting System V IPC Kernel Parameters

Prior to the Solaris 10 OS, the System V IPC resources, consisting primarily of shared 

memory, message queues, and semaphores, were set in the /etc/system file. This 

implementation had the following shortcomings:

• Relying on /etc/system as an administrative mechanism meant reconfiguration 

required a reboot. 

• A simple typo in setting the parameter in /etc/system could lead to hard-to-track 

configuration errors.

• The algorithms used by the traditional implementation assumed statically-sized data 

structures. 

• There was no way to allocate additional resources to one user without allowing all 

users those resources. Since the amount of resources was always fixed, one user 

could have trivially prevented another from performing its desired allocations. 

• There was no good way to observe the values of the parameters. 

• The default values of certain tunables were too small.

In the Solaris 10 OS, all these limitations were addressed. The System V IPC 

implementation in the Solaris 10 OS no longer requires changes in the /etc/system 

file. Instead, it uses the resource control facility, which brings the following benefits:

• It is now possible to install and boot an Oracle instance without needing to make 

changes to /etc/system file (or to resource controls in most cases).

• It is now possible to limit use of the System V IPC facilities on a per-process or per-

project basis (depending on the resource being limited), without rebooting the 

system. 

• None of these limits affect allocation directly. They can be made as large as possible 

without any immediate effect on the system. (Note that doing so would allow a user 

to allocate resources without bound, which would have an effect on the system.) 

• Implementation internals are no longer exposed to the administrator, thus 

simplifying the configuration tasks.

• The resource controls are fewer and are more verbosely and intuitively named than 

the previous tunables. 

• Limit settings can be observed using the common resource control interfaces, such as 

prctl(1) and getrctl(2). 

• Shared memory is limited based on the total amount allocated per project, not per 

segment. This means that an administrator can give a user the ability to allocate 

many segments and large segments, without having to give the user the ability to 

create many large segments. 

• Because resource controls are the administrative mechanism, this configuration can 

be persistent using project(4) and be made via the network. 



31 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
In the Solaris 10 OS, the following changes were made:

• Message headers are now allocated dynamically. Previously all message headers 

were allocated at module load time.

• Semaphore arrays are allocated dynamically. Previously semaphore arrays were 

allocated from a seminfo_semmns sized vmem arena, which meant that 

allocations could fail due to fragmentation. 

• Semaphore undo structures are dynamically allocated per-process and per-

semaphore array. They are unlimited in number and are always as large as the 

semaphore array they correspond to. Previously there were a limited number of per-

process undo structures, allocated at module load time. Furthermore, the undo 

structures each had the same, fixed size. It was possible for a process to not be able to 

allocate an undo structure, or for the process's undo structure to be full. 

• Semaphore undo structures maintain their undo values as signed integers, so no 

semaphore value is too large to be undone. 

• All facilities were used to allocate objects from a fixed size namespace, and were 

allocated at module load time. All facility namespaces are now resizable, and will 

grow as demand increases. 

As a consequence of these changes, the following related parameters have been 

removed (see Table 2). If these parameters are included in the /etc/system file on a 

Solaris system, the parameters are ignored. 

Table 2. System parameters no longer needed in the Solaris 10 OS.

Parameter Name Brief Description

semsys:seminfo_semmns Maximum number of System V semaphores on 
the system

semsys:seminfo_semmnu Total number of undo structures supported by 
the System V semaphore system

semsys:seminfo_semmap Number of entries in semaphore map

semsys:seminfo_semvmx Maximum value a semaphore can be set to

semsys:seminfo_semaem Maximum value that a semaphore's value in 
an undo structure can be set to

semsys:seminfo_semusz The size of the undo structure

shmsys:shminfo_shmseg Number of segments, per process

shmsys:shminfo_shmmin Minimum shared memory segment size

msgsys:msginfo_msgmap Minimum shared memory segment size

msgsys:msginfo_msgssz Size of the message segment

msgsys:msginfo_msgseg Maximum number of message segments

msgsys:msginfo_msgmax Maximum size of System V message



32 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
As described above, many /etc/system parameters are removed simply because they 

are no longer required. The remaining parameters have more reasonable defaults, 

enabling more applications to work out-of-the-box without requiring these parameters 

to be set.

Table 3 describes the default value of the remaining /etc/system parameters. 

Table 3. Default values for system parameters in the Solaris 10 OS.

Setting System V IPC Parameters for Oracle Installation
Table 4 identifies the values recommended for /etc/system parameters by the Oracle 

Installation Guide and the corresponding Solaris resource controls.

Table 4. Recommended values for system parameters when running Oracle 10g.

Resource Control Obsolete Tunable Old Default Value New Default Value

process.max-msg-qbytes msginfo_msgmnb 4096 65536

process.max-msg-
messages msginfo_msgtql 40 8192

process.max-sem-ops seminfo_semopm 10 512

process.max-sem-nsems seminfo_semmsl 25 512

project.max-shm-memory shminfo_shmmax 0x800000 1/4 of physical 
memory

project.max-shm-ids shminfo_shmmni 100 128

project.max-msg-ids msginfo_msgmni 50 128

project.max-sem-ids seminfo_semmni 10 128

Parameter Oracle 
Rec. Value

Required in  
Solaris 10 OS

Resource 
Control

Default 
Value

SEMMNI 
(semsys:seminfo_semmni)

100 Yes project.max-
sem-ids

128

SEMMNS 
(semsys:seminfo_semmns)

1024 No N/A N/A

SEMMSL 
(semsys:seminfo_semmsl)

256 Yes process.max-
sem-nsems

512

SHMMAX 
(shymsys:shminfo_shmmax
)

4294967295 Yes project.max-
shm-memory

1/4 of 
physical 
memory

SHMMIN 
(shmsys:shminfo_shmmin)

1 No N/A N/A

SHMMNI 
(shmsys:shminfo_shmmni

100 Yes project.max-
shm-ids

128

SHMSEG 
(shmsys:shminfo_shmseg)

10 No N/A N/A



33 Best Practices for Running Oracle Databases in Solaris Containers  Sun Microsystems, Inc.
Since the default values are higher than Oracle recommended values, the only resource 

controls that might need to be set are project.max-shm-memory and 

process.max-sem-nsems. When setting project.max-shm-memory, set it higher 

than sum of SGAs of all Oracle instances. If it is planned to have great number of Oracle 

processes (process parameter in init.ora) then consider increasing process.max-

sem-nsems. Its value should be higher then what is planned for the process parameter.

The following section details the process of setting a particular value using resource 

control.

Using Resource Control Commands to Set System V IPC Parameters

The prctl command can be used to view and change the value of resource controls of 

running processes, tasks and projects. The prctl command is invoked with the -n 

option to display the value of a certain resource control. The following command 

displays the value of the max-file-descriptor resource control for the specified 

process:

The following command updates the value of project.cpu-shares in the project 

group.dba:

The following commands create an Oracle project that is persistent across reboots, with 

a SHMMAX value of 32 GB and SEMMSL set to 4096:

# prctl -n process.max-file-descriptor pid

# prctl -n project.cpu-shares -v 10 -r -i project group.dba

# projadd -c "Oracle project" group.dba
# projmod -sK "project.max-shm-memory=(privileged,32G,deny)" group.dba
# projmod -sK "process.max-sem-nsems=(privileged,4096,deny)" group.dba



Best Practices for Running Oracle Databases in Solaris Containers On the Web sun.com

Sun Microsystems, Inc. 4150 Network Circle, Santa Clara, CA 95054 USA  Phone 1-650-960-1300 or 1-800-555-9SUN (9786)  Web sun.com

© 2009 Sun Microsystems, Inc. All rights reserved. Sun, Sun Microsystems, the Sun logo, Sun BluePrints and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc. or its subsidiaries in the 

United States and other countries. Information subject to change without notice. Printed in USA 01/09


	Table of Contents
	Best Practices for Running Oracle Databases in Solaris™ Containers
	Solaris Containers
	Solaris Zones Partitioning Technology
	Solaris Resource Manager

	Oracle License Model for Solaris Containers
	Creating a Solaris 10 Container
	Requirements
	Enabling Resource Pools
	Creating a Non-Global Zone

	Special Considerations
	Devices in Containers
	UFS File Systems in Solaris Containers
	ZFS File Systems in Containers
	System V Resource Controls for Zones
	Solaris Dynamic Intimate Shared Memory (DISM)
	Dedicated CPU
	IP Instances: LAN and VLAN Separation for Non-Global Zones
	Moving Solaris Containers
	Volume Management
	CPU Visibility

	Summary
	About the Authors
	Acknowledgements
	References
	Ordering Sun Documents
	Accessing Sun Documentation Online

	Scripts to Create a Solaris Container
	README.txt
	The setenv.sh File
	The zone_cmd_template.txt File
	The create_zone_cmg.pl Script
	The create_container.sh Script

	Setting System V IPC Kernel Parameters
	Setting System V IPC Parameters for Oracle Installation
	Using Resource Control Commands to Set System V IPC Parameters


