

print "Requesting document ... ",
sendall(ssl, "GET / HTTP/1.0\r\n\r\n")
print "done."

s.shutdown(l)

while 1:
try:

buf = ssl.read(1024)
except socket.sslerror, err:

if (err[o]) in [socket.SSL_ERROR_ZERO_RETURN, socket.SSL_ERROR_EOF]:
break

elif (err[o]) in [socket.SSL_ERROR_WANT_READ,
socket.SSL_ERROR_WANT_WRITE]:

continue
raise

if len(buf) == 0:
break

sys.stdout.write(buf)

s. close()

"When you run this program (it needs no argwnents), you'll notice it connecting
to the www.openssl.org website. Then it establishes an SSL connection, and com
municates like normal with HTTP. It will print out the homepage for that site.

You'll notice the sendall () function in the program. SSL objects provide only
two methods: readO and writeO. They correspond roughly to the recvO and
send () methods of sockets. Like send (), the write () method doesn't guarantee
that it will actually write out all the requested data. Unfortunately, the SSL objects
don't provide an equivalent for the standard socket sendall 0 method described
in Chapter 1, so that must be implemented in your program itself. This version of
sendall () simply ensures that the entire string gets transmitted, just like the
standard sendall () method.

Notice the exception handling surrounding the call to readO. Python's built
in SSL support can raise exceptions on end-of-file or even while reading. This
code makes sure to exit the loop when an appropriate end-of-file is received, and
to just ignore the other exceptions that don't signify an error.

Many network protocols these days are line-oriented. SSL objects don't
provide a readline() method, which makes working with line-oriented protocols
difficult. Here's an SSL wrapper object that adds some missing functions:

SSL

327

Chapmr15

328

#!/usr/bin/env python
Basic SSL example with wrapper - Chapter 15 - basic-wrap.py

import socket, sys

class sslwrapper:
def __init__(self, sslsock):

self.sslsock = sslsock
self.readbuf = "
self.eof = 0

def write(self, buf):
byteswritten = 0
while byteswritten < len(buf):

byteswritten += self.sslsock.write(buf[byteswritten:])

def read(self, n):
retval = "
while not self.eof:

try:

retval = self.sslsock.read(n)
except socket.sslerror, err:

if (err[O]) in [socket.SSL_ERROR_ZERO_RETURN,
socket.SSL_ERROR_EOF]:

self.eof = 1

elif (err[O]) in [socket.SSL_ERROR_WANT_READ,
socket.SSL_ERROR_WANT_WRITE]:

continue
else:

raise
break

if len(retval) == 0:
self.eof = 1

return ret val

def read(self, n):
if len(self.readbuf):

Return the stuff in readbuf, even if less than n.
It might contain the rest of the line, and if we try to

read more, it might block waiting for data that is not
coming to arrive.

bytesfrombuf = min(n, len(self.readbuf))
retval = self.readbuf[:bytesfrombuf]

self.readbuf = self.readbuf[bytesfrombuf:]
return retval

retval = self._read(n)
if len(retval) > n:

self.readbuf = retval[n:]
return retval[:n]

return retval

def readline(self, newlinestring = "\n"):
retval = t I

while 1:
linebuf = self.read(1024)
if not len(linebuf):

return retval
nlindex = linebuf.find(newlinestring)
if nlindex != -1:

retval += linebuf[:nlindex + len(newlinestring)]
self.readbuf = linebuf[nlindex + len(newlinestring):] \

+ self.readbuf
return retval

else:
retval += linebuf

print "Creating socket ... ",
s = socket.socket(socket.AF INET, socket. SOCK STREAM)
print "done."

print "Connecting to remote host ... ",
s.connect(("www.openssl.org", 443))
print "done."

print "Establishing SSL ... ",
ssl = socket.ssl(s)
print "done."

ssl = sslwrapper(ssl)

print "Requesting document .•. ",
ssl.write("HEAD I HTTP/l,O\r\n\r\n")
print "done."

s.shutdown(l)

SSL

329

Chapter 15

330

while 1:

line = ssl. readline("\T\n")
if not len(line):

break
print "Received line:"J line.strip()

s . close()

vVhile this program simply reads a few lines from the server, you can take the

sslwrapper class and use it with your own programs. The sslwrapper class supports

enough to be a drop-in replacement for a standard socket object in many programs.
Also note that you may not need to use it at all; some Python modules, such as
urllib2 discussed in Chapter 6, already support Python's built-in SSL.

Using OpenSSL

In addition to the built-in SSL support, there's also a binding for OpenSSL available
for Python called pyOpenSSL. Using pyOpenSSL is similar to the build-in SSL
capabilities in the sense that it, too, creates a wrapper around the socket. However,
pyOpenSSL's wrapper is more powerful and full of features than the default one,

and notably will not require the sort ofadd-on glue that you sawin basic-wrap. py
for socket. ssl.

Before you can use OpenSSL in your program, you'll need to obtain the
pyOpenSSL distribution. Ifyour operating system doesn't provide it, you may
download it from http://pyopenssl. sourceforge. net!. Wmdows users may down
load a prebuilt version from http://twistedmatrix. com/products/download. Install

that before running programs in this section. These examples should work with
version 0.5.1 and above.

Here's a basic example for use with OpenSSL:

#!/usr/bin/env python
Basic OpenSSL example - Chapter 15 - osslbasic.py

import socket J sys
from OpenSSL import SSL

Create SSL context object
ctx = SSL.Context(SSL.SSLv23_METHOD)

print "Creating socket ... ",
s = socket.socket(socket.AF_INET, socket.SaCK_STREAM)
print "done."

Create SSL connection object
ssl = SSL.Connection(ctx, s)

print "Establishing SSL ... ",
ssl.connect(('www.openss1.org', 443))
print "done."

print "Requesting document ... ",
ssl.sendall("GET / HTTP/1.0\r\n\r\n")
print "done."

while 1:

try:
buf = ssl.recv(4096)

except SSL.ZeroReturnError:
break

sys.stdout.write(buf)

ss1. c1ose()

Ifyou run this example (you can just use. /osslbasic. py), you'll see it connectto
www.openss1.org using SSL, and dump that site's homepage. To do that, it first
creates a Context object by calling SSL. Context. Next, a socket is created as usual.
Mter that, an SSL Connection object is created. From this point on, all operations
will take place using this Connection object; the socket object is no longer needed.
A connection is opened, and communication proceeds as normal-just as it

would with a standard socket. In fact, you could pass the Connection object to just
about any function that expects a socket object. Once the connection is established
that existing code should be able to work with this object with only a small mod
ification to the reading code.

Verifying Server Certificates with OpenSSL

The previous example connected to an SSL server, but it didn't verify the authen

ticity of that server. In this section, you'll learn how to do server verification in the
same manner that web browsers do.

SSL

331

cnapter 15

332

Obtaining Root Certificate Authority Certificates

The first thing you need to do is obtain the certificates for the root (or master)
certificate authorities. These organizations are recognized for doing a good job
signing keys and verifying identities. There's no formal standard for who is allowed
to be a CA. Ifyou don't have the certificates already, you can download a set of
certificates using the latest tar. gz file from http://ftp .debian. org/debian/pool/
main/c/ca-certificates. You'll need to unpack the file and run the included
Makefile to generate the certificate files. If this doesn't work for you, you may be
able to export the certificates from your web browser. Browsers such as Mozilla
support exporting certificates.

Next, you'll want to generate one master file with the certificates. That's
easy to do; you can simply concatenate all the certificate files together
(cat *. crt > filename will do the trick on UNIX systems if you put the files
in a single directory; on Windows you could use copy filel. crt+file2 .crt+ ...
dest. crt). You should wind up with one big file with many BEGIN CERTIFICATE
and END CERTIFICATE blocks.

Ifyou still have trouble, you can use the certfiles. crt file included online
with the example files for this book. However, it isn't kept up to date, so you
should still seek out one of the other methods if possible.

Verifying the Certificates

Here's an example program that connects to a remote site and verifies its certificate:

#!/usr/bin/env python
OpenSSL example with verification - Chapter 15 - osslverify.py
#

Command-line arguments -~ root CA file, remote host

import socket, sys
from OpenSSL import SSL

Grab the command-line parameters
cafile, host = sys.argv[l;]

def printx509(x509):
'""'Display an X.509 certificate" ''''
fields = {'country_name': 'Country',

'SP': 'State/Province',
'L': 'Locality',
'0': 'Organization',
'OU': 'Organizational Unit',
'CN': 'Common Name',
'email': 'E-Mail'}

for field, desc in fields.items():
try:

print "%30s: %s" % (desc, getattr(x509, field))
except:

pass

Whether or not the certificate name has been verified
cnverified = 0

def verify(connection, certificate, errnum, depth, ok):
"""Verify a given certificate'"'"
global cnverifie

sUbject = certificate.get_subject()
issuer = certificate.get_issuer()

print "Certificate from:"
printx509(subject)

print "\nIssued By:"
printx509(issuer)

if not ok:
OpenSSL could not verify the digital signature.
print "Could not verify certificate."
return 0

SSL

333

Chapter 15

334

Digital signature verified. Now make sure it's for the server
we connected to.
if subject.CN =~ None or subject.CN.lower() != host.lower():

print "Connected to %s, but got cert for %s" %\
(host, subject.CN)

else:
cnverified = 1

if depth == 0 and not cnverified:
print "Could not verify server name; failing."
return 0

print "-" * 70
return 1

ctx = SSL.Context(SSL.SSLv23 METHOD)
ctx.load_verify_locations(cafile)

Set up the verification. Notice we pass the verify function to
ctx.set_verify()
ctx.set_verify(SSL.VERIFY_PEER I SSL.VERIFY_FAIL_IF_NO_PEER_CERT, verify)

print "Creating socket ... ",
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
print "done."

ssl = SSL.Connection(ctx, s)

print "Establishing SSL ... ",
ssl.connect((host, 443))
print "done."

print "Requesting document .•. "
ssl.sendall("GET I HTTP/1.0\r\n\r\n")
print "done."

while 1:
try:

buf = ssl.recv(4096)
except SSL.ZeroReturnError:

break

sys.stdout.write(buf)

ss1. close()

Let's go through this code. The printxS09() function simply displays infor
mation about a certificate. It uses the different attributes (eN, au, and so on) as a
key into the object. Each time verifyO is called, it will call printxS090 twice:
once for the subject (the certificate itself) and once for the issuer (the name of the
organization that issued the certificate).

OpenSSL handles verification of the cryptographic signatures itself, based
on the filename supplied on the command line. However, there's one more detail
that it doesn't handle: verifying that the certificate given to you actually was
issued to the server the program is connecting to. This is important. Otherwise,
an attacker could simply obtain his own valid certificate, redirect traffic to his
server, and present the substitute certificate. By convention, the common name
(eN) attribute on a certificate must correspond exactly with the hostname used
to connect.

But there's a trick-the veri fy () function could be called multiple times,
and as long as the common name passes at least once, that's all that's necessary.
Therefore, the global variable cnverified defaults to false, but is set to true if the
common name is finally verified.

The verify () function is passed several parameters by OpenSSL, though I
don't use them all. The function starts by displaying information about its certif
icates. Then it checks the ok parameter. If ok is false that means that OpenSSL
didn't manage to verify things on its end. An error message is printed, and false is
returned, telling OpenSSL to abort.

Next, the common name is compared as described earlier. If it matches,
cnverified is set to a true value.

Finally. if depth is zero (meaning that this is the last time verified will be
called), the cnverified status is checked. If cnveri fied has never been set to true,
an error message is printed, and a false value is returned. Otherwise, a true value
is returned.

After the verify () definition, the code defines the SSL context. This code is
mostly the same as the previous example, but there are two extra calls. The call to
load_verify_10 cations () specifies the name of the file that holds the CA information.
The call to set_verifyO defines what kind ofverification OpenSSL is to do, and
says that the verification callback function is ve rify. The remainder of the code is
the same as the previous example.

Here are some examples of this program in action:

SSL

335

Chapter 15

336

$./osslverify.py certfiles.crt www.openssl.org
Creating socket done.
Establishing SSL done.
Requesting document ...
Certificate from:

Common Name: www.openssl.org
Locality: None

Organization; The OpenSSL Project
Organizational Unit: None

Issued By:
Common Name: OpenSSL CA

Locality: None
Organization: The OpenSSL Project

Organizational Unit: Certificate Authority
Could not verify certificate.
Traceback (most recent call last):

File ". /osslverify. py", line 74, in ?

ssl. sendall("GET / HTTP/1.0\r\n\r\n")
SSL.Error: [('SSL routines', 'SSL3_GET_SERVER_CERTIFICATE',

'certificate verify failed')]

In the previous example, I was presented with a certificate. However, that
certificate was signed by the OpenSSL's own CA, which isn't recognized in the
program's list of root CAs. Notice that this error caused an exception to be raised,
which stopped the program before any data was actually exchanged. That's a dif
ferent behavior from the earlier examples with Python's built-in SSL libraries,
which didn't complain at all. A real web browser would generally prompt the user
at this point, asking whether to proceed anyway.

Here's an example of a successful verification:

$./osslverify.py crtfiles.crt www.accountonline.com
Creating socket ... done.
Establishing SSL .•. done.
Requesting document ...
Certificate from:

Common Name: None
Locality: None

Organization: VeriSign, Inc.
Organizational Unit: Class 3 Public Primary Certification Authority

Issued By:
Common Name: None

Locality: None
Organization: VeriSign, Inc.

Organizational Unit: Class 3 Public Primary Certification Authority
Connected to www.accountonline.com. but got cert for None

Certificate from:
Common Name: None

Locality: None
Organization: VeriSign Trust Network

Organizational Unit: VeriSign, Inc.

Issued By:
Common Name: None

Locality: None
Organization: VeriSign, Inc.

Organizational Unit: Class 3 Public Primary Certification Authority
Connected to www.accountonline.com. but got cert for None

Certificate from:
Common Name: www.accountonline.com

Locality: Weehawken
Organization: Citigroup

Organizational Unit: WHG-weproxy6

Issued By:
Common Name: None

Locality: None
Organization: VeriSign Trust Network

Organizational Unit: VeriSign, Inc.

done.
HTTP/1.1 200 OK
Server: JavaWebServer/2.0
Content-length: 164
Content-type: text/html
Last-modified: Mon, 05 Nov 2001 14:27:17 GMT
Connection: close

Date: Tue, 27 Jan 2004 01:22:11 GMT

SSL

337

vI tUfJtt:r 1 J

338

In this case, verify() was called three times. The first two times, the certif
icate in question didn't present a common name. The third time the common
name matched, so the verification was successful. You can see the output from
the server just past the verification results.

As you work on SSLprojects, I suggest you start with the code for osslverify .py.
With it, you'll be able to make any ofyour programs SSL-aware. You can also start
with any ofyour existing code and add SSL support to it by copying the connection
code and veri fy() from osslverify. py. This is all you need to use SSL wherever
you like.

Summary

There are many different ways that attackers can breach the security of networks
and systems. SSL, the Secure Sockets Layer, is designed to help prevent many dif
ferent attacks, though like any security technology, it isn't foolproof. SSL provides
two basic services: encryption of the communications and authentication of the
remote server or client.

Two SSL implementations exist for Python: the built-in SSL support and the
pyOpenSSL library. The built-in SSL library has the advantage that many Python
users and developers already have it, but it contains fewer features than a complete
SSL library and requires more work to use.

pyOpenSSL is a full interface to the popular OpenSSL library for using SSL
encryption. Python programmers can use its Context objects almost interchangeably
with standard socket objects, but need to adjust network reading code.

pyOpenSSL also provides support for verification of peer certificates-
a critical part of securing network communications. In 0551veri fy. py, you saw
the function verify(), which handled the authentication of the remote machine.

Part Five
Server-Side Frameworks

CHAPTER 16

SocketServer

In the first 15 chapters of this book, I focused mostly on writing network clients

with Python. I'd now like to turn to writing network servers in Python. While

protocol-specific server modules are more rare than client modules, there's the

generic SocketServer framework and a few protocols based upon it.
SocketServer is a Python framework for handling requests from clients in a

server. Python includes SocketServer already. SocketServer takes advantage of the

object-oriented nature of Python to help you implement a server protocol. To

write a program that uses SocketServer, you actually define classes that inherit

from a SocketServer base class. Python also provides classes that implement
HTTP in order to help get you started.

SocketServer is well suited for server applications that receive one request
from a client and send back one reply. Some servers may have more advanced

needs than a basic SocketServer application; Chapters 20-22 discuss writing

those types of servers.

The protocol-specific SocketServer implementations that come with Python

all relate to HTTP servers in some way. In this chapter, you'll be introduced to the
basic HTTP servers, and will then learn how to write a server for your own pro
tocol using SocketServer.

Using BaseHTTPServer

As I mentioned in the introduction to this chapter, Python ships with some
SocketSe rver classes to help you get started more quickly with certain protocols.

The BaseHTTPServer module provides the basic support you may need to write

your own HTTP (web) server. Like the other SocketServer-related classes, it

defines two classes: a server object and a request handler. For BaseHTTPServer,

these classes are HTTPServer and BaseHTTPRequestHandler. Here's an example

showing their usage. This simple HTTP server will send out the same page to

every client, but it does demonstrate the use of BaseHTTPServer:

_.
341

342

#!/usr/bin/env python
Basic HTTP Server Example - Chapter 16 - basichttp.py

from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler

class RequestHandler(BaseHTTPRequestHandler):
def writeheaders(self):

self.send_response(200)
self.send_header('Content-type', 'text/html')
self.end_headers()

def do_HEAD(self):
self. writeheaders()

def do_GET(self):
self. writeheaders()
self. wfile. write (""" <HTML><HEAD><TITL E> Sample Page< ITITL E></HEAD>
<BODY>This is a sample HTML page. Every page this server provides
will look like this.</BODY></HTML>'''''')

serveraddr = (", 8765)
srvr = HTTPServer(serveraddr, RequestHandler)
srvr.serve_forever()

To implement your own HTTPserver, yOU'll subclass BaseHTTPRequestHandler.
The class in this example doesn't do much; it always returns a successful value
and always returns the same document to the client, no matter what the client
requested.

The BaseHTTPRequestHandler class provides some convenient methods for
you, such as the send_responseO, send_headerO, and end_headersO methods,
which are used in this example. You can also use the rfile and wfile variables to
access the data stream directly, as I did here, and send the document back.

The last three lines of code create and start the server. Each time a client
connects. the serve_foreverO method will receive the connection, create
RequestHandler instance, and have the RequestHandler service the request. The

RequestHandler code that was inherited from BaseHTTPRequestHandler will receive
and parse the request. It will then call a do_... () method, where the name is
derived from the HTTP method used. The most common HTTP methods are GET,
HEAD, and POST. Thus, the do_... () methods are generally the entry point into the

code you write.

You can simply run ./basehttp. py to invoke the server. It will continue running

until it is explicitly terminated, such as by a Ctrl-C on the terminal, Ctrl-Break on
a Windows console, or by the machine going down. Exceptions in the request

- ~ .._---~~~------

handler will cause the current connection to be closed, but the server will continue
handling other requests.

Here's what it looks like from a client that's connecting to this server:

$ telnet localhost 8765
Trying 127.0.0.1 ...
Connected to heinrich.complete.org.
E h t . 1/\] , •scape c arac er IS

HEAD / HTTP/1.0

HTTP/1.0 200 OK
Server: BaseHTTP/0.3 Python/2.3.3
Date: Sat, 31 Jan 2004 21:55:01 GMT
Content-type: text/html

Connection closed by foreign host.
$ telnet localhost 8765
Trying 127.0.0.1 ...
Connected to heinrich.complete.org.
Escape character is 1/\]'.

GET / HTTP/1.0

HTTP/1.0 200 OK
Server: BaseHTTP/0.3 Python/2.3.3
Date: Sat, 31 Jan 2004 22:02:08 GMT
Content-type: text/html

<HTML><HEAD><TITLE>Sample Page</TITLE></HEAD>
<BODY>This is a sample HTML page. Every page this server provides
will look like this.</BODY></HTML>

Connection closed by foreign host.

Note that you'll have to press Enter twice after typing the GET request. For a
different view, you can actually use a web browser to connect to this example.
You can use the URL http://localhost :8765/ for your browser.

Handling Requests for Specific Documents

Giving a single document to everyone probably isn't terribly useful. Here's a more

complete example. It serves up two documents: a static one, and one that's
dynamically generated.

SocketServer

343

#!/usr/bin/env python
Basic HTTP Server Example with Two Documents - Chapter 16
basichttpdoc.py

from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler
import time

starttime = time.time()

class RequestHandler(BaseHTTPRequestHandler):
"""Definition of the request handler. """

def _writeheaders(self, doc):
''''''Write the HTTP headers for the document.
document, send a 404 error code; otherwise,
if doc is None:

self.send_response(404)
else:

self.send_response(200)

If there's no
send a 200 success code. """

344

Always serve up HTML for now.
self.send_header('Content-type', 'text/html')
self.end_headers()

def _getdoc(self, filename):
'''' "Handle a request for a document, returning one of two different
pages as appropriate."""
global starttime
if filename == 'I':

return """<html><head><title>Sample Page</title></head>
<body>This is a sample page. You can also look at the
server statistics.
<I body> <I html>
IFill!

elif filename == '/stats.html':
return """<html><head><title>Statistics</title></head>

<body>This server has been running for %d seconds.
</body></html>
''','' % int(time. timeO - starttime)

else:
return None

def do_HEAD(self):
''''''Handle a request for headers only''''''

doc = self._getdoc(self.path)
self._writeheaders(doc)

def do_GET(self):
''''''Handle a request for headers and body"""
doc = self.~etdoc(self.path)

self._writeheaders(doc)
if doc is None:

self. wfile. write(""" <html><head><t itle>Not Found</title></head>
<body>The requested document '%s' was not found.</body>
</html>
""" %self. path)

else:
self.wfile.write(doc)

Create the object and serve requests
serveraddr = (", 8765)
srvr = HTTPServer(serveraddr, RequestHandler)
srvr.serve_forever()

The _getdoc() function looks up the document to return when it's given a
filename. Most real web servers would consult a directory on disk, but this one
just has two built-in documents that it can serve. If it doesn't find a document
that matches the given filename, it returns None.

CAUTION Ifyou do want to serve up files from a disk, ISUI~el!)tusm~tI:~e
SimpleHTTPServer module discussed later in this ch;aplt~{•..f\.ttetnpting
serve files from a disk by yourself can lead to security pr(JDIJems, Qlnp,,,frll')

correct algorithms to sanitize the request string can hpmc-lh,

The _writeheadersO function receives that document. It sends a404, File Not
Found code if the document was None, and a200 (Document OK) code otherwise.
The do_GET0 function is also slightly modified; it generates an appropriate error
document if no document was found.

You can point a web browser to http://localhost :8765/ after starting this

server. Try loading the statistics page and hitting your reload (or refresh) button a
few times. Notice how the number on that page increments each time.

SocketServer

345

346

You can also connect directly to the server with telnet like before. Here's what
that will look like:

$ telnet localhost 8765
Trying 127.0.0.1 ...
Connected to heinrich.complete.org.
Escape character is IAJ'.
GET /nonexistent HTTP/l.0

HTTP/l.0 404 Not Found
Server: BaseHTTP/0.3 Python/2.3.3
Date: Sat, 31 Jan 2004 22:29:34 GMT
Content-type: text/html

<html><head><title>Not Found</title></head>
<body>The requested document '/nonexistent' was not found.</body>

</html>
Connection closed by foreign host.

Handling Multiple Requests Simultaneously

The previous examples aren't suitable for use in a production server because they
only service one client at a time. From the time that a client connects until the
time it disconnects, no other clients can be serviced. Even with this small program,
that could be a problem. For example, somebody on a low-quality dial-up link
may not even get the request sent for 20 seconds. This is a long time to wait, and
on a busy server, could stall hundreds or thousands of other clients.

SocketServer (and its subclasses) support two different ways of solving this
dilemma: forking and threading. These two solutions are discussed in greater
detail in Chapters 20 and 21, respectively. Briefly, forking involves starting a new
process to handle each incoming connection; all these processes are then com
pletely separate from each other. Threading involves using Python threads to
handle connections, and doesn't separate the different connection handlers as
much. Athird method involving nonblocking (or asynchronous) communication
isn't supported by SocketServer and is covered in Chapter 22.

Ifyou're looking for a quickway to make your server do multitasking and are
running on a UNIX or Linux platform, I recommend forking. Both forking and
threading have their complexities, but forking is supported more widely on dif
ferent UNIX platforms, and this makes it more difficult for connections to interfere
with each other. Ifyour code will need to run on Windows, then you must use
threading. Most Python implementations for Windows don't implement forking.

Adding forking or threading support to your program is simple. Here's a
modified version of the last example. It's fully multitasking and uses threads.

#!/usr/bin/env python
Basic HTTP Server Example with Two Documents, threading version
Chapter 16
basichttpdocthread.py

from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler
from SocketServer import ThreadingMixln
import time, threading

starttime = time.time()

class RequestHandler(BaseHTTPRequestHandler):
"" "Definition of the request handler."""
def _writeheaders(self, doc):

''''''Write the HTTP headers for the document. If there's no
document, send a 404 error code; otherwise, send a 200 success code."""
if doc is None:

self.send response(404)
else:

self.send_response(200)

Always serve up HTML for now.
self.send_header('Content-type', 'text/html')
self.end_headers()

def _getdoc(self, filename):
"""Handle a request for a document, returning one of two
different pages as appropriate."""
global starttime
if filename == 'I':

return '''''' <html>< head><title>Sample Page< Ititle></head>
<body>This is a sample page. You can also look at the
server statistics.
</body></html>
11""

elif filename == '/stats.html':
return """<html><head><title>Statistics</title></head>
<body>This server has been running for %d seconds.
</body></html>
",," %int(time.time() - starttime-)

else:
return None

SocketServer

347

Chapter 16

348

def do_HEAD(self):
"""Handle a request for headers only"""
doc"" self._getdoc(self.path)
self._writeheaders(doc)

def do GET(self):
"" "Handle a request for headers and body''''''
print "Handling with thread", threading.currentThread().getName()
doc"" self._getdoc(self.path)
self. writeheaders(doc)
if doc is None:

self. wfile. write(""" <html>< head><title>Not Found</title>< /head>
<body>The requested document '%s' was not found.</body>
</html>
"",, % self.path)

else:
self.wfile.write(doc)

class ThreadingHTTPServer(ThreadingMixln, HTTPServer):
pass

Create the object and serve requests
serveraddr "" (", 8765)
srvr "" ThreadingHTTPServer(serveraddr, RequestHandler)
srvr.serve_forever()

Notice the new ThreadingHTTPServer class. This class declares two base classes:
ThreadingMixln and the same HTTPServer class used before. The ThreadingMixln

class contains code that implements the threading. Then you just instantiate the
new class below-instant threading support! You can see that in action; I added a
print statement to do_GET (). The statement displays which thread handles a given
connection. This principle works for all the different SocketServer subclasses
discussed in this chapter.

SimpleHTTPServer

The SimpleHTTPServer class extends BaseHTTPServer. SimpleHTTPServer serves up
regular files from the current working directory. It also has support for finding
index. html files and, in newer versions of Python, generating on:the-fly directory
listings. As with any server that accesses files from your disk, make sure you set
permissions properly, code is written cleanly, and the server is properly configured.
Otherwise, you could inadvertently serve up private data. Here's an example of
the simplest SimpleHTTPServer:

#!/usr/bin/env python

Basic HTTP Server Example - Chapter 16 - simplehttp.py

from BaseHTTPServer import HTTPServer

from SimpleHTTPServer import SimpleHTTPRequestHandler

serveraddr = (", 8765)

srvr = HTTPServer(serveraddr, SimpleHTTPRequestHandler)

srvr.serve_forever()

When run, this program will simply start serving up the files in the current

working directory (and its subdirectories). Like previous examples, you can

run this program without any command-line parameters. Just start it with

. /simplehttp. py. You can again connect to port 8765 on localhost with either a

telnet client or a web browser to see it in action. This program can also use threads:

#l/usr/bin/env python

Basic HTTP Server Example with threading - Chapter 16

simplehttpthread.py

from BaseHTTPServer import HTTPServer

from SimpleHTTPServer import SimpleHTTPRequestHandler

from SocketServer import ThreadingMixln

class ThreadingServer(ThreadingMixln, HTTPServer):

pass

serveraddr = (", 8765)

srvr = ThreadingServer(serveraddr, SimpleHTTPRequestHandler)

srvr.serve forever()

CGIHTTPServer

The CGIHTTPServer is similar to the SimpleHTTPServer, but takes it one step farther.

It can execute CGI scripts among the files it serves. By default, it will consider

Python scripts executable files that reside in either the cgi- bin or htbin directories

under the server root as CGI scripts. CGI scripts are covered in Chapter 18. Together

with the CGIHTTPServer, CGI scripts can offer an elegant and simple pure-Python

solution to the problem ofproviding dynamic content. Implementing CGIHTTPServer

is just as easy as the SimpleHTTPServer. Always remember that CGI scripts are full

programs, so they could potentiallymake your server less secure ifyou run untrusted

code. Here's an example CGI server. In this case, forking is used instead ofthreading;

SocketServer

349

cnapter 16

350

this is the usual method of invoking CGI scripts, but ifyou're rwming on Wmdows,
you'll still want to use threading.

#!/usr/bin/env python
Basic HTTP CGI Server Example with forking -- Chapter 17

from BaseHTTPServer import HTTPServer
from CGIHTTPServer import CGIHTTPRequestHandler
from SocketServer import ForkingMixln

class ForkingServer(ForkingMixln, HTTPServer):
pass

serveraddr = (' " 8765)
srvr = ForkingServer(serveraddr, CGIHTTPRequestHandler)
srvr.serve_forever()

You can test this server with one of the CGI scripts from Chapter 18. Put it in
your current working directory, mark it executable, and run the server. Now you
can connect to your server with the browser and see the script. Uyou named the
script mysc ript. cgi, you can access it with http://localhost:8765/myscript . cgi.

Implementing New Protocols

Ifone of the existing SocketServer classes isn't suitable for you, your own protocol
can be implemented using the SocketServer module. This module is most appro
priate for protocols for which clients connect to a server, make one request, receive
an answer, and then disconnect. Here's an example of a server that will give the
time to a client in several different formats:

#l/usr/bin/env python
Basic SocketServer Example - Chapter 16 - socketserver.py

from SocketServer import ThreadingMixln, TCPServer, StreamRequestHandler
import time

class TimeRequestHandler(StreamRequestHandler):

def handle(self):
req = self.rfile.readline().strip()

if req == "asctime":

result = time.asctime()
elif req == "seconds":

result = str(int(time.time()))

elif req == "rfc822":
result = time.strftime("%a, %d %b %Y %H:%M:%S +0000",

time.gmtime())

else:

result """Unhandled request. Send a line with one of the
following words:

asctime for human-readable time

seconds seconds since the Unix Epoch
rfc822 date/time in format used for mail and news posts"""

self.wfile.write(result + "\n")

class TimeServer(ThreadingMixln, TCPServer):
allow reuse address = 1- -

serveraddr = (' I, 8765)

srvr = TimeServer(serveraddr, TimeRequestHandler)

srvr.serve forever()

The TimeRequestHandler does most of the work here. Its base class is

StreamRequestHandler, which does some work initializing things like rfile

and wfile. Those two instance variables are created for you by using

socket. makefileO. As you may recall from the discussion of socket. makefileO

in Chapter 2, results from it are file-like objects that can be manipulated in a

way that's similar to standard Python file objects. Here the rfile object can

be read from and the wfile object can be written to. The handle() method is

called when a connection arrives and things are initialized and ready to go.

Thus, handle () serves as the entry point into your program.

At the end of the example, the server is created in a manner very similar to

the other SocketServer-based classes already presented in this chapter. Note the

addition of allow reuse address in the TimeServer class. The various HTTP server
- -

classes set tins automatically for you. This is simply the same as setting SO_REUSEADDR

(see the "Preparing for Connections" section in Chapter 3).

SocketServer

351

Chapter 16

352

You can test this server easily. Simply telnet to port 8765 and type asctime,

seconds, or rfc822 and press Enter. You'll get back a message showing the current

time in the requested format. Ifyou supply anything else, you'll get back a help

message.

Obtaining Information About the Client

The StreamRequestHandler (actually, its base class, SocketServer .BaseRequestHandler)

initializes a few variables in the class that provide information about the client

and the environment. The two most useful are request, which is the actual socket

object; and client_address, the address of the client. The address is in standard

(lP' port) form; for instance, (,127 .0.0.1', 36414). The IPv6 example in the

following section illustrates this.

IPv6

SocketServer is designed to be compatible with IPv6, though by default, all its

sockets are IPv4-only. OPv6 is discussed in detail in Chapter 5.) Switching to IPv6

is a simple matter of adjusting the address_family variable in your server class.

Here's an example:

#!/usr/bin/env python
SocketServer IPv6 Example - Chapter 16 - ipv6.py

from SocketServer import ThreadingMixln, TCPServer, StreamRequestHandler
import time, socket

class TimeRequestHandler(StreamRequestHandler):

def handle(self):

print "Connection from", self. client_address
req = self.rfile.readline().strip()
'f "t'"1 req == asc lme :

result = time.asctime()

elif req == "seconds":

result = str(int(time.time())

elif req == "rfc822":

result = time.strftime("%a, %d %b %Y %H:%M:%S +oooq",
time.gmtime(»

else:
result = """Unhandled request. Send a line with one of the

following words:

asctime -- for human-readable time
seconds -- seconds since the Unix Epoch
rfc822 -- date/time in format used for mail and news posts"""

self.wfile.write(result + "\n")

class TimeServer(ThreadingMixln, TCPServer):
allow reuse address = 1- -
address_family = socket.AF_INET6

serveraddr = (", 8765)
srvr = TimeServer(serveraddr, TimeRequestHandler)
srvr.serve_forever()

Note that it isn't possible for a single SocketServer server class to support

both IPv4 and IPv6. It's possible for a single program to support both, but you'll

need one of the techniques in Chapters 20-22 to do so.

Here's the sample output from the server console for this program:

$./ipv6.py
Connection from ('::1', 36417, 0, 0)

The (, : :1', 36417, 0, 0) string reflects the IPv6 address of the client that

connected to the server. In this case, ::1 is the IPv6 address for localhost and

indicates that the connection originated on the local machine.

Summary

SocketServer is a Python module that helps simplify writing network servers in

Python. To implement a server that uses SocketServer, you'll generally create a

new subclass of one of its built-in classes.

For HTTp, some of these classes already exist. The BaseHTTPServer module

provides classes that parse the HTTP request and then leaves the rest up to you.

SimpleHTTPServer provides classes that serve up plain files from disk, and

CGIHTTPServer provides classes that add the ability to serve CGI scripts.

SocketServer

353

Chapter 16

Ifyou aren't working with HTTp, you could implement your own SocketServer

protocol. To do that, you would subclass one of the SocketServer classes directly.
To be able to service more than one connection at once, SocketServer sup

ports forking and threading. Forking is often a good choice if you'll be running
primarily on UNIX or Linux platforms, while threading is a good choice for
Microsoft platforms.

The next chapter demonstrates more server modules based on SocketServer

and are used for writing XML-RPC servers.

354

CHAPTER 17

SimpleXMLRPCServer

XML-RPC IS A COMMON INTERFACE today. In this chapter, you'll learn how to
write XNlL-RPC servers. These servers might be public servers-perhaps giving
out recent news headlines, weather information, search tools, or price quoting.
They could also be internal servers for communication between programs on
your LAN.

Python makes it easy to set up a basic XNlL-RPC server. Thanks to the
SocketServer infrastructure discussed in Chapter 16, an XNlL-RPC server doesn't
require much more code to support. Chapter 8 covers XNlL-RPC basics from a
client perspective, and some examples from that chapter will be used to demon
strate XNlL-RPC servers.

In general terms, a Remote Procedure Call (RPC) server is a program that
exposes certain functions to clients in a way that's designed to be mostly trans
parent. That is, programmers using those functions on a client might not know
that the functions were making calls over the network instead ofto other functions in
the same program. XNlL-RPC defines anXNlL-based protocol for communication
between the client and server. You can also use introspection with most servers,
which is a way for clients to discover what methods are available on the server
and also details about those methods.

CAUTION As with any form of RPC, the interface can be deceptively simple,
and security must always be remembered. Consider, for instance, a function
that simply takes a filename from a client and returns the first 20 lines ofthat
file. This might be fine if the client requests faa. txt, but if the client requests
.. / .. /etc/passwd instead, it might well be able to obtain details about the
passwords for several users on the system. To maintain security, client
requests coming in via XML-RPC must be considered untrustworthy until
you've proven otherwise.

Because SimpleXMLRPCServer changed in Python 2.3, the examples in this

chapter assume that you're running Python 2.3 or later.

In this chapter, you'll first learn how to create a basic XNlL-RPC server and
interact with it. YOU'll see how you can easily expose anXNlL-RPC interface to
existing Python methods and functions, thereby effectively adding a network

355

Chapter 17

356

layer atop existing code. You'll also learn how to Use DocXMLRPCServer to provide
online help for your methods, and CGIXMLRPCServer to run your XM:L~RPC server
as a CGI script under an existing web server. Finally, you'll learn the simple trick
necessary to support the multicall optimization.

SimpleXMLRPCServer Basics

Creating a simple XM:L-RPC program is quite easy. You need to first create a
Python class that contains the methods you wish to expose, and then register it
with the XM:L-RPC server. Here's an example:

NOTE Ifyou're running the examples in this chapter on Windows, you'll
need to replace Forking with Threading everywhere it appears in this chapter.

#!/usr/bin/env python
SimpleXMLRPCServer Basic Example - Chapter 17 - simple.py
This program requires Python 2.3 or above

from SimpleXMLRPCServer import SimpleXMLRPCServer, SimpleXMLRPCRequestHandler
from SocketServer import ForkingMixln

class Math:
def pow(self, x, y):

''''''Returns x raised to the yth power; that is, x ** y.

x and y may be integers or floating-point values."""
return x ** y

def hex(self, x):
"""Returns a string holding a hexadecimal representation of
the integer x. n

""

return "%x" % x

class ForkingServer(ForkingMixln, SimpleXMLRPCServer):
pass

SimpleXMLRPCSeroer

serveraddr = (", 8765)

srvr = ForkingServer(serveraddr, SimpleXMLRPCRequestHandler)
srvr.register_instance(Math())
srvr.register_introspection_functions()
srvr.serve_forever()

This program exposes two methods to the public: pow() and hex(), which are

defined in the standard way for a Python class. Here, the methods are reimple

mented in the class; later, you'll see how to serve existing functions without

putting them in a class. Notice that you could also use this class as a normal class

in your program in the normal way.

To run this server, simply use. / simple. py. You can use Ctrl-C or Ctrl-Break to

terminate it. The remaining examples in this chapter work similarly.

You can use the XML-RPC introspection client from Chapter 8 to interact

with the server. You'll want to edit the urI variable on line six to point to

http://localhost :8765/. Then, you can run it like this:

$ •/xmlrpci. py

Gathering available methods ...

Available Methods:
1: hex
2: pow
3: system.listMethods
4: system.methodHelp
5: system.methodSignature

Select one (q to quit): 2

Deta ils for pow

Args: Returns: s

Help: Returns x raised to the yth power; that is, x A y.

x and y may be integers or floating-point values.

357

cnapter 17

358

Notice the Args lines (omitted). Taken as a group, they show the message
"signatures not supported." Normally, signatures indicate what type of argument
(integer, float, string, and so on) is accepted, and what type of value is returned.
Python isn't statically typed, so for some functions, there may not be one particular
type that's accepted. For instance, the powO method will work with two different
types of argument.

Therefore, for a Python server, signatures aren't sensible. However, the function's
doc string is presented as help text.

Testing Your Server

You can use the following program to interactively test your server:

#!/usr/bin/env python
XML-RPC Basic Test Client - Chapter 17 - testclient.py

import xmlrpclib J code

urI = 'http://localhost:8765/'
s = xmlrpclib.ServerProxy(url)

interp = code.lnteractiveConsole({'s': s})
interp.interact("you can now use the object s to interact with the server.")

Using this client to talk to the example XML-RPC server produced the
following session output:

$./testclient.py
You can now use the object s to interact with the server.
>>> s. pow(2, 8)

256
>>> s.hex(255)
'ff'

»> s.system.listMethods()
['hex', 'pow', 'system.listMethods', 'system.methodHelp',
'system.methodSignature'J

»> print s.system.methodHelp('pow')
Returns x raised to the yth power; that is, x A y.

x and y may be integers or floating-point values.

»> import sys
»> sys.exit()

SimpleXMLRPCServer

Serving Functions

You're not required to use classes when serving functions. Here's an example that
adds two functions to the math example: intO and list. sortO. Even though
int() isn't technically a function, it behaves similarly to one. Note, however, that
this implementation of list. sortO is broken.

#!/usr/bin/env python
SimpleXMLRPCServer Example with functions - Chapter 17 - func.py
This program requires Python 2.3 or above

from SimpleXMLRPCServer import SimpleXMLRPCServer, SimpleXMLRPCRequestHandler
from SocketServer import ForkingMixln

class Math:
def pow(self, x, y):

''''''Returns x raised to the yth power; that is, x 1\ y.

x and y may be integers or floating-point values."""
return pow (x, y)

def hex(self, x):
''''''Returns a string holding a hexadecimal representation of
the integer x."""
return "%x" %x

def sortlist(self, 1):

''''''Sorts the items in 1. """

1 = list(l)
l.sortO
return 1

class ForkingServer(ForkingMixln, SimpleXMLRPCServer):
pass

serveraddr = (", 8765)
srvr = ForkingServer(serveraddr, SimpleXMLRPCRequestHandler)
srvr.register_instance(Math())
srvr.register_introspection_functions()
srvr.register_function(int)

srvr.register_function(list.sort) # Won't workl

srvr.serve_forever()

359

Chapter 17

360

Here's an example session:

$./testclient.py
You can now use the object s to interact with the server.
»> s.system.listMethods()
['hex', 'int', 'pow', 'sort', 'sortlist', 'system.listMethods',

'system.methodHelp', 'system.methodSignature']
»> s.int('S314')

5314
»> s.sort([s, 3, 1, 8])
Traceback (most recent call last):

File "<console>", line 1, in ?

File "/usr/lib/python2.3/xmlrpclib.py", line 1029, in call
return self. __send(self. __name, args)

File "/usrllib/python2.3/xmlrpclib.py", line 1316, in _request
verbose=self. verbose

File "/usr/lib/python2.3/xmlrpclib.py", line 1080, in request
return self._parse_response(h.getfile(), sock)

File "/usr/lib/python2.3/xmlrpclib.py", line 1219, in _parse_response
return u. close 0

File "/usr/lib/python2.3/xmlrpclib.py", line 742, in close
raise Fault(**self. stack[O])

Fault: <Fault 1: 'exceptions.TypeError:cannot marshal
None unless allow none is enabled'>

»> s.sortlist([s, 3, 1, 8])
[1, 3, 5, 8]

From the call to listMethodsO I you can see that the server now supports
three new functions. The int () function simply calls the system's built-in function.
The sort () function, however, raised an exception. The reason is that Python's
sortO method is an in-place sort; that is, it doesn't return anything. The Python
XML-RPC client, by default, raises an exception when None is returned from the
server since this value usually indicates an error condition. Ifyou really want
to receive None, you can set allow none to a true value when you create your
ServerProxy instance.

I also added a sortlistO method to illustrate the difference. It works as
expected. Note 1 = list(l) in sortlistO. This makes sure that it's calling sortO

as expected. Although this won't likely happen in this example, it's possible that a
client could pass an object that would have a method named the.same as the one
being used that does something entirely different. It's good practice to ensure
that all objects are of the type you expect in your XML-RPC server.

SimpleXMLRPCServer

Exploiting Class Features

Python's SimpleXMLRPCServer acts as a proxy for requests. It receives the requests
from the network, decodes them, and then calls the appropriate method just like
any other Python code would. \tVhen the result is received, it's passed back to
the client.

This mechanism lets you use any normal Python features in your classes as
long as you're cognizant of the fact that arbitrary Python objects cannot be sent
viaXML-RPC. That is, as long as your arguments and return values are simple
data types, lists, or dictionaries, you can use any Python feature under the hood.

Sending Arbitrary Python Objects

AIthough XML-RPC doesn't have support for sending arbitrary Python objects
across the network, it's possible to do so. Python's pickle module provides
support to convert almost any Python object to or from a version that can be
represented as a string. That string could then be transmitted over the network.

However, this approach has many potential security issues. On the receiving side,
you may not be receiving the kind of objects you expect. Therefore, protocols
based on this sort of conversion are USUally discouraged.

Here's an example that demonstrates the use of instance variables and inher
itance withXML-RPC. Note that there's aproblem with the statistics collection in
this program; read on for more details.

In the meantime, here's the example:

#!/usr/bin/env python
SimpleXMLRPCServer Example with extra class features -- Chapter 17
stat.py
This program requires Python 2.3 or above

from SimpleXMLRPCServer import SimpleXMLRPCServer, SimpleXMLRPCRequestHandler
from SocketServer import ForkingMixln
import time

class Stats:

def getstats(self):
"""Returns a dictionary. The keys are names of the functions,
and the values aTe the number of times each function was called."""
return self.callstats

361

Chapter 17

362

def getruntime(self):
return time.time() - self.starttime

def failure(self):
raise RuntimeError, "This function always raises an error.

class Math(Stats):
def __init__ (self):

self.callstats {' pow': 0, 'hex': o}

self.starttime = time.time()

def pow(self, x, y):
"""Returns x raised to the yth power; that is, x 1\ y.

x and y may be integers or floating-point values."""
self.callstats['pow'] += 1 # Doesn't do what you expect!
return pow(x, y)

def hex (self, x):
"""Returns a string holding a hexadecimal representation of
the integer x. ''',''
self.callstats['hex'] += 1 # Doesn't do what you expect!
return "%x" %x

class ForkingServer(ForkingMixln, SimpleXMLRPCServer):
pass

serveraddr = (", 8765)
srvr = ForkingServer(serveraddr, SimpleXMLRPCRequestHandler)
srvr.register_instance(Math())
srvr.register_introspection_functions()
srvr.serve_forever()

This program defines some new methods and some new instance
variables. Note that it doesn't matter that the Math class now inherits from
Stats; SimpleXMLRPCServer sees the methods from stats just fine-just like
any other Python code would.

But the idea of keeping track of how many times a method is called won't
work right since you're using a forking server. That's because each time a request
comes in, a new, separate process is created to handle that request. It increments

callstats, then promptly terminates after the response is sent. The parent process's

SimpleXlvILRPCServer

counter never gets incremented itself because the incrementing always occurs
in the child process and the child process cannot modify the parent's memory.
Once the child process terminates, as it will as soon as it has finished handling
the request, any record of the incremented count is lost. Here's an example of
interacting with this program:

$./testclient.py

You can now use the object s to interact with the server.

>>> s.hex(lS)

'f'

>>> s.heX(16)

'10'

>>> s .getstatsO

{, pow': 0, 'hex': o}

»> s.getruntime()

269.33166790008545

>>> s. failure 0
Traceback (most recent call last):

File "<console>", line 1, in ?
File "/usrllib/python2.3/xmlrpclib.py", line 1029, in call

return self. __send(self. __name, args)

File "/usrllib/python2. 3/xmlrpclib. py", line 1316, in _request

verbose=self. verbose

File "/usrllib/python2. 3/xmlrpclib. py", line 1080, in request

return self._parse_response(h.getfile(), sock)

File "/usrllib/python2. 3/xmlrpclib. py", line 1219, in _parseJesponse

return u. closeO

File "/usrllib/python2. 3/xmlrpclib. py", line 742, in close

raise Fault(**self._stack[O])

Fault: <Fault 1: 'exceptions. RuntimeError: This function always

raises an error. '>

Notice how the values returned by getstats () indeed weren't incremented.
You can fix the problem by using the ThreadingMixln in place of ForkingMixln

(there's an example of that in the "Using DocXMLRPCServer" section later in this
chapter). Also, take a look at what happened when failure () was called. The server
detected the exception and passed it back to the client as a failure string. Python's
XML-RPC client library happens to detect these, and raises an exception itself.
But notice that the exception raised by the client isn't the same one that was
raised on the server side. That's because exception objects cannot be passed

across XML-RPC, but strings can.

Chapter 17

Using DocXMLRPCServer

The Python DocXMLRPCServer is a simple class that adds functionality to
SimpleXMLRPCServer. The extra features enable a standard web browser to access
your server. Ifit does so, it will be given help information about the functions you've
defined. DocXMLRPCServer is a drop-in replacement for SimpleXMLRPCServer. Here's
an example that illustrates a DocXMLRPCServer. Also, to address the problems with
incrementing statistics in the previous example, this example uses threading
instead of forking.

#!/usr/bin/env python
DocXMLRPCServer Example - Chapter 17 - doc.py
This program requires Python 2.3 or above

from DocXMLRPCServer import DocXMLRPCServer, DocXMLRPCRequestHandler
from SocketServer import ThreadingMixln
import time

class Stats:
def getstats(self):

''''''Returns a dictionary. The keys are names of the functions,
and the values are the number of times each function was called."~"

return self.callstats

def getruntime(self):
''''''Returns the number of seconds the class has been
instantiated. ",,"

return time.time() - self.starttime

def failure(self):
"" "Causes a RuntimeError to be raised. ,"'"
raise RuntimeError, "This function always raises an error."

class Math(Stats):
def init (self):- -

self.callstats
self.starttime =

{'pow': 0, 'hex': o}

time. timeO

364

def pow(self, x, y):
"''''Returns x raised to the yth power; that is, x t\ y..

SimpleXMLRPCServer

x and y may be integers or floating-point values."""

self.callstats['pow'J += 1

return pOw(x J y)

def hex(self J x):

"""Returns a string holding a hexadecimal representation of

the integer x."""

self.callstats['hex'J += 1

return "%x" %x

class ThreadingServer(ThreadingMixln J DocXMLRPCServer):

pass

serveraddr = (" J 8765)

srvr = ThreadingServer(serveraddr J DocXMLRPCRequestHandler)

srvr.set_server_title("Chapter 18 Example Documentation")

srvr.set_server_name("Chapter 18 Doc")

srvr.set_server_documentation("""Welcome to the sample DocXMLRPCServer from

Chapter 18. """)

srvr.register_instance(Math())

srvr.register_introspection_functions()

srvr.serve_forever()

Ifyou pointyour web browser to http://loca1host :8765/, you'll see a desCription

of each ofthe methods exposed viaXML-RPC. You can also adjust the title and

introduction ofthat page via the set_server_... family of functions. As you read the

generated documentation, notice the systern .1is tMethods (), sys tern. methodHe1p (),

and system.methodSignature() documentation. These ftmctions were supplied

when srvr. register_introspection_functionsO was called. The documentation for

them contains generic examples that are supplied by the default implementation.

Using CGIXMLRPCRequestHandler

It's possible to turn a CGI script into anXML-RPC server. This lets you write a

script that runs under an existing web server (which need not be written in

Python). The Python script will provide an XML-RPC interface to a client.

This is the job of the CGIXMLRPCRequestHand1er. While this comes as part of the

Simp1eXMLRPCServer module, it isn't really a server. Here's the most recent example,

adjusted for use as a CGI script:

365

Chapter 17

#!/usr/bin/env python
CGI Example - Chapter 17 - cgi.py
This program requires Python 2.3 or above

from SimpleXMLRPCServer import CGIXMLRPCRequestHandler
import time

class Stats:
def getstats(self):

"""Returns a dictionary. The keys are names of the functions,
and the values are the number of times each function was called."""
return self.callstats

def getruntime(self):
''''''Returns the number of seconds the class has been
instantiated. ","'

return time.time() - self.starttime

def failure(self):
"""Causes a RuntimeError to be raised."""
raise RuntimeError, "This function always raises an error."

class Math(Stats):
def __init__(self):

self. calls tats
self.starttime =

{'pow': 0, 'hex': o}

time.time()

366

def pow(self, x, y):
"""Returns x raised to the yth power; that is, x 1\ y.

x and y may be integers or floating-point values."""
self.callstats['pow'J += 1

return pow(x, y)

def hex (self, x):
"""Returns a string holding a hexadecimal representation of
the integer x. ''''',

self.callstats['hex'J += 1

return "%x" % x

handler = CGIXMLRPCRequestHandler()
handler.register_instance(Math())
handler.register_introspection_functions()
handler.handle_request()

SimpleXMLRPCServer

Functionally, this code is identical to others. However, you'll notice that it
takes no port number or bind address. That's because it's called by the web
server, which takes care of those details itself. Also, it calls handle_request()

instead of serve_forever(). That's because each CGI script handles exactly one
request. Ifyou install this under your web server's CGI directory and run it, check
out the getruntime() result. You'll always get a very small number-likely less
than one second. That's because the script itselfis executed, handles one request,
and then terminates. The statistics will therefore likely be useless, since they will
be reset for each request. Ifyou need to keep the statistics, you'll have to write
them to a file or devise some other means of persistent storage, such as a database
(see Chapter 14).

The exact way to test this example will vary from site to site. Ifyou install the
cgi. py script in your web server's root directory, and configure it to serve it up as
a CGI script, you could adjust tes tclient. py to communicate with it by simply
changing the url variable to http://localhost :8765/test. py.

Supporting Multicall Functions

There's one last feature of the PythonXML-RPC modules to mention: multicall
functions. Multicall functions are an informal addendum to the XML-RPC standard.
They are an optimization that allows clients to submit severalXML-RPC requests
at once. This can improve performance for clients that send several XML-RPC
calls to a server.

With the examples in this chapter, adding multicall support to the server is as
simple as adding the additional line srvr. register_multicall_functions () before
the call to serve_forever(). Clients that support multicall functions will then
automatically be able to use this feature. This will provide an optimization only,
and will not alter functionality.

Summary

With Python's SimpleXMLRPCServer module, you can write your ownXML-RPC server.
This server can expose methods of classes or standalone functions. Since it uses
SocketServer, you can make your server use threading or forking as appropriate.

Like the XML-RPC client, SimpleXMLRPCServer converts between Python types
andXML-RPC types. However, you can use arbitrarily complex functions or objects

on the server side as long as they accept and return only the types supported by
XML-RPC.

367

Chapter 17

368

The DocXMLRPCServer extends the basic SimpleXMLRPCServer functionality,

thereby making your server available to standard web browsers as well. People

using a standard browser will see documentation on your server.

With CGIXMLRPCServer, you can provide anXML-RPC server that gets called

as a CGI script from your web server. The next chapter discusses CGI scripts in

greater detail.

CHAPTER 18

CGI

CGI, THE COMMON GATEWAY INTERFACE, is a way to present dynamic content on
websites. Originally, websites mostly presented static information; that is, each
visitor to a page saw exactly the same page until the authors manually updated it.
Then, each visitor would see the same updated page. However, from even the
early days of the Web, developers wanted to be able to present more dynamic
information to users. CGI is one ofthe most frequently used mechanisms to
accomplish that.

The "common" in CGI stems from two things: it's server-independent and it's
language-neutral. This means that a CGI script can run under any web server
that supports CGI, and that a CGI script may be written in any language. CGI is
neither a network protocol nor a library in itself. Rather, it's a specification for
how information is exchanged between the web server and the program that
generates data. A program that complies with CGI and gets executed by a web
server is typically called a eGl script.

CGI is generally tightly intertwined with HTML. This chapter focuses on the
Python side of CGI scripting; ifyou aren't already familiar with HTML and HTML
forms, please consult a HTML reference.

CGI vs. Other Technologies

CGI is a popular choice for generating dynamic web pages and websites. It's
supported by almost every popular web server and programming language. It
USUally doesn't require much configuration on the server, and setup is easy.

However, it does have problems, most notably with performance. Performance
can be especially bad when interfacing with databases. Other technologies
have been developed that provide greater performance if a certain degree of
portability is sacrificed. One such technology is known as mod_python and is
discussed in Chapter 19. With mod_python, programs must run under the
Apache web server and be written in Python.

369

'-'" ,.., , .LV

370

Setting Up CGI

Unlike many of the other examples in this book, the examples in this chapter
aren't designed to be run from the command line. CGI scripts are executed by a
web server.

Web servers generally need to be configured to execute CGI scripts. They will

often have restrictions on CGI scripts for security reasons. For example, CGI scripts
may need to be placed in a particular directory, have a particular file extension,
and be marked executable. The process for configuring a server varies from one
web server to the next; consult your server documentation for more information.

Uyou don't already have a web server and want a qUick way to run CGI scripts,
the Python module CGIHTTPServer provides a convenient way to run a server.
Chapter 17 offers a simple server, written in Python, that can execute CGI scripts.
It requires that scripts exist in a directory named cgi-bin and be marked executable.

Ifyou're using the Apache web server, you can enable CGI scripts in a particular
directory by using a configuration directive such as ScriptAlias/webpath/usr/
local/cgi. Ifyou use that, you can access your scripts with a URL such as
http://localhostlwebpath/script.cgianditwillioad /usr/local/cgi/script. cgi.

Understanding CGI

Suppose that the website www. example. com sells mousetraps. On that site, you
have a lot of plain HTML files that describe your different types of traps. You'd
also like to let customers purchase traps over the Web, probably using the standard
shopping cart metaphor.

Each customer's shopping cart is going to be different, so you obviously can't
have a plain HTML page for the cart. You also need to collect billing and shipping
information-static HTML won't do.

You might add an "Add to Cart" link on each static page. This linkwill point to
a regular URL, just like all the others. But that's where the similarity stops. Instead
of sending a plain file to the web browser, the server instead executes the CGI
script. The CGI script will be able to access any information passed from the client
in a form (such as the number of mousetraps to add to the cart). It will then
generate an HTML document and print it to the standard output. The web server
makes sure this output gets sent to the client.

Thus, most CGI scripts are very short-lived; the time between their invocation
and their termination is often a fraction ofa second. They're also called frequently;
a CGI script is executed each time the page is displayed. On heavily loaded sites,

this could be hundreds of times per minute. This unusual nature, as shown in the
following list, has a few implications for Python programmers:

• Initialization times become critically important. Many Python programs
have inefficient initialization. That's ordinarily not a problem since an
extra second starting up a program that runs for three months isn't a big
deal, but with CGI scripts, it is.

• Error handling is different. If a CGI script dies with an exception, the error
is typically logged by your web server, but the client will either get a generic
error message or an incomplete document rather than a stack trace. However,
the error will have no impact on other running instances of the CGI script.

• Interactivity is handled differently. Rather than being able to prompt the
user for more information, a CGI script must execute completely with
what it's given. If more information is required, it will have to be called
again later.

CGI scripts most frequently generate HTML documents, but they can gen
erate data of any type. For instance, a script may generate a graphic containing
some sort of custom image in it.

Understanding CGI in Python

Python, unsurprisingly, provides several modules that are useful for CGI scripts.
The primary module is named cgi and, for the most part, handles the input side
of CGI, though it does provide a few useful functions for generating output. Here's
a sample CGI script. This script does nothing but display the current time whenever
a browser asks for it.

#!/usr/bin/env python
Simple CGI Example - Chapter 18 - simple.cgi

import cgitb
cgitb.enable()

import time
print "Content-type: textlhtml"

print

print """<HTML>

<HEAD>

<TITLE>Sample CGI Script</TITLE>

</HEAD>

CGI

371

Chapter 18

372

<BODY>
The present time is %5.
</BODY>
</HTML>""" %time.strftime("%I:%M:%S %p %Z")
print

Save this example in the appropriate directory for your web server and pull it
up from a browser. You'll see a short HTML document displaying the current
time. Ifyou hit your Reload or Refresh button, you'll see that time changes. Each
time the document is requested, the output is regenerated with the present time
at that moment.

Adjusting the Interpreter Path

The first line of the script is used on Linux and UNIX platforms to define which
interpreter is used to run it. Some web servers will not work with the lusr/binl
env python string, which is normally used to run Python scripts. In those cases,
you'll need to replace it with the full path to your Python interpreter. The string
might be lusr /bin/python in that case.

Let's examine how this script works. This simple CGI script doesn't even
require Python's cgi module. First, it imports and enables cgitb. The cgitb
module provides CGI traceback support. In most, but not all cases, this will let
you send Python stack traces to the web browser or a log file. VVhen debugging
your program and writing code, this is great, but you may want to remove the line
when the code is deployed; it can divulge some ofyour code to a visitor should an
error occur, thereby potentially unearthing a security hole.

Next, the HTTPheaders are generated. CGI scripts must generate at least the
Content-type header, which tells the browser what type of file it's receiving. Other
headers can be useful as well; for instance, one that sets cookies.

After the headers. a blank line must be sent. A single print statement accom
plishes that. The blank line separates the headers from the document.

Then the document itself is sent. This document is a minimal HTML document,
but it's sufficient to illustrate this feature.

Retrieving Environment Information

Part of the CGI specification calls for web servers to load certain environment
variables with information about the session. The cgi module uses this infor
mation as part of its processing. But you'll often encounter situations in which
you'll want to access environment variables directly to get information such as
URL or path information.

The cgi module provides a couple of handy functions that help you see what
the environment looks like. Here's one program that uses one; the function that
generates HTML code representing the environment as passed in to the CGI
script, as shown here:

#t/usr/bin/env python
CGI Environment - Chapter 18 - environ.cgi

import cgitb
cgitb. enable ()

import cgi

print "Content-type: textlhtml"
print

print 1111" <HTML>

<HEAD>
<TITLE>CGI Environment</TITLE>
</HEAD>
<BODY>"""

cgi.print_environ()
print "</BODY></HTML>"

On my system, I installed this as environ. cgi under the server's cgi-bin

directory. When I called up http://localhost:8765/cgi-bin/environ. cgi/foo,

I saw this:

Shell Environment:

GATEWAY INTERFACE
CGl/1.1

HTTP ACCEPT
/

CGI

373

cnaprer 111

374

HTTP USER AGENT
- -

Mozilla/5.0 (Xllj Uj Linux i686j en-USj rV:l.6)
Gecko/20040506 Firefox/0.8

PATH INFO
/foo

PATH TRANSLATED
/tmp/htdocs/chapters/19/foo

REMOTE ADDR
127.0.0.1

REMOTE HOST
localhost

REOUEST METHOD
~ -

GET

SCRIPT NAME
/cgi-bin/environ.cgi

SERVER NAME
localhost

SERVER PORT
8765

SERVER PROTOCOL
HTTP/1.0

SERVER SOFTWARE
SimpleHTTP/0.6 Python/2.3.3

I'll define some ofthe more interesting environment variables from this output:

• REMOTE ADDR. Contains the IP address of the remote web client.

• PATH_IN FO. Contains the component of the URL that follows the CGI script,
if any.

• REMOTE_HOST. Sometimes holds the hostname ofthe remote web client, though
many web servers either don't set this variable or set it to the same value as
REMOTE ADDR.

• SERVER NAME. Contains the name of the local web server.

• SERVER_PORT. Contains the port ofthe local web server on which the request
was received.

These can all be accessed via os. environ. For instance,
as, environ [1 REMOTE_ADDR '] contains the client's IP address.

Getting Input

Although CGI scripts that generate data without any input from the user may be
useful in some circumstances, CGI is most frequently used to help sites become
more interactive with users.

There are three primary ways that CGI scripts can get information from the
user: via path-like components in the URL, via GET-encoded parameters in the
URL, and via forms (which may use either GET or POST). Let's look at each of
these methods.

Extra URL Components

In the preceding environment example, I saved the CGI script as environ. cgi but
called http://localhost:8765/cgi-bin/environ,cgilfoo as if environ, cgi were a
directory. There's no file foo on the system, yet the script loaded up properly. Web
servers are configured to take everything after the script name and pass it to you
in the PATH INFO environment variable.

Ifyou have a URL that specifies a CGI script, you can add whatever else you
like at the end after the script name. The one rule that applies is that it must start
with a slash, which differentiates it from the CGI script itself. Some scripts will
generate URLs that are specifically designed to cause certain values to be passed
to CGI via PATH_INFO. Here's an example. It presents a simple quiz asking the user
what day it is. Answers are passed back to the same script by adding components
to the end of the URL.

#!/usr/bin/env python
CGI PATH_INFO example - Chapter 18 - pathinfo,cgi

import cgitb
cgitb. enable ()

import cgi) time) as

CGI

375

Chapter 18

376

monthmap = {1: 'January', 2: 'February', 3: 'March', 4: 'April', S: 'May',
6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October',
11: 'November', 12: 'December'}

daymap = {a: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday',
4: 'Friday', 5: 'Saturday', 6: 'Sunday'}

def print_month_quiz():
print "What month is it?<P>"
for code, name in monthmap.items():

print '%s
 I % (os. environ['SCRIPT_NAME' J,
code, name)

def print_day_quiz():
month = time.localtime()[l]
print "What day is it?<P>"
for code, name in daymap.items():

print '%s
' % (os.environ['SCRIPT_NAME'J,
month, code, name)

def check_month_answer(answer):
month = time.localtime()[l]
if int(answer) ~= month:

print "Yes, this is %s.<P>" %monthmap[month]
return 1

else:
print "Sorry, you're wrong. Try again:<P>"
print_month_quiz()
return 0

def check_day_answer(answer):
day = time.localtime()[6]
if int(answer) == day:

print "Yes, this is %s." %daymap[day]
return 1

else:
print "Sorry, you re wrong. Try again:<P>"
print_day_quiz()
return 0

print "Content-type: text/html"
print

print ",,,, <HTML>

<HEAD>
<TITLE>CGI PATH INFO Example</TITLE></HEAD><BODY>"""

input = os.getenvCPATH_INFO'J ").splitC/')[l:]

if not len(input):
print_month_quiz()

elif len(input) == 1:
ismonthright = check_month_answer(input[o])
if ismonthright:

print_day_quiz()
else:

ismonthright = check_month_answer(input[O])
if ismonthright:

check_day_answer(input[l])

print "</BODY></HTML>"

There are several interesting things to note about this program. First, it gen
erates links back to itself. It does that by using the SCRIPT_NAME environment
variable to figure out where it is, then adds on the extra component for PATH_INFO.
For instance, part of the generated source looks like this for the weekday quiz:

What day is it?<P>
Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

The /cgi-bin/pathinfo. cgi component of the URi was generated from
SCRIPT_NAME. The remaining components were generated on the fly by the for loop.

Towards the end of the script, it looks at the PATH_INFO variable, splitting it

into components separated by slashes. The first component is always empty
(it's the empty string that would precede the first slash, or the entire empty string
if no PATH INFO is specified), so the [1:] strips it off.

CGI

377

Chapter 18

378

If there's nothing in the PATH_INFO, the month quiz screen is displayed.
Otherwise, if a month is present, the code checks to see if it's correct. If so, the
day quiz is displayed. If both a month and weekday are specified, they're both
validated, and appropriate screens are displayed.

The PATH _INFO method of interacting with a user has some limitations. It's not
possible to use this simple method with submitted forms, which many people
wish to do. However, some like the cosmetic purity ofthe URLs that are generated.
This can be especially useful ifyour URLs convey some meaning (such as a hier
archy of information) or ifyou need to ensure that browsers get a particular
filename (perhaps you're generating files that users download).

The GfT Method

Although technically the previous method of interacting also used HTTP's GET
method, when CGI programmers talk about the GET method, they normally
mean it as a way of sending form submissions back to a server. Since GET values
are sent as part of a URL, it's possible to generate GET strings without using an
actual form. Here's an example that provides the same program as before, using
GET strings instead of PATH_INFO.

#t/usr/bin/env python

CGr GET example -- Chapter 18 - get.cgi

import cgitb

cgitb. enable()

import cgi, time, os

monthmap = {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May',

6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October',

11: 'November', 12: 'December'}

daymap = {o: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday',

4: 'Friday', 5: 'Saturday', 6: 'Sunday'}

def print_month_quiz():

print "What month is it?<P>"

for code, name in monthmap.items():

print '<A HREF-"%s?month=%d">%s
' % (os.environ['SCRIPT_NAME'],

code, name)

def print_day_quiz():
month = time.localtime()[l]
print "What day is it?<P>"
for code, name in daymap.items():

print '%s
, %\
(os.environ['SCRIPT_NAME'], month, code, name)

def check_month_answer(answer):
month = time.localtime()[l]
if int(answer) == month:

print "Yes, this is %s.<P>" %monthmap[month]
return 1

else:
print "Sorry, you're wrong. Try again:<P>"
print_month_quiz()
return 0

def check_day_answer(answer):
day = time.localtime()[6]
if int(answer) == day:

print "Yes, this is %s." %daymap[day]
return 1

else:
print "Sorry, you're wrong. Try again:<P>"
print_day_quiz()
return 0

print "Content-type: text/html"
print

print """<HTML>
<HEAD>
<TITLE>CGI GET Example</TITLE></HEAD><BODY>"""

form = cgi.FieldStorage()

if form.getfirst('month') None:
print_month_quiz()

elif form.getfirst('day') == None:
ismonthright = check_month_answer(form.getfirst('month'))
if ismonthright:

print_daLquiz 0

CGI

379

Chapter 18

380

else:
ismonthright = check_month_answer(form.getfirst('month'))
if ismonthright:

check_day_answer(form.getfirst('day'))

print "</BODY></HTML>"

To the user, this program behaves identically to the previous one. The gen
erated URL looks a little different, and it doesn't get put in PATH_INFO.

To the cgi library, things look exactly as they had ifthey had been submitted
from a form. To access a form, or information from a GET URL, you use the
cgi. FieldStorage () class. The cgi library will automatically parse the input and
make it conveniently available via a FieldStorageO instance. Forms usually (but
not always) use key and value pairs, and in this example, getfirst() is used to
retrieve the value of a specific key.

FieldStorage instances commonly use the following two methods: getfirstO

and getlistO. It's also possible to access them as a dictionary, as you'll see in the
upload example in the following section. Ifaccessed as a dictionary, the keys rep
resent the field names in a form or in the URL. The example first checks to see if
a month is present (if not, None is returned by getfirst ()). Then, it proceeds with
the same logic as before, using form calls instead of manually parsing PATH_INFO.

The POST Method

The POST method is used exclusively to receive HTML form submissions. Although
GET can also receive those submissions, POST is generally capable of handling
larger amounts of data, including uploaded files. However, POST data doesn't
show up in the URL, so users cannot bookmark a particular screen in a CGI script
that uses POST. Sometimes, this is actually desirable, such as when the submitted
data is particularly sensitive.

Here's a version of the GET example modified to use forms and POST:

#!/usr/bin/env python
CGI POST example - Chapter 18 - post.cgi

import cgitb
cgitb.enableO

import cgi, time, os

monthmap = {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May',
6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: 'October',
11: 'November', 12: 'December'}

daymap = {o: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday',
4: 'Friday', 5: 'Saturday', 6: 'Sunday'}

def print_month_quiz():
print "What month is it?<P>"
print '<FORM METHOD="POST" ACTION="%s">' %os.environ['SCRIPT_NAME']

for code, name in monthmap.items():
print '<INPUT NAME="month" TVPE="radio" VALUE="%d"> %s
' %\

(code, name)

print '<INPUT TYPE="submit" NAME="submit" VALUE="Next >> ">'
print "</FORM>"

def print_day_quiz():
month = time.localtime()[l]
print "What day is it?<P>"
print '<FORM METHOD="POST" ACTION="%s"> , %os.environ['SCRIPT NAME']
print '<INPUT TVPE="hidden" NAME="month" VALUE="%d">' %month

for code, name in daymap.items():
print '<INPUT NAME="day" TYPE="radio" VALUE="%d"> %s
' % \

(code, name)

print '<INPUT TVPE="submit" NAME="submit" VALUE="Next >>">'
print "</FORM>"

def check_month_answer(answer):
month = time.localtime()[l]
if int(answer) == month:

print "Ves, this is %s.<P>" %monthmap[month]
return 1

else:
print "Sorry, you're wrong. Try again:<P>"
print_month_quiz()
return 0

CGI

381

Chapter 18

382

def check_day_answer(answer):
day = time.localtime()[6]
if int(answer) == day:

print "Yes, this is %s." %daymap[day]
return 1

else:
print "Sorry, you're wrong. Try again:<P>"
print_day_quiz()
return a

print "Content-type: text/html"
print

print "'", <HTML>
<HEAD>
<TITLE>CGI POST Example</TITLE></HEAD><BODY>"""

form = cgi.FieldStorage()

if form.getfirst('month') None:
print_month_quiz()

elif form.getfirst('day') == None:
ismonthright = check_month_answer(form.getfirst('month'))
if ismonthright:

print_day_quiz()
else:

ismonthright = check_month_answer(form.getfirst('month'))
if ismonthright:

check_day_answer(form.getfirst('day'))

print "</BODY></HTML>"

The logic at the end of this script is exactly the same as the logic from the GET
example. In fact, you could replace the two occurrences of POST in this script
with GET and wind up with a working script.

The major differences between this most recent example and the last one is
the use ofHTML forms. Our form presents the user with some radio buttons, one
of which can be selected. There's also a Next >>button to accept the selections
and advance to the next page.

Notice the "hidden" INPUT element in print_day_quiz(). This is used to cause

some piece of data to be submitted along with the form without requiring the

user to supply it. In the previous examples, the selected month was always trans-

mitted along with the day. The hidden element causes that to continue to happen
with this form.

Python's cgi module supports both GET and POST for the FieldStorage class.
In most cases, the two are interchangeable; just set the METHOD parameter in your
FORM tag appropriately, and the cgi module will do the rest.

Escaping Special Characters

Both HTML documents and URLs have a set of special characters that can't be
used directly. In HTML documents, the characters <, >, and & cannot be inserted
literally into a document. Instead, in order to get those characters in the output,
you must insert &1t;, >, or & into your document. Similarly, there are char
acters that cannot be used in URLs or links; such characters include spaces and,
depending on your particular situation, the question mark and ampersand. The
process of converting strings that contain special characters that use the HTML
sequences for them is called escaping.

This issue becomes a critical one of security when you display data that's
read from users back to them. For instance, a web-based bulletin board will often
display data supplied by site visitors. Ifthe data supplied isn't escaped, a malicious
visitor could insert codes to redirect visitors to a different page, or surreptitiously
capture passwords or other information. This is called a cross-site scripting attack.

There are two main utilities that you can use to help with escaping: cgi. escape()
and urllib. quote_plusO. Here's a program that demonstrates their use. It asks for
input, and creates both a link and a display that properly escape any necessary
characters in the input.

#!/usr/bin/env python
CGI escape example Chapter 18 - escape.cgi

import cgitb
cgit b. ena ble ()

import cgi, as, urllib

print "Content-type: text/html"
print

print "''''<HTML>

<HEAD>
z\l\ \1./l<:>1 't.sco.\le t:~o.\\\\l"\..ezl\l\"-b <./\\'t.t>..\JI z~\)\:i\h ''''''

CGI

383

Chapter 18

384

form = cgi.FieldStorage()

if form.getfirst('data') == None:
print "No submitted data.<P>"

else:
print "Submitted data:<P>"
print '<TT>%s</TT><P>, %\

(os.environ['SCRIPT_NAME'],
urllib.quote~plus(form.getfirst('data'))J

cgi.escape(form.getfirst('data')))

print """<FORM METHOD="GET" ACTION="%s">
Supply some data:
<INPUT TYPE="text" NAME="data" WIDTH="40">
<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>
</BODY></HTML>""" %os.environ['SCRIPT_NAME']

Ifyou save this program as escape. cgi and run it, you can experiment with
the results of escaping. Load it up and type <&?+"> test into the box, then click
Submit. That string should be echoed back to you in the generated page. But view
the source of that page, and you'll see something like this:

<HTML>
<HEAD>
<TITLE>CGI Escape Example</TITLE></HEAD><BODY>
Submitted data:<P>

<TT><&?+"> test</TT><P>
<FORM METHOD="GET" ACTION="/cgi-bin/escape.cgi">
Supply some data:
<INPUT TYPE="text" NAME="data" WIDTH="40">
<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>
</BODY></HTML>

The text within the A tag is escaped as necessary for URLs-that method of
escaping is different from what's used in HTML itself; note the use of hex codes
for the special characters and the plus for a space.

Then, the text between the TT tags is escaped for a HTML document.
Notice that fewer characters are escaped, and they're escaped differently. It's
important to use the proper method of escaping in each case. In general, you'll
want to use urllib. quote_plusO for components of a URL and cgilib. escapeO
for everything else.

Ifyou click on the link, you should get a page back that redisplays the same
string you typed in so that you can verify that the escape worked. Your browser
simply uses the escaped text in the URL, passing it back to the CGI script.

Handling Multiple Inputs per Field

There are ways that multiple values can be specified for a single name in HTML
forms. You can supply checkboxes or "multiple" SELECT boxes. Or, you could
assign the same name to more than one INPUT element.

The cgi module handles these cases by providing a getlistO method that's
available to FieldStorage instances. The getlist 0 method returns a list of all
values supplied for a particular field name. Here's an example that presents some
lists to the user and shows what was selected.

#!/usr/bin/env python
CGI list example - Chapter 18 - list.cgi

import cgitb
cgitb. enable ()

import cgi, os, urllib

print "Content-type: textlhtml"
print

print '''''' <HTML>
<HEAD>
<TITLE>CGI List Example</TITLE></HEAD><BODY>"""

form = cgi.FieldStorage()
print "You selected: "
selections = form.getlist('data')
printable = [cgi.escape(x) for x in selections]
print ", ".join(printable)

CGI

385

Chapter 18

386

print ''''''<FORM METHOD="GET" ACTION="%s">

Select some things: <P>,,,It, % as. environ [,SCRI PT_NAME']

for item in [' Red', 'Green', 'Blue', 'Black I, 'White', 'Purple',

'Python', 'Perl', 'Java', 'Ruby', 'K&R', 'C++', 'OCaml', 'Haskell',

'Prolog']:

print '<INPUT TYPE="checkbox" NAME="data" VALUE="%s">' % cgi.escape(item)

print' %s
' % cgi.escape(item)

print ''''''<INPUT TYPE="submit" NAME="submit" VALUE="Submit">

</FORM>

</BODY></HTML>"""

To test this program, run it, and select C++, Haskell, and Blue. Then click Submit.

Notice that the program listed all three items in the You Selected area. Notice

also what the URL looks like (http://localhost:876s/cgi-binllist . cgi ?data=

Blue&data=C%2B%2B&data=Haskell&submit=Submit) on my system. The data item was

simply repeated three times. Other ways to generate multiple instances of the

same field name will result in a URL looking like this as well.

Uploading Files

You may have encountered websites that allow you to upload files as part of an

HTML form. These can be retrieved with a CGI script, and Python's cgi module

supports this.

Here's an example that demonstrates uploading. It will allow the user to

upload a file, and then displays the size and MD5 sum of the uploaded file. An

MD5 sum is a unique checksum for a file; UNIX and Linux users can use the mds

or mdssum command to check the MD5 sum ofa file in advance, as follows:

#!/usr/bin/env python

CGI file example - Chapter 18 - file.cgi

import cgitb

cgitb. enableO

import cgi, as, urllib, mds

print "Content-type: textlhtml"

print

print '''''' <HTML>
<HEAD>
<TITLE>CGI File Example</TITLE></HEAD><BODV>"""

form = cgi.FieldStorage()
if form.has_key('file'):

fileitem = form['file']
if not fileitem.file:

print "Error: not a file upload.<P>"
else:

print "Got file: %s<P>" %cgi. escape(fileitem. filename)
m= md5. newO
size = 0
while 1:

data = fileitem.file.read(4096)
if not len(data):

break
size += len(data)
m.update(data)

print "Received file of %d bytes. MD5sum is %s<P>" %\
(size, m.hexdigest())

else:
print "No file found.<P>"

print """<FORM METHOD="POST" ACTION="%s" enctype="multipartlform-data">
File: <INPUT TVPE="file" NAME="file">
'''''' % os. environ [,SCRIPT_NAME']
print "''''<INPUT TVPE="submit" NAME="submit" VALUE="Submit">
</FORM>
</BODV></HTML>"""

Note that this script uses POST for the form. This is required; file uploads
aren't possible with GET. Also, observe the enctype attribute of the form. Again,
this is required for file uploads to work.

The interface to work with uploaded files is the "old-style" or low-level cgi

interface. Instead of using getfirst() or getlist() (which will load the entire file
into memory, and then hand it over-this probably isn't desirable), you should
instead look a little closer at the underlying data structures.

You can detect whether or not you have a file upload by looking at the file

att'ilb\1t~.lnthl'3l c'a'3l~, th~ -Til~it~m. -Til~ t~'3lt \:~~\11'Va\~nt tQ -TCYImt' -Til~' ~ .-Til~)
does that. The name of the file, as supplied by the browser, is in the filename

attribute.

CGI

387

LnUpter 111

388

It's theoretically possible to upload multiple files with the same attribute
name. However, support for this is spotty both in browsers and CGI libraries,
including Python's. Instead, if you need to receive multiple files from a single
screen, you should instead provide multiple file INPUT tags, each with a different
name. For instance, you may have file, file2, file3, and so on.

To test this program, first find a suitable file. Ifyou're on a UNIX or Linux
machine, use the mdS or mdSsum command to get the MD5 sum for the file. Then,
pull up the file. cgi script in your web browser. You'll see an entry location for
the filename. Select the file and click Submit. You'll get back a screen that looks
like this:

Got file: bash
Received file of 628684 bytes. MDssum is c7b80Sfdo3229Sof66a12a7b664b9cf4

Compare the MD5 sum to the one you calculated. You should be able to
verify that they're identical.

Using Cookies

CGI authors frequently need to track user sessions. A session would be one con
tinuous interaction between a user and a website. For instance, a user might be
using a shopping site, viewing information on 20 separate products and adding 3

to a shopping cart. Although there may be several dozen individual pages requested,
viewing the entire interaction as a single session is helpful. One common use for
that is to display a count of items in the shopping cart on every page.

HTTP is inherently a stateless protocol, which means that each page view is
its own session and there's no built-in way to associate one page viewwith another.

However, CGI authors often need such an association. For instance, ifyou're
developing a shopping cart site, you would need to track a user's movement
through the site to make sure that when 'j:\dd to Cart" is clicked, the cart for that
user is used. This sort of thing often requires persistent storage of some sort
often a database to hold the session information and cart information.

There are several ways to track session information. For example, you could

use HTTP authentication. Ifusers must log in to access your site, and you use
HTTP authentication, you can access the REMOTE_USER environment variable to
get the username that was authenticated and use that as a session token.

Another method is to pass a session token aroillld. This token can be a randomly
generated item. It would be embedded in a hidden field on each form, or included

at the end of each URL link. This works, but can be cumbersome.

Many developers today prefer the cookie mechanism. Cookies are small
tokens that are stored on a user's machine. "When the user accesses your site, the
browser will return the previously stored cookie to you. A cookie can store any
short string that you specify. You can then use this to track the session.

Cookies are also useful for other things. For instance, cookies can be used to
store preferences for a site, since they're persistent and stored on a user's browser.

Mechanics of Cookies

"When you wish to use a cookie, you'll emit an extra HTTP header before you
serve up a page. This header contains the cookie you wish to place and some
details about it. The user's browser will then store this cookie. On any future visits
to the site, the cookie will be sent along as a HTTP header and the web server will

place it in the HTTP_COOKIE environment variable.
You can actually set more than one cookie at once, and the user's browser

can supply more than one cookie also.
Python provides a Cookie module to help with both the setting and retrieving

of cookies. Each value is a Morsel object. Every Morsel has a name and a value.
It also has a few attributes that are specified as part of the cookie standard in
RFC2l09. None are required. These attributes are

• domain. Gives the server on which the cookie is valid, starting with a dot. If
omitted, defaults to the present server. As a security measure, many browsers
will not accept cookies set to other domains.

• max -age. Specifies the maximum age ofthe cookie in seconds. Ifnot specified,
the cookie lasts until the user closes the browser. If set to 0, the cookie is
deleted immediately. You can use this property to delete a previously
stored cookie, which might achieve an effect such as logging out of a site.

• path. Gives the location on the server in which the cookie is valid. Ifnot
specified, it defaults to being valid on the entire server.

• secure. Ifspecified, indicates that the cookie may only be transmitted over
a secure connection (such as SSL-encrypted HTTP). This doesn't imply,
however, that the cookie is stored securely by the web browser.

• version. Defaults to 1 and should not be modified.

eGl

389

Chapter 18

390

Using Cookies

Here's an example of using cookies in a CGI program. This example will let you
set a new cookie. If cookies are found, it will show them and let you delete them.

#l/usr/bin/env python
CGI cookie example - Chapter 18 - cookie.cgi

import cgitb
cgitb.enableO

import cgi, os, urllib, Cookie

def getCookieO:
"Generates a Cookie object based on input"
if os.environ.has_key('HTTP_COOKIE'):

cookiestring = os.environ['HTTP_COOKIE']
else:

cookiestring = "
return Cookie.SimpleCookie(cookiestring)

def dispCookie():
"Displays cookies found"
cookie = getCookie()
print "Found the following cookies:"
foundcookies = a
for key in cookie.keys():

morsel = cookie[key]
print "<l!>%s: %s" % (cgi.escape(key), cgi.escape(morsel.value))
foundcookies += 1

print "<P>"
if foundcookies:

print 'Click here, %\
os.environ['SCRIPT_NAME']

print' to delete the testcookie.<P>'

def setCookie(value, maxage):
"Sets a new cookie, sending appropriate output"
cookie = getCookie()
cookie['testcookie'] = value
cookie['testcookie']['max-age'] = maxage

print cookie.output()

print "Content-type: textlhtml"
form = cgi.FieldStorage()
action = form.getfirst('action')
if action == 'setCookie':

User requested setting a cookie
setCookie(form.getfirst('cookieval'), 60*60*24*365)
print # Signal end of the headers
print """ <HTML><HEAD><TITLE>Cookie Set</TITLE></HEAD><BODY>
The cookie has been set. Click here to return to the
main page.</BODY></HTML>""" % os.environ['SCRIPT_NAME']

elif action == 'delCookie':
User requested deleting a cookie
setCookie('fake') 0)
print # Signal end of the headers
print ",," <HTML><HEAD><TITLE>Cookie deleted</TITLE></HEAD><BODY>
The cookie has been deleted. Click here to return to
the main page. </BODY></HTML>'''''' %os.environ['SCRIPT_NAME']

else:
No action requested by user. Just display cookies and offer
a new choice.
print
print """ <HTML><HEAD><TITLE>CGI Cookie Example< /TITLE></HEAD><BODY> ,,""
dispCookie()
print "''''<FORM METHOD="GET" ACTION="%s">""" %os.environ['SCRIPT_NAME']
for value in [' Red') 'Green I, 'Blue', 'White', 'Black']:

print '<INPUT TYPE="radio" NAME="cookieval" VALUE="%s"> %s
' %\
(value, value)

print """<INPUT TYPE="submit" NAME="action" VALUE="setCookie">
</FORM>
</BODY>
</HTML>"""

Save this as something like cookie. cgi and try running it. You'll be able to
select a value for a cookie. and when you go back to the main page, you'll see that
the cookie has that value. You can either change the value or delete the cookie.

Looking at the code, you can see that the getCookieO function fetches the
cookie values sent by the client in the environment variable HTTP_COOKIE and passes
that on to the SimpleCookie object.

In Python, a Cookie (or SimpleCookie) object holds a set of Morsel objects.
Confusingly, each Morsel corresponds to what is normally called a cookie.

The dispCookieO function simply treats the SimpleCookie as a dictionary and

goes over any cookies found within it. The setCookieO function will set a cookie.
Note that while the SimpleCookie object looks like a regular Python dictionary, it

CGI

391

Lnaprer ltJ

392

isn't. The line cookie [I testcookie '] = value doesn't set the key testcookie to a
string; rather, the SimpleCookie object creates a Morsel object whose value is value.

That's why the next line works to set the maximum age of the cookie. Finally,
cookie. output () is called. This generates the appropriate HTTP header lines to
send to the client.

Farther down, take a look at what happens when a cookie is to be deleted.
setCookie () is called. The value of the cookie is unimportant here. What matters
is the maximum age, which is set to O. Aweb browser should immediately discard
a cookie when it sees the maximum age of O.

Setting Multiple Cookies

It's possible to set multiple cookies for a client, but to do this, you should set
multiple Morsel objects rather than multiple Cookie objects.

Summary

Many people need to make dynamic web pages, and CGI is one of the most
popular ways to do so. To generate dynamic pages, a web server invokes the CGI
script to render the page each time a request is received for it.

Python provides a cgi module that provides assistance for authors of CGI
scripts. Information about the user's request is passed in the environment.
Variables such as PATH_INFO can be used to access data that's passed along.

The FieldStorage class can be used to access forms submitted with GET or
POST, and also URLs generated using GET-like syntax. By using its getlist()

method, you can deal with forms that have multiple values for a single field
name. FieldStorage can also handle file uploads.

When generating your documents, it's important to remember to escape
special characters. The cgi. escapeO function can do that for HTML text, and
ur llib. quote_plu s () does the same thing for URLs.

Cookies are short strings stored on a user's computer. They're frequently
used to track user sessions to enable things such as shopping carts. The Python
Cookie module is used to set and access cookies stored in a user's browser.

CGI has some problems, mostly relating to performance. <?ne way to boost
performance is to use mod_python instead of CGI. The mod_python system is

the topic of the next chapter.

CHAPTER 19

mod_python

ONE OF THE MOST interesting ways to use Python today is Apache's mod_python
module. The mod_python module actually embeds a fully functional Python
interpreter inside the Apache web server. This is most frequently used as a powerful
and efficient means to generate dynamic web pages, but has other uses as well.

In many ways, writing mod_python programs is similar to writing CGI pro
grams, so familiarity with CGI (discussed in Chapter 18) will be beneficial as you
learn about mod_python. Important differences do exist, and they'll be highlighted
in this chapter.

Understanding the Need for mod_python

The most common method of generating dynamic web pages is the CGI script,
which is discussed in Chapter 18. A CGI script is invoked each time a given page
is requested. It reads the request, generates a reply. and then terminates. This
mimics the operation of HTTP, which, at its core, works with a single request at a
time. The next time a request is received, the CGI script is again invoked from
scratch. This design enables CGI scripts to be both language- and server-neutral;
indeed. virtually all popular web servers and programming languages support them.

However, this compatibility comes at a price: performance. Starting up a CGI
script is slow. There's operating system overhead involved with creating a new
process. There's overhead from the Python interpreter when initializing and loading
the script. CGI scripts that connect to databases are hit especially hard, since
they must establish a new database session each time a page is displayed. For
these reasons. CGI scripts aren't suitable for high-traffic sites.

The mod_python module is one answer to these problems. It actually
embeds a full Python interpreter inside the Apache web server. Your scripts are
loaded once per server process and only initialized then. Database connections
can be established at initialization time and kept open throughout the life of the
web server process. Whenever a page needs to be generated, a particular function
is called, and all the data about the request is passed to it. This function has access
to the environment created at initialization time. So, for instance, it can reuse the
existing database connection.

393

Chapter 19

394

While this scheme forces the use of the Apache server, its advantages often
outweigh its disadvantages, especially when designing a complete web application
from the ground up. Python can be an effective alternative to special-purpose
web languages like PHP.

The mod_python module actually can do more than simply serving up pages. It

can also interact with the Apache system in various different ways. For instance,
Apache provides various authentication handlers that let you authenticate users
against a text file or LDAP database that contains usernames and passwords. You
can write your own authentication handler in mod_python (perhaps it authenti
cates users against a remote XM:1-RPC server) and use that handler anywhere in
Apache-even if the pages being used aren't generated by Python code.

Installing and Configuring mod_python

In this section, you'll learn how to install mod_python and configure Apache to
use it. There are two popular versions ofApache: 1.3.x and 2.0.x. ForApache 1.3.x,
you'll want to use mod_python version 2.7, and for Apache 2.0.x, you should use
version 3.1 or above. The instructions and examples in this chapter are written
for use with mod_python 3.1 and Apache 2.0. Due to the significant internal
architectural changes between Apache 1.3.x and 2.0.x, these examples may not
run under an Apache 1.3.x server. Ifyou've a choice ofwhich web server to deploy,
I recommend Apache 2.0.x, since that will save you from needing to modify your
mod_python code when you upgrade later.

The installation process for mod_python involves the following four steps:

1. Install Python.

2. Install Apache.

3. Install mod_python.

4. Configure Apache to use mod_python.

Since you're reading a book about Python, I'm assuming you already have
it installed. Steps two and three vary depending on your operating system.
Some operating-system suppliers or third parties supply prebuilt Apache and
mod_python packages. If your supplier has done that, installing those prebuilt
packages is certainly the quickest and easiest way to get mod_python up and
runnIng.

Ifyou're installing manually, you'll first want to obtain and install Apache 2.0.
You can download it from http://httpd.apache.org/download .cgi. When compiling,

make sure that yourApache is built with Dynamic Shared Objects (DSO) support.
Most modern Apache installations are, but some-especially heavily customized
ones or older installations-may not be. If you're building from scratch, passing
--enable- so to Apache's configure script will usually enable the DSO mechanism.

Next, you'll need to obtain and install mod_python. You can download it

from http://httpd.apache.org/modules/python-download . cgi. Compilation and
installation instructions for your particular platform can be found in the down
loaded file or at www. modpython .org. Installation procedures can vary between
different releases ofApache or mod_python, so please check your downloaded
file or the mod_python website for the latest instructions.

Once you've installed everything, it's important to verify that the individual
components work. Make sure that you know how to make Apache serve up static
HTML files, that it can actually do so, and that you know where to go to modify
those files. Also, make sure that you've a working Python environment. Ifyou
have trouble with the mod_python installation later, it's important to know that
these two building blocks are both functional. Problems with either one of them
could manifest themselves as mod_python problems later on.

You should also determine where Apache's configuration files are stored on
your system. Common locations include /etc/apache, /etc/apache2, /etc/httpd,
/usr/local/apache2,/usr/local/etc/httpd, /usr/local/etc/apache2,orother
similar locations. You should also identify the primaryApache configuration file,
stored in the configuration directory. It's usually named either httpd. conf or
apache2. conf. Once you've done that, it's time to configure Apache to use
mod_python.

Loading the Module

The first thing to do when configuring mod_python for Apache is to make sure
that the mod_python module is being loaded. This will require a LoadModule
line in your Apache configuration file. It will look something like LoadModule
python_module /path/to/mod_python. so. Ifyou don't know the path, consult the
output from make install as part of the mod_python installation, or the infor
mation from your operating-system vendor if you installed mod_python via a
package. Some operating systems may place examples in the mods -available
directory in yourApache configuration area. Other operating systems may let you
add something like -D PYTHON to /etc/conf. d/apache2 to enable mod_python support.

You should be able to restart Apache with apache2ctl restart or apachectl
restart. !fit's successful, and you've inserted the LoadModule line, you've success

fully loaded the mod_python module into Apache.

mod...,python

395

Chapter 19

396

Configuring Apache Directories

Now that the mod_python module is enabled, the next step is to activate it for
your Python programs. The mod_python module is only activated for the areas
and files you ask it to be used for. By default, it's not activated for any areas.

The first thing you need to do is either place your code under a directory that
can already be reached via Apache, or set an Alias so that your code can be seen.
For instance, ifyou placed your mod_python code in lusr /local/mod_python, you
could use this configuration directive:

Alias /py /usr/local/mod_python

Requests to files under Ipy on the web server will actually use code from
lusr/local/mod_python.

Now, you need to configure Apache to serve up Python code from there. Here's
an example that you can place inyourApache configuration file (or. htacces s files, if
you delete the first and last lines):

<Directory /usr/local/mod_python>
AddHandler mod_python .prog
PythonHandler test
PythonDebug On

</Directory>

Save this file and adjust directory names if necessary Now you'll need a
program to test with. Here's some code that you can use. Name it test. py and
place it in your mod_python directory, lusr/locallmod_python in this example.
Note that unlike CGI scripts or standalone Python applications, you don't need to
mark this script executable on UNIX or Linux platforms. Apache imports it
directly into a running Python interpreter instead, as shown here:

mod_python test example - Chapter 19 - test.py

from mod_python import apache
from sys import version

def writeinfo(req, name, value):
req.write("<DT>%s</DT><DD>%s</DD>\n" %(name, value))

def handler(req):
req.content_type = "text/html"
if req.header_only:

Don't supply the body
return apache.OK

req .write(""" <HTML><HEAD><TITLE>mod_python is working</TITLE>
</HEAD>
<BODY>
<Hl>mod_python is working</Hl>
You have successfully configured mod_python on your Apache system.
Here is some information about the environment and this request:
<P>
<DL>
""11)

writeinfo(req, "Client lP", req.get_remote_host(apache.REMOTE_NOLOOKUP))
writeinfo(req, "URI", req.uri)
writeinfo(req, "Filename", req.filename)
writeinfo(req, "Canonical filename", req. canonical_filename)
writeinfo(req, "Path_info", req.path_info)
writeinfo(req, "Python version", version)

req.write("</DL></BODY></HTML>\n")

return apache.OK

Save this file. Then stop and start Apache as described earlier in this chapter.

mod-python

NOTE Apache with mod_python doesn't always restart orreloadpropetrly
when changes have been made to the mod_python configuration. After
altering mod_python settings, you may need to completely stop and then
start the Apache server.

You should now be able to access this document. !fyou used Ipy as an alias
for the mod_python directory, you should be able to access the document at
http://localhostipy/test . prog. You'll see a screen of information that says

"mod_python is working" at the top. On my system, that information screen
looked like this:

397

Chapter 19

398

mod_python is working

You have successfully configured mod_python on your Apache system. Here is
some information about the environment and this request:

Client IP
127.0.0.1

URI
Ipy/test.prog

Filename
lusr/local/mod_python/test.prog

Canonical filename
lusr/local/mod_python/test.prog

Path info

Python version
2.3.3 (#1, Feb 24 2004, 09:29:13) [GCC 3.3.3 (Debian)]

You might notice that some of this information looks similar to the infor
mation that you can obtain from the environment in a CGI script, and indeed the
information available to you via CGI is also available via the Apache API.

Fixing Configuration Problems

If you got an error instead, you'll need to fix your Apache configuration before
proceeding with the examples in the remainder of this chapter. The Apache error
log file often will have a hint that can help you solve the problem. This file usually
is named something like error .log or error_log and is typically located in /var /
log/apache, Ivar /log/httpd, or /var /log/apache2, though its location varies from
system to system.

Ifyou're still stuck, some of these hints may help:

• IfApache failed to even start (or your browser yields a "Connection
refused" error), chances are that you have a problem with your configu
ration. Make sure that the mod_python module is beingloaded and that
there are no typos. The apache2ctl configtest or apachectl configtest
commands can help find problems.

• IfApache started but generated a "4xx" error (such as a "not found" or
"permissions" problem), make sure you have an Alias directive and that it

points to the proper directory. Also make sure that the directory has per
missions that allow the Apache server to access it. Ifyou're using. htacces s
files, make sure that Apache is configured to use them and to serve files
from the directory in which they're located.

• Ifyou got an internal server error, verify that you accurately typed in the
example code and that the configuration file is correct. Then check your
error log for a cause.

• Ifyou see Python code instead ofHTML output, check your Directory
section. Make sure the path has no typos and that all necessary lines are
present.

• Try stopping Apache. Wait one minute. Then start it up again. See if that
fixes the problem.

Ifyou still cannot solve the problem, try consulting the documentation and
FAQ on mod_python's home page at www.modpython.org. You might also ask for
assistance on the comp .lang. python newsgroup or the mod_python mailing list,
which is available from http://mailman .modpython. org/mailmanllistinfo/mod_python.

Understanding mod_python Basics

Let's look at the preceding example and see what went on under the hood. The
first important pieces are in the Directory section you added to your Apache con
figuration file. The first line, AddHandler mod_python . prog, tells Apache that the
PythonHandler should be used for a request for any file ending in .prog in that
directory. That means you could also request http://localhostlpy/fake. prog and
get the same document. This is a powerful capability that actually lets you override
Apache's normal document-selection logic; more on that later.

The PythonHandler test line effectively causes Apache to run import test when it
initializes. Whenever a relevant request arrives, the test. handler() function will

be called, and an Apache request 0 bject will be passed in.
The PythonDebug line requests that exception traces are sent to both Apache's

error log and the client. Normally, these are sent solely to the error log, but you
may find it easier to develop programs when you can see those errors in the web
browser in real time.

mod...,python

399

Chapter 19

400

Now let's look at the code for test. py and examine what happens on the
Python side. The test. py code itself is loaded once per server process. Apache
often creates several server processes when it's initialized; a fresh copy of test . py

will be loaded and initialized for each server process. However, this will generally
be done only once per server process. Server processes can also be created dtuing
the execution ofApache. This may happen, for instance, when server loads increase.
Python scripts aren't always loaded immediately when a server process starts,
but may instead be loaded when the first request arrives. Whenever a request for
a Python program arrives, Apache calls han dler (). This function receives the
request and processes it. The return value from handler() indicates what sort of
response gets sent back to the client.

The first thing handler () does is check to see if the request was for a header
only. If so, that's all it hands out. Otherwise, it proceeds to generate the entire
body. Many mod_python programs and CGI scripts don't make this check, and
hand out the entire body regardless of the type of request. That usually works,
but it's more polite for clients to do the right thing when possible.

The bulk of han dler () is spent generating and writing the document being
sent to the client. Note that you can use req. wr i te () to transmit data to the client.
Finally, an OK status code is returned.

The Role of the PythonHandler

While talking about the preceding PythonHandler line, I made the point that the
handler is used for a request for any file ending in .prog in that directory. This is
extremely important and may seem counterintuitive at first glance. For just about
any other method of working with a web server, including both static HTML and
CGI scripts, you expect the web server to select a different document based on
the URL requested. You would also expect it to return an error itselfifthe requested
document didn't exist.

Not so with the PythonHandler. With mod_python, all requests that match the
AddHandler directive are passed to the Python handler. The Python handler is
then left to determine what to do with them-use the request to select among
different documents, return an error, or ignore the filename altogether as in the
previous example.

This presents a tremendously powerful tool. You can, for instance, present a
complete virtual hierarchy for a software download site. Or you can write your
own logic to determine whether a given request is valid. Perhaps you use the
filename to look up functions in a Python dictionary or to import your own

modules.

Here are some different URLs. Given the preceding example program and
configuration, see if you can figure out what Apache will return for each of the
following:

• http://localhost/py/test.prog

• http://localhost/py/nonexistent.prog

• http://localhost/py/somedir/test.prog

• http://localhost/py/somedir/nonexistent.prog

• http://localhost/py/nonexistent.html

The first two examples both return the previous sample "mod_python is
working" page. The second one does that because the Python handler for it is still
test. py. You'll notice that in the generated output, the URI is different. This is
your key to differentiating between requests later on.

The last three examples will all give you a 404, File Not Found error. For the
"somedir" examples, it's because the handler is only defined for one specific
directory in this example, and even though those are virtual subdirectories, the
physical subdirectory does not exist. Apache will generate an error. For the last
example, an error is generated because no special handler is defined for. html
files. Processing reverts to Apache's default handler, which just reads the file and
sends it to the client. Since the file doesn't exist, the client receives the error message.

This single difference between mod_python programs and other types of
web programming represents the most common mod_python confusion. Make
sure that you always remember that your single PythonHandler is called for all
requests that match AddHandler.

One consequence of this is that the user-visible URLs need not end in . prog
or. py. They could, in fact, have any extension-. cgi or even. html (though ifyou
do that, make sure you're reallyserving up HTML; you could confuse some browsers
otherwise),

Handler Return Values

The return value of the handler governs what sort of HTTP status code Apache
delivers to the client. These HTTP status codes are things like 200, Success, or
404, File Not Found. The full list of possible return-value constants is defined by

Apache and listed in the mod_python documentation. Many are rarely, if ever,

used. Here are the more popular ones:

mod...,python

401

Chapter 19

402

• apache .HTTP_OK (200) indicates that the request is valid and that a docwnent or
header will be sent.

• apache.HTTP_MOVED_PERMANENTLY (301) and apache. HTTP_MOVED_TEMPORARILY

(302) issue a HTTP redirect.

• apache.HTTP_UNAUTHORIZED (401) indicates that HTTP authorization is
required or that it failed.

• apache. HTTPJORBIDDEN (403) is a generic "permission denied" error tmrelated
to HTTP authentication.

• apache. HTTP_NOTJOUND (404) is a generic "not found" message that's used
when a request doesn't match anything valid.

In the brief example earlier in the chapter, the program always returned
apache. HTTP_OK to indicate a successful request. Most mod_python scripts will,
at minimum, also return apache. HTTP_NOT_FOUND in some situations.

It's also possible to raise an exception that causes a particular result code to
be transmitted to the client. For instance, consider the situation in which you're
checking the supplied URi to determine what function to perform. Ifyou couldn't
find a match, you could call raise apache •SERVER_RETURN or apache. HTTP_NOTJOUND.

Dispatching Requests

Earlier, I mentioned that Apache will call a single Python handler for all Python
related requests in a given directory, regardless of the filename. While this can
provide powerful capabilities, for smaller projects, perhaps a more CGI-like
interface is what's desired. Calling a different URi would execute a different
Python script. In fact, in this chapter, you'll see a number of different example
programs. It would be nice to be able to put them all in a directory and invoke
them at will from a web browser.

By using Python's dynamic importing features and doing some simple parsing
ofthe URi, you can accomplish that. Here's an example of a dispatcher program
one that receives requests and then sends them off to the appropriate script.
With this example, you can split up your code with the same ease as you can with
CGI. You can separate the logic for different pages, even using code from multiple
sources in the same directory, and all of it will be invisible to ~e user.

mod_python dispatcher - Chapter 19 - dispatcher.py

from mod_python import apache
import re

def raise404(logmsg):
''''''Log an explanatory error message and send 404 to the client"""
apache.log_error(logmsg, apache.APLOG_ERR)
raise apache.SERVER_RETURN, apache.HTTP_NOT_FOUND

def gethandlerfunc(modname):
"''''Given a module name from a URL, obtain the handler function from it
and return the function object."""
try:

Import the module
mod ~ __import__ (modname)

except ImportError:
No module with this name
raise404("Couldn't import module" + modname)

try:
Find the handler function
handler = mod.handler

except AttributeError:
No handler function
raise404("Couldn't find handler function in module n + modname)

if not callable(handler):
It's not a function
raise404("Handler is not callable in module" + modname)

return handler

def gethandlername(URL):
!"'''Given a URL, find the handler module name"""

match = re.search("/([a~zA-ZO-9_-]+)\.prog($I/I\?)", URL)
if not match:

Couldn't find the requested module
raise404(tr Couldn't find a module name in URL n + URL)

return match.group(l)

mod-python

403

Lnapter 1~

404

def handler(req):
"""Main entry point to the program. Find the handler function,
call it, and return the result. """
name =. gethandlername(req.uri)
if name =-= "dispatcher II :

raise404("Can't display the dispatcher")
handlerfunc = gethandlerfunc(name)
return handlerfunc(req)

This program grabs the filename from a URi and makes sure it fits the
prescribed pattern (alphanumeric plus dashes or underscores). Then the
gethandlerfunc () function is called. It imports the specified module name (given
by the filename) and finds the handler () function in that module, which is then
returned. The dispatcher's handler () function then calls the new handler ()
function, passing in req and returning the result. To the newly found script, in
many ways the program behaves as ifApache had called it as a handler directly.

In a setting where persistent data is needed or performance is critical, you
may wish to import all possible modules when dispatcher. py itself initializes,
and hold them throughout the lifetime of the program. In this case, you'll have to
know all the modules you'll use in advance.

To implement dispatcher .py on your Apache system, simply take the config
uration file example from earlier. Change this line:

PythonHandler test

to the following:

PythonHandler dispatcher

Next, stop and start Apache. After restarting, you should still be able to display
test. prog, except this time, the dispatcher is loading it. Also, nonexistent URis
will actually generate 404 errors like you would normally expect.

Dispatching and mod_python's Publisher

This dispatcher example uses the same concept as the Publisher handler that is
distributed with mod_python. Ifyou'll be doing a lot ofwork with a dispatcher,
you may wish to investigate that handler as well.

In this chapter, a custom dispatcher was developed. The Publisher can lead to
insecure code ifnot used carefully. Acustom dispatcher also permits even more
flexibility than Publisher.

Handling Input

Most people who wish to build dynamic websites will want to interact with the
users. There are two primary ways of gathering input: via form (or form-like)
fields, and with extra components on the URL. Ifyou've read Chapter 18 (on
CGI), you'll note that CGI presents exactly the same options. (If you're interested
in the client side, Chapter 6 also discusses submissions from a client.) To help
you understand how input works in mod_python, I've modified the CGI examples
from Chapter 18. Uyou're contemplating a choice between CGI and mod_python,
comparing the two examples is a great way to see the differences between the
two technologies.

Extra URL Components

As with CGI, you can put whatever you like in the part of the URi that follows the
Python handler. The extra part is saved as req . path_info in the object passed to
your handler() function. Here's a version of the CGI demonstration of this same
principle, modified to function as a standard mod_python program. This example
will quiz you about today's date, as shown here:

mod_python path_info example -- Chapter 19 -- pathinfo.py

from mod_python import apache
import time

monthmap = {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May',
6: 'June', 7: 'July', 8: 'August', 9: 'September', 10: r October' ,
11 : ' November', 12: 'December'}

daymap = {o: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday',
4: 'Friday', 5: 'Saturday', 6: 'Sunday'}

def getscriptname(req):
if not len(req.path_info):

return req.uri
return req.uri[:-len(req.path_info)J

def month_quiz(req):
req.write("What month is it?<P>\n")
for code, name in monthmap.items():

req.write('%s
, %(getscriptname(req),
code, name))

mod-python

405

cnapter 1~

406

def day_quiz(req):
month = time.localtime()[l]
req.write("What day is it?<P>\n")
for code, name in daymap.items():

req.write('%s
, % (getscriptname(req),
month, code, name))

def check_month_answer(req, answer):
month = time.localtime()[l]
if int(answer) == month:

req.write("Yes, this is %s.<P>\n" % monthmap[month])
return 1

else:
req.write("Sorry , you're wrong. Tryagain:<P>\n")
month_quiz(req)
return a

def check_day_answer(req, answer):
day = time.localtime()[6]
if int(answer) == day:

req.write("Yes, this is %s.\n" %daymap[day])
return 1

else:
req.write("Sorry , you're wrong. Try again:<P>\n")
day_quiz(req)
return a

def handler(req):
req.content_type = "text/html"
if req.header_only:

return apache.OK

req.write("l"<HTML>
<HEAD>
<TITLE>mod_python PATH_INFO Example</TITLE></HEAD><BODy>" rrrr

)

input = req.path_info.split('/')[l:]

if not len(input):
month_quiz(req)

elif len(input) == 1:

ismonthright = check_month_answer(req, input[O])
if ismonthright:

day_quiz(req)

else:
ismonthright = check_month_answer(req, input[oJ)
if ismonthright:

check_day_answer(req, input[lJ)

req.write(If\n</BODY></HTML>\n lf
)

return apache.OK

Taking a look at the program, you can see it's very similar to pathinfo. cgi
from Chapter 18. In fact, the only changes necessarywere to obtain data from req
rather than the environment and to use req.write() instead of print to send data
back to the client.

The program works by appending information after the script name in the
URI. These new pieces of data are parsed off into req .path_info by Apache and
are available to the program. Using those new pieces of data, the program can
determine what the user supplied and generate an appropriate response.

Ifyou've been using the example Apache configuration from earlier in the
chapter, you can run this example by accessing http://localhostJpyIpathinfo. prog.
You'll first be asked what month it is. Once you answer correctly, you'll be asked
what day of the week it is. When you finally get both correct, you'll see a message
confirming your choices.

Why Not the CGI Handler?

The mod_python distribution includes a CGI handler that's designed to emulate
the traditional Python CGI environment. However, due to the great differences
between the Apache mod_python environment and a CGI environment, this
emulation is imperfect and, in fact, results in the loss of many ofthe benefits of
using mod_python in the first place. Therefore, neither mod_python's authors
nor I recommend using it. Ifyou're going to be using mod_python, it's far better
to rework your code to work with mod_python natively.

The GET Method

Instead of adding a virtual file path, the GET method can be used to pass data to

the program. GET encodes parameters at the end of the URI. You can either con

struct the URL manually or use an HTML form to have the browser construct it
for you based on input. Here is a modified version of the previous example that

mod-python

407

Chapter 19

408

uses the GET method. Like the previous example, this will present a quiz based
on today's date:

mod_python GET example -- Chapter 19 -- get.py

from mod_python import apache, util
import time

monthmap = {1: 'January', 2: 'February', 3: 'March', 4: 'April', 5: 'May',
6: 'June', 7: 'July', 8: 'August', 9: 'September') 10: 'October')
11: 'November', 12: 'December'}

daymap = {o: 'Monday', 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday',
4: ' Friday', 5: 'Saturday', 6: 'Sunday'}

def month_quiz(req):
req.write("What month is it?<P>\n")
for code, name in monthmap.items():

req.write('%s
, % (req.uri,
code, name))

def day_quiz(req):
month = time.localtime()[1]
req.write("What day is it?<P>\n")
for code) name in daymap.items():

req.write('%s
, %\
(req.uri, month, code, name))

def check_month_answer(req, answer):
month = time.localtime()[1]
if int(answer) ~= month:

req.write("Yes, this is %s.<P>\n" %monthmap[month])
return 1

else:
req.write("Sorry, you're wrong. Try again:<P>\n")
month_quiz(req)
return 0

def check_day_answer(req, answer):
day = time.localtime()[6]

if int(answer) == day:

req.write("Yes, this is %s.\n" %daymap[day])
return 1

else:
req.write("Sorry, you're wrong. Try again:<P>\n")
day_quiz(req)
return a

def handler(req):
req.content_type = "text/html"
if req.header_only:

return apache.OK

req.write("""<HTML>
<HEAD>
<TITLE>mod_python GET Example</TITLE></HEAD><BODY>""")

form = util.FieldStorage(req)

if form.getfirst('month') None:
month_quiz(req)

elif form.getfirst('day') == None:
ismonthright ~ check_month~answer(req, form.getfirst('month'))
if ismonthright:

day_quiz(req)
else:

ismonthright ~ check_month~answer(req, form.getfirst('month'))
if ismonthright:

check_day_answer(req, form.getfirst('day'))

req.write("</BODY></HTML>\n")
return apache.OK

In this case, we use mod_python's util. FieldStorage class to parse the
GET request. This class is designed to be as compatible as possible with CGI's
FieldStorage class. In fact, in Chapter 18 the code from the CGI GET example that
deals with the form can be used almost unmodified in this situation. To this
program, it doesn't matter whether things are submitted via a form or by manually
generating a URL as was done in this example.

Notice that in this program, req. uri held the name of the Python script itself,
whereas it didn't in the pathinfo. py example. When using the pathinfo style of
input, Apache doesn't strip the input data out of req. uri, but it does when you're
using the GET method ofform submission. Therefore, no getscriptnameO function

was necessary in this example.

mod...,python

409

LftUptef 1::J

410

If you're using the example configuration from earlier in this chapter, you
can access this example by loading http://localhostlpy /get. prog. The interface
will be the same as the pathi nfo. py example.

The POST Method

The POST method receives HTML form submissions exclusively. Its chief advan
tages over GET tend to lie in the fact that it can handle much larger amounts of
data. Sometimes, the fact that a POST result cannot be bookmarked is an advantage
as well, such as when you're dealing with sensitive data. Here is yet another
version of the month and day quiz example, except this time you'll use POST with
mod_python, as follows:

mod_python POST example -- Chapter 19 -- post.py

from mod_python import apache} util

import time

import cgi} time} as

monthmap = {1: 'January'} 2: 'February'} 3: 'March'} 4: 'April'} 5: 'May'}

6: 'June'} 7: 'July'} 8: 'August'} 9: 'September'} 10: 'October'}

11: 'November'} 12: 'December'}

daymap = {o: 'Monday'} 1: 'Tuesday', 2: 'Wednesday', 3: 'Thursday',

4: 'Friday'} 5: 'Saturday'} 6: 'Sunday'}

def month_quiz(req):

req.write("What month is it?<P>\n")

req.write('<FORM METHOD="POST" ACTION="%s">, % req.uri)

for code} name in monthmap.items():

req. write(' dNPUT NAME= "month" TYPE="radio" VALUE= "%d"> %s
' % \

(code, name))

req.write('<INPUT TYPE="submit" NAME:::"submit" VALUE="Next >>">')

req.write("</FORM>\n")

def day_quiz(req):

month;:: time.localtime() [1]

req.write("What day is it?<P>\n")

req.write('<FORM METHOD="POST" ACTION="%s"> , %req.uri)

req.write('<INPUT TYPE="hidden" NAME="month" VALUE="%d">, % month)

for code, name in daymap.items():
req.write('<INPUT NAME="day" TYPE=l radio" VALUE=I%d"> %s
' %\

(code, name»

req .write(' <INPUT TYPE=lsubmit" NAME=lsubmit" VALUE="Next >> ">')
req.write(rr</FORM>\n")

def check_month_answer(req, answer):
month = time.localtime()[l]
if int(answer) == month:

req.write("Yes, this is %s.<P>\n" %monthmap[month])
return 1

else:
req.write("Sorry, you're wrong. Try again:<P>\n")
month_quiz(req)
return a

def check_day_answer(req, answer):
day = time.localtime()[6]
if int(answer) == day:

req.write(rrYes, this is %s.\n rr %daymap[day])
return 1

else:
req.write("Sorry , you're wrong. Try again:<P>\n")
day_quiz(req)
return a

def handler(req):
req.content_type = "text/html"
if req.header_only:

return apache.OK

req.write("""<HTML>
<HEAD>
<TITLE>mod_python POST Example</TITLE></HEAD><BODY>"II)

form = util.FieldStorage(req)

if form.getfirst('month') None:
month_quiz(req)

elif form.getfirst('day') == None:

ismonthright = check_month_answer(req, forrn.getfirst('month'»
if ismonthright:

day_quiz(req)

mod-python

411

Chapter 19

412

else:
ismonthright = check_month_answer(req, form.getfirst('month'))
if ismonthright:

check_day_answer(req, form.getfirst('day'))

req.write("</BODY></HTML>\n rr
)

return apache.OK

This program uses the exact same form logic as the GET version did. In fact,
the only real change is the HTML code that was generated to present the menu of
selections. The mechanics of handling the POST data are the same as for the CGI
script thanks to the interface compatibility of FieldStorage.

Since the mod_python FieldStorage is largely compatible with CGI's
FieldStorage, many of the principles of handling form data described in the CGI
chapter apply to mod_python as well.

You can run this example by loading http://localhostipy Ipost. prog if you're
using the example Apache configuration from earlier in this chapter.

Escaping

The mod_python module doesn't directly provide support for escaping HTML
data or URLs. However, it's possible to use the functions in the cgi and urllib

modules to do this.
Normally, you should never access anything from the CGI library in a

mod_python program. Its escape() function is a special-case exemption. Here's
a mod_python version of the escaping demonstration presented for CGI.

mod_python escape example -- Chapter 19 ~~ escape.py

from mod_python import apache, util
import urllib
from cgi import escape

def handler(req):
req.content_type = "text/html"
if req.header_only:

Don't supply the body
return apache.OK

req.write("I 11 <HTML>
<HEAD>
<TITLE>mod_python Escape Example</TITLE></HEAD><BODY>""")

form = util.FieldStorage(req)

if form.getfirst('data') == None:
req.write("No submitted data.<P>\n")

else:
req.write("Submitted data:<P>\n")
req.write('<TT>%s</TT><P>, % \

(req.uri,
urllib.quote_plus(form.getfirst('data')),
escape(form.getfirst('data'))))

req.write("ll1<FORM METHOD="GET" ACTION=l%s">
Supply some data:
<INPUT TYPE="text" NAME="data" WIDTH=140">
<INPUT TYPE= "submit" NAME="submit" VALUE="Submit">
</FORM>
</BODY></HTML>\n""" %req.uri)

return apache.OK

Notice the careful import from the cgi module. You could, of course, use
import cgi and then cgi. escape () instead offrom cgi import escape. By using from
cgi import escape, you remove the possibility that other functions from cgi could
be accidentally used. Because the cgi functions assume the CGI environment of
one process per request, they can cause serious conflicts with mod_python's very
different environment.

Understanding Interpreter Instances

The mod_python system embeds Python inside Apache, but actually, in many
situations, it will use more than one Python instance for the server. In the default
configuration, the Python programs in each Apache virtual server execute in
their own Python interpreter instance. That is, the Python code in one virtual
server is completely unable to interact with the Python code in another virtual

server because they exist in separate Python interpreters. This is usually a benefit,

because it prevents errant or malicious Python programs from causing trouble
with unrelated sites.

mod-python

413

Chapter 19

414

But sometimes it can be a problem. For instance, perhaps you have many
virtual servers running the same Python program. If each virtual server uses its
own Python environment, resource requirements will be increased on the web
server. These increased requirements generally mean more RAM since more copies
than necessary of your script will be loaded into RAM at once. It would also
increase the number of connections to a database server that may be kept open.

In other situations, you may wish to increase the number of separate inter
preters. This may occur when you run many different Python programs on a
single virtual server. Increasing the number of separate interpreters will make it

more difficult for a problem in one Python program to impact another one. For
instance, a bug in one program may corrupt a database connection that's also
used by another program.

The mod_python module defines three Apache configuration directives to
control this behavior. Python Interpreter gives fine-grained control over exactly
how interpreters are used. It takes a single string parameter. EveryPython program
that falls under a PythonInterpreter with that name will use the same interpreter
namespace. You can force the entire system to use one interpreter by placing
something like PythonInterpreter GLOBAL at the top level of your server configu
ration. Note that the text GLOBAL could be replaced by any other name of your
choosing.

There are also two other options: PythonInterpPerDirectory and
PythonInterpPerDirective. These request separate interpreters for each
directory or Apache directive area, respectively.

While these directives offer a certain level of control, they still may not nec
essarily do what you expect. For instance, specifying a single Python Interpreter
at the top level of your configuration doesn't necessarily mean that only one
interpreter will exist; it just means that new interpreters aren't created based on
the location of Python scripts.

Internally, Apache often uses a forking method to handle multiple client
requests simultaneously. Each forked Apache process is its own entity, and thus
each forked Apache process will have its own Python interpreter set. The rules
just described govern how the interpreters within a single forked process can
interact. With mod_python, there's no such thing as a true global variable that
can be accessed by all Python programs for all connections. Interpreters within
different forked processes are automatically isolated. As a programmer, you have
no control over which forked process is called to handle a given connection, and
you don't have control over the longevity of a given forked process. Given the
forked-process model, you must, for example, be sure that your database server
can handle an amount of simultaneous connections equal to the maximum

number of forked processes in Apache.

Prebuilt Handlers in mod_python

In the examples in this chapter, handlers for mod_python were designed from
scratch. The mod_python distribution ships three handlers that can be useful for
your projects.

First, the Publisher handler is a more sophisticated version of the dispatcher
example presented in this chapter. The Publisher handler presents not only
Python scripts but also functions within them as paths. This can simplify your
code in some cases, but unless due care is taken, the Publisher handler can also
lead to security risks if certain functions are exposed unintentionally.

The CGI handler is designed to ease the migration from true CGI scripts
to mod_python scripts. Ifyou have existing CGI scripts and wish to move to
mod_python, this may help you. However, the mod_python authors warn against
using this for new development, as many of the benefits of mod_python are for
feited. Additionally, some CGI scripts that take advantage of the nature ofCGI to
perform process-altering tasks, such as changing directories or the environment,
may cause failures when used with the CGI handler.

Finally, the Python Server Pages (PSP) handler is designed to process HTML
or XHTML documents, and allows you to embed Python code inside them. This
is similar in concept to PHP programming.

Summary

The mod_python module is a way of embedding Python inside the Apache web
server. It can often provide increased performance and greater flexibility ifyou're
able to standardize on the Apache web server for your projects.

Installation of mod_python varies depending on your system, but generally
involves installing Python, Apache, and then the mod_python module. You'll
need to add a few lines of code in the Apache configuration file as well.

With mod_python, all requests in a particular directory that match the handler
pattern are passed to a single Python function. Ifyou want a more CGI-like
behavior, in which programs with different names handle requests for different
files, you can use a program similar to the dispatcher example in this chapter to
send them off to the appropriate handlers. The mod_python~suppliedPublisher
handler also performs a similar service.

Programs written with mod_python have options similar to CGI programs
for receiving and sending data, though the mechanics of accomplishing these
things can differ. The mod_python module provides a util. FieldStorage class

that's designed to mimic CGI's FieldStorage class, which means that form
processing code is often quite similar between CGI and mod_python programs.
The escapeO function can be used directly from the cgi module.

mod-python

415

Chapter 19

Apache normally separates Python programs so that programs running for
one virtual server cannot access programs running in another. However, this
behavior can be changed. In any case, Apache may create several Python inter
preters due to its internal multitasking mechanisms.

The mod_python distribution includes three built-in handlers that may be
able to save you some work: Publisher, which is a more sophisticated dispatcher;
CGI, which can help migrate existing CGI scripts to a mod_python system; and
PSp' which processes Python code embedded in HTML or XHTML documents.
When using any of these built-in handlers, make sure you understand the
security implications first.

416

Part Six
Multitasking

CHAPTER 20

Forking

VIRTUALLY ALL AUTHORS ofservers, and many authors of clients, need to write pro
grams that can effectively handle multiple network connections simultaneously.
As an example, consider a web server. Ifyour server could only handle one con
nection at a time, you could only be transmitting a single page at a time. If you
have a large file on your server and a user on a slow link is downloading it, that
user could completely tie up your server for an hour or more. During that time,
nobody else would be able to view any pages on that server. Virtually all servers
want to be able to serve more than one client at once.

To serve multiple clients simultaneously, you need to have some way to handle
several network connections at once. Python provides three primary ways to
meet that objective: forking, threading, and asynchronous I/O (also known as
nonblocking sockets). I'll cover all three: forking in this chapter, threading in
Chapter 21, and asynchronous I/O in Chapter 22.

Ofthese three, forking is probably the easiest to unders tand and use. However,
it's not completely portable; forking may be unavailable on platforms that aren't
derived from UNIX.

Forking involves multitasking-the ability to run multiple processes at once,
or to simulate that ability. In this chapter, you'Ulearn how to apply forking to
your programs. First, you'll learn about how forking works with your operating
system and some common pitfalls to avoid. Next, you'll see how to apply forking
to server programs. Finally, the chapter will conclude with information on locking
and error handling.

Understanding Processes

Forking is tied in closely with the operating system's nature ofa process. A process
is usually defined as "an executing instance of a program." When you start up an
editor such as Emacs, the operating system creates a new process that runs it.
When Emacs terminates, that process goes away. Ifyou open up two copies of
Emacs, there will be two Emacs processes running. Although they both may be

instances of /usr/bin/emacs and maybe started up the same way, they may be

doing different things-perhaps editing different files. Each process is distinct.

419

Chapter 20

420

Each process has a unique identification number called a process ID (PID).
The operating system assigns the PID to a process when it starts. In the preceding
Emacs example, the two Emacs processes would each have a unique PID.

NOTE This chapter focuses on UNIX and Linux platforms, since those are
platforms for which forking is best supported. The information contained in
this chapter may not apply to other operating systems such as Windows.

However, although the details may differ in important ways, all multitasking
operating systems (including Wmdows) have some notion ofa process, even
if they don't refer to it by that name. Single-tasking operating systems, such
as DOS, will usually have no notion ofa process.

You can gatherinfonnation about running processes by using the ps command.
The syntax for ps differs from one UNIX to the next. Here's an example from Linux,
which should also work on any BSD operating system and AlX.:

$ ps x
prD TTY STAT TIME COMMAND

19817 ? 5 0:00 /bin/sh /usr/bin/startkde

19866 ? 5s 0:00 /usr/bin/ssh-agent startkde

19877 ? 5s 0:02 kdeinit: Running ...
19880 ? 5 0:18 kdeinit: dcopserver - -nosid

19882 ? 5 0: 01 kdeinit: klauncher

19885 ? 5 0:26 kdeinit: kded

19966 ? 5 34:11 /usr/bin/artsd -F 5 -5 4096 -a alsa -s 60 -m artsmess

12096 ? 5 0:00 xterm

12097 pts/668 5s 0:00 -bash

12154 pts/668 5+ 0:00 emacs -nw letter. txt

12155 ? 5 0:00 xterm

12156 pts/669 5s 0:00 -bash

12163 pts/669 5+ 0:00 emacs -nw report. txt

The first column in the ps output shows the PID of a given process. The last
column, in most cases, shows what program that process is executing. In this
example, the first processes listed correspond to the graphical ehvironment KDE.

They represent things such as the sound system. I've cut out several dozen other

processes for this example.

Farther down, you can see two different versions of Emacs running as in the
previous example. One has PID 12154 and the other has PID 12163. The first was
originally started to edit letter. txt and the second was started to edit report. txt.

Each process has unique attributes. For instance, PID 12154 may have an open
file descriptor for letter. txt while PID 12163 may have an open file descriptor
for report. txt. Processes can also have unique environment variables, data in
memory, and open network connections.

The process is the fundamental unit of multitasking. Several processes may
be running simultaneously. For instance, my two Emacs processes could be
running at the same time as a web browser, a file downloading process, a data
analysis process, and a CD burning process. A single process doesn't have more
than one thing executing at once. Threading, discussed in Chapter 21, can blur
that line.

Understanding fork()

The system call used to implement forking is called fork(). It's a very unique call.
Most functions will return exactly once (with or without a value). The sys . exit ()
function never returns since it terminates the program. By contrast, Python's
os. fork() is the only function that actually returns twice. After calling fork(), there
are two copies of your program running at once. But the second copy doesn't
restart from the beginning; both copies continue directly after the call to fork ()

the process's entire address space is copied. Errors are possible, and os. fork()

could raise an exception; see the "Error Handling" section in this chapter for details.
The fork() call returns the process ID (PID) of the newly created process to

the original ("parent") process. To the new ("child") process, it returns a PID ofO.
Therefore, logic like this is common:

def handle 0 :
pid = os.forkO

if pid:

Parent

close_child_connections()

handle_more_connections()

else:

Child

close_parent_connections()

process_this_connection()

When I said before that os. fork() is the only function that returns twice,

that's not entirely accurate. I could write the following:

Forking

421

Chapter 20

422

def dothefork():

pid = os.forkO

if pid:

return "server"

else:

return "client"

In this instance, dothefork() would actually return twice as well. It should
be noted, though, that any function that returns twice does, at some point, call
os. forkO to make that possible.

Forking is one of the most common and best-understood methods of multi
tasking, and using forks is especially common for servers, whereby the server
typically forks for each new incoming request.

After a fork, each process has a distinct address space. Modifying a variable
in one process will not modify it in another, and that is a key difference from
threads (discussed in the next chapter). This leaves your code less vulnerable to
errors that may cause the server process for one connection to interfere with that
of another.

Forking is used, on UNIX systems, for more than just netw'ork purposes. For
instance, the typical way (and what Python does under the hood when you call
os. system ()) to execute a program is to fork and then use one of the os. exec ... ()

functions to start the new program. The parent process can then continue on,
monitoring the child, or it can opt to have its execution blocked until the child
terminates by using one of the wa it () functions (which will be described later in
the section "The Zombie Problem").

However, forking is a fairly low-level operation. The process ofactually doing
a fork takes a little bit ofwork to make sure that you're doing everything the oper
ating system expects of you.

Duplicated File Descriptors

There are several side effects of forking. One of the most obvious is that of dupli
cated tlle descriptors. Afile descriptor can refer to things such as a socket, a file
on disk, a terminal (standard input/output! error), or certain other file-like objects.

Since a forked copy ofa process is an exact copy; it inherits all the file descriptors
and sockets that the parent process had. So you wind up with a situation in which
both the parent and child process have a connection open to a single remote host.

That's bad for several reasons. One is that if both processes try to commu·

nicate over that socket, the result will likely be garbled. Another is that a call to

close () doesn't actually close the connection until both processes have called it.

Therefore, protocols (such as FTP) that use the closing of a socket as a signal that
some action has completed will be broken unless sockets are closed both places.
Some authors do, on occasion, exploit the fact that two processes can access the
socket, but this requires great care and is quite rare.

The solution to this problem is to have whichever process doesn't need a
socket close it immediately after forking. For the typical case of a server that forks
a new process to handle each incoming request, you'll notice that the parent process
will close the socket for the child, and the child will close the master listening
socket that the parent uses. This will ensure proper operation for both processes.

Zombie Processes

The semantics of fork() are built around the assumption that the parent process
is interested in finding out when and how a child process terminated. For instance,
a shell script is interested in finding out the exit code from a program that is run.
A parent process can find out not just the exit code, but also if a process crashed
or terminated due to a signal. The way a parent gathers this information is via
os. wait 0 or a similar call.

During the time between the termination of the child process, and the time
the parent calls waitO in it, the child process is said to be a zombie process. It's no
longer executing, yet certain memory structures are still present in order to permit
the parent to wait () on it.

For most servers, the information returned bywait () is irrelevant. Ifa worker
process dies, the server will not do anything different; it should still go on servicing
requests from other clients.

However, you must still call wa it () on the child process at some point after it
terminates. Otherwise, system resources will be consumed by the vast amount of
zombie processes, which could eventually render the server machine unusable.

The operating system makes that job fairly easy, though. Each time a child
process terminates, it sends the SIGCHLD signal to its parent process. (A signal is a
rudimentary way to inform a process of certain events.) The parent process can
set a signal handler to receive 51 GCH LD and clean up any children that have termi
nated. While this sounds tricky, I'll show you an example in the "The Zombie
Problem" section later in this chapter that can accomplish this very easily.

Ifthe parent process dies before its children, the childrenwill continue running.
The system re-parents them, setting their parent to be init (process 1). The init

process will then take care of cleaning up zombies.

Forking

Chapter 20

424

Performance

You may think that using fork () is a slow proposition since it must copy over all
of a server each time a client connects. In reality, the performance hit of fork () is
insignificant and unnoticeable to all but the most heavily loaded systems.

Most modern operating systems, such as Linux, implement fork() with copy
on-write memory. That means that memory isn't actually copied until it needs to
be (when one process or the other modifies it). The call to fork () itself is usually
virtually instantaneous.

The fork() call is used allover in the system. For instance, when you're using
a shell and type 1s, the shell will fork a copy of itself, and the new process will
invoke ls. A similar thing happens if you click an icon to launch a program in a
graphical environment. The desktop manager or window manager will fork itself,
and then call exec() to start the new program. When you callos. system() from a
Python program, there's an internal call for fork() and exec () in the same manner.

Extremely heavily loaded systems that serve many briefconnections, such as
web servers for very popular sites, may not want to put up with even the small
overhead of forking. These servers sometimes use a forked pool, in which the
forking is done in advance and processes are reused. They might also choose to
use asynchronous I/O, which has no per-process overhead, or threading, which
has less of an overhead. For general-purpose use, forking remains a good choice.

Forking First Steps

Here's a simple first example offorking. It's going to fork, and both processes will
display some messages.

#!/usr/bin/env python
First fork example - Chapter 20 - firstfork.py

import os) time

print "Before the fork) my PID is") os.getpidO

if os. forkO:
print "Hello from the parent. My PID is") os. getpid 0

else:
print "Hello from the child. My PID is") os.getpid()

time.sleep(i)
print "Hello from both of us."

This program will print out its process ID prior to forking. Then, because
fork () returns twice, the parent and child each print out a unique message, and
they both fallout of the if, wait for one second, then display a greeting. Here's
what the output looks like:

$.Ifirstfork. py

Before the fork, my PID is 2700
Hello from the child. My PID is 2701
Hello from the parent. My PID is 2700

.•• one second later .•.
Hello from both of us.
Hello from both of us.

On some systems, you may 0 bserve that the order of the parent and child
messages is different, and they may be different each time you run the program.
The operating system makes no guarantee about that, as in fact, both processes
should be executing simultaneously.

Notice how Hello from both of us is displayed twice, even though it occurs in
the code only once. That's because, by the time the execution reaches that point,
there are actually two copies of the program running.

The Zombie Problem

Let's take a look at the aforementioned zombie problem in action. The UNIX
command ps shows a list of active processes. Here's an example that will demon
strate the zombie problem. While it's running, open up another terminal session
and take a look at the state of processes.

#!/usr/bin/env python
Zombie problem demonstration - Chapter 20 - zombieprob.py

import os, time

print "Before the fork, my PID is", os.getpidO

pid = os. fork ()
if pid:

print "Hello from the parent. The child \\Iill be PID %d" %pid
print "Sleeping 120 seconds ... "

time.sleep(120)

Forking

425

Chapter 20

426

The child process will terminate immediately after the fork (fork() returns
PID 0 for the child, so it will fail the if test, and there's nothing else for it to do).
The parent doesn't clean it up, but rather waits around for a while. Run the program
as follows:

$./zombieprob.py
Before the fork, my PID is 2719
Hello from the parent. The child will be PID 2720
Sleeping 120 seconds •.•

Now, in another terminal session, inspect the results without stopping
the program:

$ ps ax I grep 2719
2719 ptS/2 S 0:00 python ./zombieprob.py

$ ps ax I grep 2720
2720 ptS/2 Z 0:00 [python] <defunct>

You can see that the child process is a zombie; the Zin the third column, as
well as the <defunct> at the end of the output, indicate that. Once the parent ter
minates, you'll be able to confirm that neither process exists. The shell cleans up
the parent process, and the child process gets re-parented to init, which will
clean it up.

The Role of init

The in it program is always the first process that runs on the system and always
has PID 1. Its main roles are starting up and shutting down the system. In this
case, there's another special role for in it. If a process dies, and there are still
children of it out there on the system (zombie or not), the operating system will
change that process's parent to be PID l-init. The init program will watch for
zombie children in the same way that normal processes will, so these processes
will get cleaned up.

Solving the Zombie Problem with Signals

Here's a program that solves the zombie problem:

#!/usr/bin/env python
Zombie problem solution - Chapter 20 - zombiesol.py

import os, time, signal

def chldhandler(signum, stackframe):
"'"' Signal handler. Runs on the parent and is called whenever
a child terminates."""
while 1:

Repeat as long as there are children to collect.
try:

result os.waitpid(-l, os.WNOHANG)
except:

break
print "Reaped child process %d" %result[o]

Reset the signal handler so future signals trigger this function
signal.signal(signal.SIGCHLD, chldhandler)

Install signal handler so that chldhandler() gets called whenever
child process terminates.
signal.signal(signal.SIGCHLD, chldhandler)

print "Before the fork, my PID is", os.getpidO

pid = os.forkO
if pid:

print "Hello from the parent. The child will be PID %d" %pid
print "Sleeping 10 seconds ... "
time.sleep(10)
print "Sleep done."

else:
print "Child sleeping 5 seconds ... "
time.sleep(5)

First, the program defines the signal handler chldhandler (). This function is
called whenever SrGCH LD is received. It has a simple loop calling os. waitpid (). The
first argument to as .waitpid (), -1, means to wait for any terminated child process,
and the second tells it to return immediately if no more terminated processes
exist. If there are child processes waiting, waitpid () returns a tuple of a process's
12\10 u\\."-~'iit \\\.\~~mut\~\\.. ()fu~~'S~, \t~u\'S~'San. ~h,,~~t\~\\..1:\\~ u"t~\\\'S\W6~Q1..-t \)

or waitpid () to collect information about terminated processes is called reaping.

The call is in a loop because a single SrGCHLD could indicate multiple child

processes have died. Finally, after the loop, the signal handler is reactivated. This

Forking

427

Chapter 20

428

is necessary because some UNIX implementations deactivate the signal handler
when it's called. By explicitly reactivating it, you ensure that it gets called again
when the next child process terminates. (It won't happen in this example, but it
will in real servers.)

The call to signal. signalO establishes the signal handler. The first argument
is the signal of interest, and the second one names the function that should be
called when it arrives. That function must accept two arguments: the signal
number and an optional stack frame.

The remainder of the program is fairly typical. When you run the program,
you'll see output like this:

$./zombiesol.py
Before the fork, my PID is 2931
Child sleeping 5 seconds ...
Hello from the parent. The child will be PID 2932
Sleeping 10 seconds ...
Reaped child process 2932
Sleep done.

You'll notice that the parent reaps the child process only five seconds into its
sleep, since that's how long it takes before the child process terminates. The signal
handler is called immediately.

You might also notice that the parent process never finishes its sleep. There's
a special case with time. sleep () in that if any signal handler is called, the sleep
will terminate immediately, rather than continue waiting the remaining amount
of time. Since you'll rarely need to use time. sleep () with networking code, this
shouldn't be an issue.

Solving the Zombie Problem with Polling

Another approach to solving the zombie problem is to periodically check for
zombie children. This method doesn't involve a signal handler, and as such, will
not cause problems for sleep (). Signal handlers can also cause problems with
I/O functions on some operating systems, which is a larger problem for network
clients.

Here's another solution to the zombie problem. Instead of using a signal
handler, it will periodically try to collect any zombie processes.

#!/usr/bin/env python
Zombie problem solution with polling - Chapter 20 - zombiepoll.py

import os, time

def reapO:
"""Try to collect zombie processes, if any."""
while 1:

try:
result os.waitpid(-1, os.WNOHANG)

except:
break

print "Reaped child process %d" %result[o]

print "Before the fork, my PID is", os.getpidO

pid = os.forkO
if pid:

print "Hello from the parent. The child will be PID %d" % pid
print "Parent sleeping 60 seconds ... "
time.sleep(60)
print "Parent sleep done."
reapO
print "Parent sleeping 60 seconds ... "
time.sleep(60)
print "Parent sleep done."

else:
print "Child sleeping 5 seconds ... "
time.sleep(5)
print "Child terminating."

This program will simply call rea p() to gather up the child processes. This
function is very similar to the signal handler in the previous example. A server
process would probably call reapO at the bottom of its primary acceptO loop.
While there will sometimes be zombie processes out there, they won't build up,
since new ones would be created only after cleaning up the older ones.

When you run this problem, you'll see output like this:

Forking

429

Chapter 20

430

$./zombiepoll.py
Before the fork, my PID is 3667
Child sleeping 5 seconds ...
Hello from the parent. The child will be PID 3668
Parent sleeping 60 seconds ...
Child terminating.
Parent sleep done.
Reaped child process 3668
Parent sleeping 60 seconds ...
Parent sleep done.

Ifyou run the program, you'll notice several differences between it and the
previous one. First of all, the child process wasn't reaped immediately when it

terminated. Secondly, the call to time. sleep () wasn't interrupted. Finally, if you
do a ps during the 55 seconds between the time the child exits and the time it's
reaped, you'll see it listed as a zombie. But you can see that it's been cleaned up
during the last 60 seconds of the program.

Forking Servers

Forking is most commonly used for network servers. I presented code for several
different servers in Chapter 3, but each sample shared a common problem: It

could only serve one client at a time. This is rarely an acceptable limitation, and
forking is one of the most common ways to solve the problem. The concepts
demonstrated earlier can be applied to the server code. Here's an example of an
echo server that uses forking. Because it uses forking, it can echo text back to
several clients at once.

#t/usr/bin/env python
Echo Server with Forking - Chapter 20 - echoserver.py
Compare to echo server in Chapter 3

import socket, traceback, os, sys

def reapO:
Collect any child processes that may be outstanding
while 1:

try:
result = os.waitpid(-1, os.WNOHANG)

if not result[o]: break

except:
break

print "Reaped child process %d" %result[o]

Forking

host
port

, ,

51423

Bind to all interfaces

s = socket.socket(socket.AF INET) socket. SOCK STREAM)
- -

s.setsockopt(socket.SOL_SOCKET J socket.SO_REUSEADDR) 1)

s.bind((host) port))
s.listen(l)

print "Parent at %d listening for connections" % os. getpid 0

while 1:

try:
clientsock J clientaddr s.accept()

except Keyboardlnterrupt:
raise

except:
traceback.print_exc()
continue

Clean up old children.
reap()

Fork a process for this connection.
pid = os.forkO

if pid:
This is the parent process.
and return to the top of the
clientsock.close()
continue

else:

Close the child's socket
loop.

From here on) this is the child.
s . close 0 # Close the parent's soc ket

Process the connection

431

Chapter 20

432

try:

print "Child from %s being handled by PID %d" %\
(clientsock.getpeername(), os.getpid())

while 1:

data = clientsock.recv(4096)
if not len(data):

break
clientsock.sendall(data)

except (Keyboardlnterrupt, SystemExit):
raise

except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except Keyboardlnterrupt:
raise

except:
traceback. print_exc ()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys. exit (0)

Let's look at this program, which is the TCP echo server from Chapter 3 with
forking added in. Now it can handle multiple clients simultaneously.

First, the function rea p() is defined similarly to the previous examples. However,
there's an additional test: to see whether or not the PID returned by waitpid ()

is zero. In the previous cases, this test was skipped, since we always knew that
reapO was called when there was at least one zombie process, but that might not
be the case here.

Then, the code proceeds unmodified until after the call to accept (). The first
new call is to rea p(). This V\rill clean up any zombie processes that have terminated
since the last time a client connected. Next, the program forks and uses the usual
if pid design.

If the process post -fork is the parent, it will close the child's socket and return
to the top ofthe loop with continue to list for more connections. Ifwe're in the child

process, it closes the parent process's socket and then processes the connection
as usual. However, there's a change at the end-the child calls sys .exit (0) when
it's done processing. This is vitally important. If it didn't do this, execution would

return to the top of the while loop, and the child would try to accept new connec
tions as well as the parent. In this particular case, it will generate an error since
the client closed its copy of the master socket. The sys .exit() makes sure that the
client terminates when it should.

Try running the program. You can then connect to port 51423 and observe
that it echoes text back to you. On the console, the server will print out some
status messages. Here's what it looked like for me:

$./echoserver.py
Parent at 16271 listening for connections
Child from ('127.0.0.1', 37708) being handled by PID 16273
Child from ('127.0.0.1', 37709) being handled by PID 16285

This shows two incoming connections being handled by two different
processes.

Locking

A simple program like an echo server never needs to write to any files on the local
system. However, this isn't necessarily the case for all servers. When using forking,
you have to be wary of concurrency issues that don't occur ifyou only service one
connection at once.

For instance, ifpart ofthe task ofyour server is to write lines to a file, it would
be a problem to have two servers writing to the file at once. Changes could be lost
or corrupted, and the two processes could overwrite each other's changes.

To solve this problem, you'll need to use locking. In forking programs, locking
is most frequently used to control access to files. Locking lets you force only one
process to perform certain actions at a time. Here's an example ofa forking server
that uses locking:

#!/usr/bin/env python
Locking server with Forking - Chapter 20 - lockingserver.py
NOTE: lastaccess.txt will be overwritten!

import socket, traceback, os, sys, fcntl, time

def getlastaccess(fd, ip):
''''''Given a file descriptor and an IP, finds the date of last access
from that IP in the file and returns it. Returns None if there was

never an access from that IP."""

Forking

433

Chapter 20

434

Acquire a shared lock. We don't care if others are reading the file
right now, but they shouldn't be writing it.
fcntl.flock(fd, fcntl.LOCK_SH)

try:
Start at the beginning of the file
fd.seek(o)

for line in fd.readlines():
fileip, accesstime line.strip().split("I")
if fileip == ip:

Got a match -- return it
return accesstime

return None
finally:

Make sure the lock is released no matter what
fcntl.flock(fd, fcntl.LOCK_UN)

def writelastaccess(fd. ip):
"''''Update file noting new last access time for the given IP. "nn

Acquire an exclusive lock. Nobody else can modify the file
while it's being used here.
fcntl.flock(fd, fcntl.LOCK_EX)
records = [J

try:
Read the existing records, *except* the one for this IP.
fd.seek(O)
for line in fd.readlines():

fileip, accesstime = line.stripO .split(n In)
if fileip != ip:

records.append((fileip, accesstime))

fd.seek(O)

Write them back out, *plus* the one for this IP.
for fileip, acc~sstime in records + [(ip, time.asctime())J:

fd.write("%sl%s\nn % (fileip, accesstime))
fd. truncate ()

finally:

Release the lock no matter what
fcntl.flock(fd, fcntl.LOCK_UN)

def reap 0 :
"""Collect any waiting child processes. """
while 1:

try:
result = os.waitpid(-l, os.WNOHANG)
if not result[o]: break

except:
break

print "Reaped child process %d" %result[o]

Forking

host
port

, ,

51423

Bind to all interfaces

Close the parent's socket

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind((host, port))
s.listen(l)
fd = open ("lastaccess. txt", "w+")

while 1:

try:
clientsock, clientaddr s.accept()

except Keyboardlnterrupt:
raise

except:
traceback.print_exc()
continue

Clean up old children.
reap()

Fork a process for this connection.
pid = os. fork 0

if pid:
This is the parent process. Close the child's socket
and return to the top of the loop.
clientsock.close()
continue

else:
From here on, this IS the child.

s. closeO

435

Chapter 20

436

Process the connection

try:
print "Got connection from %5, servicing with PID %d" %\

(clientsock.getpeername(), os.getpid())
ip = clientsock.getpeername()[o]
clientsock.sendall("Welcome, %s.\n" %ip)
last = getlastaccess(fd, ip)
if last:

clientsock.sendall("I last saw you at %s.\n" %last)
else:

clientsock.sendall("I've never seen you before.\n")

writelastaccess(fd, ip)
clientsock.sendall("I have noted your connection at %s.\n" %\

getlastaccess(fd, ip))

except (KeyboardInterrupt, SystemExit):
raise

except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except KeyboardInterrupt:
raise

except:
traceback.print_exc()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys.exit(o)

This is a fairly basic server. It simply notes the last time a connection was
received from a given IP and notes that in a file. The algorithm used to do that is
rather inefficient and vulnerable to race conditions-situations in which the
outcome depends on which process happens to get to the data first.

To combat that, it uses fcntl. flock() to restrict access to the file. The
getlastaccessO function starts out by calling fcntl. flock(fd, fcntl. LOCK_SH).

This requests a shared lock on the file. Any number of processes can hold a
shared lock as long as no process holds an exclusive lock. That's fine for this
function, because it's only reading. It's OK if other processes are reading at the
same time, but you don't want to be reading while someone else is writing.

Ifanother process tries to acquire a lock while this process holds it, the other
process will stall at the flock() call until the lock can be acquired. Therefore, this
is a blocking call because execution is blocked until a lock is acquired.

At the end of getlastaccessO, flockO is called again, this time with an
argument of LOCK_UN, which means "unlock" and effectively releases the lock
held. It's vital that all acquired locks must be released. Failure to do so can result
in deadlock, where processes are waiting on each other. The only time a lock is
automatically released for you is when your process terminates.

TIP Notice that the unlocking occurs in a finally clause.Thismean~tbat

whether an exception was caught or not, the unlocking commandi~always
run. A common error is to fail to use try... finallyaroundlocb.UnJessyou
use try ... finall y, an unexpected exception can(Ausetheunlockcolll.lI1.an.d
to be skipped, resulting in deadlock.

The writelastaccessO function uses a pattern similar to getlastaccess 0,
except that it acquires an exclusive lock with LOCK_EX. When a process holds an
exclusive lock, it guarantees that no other process can have a lock of any type on
the file. That's what you want here, since you want to lock out all the other readers as
well as other instances of writelastaccessO.

Mter the lock is acquired, writelastaccessO loads the file from disk, then
writes it back out with the new information. You may be wondering why I didn't
first acquire a shared lock for reading, followed by an exclusive lock for writing.
The answer is that this would introduce a race condition. If! used that approach,
then between the time the lock for reading is released and the lock for writing is
acquired, another process could have written out data. My process would not
know about this data (having just read the file premodification), and the change
would be lost. That's why it's important to use a single lock for this entire function.

Let's look at what this program does when it's run. You can just use
. /lockingserver. py to start it. Then, you can telnet to the server. Here's an

example of a client-side session:

Forking

437

Chapter 20

438

$ tel net localhost 51423
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is '~J'.

Welcome, 127.0.0.1.
I've never seen you before.
I have noted your connection at Thu Jul 1 06:06:42 2004.
Connection closed by foreign host.
$ telnet localhost 51423
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is '~J'.

Welcome, 127.0.0.1.
I last saw you at Thu Jul 1 06:06:42 2004.
I have noted your connection at Thu Jul 1 06:08:44 2004.
Connection closed by foreign host.

Here, the first time the client connected, the server didn't have a record of it
inits la stacce ss .txt file. It recorded the connection time. For the second connection,
the server reports the saved connection time and records the new connection time.

While these connections were occurring, the server was reporting this:

$./lockingserver.py
Got connection from ('127.0.0.1', 37742), servicing with PID 16848
Reaped child process 16848
Got connection from ('127.0.0.1', 37743), servicing with PID 16850

In this particular case, the second child process wasn't yet reaped even though
it had terminated. When a third child would connect, it would be reaped.

Error Handling

Strange as it may seem, os. fork() can fail. This is rare but does happen. The cause
of a failure would be a resource limitation of some kind-the operating system
may be out of memory, it may be out of space in its process table, or you may run
up against a limit on the maximum number ofprocesses set by an administrator.

There's no good way to deal with this situation. Ifyou don't check for an error,
a failure on os. fork() will terminate the program. For a client, t!?-at's OK, but for a
server, it means your server completely dies.

A better way is to kill off just the one connection that caused the problem,

and hope that the administrator notices the problem or that the thing causing
the problem (a wayward program, for instance) goes away. If so, then when later

clients connect, the fork should succeed. This way, the server process itself need
not be restarted.

Remember at the beginning of the chapter I said that fork() returns twice. To
be more specific, for k() either returns twice or raises an exception due to an error. If
there's an error, there's no PID returned and execution doesn't fork off-after all,

that's why you're getting the exception.
Here's a modified version of the forking echo server that handles problems

withos.fork 0:

#!/usr/bin/env python
Echo Server with Forking and Forking Error Detection - Chapter 20

errorserver.py

import socket) traceback) os) sys

def reapO:
while 1:

try:
result = os.waitpid(-l) os.WNOHANG)
if not result[o]: break

except:
break

print "Reaped child process %d" %result[o]

Forking

host
port

, ,

51423

Bind to all interfaces

s = socket.socket(socket.AF_INET) socket.SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET) socket.SO_REUSEADDR) 1)

s.bind((host) port))
s.listen(l)

while 1:

try:
clientsock) clientaddr s.accept()

except Keyboardlnterrupt:
raise

except:
traceback.print_exc()
continue

Clean up old children.
reapO

439

Close the child's socket
loop.

Chapter 20

Fork a process for this connection.
try:

pid = os. fork ()
except:

print "BAD THING HAPPENED: fork failed"
clientsock.close()
continue

if pid:
This 1S the parent process.
and return to the top of the
clientsock.close()
continue

else:
print "New child", os.getpidO
From here on, this is the child.
s .close 0

Process the connection

Close the parent's socket

440

try:
print "Got connection from", clientsock.getpeernameO
while 1:

data = clientsock.recv(4096)
if not len(data):

break
clientsock.sendall(data)

except (KeyboardInterrupt, SystemExit):
raise

except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except KeyboardInterrupt:
raise

except:
traceback.print_exc()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys.exit(O)

You'll notice that this program is mostly the same as the previous example. If
forkO fails, the server displays an error message, closes the client socket, and
returns to the top of the loop. It's important to close that client socket-it will
never be used, and this ensures that the client knows not to try communicating
over it. More importantly, imagine a scenario in which there was a prolonged
time in which fork() fails-perhaps the system has run out of memory. It might
have to turn away thousands of client requests. If it doesn't close those sockets,
each discarded request will continue consuming resources. (In this particular
case, Python's garbage collector will likely keep that problem from getting very
bad, but it's bad practice to rely upon that behavior).

This program is also notable for what it doesn't do. It sends no message what
soever to the client. The client will simply see a connection reset by peer message
if the server cannot fork. This isn't particularly friendly to the client, but consider
the alternative. If the server cannot fork, everything it does is taking place in the
master process. Ifit takes a while to communicate with a poorly connected client
say, three minutes-then during that time the server isn't accepting connections
at all. A few clients that are attempting to connect when the server can't fork
could cause the server to be rendered effectively no better than if it had crashed.

Unfortunately, testing your os. fork() error-handling code isn't something
that's easily done. Causing os. for k() to fail means enforcing administrative
restrictions on process counts (not always easily done), or actually causing a
system problem.

Summary

Most server programs have a need to handle more than one client at once. There
are several methods available to the server designer who wants to accomplish
this. The easiest is forking, which is available primarilyon Iinuxand UNIX platforms.

To fork, you call os. fork (), which returns twice. That function returns the
process ID of the child to the parent, and returns 0 to the child.

When a process terminates, information about its termination remains on
the system until its parent calls wait() or waitpid () on it. Therefore, programs
using forking must make sure to call wait() orwaitpid () when a child process ter
minates. One way to do that is via a signal handler. Alternatively, you could use
polling, and periodically check for terminated child processes.

Forking servers usuallywill use fork() to create a new process to handle each
incoming connection. It's important for both the parent and child to close any
file descriptors that won't be used in that particular process.

Forking

441

Chapter 20

442

Iffiles will be modified, locking is important. Locking prevents data corruption
that could occur if multiple processes attempt to modify a file at once, or if one
process reads a file while another is writing to it.

The os. fork() function can raise an exception ifthe system cannot perform
a fork. Though rare, this exception must be handled to prevent a server crash.

CHAPTER 21

Threading

FORKING, WHICH I DISCUSSED in Chapter 20, is a means of permitting multiple
requests to be simultaneously handled. Forking works by creating two completely
separate processes out of one. Python also offers another mechanism, known as
threading. Threading can be looked at abstractly as having different parts of a
single process execute simultaneously. You're probably wondering why you would
ever need an alternative method for managing multiple requests. This is best
explained by contemplating a few scenarios that may arise when working with
applications that are capable of supporting multiple processes.

In some cases, each connection to a server is totally independent of every
other connection. For instance, an FTP server doesn't need to have any commu
nication between processes that serve clients; each one simply dishes out files or
receives uploads. Yet in other cases, that's not quite so true. For instance, a database
server may need to block clients from accessing certain tables while other clients
are updating them. Although there are ways to communicate between processes
that use fork(), threading often makes the use of such methods unnecessary.
With threads, you really have only one instance of your program running-it's
just running multiple times. That means that if you change a global variable in
one thread, all the other threads will see that change instantly. That's because the
global variable-and indeed, all variables-is shared between all the threads of
the program. With a forked program, each process gets its own copy ofthe variables,
so changing a variable in one process has no impact on other processes.

However, this is somewhat of a mixed blessing. While communication
between threads is easier than communication between processes, that's not
always good. It also means that the thread serving one client could accidentally
mess up the thread serving a different client. Extra care must be taken to ensure
that threads don't trample each other. Such problems are often difficult to detect
and debug.

Throughout this chapter, you'll learn how to take advantage of the easy com
munication provided with threading and how to make sure this mixed blessing
doesn't turn out to be problematic. The chapter begins with an introduction to
threading in Python, and then provides solutions for several common threading

issues. Next, you'll see an example of multithreaded servers. Finally, the chapter

concludes with a discussion on multithreaded network clients.

443

Chapter 21

444

TIP Here's a quick terminology tip: Traditional programs that do not
explicitly use threading are said to have only one thread and are called
single~threaded. Programs that use threading are said to be multithreaded.
Using more than one thread in your program is called multithreading.

Threading in Python

Python exposes two modules that can be used for multithreading: thread and
threading. The thread module implements the low-level interface to threaded
programming, and threading provides a higher-level view. Most new Python
programs will use threading since it automates some tasks that would otherwise
need to be done manually.

Multithreading is available on most platforms that Python supports, though
certain versions of UNIX may not support it (or may not support it by default). All of
the most common Python platforms, including Java (via Jython), support threading.

Here's an example of threading in Python. This example simply starts a thread
and displays some messages to illustrate multithreading, as follows:

#!/usr/bin/env python
First thread example ~ Chapter 21 ~ firstthread.py
import threading, time

def sleepandprint():
time.sleep(l)
print "Hello from both of us. "

def threadcode():
stdout.write("Hello from the new thread. My name is %s\n" %

threading.currentThread().getName())
sleepandprint()

print "Before starting a new thread, my name is", \
threading.currentThread().getName()

Create new thread.
t = threading.Thread(target = threadcode, name = "ChildThread")

This thread won't keep the program from terminating.
t.setDaemon(l)

Start the new thread.
t. start ()
stdout.write("Hello from the main thread. My name is %s\n" %

threading.currentThread().getName())
sleepandprint()

Wait for the child thread to exit.
t.joinO

The program begins by creating anew Thread object. The target parameter to
the constructor points to the code to run once the thread starts. The name parameter
is optional and simply sets a value that you can retrieve later via getName O. In this
case, it is used to set the text that will later be displayed. The original thread that
your program starts with is always named MainThread.

One question to consider: Exactly what constitutes termination of the appli
cation when multiple threads are concerned? By default, the application will not
terminate until all threads have terminated. Usually, when writing network code,
it's preferable to have all threads die when the main (control) thread dies. Ifyou
call setDaemon(l) on a thread, Python pretends that the thread is already dead
when considering whether or not to shut everything down. This program calls
setDaemon(l) for the thread it creates, so the entire application will terminate
when MainThread terminates. Effectively, this is the same behavior you would
have seen if setDaemon() were never called.

Finally, the new thread is started with the call to sta rt (). Because of the
earlier target setting, the new thread calls the threadcode() function as soon as
it's created. This raises another difference between threads and forking: Threading
ensures that the new thread exits when thread code () returns, rather than simply
returning and proceeding until an exit instruction appears somewhere as is the
case with forking.

At the end of the program, there's a call to join(). This call isn't required in
general (unlike the need to wait() with forked programs). But in this case, it avoids
a race condition. Since the new thread is set to daemonic mode, if the parent
happens to exit before the child has had a chance to print out its message, then
the child will be immediately terminated. By calling join(), the parent's execution
is blocked until the child thread has terminated.

Ifyou run this example, you'll see output like this:

$./firstthread.py
Before starting a new thread, my name is MainThread
Hello from the main thread. My name is MainThread
Hello from the new thread. My name is ChildThread
Hello from both of us.
Hello from both of us.

Threading

445

Chapter 21

446

Using Shared Variables

You'll recall my earlier statement that variables in multithreaded programs are
shared between all threads. With that in mind, can you predict the output of the
following program?

#l/usr/bin/env python
Threading with variables - Chapter 21 - vars.py
import threading, time

a 50

b 50

c 50

d 50

def printvars():

print "a " a
print "b " b
print "c = , c
print "d " d

def threadcode():
global a, b, c, d
a += 50

b = b + 50

c = 100

d = "Hello"

print "[ChildThread] Values of variables in child thread:"
printvars()

print "[MainThread] Values of variables before child thread:"
printvarsO

Create new thread.
t = threading. Thread(target = threadcode, name = "ChildThread")

This thread won't keep the program from terminating.
t.setDaemon(l)

Start the new thread.

t. startO

Wait for the child thread to exit.
t.joinO

print "[MainThread] Values of variables after child thread:"
printvars()

The program begins by setting four variables to 50. It displays the values,
then creates a thread. That thread modifies each variable in a slightly different
way, outputs the values, and terminates. The main thread then resumes control
after the join () and prints out the values again. Note that the main thread never
makes any changes to the values. Here's what the output looks like:

$./vars. py

[MainThread] Values of variables before child thread:

a = 50

b = 50

c = 50

d = 50
[ChildThread] Values of variables in child thread:
a = 100

b = 100

c = 100

d = Hello
[MainThread] Values of variables after child thread:
a 100

b = 100

c = 100

d = Hello

You can see every one of those changes in the main thread, because the
memory is shared between the two threads. This illustrates the basic method of
communication between threads: setting variables. However, as you'll see in the
next section, things aren't always that easy.

Being Thread-Safe

Though all this sounds nice, there's a potential down side: race conditions. Arace
condition occurs whenever the result of a calculation is different depending on

the way in which the operating system schedules time. If, in the previous example,

two different threads were running the code to add 50 to b at once, the result
could be as follows:

Threading

447

Chapter 21

448

• 150 if one thread ran before the other, and each was able to add 50.

• 100 if both threads attempted to perform the calculation simultaneously.
In this case, both threads would simultaneously retrieve the current value
of b (50), compute the new value by adding 50, and write the new value to b.

In the previous example you don't have to worry about a += 50; it will always
be 150. That is because the += operation on integers is said to be atomic; the system
guarantees that the operation will finish before others begin in any thread. However,
my advice is to play it safe and not rely on atomic guarantees; it's tough to remember
which operations are atomic and which aren't.

To combat the problem of race conditions, locking is frequently used. In
Chapter 20, I discussed floc k() 's role in locking files. Locking can also be used
arbitrarily-not necessarily connected to any particular file or other system object.

Python's threading module provides a Lock object. This object can be used to
synchronize access to code. The Lock object exposes two methods: acquire 0 and
releaseO. The acquireO method is responsible for acquiring a lock. Uno thread
is presently holding the lock, the acquire method notes the interest in the lock
and returns immediately. Otherwise, it waits until the lock is released. In either
case, once acquire() returns, the thread that called it holds the lock.

The release() method releases a lock. Ifany threads are waiting on the lock
(stalled at acquireOL one of them will be awakened when releaseO is called.
That is, acquire 0 in one thread will return.

Here's an example of using locks. This program starts up several threads and
uses a lock to protect a global variable.

#!/usr/bin/env python

Threading with locks - Chapter 21 - locks.py

import threading, time

Initialize a simple variable

b = 50

And a lock object

1 = threading. Lock()

def threadcode():

"""This is run in the created threads"""

global b

print "Thread %s invoked" % threading. currentThreadO .getNameO

Acquire the lock (will not return until a lock is acquired)
1. acquireO
try:

print "Thread %s running" %threading. currentThread O. getNameO
time.sleep(l)
b = b + 50

print "Thread %s set b to %d" % (threading. currentThreadO .getNameO,
b)

finally:
1. releaseO

print "Value of b at start of program:") b

childthreads = []

for i in range(l) 5):
Create new thread.
t = threading.Thread(target = threadcode, name = "Thread-%d" %i)

This thread won't keep the program from terminating.
t.setDaemon(l)

Start the new thread.
t.startO
childthreads.append(t)

for t in childthreads:
Wait for the child thread to exit.

t.joinO

print "New value of b:") b

This program creates four new threads. Each thread will display a message
that says it exists, acquire a lock, delay for one second, update the value of b,

release the lock, and then terminate. Putting the lock release in the finall y clause
is good practice and guarantees that it will be released even if an exception is
raised. Here's a sample invocation:

Threading

449

Chapter 21

450

$./locks. py

Value of b at start of program: 50
Thread Thread-l invoked
Thread Thread-l running
Thread Thread-2 invoked
Thread Thread-3 invoked
Thread Thread-4 invoked
Thread Thread-l set b to 100
Thread Thread-2 running
Thread Thread-2 set b to 150
Thread Thread-3 running
Thread Thread-3 set b to 200
Thread Thread-4 running
Thread Thread-4 set b to 250
New value of b: 250

Each thread got its own turn to run, and you should notice a one-second
delay between the "running" messages.

Managing Access to Shared and Scarce Resources

Sometimes there are certain resources that several threads must access. There
may be more than one instance ofthe resource available, so a simple Loc kwill not
do. One scenario might involve server thread pools. Once a server starts, it will
create a number of threads. These are worker threads that are responsible for
processing clients. In this scenario, the scarce resource is client connections. The
threads will wait for the main thread to receive a connection, process it, and then
restart before waiting for another connection. Ifno threads are available to process
something, the server should just add it to a queue.

Asynchronization object called a semaphore is useful in this situation. Sema
phores are designed to manage access to limited resources. like a Lock, a Semaphore

has an acquireO and a releaseO method. But the mechanics are different. A
semaphore has an internal counter that (by default) starts at one. Each time
release() is called, that counter is incremented. Each time acquire() is called, the
counter is decremented. If acquire () is called when the counter it zero, it doesn't
return until the counter is equal to or greater than one (that is, it doesn't return
until someone else calls release (»). Here's a simple example of semaphores. This
example provides a function numbergenO that simulates a limited resource of
numbers (this could be thought ofas client connections to a server). Other threads
consume those numbers and act on them, as shown here:

#!/usr/bin/env python
Threading with semaphores - Chapter 21 - sem.py
import threading, time, random

def numbergen(sem, queue, qlock):
while 1:

time.sleep(2) # Simulate a complex I/O load
if random.randint(o, 1):

Generate something half the time.
value = random.randint(o, 100)
qlock. acquire()
try:

queue.append(value)
finally:

qlock. releaseO
print "Placed %d on the queue." %value

sem.release()

def numbercalc(sem, queue, qlock):
while 1:

sem. acquire 0
qlock.acquire()
try:

value = queue.pop(O)
finally:

qlock.releaseO
print "%s: Got %d from the queue." %\

(threading.currentThread().getName(), value)
newvalue = value * 2

Threading

time.sleep(3)

childthreads = []

Simulate a complex calculation

sem = threading.Semaphore(o)
queue = []

qlock = threading.Lock()
Create the number generator.
t = threading.Thread(target = numbergen, args [sem, queue, qlock])

t.setDaemon(l)

t. startO
childthreads.append(t)

451

Chapter 21

452

Create the two threads that work with the numbers.
for i in range(l, 3):

t = threading.Thread(target = numbercalc, args = [sem, queue, qlock])
t.setDaemon(l)
t. startO
childthreads.append(t)

while 1:

Sleep forever

time. sleep(300)

This program consists of four threads: the main thread, a number generator
thread, and two number processor threads. The main thread takes care of creating
all the other threads, then effectively does nothing. The number generator gen
erates a slow, intermittent stream of numbers. The number processor threads
take these numbers and process them.

The Semaphore object is initially set to zero. '\Nhenever the number generator
has another number available, it will place it on the queue (using a Loc k to make
sure that this operation is safe), then signal its availability by calling release() on
the Semaphore. Note that this doesn't guarantee that the item will be immediately
processed (though in this case it usually does); it just signals the availability of
data to the processor threads.

The processor threads call acquire 0 at the top of theirloop. They then lock
the queue, retrieve the item off it, and unlock the queue again.

Here's sample output from this program (you'll have to terminate itwith Ctrl-C if
you run it):

$./sem.py
Placed 56 on the queue.

Thread-2: Got 56 from the queue.
Placed 62 on the queue.
Thread-3: Got 62 from the queue.
Placed 54 on the queue.
Thread-2: Got 54 from the queue.
Placed 7 on the queue.

Thread-3: Got 7 from the queue.
Placed 77 on the queue.
Thread-2: Got 77 from the queue.
Traceback (most recent call last):

File "./sem.py", line 54, in ?

time. sleep(300)

Keyboardlnterrupt

This particular example is an instance of a more general problem known as
the producerlconsumerproblem. Aproducer/consumer problem consists of a set
ofthreads that are producing objects, and another set of threads that are con
suming them. In this example, the producer was the generator thread, and the
consumers were the calculator threads. Producer/consumer is often used when
different sets of threads use different resources; for instance, some threads may
require lots ofI/O to load data, while other threads require lots ofCPU to process
that data. By splitting those tasks out, you can keep more threads busy.

The producer/consumer model provides a good way to look at many different
problems. Later in this chapter, you'll see an implementation ofproducer/consumer
with thread pools.

Alternative to Semaphores: Queue

Python provides a module named Queue that can also be useful for solving
producer/consumer problems. Though it isn't necessarily as flexible as sema
phores. the Queue module can still solve many different problems and can be
easier to use.

Avoiding Deadlock

Deadlock occurs when two or more threads are waiting for resources, but in such
a way that it's impossible for their requests to ever be satisfied because they're
waiting for each other. The best way to illustrate deadlock is with an example. In
this example, you have two variables and two locks. There are two threads involved,
both wishing to modify both variables. The first thread acquires both locks, as
does the second, but they do so in a different order. See ifyou can spot the problem.

#!/usr/bin/env python
Deadlock - Chapter 21 - deadlock.py
import threading, time

a = 5

alack = threading.Lock()

b = 5

block = threading.Lock()

Threading

453

Chapter 21

454

def thread1calc():
print "Thread1 acquiring lock a"
alack. acquire 0
time.sleep(S)

print "Thread1 acquiring lock b"
block. acquireO
time.sleep(S)
a += 5

b += 5

print "Thread1 releasing both locks"
block. releaseO
alack. releaseO

def thread2calc():
print "Thread2 acquiring lock b"
black.acquire()
time.sleep(s)

print "Thread2 acquiring lock a"
alack. acquire 0
time.sleep(S)
a += 10

b += 10

print "Thread2 releasing both locks"
black.release()
alack.release()

t = threading.Thread(target = thread1calc)
t.setDaeman(l)
t.startO

t = threading.Thread(target = thread2calc)
t.setDaeman(2)

t.startO

while 1:

Sleep forever

time. sleep(3oo)

In this example, Threadl attempts to acquire locka and then lockb. However,
Thread2 simultaneously attempts to acquire lockb and then locka. Deadlock will
result. (The calls to sleep() here ensure that it does.)

Threadl got the lock on locka and Thread2 got the lock on lockb. Now, they
turn around. Threadl tries to get lockb but can't-Thread2 already has it. And
Thread2 tries to get locka but can't because Threadl has it. And neither one of them
releases any lock until they've acquired both locks. The program is deadlocked
and can only be killed with Ctrl-C. The output looks like this:

$./deadlock.py
Threadl acquiring lock a
Thread2 acquiring lock b
Threadl acquiring lock b
Thread2 acquiring lock a
Traceback (most recent call last):

File "./deadlock.py", line 50, in ?

time.sleep(300)
Keyboardlnterrupt

Deadlock can be very difficult to track down. In this example, if sleep () were
not used, deadlock may have only occurred in one out of a hundred executions of
the program. There are two simple rules to observe to avoid deadlock:

• First, always obtain locks in a fIxed order. In this example, that would mean
always obtaining locka before lockb.

• Second, always release locks in the inverse order that they were obtained.
So, one would release lockb first, and then locka.

Writing Threaded Servers

One of the classic problems network programmers need to solve is how to write
efficient server programs that can process multiple requests simultaneously.
Threads provide one convenient way to do that.

Most multithreaded servers use the same architecture: The MainThread is the
thread that listens for requests. VVhen a request is received, a new worker thread
is created to handle that particular client. The worker thread for that client termi
nates when the client disconnects.

Here's an example of such a server. This example provides a TCP echo server

by modifying the code from Chapter 3 to make it multithreaded, as shown here:

Threading

455

Chapter 21

#!/usr/bin/env python
Echo Server with Threading - Chapter 21 - echoserver.py
Compare to echo server in Chapters 3 and 20

import socket) traceback) os) sys
from threading import *

host

port 51423

Bind to all interfaces

456

def handlechild(clientsock):
print "New child") currentThreadO.getNameO
print "Got connection from") clientsock.getpeername()
while 1:

data = clientsock.recv(4096)
if not len(data):

break
clientsock.sendall(data)

Close the connection
clientsock.close()

Set up the socket.
s = socket.socket(socket.AF_INET) socket. SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET) socket.SO_REUSEADDR) 1)
s.bind((host) port))
s.listen(l)

while 1:

try:
clientsock) clientaddr s.accept()

except Keyboardlnterrupt:
raise

except:
traceback.print_exc()
continue

t = Thread(target handlechild) args [clientsock])
t.setDaemon(l)

t.startO

This program is fairly straightforward. The handlechild() function takes care
of a given client connection. When a client connects, a new thread is created.

When that thread is started, it calls handl echild (), passing the client's socket as an
argument.

Ifyou compare this program to the echoserver. py example from Chapter 3 or
the forking example in Chapter 20, you'll notice that the code that handles all but
the Keyboardlnterrupt exceptions is missing from all the code in the handlechildO

function. That's possible because threading guarantees that the MainThread will
be the only one to ever receive UNIXsignals-and Keyboardlnterrupt is generated
as a result of a SIGINT signal on UNIX. (Windows doesn't use signals like this, so
it's not a concern.) Therefore, it's not a concern for the worker threads. Also, the
worker threads can just die if an error occurs in this example.

An Exercise: Threaded Chat Server

Since threads make it easy to pass data between each other, they are ideal for
servers on which all clients share some sort of state. One example of such a server
is a chat server. You could write a simple chat server that extends the echo server
concept, thereby transmitting data received by any client to all clients.

You could start with the previous echoserver. py example and add this new
ability. There are several different ways to go about it, but in any case, you'll want
to make sure that the client threads do the transmission, not the main thread.

One way to accomplish that is to have a semaphore and a queue for each
client thread. You could maintain a list of these objects, adding and removing
entries from the list as threads come and go. When data is to be sent, it's added to
the appropriate queues and the semaphore is signaled.

Ifyou want a working example of a chat server with source code, Chapter 22
provides an asynchronous chat-server implementation, which is yet another way
to solve the problem.

Using Thread Pools

Although code that follows the previous pattern may work well for many servers,
some may have some special needs. One such need is to minimize the perfor
mance overhead of creating a new thread. Though that overhead is small, some
applications may need to do more initializationwork for a newthread-for instance,
by connecting to a database server. That could have a serious negative impact on
performance.

Another potential problem lies with resource utilization. The previous program

will try to handle all incoming requests concurrently. That's fine for most servers.

But heavily loaded ones may wish to, for instance, say that only 1,000 threads will
exist at any given moment.

Threading

457

Chapter 21

One solution to this problem is the use of thread pools. Athread pool design
will have each thread servicing only one client at a time, but the thread doesn't
die after it finishes servicing a client. Threads in the pool may either be all created
up front or may be created as needs dictate.

Aprogram that uses thread pools still serves each client in a separate thread.
However, unlike the previous example, the thread doesn't terminate when the
client disconnects. Rather, it remains alive, waiting for more connections to service.

A thread pool also typically has an upper limit on the number of threads to
use. Clients that attempt to connect once that limit has been reached will usually
be turned away with an error. Some servers also use a pool strategy with forking,
though it's much more rare because it's more difficult to manage. Apache is such
a server.

Thread pool servers typically consist of several components:

• A main listener thread that accepts client connections and dispatches them

• A set of worker threads that process client requests

• A thread management system that handles threads that have died
unexpectedly

Here's an implementation of a thread pool echo server. This example main
tains a list of busy threads, waiting threads, and a connection queue, and makes
sure that threads receive connections appropriately. I'll present this code in pieces,
explaining each part of it as you go.

#!/usr/bin/env python
Thread pool - Chapter 21 - threadpool.py

import socket, traceback, as, sysJ time
from threading import *

458

host = "

port = 51423
MAXTHREADS 3
lockpool = Lock()
busylist = {}
waitinglist = {}
queue = []
sem = Semaphore(o)

Bind to all interfaces

In the previous code sample, some global variables are defined, including

queue, which is responsible for holding pending client connections along with

two lists for tracking the state of the threads.

def handleconnection(clientsock):
"""Handle an incoming connection."""
lockpool.acquire()
print "Received new client connection."
try:

if len(waitinglist) == 0 and (activeCount() - 1))= MAXTHREADS:
Too many connections. Just close it and exit.
clientsock.close()
return

if len(waitinglist) 0:

startthread()

queue.append(clientsock)
sem. releaseO

finally:
lockpool.release()

The first defined function is handleconnection(). It's called by the MainThread's

main loop, listenO, when a new connection arrives. First, handleconnectionO

acquires the lockpoollock. Then, it checks to see if the system is already maxed

out. If so, it just closes the client socket and returns. Next, it determines whether

all threads are busy. If so, a new thread is created.

Then, the client socket is added to the queue, and the semaphore is released

signaling a processor thread that a new connection is available. Finally, the pool

lock is released, as follows:

def startthread():
Called by handleconnection when a new thread is needed.
Note: lockpool is already acquired when this function is called.
print "Starting new client processor thread"
t = Thread(target = threadworker)
t.setDaemon(l)

t. startO

The startthread () function contains code that is very similar to thread code

that you've already seen in earlier examples. Its job is merely to start a new thread,

as shown here:

Threading

459

Chapter 21

460

def threadworker():
global waitinglist, lockpool, busylist
time.sleep(l) # Simulate expensive startup
name = currentThread().getName()
try:

lockpool.acquire()
try:

waitinglist[name] 1

finally:
lockpool.release()

processclients()
finally:

Clean up if the thread is dying for some reason.
Can't lock here -- we may already hold the lock, but it's OK

print "** WARNING** Thread %s died" %name
if name in waitinglist:

del waitinglist[name]
if name in busylist:

del busylist[name]

Start a replacement thread.
startthreadO

The threadworker () is the first function called when a new thread is created.
It has two main tasks: 1) initializing the waitinglist, and 2) handling threads that
are dying. Notice that within the try block, it calls processclients O-that's the
function that does all the real work. In this program, since new threads aren't
necessarily created when an existing one dies, it's important to handle threads
that are about to die for whatever reason (exception, and so on). The finall y clause
does just that. Whenever the thread is about to die, the finally clause gets control. It

cleans up the data structures (removing references to the almost-perished thread),
starts up a new thread, and then dies.

def processclients():
"""Main loop of client-processing threads."""
global sem, queue, waitinglist, busylist, lockpool
name = currentThread().getName()
while 1:

sem. acquireO

lockpool.acquire()

try:
client sock = queue.pop(o)
del waitinglist[nameJ
busylist[nameJ = 1

finally:
lockpool.release()

try:
print "[%sJ Got connection from %s" % \

(name, clientsock.getpeername())
clientsock.sendall("Greetings. You are being serviced by %s.\n" %\

name)
while 1:

data = clientsock.recv(4096)
if data.startswith('DIE'):

sys.exit(o)
if not len(data):

break
clientsock.sendall(data)

except (Keyboardlnterrupt, SystemExit):
raise

except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except Keyboardlnterrupt:
raise

except:
traceback.print_exc()

lockpool.acquire()
try:

del busylist[nameJ
waitinglist[nameJ = 1

finally:
lockpool.release()

In processclients (), you can see a loop similar to the other echo server
examples. It starts out by calling acquire () on the semaphore. When that returns,
it knows that there's a client connection available to process, so it grabs the lock,
obtains the connection, updates the data structures, and releases the connection.

Threading

461

Chapter 21

462

Then it processes the connection (and has an extra feature to help you test the
thread-exiting scenario: Uyou send it the string DIE, it will do just that.) Finally,
after the connection is closed, processclientsO once again acquires lockpool and
updates the data structures.

NOTE There's actually a bug in the previous code sample. It assumes that
the text 0I Ewill be sent in a single packet by your telnet client. That may not
always happen, and thus the code may not be triggered. For information
about maintaining read buffers, which would solve this problem, see
Chapter 22.

def listenerO:
s = socket.socket(socket.AF INET, socket. SOCK STREAM)

- -

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind((host, port))
s.listen(l)

while 1:

try:
clientsock, clientaddr s.accept()

except Keyboardlnterrupt:
raise

except:
traceback.print_exc()
continue

handleconnection(clientsock)

The listener() function runs in MainThread and is responsible for receiving
connections from clients. It simply does that and hands them off to
handleconnection().

And now, here's the last line of the example, which simply starts up the main
listening loop:

listenerO

I suggest running this code on your own machine (it's long, so it would be
best to download it rather than typing it in). To run it, just run. /threadpoo1. py.

Try some of the following experiments:

• Notice that it will take one second for the server to respond the first time
you connect. That's the simulated cost, using sl eep (), of creating a new
thread. In real life, the overhead will often be unnoticeable, but this way,
you can feel the pool in action. !fyou close the connection and then connect
again, there's no delay.

• You'll also experience that delay the first time you have any number of
simultaneous connections, but not after that.

• Uyou try to open a fourth simultaneous connection, the server will close it
immediately because it enforces a maximum connection limit.

• Ifyou send a D1 Estring, the client connection will freeze, but the server will
start up a new thread. (A production server would want to close the client
socket in this situation.)

Writing Threaded Clients

Threading is sometimes also used for clients. One of the most common applica
tions of threading for clients is to separate time-critical user interface code from
slow network access. For instance, a user may be frustrated that a menu takes 20
seconds to display because the program is waiting to receive a set of packets from
the network.

Other clients may wish to carry out several network activities at once. For
instance, some FTP clients are capable ofdownloading several files simultaneously.
Most web browsers download several items at once.

Here's a sample multithreaded client. It includes some extra calls to sleepO

to illustrate how it handles client connections and sinmltaneously provides a
"spinner" on the screen.

Threading

463

Chapter 21

464

#!/usr/bin/env python
Threaded Client - Chapter 21 - threadclient.py

import socket) sys) time
from threading import *

host = sys.argv[l]
textport = sys.argv[2]
filename = sys.argv[3]
cv = Condition()
spinners = '1/- \ \ '

spinpos = 0
equeue = []

def fwrite(buf):
sys.stdout.write(buf)
sys.stdout.flush()

def spin():
global spinpos
fwrite(spinners[spinpos] + "\b")
spinpos += 1
if spinpos >= len(spinners):

spinpos 0

def uithread():

while 1:
cv. acquire()
while not len(equeue):

cv. wait(0.15)
spin()

msg = equeue.pop(o)
cv.release()
if msg == 'QUIT':

Terminate the UI thread
fwrite("\n")

sys.exit(O)
fwrite(" \n %s\r" %msg)

def msg(message):

cv. acquire ()
equeue.append(message)
cv. notifyO
cv.releaseO

t = Thread(target uithread)
t.setDaemon(l)
t. startO

try:
msg('Creating socket object')
s = socket.socket(socket.AF_INET) socket. SaCK_STREAM)

except socket.error) e:
print "Strange error creating socket: %s" %e

sys.exit(l)

Try parsing it as a numeric port number.

try:
port = int(textport)

except ValueError:
That didn't work. Look it up instead.
try:

port = socket.getservbyname(textport) 'tcp')
except socket.error) e:

print "Couldn't find your port: %s" %e
sys.exit(l)

msg('Connecting to %s:%d' % (host) port))
time.sleep(5)
try:

s.connect((host) port))
except socket.gaierror) e:

print "Address-related error connecting to server: %s" %e
sys. exit (1)

except socket.error) e:
print "Connection error: %s" %e

sys. exit(l)

Threading

465

Chapter 21

466

msg('Sending query')
time.sleep(S)
try:

s.sendall("GET %s HTTP/1.0\r\n\r\n" %filename)
except socket. error) e:

print "Error sending data: %s" %e
sys.exit(l)

msg('Shutting down socket')
time. sleep(3)
try:

s.shutdown(l)
except socket.error) e:

print "Error sending data (detected by shutdown): %s" %e
sys.exit(l)

msg('Receiving data')
count = 0
while 1:

try:
buf = s.recv(2048)

except socket. error) e:
print "Error receiving data: %s" %e

sys.exit(l)
if not len(buf):

break
count += len(buf)

msg("Received %d bytes" %count)
msg("QUIT")

t.joinO

This program is a simple client with the addition ofa "spinner"-a simple bit
oftext that appears to rotate. The spinner rotates while time-consuming actions
are taking place, even though those actions block the main thread. This is possible
by shoving the spinner into a separate user interface thread.

The fwriteO and spinO functions are simply utilities for the user interface.
The uithread () function runs the user interface and makes use of a new threading

object: Condition. In this program, the user interface is implemented as a
producer/consumer-the main thread is the producer of messages for the user,

and the interface thread consumes and displays them.

The Condition object has some interesting properties, and an underlying
Lock. The uithreadO function-the consumer-first acquires the lock. Then it

enters a while loop, looping until something is present in the queue. Each time
through the loop, it calls wait O. That function releases the lock and blocks until
another thread calls notify(). But it always reacquires the lock before returning,
thus providing safe access to the queue for free.

In this case, you pass 0.15 to waitO. This means that waitO should give up
after 15/100 ofa second and just return anyway. Every time wait() returns, spin()
is called. Thus, you effectively rotate the spinner every 15/100 ofa second. If there's
actually something available on the queue, you retrieve the value (storing it in
msg), then release the lock. The item is processed (displayed) and the loop repeats.

The msgO function is the producer side of the equation. It starts by acquiring
the lock. Then it appends the message to the queue, signals the other thread that
a message is there (by calling notify (»), and finally releases the lock.

The remainder of the program looks fairly normal. Calls to print are replaced
by calls to msg(). But other than that, the rest of the program need not even be
aware that a separate thread is running (except for the shutdown procedure at
the end).

Ifyou run this program, you'll see output like this:

$./threadclient.py www.google.com 80 /

Creating socket object
Connecting to www.google.com:80
Sending query
Shutting down socket

- Receiving data
Received 3010 bytes

Though, of course, while the program is actually running, there will be a
moving spinner on the left side.

Summary

Threading is one way of supporting multiple connections in a server. like forking,
it permits multiple pieces of code to be executed at once. Unlike forking, threads
all have the same address space, so a change made in one thread will affect all others.

Most Python applications will use the threading module to create and work
with threads. Threading requires careful attention to synchronization issues. The
threading module provides objects to help out: Lock, when used properly, allows

only one thread to access a piece of code at a time; Semaphore helps manage queues

that are shared between threads; and CondHion helps threads to signal each other
when an event of interest occurs.

Threading

467

Chapter 21

468

Threading can also be used for clients to permit other tasks to be carried out
while the thread is communicating over the network.

In the next chapter, an alternative to forking and threading (asynchronous
I/O) is covered. Unlike forking and threading. asynchronous I/O doesn't involve
multiple pieces of code that are executing simultaneously.

CHAPTER 22

Asynchronous
Communication

IN CHAPTERS 20 AND 21, I introduced methods of handling multiple connections
at once through forking and threading. Both methods involve having the oper
ating system execute multiple code paths simultaneously, though each code path
itself is more or less the same as the way a single-socket application would work.

There's a different option available. Instead of running several processes (or

threads) at once, one process could be used. This one process would watch over

the various connections, switching between them and servicing each one as
necessary. This is known as asynchronous communication. The traditional
method, used everywhere else in this book, is synchronous communication in
which I/O is handled immediately and directly.

To implement asynchronous communication, some new features are needed.

One ofthem is a way to handle network data without stopping everything. With

conventional methods, a call to, say, read 0 will not return until data is received
off the network. In this case, that's bad since the process is unable to handle any
thing else until that one readO call returns. Sockets can be put into nonblocking
mode. In nonblocking mode, if an action cannot be carried out immediately, the

call will immediately return a special error code. Processing can then continue.

Running around constantly trYing to send or receive data from sockets that aren't
ready is rather inefficient. It's better to have the operating system tell you when

sockets are ready for action. In fact, there are two calls designed to do just that:
se1ectO and pollO. To use one of these functions, you first tell the system about
a set of sockets that you're interested in. The call will block until one or more of
the sockets are ready for you. You can then find out which sockets are ready, process

them, and resume waiting. The poll () call tends to be preferred on modern

systems, so that is the one you'll see used in this chapter.

469

Chapter 22

470

Asynchronous I/O on Windows

Python on Windows has some undocumented differences from other platforms
when dealing with asynchronous I/o. The examples using poll () may not
function properly on Windows platforms, but the Twisted examples in this
chapter will. Ifyou'll be working with Windows. I recommend using Twisted for
asynchronous 110. The Twisted authors have taken the steps necessary to make
most Twisted programs work on both Windows and other platforms.

Deciding Whether or Not to Use Asynchronous
Communication

Of course, there are trade-offs involved when you use asynchronous communi
cation. One important characteristic of all asynchronous code is that anything
that blocks for any period oftime must be eliminated. Servers that perform
complex calculations or time-consuming operations (for instance, database servers)
generally cannot be purely asynchronous. On the other hand, asynchronous
communication imposes very little overhead on new connections. This makes it
well suited for servers that process many connections requiring little server-side
processing. Web and FTP servers both happen to fit that requirement.

In some ways, writing an asynchronous server can be more complex than
writing a forking or a threading server. You have to maintain more state infor
mation yourself, rather than let the operating system do so for you. And calls
such as sendall () must be avoided altogether.

On the other hand, since your server is entirely contained within a single
process. there are no locking. deadlock, or synchronization issues to consider
ever. Those are frequently the most difficult to track down among the issues
facing forking and threading server authors, so that alone could be a big win.

In terms of libraries that ship with Python itself, few are equipped to work
asynchronously. There are two modules: asyncore and asynchat that help you
write asynchronous problems in Python. However, the Twisted project provides
more such libraries-and they are, in fact, more numerous than the standard
Python libraries for servers.

Another important thing to consider is how much state information must be
kept. An FTP server, for instance, keeps little state information; ~t might store the

correct working directory. the file being transferred, and its position in that file.

A server such as a game system may have a lot more to store.

Asynchronous Communication

Using Asynchronous Communication

Let's take the simple echo server example from Chapter 3 and modify it to work
as an asynchronous program capable of handling several connections at once.
To do that, you need to add several things, the most notable of which is a way to
keep track of state.

In the echo server, keeping track of state means tracking two things: the set
of clients that you're interested in, and the data that is to be written to each one.
With forking or threading, there's no code that explicitly handles this. Each process
or thread handles a specific connection, and goes away when the connection
goes away. Moreover, those processes and threads can use normal (blocking) I/O,
and maintain no long-lived buffer. They simply use sendall () and block until the
data has all been sent.

Here, data can be sent in smaller chunks, and you can't block until it's all
sent. In fact, you can't block at all! Therefore, it's stored in a buffer. The call to
send () will return the number of bytes that were actually sent without blocking,
and that number of bytes is subtracted from the buffer when sent. When new
data arrives, it's added to the end of the buffer. In this way, the asynchronous
echo server actually gains a new feature that's absent from any ofthe other servers:
It can effectively transmit and receive simultaneously. Here's the code for an echo
server. This program uses a class to maintain information about what is going on
for each connection. Here's the code, and a detailed explanation follows:

#!/usr/bin/env python
Asynchronous Echo Server - Chapter 22 - echoserver.py
Compare to echo server in Chapter 3

import socket, traceback, os, sys, select

class stateclass:
stdmask ~ select.POLLERR I select.POLLHUP I select.POLLNVAL

def __init__ (self, mastersock):
'''' "Initialize the state class ''''''

self.p = select.poll()
self.mastersock = mastersock
self.watchread(mastersock)
self. buffers {}
self. sockets = {mastersock.fileno(): mastersock}

def fd2socket(self, fd):
''''''Return a socket, given a file descriptor n

''''

return self.sockets[fd]

471

Chapter 22

472

def watchread(self, fd):
''''''Note interest in reading"""

self.p.register(fd, select.POLLIN I self.stdmask)

def watchwrite(self, fd):
"""Note interest in writing"""
self.p.register(fd, select.POLLOUT I self.stdmask)

def watchboth(self,fd):
"""Note interest in reading and writing"""
self.p.register(fd, select.POLLIN I select.POLLOUT I self.stdmask)

def dontwatch(self, fd):
"""Don't watch anything about this fd"""
self.p.unregister(fd)

def newconn(self, sock):
"""Process a new connection"""
fd = sock.fileno()

Start out watching both since there will be an outgoing message
self.watchboth(fd)

Put a greeting message into the buffer
self.buffers[fd] " "Welcome to the echoserver, %s\n" % \

str(sock.getpeername())
self.sockets[fd] " sock

def readevent(self, fd):
"""Called when data is ready to read"''''
try:

Read the data and append it to the write buffer.
self.buffers[fd] += self.fd2socket(fd).recv(4096)

except:
self.closeout(fd)

self.watchboth(fd)

def writeevent(self, fd):
"''''Called when data is ready to write. """

if not len(self.buffers[fd]):

No data to send? Take it out of the write list and return.

self.watchread(fd)
return

Asynchronous Communication

try:
byteswritten = self.fd2socket(fd).send(self.buffers[fd])

except:
self.closeout(fd)

Delete the text sent from the buffer
self.buffers[fd] = self.buffers[fd] [byteswritten:]

If the buffer is empty, we don't care about writing in the future.
if not len(self.buffers[fd]):

self.watchread(fd)

def errorevent(self, fd):
"''''Called when an error occurs 'TT'"

self.closeout(fd)

def closeout(self, fd):
"""Closes out a connection and removes it from data structures"""
self.dontwatch(fd)
try:

self.fd2socket(fd).close()
except:

pass

del self.buffers[fd]
del self.sockets[fd]

def loop(self):
''''''Main loop for the program"""

while 1:

result = self.p.poll()
for fd, event in result:

if fd == self.mastersock.fileno() and event == select.POllIN:
Mastersock events mean a new client connection.
Accept it, configure it, and pass it over to newconn()
try:

newsock, addr = self.fd2socket(fd).accept()
newsock.setblocking(o)
print "Got connection from", newsock.getpeernameO
self.newconn(newsock)

except:

pass

473

Chapter 22

host
port 51423

elif event == select.POllIN:
self.readevent(fd)

elif event == select.POllOUT:
self.writeevent(fd)

else:
self.errorevent(fd)

Bind to all interfaces

474

s = socket.socket(socket.AF INET, socket.SOCK_STREAM)
s.setsockopt(socket.SOl_SOCKET, socket.SO_REUSEADDR, 1)
s.bind((host, port))
s.listen(l)
s.setblocking(O)

state = stateclass(s)

state.loop()

Let's look at this code. The majority of the action occurs within the class
stateclass. The _init_O method takes a master socket and stores it off. It also
initializes two data structures. The buffers structure will be used to store the buffer
for each client, and the sockets structure stores the socket for each client. Both
are indexed bya file descriptor number, which is a number assigned by the operating
system that is unique to each socket. Finally, a poll () object is created and saved.

The fd2socket () method is a simple helper method. It receives a file descriptor
(as returned by poll ()) and yields a socket object.

The four methods with "watch" in their names are helpers. They register
interest (or disinterest) in certain file descriptors with the poll object. There are
several different events that a program may be interested in: reading, writing,
and various error conditions. These four methods always mark interest in error
conditions, and one or both of reading and writing.

The newconn() method is called when a new connection arrives. It notes an
interest in the socket, sets an initial buffer value (which will be used as a greeting),
and updates the data structures.

When data arrives, readevent () is called. It reads data from the socket, adds it
to the buffer, and makes sure that both a reading and writing interest is noted for
the socket. This is done because as soon as data has been received there will be
data to echo back out.

The writeevent () method is called when you have data to write out and the

system can guarantee that send () will accept a chunk of data and then return
immediately. Pending data is sent, and the amount of data actually sent is

Asynchronous Communication

removed from the buffer. If the buffer is left empty, the interest in the socket is
changed to read only, so that the next time through the loop, no write will be
attempted.

When an error occurs, erroreventO is called. It simply calls closeoutO. That
function removes all interest in the socket from the poll object. Then, it closes the
socket itself and removes it from the data structures.

The function where the program spends most ofits time is loop (). The program
will call sel f . p. poll () at the top of the loop. This is the one call in the program
that is supposed to block. It will not return until something of interest happens
with one of the sockets. This behavior ensures that the server doesn't use CPU
resources unless something is actually going on with the network.

When poll () returns, it returns a list of tuples. Each tuple in that list corre
sponds to a connection on which something of interest happened. Our task,
therefore, is to examine each tuple and decide what to do.

The tuple consists of a file descriptor of a socket and an event. The code first
checks to see if this particular tuple corresponds to a new client connection-a
situation signified by a read event on the master socket. If that happens, it will
process the new connection the same way as any other server-by calling acceptO.
Then it will pass it over to newconn(). The remaining events get passed to readevent(),
writeeventO, and erroreventO.

There's a lot of code there. It may be helpful to trace through the program
and follow the sequence of events.

When the program starts, it creates the master socket just like other servers
do. It then creates the stateclass object, passing in the master socket. Then it
calls state .loop() and enters the main loop. The program will invoke p. poll()
with a single interesting socket: the master socket. It will delay at p. poll() until a
client connects.

The first client finally connects. The p. poll() call returns a single tuple
corresponding to the master socket. The server calls accept(), retrieving the new
client socket. It then calls sel f. newconn (), which adds the socket to the data
structures. It initializes the buffer with the greeting message, and tells the poll
object to notify the program whenever data comes in or when data can go out.
Then the loop reverts to the top.

When data can be sent, p. poll0 returns again-this time, the socket for the
client is returned, with a event type indicating that writing is now permissible.
The writeeventO method gets called. It will attempt to sendO the entire buffer.
This won't necessarily happen; send () will transmit the amount of data that can
be sent without blocking. It then returns the number of bytes it actually sent. The
server removes those bytes from the start of the buffer, and then returns. (If the

buffer was emptied, the poll object is told to not notify the server about future

write events.)

475

Chapter 22

476

The server will sit at p. poll () until someone either connects or the server is
told that it can now read some data from the client. If data comes in from the
client, readevent () is called. It will read up to the first 4,096 bytes of data from the
client, adding it to the end of the write buffer. If there's more data than that, no
problem; when p. poll () is called next, it will again indicate that data is available
for reading. After the data is received and added to the buffer, watch both () is called
since you know there's data in the buffer, you're ready to write it at any time.

That's a lot to consider. Let's look at the sequence of events when a client
connects.

First, the call to p. poll() returns with the master socket among the list of
sockets ready for reading. The server calls accept 0 and calls newconn 0 with the
new client socket. Then newconn () initializes the data structures and places the
welcome message in the buffer for the client. Finally, it says to watch for both
reading and writing from the client before returning. Control will then return
to p. polIO.

When the client is ready to receive data, p. poll () will return again with the
client's socket among the list of sockets ready for writing. The server will transmit
some data, and if the entire contents of the buffer were sent, it will remove the
client from the list of sockets for writing. Control returns to the loop once again.

When the client sends something to the server, p. poll () will return and
indicate that there's data to be read from the client. The readeventO method is
called. It receives the data, adds it to the end of the buffer, and makes sure that
the server is ready to write data back to the client. When the client is ready to
receive data, it's sent in the same manner as the initial greeting.

When the client closes the connection, the server is notified as an error and
calls erroreventO, which closes the socket on the server side and removes the
client from the data structures.

To run this server, you can simply use ./echoserver. py. You can connect to
localhost on port 51423. You'll see a greeting and, like the other echo server
examples in this book, the server will return to you anything you send to it.

Advanced Server-Side Use

Many asynchronous servers will actually have two buffers per client-one for
incoming commands and one for outgoing data. This allows the server to account
for incoming commands that aren't contained entirely within a single packet.
The following is an example of a very primitive chat system. Data received is
relayed to all clients connected, but only when the text SEND is received, as follows:

Asynchronous Communication

~!!usr!bin!env python
~ Asynchronous Chat Server - Chapter 22 - chatserver.py

import socket, traceback, os, sys, select

:lass stateclass:
stdmask = select.POllERR I select.POllHUP I select.POllNVAl

def __init__(self, mastersock):
self.p = select.poll()
self.mastersock = mastersock
self.watchread(mastersock)
self.readbuffers = {}
self.writebuffers = {}
self. sockets = {mastersock.fileno(): mastersock}

def fd2socket(self, fd):
return self.sockets[fd]

def watchread(self, fd):
self.p.register(fd, select.POllIN I self.stdmask)

def watchwrite(self, fd):
self.p.register(fd, select.POllOUT I self.stdmask)

def watchboth(self,fd):
self.p.register(fd, select.POllIN I select.POllOUT I self.stdmask)

def dontwatch(self, fd):
self.p.unregister(fd)

def sendtoall(self, text, originfd):
for line in text.split("\n"):

line = line.strip()
transmittext = str(self.fd2socket(originfd).getpeername()) + \

": II + line + "\n"

for fd in self.writebuffers.keys():
self.writebufferslfd] += transmittext
self.watchboth(fd)

477

Chapter 22

478

def newconn(selfJ sock):
fd = sock.fileno()
self.watchboth(fd)
self.writebuffers[fd] = "Welcome to the chat server J %s\n" %\

str(sock.getpeername())
self.readbuffers[fd] = ""
self.sockets[fd] = sock

def readevent(self J fd):
try:

Read the data and append it to the write buffer.
self.readbuffers[fd] += self.fd2socket(fd).recv(4096)

except:
self.closeout(fd)

parts = self.readbuffers[fd].split(nSEND")
if len(parts) < 2:

No SEND command received
return

elif parts[-1] == I I :

Nothing follows the SEND command; send what we have and
ignore the rest.
self. read buffers [fd] = 1111

sendlist = parts[:-l]
else:

The last element has data for which a SEND has not yet been
seen; push it onto the buffer and process the rest.
self.readbuffers[fd] = parts[-l]
sendlist = parts[:-l]

for item in sendlist:
self.sendtoall(item.strip()J fd)

def writeevent(self J fd):
if not len(self.writebuffers[fd]):

No data to send? Take it out of the write list and return.
self.watchread(fd)
return

try:

byteswritten = self.fd2socket(fd).send(self.writebuffers[fd])
except:

self.closeout(fd)

Asynchronous Communication

self.writebuffers[fd] = self.writebuffers[fd][byteswritten:]

if not len(self.writebuffers[fd]):
self.watchread(fd)

def errorevent(self, fd):
self.closeout(fd)

def closeout(self, fd):
self.dontwatch(fd)
try:

self.fd2socket(fd).close()
except:

pass

del self.writebuffers[fd]
del self.sockets[fd]

def loop(self):
while 1:

result = self.p.poll()
for fd, event in result:

if fd == self.mastersock.fileno() and event == select.POllIN:
try:

newsock, addr = self.fd2socket(fd).accept()
newsock.setblocking(o)
print "Got connection from", newsock.getpeername()
self.newconn(newsock)

except:
pass

elif event == select.POllIN:
self.readevent(fd)

elif event == select.POllOUT:
self.writeevent(fd)

else:
self.errorevent(fd)

host == I I

port = 51423
Bind to all interfaces

479

Chapter 22

480

s = socket.socket(socket.AF INET, socket.SOCK STREAM)- -

s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind((host, port))
s.listen(l)
s.setblocking(o)

state = stateclass(s)
state.loopO

The framework ofthis program looks similar to the previous example. However,
note the addition of a read buffer and the code that processes it. That code is of
particular interest in that it handles three distinct cases of input that might occur:
no end-of-command (SEND) received; one or more complete commands termi
nated by SEND, and one or more complete commands followed by an incomplete
command. With asynchronous II 0, the normal commands that are used, for
instance to read a full line of input are unavailable. You must therefore buffer input
yourself, and be prepared to receive partial lines or multiple lines all at once.

You can run this program by running ./chatserver. py. To test it, open several
telnet clients directed at port 51423. In one of them, your session might look
like this:

$ telnet localhost 51423
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is 'AJ'.
Welcome to the chat server, ('127.0.0.1', 48633)
Hello.

Testing.

SEND

('127.0.0.1', 48633): Hello.
('127.0.0.1', 48633): Testing.
How are you?

SEND
('127.0.0.1', 48633): How are you?

Monitoring Multiple Master Sockets

In the previous example, one master socket was used; the server listened on a

socket. It only ever handles a single socket that's listening. It's also possible to use

a single-tasking server to listen to many different ports. In fact, the standard

UNIX "superserver" inetd does exactly that.

Asynchronous Communication

inetd listens on many different ports. VVhen a connection arrives, it will start

up the program that is supposed to handle that connection. In this way, a single

process can handle dozens of different sockets. On a system where these different

processes aren't under constant, heavy use, this is a win; one process listening

instead of dozens of different ones.

One way to implement an inetd-like server is to use pollO to watch a whole

set of master sockets. VVhen a connection is received, it's moved to a known file

descriptor and handed off to the program that will actually handle it. Chapter 3

contains some examples of programs that use inetd.

In actual fact, an i netd -like server will be something of a hybrid; it will use

poll() to monitor the master sockets, but forkO to pass them on to the handlers.

This will expose an important security consideration for programs like this. Here's

the example inetd server. This example will not work on Windows due to its use

of forking.

#!/usr/bin/env python
Asynchronous Inetd-like Server - Chapter 22 - inetd.py

import socket, traceback, as, sys, select

class stateclass:
def init (self):

self.p = select.poll()
self.mastersocks = {}
self.commands = {}

def fd2socket(self, fd):
return self.mastersocks[fd]

def addmastersock(self, sockobj, command):
self.mastersocks[sockobj.fileno()] = sockobj
self.commands[sockobj.fileno()] = command
self.watchread(sockobj)

def watchread(self, fd):

self.p.register(fd, select.POllIN)

def dontwatch(self, fd):
self.p.unregister(fd)

481

Chapter 22

482

def newconn(self, newsock, command):
try:

pid = os. forkO
except:

try:
newsock. close 0

except:
pass

return

if pid:
Parent process
newsock. closeO
return

Child process from here on
First, close all the master sockets.
for sock in self.mastersocks.values():

sock.closeO

Next, copy the socket's file descriptor to standard input (0),

standard output (1), and standard error (2).

fd = newsock.fileno()
os.dup2(fd, 0)

os.dup2(fd, 1)
os.dup2(fd, 2)

Finally, call the command.
program = command. spli t (' ')[0]

args = command. split (' ')[1:]

try:
os.execvp(program, [program] + args)

except:
sys.exit(1)

Asynchronous Communication

def loop(self):
while 1:

result = self.p.poll()
for fd, event in result:

print "Received a child connection II

try:
newsock, addr = self.fd2socket(fd).accept()
self.newconn(newsock, self.commands[fd])

except:
pass

host = I I

state = stateclass()
config = open("inetd.txt")
for line in config:

line = line.strip()
port, command = line.split(":", 1)

port = int(port)

Bind to all interfaces

s = socket.socket(socket.AF_INET, socket. SOCK_STREAM)
s.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1)

s.bind((host, port))
s .listen(l)
s.setblocking(o)
state.addmastersock(s, command)

config. close()
state.loopO

Although this server doesn't have all the features of the standard inetd server,
it nevertheless does do the same basic task. First, it creates an instance of the
stateclass class. Then it opens its configuration file, inetd. txt, and reads it. Each
line gives a TCP port number and a command to run when a client connects to
that port. So, for each configuration file line, anew socket object is created, bound,
configured, and added to the stateclass information. Finally, when the configu
ration file has been completely processed, it's closed, and the main loop is entered.

483

Chapter 22

484

This loop is simpler than the main loop in the chat server example. The inetd
loop only has to handle one event-a client connecting. When that happens, the
client is passed off to sel f . newconn (), along with the command that will be executed.

The newconn () method is where the real action happens. Notice that it starts
off by forking. This isn't really standard practice for asynchronous servers, but
can be useful, as you see here. (For more details on forking, please refer to
Chapter 20.) After the fork, the parent process should go back to processing client
connections and the client process will handle this connection.

So, by checking the pid value, if you're now in the parent, the new client
socket is closed (as is standard practice with forking servers) and the code returns
to the loop.

On the child-process side, the first thing it does is close down every single
one of the master sockets. In Chapter 20, I mentioned that a child process should
close the sockets it won't use so that it won't accidentally communicate on them
or cause strange interactions with closeO. Those reasons still hold. But in this
case, there's an added reason to do that: security.

The child process will later be calling an exec ... () function to execute another
program. We might not necessarily trust this other program to be secure and to
be able to handle all these master sockets in a secure way. For instance, a malicious
program might be able to find the master socket for a particular port and "take
over" that port, handling its requests instead ofletting the inetd server do that. It

might be able to record somebody's password-the person may think they're
sending it to the real server, but in reality, it's going to a fake one. This problem is
known as afile descriptor leak. So it's vital to close down all the sockets that the
client won't need in this situation.

After doing that, the next thing the client does is callos. dup2 () three times.
You'll recall from Chapter 3 that inetd passes the socket to its server program on
standard input, standard output, and standard error. Those are file descriptors 0,
1, and 2 on UNIX. The os. dup2() call lets you duplicate a socket (or file, or any
thing else that has a UNIX file descriptor) to a file descriptor with a particular
number. We duplicate the client's socket three times so that it's present in standard
input, standard output, and standard error.

Finally, the client is executed. The call to os. execvp () might have surprising
semantics ifyou're unfamiliar with UNIX. Unless there's an error, it never returns.
On successful completion, os. execvp () (or the other exec ... () fimctions) completely
replaces the calling process in memory. So the forked child of inetd. py ceases to
exist. However, the process environment-including its file descriptors-is copied
over to the newly executed program. Therefore, the program receives the client

socket as it should.
Let's take a look at how this might work. First, here's a sample configuration

file that will let a client connect to the server at two different ports to run two
different examples from Chapter 3:

Asynchronous Communication

55 100 : .. 103/inetdsocket.py
55101: .. 103/inetdserver.py

This file doesn't use the same format as the system's letc/inetd.conf, but it
gets the job done for this example. Now, let's see what happens:

$ telnet localhost 55100
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is 'A]'.
Welcome.
According to our records} you are connected from ('127.0.0.1'} 52385).
The local time is Man Mar 8 10:06:02 2004.
Connection closed by foreign host.
$ telnet localhost 55101
Trying 127.0.0.1 ...
Connected to localhost.
Escape character is 'A]'.
Welcome.
Please enter a string:
Testing
You entered 7 characters.
Connection closed by foreign host.

It worked. By connecting to a different port, a different server process was
run. Yet a single process-our example inetd look-alike-handled the connections
on both ports.

This "hybrid" technique (using polling and forking in a single program) can
have other uses, too. For instance, an asynchronous server may make sense for most
of what you do, but certain commands are processor-intensive; executing them
in the single-server process may cause undesired blocking. A new process may
be forked, or a thread created, to handle that, with the results passed back later.

Using Twisted for Servers

Ifyou think about the chat server example abstractly, you can visualize the program
as two main components: the poll () loop that takes care of the mechanics of
watching for data, and the actual code that receives data dispatched from the
loop and processes it. With some work, the main loop could be made generic

the same code could be used to drive various different asynchronous servers.
This is the approach that the Twisted system takes. Twisted provides the core

libraries that implement the central loop for the server. It provides base classes

485

Chapter 22

486

that you override, adding your own functionality where appropriate. They often
call this the "Don't call us, we'll call you" design. Your application never explicitly
receives data anywhere. Rather, when data arrives, a class method is called. You
process the data, possibly queue data for transmission, then return. Twisted, of
course, handles sending the data out as appropriate, using an internal buffer
similar to the chat server. This forms the core of Twisted.

TIP Another description of some Twisted basics can be found in
Chapter 12. Many IMAP examples in that chapter use Twisted for
client-side communication.

The Twisted system, though, takes this several steps farther. It offers some
generic helper classes, such as the LineOnlyReceiver. In the chat server, you had
to write code that deals with receiving partial or multiple "lines" at once.
LineOnlyReceiver will take care of this automatically. Twisted also provides
server-side modules for some common network protocols, though this chapter
doesn't go into detail on them.

Twisted isn't part of the standard Python library. You can download it from
www.twistedmatrix.com. Your operating system provider may also make available
Twisted packages; if so, those packages may also suffice. The examples in this
chapter assume you have Twisted 1.1.1 or higher installed.

TIP This 1Wisted code probably looks complex and hard to follow. However,
Twisted is really an elegant system, and with a little expenence, it can feel
just as easy as more traditional programming.

Here's an example implementation of a chat server in Twisted. Notice that it

doesn't have to keep track of any state.

#!/usr/bin/env python
Asynchronous Chat Server with Twisted - Chapter 22

twistedchatserver.py
Twisted 1.1.1 or above required for this example
-- download from www.twistedmatrix.com

Asynchronous Communication

from twisted.internet.protocol import Factory
from tWisted.protocols.basic import LineOnlyReceiver
from twisted. internet import reactor

class Chat(LineOnlyReceiver):
def lineReceived(self J data):

self.factory.sendAll("%s: %s" % (self.getIdO J data))

def getld(self):
return str(self.transport.getPeer())

def connectionMade(self):
print "New connection from" J self. getld 0
self.transport.write("Welcome to the chat server J %s\n" %self.getId())
self.factory.addClient(self)

def connectionLost(self J reason):
self.factory.delClient(self)

class ChatFactory(Factory):
protocol = Chat

def __init__ (self):
self. clients = [J

def addClient(self J newclient):
self.clients.append(newclient)

def delClient(self J client):
self.clients.remove(client)

def sendAll(self, message):
for proto in self.clients:

proto.transport.write(message + "\n")

reactor.listenTCP(51423, ChatFactory())
reactor.run()

The first thing that might strike you about this example is that it's a lot shorter
than the first chat server example. In fact, it's about one-third the size. This difference

occurs because Twisted provided a lot of the basics that the first example had to
provide for itself. Under the hood, both programs do essentially the same thing.

487

Chapter 22

488

The Twisted program is based around two main classes: Chat and ChatFactory.
The Chat Factory is somewhat of a "master" class that's instantiated only once in
the entire application. The Chat class is instantiated once for each client that
connects; its data structures are unique to each client. This structure makes it
easy to both maintain data that's global for the entire system and data that's
unique for each client. Since there's a separate class instance for each client,
there's no master dictionary like the first chat server example had.

Both classes derive from Twisted-supplied base classes. The Chat class is a
child ofTwisted's LineOnlyReceiver, which is itself a child of Protocol. The Protocol
class handles the receiving of data and calls the dataReceived() method when
data arrives. The idea is that you can subclass Protocol and provide your own
implementation of dataReceived() that processes the information.

In fact, that's exactly what LineOnlyReceiver does. Whenever a complete
line of data has arrived, LineOnlyReceiver's dataReceivedO method will call the
lineReceivedO method. Again, this method is designed to be overridden in asub
class. The Ch at class does exactly that. Whenever a line is completely received
from the client, the Twisted code calls lineReceived(), passing the line to it. That
function, in turn, calls self. factory. sendAll(). Twisted automatically stores a
reference to the Factory object in the Protocol object (Chat) for you.

Like lineReceived 0, the connectionMade() method is called when an event
occurs. Twisted calls connect ionMade () when a client first connects. In this example,
the connectionMade() method sends the greeting and adds itself to the data structure
by calling self. factory. addClient (). Similarly, when the client disconnects,
connectionLost() is called, which asks the factory object to remove its information
about the client.

The ChatFactory class is fairly simple. Its _ini t_() method simply creates
an empty list of clients. The addClient 0 and delclient 0 methods straightforwardly
add or remove a client from the list of clients. The sendAll () method takes a
message as an argument and iterates over the list of all client objects, calling
transport. writeO on each one of them.

This writeO method is not the same as socket. send(), socket. sendallO, or
the write() method of Python file-like objects. Twisted's write() method will
store the data to be sent in a buffer, and then returns immediately. Behind the
scenes, it asks the internal poll 0 bject to notify it when the client can receive data,
and will thus send out data until its buffer is exhausted. Internally, writeO uses
the same sort oflogic that the example before did. But it does it all behind the
scenes; you don't have to worry about buffering and managing clients that are
ready (or not) to receive data.

The program ends with two lines of code that set up and run the server. By

calling listenTCP(), the listening socket is set up. The reactor. run () method is the

main loop of the program; it's not generally set to ever return, and instead must
be terminated by something such as a signal with Ctrl-C or Ctrl-Break.

Asynchronous Communication

Summary

Asynchronous communication provides a way to handle multiple connections at
once. Unlike forking and threading, asynchronous communication doesn't actually
have the server executing different code simultaneously. Rather, it uses non
blocking II 0 and polling to service each client when it becomes ready.

Asynchronous II 0 is centered on a main loop that waits for events to arrive.
In this chapter, that loop uses poll () to look for events on file descriptors. \tVhen
an event occurs-such as data that's available to read, or ready-to-write data
the program can see what happened and take the appropriate action. The poll()
function is designed to watch many sockets at once.

It's also possible to monitor multiple master sockets. In this chapter, an
example inetd implementation demonstrated doing that.

The Twisted framework provides many tools for writing asynchronous servers.
It can save you a great deal of effort. In this chapter, the Twisted implementation
of a chat server was approximately one-third the size of the implementation that
was done from scratch.

489

Index

Symbols
& character, 383

> character, 383

&It character, 383

* folder pattern, 238

+= operator, 448

< character, 383

<affiliation> child, 153

<broadcast> address (DNS), 95

-:::= self.processing tag, 137

> character, 383

A
A DNS records, 76

AAAA DNS records, 76

accept(),14,40,41,42,43,429,432,475,476

account FTP authentication token, 276

acquire(), 448,450,452,461

addBoth(), 235

addCallback(), 227, 230

addClient(), 488

addFlags(),252

addGETdata(),120

AddHandler, 401

addressjamilyvariable, 352

adns Python library, 65

advanced network operations, 87-110

binding to specific addresses, 102-3

half-open sockets, 87-88

overview, 87

timeouts, 89-90

transmitting strings, 90-92

leading size indicator, 92

unique end-of-string identifiers,
91-92

understanding network byte order,
93-94

using broadcast data, 95-97

using event notification with poll() or
select(), 104-9

working with IPv6, 97-102

handling family preferences, 10D-102

resolving addresses, 98-100

AF_INET protocol, 20, 99, 101

AFP (Apple File Sharing) protocol, 20

Alias directive, 396, 399

allow_none variable, 360

allow_reuse_address variable, 351

alternative multiparts (MIME), 180

alternative subtype (MIME), 186

answers attribute (PyDNS), 78

ANY query (DNS), 82

Apache API, 397

apache2ctl configtest command, 398

apache2ctl restart command, 395

apachectl configtest command, 398

apachectl restart command, 395

apache.HTTP_FORBIDDEN (403) status
code, 402

apache.HTTP_MOVED_PERMANENTLY
(301) status code, 402

apache.HTTP_MOVED_TEMPORARILY
(302) status code, 402

apache.HTTP_NOT_FOUND (404) status
code, 402

apache.HTTP_OK (200) status code, 402

491

Index

492

apache.HTTP_UNAUTHORIZED (401)
status code, 402

apache.SERVER_RETURN command, 402

APOp, 212, 213

apop(), 214

append(), 270

appendChild(),156

application/octet-stream type (MIME), 183

arguments parameter, inetd, 47

arraysize attribute, 311,312

as_string(), 182

ASCII characters, 92, 93

ASCII files, downloading with FTp, 278-79

asynchat module, 470

asynchronous communication, 469-89

advanced server-side use, 476-80

monitoring multiple master sockets,
480-85

overview, 469-70

using, 471-76

using Twisted for servers, 485-88

whether to use, 470

asyncore module, 470

atomic operation, 448

attachment(), 183

attacks, 323

authentication

FTp, 276-77

POP (Post Office Protocol), 212-14

SMTp, 208-9

Web client access, 115-18

"Authentication failed" error, 209

B
Base-64 encoding, 181

base64 module, 92

basehttp.py file, 342

BaseHTTPRequestHandler class, 341-42

BaseHTTPServer, 341-48

handling multiple requests
simultaneously, 346-48

handling requests for specific
documents, 343-46

overview, 341-43

BEGIN CERTIFICATE block, 332

Binary(), 317

binary files, downloading with FTp, 279-81

binary word, 93

bind(), 39, 43

bind package (Linux) , 68

blocking call, 437

body of e-mail messages, 169-70

broadcast data, 95-97

BSD UNIX, 19, 46

buffers structure, 474

buflen option, 37

build_opener(), 117

built-in SSL, 326-30

byte order, network, 93-94

c
C connect(), 21

Clanguage, la, 11, 12,25,53,55,93,159

callback function, 225

catch statement, 121

Cc Header (MIME), 171

certfiles.crt file, 332

Certificate Authorities (CAs), 325

certificates, server. See server certificates

CGI (Common Gateway Interface), 369-92

escaping special characters, 383-85

getting input, 375-83

extra URL components, 375-78

GET method, 378-80

overview, 375

POST method, 380-83

handling multiple inputs per field, 385-86

overview, 369

retrieving environment information,
373-75

scripts, 349-50, 365, 367, 393,397,
405,415

setting up, 370

understanding CGI, 370-72

uploading files, 386-88

using cookies, 388-92

CGI handler, 407, 415

cgi interface, 387

cgi library, 380

cgimodule,371,373,383,385,386,412-13

cgi-bin directory, 349, 370, 373

cgi.escape(), 383, 413

cgLFieldStorage(),380

CGIHTTPServer, 349-50,370

cgilib.escape(),385

cgitb module, 372

CGIXMLRPCRequestHandler, 365-67

character references, translating, 132-33

character set, ASCII, 181

Chat class, 488

chat server exercise, threaded, 457

Chatfactory class, 488

checksum, 5

chldhandler(), 427

CLASSPATH variable, 300

cleanse(), 139

cliencaddress variable, 352

clients, database. See database clients

clients, network. See network clients

client!server networking, 3-18

Ethernet, 9

networking in Python, 9-16

high-level interface, 15-16

low-level interface, 10-15

overview, 3

physical transports, 9

TCP basics, 3-6

addressing, 4

reliability,4-5

routing, 5

security,6

user datagram protocol, 7-8

using client!server model, 6-7

close(),19,42,43,88,218,422,484

closeout(), 475

CN (common name) attribute, 335

CNAME record, 76, 79, 82

cnverified variable, 335

codecs module, 194

column names, 314

command channel, 276

commands

executing, 301-2

repeating, 305-10

executemany(),307-10

parameter styles, 305-7

Comment objects, 150

commit(), 302-3, 304, 305, 310

Common Gateway Interface. See CGI
(Common Gateway Interface)

common name (CN) attribute, 335

Common Object Request Broker
Architecture (CORBA), 159

comp.lang.python newsgroup, 399

composing e-mail. See e-mail composition
and decoding

compromised server, 324

Condition object, 466

configure script, 395

connect(), 21,26,32, 33,35, 52, 54,68

connecting, 297-301

Jython zxJDBC, 299-301

MySQL,299

POP (Post Office Protocol), 212-14

PostgreSQL, 298

Index

493

494

Connection object, 331

connection reset by peer message, 441

connectionLost(),488

connectionMade(), 227, 231, 488

content types (MIME), 181

Content-Disposition header (MIME), 183,
184, 186

Content-Length header (MIME), 123

Content-type header, 372

Content-Type line (MIME), 184

Context object, 331

continue statement, 41, 42

conversation debugging (SMTP), 199-202

Cookie module, 389

cookie.output(), 392

cookies, CGI, 388-92

Coordinated Universal Time (UTC), 178

copy(),270

CORBA (Common Object Request Broker
Architecture), 159

create(), 270

CR-LF character, 268

cross-site scripting attack, 383

cursor object, 301-2

cwd(), 278, 290

D
daemon log file, 60

data channel, 276

data command, 202

data item, 386

database clients, 295-320

connecting, 297-301

Jython zxJDBC, 299-301

MySQL,299

PostgreSQL, 298

executing commands, 301-2

overview, 295

reading metadata, 313-16

counting rows, 313-14

retrieving data as dictionaries,
315-16

repeating commands, 305-10

executemany(), 307-10

parameter styles, 305-7

retrieving data, 310-13

using fetchall (), 310-11

using fetchmany(), 311-12

using fetchone(), 312-13

SQL and networking, 295

SQL in python, 296-97

transactions, 302-5

hiding changes until finished, 303-5

performance implications of
transactions, 303

using data types, 317-19

datareceived(), 474, 488

datasockclose(), 283

Date(),317

Date header (MIME), 173, 178, 180

Date string, 179

DateFromTicks(), 317

date-ID headers, 174-75

db parameter, 299

DB-API specification, 296-97, 300, 305, 306,
310,317

dbh (database handle), 297

Debian GNU/Linux, 77

decode(), 194

decoding e-mail. See e-mail composition
and decoding

def gethostname(ipaddr), 73-74

Deferred from list(), 238

Deferred object, 227, 228; 230, 231,234

DeferredList object, 248, 259, 260

deIClient(),488

dele(),218

DELE command, 218

delete(L 270, 293

\Deleted flag, 252, 255

deletemessages(),255

deleting

folders, 293

messages, 218-21, 252-55

deletion attacks, 323

description variable, 313

dgram socket type, 49

dgram type, 47

DHCP, 77

dictfetchalH), 316

dictfetchone(), 316

dictionaries, retrieving data as, 315-16

dir(), 284, 285, 288, 290

directories. See folders

Directory section, 399

DirEntry class, 288, 290, 292

DirScanner class, 288, 292

dispatching requests (mod_python), 402-4

dispCookie(),391

displayinfo(), 260

dlist list, 248

DNS (Domain Name System), 21, 65-85

DiscoverNameServers(), 77

making DNS queries, 65-66

overview, 65

Request(), 77

using operating system lookup
services, 66-75

obtaining information about your
environment, 74-75

performing basic lookups, 66-70

performing reverse lookups, 70-74

using PyDNS for advanced lookups,
76-85

DNS records, 76-77

installing PyDNS, 77

querying specific name servers,
79-81

resolving lookup results, 82-85

simple PyDNS queries, 77-79

DNS module, 77

dnslook,65

dnspython, 65, 77

do_... (),342

do_GET(), 345, 348

DocBook, 145, 148

docstring, 358

document type definition (DTD), 145, 148

DocXMLRPCServer, 364-65

DOM

full parsing with, 151-54

generating documents with, 154-57

type reference, 157-58

domain attribute, 389

Domain Name System. See DNS (Domain
Name System)

dothefork(),422

downloaddir(), 292

downloadfile(),292

downloadinfo(), 259,260

downloading

ASCII files (FTP), 278-79

binary files (FTP), 279-81

messages (I~),243-49

messages (POP), 216-18

recursively (FTP), 290-93

DSO (Dynamic Shared Objects) support, 395

DTD (document type defmition), 145

dup(),19

, dup2(), 19,484

Dynamic Shared Objects (DSO) support, 395

Index

495

496

E
echo client, 62, 63

echo server, 61-62, 63

ehlo(), 204, 205, 209

EHLO command, 205

EHLO, getting information from, 202-4

EHLO method, 210

Element objects, 150

e-mail. See also IMAP (Internet Message
Access Protocol)

e-mail composition and decoding, 169-95

MIME

composing alternatives, 185-87

composing attachments, 182-84

parsing, 190-95

understanding, 180-81

nested multiparts, composing, 188-90

non-English headers, composing,
187-88

overview, 169

traditional messages

composing, 173-76

parsing, 176-80

understanding, 169-73

email module, 169, 176, 190, 192

email package, 173

email.Header module, 193

email.messagejrom_file(), 177

email.Utils module, 178

email.Utils.formatdate(), 174

email.Utils.make_msgid(), 174

encode(), 194

END CERTIFICATE block, 332

end_headers(),342

entries.append(), 286

envelope value, 260

crrback notion, 232

error handling

forking, 438-41

FTp, 283-84

network clients, 23-31

errors with file-like objects, 29-31

missed errors, 26-28

socket exceptions, 24-26

network servers, 41-43

SMTp, 199-202

Web client access, 121-25

connection errors, 121-23

data errors, 123-25

XML- RPC, 165

errocall.pyexample, 125

errorevent(), 475,476

errorhappened(), 234, 235, 236

escape(), 412

escaping mod_python, 412-13

ESMTp, 202-3, 204

Ethernet, 9

Ethernet LAN, 37

event notification, with poll() or select(),
104-9

event-based parser, 148

event-based programming, 225

examine(), 239, 240, 245

except clause, 60

exec (),424

exec... () type functions, 422, 484

execute(), 302, 308, 310

executemany(),307-10

executing commands, 301-2

execvp(), 484

EXISTS summary item, 240

expunge(), 252, 255

F
facility argument, 57

factory class, 227

factory object, 231

Factory object, 488

failure (), 363

Failure object, 234, 235, 236

fake server (traffic redirection), 324

fcntl() , 216

fd2socket(),474

f.dir(), 286, 288

FETCH command, 243

fetch ... (), 310, 315

fetchallC),310-11

fetchBodyStructure(), 256,260

fetchFlags (), 250

fetchmany(), 311-12

fetchone(),312-13

fetchSimplifiedBody(), 256, 259, 260

fetchSpecific(), 245, 248,249,256,260

fetchUIDC 1:*'),248

FieldStorage class, 409, 412

FieldStorage instances, 385

file attribute, 387

file descriptor, 19

file descriptor leak, 484

File Not Found (404) error, 401

File Transfer Protocol. See FTP (File
Transfer Protocol)

file.cgi script, 388

File-like objects, 23

filename attribute, 387

files

binary, downloading (FTP), 279-81

moving (FTP), 294

renaming (FTP), 294

uploading (CGI), 386-88

fmally clause, 292, 437, 449, 460

finding messages (lMAP), 262-67

composing queries, 263-65

running queries, 265-67

finishprocessing(), 81, 137, 142

Flag-related search keywords, 263

flags option, 49

flags, reading (lMAP), 250-51, 252

FLAGS summary item, 240

flock(),216,437,448

flush(), 30, 46

folders

creating

FTp, 294

IMAP, 270

deleting

FTp, 293

IMAP, 270

examining (lMAP), 239-43

folder list, scanning (lMAP), 236-39

moving messages between (lMAP), 270

scanning (FTP), 284-90

for loop, 377

fork(), 54, 88,425,438, 439,441,481

forked pool, 424

forking, 419-42

error handling, 438-41

first steps, 424-30

overview, 424-25

zombie problem, 425-30

fork(),421-24

duplicated file descriptors, 422-23

overview, 421-22

performance, 424

zombie processes, 423

locking, 433-38

overview, 419

processes, 419-21

servers, 430-33

Index

497

Index

498

ForkingMixIn class, 363

form data, submitting, 118-21

with GET, 118-20

with POST, 120-21

FORM tag, 383

formatstyle,306,307

FreeBSD search engine, 118

from cgi import escape command, 413

From header (MIME), 173

fromfd(),51

fromtimestamp(),180

FTP (File Transfer Protocol), 117,275-94

authentication and anonymous FTp,
276-77

communication channels, 276

creating directories, 294

deleting files and directories, 293

downloading ASCII files, 278-79

downloading binary files, 279-81

downloading recursively, 290-93

handling errors, 283-84

moving and renaming files, 294

overview, 275

scanning directories, 284-90

discovering information without
parsing listings, 288-90

parsing UNIX directory listings,
286-88

uploading data, 281-83

using in Python, 277-78

FTP protocol, 114

FTPURL, 125

ftplib module, 277, 279, 283,284,293

ftplib.alLerrors tuple, 283

ftplib.errocperm exception, 290

function query type, 81

fwrite(), 466

G
Gadfly, 297

GET method, 342, 343, 383

CGI,378-80

and mod_python, 407-10

submitting form data with, 118-20

getaddrinfo(), 70, 75, 98-100,101

getAttribute(), 153

getCapabilities(),227

getCookie(), 391

getdate(), 180

_getdoc(),345

getdsn(), 298

getElementsByTagNameO,153

getfilename(),288

getfirst(),380

gethandlerfunc (), 404

gethostbyname(),67

getlastaccess(), 437

getlist(), 380, 385

getName(), 445

getpeername(), 51

getrecordsfromnameserver(),81

getmntime(),367

getscriptname(), 409

getservbyname(),21

getsockopt(), 37, 38

getstats(),363

gettype(), 288

geturl (), 115

Gopher handler, 125

Gopher Protocol, 10-11, 114

gopherlib module, 15

gotcapabilities(), 227

gotmessage(),249,255

gotmessages(),245

H
H string format, 93

h_errno C exception, 25

half-open sockets, 87-88

handle(), 351

handle_request(),367

handlechild(), 456-57

handleconnection(), 459,462

handler(), 400, 404, 405

handleuids(), 248, 254

handling input (mod_python), 405-12

extra URL components, 405-7

GET method, 407-10

overview, 405

POST method, 410-12

\HasChildren flag, 239

\HasNoChildren flag, 239

HEAD method, 342

Header.decode_header(), 194

Header-related search keywords, 264

headers (MIME), 169

helo(),204

HELO command, 203

hex(),357

hierquery(),81

high-level interface, 15-16

hijacking, session, 323

host command, 68

host parameter, 299

hosts file, 66

.htaccess files, 399

htbin directory, 349

HTML, 118, 187

HTML and XHTML, parsing, 127-43

handling unbalanced tags, 133-37

overview, 127-30

translating character references,
132-33

translating entities, 130-32

working example, 137-43

HTML code, 114

HTML file, 370

HTML form, 410

htmlentitydefs class, 132

htmllib, 128

HTMLParser module, 127, 128, 130,137,
142, 148

HTMLParser's feed() method module, 129

htonl(),94

HTTp, 15,39, 113, 115, 116, 117, 122,388

HTTP authentication, 388

HTTP headers, 125, 389

HTTPprotocol, 114

HTTP status code, 401

HTTP COOKIE environment variable,
389,391

HTTPBasicAuthHandler handler, 117

HTTPError exception, 122, 123

httplib module, 15

HTTPServerclass, 341,348

human engineering, 324

HUP signal, 48

I
I format, 93

lANA (Internet Assigned Numbers
Authority),7

ident parameter, 57

if statement, 424

if test, 426

lMAP (Internet Message Access Protocol),
223-72

adding messages, 268-70

creating and deleting folders, 270

downloading, 243-49

entire mailbox, 243-45

messages individually, 245-49

Index

499

Index

500

examining folders, 239-43

message numbers vs. UIDs, 239-40

message ranges, 240

finding messages, 262-67

composing queries, 263-65

running queries, 265-67

flagging and deleting messages, 249-55

deleting messages, 252-55

reading flags, 250-51

setting flags, 252

moving messages between folders, 270

overview, 223-25

retrieving message parts, 255-62

finding message structures, 256-60

retrieving numbered parts, 260-62

scanning folder list, 236-39

in Twisted, 225-36

error handling, 231-36

logging in, 228-31

overview, 226-28

IMAP4Client class, 227, 230

IMAPFactory object, 227, 231

imaplib module, 224

IMAPLogic object, 231, 234

import cgi command, 413

IN-ADDR.ARPA extension, 84

INBOXfolder, 239, 243, 245

indexCBODY'),249

index.html file, 348

inetd

configuring, 47-48

handling errors with, 54-55

using socket objects with, 51

using UDP with, 51-54

when not to use, 55

inetd loop, 484

inetd server, 480-81, 483, 484

inetd.py file, 484

infinite loop, 40-41

info(), 125

init process, 423

init(), 230, 231, 234, 260, 290, 488

initsyslog(), 60

INPUT tag, 388

In-Reply-To header, 173

INSERT INTO command, 305

insertion attacks, 323

installing and configuring mod_python,
394-99

configuring Apache directories, 396-98

fixing configuration problems, 398-99

loading the module, 395

overview, 394-95

int(), 359, 360

Internet Assigned Numbers Authority
(lANA),7

Internet Message Access Protocol.
See IMAP (Internet Message
Access Protocol)

interpreter instances (mod_python),
413-14

introspection, 355

invocationtype parameter, 47

IOError exception, 283

IP address, 4, 9,21,76

IPv4,20,67,97-98,99, 100, 101-2

IPv6,26,67,97-102,352-53

address, 76

handling family preferences, 100-102

queries, 77

resolving addresses, 98-100

IPX/SPX (NetWare) protocol, 20

ISO 8859-1,187,188

isvalid(), 288

J
Java, 159,300

JDBC driver conversion layer, 297

join(), 445, 447

Jython interpreter, 297

Jython zxJDBc, connecting, 299-301

K
key pair, 325

KeyboardInterrupt exception, 32, 40,42,
43,457

L
level parameter, 37

libxml2library, 149

LineOnlyReceiver class, 486, 488

lineReceived(),488

Lines header, 171

Linux, 7,14,16,38,46,68,172,216,346,
372,386,388

Linux platform, 396,420

list(), 215, 238

listen(), 14,39,43,54,459

listener(), 462

listenTCP(),488

listMethods(),360

list.sort(), 359

load_verify_Iocations(),335

LoadModule line, 395

local area network (LAN), 95, 97

locale.getpreferredencoding(),194

localhost server, 198

Lock object, 448, 450, 452, 466

LOCK_EX argument, 437

LOCK_UN argument, 437

locking, 448

lockpoollock, 459, 462

LOG_ syslog priority, 59

LOG_ALERT syslog priority, 59

LOG_AUTH syslog facility, 58

LOG_CONS syslog option, 57

LOG_CRIT syslog priority, 59

LOG_CRON syslog facility, 58

LOG_DAEMON syslog facility, 58

LOG_DEBUG syslog priority, 59

LOG_EMERG syslog priority, 59

LOG_ERR syslog priority, 59

LOG_INFO syslog priority, 58, 59

LOG_KERN syslog facility, 58

LOG_LOCALx syslog facility, 58

LOG_LPR syslog facility, 58

LOG_MAIL syslog facility, 58

LOG_NDELAY syslog option, 57

LOG_NEWS syslog facility, 58

LOG_NOTICE syslog priority, 59

LOG_NOWAIT syslog option, 57

LOG_PERROR syslog option, 57

LOG_PID syslog option, 57

LOG_USER syslog facility, 58

LOG_UUCP syslog facility, 58

logexception(), 60

logexception(l) calL 188

loggedin (), 230, 231

logging module, 55,56

login(), 208, 228, 230, 231, 278

loginerror(), 234, 235, 236

logout(), 231, 235, 248

loop(), 475

loopback interlace, 102

low-level interface, 10-15

basic client operation, 1O-1l

basic server operation, 13-15

errors and exceptions, 11-12

file-like objects, 12-13

Index

501

inaex

502

M
Mac OS 9,77

mail from command, 202

mailbox information (POP), 215-16

Maildir specification, 216

MainThread thread, 445,455,457,459,462

make install command, 395

makefile(), 12-13,15,29,30,31

man-in-the-middle (MITM) attacks, 322

\ Marked flag, 238

Math class, 362

max-age attribute, 389

md5 command, 386, 388

MD5 sum, 386, 388

md5sum command, 386, 388

Meerkat service, 162

Message-ID header, 171, 173, 174-75

messageJrfc822 type, 259

MessageSet object, 240, 254

metadata, reading, 313-16

counting rows, 313-14

retrieving data as dictionaries, 315-16

method parameter, 118

METHOD parameter, 383

MIME header, 173

MIME message, 192

MIME (Multipurpose Internet Mail
Extensions)

composing alternatives, 185-87

composing attachments, 182-84

parsing, 190-95

understanding, 180-81

MIMEBase generic object, 183

MIMEMultipart object, 182, 183, 186

MIMEText module, 173

MIMEText object, 183

mimetypes module, 183

minidom

Document object, 156

parse(), 151

MITM (man-in-the-middle) attacks, 322

mkd(),294

mktime_tz(), 179

mod_python, 393-416

basics of, 399-402

handler return values, 401-2

overview, 399-400

role of PythonHandler, 400-401

dispatching requests, 402-4

escaping, 412-13

handling input, 405-12

extra URL components, 405-7

GET method, 407-10

overview, 405

POST method, 410-12

installing and configuring, 394-99

configuring apache directories,
396-98

fixing configuration problems,
398-99

loading the module, 395

overview, 394-95

interpreter instances, 413-14

need for, 393-94

overview, 393

prebuilt handlers in, 415

mod_python mailing list, 399

mods-available directory, 395

Morsel object, 389, 391, 392

moving files (FTP), 294

Mozilla, 122

msg(),467

mtr program, 5

multipart messages, 180

multipart! alternative part, 259

multiple inputs per field, handling (CGI) ,
385-86

Multipurpose Internet Mail Extensions
(MIME),169

multi-threaded program, 444

multithreading, 444

~record, 76, 78,82

rnxTidy, 128, 133

MySQL, connecting, 299

MySQLdb,299

MySQLdb connect (),299

MySQL-Python, 299

N
\n line ending, 268

name argument, 77

named style, 307

NAMEINARGS flag, 49

netmask,9

Network applet, 66

network clients, 19-34

handling errors, 23-31

errors with file-like objects, 29-31

missed errors, 26-28

socket exceptions, 24-26

overview, 19

sockets

communicating with, 23

creating, 20-22

overview, 19-20

using user datagram protocol, 31-33

Network File System (NFS), 216

network operations, advanced. See
advanced network operations

network servers, 35-64

accepting connections, 40-41

avoiding deadlock, 60-63

handling errors, 41-43

inetd

configuring, 47-48

handling errors with, 54-55

using socket objects with, 51

using UDP with, 51-54

when not to use, 55

logging with syslog, 55-60

overview, 35

preparing for connections, 35-39

binding the socket, 39

creating socket object, 36

listening for connections, 39

setting and getting socket options,
36-38

using user datagram protocol, 43-45

xinetd, configuring, 48-50

network vulnerabilities

reducing with SSL, 324-25

understanding, 322-24

compromised server, 324

deletion attacks, 323

fake server (traffic redirection), 324

human engineering, 324

insertion attacks, 323

overview, 322

replay attacks, 323

session hijacking, 323

sniffing, 322

newconn(), 474, 475, 476, 484

newline character, 91

Next » button, 382

NFS (Network File System), 216

nlst(), 284, 288

Node Types, 158

.\Noinferiors flag, 238

nonblocking mode, 469

None object, 318

non-HTTP protocols, 123, 125

non-UNIX platforms, 55, 56

\Noselect flag, 238

Index

503

504

Not(), 263

notify(), 467

nowait implementation, 52-53

nowait server, 52

nowait type, 47

NS record, 76, 79, 82

nslookup(),81

NTEventLogHandler(), 55

ntransfercmd(), 279, 280-81,282,284

numbergen(),450

numeric style, 306

o
ODBC driver conversion layer, 297

ok parameter, 335

openlog(),56

OpenSSL, 330-31

OpenSSL, verifying server certificates with,
331-38

obtaining root certificate authority
certificates, 332

overview, 331

verifying the certificates, 332-38

operating system lookup services, 66-75

obtaining information about your
environment, 74-75

performing basic lookups, 66-70

performing reverse lookups, 70-74

opportunistic encryption, 206

Or(),263

O'Reilly's Meerkat service, 160

osslverify.py file, 338

p

paramstyle variable, 306

parse(), 151

parsedate_tz(), 179

parsing HTML and XHTML. See HTML and
XHTML, parsing

pass_(), 212

passive mode, 276

passwd parameter, 299

path attribute, 389

path parameter, 47

PATH_INFO environment variable, 374,
375,377-78,380

peek,245

PERMANENTFLAGS summary item, 240

physical transports, 9

pickle module, 159,361

PID (process ID), 420-21, 421, 484

plain encoding, 181

Point to Point Protocol (PPP), 9

poll(), 104-9,469,470,474,475,476,
481,485

POLLERR option, 106

POLLHUP option, 106

POLLIN option, 106

POLLNVAL option, 106

POLLOUT option, 106

POLLPRIoption, 106

POP (Post Office Protocol), 211-22

connecting and authenticating, 212-14

deleting messages, 218-21

downloading messages, 216-18

obtaining mailbox information, 215-16

overview, 211

POP3 object, 212

poplib module, 211, 216

poplib.errocproto, 212

port name 3-4, 21

port number, 4

port option, 49

port parameter, 47, 299

POST method, 342, 387

CGI, 380-83

and mod_python, 410-12

submitting form data with, 120-21

Post Office Protocol. See POP (Post Office
Protocol)

PostgreSQL, connecting, 298

pow(), 357,358

PPP (Point to Point Protocol), 9

prebuilt handlers, in mod_python, 415

print statement, 372

prinCday_quiz(),382

printf(), 306

printpart(), 260

printqueryresult(), 267

printXS09 (), 335

private key, 325

process ID (PID), 420-21, 484

processclients (), 460, 461, 462

producer/ consumer problem, 453

protocol class, 227

Protocol class, 488

protocol object, 231

Protocol object, 488

protocol option, 49

ps command, 420, 424

PSP (Python Server Pages) handler, 415

psycopg connect(), 298

psycopg module, 298

PTR record, 76, 82

public-key cryptography, 325

Publisher handler, 404, 415

pwd(),278

pwd module, 159

PyDNS,65

PyDNS, using for advanced lookups, 76-85

DNS records, 76-77

installing PyDNS, 77

querying specific name servers, 79-81

resolving lookup results, 82-85

simple PyDNS queries, 77-79

pyformatstyle, 307,308

pyOpenSSL,326,330

Python 2.1,301

Python Database Topic Guide, 296

Python Server Pages (PSP) handler, 415

PythonDebug line, 399

PythonHandler, 400-401

PythonHandler test line, 399

PythonInterpPerDirective configuration
directive, 414

PythonInterpPerDirectory configuration
directive, 414

PythonInterpreter configuration
directive, 414

Q
qmark style, 306, 307

qtype argument, 77

Query(), 263

quit (), 212, 218, 278

Quoted-printable encoding, 181

R
race conditions, 436, 447

rcpt to command, 202

reactor.run(),227

reactor.stop(), 227, 231

read(), 19,23, 122, 123,281,327

readevent(),474,475,476

readline(), 23, 91, 281

readlines(), 13

reap (), 429, 432

reaping, 427

Received headers, 176

Received headers (MIME), 171

\ Recent flag, 249, 251

RECENT summary item, 240

recursive name server, 65

recv(), 19,23,26,29,33,38,63,90,104,
105,281

recvfrom(),23,33,44,52,53

Index

505

506

Red Hat, 46

release(), 448, 450, 452

reliable protocol, 5

Remote Method Invocation (RMI) , 159

Remote Procedure Call (RPC) server, 159,355

REMOTE_ADDR environment variable, 374

REMOTE_HOST environment variable, 374

REMOTE_USER environment variable, 388

removeFlags(), 252

rename(),294

renaming files (FTP), 294

replay attacks, 323

Reply-To header (MIME), 173

repr(),94

req(),77

req.path_info file, 405, 407

Request object, 114, 115

request variable, 352

RequestHandler instance, 342

req.write(), 400, 407

resolver libraries, 66

retr(), 216, 217

RETR command, 283

retrbinary(), 279, 283

retrieving data, 310-13

using fetchall(), 310-11

using fetchmany(), 311-12

using fetchone(), 312-13

retrieving message parts (IMAP) , 255-62

finding message structures, 256-60

retrieving numbered parts, 260-62

retrlines(),278

RFC2109,389

RFC3501,225,228,249

RFC86,33

RFC959,275

rtile object, 351

rfile variable, 342

rmd(), 293

RMI (Remote Method Invocation), 159

\r\n line ending, 268

rollback(), 303, 305

rowcount attribute, 315

RPC (Remote Procedure Call) server, 159,355

runO,488

runquery(), 267

RuntimeError exceptions, 60

s
SampleScanner class, 151

SAX, 154,157

scanning folders (FTP), 284-90

scanNode(), 151

SCRIPT_NAME environment variable, 377

search(), 262-63, 267

search keywords, 264

secure attribute, 389

Secure Sockets Layer. See SSL (Secure
Sockets Layer)

secure sockets layer, 205-8

Secure Sockets Layer (SSL), 6

\Seen flag, 245

select(), 104-9,239,240,469

self.data, 137

self.logout(), 235

self.processing flag, 136

self.stopreactor callback, 231,235

self.taglevels list, 136-37

semaphore, 450

Semaphore object, 452

send(), 12, 19,23,29,30,63, 104,471,
474,475

SEND text, 476, 480

send_header (),342

send_response(),342

send_selector(), 15

sendall(), 26, 28, 90, 327,470,471

sendAll(), 488

Sender line, 171

sendmail(), 198-99,203,207,209

sendmail command line, 172

sendto(), 23, 33, 44

serve_forever(), 342,367

server certificates, verifying with OpenSSL,
331-38

obtaining root certificate authority
certificates, 332

overview, 331

verifying the certificates, 332-38

server option, 49

server_args option, 49

SERVER_NAME environment variable, 375

SERVER_PORT environment variable, 375

server-side port numbers, 7

service declaration, 48

session hijacking, 323

session token, 388

seCservec... functions, 365

seCverify(), 335

setCookie(), 391, 392

setDaemon(), 445

setFlags (), 252

setsockopt(), 37, 96

setsockopt(2) manpage, 38

settimeout(), 25, 89

SGML,147

SGML Framework, 128

SGML (Standard Generalized Markup
Language), 145

SGML tag, 145

shared variables, and threading, 446-47

s.has_extn(),205,209

shutdo~(),26-28,29,31,43,88

SIGCHLD signal, 423, 427

SIGINT signal, 457

signal.signal(),428

Simple API for XML (SAX), 148

simple message transport protocol. See
SMTP (simple message transport
protocol); SMTP (simple message
transport protocol)

Simple Object Access Protocol (SOAP), 159

SimpleCookie object, 391, 392

.1 simplehttp.py fIle, 349

SimpleHTTPServer, 348-49

SimpleHTTPServer module, 345

./simple.pyfile,357

SimpleXMLRPCServer,355-68

basics, 356-58

CGIXMLRPCRequestHandler, 365-67

DocXMLRPCServer, 364-65

exploiting class features, 361-63

overview, 355-56

serving functions, 359-60

single-threaded program, 444

sleep (), 455, 463

SMTP (simple message transport protocol),
197-210

authenticating, 208-9

error handling and conversation
debugging,199-202

exchange, 171, 172

getting information from EHLO, 202-4

overview, 197

SMTP library, 197-99

tips, 209-10

using secure sockets layer and
transport layer security, 205-8

smtplib module, 197, 199,202,208,210

smtplib.SMTP object, 198

smtplib.SMTPException, 199

. smtpobj.secdebugievel(l) call, 199

sniffing, 322, 323

SO_BINDTODEVICE option, 37

SO_BROADCAST option, 37

SO_DONTROUTE option, 37

Index

507

508

SO_KEEPALIVE option, 38

SO_OOBINLINE option, 38

SO_REUSEADDR flag, 351

SO_REUSEADDR socket object, 36-37, 38

SO_TYPE option, 38

SOA records SOA =Start ofAuthority, 76

SOCK_DGRAM protocol, 20, 32, 100

SOCK_STREAM protocol family, 20, 32

SOCK_STREAM socket type, 99, 100

sockaddr data, 67, 68

socket(), 19

socket module, 20, 66, 94,326

Socket objects, 23

sockectype option, 49

socket(7) manpage, 38

socket.AF_INET socket, 98

socket.AF_INET6 socket, 98

socket.connect(), 67

socket.error, 199

socket.error exception, 25, 26, 104, 123, 283

socketJromfd(),51

socket.gaierror, 199

socket.gaierror exception, 11, 25, 26

socket.getaddrinfo(),67-69

socket.getfqdn(), 74-75

socket.gethostbyname(), 67

socket.gethostname(),74-75

socket.getservbyname(),32

socket.herror(), 71, 199

socket.herror exception, 25

socket.makefile(), 351

sockets

binding, 39

communicating with, 23

creating, 20-22

creating socket object, 36

overview, 19-20

setting and getting socket options,
36-38

SocketServer, 341-54

BaseHTTPServer, 341-48

handling multiple requests
simultaneously, 346-48

handling requests for specific
documents,343-46

overview, 341-43

CGIHTTPServer, 349-50

implementing new protocols, 350-52

IPv6,352-53

overview, 341

SimpleHTTPServer, 348-49

socket.SOCK_STREAM protocol type,
69-70

socket.socket(), 10, 14,51,67

socket.timeout exception, 25, 89, 90

SOL_SOCKET socket options, 37

sort(),360

sortlist(), 360

spam scanner, 172

special characters, escaping (CGI), 383-85

spin(), 466,467

spinner, 466

split() , 215

SQL. 295, 296-97

srvr.registecintrospection_functions(),365

srvr.register_multicall_functions(), 367

s.sendall(), 12

s.setsockopt(socket.SOL_SOCKET,
socket.SO_BROADCAST, 1) call, 95

SSL (Secure Sockets Layer), 321-38

overview, 321

in Python, 326

reducing vulnerabilities with SSL, 324-25

understanding network vulnerabilities,
322-24

compromised server, 324

deletion attacks, 323

fake server (traffic redirection), 324

human engineering, 324

insertion attacks, 323

overview, 322

replay attacks, 323

session hijacking, 323

sniffing, 322

using built-in SSL, 326-30

using OpenSSL, 330-31

verifying server certificates with
OpenSSL, 331-38

obtaining root certificate authority
certificates, 332

overview, 331

verifying the certificates, 332-38

SSL-Enabled Communication (HTTPS), 116

sslwrapper class, 330

Standard Generalized Markup Language
(SGML),145

start (), 445

startthread(),459

starttls (), 205, 210

statU, 212

stateclass object, 474,475,483

stateless protocol, 388

Stats class, 362

stopreactor(), 230, 231

storbinary(), 281, 282

storlines(), 281, 282

str(),319

Stream Protocol, 98

stream socket type, 49

stream (TCP) communication, 10

stream type, 47

StreamRequestHandler class, 351, 352

StringIO module, 270

strings, transmitting, 90-92

leading size indicator, 92

unique end-of-string identifiers, 91-92

struct function, 94

struct module, 93

structure value, 260

Subject header, 173

Subject line, 178, 188

synchronous communication, 469

sys.exc_info (), 60

sys.exit(), 42, 125,421,432-33

sys.exit(l) call, 60

syslog, logging with, 55-60

sys.stdout line, 46

system(), 424

SystemExit exception, 42

system.listMethods(), 161,365

system.methodHelp(), 161,365

system.methodSignature(), 161,365

T
target setting, 445

tar.gz file, 332

TCP basics, 3-6

addressing, 4

reliability, 4-5

routing, 5

security,6

telnet command, 41

Telnet Protocol, 15

TerminalPassword class, 117

testclient.py file, 367

testcookie key, 392

test.handler(),399

Text objects, 150

text/plain component, 262

text/x-diff, 259

. thread module, 444

Thread object, 445

thread pools, 450

Index

509

Index

510

threadcode(),445

threading, 443-68

avoiding deadlock, 453-55

being thread-safe, 447-50

managing access to shared and scarce
resources, 450~53

overview, 443-45,444-45

using shared variables, 446-47

writing threaded clients, 463-67

writing threaded servers, 455-63

overview, 455-57

threaded chat server exercise, 457

using thread pools, 457-63

threading module, 444, 448

ThreadingHTTPServer class, 348

ThreadingMixIn class, 348, 363

threads.def handleconnection (), 459

threadworker(),460

"Tidy" library, 128

Time(),317

TimeFromTicks(), 317

time.mktime(), 179

timeouts, 89-90

TimeRequestHandler, 351

TimeServer class, 351

time. sleep (), 428, 430

Timestamp (),317

TimestampFromTicks(), 317

time.time(),317

TitleParser class, 129

TLS (Transport Layer Security), 6, 205-8, 321

To Header (MIME), 171

To header (MIME), 172

toprettyxmH), 157

toxml(), 157

traceroute program, 5

transactions, 302-5

hiding changes until finished, 303-5

performance implications of
transactions, 303

transfer encodings, 181

transmitting strings, 90-92

leading size indicator, 92

unique end-of-string identifiers, 91-92

Transport Layer Security (TLS), 6, 205-8,321

tree-based parser, 148

try blocks, 42, 460

try except clause, 60

try finally blocks, 43, 214, 437

TT tags, 385

Twisted

and IMAp, 225-36

error handling, 231-36

logging in, 228-31

overview, 226-28

using for servers, 485-88

lWisted IMAP library, 240, 243

lWisted project, 470

twisted.protocols.imap4 module, 263

TXT records, 76

u
UDP (User Datagram Protocol), 7-8,20,23,

31-33,37,43-45,47,49,95,96,100

udpechoserver.py server, 32

UID, 245, 248

uid parameter, 240, 248

UIDNEXT summary item, 240

UIDVALIDITY summary item, 241, 243

uithread(), 466

UNIX, 45, 46, 55, 159, 172,218,346,386,
388,396,420,422,424,427,457,484

UNIX-like operating system, 7, 14, 16, 19,
21,38,45,55,56,66,68,77

UNLISTED type, 49

unlock command, 437

\Unmarked flag, 238

UNSEEN summary item, 241

urI variable, 357,367

URLError exception, 122, 123

urllib, 16, 113, 119, 120

urllib module, 412

urllib2 module, 113, 114, 115, 116, 118, 121,
122,125,277

HTTPError exception, 118

HTTPPasswordMgr class, 117

URLError class, 123

URLError exception, 121

urlopen(), 117

urllib.quote_plus(), 383, 385

user(), 212

user parameter, 299

user xinetd option, 49

user-visible URLs, 401

using data types, 317-19

uTidylib library, 133

util.FieldStorage class, 409

UUCP (UNIX-to-UNIX Copy Protocol), 58

v
v-card,259

verify(), 335, 338

version attribute, 389

virus scanners, 172

voidcmd(),280

voidresp(),281

vulnerabilities, network. See network
vulnerabilities

w
wait(), 422, 423, 427, 467

wait server, 51-52, 54

wait type, 47

wait xinetd option, 49

waitpid(), 427, 432

watchboth(), 476

Web client access, 113-26

authenticating, 115-18

fetching Web pages, 114-15

handling errors, 121-25

connection errors, 121-23

data errors, 123-25

overview, 113

submitting form data, 118-21

with GET, 118-20

with POST, 120-21

using non-HTTP protocols, 125

wfile object, 351

wfile variable, 342

Windows, 46,55,66,68,69,77,104,346,356

write (), 13, 19,23,28,218,279,327,488

writeevent(), 474, 475

_writeheaders(),345

writelastaccess(),437

writeline(), 279

writerow(), 142

writing threaded clients, 463-67

writing threaded servers, 455-63

overview, 455-57

threaded chat server exercise, 457

using thread pools, 457-63

x
\xfc code, 188

XHTML, 148. See IITML and XHTML, parsing

xinetd, configuring, 48-50

XML,127-28

Index

511

XML and XML-RPC, 145-66

overview, 145-48

summary, 166

using DaM, 148-58

full parsing with DaM, 151-54

generating documents with DOM,
154-57

type reference, 157-58

using XML-RPC, 159-66

error handling, 165

full-featured example, 162-65

introspection, 160-62

type handling, 165-66

xml.dom.minidom directory, 157

xml.dom.Node directory, 157

XML-RPC Type Conversion, 166

xmlrpclib Exceptions, 165

xmlrpclib module, 160, 165

xml.sax.saxutils.XMLGenerator class, 157

z
Zolera SOAP Infrastructure (ZSI), 159

