

print "Requesting document...",
sendall(ssl, "GET / HTTP/1.0\r\n\r\n")
print "done."

s.shutdown(l)

while 1.
try:
buf = ssl.read(1024)
except socket.sslerror, err:
if (err[o]) in [socket.SSL_ERROR ZERO RETURN, socket.SSL ERROR EOF]:
break
elif (err[o]) in [socket.SSL_ERROR WANT READ,
socket.SSL_ ERROR WANT WRITE]:
continue
raise
if len(buf) == 0:
break
sys.stdout.write(buf)

s. close()

When yourunthis program (it needs no argwnents), you'll noticeit connecting
to the www.opensd.org website. Then it establishes an SSL. connection, and com-
municates like normal with HTTP. It will print out the homepage for that site.

Youll notice the sendall () functioninthe program. SSL objects provide only
two methods: readO and writeO. They correspond roughly to the recvO and
send () methods of sockets. Like send (), the write() method doesn't guarantee
thatitwill actually write out all therequested data. Unfortunately, the SSL objects
don't provide an equivalent for the standard socket sendall 0 method described
inChapter 1, so that must beimplementedinyour programitself. Thisversion of
sendall () simply ensures that the entire string gets transmitted, just like the
standard sendall () method.

Notice the exception handling surrounding the call to readO. Python's built-
in SSL support can raise exceptions on end-of-file or even while reading. This
code makes sureto exit theloop when an appropriate end-of-fileisreceived, and
to just ignore the other exceptions that don't signify an error.

Many network protocols these days are line-oriented. SS. objects don't
provide areadline() method, which makesworking with line-oriented protocols
difficult. Here's an SSL wrapper object that adds some missing functions:

327

Chapter 15

#!/usr/bin/env python
Badc S8 example with wrapper - Chapter 15 - basic-wrap.py

import socket, sys

class sslwrapper:
def _init_ (self, sslsock):
self.sslsock = sslsock
self.readbuf = "
self.eof = 0

def write(self, buf):
byteswritten =0
while byteswritten < len(buf):
byteswritten += self.sslsock.write(buf[byteswritten:])

def read(self, n):
retval ="
while not self.eof:
try:
retval = self.sslsock.read(n)
except socket.sslerror, err:
if (err[O]) in [socket.SS._ERROR ZERO RETURN,
ocket. SSL_ERROR_EOF:
self.eof = 1
elif (err[Q]) in [socket.SSL_ERROR WANT READ,
socket. SSL_ERROR WANT WRITE]:
continue
else:
raise
bresk

if len(retval) == O:
self.eof = 1
return retva

def read(self, n):
If len(self.readbuf):
Return the stuff in readbuf, even if less than n.
It might contain the rest of the line, and if we try to
read more, it might block waiting for data that is not
coming to arrive.
bytesfrombuf = min(n, len(self.readbuf))
retval = self.readbuf[:bytesfrombuf]

328

self.readbuf = self.readbuf[bytesfrombuf:]

return retval

retval = self._read(n)

if len(retval) > n
self.readbuf = retval[n:]
return retval[:n]

return retval

def readline(self, newlinestring = "\n"):
retval = .,
while 1:
linebuf = self.read(1024)
if not len(linebuf):
return retval
nlindex = linebuf.find(newlinestring)
if nlindex != -1:

retval += linebuf[:nlindex + len(newlinestring)]
self.readbuf = linebuf[nlindex + len(newlinestring):] \

+ self.readbuf
return retval
else:
retval += linebuf

print "Creating socket...",

s = socket.socket(socket.AF INET, socket. SOCK STREAM)

print "done

print "Connecting to remote host...",
s.connect(("www.openssl.org”, 443))
print "done."

print "Establishing SS....",

ssl = socket.ssl(s)
print "done

ssl = sslwrapper(ssl)
print "Requesting document .e. ",
sd.write("HEAD 1| HTTP/I,O\r\n\r\n")

print "done"

s.shutdown(l)

329

Chapter 15

330

while 1:
line = ssl. readline("\T\n")
if not len(line):
bresk
print "Recaived line:"J line.strip()

s.close()

vVhile this program simply reads afew lines from the server, you can take the
sslwrapper class and use it withyour own programs. The sslwrapper class supports
enoughto beadrop-inreplacement for astandard socket object in many programs.
Also note that you may not need to use it at al; some Python modules, such as
urllib2 discussed in Chapter 6, already support Python's built-in SSL.

Using OpenSSL

Inadditionto the built-in SSL support, there'salso a binding for OpenSSL available
for Python called pyOpenSSL. Using pyOpenSSL is similar to the build-in SSL
capabilitiesin the sense that it, too, createsawrapper around the socket. However,
pyOpenSSL'swrapper is more powerful and full of features than the default one,
and notably will not require the sort of add-on glue that you sawi n basic-wrap. py
for socket. ssl.

Before you can use OpenSSL inyour program, you'll need to obtain the
pyOpenSSL distribution. Ifyour operating system doesn't provide it, you may
download it from http://pyopenssl. sourceforge. net!. Wmdows users may down-
load a prebuilt version from http://twistedmatrix. com/products/download. I nstall
that before running programsin this section. These examples should work with
version 0.5.1 and above.

Here's a basic example for use with OpenSSL:

#!/usr/bin/env python
Basic OpenSSL example - Chapter 15 - osslbasic.py

import socket J sys
from OpenSSL import SSL

Create SS. context object
ctx = SS..Context(SSL.SSLv23 METHOD)

print "Creating socket...",
s = socket.socket(socket. AF_INET, socket.SaCK_STREAM)
print "done

Create SSL connection object
ssl = SSL.Connection(ctx,)

print "Establishing S ...",
ssl.connect((‘www.openssl.org’, 443))
print "done."

print "Requesting document...",
ssl.sendall("GET / HTTP/1.0\r\n\r\n")
print "done."

while 1:
try:
buf = ssl.recv(4096)
except SSL.ZeroReturnError:
bresk
sys.stdout.write(buf)

ssl. closy()

Ifyou run this example (you canjust use. /osslbasic. py), you'll seeit connectto
www.openssl.org using SSL, and dump that site's homepage. To do that, it first
creates a Context object by calling SSL. Context. Next, a socket is created as usual.
Mter that, an SSL Connection object is created. From thispoint on, all operations
will take place using this Connection object; the socket object isno longer needed.
A connectionis opened, and communication proceeds as normal-just asit
wouldwith astandard socket. Infact, you could pass the Connection object to just
about any function that expects a socket object. Once the connectionis established
that existing code should be able to work with this object with only a small mod-
ification to the reading code.

Verifying Server Certificates with OpenSSL

The previous example connected to an SSL server, but it didn't verify the authen-
ticity of that server. Inthissection, you'll learn how to do server verificationinthe
same manner that web browsers do.

331

chapter 15

332

Obtaining Root Certificate Authority Certificates

Thefirst thing you need to do is obtain the certificates for the root (or master)
certificate authorities. These organizations are recognized for doing a good job
signing keys and verifying identities. There'sno formal standard for who isallowed
to be a CA. Ifyou don't have the certificates aready, you can download a set of
certificates using the latest tar. gz file from http://ftp.debian. org/debian/pool/
main/c/ca-certificates. Youll need to unpack the file and run the included
Makefile to generate the certificate files. 1fthis doesn't work for you, you may be
able to export the certificates from your web browser. Browsers such as Mozilla
support exporting certificates.

Next, you'll want to generate one master file with the certificates. That's
easy to do; you can simply concatenate al the certificate files together
(cat *.crt > filename will do thetrick on UNIX systemsif you put the files
inasingledirectory; on Windowsyou could use copy filel. crt+file2.crt+...
dest. crt). You should wind up with one big file with many BEGIN CERTIFICATE
and END CERTIFICATE blocks.

Ifyou still have trouble, you can usethe certfiles. crt file included online
with the exampl e files for this book. However, it isn't kept up to date, so you
should still seek out one of the other methods if possible.

Verifying the Certificates
Here's an example programthat connectsto aremote site and verifiesits certificate:

#!/usr/bin/env python

OpenSSL example with verification - Chapter 15 - osslverify.py
#

Command-line arguments -- root CA file, remote host

import socket, sys
from OpenSSL import SSL

Grab the command-line parameters
cafile, host =sys.argv[l;]

def printx509(x509):

"“"'Digplay an X.509 certificate" ™

fields = {'country_name" 'Country’,
'SP': 'State/Province’,
‘L' 'Locality’,
'0": 'Organization’,
'OU" 'Organizational Unit',
'CN" 'Common Name,
‘email': 'E-Mail’}

for field, dex in fields.items():
try:
print "%30s %s' % (desc, getattr(x509, field))
except:
pass

Whether or not the certificate name has been verified
cnverified =0

def verify(connection, certificate, ernum, depth, ok):
"""Verify a given certificate™"
global cnverifie

sUbject = certificate.get_subject()
issuer = certificate.get_issuer()

print "Certificate from:"
printx509(subject)

print "\nlssued By:"
printx509(issuer)

iIf not ok:
OpenSSL could not verify the digital signature.
print "Could not verify certificate."
return 0O

333

Chapter 15

Digital signature verified. Now make sure it's for the server
we connected to.
iIf subject.CN == None or subject.CN.lower() '= host.lower():
print "Connected to %s, but got cert for %s' %\
(host, subject.CN)
else:
cnverified = 1

If depth == 0 and not cnverified:
print "Could not verify server name failing."
return O

print "-" * 70
return 1

ctx = SSL.Context(SSL.SSLv23 METHOD)
ctx.load verify locations(cafile)

Set up the verification. Notice we pass the verify function to
ctx.set_verify()
ctx.set verify(SSL.VERIFY_PEER | SSLVERIFY_FAIL IF NO PEER CERT, verify)

print "Creating socket...",
s = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
print "done"

ssl = SSL.Connection(ctx, S)

print "Establishing SSL...",
ssl.connect((host, 443))
print "done"

print "Requesting document.e. "
ssl.sendall("GET 1 HTTP/1.0\r\n\r\n")
print "done"

while 1
try:
buf = ssl.recv(4096)
except SSL.ZeroReturnError:
break
sys.stdout.write(buf)

ssl. close()

Let's go through this code. The printxS09() function simply displays infor-
mation about a certificate. It uses the different attributes (eN, au, and so on) asa
key into the object. Each time verifyO iscalled, it will call printxS090 twice:
oncefor thesubject (the certificateitself) and oncefor theissuer (the name of the
organization that issued the certificate).

OpenSSL handles verification of the cryptographic signatures itself, based
onthefilename supplied onthe command line. However, there's one more detail
that it doesn't handle: verifying that the certificate given to you actually was
issued to the server the programis connecting to. Thisisimportant. Otherwise,
an attacker could simply obtain his ownvalid certificate, redirect traffic to his
server, and present the substitute certificate. By convention, the common name
(eN) attribute on a certificate must correspond exactly with the hostname used
to connect.

But there'satrick-the verify () function could be called multipletimes,
and as long as the common name passes at | east once, that's all that's necessary.
Therefore, the global variable cnverified defaults to false, but is set to trueif the
common name isfinally verified.

The verify () function is passed several parameters by OpenSSL, though |
don't use them all. The function starts by displaying information about its certif-
icates. Thenit checksthe ok parameter. If ok is false that means that OpenSSL
didn't manage to verify things onitsend. An error messageis printed, andfalseis
returned, telling OpenSSL to abort.

Next, the common name is compared as described earlier. Ifit matches,
cnverified is set to atrue value.

Finaly. if depth is zero (meaning that thisis the last time verified will be
called), the cnverified statusis checked. If cnverified has never been set to true,
an error message is printed, and afase value isreturned. Otherwise, atruevalue
isreturned.

After the verify () definition, the code defines the SSL context. This codeis
mostly the same as the previous example, but there aretwo extracalls. Thecall to
load verify 10cations() specifiesthe name of thefilethat holdsthe CA information.
Thecall to set_verifyO defineswhat kind of verification OpenSSL is to do, and
saysthat theverification callback functionisverify. Theremainder of the codeis
the same asthe previous example.

Here are some examples of this programin action:

Chapter 15

$./osslverify.py certfiles.crt www.openss.org
Creating socket done.
Establishing S done.
Requesting document ...
Certificate from:
Common Name www.opensd.org
Locality: None
Organization; The OpenSSL Project
Organizational Unit: None

Issued By:

Common Name OpenSSL CA

Locality: None
Organization: The OpenSSL Project
Organizational Unit: Certificate Authority
Could not verify certificate.
Traceback (mogt recent call last):
File "./osslverify. py", line 74, in ?
ssl. sendall("GET / HTTP/1.0\r\n\r\n")

SSL.Error: [('SSL routines', 'SSL3 GET SERVER CERTIFCATE,
‘certificate verify failed')]

Inthe previous example, | was presented with a certificate. However, that
certificate was signed by the OpenSSL's own CA, whichisn't recognized inthe
program'slist of root CAs Notice that this error caused an exception to be raised,
which stopped the program before any datawas actually exchanged. That's a dif-
ferent behavior from the earlier examples with Python's built-in SSL libraries,
which didn't complainat al. A real web browser would generally prompt the user
at this point, asking whether to proceed anyway.

Here's an example of a successful verification:

$./osslverify.py crtfiles.crt www.accountonline.com
Creating socket... done.
Establishing SSL .. done
Requesting document ...
Certificate from:

Common Name: None

Locality: None
Organization: VeriSign, Inc.
Organizational Unit: Class 3 Public Primary Certification Authority

Issued By:
Common Name: None
Locality: None
Organization: VeriSign, Inc.
Organizational Unit: Class 3 Public Primary Certification Authority
Connected to www.accountonlinecom. but got cert for None

Certificate from:
Common Name: None
Locality: None
Organization: VeriSign Trust Nework
Organizational Unit: VeriSign, Inc.

Issued By:
Common Name: None
Locality: None
Organization: VeriSign, Inc.
Organizational Unit: Class 3 Public Primary Certification Authority
Connected to www.accountonlinecom. but got cert for None

Certificate from:
Common Name www.accountonline.com
Locality: Weehawken
Organization: Citigroup
Organizational Unit: WHG-weproxy6

Issued By:
Common Name None
Locality: None
Organization: VeriSign Trust Network
Organizational Unit: VeriSign, Inc.
done.

HTTP/1L1 200 OK

Server: JavaWebServer/2.0

Content-length: 164

Content-type: text/html

Last-modified: Mon, 05 Nov 2001 14:27:17 GMT
Connection: close

Dae Tue 27 Jan 2004 01:22:11 GMT

337

U per 19

338

In this case, verify() was called three times. Thefirst two times, the certif-
icate in question didn't present acommon name. Thethird time the common
name matched, so the verification was successful. You can see the output from
the server just past the verification results.

Asyouwork on SSLprojects, | suggest you start withthe codefor osslverify .py.
Withit, you'll be able to make any of your programs SSL-aware. You can also start
with any of your existing code and add SSL support to it by copying the connection
code and verify() from osslverify. py. Thisisal you need to use SSL. wherever
you like.

SImmary

There are many different ways that attackers can breach the security of networks
and systems. SSL, the Secure Sockets Layer, is designed to help prevent many dif-
ferent attacks, though like any security technology, itisn't foolproof. SSL provides
two basic services. encryption of the communications and authentication of the
remote server or client.

Two SSL implementations exist for Python: the built-in SSL support and the
pyOpenSSL library. The built-in SSL library has the advantage that many Python
usersand devel opers already haveit, but it containsfewer features than acomplete
SSL library and requires more work to use.

pyOpenSSL is a full interface to the popular OpenSSL library for using SSL
encryption. Python programmers can useits Context objectsal most interchangeably
with standard socket objects, but need to adjust network reading code.

pyOpenSSL also provides support for verification of peer certificates-
acritical part of securing network communications. In ossiverify. py, you saw
the function verify(), which handled the authentication of the remote machine.

Part Hve
Server-Side Frameworks

CHAPTER 16

SocketServer

Inthefirst 15 chapters of this book, | focused mostly on writing network clients
with Python. I'd now like to turn to writing network servers in Python. While
protocol-specific server modules are morerare than client modules, there's the
generic SocketServer framework and afew protocols based upon it.

SocketServer is a Python framework for handling requests from clientsin a
server. Pythonincludes SocketServer already. SocketServer takes advantage of the
object-oriented nature of Python to help youimplement a server protocol. To
write a program that uses SocketServer, you actually define classes that inherit
from a SocketServer base class. Python also provides classes that implement
HTTPin order to help get you started.

SocketServer iswell suited for server applications that receive one request
from a client and send back one reply. Some servers may have more advanced
needs than a basic SocketServer application; Chapters 20-22 discuss writing
those types of servers.

The protocol-specific SocketServer implementations that comewith Python
al relateto HTTP serversinsomeway. Inthis chapter, you'll beintroduced to the
basic HTTP servers, and will then learn how to write a server for your own pro-
tocol using SocketServer.

Usng BaseHTTPServer

As | mentioned intheintroductionto this chapter, Python shipswith some
SocketServer classesto help you get started more quickly with certain protocols.
The BaseHTTPServer modul e provides the basic support you may need to write
your own HTTP (web) server. Like the other SocketServer-related classes, it
definestwo classes: aserver object and arequest handler. For BaseHTTPSarver,
these classes are HTTPServer and BaseHT TPRequestHandler. Here's an example
showing their usage. This simple HTTP server will send out the same page to
every client, but it does demonstrate the use of BassHTTPSaver:

341

wriupLer 1o

342

#!/usr/bin/env python
Badc HTTP Server Example - Chapter 16 - basichttp.py

from BaseHTTPSarver import HTTPServer, BaseHTTPRequestHandler

class RequestHandler(BaseHT TPRequestHandler):
def writeheaders(self):
self.send_response(200)
self.send_header('Content-type’, ‘text/html’)
self.end_headers()

def do HEAD(sH):
self. writeheaders()

def do GET(Hf):
self. writeheaders()
self. wfile. write (""" <HTML><HEAD><TITL B> Sample Page<ITITL E></HEAD>
<BODY>This is a sample HIML page. Every page this server provides
will look like this</BODY></HTML>"")

serveraddr - ('', 8765)
srvr = HTTPSarver(serveraddr, RequestHandler)
srvr.serve_forever()

Toimplement your own HTTPserver, yOU'll subclass BaseHT TPRequestHandler.
The classin this example doesn't do much; it always returns a successful value
and always returns the same document to the client, no matter what the client
requested.

The BaseHTTPRequestHandler class provides some convenient methods for
you, such as the send _responseO, send_headerO, and end _headersO methods,
which are used in this example. You can also use the rfile and wfile variables to
access the datastream directly, as | did here, and send the document back.

Thelast three lines of code create and start the server. Each time aclient
connects. the serve_foreverO method will receive the connection, create
RequestHandler instance, and have the RequestHandler service the request. The
RequestHandler code that was inherited from BaseHTTPRequestHandler will receive
and parse the request. 1t will thencall ado_... () method, where the nameis
derived from the HTTP method used. The most common HTTP methods are GET,
HEAD, and POST. Thus, thedo_... () methods are generally the entry point into the
code you write.

You can simply run ./basehttp. py to invoke the server. Itwill continue running
until it isexplicitly terminated, such as by a Ctrl-C onthe terminal, Ctrl-Break on
a Windows console, or by the machine going down. Exceptionsinthe request

SocketServer

handl er will cause the current connection to be closed, but the server will continue
handling other requests.
Hereswhat it looks like from aclient that's connecting to this server:

$ telnet localhost 8765

Trying 127.0.0.1...

Connected to heinrich.complete.org.
Bcape character rs N .°

HEAD / HTTP/1.0

HTTP/1.0 200 OK

Server: BaseHTTP/0.3 Python/2.3.3
Date Sat, 31 Jan 2004 21:55:01 GMT
Content-type: text/html

Connection closed by foreign host.
$ telnet localhost 8765

Trying 127.0.0.1...

Connected to heinrich.complete.org.
Escape character is 1/\].

GET / HTTP10

HTTP/1.0 200 OK

Server: BaseHTTP/0.3 Python/2.3.3
Date Sat, 31 Jan 2004 22:02:08 GMT
Content-type: text/html

<HTML><HEAD><TITLE>Sample Page</TITLE></HEAD>
<BODY>This is a sample HIML page. Every page this server provides
will look like this</BODY></HTML>

Connection closed by foreign host.

Note that you'll have to press Enter twice after typing the GET request. For a

different view, you can actually use aweb browser to connect to this example.
You can use the URL http://localhost : 8765/ for your browser.

Handling Requests for Specific Documents

Giving asingle document to everyone probablyisn't terribly useful. Here'samore
complete example. It serves up two documents: astatic one, and onethat's
dynamically generated.

343

#!/usr/bin/env python
Badc HTTP Server Example with Two Documents - Chapter 16
basichttpdoc.py

from BaseHTTPSaver import HTTPSarver, BaseHTTPRequestHandler
import time

starttime = time.time()

class ReguestHandler(BaseHT TPRequestHandler):
"""Definition of the request handler. "
def _writeheaders(self, doc):
""" Write the HTTP headers for the document. 1f there's no
document, send a 404 error code; otherwise, send a 200 success code.
if doc is None
self.send_response(404)
el se:
self.send_response(200)

Always serve up HIML for now.
self.send_header('Content-type’, 'text/html")
self.end_headers()

def _getdoc(self, filename):
""" Handle a request for a document, returning one of two different
pages as appropriate."""
global starttime
if filename = "I":
return """<html><head><title>Sample Page</title></head>
<body>This is a sample page. You can also look at the
server statistics.
<1 body> < html>

elif filename = '/stats.html’:
return """<html><head><title>Statistics</title></head>
<body>This server has been running for % seconds.
</body></html>
"" %int(time.timeO - starttime)

else:
return None

SocketServer

def do HEAD(sHf):
doc = self._getdoc(self.path)
self._writeheaders(doc)

def do GET(sdlf):

doc = self. getdoc(self.path)
self._writeheaders(doc)
if doc is None
self.wfile. write(""" <hitml><head><t itle>Not Found</ti tle></head>
<pody>The requested document '%s was not found.</body>
</html>
""" %self. path)
else:
self.wfile.write(doc)

Create the object and serve requests
serveraddr - ¢, 8765)

srvr = HTTPServer(serveraddr, RequestHandler)
srvr.serve_forever()

The _getdoc() function looks up the document to returnwhenit's given a
filename. Most real web serverswould consult adirectory on disk, but thisone
just has two built-in documents that it can serve. If it doesn't find adocument
that matches the given filename, it returns None

CAUTION Ifyou do want to serve up files from adisk, I suggest using the
SmpleHTTPSarver modul e discussed | ater in this chapter. Attempting to
servefiles from adisk by yourself can lead to security problems, sinee the
correct algorithmsto sanitize the request string can be tricky to get right.

The _writeheadersO function receivesthat document. It sends a404, File Not
Found codeifthe document was None, and a200 (Document OK) code otherwise.
The do_GETO function is aso slightly modified; it generates an appropriate error
document if no document was found.

You can point aweb browser to http://localhost : 8765/ after startingthis
server. Try loading the statistics page and hittingyour reload (or refresh) button a
few times. Notice how the number on that page increments each time.

345

enyprrwl L v

346

You can aso connect directly to the server with telnet like before. Here'swhat
that will ook like:

$ telnet localhost 8765

Trying 127.0.0.1...

Connected to heinrich.complete.org.
Escape character is '~]'.

GET /nonexistent HTTP/.0

HTTP1.0 404 Not Found

Server: BaseHTTP/0.3 Python/2.3.3
Date: Sat, 31 Jan 2004 22:29:34 GMT
Content-type: text/html

<html><head><title>Not Found</title></head>
<body>The requested document '/nonexistent’ was not found.</body>
</html>
Connection closed by foreign host.

Handling Multiple Requests Simultaneoudly

The previous examples aren't suitablefor usein aproduction server becausethey
only service one client at atime. From the time that aclient connects until the
time it disconnects, no other clients can be serviced. Even with this small program,
that could be aproblem. For example, somebody on alow-quality dial-up link
may not even get the request sent for 20 seconds. Thisis along time to wait, and
on a busy server, could stall hundreds or thousands of other clients.

SocketServer (and its subclasses) support two different ways of solving this
dilemma: forking and threading. These two solutions are discussed in greater
detail in Chapters 20 and 21, respectively. Briefly, forking involves starting a new
process to handle each incoming connection; al these processes are then com-
pletely separate from each other. Threading involves using Python threads to
handle connections, and doesn't separate the different connection handlers as
much. A third method involving nonblocking (or asynchronous) communication
isn't supported by SocketServer and is covered in Chapter 22.

Ifyou'relooking for a quick way to make your server do multitasking and are
running on a UNIX or Linux platform, | recommend forking. Both forking and
threading have their complexities, but forking is supported more widely on dif-
ferent UNIX platforms, and this makes it more difficult for connectionsto interfere
with each other. Ifyour code will need to run on Windows, then you must use
threading. Most Python implementations for Windows don't implement forking.

Adding forking or threading support to your program is simple. Here's a
modified version of the last example. It's fully multitasking and uses threads.

SocketSarver

#!/usr/bin/env python

Badc HTTP Server Example with Two Documents, threading version
Chapter 16

basichttpdocthread.py

from BaseHTTPSaver import HTTPSaver, BaseHTTPRequestHandler
from SocketServer import ThreadingMixIn
import time, threading

starttime = time.time()

class RegquestHandler(BaseHT TPRequestHandler):
""" Definition of the request handler."""
def _writeheaders(self, doc):
""" Write the HTTP headers for the document. If there's no
document, send a 404 error code; otherwise, send a 200 success code."""
if doc is None
self.send response(404)
else:
self.send_response(200)

Always serve up HTML for now.
self.send_header('Content-type', 'text/html")
self.end_headers()

def _getdoc(self, filename):
""" Handle a request for a document, returning one of two
different pages as appropriate."""
global starttime
if filename = 'I":
return """ <html>< head><title>Sample Page<1title></head>
<body>This is a sample page. You can also look at the
server statistics.
</body></html>
1
elif filename = '/stats.html’:
return """<html><head><title>Statistics</title></head>
<body>This server has been running for % seconds.
</body></html>
", %int(time.time() - starttime)
else:
return None

347

Chapter 16

348

def do HEAD(sdf):

doc = self._getdoc(self.path)
self._writeheaders(doc)

def do GET(sdlf):

print "Handling with thread", threading.currentThread().getName()
doc = self._getdoc(self.path)
self. writeheaders(doc)
if doc is None
self. wfile.write(""" <html>< head><title>Not Found</ti tle>< /head>
<body>The requested document '%s was not found.</body>
</html>
", %self.path)
else:
self.wfile.write(doc)

class ThreadingHT TPServer(ThreadingMixIn, HTTPServer):
pass

Create the object and serve requests

serveraddr = (", 8765)

srvr = ThreadingHT TPServer(serveraddr, RequestHandler)
srvr.serve_forever()

Notice the new ThreadingHTTPServer class. This class declares two base classes:
ThreadingMixIn and the same HTTPSarver class used before. The ThreadingMixin
class contains code that implements the threading. Thenyoujustinstantiate the
new class bel ow-instant threading support! You can seethat in action; | added a
print statement todo GET (). The statement displayswhichthread handlesagiven
connection. This principleworks for al the different SocketServer subclasses
discussed in this chapter.

SmpleHTTPServer

The SmpleHTTPServer class extends BaseHTTPSarver. SmpleHTTPServer serves up
regular files from the current working directory. It aso has support for finding
index. html files and, in newer versions of Python, generating on:the-fly directory
listings. As with any server that accesses files from your disk, make sure you set
permissions properly, codeiswritten cleanly, and the server is properly configured.
Otherwise, you could inadvertently serve up private data. Here's an example of
the simplest SmpleHTTPServer:

SocketServer

#!/usr/bin/env python
Basic HTTP Server Example - Chapter 16 - simplehttp.py

from BaseHTTPServer import HTTPSaver
from SmpleHTTPServer import SmpleHTTPRequestHandler

serveraddr = ¢+, 8765)
srvr = HTTPServer(serveraddr, SimpleHTTPRequestHandler)
srvr.serve_forever()

When run, this program will simply start serving up the files in the current
working directory (and its subdirectories). Like previous examples, you can
run this program without any command-line parameters. Just start it with
./Isimplehttp. py. You can again connect to port 8765 onlocalhost with either a
telnet client or aweb browser to seeit inaction. This program canal so use threads:

#l/usr/bin/env python
Basic HTTP Server Example with threading - Chapter 16
simplehttpthread.py

from BaseHTTPServer import HTTPServer
from SmpleHTTPServer import SimpleHT TPRequestHandler
from SocketServer import ThreadingMixIn

class ThreadingServer(ThreadingMixIn, HTTPServer):
pass

serveraddr = (", 8765)
srvr = ThreadingServer(serveraddr, SmpleHTTPRequestHandler)
srvr.serve forever()

CGIHTTPServer

The CGIHTTPServer issimilar to the SmpleHTTPServer, but takes it one step farther.
It can execute CGI scripts among thefiles it serves. By default, it will consider

Python scripts executablefiles that residein either the cgi- bin or htbin directories
under the server root as CGI scripts. CGI scripts are covered in Chapter 18. Together
with the CGIHTTPSarver, CGI scripts can offer an elegant and simple pure-Python
solutionto the problem of providing dynamic content. | mplementing CGIHTTPServer
isjust as easy as the SmpleHTTPServer. Always remember that CGI scripts are full
programs, so they could potentially makeyour serverlesssecureifyourununtrusted
code. Here'san example CGl server. Inthis case, forkingis used instead of threading;

349

chapter {6

thisis the usual method of invoking CGI scripts, but if you're running onWmdows,
you'll still want to use threading.

#!/usr/bin/env python
Basc HTTP CGl Server Example with forking -- Chapter 17

from BaseHTTPServer import HTTPServer
from CGIHTTPServer import CGIHTTPRequestHandler
from Socket Server import ForkingMixIn

class ForkingServer(ForkingMixIn, HTTPServer):
pass

serveraddr = (*" 8765)
srvr = ForkingServer(serveraddr, CGIHTTPReqguestHandler)
srvr.serve_forever()

You cantest this server with one of the CGI scriptsfrom Chapter 18. Putitin
your current working directory, mark it executable, and run the server. Now you
can connect to your server with the browser and see the script. Uyou named the
script myscript. cgi, you can access it with http://localhost:8765/myscript . cgi.

Implementing New Protocols

If one of the existing SocketServer classesisn't suitablefor you, your own protocol
can beimplemented using the SocketServer module. This module is most appro-
priate for protocolsfor which clients connect to a server, make onerequest, receive
an answer, and then disconnect. Here's an example of aserver that will give the
timeto aclient in several different formats:

#l/usr/bin/env python
Badc SocketServer Example - Chapter 16 - socketserver.py

from SocketServer import ThreadingMixIn, TCPServer, StreamRequestHandler
import time

class TimeRegquestHandler(StreamRequestHandler):
def handle(self):
req = self.rfile.readline().strip()

if req == "asctime":
result = time.asctime()
elif req = "seconds':

result = str(int(time.time()))
elif req = "rfc822":
result = time.strftime("%a, %d %b %Y %H%M:%S +0000",
time.gmtime())
else:
result " Unhandled request. Send a line with one of the
following words

asctime for human-readable time

seconds seconds since the Unix Epoch

rfc822 date/time in format used for mall and news posts'""
self.wfile.write(result + "\n")

class TimeServer(ThreadingMixIn, TCPServer):
allow reuse address =1

serveraddr = (', 8765)
srvr = TimeServer(serveraddr, TimeRequestHandler)
srvr.serve forever()

The TimeRequestHandler does most of thework here. Itsbase classis
StreamRequestHandler, which does somework initializing thingslike rfile
and wfile. Those two instance variables are created for you by using
socket. makefileO. Asyou may recall from the discussion of socket. makefileO
in Chapter 2, resultsfrom it arefile-like objects that can be manipulatedin a
way that's similar to standard Python file objects. Herethe rfil e object can
beread from and the wfile object can be writtento. The handle() method is
calledwhen a connection arrives and things are initialized and ready to go.
Thus, handle() serves as the entry point into your program.

At the end of the example, the server is created in a manner very similar to
the other SocketServer-based classes already presented in this chapter. Notethe
addition of allow reuse addressinthe TimeServer class. ThevariousHTTP server
classes set this automatically for you. Thisis simply the same as setting SO REUSEADDR
(seethe "Preparing for Connections" section in Chapter 3).

SocketServer

351

Chapter 16

352

You can test this server easily. Simply telnet to port 8765 and type asctime,
seconds, or rfc822 and press Enter. You'll get back a message showing the current
timeintherequested format. Ifyou supply anything else, you'll get back a help
message.

Obtaining Information About the Client

The StreamRequestHandler (actually, its base class, Socket Server .BaseRequestHandler)
initializes afew variablesin the class that provide information about the client
and the environment. Thetwo most useful are request, which isthe actual socket
object; and client_address, the address of the client. The addressisin standard
(IP port) form; for instance, (,127.0.0.1', 36414). The IPv6 exampleinthe
following sectionillustrates this.

|Pv6

SocketServer is designed to be compatiblewith IPv6, though by default, all its
sockets are IPv4-only. OPv6 is discussed indetail in Chapter 5.) Switchingto IPv6
is asimple matter of adjusting the address_family variableinyour server class.
Here's an example:

#!/usr/bin/env python
SocketServer IPv6 Example - Chapter 16 - ipv6.py

from SocketServer import ThreadingMixIn, TCPServer, StreamRequestHandler
import time, socket

class TimeRequestHandler(StreamRequestHandler):
def handle(self):
print "Connection from", self.client_address
req = self.rfile.readline().strip()
if req = “as&k k" :
result = time.asctime()

elif req = "seconds":
result = str(int(time.time())
elif req = "rfc822":

result = time.strftime("%a, % %b %Y %H%M:%S +0000",
time.gmtime(»

SocketServer

else:
result = ""Unhandled request. Send a line with one of the
following words:

asctime -- for human-readable time

seconds -- seconds since the Unix Epoch

rfc822 -- date/time in format used for mal and news posts'™"
self.wfile.write(result + "\n")

class TimeServer(ThreadingMixIn, TCPServer):
dlow reuse address =1
address family = socket AF_INET6

serveraddr = ("', 8765)
srvr = TimeServer(serveraddr, TimeRequestHandler)
srvr.serve_forever()

Note that it isn't possible for a single SocketServer server class to support
both IPv4 and IPv6. It's possiblefor asingle program to support both, but you'll
need one of the techniquesin Chapters 20-22 to do so.

Here's the sample output from the server console for this program:

$./ipv6.py
Connection from ('::1', 36417, 0, 0)

The (,::1", 36417, 0, 0) stringreflects the IPv6 address of the client that
connected to the server. Inthis case, ::1isthelPv6 address for localhost and
indicates that the connection originated on the local machine.

Summary

Socket Server is a Python modul e that helps simplify writing network serversin
Python. Toimplement a server that uses SocketServer, you'll generally create a
new subclass of one of its built-in classes.

For HTTp, some of these classes already exist. The BaseHTTPServer module
provides classes that parsethe HTTP request and then leavesthe rest up to you.
SmpleHTTPSarver provides classes that serve up plain files from disk, and
CGIHTTPSarver provides classes that add the ability to serve CGI scripts.

353

Chapter 16

Ifyou aren't workingwith HTTp, you could implement your own Socket Server
protocol. To do that, you would subclass one of the SocketServer classes directly.

To be able to service more than one connection at once, SocketServer sup-
portsforking and threading. Forking is often agood choice if you'll be running
primarily on UNIX or Linux platforms, while threading is a good choice for
Microsoft platforms.

The next chapter demonstrates more server modul es based on SocketServer
and are used for writing XML-RPC servers.

354

CHAPTER 17/

SmpleXMLRPCServer

XML-RPC IsA COMMON INTERFACE today. In this chapter, you'll learn how to
write XML-RPC servers. These servers might be public servers-perhaps giving
out recent news headlines, weather information, search tools, or price quoting.
They could also beinternal serversfor communication between programs on
your LAN.

Python makesit easy to set up abasic XML-RPC server. Thanksto the
Socket Server infrastructure discussed in Chapter 16, an XML-RPC server doesn't
require much more code to support. Chapter 8 covers XML-RPC basicsfrom a
client perspective, and some examplesfrom that chapter will be used to demon-
strate XML-RPC servers.

In general terms, a Remote Procedure Call (RPC) server is aprogram that
exposes certain functions to clientsin away that's designed to be mostly trans-
parent. That is, programmers using those functions on aclient might not know
that the functionswere making calls over the network instead of to other functionsin
the same program. XML-RPC defines an XML-based protocol for communication
between the client and server. You can also use introspection with most servers,
which is away for clients to discover what methods are available on the server
and also details about those methods.

CAUTION Aswith any form of RPC, theinterface can be deceptively simple,
and security must always be remembered. Consider, for instance, afunction
that simply takes afilenamefrom aclient and returnsthefirst 20lines of that
file. Thismight befineifthe client requests faa. txt, butif the client requests
.. | .. letc/passwd instead, it might well be able to obtain details about the
passwords for several users on the system. To maintain security, client
requests coming inviaXML-RPC must be considered untrustworthy until
you've proven otherwise.

Because SmpleXMLRPCSaver changed in Python 2.3, the examplesinthis
chapter assume that you're running Python 2.3 or | ater.

In this chapter, you'll first learn how to create a basic XML-RPC server and
interactwithit. You'y seehow you can easily expose an XML-RPC interfaceto
existing Python methods and functions, thereby effectively adding a network

Chapter 17

356

layer atop existing code. You'll also learn how to Use DocXMLRPCSaver to provide

online help for your methods, and CGIXMLRPCSaver to run your XML-RPC server
as aCGl script under an existingweb server. Finaly, you'll learn the simple trick
necessary to support the multicall optimization.

SmpleXMLRPCSaver Basics

Creating asimple XM:L-RPC program s quite easy. You need to first create a
Python class that contains the methods you wish to expose, and then register it
with the XML-RPC server. Here's an example:

NOTE Ifyou're running the examplesin this chapter on Windows, you'll
need to replace Forking with Threading everywhere it appearsin this chapter.

#!/usr/bin/env python
SmpleXMLRPCSarver Basc Example - Chapter 17 - simple.py
This program requires Python 2.3 or aove

from SmpleXMLRPCSarver import SmpleXMLRPCSaver, SmpleXMLRPCRequestHandler
from SocketServer import ForkingMixIn

class Math:
def pow(self, x, y):
""Returns x raised to the yth power; that is, x **y.

x and y may be integers or floating-point values.
return x ** vy

def hex(self, x):
"""Returns a string holding a hexadecima representation of
the integer x."--
return "%x" %x

class ForkingServer(ForkingMixIn, SimpleXMLRPCSarver):
pass

SmpleXMLRPCSeroer

serveraddr = (*', 8765)

srvr = ForkingServer(serveraddr, SmpleXMLRPCRequestHandler)
srvr.register_instance(Math())
srvr.register_introspection_functions()

srvr.serve_forever()

This program exposestwo methodsto the public: pow() and hex(), which are
defined in the standard way for a Python class. Here, the methods are reimple-
mented in the class; later, you'll see how to serve existing functions without
puttingthem inaclass. Noticethat you could also use this class asanormal class
inyour program in the normal way.

To run thisserver, simply use. / simple. py. You can use Ctrl-C or Ctrl-Break to
terminateit. The remaining examplesin this chapter work similarly.

You can use the XML-RPC introspection client from Chapter 8 to interact
with the server. You'll want to edit the url variable online six to point to
http://local host :8765/. Then, you can run it like this:

$ «/xmlrpci. py
Gathering available methods...

Available Methods

1: hex

2. pow

3. system.listMethods

4: system.methodHelp

5. system.methodSignature
Select one (g to quit): 2

kkkkkkkkk

Details for pow
Args Returns:. s
Help: Returns x raised to the yth power; that is, x ~ .

x and y may be integers or floating-point values.

357

chapter 17

358

Notice the Args lines (omitted). Taken as agroup, they show the message
"signatures not supported.” Normally, signaturesindicatewhat type of argument
(integer, float, string, and so on) is accepted, and what type of valueis returned.
Pythonisn't statically typed, sofor somefunctions, there may not beoneparticular
type that's accepted. For instance, the powO method will work with two different
types of argument.

Therefore, for aPythonserver, signatures aren't sensible. However, thefunction's
docstring is presented as help text.

Testing Your Server

You can use the following program to interactively test your server:

#!/usr/bin/env python
XML-RRC Basc Test Client - Chapter 17 - testclient.py

import xmlrpclib, code

url = 'http://localhost:8765/'
s = xmlrpclib.ServerProxy(url)

interp = code.InteractiveConsole({'s": s})
interp.interact("you can now use the object s to interact with the server.")

Using this client to talk to the example XML-RPC server produced the
following session output:

$./testclient.py

You can now use the object s to interact with the server.
>>> S, pow(2, 8)

256

>>> s.hex(255)

FE

»> s.system.listMethods()

['hex’, 'pow', 'system.listMethods', ‘system.methodHelp),
'system.methodSignature'J

»> print s.system.methodHelp(‘pow’)

Returns x raised to the yth power; that is, x ~ .

x and y may be integers or floating-point values.
»> import sys
»> sys.exit()

SimpleXMLRPCServer

Serving Functions

You're not required to use classeswhen serving functions. Here's an examplethat
adds two functions to the math example: intO and list. sortO. Even though
int() isn't technically afunction, it behaves similarly to one. Note, however, that
this implementation of li st. sortO is broken.

#!/usr/bin/env python
SmpleXMLRPCSaver Example with functions - Chapter 17 - func.py
This program requires Python 2.3 or above

from SmpleXMLRPCSarver import SmpleXMLRPCSarver, SmpleXMLRPCRequestHandler
from SocketServer import ForkingMixin

class Math:
def pow(sdlf, x, y):
""" Returns x raised to the yth power; that is, x * .

x and y my be integers or floating-point values."""
return pow (X, V)

def hex(self, x):
""" Returns a string holding a hexadecima representation of
the integer X.IIIIII
return "%x" %x

def sortlist(self, 1):
""" Sorts the items in 1."""
1 =list(l)
|.sortO
return 1

class ForkingServer(ForkingMixIn, SmpleXMLRPCSaver):
pass

serveraddr = ("', 8765)

srvr = ForkingServer(serveraddr, SmpleXMLRPCReguestHandler)
srvr.register_instance(Math())
srvr.register_introspection_functions()
srvr.register_function(int)
srvr.register_function(list.sort) # Won't workl
srvr.serve_forever()

359

Chapter 17

360

Here's an exampl e session:

$./testclient.py
You can now use the object s to interact with the server.
»> s.system.listMethods()
['hex', 'int', 'pow', 'sort', 'sortlist’, 'system.listMethods,
'system.methodHelp', 'system.methodSignature’]
»> s.int('S314")
5314
»> s.sort([s, 3, 1, 8)])
Traceback (mogt recent call last):
File "<console>", line 1, in ?
File "/usr/lib/python2.3/xmlrpclib.py”, line 1029, in call
return self. send(self. name args)
File "/usrllib/python2.3/xmlrpclib.py”, line 1316, in _request
verbose=self. verbose
File "/usr/lib/python2.3/xmlrpclib.py”, line 1080, in request
return self._parse_response(h.getfile(), sock)
File "/usr/lib/python2.3/xmlrpclib.py”, line 1219, in _parse response
return u.closeQ
File "/usr/lib/python2.3/xmlrpclib.py”, line 742, in close
raise Fault(**self. stack[O])
Fault: <Fault 1: ‘exceptions.TypeError:cannot marsha
None unless alow none is enabled>
»> s.sortlist([s, 3, 1, §])
[1, 3, 5 §

From the call to listMethodsO. you can see that the server now supports
three new functions. Theint () function simply callsthe system's built-infunction.
The sort () function, however, raised an exception. The reason is that Python's
sortO method is anin-place sort; that is, it doesn't return anything. The Python
XML-RPC client, by default, raises an exception when Nore is returned from the
server since thisvalue usually indicates an error condition. Ifyou really want
to receive Nong, you can set allow none to atrue value whenyou create your
ServerProxy instance.

| also added a sortlistO method to illustrate the difference. 1t works as
expected. Note1l = list(l) insortlistO. This makes surethat it's calling sortO
as expected. Although thiswon't likely happeninthis example, it's possiblethat a
client could pass an object that would have amethod named the.same asthe one
being used that does something entirely different. It's good practice to ensure
that al objects are of the type you expect inyour XML-RPC server.

SimpleXMLRPCServer
Exploiting Class Features

Python's SmpleXMLRPCServer acts as a proxy for requests. It receives the requests
from the network, decodes them, and then calls the appropriate method just like
any other Python code would. When the result is received, it's passed back to
the client.

This mechanism lets you use any normal Python features inyour classes as
long as you're cognizant of the fact that arbitrary Python objects cannot be sent
viaXML-RPC. That is, aslong as your arguments and return values are simple
datatypes, lists, or dictionaries, you can use any Python feature under the hood.

Sending Arbitrary Python Objects

Although XML-RPC doesn't have support for sending arbitrary Python objects
across the network, it's possible to do so. Python's pickle module provides
support to convert almost any Python object to or from aversion that can be
represented as astring. That string could then be transmitted over the network.

However, this approach has many potential security issues. Onthereceiving side,
you may not be receiving the kind of objects you expect. Therefore, protocols
based on this sort of conversion are USUdly discouraged.

Here's an example that demonstrates the use of instance variables and inher-
itancewithXML-RPC. Note that there's aproblem with the statistics collectionin
this program; read onfor more details.

In the meantime, here's the example:

#!/usr/bin/env python

SmpleXMLRPCSaver Example with extra class features -- Chapter 17
stat.py

This program requires Python 2.3 or above

from SmpleXMLRPCServer import SmpleXMLRPCSaver, SmpleXMLRPCReguestHandler
from Socket Server import ForkingMixIn
import time

class Stats:
def getstats(self):
"""Returns a dictionary. The keys are names of the functions,
and the values are the number of times each function was called.
return self.callstats

361

Chapter 17

def getruntime(self):
return time.time() - self.starttime

def failure(self):
raise RuntimeError, "This function aways raises an error.

class Math(Stats):
def _init__ (self):
self.callstats { pow: 0, 'hex': o}
self.starttime = time.time()

def pow(self, x, y):
"""Returns x raised to the yth power; that is, x *y.

x and y may be integers or floating-point values."""
self.callstats['pow'] += 1 # Doesn't do wha you expect!

return pow(x, y)

def hex (self, x):
"""Returns a string holding a hexadecima representation of

self.callstats['hex'] += 1 # Doesn't do wha you expect!
return "%x" %x

class ForkingServer(ForkingMixIn, SmpleXMLRPCSaver):
pass

serveraddr = ("', 8765)

srvr = ForkingServer(serveraddr, SmpleXMLRPCRequestHandler)
srvr.register_instance(Math())
srvr.register_introspection_functions()

srvr.serve_forever()

This program defines some new methods and some new instance
variables. Note that it doesn't matter that the Math class now inherits from
Stats; SmpleXMLRPCSaver sees the methods from statsjust fine-just like
any other Python code would.

But the idea of keeping track of how many times amethod is called won't
work right sinceyou're using aforking server. That's because each time arequest
comesin, anew, separate processis created to handle that request. It increments
callstats, then promptly terminates after the responseis sent. Theparent process's

362

SimpleXMLRPCServer

counter never getsincremented itself because the incrementing always occurs
inthe child process and the child process cannot modify the parent's memory.
Oncethe child process terminates, asit will as soon asit hasfinished handling
the request, any record of theincremented count islost. Here's an exampl e of
interacting with this program:

$./testclient.py
You can now use the object s to interact with the server.
>>> s.hex(IS)
e
>>> s.heX(16)
10"
>>> g.getstatsO
{,pow" 0O, 'hex': o}
»> s.getruntime()
269.33166790008545
>>> s.failureQ
Traceback (most recent call last):
File "<console>", line 1, in ?
File "/usrllib/python2.3/xmlrpclib.py”, line 1029, in call
return self. send(self._ name args)
File "/usrllib/python2. 3/xmlrpclib. py", line 1316, in _request
verbose=self. verbose
File "/usrllib/python2. 3/xmlrpclib. py", line 1080, in request
return self._parse_response(h.getfile(), sock)
File "/usrllib/python2. 3/xmlrpclib. py", line 1219, in _parseJesponse
return u. closeO
File "/usrllib/python2. 3/xmlrpclib. py", line 742, in close
raise Fault(**self._stack[O])
Fault: <Fault 1: 'exceptions. RuntimeError: This function aways
raises an error. >

Notice how the values returned by getstats() indeed weren't incremented.
You can fix the problem by using the ThreadingMixIn in place of ForkingMixIn
(there's an example of that i n the “Using DocXMLRPCServer" sectionlater in this
chapter). Also, take alook at what happened whenfailure() was caled. The server
detected the exception and passed it back to the client asafailure string. Python's
XML-RPC client library happens to detect these, and raises an exception itself.
But notice that the exception raised by the client isn't the same one that was
raised on the server side. That's because exception objects cannot be passed
across XML-RPC, but strings can.

Chapter17

Usng DocXMLRPCServer

The Python DocXMLRPCServer is a simple class that adds functionality to
SmpleXMLRPCSarver. The extrafeatures enable a standard web browser to access
your server. Ifit does so, it will be given help information about the functionsyou've
defined. DocXMLRPCSaver is adrop-in replacement for SmpleXMLRPCServer. Here's
an example that illustrates a DocXMLRPCSaver. Also, to address the problemswith
Incrementing statistics in the previous example, this example uses threading
instead of forking.

#!/usr/bin/env python
DocXMLRPCSaver Example - Chapter 17 - doc.py
This program requires Python 2.3 or above

from DocXMLRPCSarver import DocXMLRPCSarver, DocXMLRPCReguestHandler
from SocketServer import ThreadingMixIn
import time

class Stats:
def getstats(self):
""" Returns a dictionary. The keys are names of the functions,
and the values are the number of times each function was called.™""
return self.callstats

def getruntime(self):
""" Returns the number of seconds the class has been
instantiated. """

return time.time() - self.starttime

def failure(self):
"""Causes a RuntimeError to be raised. "™
raise RuntimeError, "This function aways raises an error."

class Math(Stats):
def _init_ (self):
self.callstats {'pow" 0, 'hex': o}
self.starttime = time. timeO

def pow(sdlf, x, y):
""" Returns x raised to the yth power; that is, x ~ y..

SmpleXMLRPCServer

x and y may be integers or floating-point values."""
self.callstats['pow'd += 1

return pOw(x,)

def hex(self, x):
"""Returns a string holding a hexadecimal representation of
the integer x."""
self.callstats['hex'J += 1
return "%x" %x

class ThreadingServer(ThreadingMixIn, DocXMLRPCSaver):
pass

serveraddr = (" , 8765)

srvr = ThreadingServer(serveraddr, DocXMLRPCRequestHandler)

srvr.set_server_title("Chapter 18 Example Documentation")

srvr.set_server_name("Chapter 18 Doc")

srvr.set_server_documentation("""Welcome to the sample DocXMLRPCSaver from
Chapter 18.""")

srvr.register_instance(Math())

srvr.register_introspection_functions()

srvr.serve_forever()

Ifyou pointyour web browser to http://localhost : 8765/, you'll seeadesCription
of each ofthe methods exposed viaXML-RPC. You can also adjust the title and
introduction of that pageviathe set_server_... family of functions. As youreadthe
generated documentation, noticethe systern.1listMethods(), systern. methodHelp (),
and system.methodSignature() documentation. These ftmctions were supplied
when srvr. register_introspection_functionsO was called. The documentation for
them contains generic examplesthat are supplied by the default implementation.

Usng CGIXMLRPCRequetHandler

It's possibleto turn a CGI script into anXML-RPC server. Thisletsyouwritea
script that runs under an existing web server (which need not bewrittenin
Python). The Python script will provide an XML-RPC interface to a client.

Thisisthejob of the CGIXMLRPCRequestHandler. Whilethis comes as part of the
SmpleXMLRPCSarver module, itisn'treally a server. Here's the most recent example,
adjusted for use as a CGlI script:

365

Chapter 17

366

#!/usr/bin/env python
CGl Example - Chapter 17 - cgi.py
This program requires Python 2.3 or above

from SmpleXMLRPCSarver import CGIXMLRPCRequetHandler
import time

class Stats:

def

def

def

getstats(self):
"""Returns a dictionary. The keys are names of the functions,

and the values are the number of times each function was called."""

return self.callstats

getruntime(self):

""" Returns the number of seconds the class has been
instantiated. ",

return time.time() - self.starttime

failure(self):
""Causes a RuntimeError to be raised."""
raise RuntimeError, "This function adways raises an error."

class Math(Stats):

def

def

def

handler

__init__(self):

self.callstats {'pow" 0, 'hex': o}
self.starttime = time.time()

pow(self, x, y):
"""Returns x raised to the yth power; that is, x . y.

x and y my be integers or floating-point values."""
self.callstats['pow'd += 1

return pow(x, Y)

hex (self, x):

"""Returns a string holding a hexadecima representation of
the integer x. ™,

self.callstats['hex'J += 1

return "%x" %x

= CGIXMLRPCRequestHandler()

handler.register_instance(Math())
handler.register_introspection_functions()
handler.handle_request()

SimpleXMLRPCServer

Functionally, this code isidentical to others. However, you'll noticethat it
takes no port number or bind address. That's because it's called by the web
server, which takes care of those details itself. Also, it calls handle_request()
instead of serve_forever(). That's because each CGI script handles exactly one
request. Ifyouinstall this under your web server's CGl directory and runit, check
out the getruntime() result. You'll always get avery small number-likely less
than one second. That's because the script itselfis executed, handles one request,
and then terminates. The statistics will thereforelikely be useless, since they will
be reset for each request. 1fyou need to keep the statistics, you'll have to write
them to afile or devise some other means of persistent storage, such as adatabase
(see Chapter 14).

The exact way to test this examplewill vary from site to site. Ifyouinstall the
cgi. py script inyour web server's root directory, and configureit to serveit up as
a CGl script, you could adjust testclient. py to communicate with it by simply
changing the url variable to http://localhost : 8765/test. py.

Supporting Multicall Functions

There's one last feature of the PythonXML-RPC modules to mention: multicall
functions. Multicall functions are an informal addendum to the XML-RPC standard.
They are an optimization that allows clientsto submit several XML-RPC requests
at once. This canimprove performancefor clients that send several XML-RPC
calsto aserver.

With the examplesinthis chapter, adding multicall support to the serverisas
simple as addingtheadditional line srvr. register_multicall _functions() before
the call to serve _forever(). Clients that support multicall functions will then
automatically be able to use this feature. This will provide an optimization only,
and will not alter functionality.

ummary

With Python's SmpleXMLRPCServer module, you canwriteyour ownXML-RPC server.
This server can expose methods of classes or standal one functions. Sinceit uses
SocketServer, you can makeyour server use threading or forking as appropriate.

Likethe XML-RPC client, SmpleXMLRPCServer converts between Pythontypes
andXML-RPC types. However, you can use arbitrarily complex functions or objects
onthe server side as long as they accept and return only the types supported by
XML-RPC.

367

Chapter 17

368

The DocXMLRPCSarver extends the basic SmpleXMLRPCServer functionality,
thereby making your server available to standard web browsers as well. People
using a standard browser will see documentation onyour server.

With CGIXMLRPCSaver, you can provide anXML-RPC server that gets called
asa CGlI script fromyour web server. The next chapter discusses CGI scriptsin
greater detail.

CHAPTER 18

CGl

CGI, THE COMMON GATEWAY INTERFACE, is away to present dynamic content on
websites. Originally, websites mostly presented static information; that is, each
visitor to apage saw exactly the same page until the authors manually updatedit.
Then, each visitor would see the same updated page. However, from eventhe
early days of the Web, developers wanted to be able to present more dynamic
information to users. CGlI is one ofthe most frequently used mechanismsto
accomplish that.

The"common" in CGI stemsfrom two things: it'sserver-independent and it's
language-neutral. This means that a CGI script can run under any web server
that supports CGl, and that a CGI script may bewrittenin any language. CGl is
neither anetwork protocol nor alibrary initself. Rather, it's a specification for
how information is exchanged between the web server and the program that
generates data. A program that complies with CGI and gets executed by aweb
serveristypically called aeGlscript.

CGl is generally tightly intertwined with HTML. This chapter focuses on the
Python side of CGlI scripting; ifyou aren't already familiar with HTML and HTML
forms, please consult aHTML reference.

CGl vs. Other Technologies

CGl isapopular choice for generating dynamic web pages and websites. It's
supported by almost every popul ar web server and programming language. It
USUdly doesn't require much configuration onthe server, and setup is easy.

However, it does have problems, most notably with performance. Performance
can be especially bad when interfacing with databases. Other technologies
have been devel oped that provide greater performance if a certain degree of
portability is sacrificed. One such technology is known as mod_pythonand is
discussed in Chapter 19. With mod_python, programs must run under the
Apacheweb server and be writtenin Python.

369

R it e T A]

370

Setting Up CGI

Unlike many of the other examplesin this book, the examplesin this chapter
aren't designed to be run from the command line. CGI scripts are executed by a
web server.

Web servers generally need to be configured to execute CGlI scripts. They will
often haverestrictionson CGl scriptsfor security reasons. For example, CGI scripts
may need to be placed in a particular directory, have aparticul ar file extension,
and be marked executable. The process for configuring aserver varies from one
web server to the next; consult your server documentation for moreinformation.

Uyou don't already have aweb server and want a qUick way to run CGI scripts,
the Python module CGIHTTPSaver provides a convenient way to run aserver.
Chapter 17 offersasimple server, writtenin Python, that can execute CGI scripts.
It requires that scripts exist in adirectory named cgi-bin and be marked executable.

Ifyou're using the Apache web server, you can enable CGl scriptsinaparticular
directory by using a configuration directive such as ScriptAlias/webpath/usr/
local/cgi. Ifyou use that, you can access your scripts with a URL such as
http://local hostlwebpath/script.cgianditwillioad /usr/local/cgi/script. cgi.

Underganding CGI

Suppose that the website ww. example. con sells mousetraps. On that site, you
have alot of plain HTML files that describe your different types of traps. Youd
also liketolet customerspurchasetraps over the Web, probably using the standard
shopping cart metaphor.

Each customer's shopping cart isgoing to be different, so you obviously can't
haveaplainHTML pagefor the cart. You also need to collect billing and shipping
information-static HTML won't do.

You might add an "Add to Cart" link on each static page. Thislinkwill point to
aregular URL, just like all the others. But that'swherethe similarity stops. I nstead
of sending aplainfile to the web browser, the server instead executes the CGI
script. The CGI script will be able to access any information passed from the client
inaform (such as the number of mousetraps to add to the cart). It will then
generatean HTML document and print it to the standard output. Theweb server
makes surethis output gets sent to the client.

Thus, most CGI scripts are very short-lived; thetime between their invocation
and their termination is often afraction of asecond. They're also called frequently;
a CGlI script is executed each time the pageis displayed. On heavily loaded sites,
this could be hundreds of times per minute. This unusual nature, asshowninthe
following list, has afew implications for Python programmers:

cal

* Initialization times become critically important. Many Python programs
haveinefficient initialization. That's ordinarily not aproblem since an
extrasecond starting up aprogram that runs for three monthsisn't abig
deal, but with CGI scripts, itis.

» Error handlingisdifferent. If a CGl script dieswith an exception, the error
istypically logged by your web server, but the client will either get ageneric
error message or an incomplete document rather than a stack trace. However,
the error will have no impact on other running instances of the CGI script.

* Interactivity is handled differently. Rather than being able to prompt the
user for more information, a CGI script must execute completely with
what it's given. If more information isrequired, it will have to be called
again later.

CGl scripts most frequently generate HTML documents, but they can gen-
erate data of any type. For instance, a script may generate agraphic containing
some sort of customimageinit.

Underganding CGl in Python

Python, unsurprisingly, provides several modules that are useful for CGI scripts.
The primary module is named cgi and, for the most part, handles the input side
of CGl, though it does provide afew useful functionsfor generating output. Here's
asample CGlI script. Thisscript does nothing but display the current time whenever
abrowser asksfor it.

#!/usr/bin/env python
Smple CGl Example - Chapter 18 - simple.cgi

import cgitb
cgitb.enable()

import time
print "Content-type: textlhtml"
print

print ""<HTML>

<HEAD>

<TITLE>Sample CGI Script</TITLE>
</HEAD>

371

Chapter 18

372

<BODY>

The present time is %b.

</BODY>

<HTML>" 9%timegrftime("%l:%M:%S %p %Z")
print

Save thisexampleintheappropriate directory for your web server and pull it
up from a browser. You'll see ashort HTML document displaying the current
time. Ifyou hityour Reload or Refresh button, you'll see that time changes. Each
time the document is requested, the output is regenerated with the present time
at that moment.

Adjusting the Interpreter Path

Thefirst line of the script is used on Linux and UNIX platforms to definewhich
interpreteris used to run it. Someweb serverswill not work with the lusr/binl
env python string, whichis normally used to run Python scripts. Inthose cases,
you'll need to replaceit with the full path toyour Pythoninterpreter. Thestring
might be lusr /bin/python in that case.

Let's examine how this script works. This simple CGI script doesn't even
require Python's cgi module. First, it imports and enables cgitb. The cgitb
modul e provides CGl traceback support. In most, but not all cases, this will let
you send Python stack traces to the web browser or alog file. When debugging
your programand writing code, thisis great, butyou may want to removetheline
whenthe codeis deployed; it can divulge some of your code to avisitor should an
error occur, thereby potentially unearthing a security hole.

Next, the HT TPheaders are generated. CGI scripts must generate at |east the
Content-type header, which tellsthe browser what type of file it's receiving. Other
headers can be useful as wdll; for instance, one that sets cookies.

After the headers. ablank line must be sent. A single print statement accom-
plishes that. The blank line separatesthe headers from the document.

Thenthedocument itselfis sent. Thisdocumentisaminimal HTML document,
but it's sufficient to illustrate this feature.

Cal

Retrieving Environment Information

Part of the CGI specification calls for web serversto load certain environment
variables with information about the session. The cgi modul e uses thisinfor-
mation as part of its processing. But you'll often encounter situationsinwhich
you'll want to access environment variables directly to get information such as
URL or path information.

The cgi modul e provides a coupl e of handy functions that help you see what
the environment looks like. Here's one program that uses one; the function that
generates HTML code representing the environment as passed in to the CGI
script, as shown here:

#t/usr/bin/env python
CGl Environment - Chapter 18 - environ.cgi

import cgitb
cgitb. enable()

import cgi

print "Content-type: textlhtml"
print

print ... <HTML>

<HEAD>

<TITLE>CGl Environment</TITLE>
</HEAD>

<BODY>""

cgi.print_environ()

print "</BODY></HTML>"

Onmy system, | installed this as environ. cgi under the server's cgi-bin
directory. When | called up http://localhost:8765/cgi-bin/environ. cgi/foo,
| saw this:

Shell Environment:

GATEWAY INTERFACE
Gl/1.1

HTTP ACCEPT

/

373

chaprer L¥

HTTP USER AGENT
Mozilla/5.0 (XIlj Uj Linux i686] en-US rV:l.6)
Gecko/20040506 Firefox/0.8

PATH INFO
/foo

PATH TRANSLATED
/tmp/htdocs/chapters/19/foo

REMOTE ADDR
127.0.0.1

REMOTE HOST
localhost

REQUEST METHOD
GET

SCRIPT NAME
/cgi-bin/environ.cgi

SERVER NAME
|ocal host

SERVER PORT
8765

SERVER PROTOCOL
HTTP/1.0

SERVER SOFTWARE
SmpleHTTP/0.6 Python/2.3.3

I'll define some of the more interesting environment variables from this output:
» REMOTE ADDR. Containsthe IP address of the remote web client.

* PATH_INR. Containsthe component of the URL that follows the CGI script,
if any.

 REMOTE HOST. Sometimes holdsthe hostname of the remote web client, though

many web servers either don't set thisvariable or set it to the samevalue as
REMOTE ADDR.

374

cal

 SFRVER NAME. Containsthe name of the local web server.

» SERVER PORT. Containsthe port ofthelocal web server onwhich the request
was received.

These can all be accessed via 0s. environ. For instance,
as, environ[.REMOTE ADDR '] containsthe client's |P address.

Getting Input

Although CGI scripts that generate datawithout any input from the user may be
useful insome circumstances, CGl is most frequently used to help sites become
more interactive with users.

There are three primary ways that CGI scripts can get information from the
user: via path-like componentsinthe URL, via GET-encoded parametersinthe
URL, and viaforms (which may use either GET or POST). Let's ook at each of
these methods.

Extra URL Components

Inthe preceding environment example, | saved the CGI script asenviron. cgi but
called http://localhost:8765/cgi-bin/environ,cgilfoo as if environ, cgi were a
directory. There's nofile foo onthe system, yet the script loaded up properly. Web
servers are configured to take everything after the script name and passit to you
inthe PATH INFO environment variable.

Ifyou have a URL that specifies a CGl script, you can add whatever elseyou
like at the end after the script name. The onerulethat appliesisthatit must start
with aslash, which differentiatesit from the CGl script itself. Some scripts will
generate URLs that are specifically designed to cause certain values to be passed
to CGI via PATH_INFO. Here's an example. It presentsasimple quiz asking the user
what day it is. Answers are passed back to the same script by adding components
to the end of the URL.

#!/usr/bin/env python
CGl PATH_INFO example - Chepter 18 - pathinfo,cgi

import cgitb
cgitb. enable()

import cgi) time) as

375

Chapter 18

376

monthmap = {1: 'January', 22 'February’, 3. 'March’, 4 'April’, S 'May,
6. 'June’, 7. 'July’', 8 'August’, 9. 'September’, 10: 'October’,
11: 'November', 12: 'December’}

daymap = {a 'Monday’, 1. 'Tuesday', 2 'Wednesday', 3. "Thursday’,
4: 'Friday', 5 ‘'Saturday', 6. 'Sunday'}

def print_month_quiz():
print "Wha month is it?><P>"
for code, name in monthmap.items():
print '%s
. % (0s. environ['SCRIPT_NAME],
code, name)

def print_day quiz():
month = time.localtime()[l]
print "What day is it <pP>"
for code, name in daymap.items():
print '%s
' % (os.environ['SCRIPT_NAME,
month, code, name)

def check_month_answer(answer):

month = time.localtime()[l]

If int(answer) == month:
print "Yes this is %s<P>" %monthmap[month]
return 1

else:
print "Sorry, you're wrong. Try again:<P>"
print_month_quiz()
return O

def check day answer(answer):

day = time.localtime()[6]

if int(answer) == day:
print "Yes this is %s." %daymap[day]
return 1

else:
print "Sorry, you re wrong. Try again:<P>"
print_day quiz()
return O

Cal

print "Content-type: text/html"
print

print ", <HTML>

<HEAD>
<TITLE>CGI PATH INFO Example</TITLE></HEAD><BODY>""

input = osgetenvCPATH_INFOJ ™).splitC/")[I1:]

if not len(input):
print_month_quiz()
elif len(input) = 1
ismonthright = check_month_answer(input[0])
if ismonthright:
print_day quiz()
else:
ismonthright = check_month_answer(input[Q])
if ismonthright:
check_day_answer(input[l])

print "</BODY></HTML>"

There are several interesting things to note about this program. First, it gen-
erateslinks back to itself. It does that by using the SCRIPT_NAME environment
variableto figure out whereitis, then adds on the extracomponent for PATH_INFO.
For instance, part of the generated source looks like this for the weekday quiz:

What day is it<P>

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

The /cgi-bin/pathinfo. cgi component of the URIi was generated from
SCRIPT_NAME. The remaining componentswere generated on the fly by the for loop.

Towards the end of the script, it looks at the PATH_INFO variable, splitting it
into components separated by slashes. The first component is always empty
(it'sthe empty string that woul d precede thefirst slash, or the entire empty string
if no PATH INFOis specified), so the [1:] stripsit off.

377

Chapter 18

378

Ifthere's nothing inthe PATH_INFO, the month quiz screenis displayed.
Otherwise, if amonth is present, the code checksto seeifit's correct. 1fso, the
day quizis displayed. I1f both amonth and weekday are specified, they're both
validated, and appropriate screens are displayed.

The PATH_INFO method of interacting with auser has somelimitations. It's not
possible to use this simple method with submitted forms, which many people
wish to do. However, somelikethe cosmetic purity of the URLsthat are generated.
This can be especially useful if your URLs convey some meaning (such asahier-
archy of information) or ifyou need to ensure that browsers get a particular
filename (perhapsyou're generating files that users download).

The GfT Method

Although technically the previous method of interacting also used HTTP's GET
method, when CGI programmers talk about the GET method, they normally
mean it as away of sending form submissions back to aserver. Since GET values
are sent as part of a URL, it's possible to generate GET strings without using an
actual form. Here's an example that provides the same program as before, using
GET stringsinstead of PATH_INFO.

#t/usr/bin/env python
CGr GET example -- Chapter 18 - get.cgi

import cgitb
cgitb. enable()

import cgi, time, os

monthmap = {1: 'January', 2: 'February', 3: 'March’, 4 'April', 5 'May',
6. 'June’, 7. 'July', 8 'August’, 9. 'September’, 10: 'October’,
11: 'November', 12: 'December’}

daymap = {o: 'Monday', 1: 'Tuesday', 2. 'Wednesday', 3. 'Thursday’,
4. 'Friday', 5 'Saturday’, 6. 'Sunday'}

def print_month_quiz():
print "What month is it?<pP>"
for code, name in monthmap.items():
print '<A HREF-"%smonth=%d">%s
" % (os.environ['SCRIPT_NAME],
code, name)

def print_day quiz():
month = time.localtime()[l]
print "Wha day is it<P>"
for code, name in daymap.items():
print '%s
, %\
(osenviron['SCRIPT_NAME], month, code, name)

def check_month_answer(answer):

month = time.localtime()[l]

if int(answer) == month:
print "Yes this is %s.<P>" %monthmap[month]
return 1

else:
print "Sorry, you're wrong. Try agan.<P>"
print_month_quiz()
return o

def check day answer(answer):

day =time.localtime()[6]

if int(answer) == day:
print "Yes, this is %s." % daymap[day]
return 1

else:
print "Sorry, you're wrong. Try agan.<P>"
print_day quiz()
return o

print "Content-type: text/html"
print

prlnt ||||||<HTML>
<HEAD>
<TITLE>CGI GET Example</TITLE></HEAD><BODY>""

form = cgi.FieldStorage()

if form.getfirst('month’) None:
print_month_quiz()
elif form.getfirst(‘day') == None
ismonthright = check_month_answer(form.getfirst('month'))
if ismonthright:
print_day quizO

Cal

379

Chapter 18

380

else:
ismonthright = check_month_answer(form.getfirst('month'))
if ismonthright:
check_day_ answer(form.getfirst('day'))

print "</BODY></HTML>"

To the user, this program behaves identically to the previous one. The gen-
erated URL looks alittle different, and it doesn't get put in PATH_INFO.

Tothecgi library, things ook exactly as they had ifthey had been submitted
from aform. To access aform, or information from a GET URL, you use the
cgi. FeldStorage() class. The cgi library will automatically parse the input and
make it conveniently available viaa FieldStorageO instance. Forms usually (but
not always) use key and value pairs, and inthis example, getfirst() isused to
retrieve the value of a specific key.

HeldStorage instances commonly use the following two methods: getfirstO
and getlistO. It's also possibleto access them as adictionary, asyou'll seeinthe
upload exampleinthefollowing section. Ifaccessed as a dictionary, the keysrep-
resent the field names inaform or inthe URL. The example first checksto see if
amonthis present (if not, None is returned by getfirst()). Then, it proceedswith
the same logic as before, using form calls instead of manually parsing PATH_INFO.

The POST Method

The POST method is used exclusively to receive HTML form submissions. Although
GET can also receive those submissions, POST is generally capable of handling
larger amounts of data, including uploaded files. However, POST data doesn't
show up inthe URL, so users cannot bookmark aparticular screeninaCGl script
that uses POST. Sometimes, thisisactually desirable, suchaswhenthesubmitted
datais particularly sensitive.

Here's aversion of the GET example modified to use forms and POST:

#!/usr/bin/env python
CGl POST example - Chapter 18 - post.cgi

import cgitb
cgitb.enableO

import cgi, time, os

Cal

monthmap = {1 'January', 2. 'February', 3. 'March’, 4 'April’, 5 'May,

6. 'June’, 7. 'July', 8 ‘'August, 9. 'September’, 10: 'October’,
11: 'November', 12: 'December’}

daymap ={o: 'Monday’, 1. 'Tuesday', 2 'Wedneday', 3. 'Thursday’,

def

def

def

4; 'Friday', 5 'Saturday', 6: 'Sunday’}

print_month_quiz():
print "Wha month is it<pP>"
print '<FORM METHOD="POST" ACTION="%s">" %os.environ]'SCRIPT_NAME]

for code, name in monthmap.items():
print '<INPUT NAME="month" TVPE="radio" VALUE="%d"> %s
' %\
(code, name)

print '<INPUT TYPE="submit® NAME="submit" VALUE="Next >>">'
print "</FORM>"

print_day _quiz():

month = time.localtime()[l]

print "Wha day is it<pP>"

print '<FORM METHOD="POST" ACTION="%s">, %os.environ['SCRIPT NAME]
print '<INPUT TVPE="hidden" NAME="month" VALUE="%d">" %month

for code, name in daymap.items():
print '<INPUT NAME="d&y" TYPE="radio" VALUE="%d"> %s
' %\
(code, name)

print '<INPUT TVPE="submit" NAME="suomit" VALUE="Next >>">'
print "</FORM>"

check_month_answer(answer):

month = time.localtime()[l]

if int(answer) = month:
print "Ves, this is %s.<P>" %monthmap[month]|
return 1

else:
print "Sorry, you're wrong. Try agan:<P>"
print_month_quiz()
return O

381

Chapter 18

382

def check day answer(answer):

day = time.localtime()[6]

if int(answer) == day:
print "Yes, this is %s." %daymap[day]
return 1

else:
print "Sorry, you're wrong. Try agan.<P>"
print_day quiz()
return a

print "Content-type: text/html"
print

prlnt '"",<HTML>
<HEAD>
<TITLE>CGI POST Example</TITLE></HEAD><BODY>""

form - cgi.FieldStorage()

if form.getfirst('month’) None:
print_month_quiz()
elif form.getfirst('day') == None
ismonthright = check_month_answer(form.getfirst('month’))
if ismonthright:
print_day quiz()
else:
ismonthright = check_month_answer(form.getfirst('month’))
if ismonthright:
check day_ answer(form.getfirst(‘day’))

print "</BODY></HTML>"

Thelogic at the end of this script is exactly the same asthelogic from the GET
example. Infact, you could replace the two occurrences of POST in this script
with GET and wind up with aworking script.

The major differences between this most recent example and thelast oneis
the use of HTML forms. Our form presentsthe user with someradio buttons, one
of which can be selected. There's also aNext >>button to accept the selections
and advance to the next page.

Noticethe "hidden" INPUT elementin print_day quiz(). Thisis used to cause
some piece of datato be submitted along with the form without requiring the
user to supply it. Inthe previous examples, the selected month was always trans-

mitted alongwiththe day. The hidden element causesthat to continue to happen
with this form.

Python's cgi modul e supports both GET and POST for the FieldStorage class.
In most cases, the two are interchangeabl e; just set the METHOD parameter inyour
FORM tag appropriately, and the cgi module will do the rest.

Escaping Special Characters

BothHTML documents and URLs have a set of special characters that can't be
used directly. In HTML documents, the characters <, >, and & cannot beinserted
literally into adocument. Instead, in order to get those charactersin the output,
youmust insert &1t;, >, or & into your document. Similarly, there are char-
acters that cannot be used in URLs or links; such characters include spaces and,
depending onyour particular situation, the question mark and ampersand. The
process of converting strings that contain special characters that use the HTML
sequences for them is called escaping.

This issue becomes a critical one of security whenyou display datathat's
read from users back to them. For instance, aweb-based bulletin board will often
display datasupplied by sitevisitors. Ifthe datasupplied isn't escaped, amalicious
visitor could insert codesto redirect visitorsto adifferent page, or surreptitiously
capture passwords or other information. Thisis called a cross-site scripting attack.

Therearetwo main utilitiesthat you can useto help with escaping: cgi. escape()
and urllib. quote plusO. Here'saprogramthat demonstratestheir use. It asks for
input, and creates both alink and a display that properly escape any necessary
charactersintheinput.

#!/usr/bin/env python
CGl escape example Chapter 18 - escape.cqi

import cgitb
cgith. enable()

import cgi, as, urllib

print "Content-type: text/html"
print

prl nt ||||||<HTM |_>
<HEAD>
AT Tscape brample TTTILEY (/RERDY CRODNY"

Cal

383

Chapter 18

384

form = cgi.FieldStorage()

if form.getfirst('data’) == None
print "No submitted data<P>"
else:
print "Submitted data<P>"
print '<SA HREF=:"%sMata=%s"><TT>%s</TT><P>, %\
(os.environ['SCRIPT_NAME],
urllib.quote plus(form.getfirst('data’)),
cgi.escape(form.getfirst(‘data’)))

print ""<FORM METHOD="GET" ACTION="%s">

Supply some data:

<INPUT TYPE="text" NAME="daa' WIDTH="40">

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>

</BODY><HTML>"" %os.environ]'SCRIPT_NAME]

Ifyou save this program as escape. cgi and run it, you can experiment with
the results of escaping. Load it up and type <&>"> test into the box, then click
Submit. That string should be echoed back to youinthe generated page. But view
the source of that page, and you'll see something like this:

<HTML>

<HEAD>

<TITLE>CGlI Escagpe Example</TITLE></HEAD><BODY>
Submitted data<P>

<TT>&It,&+"&qt; te</TT><P>

<FORM METHOD="GET" ACTION="/cgi-bin/escape.cgi">
Supply some data:

<INPUT TYPE="text" NAME="data' WIDTH="40">

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>

</BODY><HTML>

The text withinthe Atag is escaped as necessary for URL s-that method of
escapingis different from what's used in HTML itself; note the use of hex codes
for the special characters and the plus for a space.

Ccal

Then, the text between the TT tags is escaped for aHTML document.
Notice that fewer characters are escaped, and they're escaped differently. It's
important to use the proper method of escapingin each case. In general, you'll
want to use urllib. quote_plusO for components of a URL and cgilib. escapeO
for everything else.

Ifyou click onthe link, you should get a page back that redisplays the same
string you typed in so that you can verify that the escape worked. Your browser
simply uses the escaped text inthe URL, passing it back to the CGI script.

Handling Multiple Inputs per Field

There are ways that multiple values can be specified for asingle name in HTML
forms. You can supply checkboxes or "multiple" SELECT boxes. Or, you could
assign the same nameto more than one INPUT element.

The cgi module handles these cases by providing agetlistO method that's
availableto FieldStorage instances. The getlist 0 method returnsalist of all
values suppliedfor aparticular field name. Here's an examplethat presents some
lists to the user and shows what was sel ected.

#!/usr/bin/env python
CGl list example - Chepter 18 - list.cgi

import cgitb
cgitb. enable()

import cgi, os, urllib

print "Content-type: textlhtml"
print

prlnt llllll <HTML>
<HEAD>
<TITLE>CGl List Example</TITLE></HEAD><BODY>""

form = cgi.FieldStorage()

print "You selected: "

selections = form.getlist(‘data’)

printable = [cgi.escape(x) for x in selections]
print ", ".join(printable)

385

Chapter 18

386

print "™"<FORM METHOD="GET" ACTION="%s">

Select some things: <P>,It, %as. environ[,SCRIPT_NAME]

for item in ['Red, 'Green', 'Blue', 'Blackl, 'White', 'Purple’,
'‘Python’, 'Perl’, 'Java’, 'Ruby', 'K&R, 'C++', 'OCaml’, 'Haskell’,
'Prolog']:
print '<INPUT TYPE="checkbox" NAME="datd' VALUE="%s>' %cgi.escape(item)
print' %s
 %cgi.escape(item)

print "™<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>
</BODY></HTML>""

Totest thisprogram, runit, and select C++, Haskell, and Blue. Then click Submit.

Noticethat theprogramlisted all threeitemsintheYou Selected area. Notice
also what the URL looks like (http://localhost:876s/cgi-binllist.cgi ?data=
Blue& data=C%2B%2B& data=Haskell& submit=Submit) on my system. The dataitemwas
simply repeated three times. Other ways to generate multipleinstances of the
samefield name will result in a URL looking like this aswell.

Uploading Files

You may have encountered websites that allow you to upload files as part of an
HTML form. These can beretrieved with a CGI script, and Python's cgi module
supportsthis.

Here's an example that demonstrates uploading. It will allow the user to
upload afile, and then displays the size and MD5 sum of the uploaded file. An
MD5 sum is aunique checksum for a file; UNIX and Linux users can use the mds
or mdssum command to check the MD5 sum of afile in advance, as follows:

#1/usr/bin/env python
CGl file example - Chapter 18 - file.cgi

import cgitb
cgitb. enableO

import cgi, as, urllib, mds

print "Content-type: textlhtml"
print

CGl

prlnt ||||||<HTML>
<HEAD>
<TITLE>CGI File Example</TITLE></HEAD><BODV>""

form = cgi.FieldStorage()
if form.has_key('file"):
fileitem =form['file']
if not fileitem.file:
print "Error: not a file upload.<P>"
else:
print "Got file: %s<P>" %cgi. escape(fileitem. filename)
m= mad5. newO
size =0
while 1
data = fileitem.file.read(4096)
if not len(data):
bresk
size += len(data)
m.update(data)
print "Received file of % bytes. MD5am is %s<P>" %\
(size, m.hexdigest())
else:
print "No file found.<P>"

print """<FORM METHOD="POST" ACTION="%s' enctype="multipartlform-data’>
File: <INPUT TVPE="file" NAME="file">

""" % 0s. environ [, SCRIFT_NAME]

print "<INPUT TVPE="submit" NAME="submit" VALUE="Submit">

</FORM>

</BODV></HTML>""

Note that this script uses POST for the form. Thisis required; file uploads
aren't possible with GET. Also, observe the enctype attribute of the form. Again,
thisisrequired for file uploads to work.

The interface to work with uploaded files is the "old-style" or low-level cgi
interface. Instead of using getfirst() or getlist() (whichwill load the entirefile
into memory, and then hand it over-thisprobably isn't desirable), you should
instead ook alittle closer at the underlying data structures.

You can detect whether or not you have afile upload by looking at the file
atiribute. In this case, the fileiten. file test equivalent (o form] file') file)

does that. The name of the file, as supplied by the browser, isinthe filename
attribute.

387

vnapier 1o

388

It's theoretically possible to upload multiplefiles with the same attribute
name. However, support for this is spotty bothin browsers and CGI libraries,
including Python's. Instead, if you need to receive multiple files from asingle
screen, you should instead provide multiple file INPUT tags, each with adifferent
name. For instance, you may havefile, file2, file3, and so on.

Totest thisprogram, first find a suitable file. Ifyou're on a UNIX or Linux
machine, use themdS or mdSsum command to get the MD5 sum for the file. Then,
pull up the file. cgi script inyour web browser. You'll see an entry location for
the filename. Select the file and click Submit. You'll get back a screen that looks
like this:

Got file: bash
Recaved file of 628684 bytes. MDsum is c7b80Sfdo3229Sof66a12a7b66409cf4

Comparethe MD5 sum to the one you calculated. You should be able to
verify that they're identical.

Usng Cookies

CGlI authorsfrequently need to track user sessions. A sessionwould be one con-
tinuous interaction between a user and awebsite. For instance, a user might be
using ashoppingsite, viewinginformation on 20 separate products and adding 3
to ashopping cart. Although there may be several dozenindividual pages requested,
viewing the entireinteraction as asingle session s helpful. One common use for
that is to display a count of itemsinthe shopping cart on every page.

HTTPisinherently a stateless protocol, which means that each page view is
its own session and there's no built-inway to associate one page view with another.

However, CGl authors often need such an association. For instance, if you're
devel oping a shopping cart site, you would need to track a user's movement
through the siteto make sure that when “Add to Cart" is clicked, the cart for that
user is used. This sort of thing often requires persistent storage of some sort-
often a database to hold the session information and cart information.

There are several ways to track session information. For example, you could
use HTTP authentication. Ifusers must log into accessyour site, and you use
HTTP authentication, you can access the REMOTE_USER environment variable to
get the username that was authenticated and use that as a session token.

Another methodisto passasessiontokenaroillld. Thistoken can bearandomly
generateditem. It would be embedded in ahidden field on each form, orincluded
at the end of each URL link. Thisworks, but can be cumbersome.

Many developerstoday prefer the cookie mechanism. Cookies are small
tokensthat are stored on a user's machine. When the user accessesyour site, the
browser will return the previously stored cookie to you. A cookie can store any
short string that you specify. You can then use this to track the session.

Cookies are also useful for other things. For instance, cookies can be used to
store preferencesfor asite, since they're persistent and stored on a user's browser.

Mechanics of Cookies

When you wish to use a cookie, you'll emit an extraHTTP header beforeyou
serve up apage. This header contains the cookie you wish to place and some
detailsabout it. The user's browser will then store this cookie. On any future visits
to the site, the cookie will be sent along asaHTTP header andthe web server will
place it inthe HTTP_COOKIE environment variable.

You can actually set more than one cookie at once, and the user's browser
can supply more than one cookie also.

Python provides a Cookie modul eto help with both the setting and retrieving
of cookies. Each value is a Morsd object. Every Morsd has aname and avalue.
It also has afew attributes that are specified as part of the cookie standard in
RFC2109. None arerequired. These attributes are

 domain. Givesthe server on which the cookieisvalid, startingwith adot. If
omitted, defaultsto the present server. As a security measure, many browsers
will not accept cookies set to other domains.

» max-age. Specifiesthe maximum age of the cookie in seconds. Ifnot specified,
the cookie lasts until the user closes the browser. Ifset to 0, the cookie is
deleted immediately. You can use this property to delete apreviously
stored cookie, which might achieve an effect such as logging out of asite.

» path. Gives thelocation onthe server inwhich the cookieisvalid. If not
specified, it defaults to being valid on the entire server.

 secure. Ifspecified, indicatesthat the cookie may only be transmitted over
asecure connection (such as SSL-encrypted HTTP). This doesn't imply,

however, that the cookie is stored securely by the web browser.

» version. Defaultsto 1 and should not be modified.

eGl

389

Chapter 18

390

Usng Cookies

Here'san example of using cookiesin a CGI program. Thisexamplewill letyou
set a new cookie. If cookies are found, it will show them and let you delete them.

#l/usr/bin/env python
CGl cookie example - Chapter 18 - cookie.cqi

import cgitb
cgitb.enableO

import cgi, os, urllib, Cookie

def getCookieO:
"Generates a Cookie object based on input”
if osenviron.has key(HTTP_COOKIE):
cookiestring = osenvironHTTP_COOKIE]
else:
cookiestring ="
return Cookie.SimpleCookie(cookiestring)

def dispCookie():

"Digplays cookies found"

cookie = getCookig()

print "Found the following cookies"

foundcookies = a

for key in cookie.keys():
morsd = cookiekey]
print "<I!>%s %s' %(cgi.escape(key), cgi.escape(morsel.value))
foundcookies += 1

print "<P>"

if foundcookies:
print 'Click here, %\

osenviron['SCRIPT_NAME]

print' to delete the testcookie.<P>'

def setCookie(value, maxage):
"Sets a new cookie, sending appropriate output"”
cookie = getCooki&()
cookie['testcookie'] = vaue
cookie['testcookie']['max-age'] = maxage
print cookie.output()

Cal

print "Content-type: textlhtml"
form = cqgi.FieldStorage()
action =form.getfirst(‘action’)
if action == 'setCookie'"
Usx requested setting a cookie
setCookie(form.getfirst('cookieval'), 60*60*24*365)
print # Signa end of the headers
print """ <HTML><HEAD><TITLE>Cookie Set</TITLE></HEAD><BODY>
The cookie has been set. Click here to return to the
man page</BODY></HTML>"" % os.environ['SCRIPT_NAME]
elif action = 'delCookie'"
Usx requested deleting a cookie
setCookie('fake’) 0)
print # Signa end of the headers
print "," <HTML><HEAD><TITLE>Cookie deleted</TITLE></HEAD><BODY>
The cookie has been deleted. Click here to return to
the man page. </BODY></HTML>"" %o0s.environ['SCRIPT_NAME]
else:

No action requested by user. Just display cookies and offer
a new choice.

print
print """ <HTML><HEAD><TITLE>CGI Cookie Example</TITLE></HEAD><BODY> ,""
dispCooki&()

print ""<FORM METHOD="GET" ACTION="%s">"" 9%os.environ['SCRIPT_NAME]
for vaue in ['Red) 'Greenl, 'Blue', 'White, 'Black']:
print '<INPUT TYPE="radio" NAME="cookievd" VALUE="%s"> %s
 9%\
(value, value)
print ""<INPUT TYPE="submit" NAME="action" VALUE="stCookie">
</FORM>
</BODY>
<HTML>"™"

Savethis as something like cookie. cgi and try runningit. You'll be able to
select avaluefor acookie. and whenyou go back to the main page, you'll seethat
the cookie hasthat value. You can either change the value or delete the cookie.

Looking at the code, you can see that the getCookieO function fetches the
cookievalues sent by the clientinthe environment variable HTTP_COOKIE and passes
that on to the SimpleCookie object.

I n Python, a Cookie (or SmpleCookie) object holds a set of Morsel objects.
Confusingly, each Morsd correspondsto what is normally called a cookie.

The dispCookieO function simply treats the SimpleCookie as a dictionary and
goes over any cookies found withinit. The setCookieO functionwill set a cookie.
Note that while the SimpleCookie object looks like a regular Python dictionary, it

391

Lnaprer 1o

392

isn't. Thelinecookie[. testcookie']l = value doesn't set the key testcookie to a
string; rather, the SimpleCookie object createsaMorsel object whosevalueisvalue.
That'swhy the next line works to set the maximum age of the cookie. Findly,
cookie. output () is called. This generates the appropriate HTTP header lines to
send to the client.

Farther down, take alook at what happens when a cookie isto be del eted.
setCookie() is called. Thevalue of the cookie is unimportant here. What matters
isthe maximum age, whichissetto 0. Aweb browser should immediately discard
a cookiewhen it sees the maximum age of O.

Setting Multiple Cookies

It's possible to set multiple cookiesfor a client, but to do this, you should set
multiple Morsel objects rather than multiple Cookie objects.

ummary

Many people need to make dynamic web pages, and CGlI is one of the most
popular ways to do s0. To generate dynamic pages, aweb server invokesthe CGI
script to render the page each time arequest is received for it.

Python provides a cgi module that provides assistance for authors of CGI
scripts. Information about the user's request is passed in the environment.
Variables such as PATH_INFO can be used to access datathat's passed along.

The FieldStorage class can be used to access forms submitted with GET or
POST, and also URLs generated using GET-like syntax. By using its getlist()
method, you can deal with forms that have multiple values for asingle field
name. FeldStorage can aso handle file uploads.

When generating your documents, it'simportant to remember to escape
special characters. The cgi. escapeO function can do that for HTML text, and
urllib. quote_plus() doesthe samething for URLs.

Cookies are short strings stored on a user's computer. They're frequently
used to track user sessions to enabl e things such as shopping carts. The Python
Cookie module is used to set and access cookies stored in a user's browser.

CGI has some problems, mostly relating to performance. One way to boost
performanceisto use mod_pythoninstead of CGl. The mod_bython systemis
the topic of the next chapter.

CHAPTER 19

mod_python

ONE OF THE MOST interesting ways to use Python today is Apache's mod_python
module. The mod_python modul e actually embeds a fully functional Python
interpreter insidethe Apacheweb server. Thisis most frequently used as a powerful
and efficient meansto generate dynamic web pages, but has other uses as well.

In many ways, writing mod_python programs is similar to writing CGI pro-
grams, so familiarity with CGI (discussed in Chapter 18) will be beneficial asyou
learn about mod_python. Important differences do exist, and they'll be highlighted
inthis chapter.

Undersanding the Need for mod_python

The most common method of generating dynamic web pages is the CGI script,
which s discussed in Chapter 18. A CGlI script isinvoked each time a given page
Is requested. It reads the request, generates areply. and then terminates. This
mimicsthe operation of HTTP, which, at its core, works with asingle request at a
time. The next time arequest is received, the CGI script is again invoked from
scratch. Thisdesign enables CGI scriptsto be bothlanguage- and server-neutral;
indeed. virtually al popular web servers and programming languages support them.

However, this compatibility comes at aprice: performance. Starting up a CGl
script is dow. There's operating system overhead involved with creating a new
process. There's overhead from the Pythoninterpreter when initializing and loading
the script. CGI scripts that connect to databases are hit especially hard, since
they must establish a new database session each time a pageis displayed. For
these reasons. CGl scripts aren't suitable for high-traffic sites.

The mod_python module is one answer to these problems. It actually
embeds afull Python interpreter inside the Apache web server. Your scripts are
loaded once per server process and only initialized then. Database connections
can be established at initialization time and kept open throughout the life of the
web server process. Whenever a page needsto be generated, aparticular function
iscalled, and dl the dataabout the request is passed to it. Thisfunction has access
to the environment created at initializationtime. So, for instance, it canreusethe
existing database connection.

393

Chapter 19

394

While this scheme forces the use of the Apache server, its advantages often
outweigh its disadvantages, especially when designing a compl ete web application
from the ground up. Python can be an effective alternative to special-purpose
web languages like PHP.

Themod_python module actually can do more than simply serving up pages. It
can also interact with the Apache system invarious different ways. For instance,
Apache provides various authentication handlers that | et you authenticate users
against atext file or LDAP database that contains usernames and passwords. You
canwrite your own authentication handler in mod_python (perhapsit authenti-
cates users against aremote XM:1-RPC server) and use that handler anywherein
Apache-even ifthe pages being used aren't generated by Python code.

| nstalling and Configuring mod_python

Inthis section, you'll learn how to install mod_python and configure Apache to
useit. Therearetwo popular versions of Apache: 1.3.x and 2.0.x. For Apache 1.3.x,
you'll want to use mod_python version 2.7, and for Apache 2.0.x, you should use
version 3.1 or above. Theinstructions and examples in this chapter are written
for use with mod_python 3.1 and Apache 2.0. Dueto the significant internal
architectural changes between Apache 1.3.x and 2.0.x, these examples may not
run under an Apache 1.3.x server. Ifyou've a choice of which web server to deploy,
| recommend Apache 2.0.x, since that will save youfrom needingto modify your
mod_python code when you upgrade later.

The installation process for mod_python involves the following four steps:

1. Install Python.

2. Install Apache.

3. Install mod_python.

4. Configure Apache to use mod_python.

Since you're reading a book about Python, I'm assuming you already have
it installed. Stepstwo and three vary depending on your operating system.
Some operating-system suppliers or third parties supply prebuilt Apache and
mod_python packages. If your supplier has done that, installing those prebuilt
packages is certainly the quickest and easiest way to get mod_python up and
runnling.

Ifyou'reinstalling manually, you'll first want to obtai nand install Apache 2.0.
You can download it from http://httpd.apache.org/download.cgi. When compiling,

mod...,python

make surethat your Apacheis built with Dynamic Shared Objects (DSO) support.
Most modernApacheinstallationsare, but some-especially heavily customized
onesor older installations-may not be. Ifyou're building from scratch, passing
--enable- 0 to Apache's configure script will usually enable the DSO mechanism.

Next, you'll need to obtain and install mod_python. You can download it
from http://httpd.apache.org/modul es/python-download . cgi. Compilation and
installation instructions for your particular platform can be found in the down-
|oaded file or at www. modpython .org. I nstallation procedures can vary between
different releases of Apache or mod_python, so please check your downloaded
file or the mod_python website for thelatest instructions.

Onceyou've installed everything, it'simportant to verify that the individual
componentswork. Make surethat you know how to make A pache serve up static
HTML files, that it can actually do so, and that you know where to go to modify
thosefiles. Also, make sure that you've aworking Python environment. Ifyou
have trouble with the mod_python installation later, it'simportant to know that
these two building blocks are both functional. Problems with either one of them
could manifest themselves as mod_python problems later on.

You should also determine where Apache's configuration files are stored on
your system. Common |locations include /etc/apache, /etc/apache2, /etc/httpd,
/usr/local/apache2,/usr/local/etc/httpd, /usr/local/etc/apache2,orother
similar locations. You should also identify the primary Apache configurationfile,
stored inthe configuration directory. It's usually named either httpd. conf or
apache2. conf. Once you've done that, it'stime to configure Apache to use
mod_python.

Loading the Module

Thefirst thing to do when configuring mod_python for Apacheisto make sure
that the mod_python moduleis beingloaded. Thiswill require a LoadModule
line inyour Apache configurationfile. It will look something like LoadModule
python_module /path/to/mod_python. 0. Ifyou don't know the path, consult the
output from make install as part of the mod_pythoninstallation, or the infor-
mation from your operating-system vendor if you installed mod_pythonviaa
package. Some operating systems may place examplesin the mods-available
directory inyour Apache configuration area. Other operating systems may let you
add somethinglike -D PYTHON to /etc/conf. d/apache2 to enable mod_python support.
You should be able to restart Apache with apache2ctl restart or apachectl
restart. !fit's successful, and you've inserted the LoadModule line, you've success-
fully loaded the mod_python module into Apache.

395

Chapter 19

396

Configuring Apache Directories

Now that the mod_python modul e is enabled, the next step isto activate it for
your Python programs. The mod_python moduleis only activated for the areas
and filesyou ask it to be used for. By default, it's not activated for any areas.

Thefirst thing you need to do is either place your code under a directory that
can already be reached viaApache, or set an Alias so that your code can be seen.
For instance, if you placed your mod_python codein lusr /local/mod_python, you
could use this configuration directive:

Alias /py /usr/local/mod_python

Requeststo files under Ipy onthe web server will actually use code from
lusr/local/mod_python.

Now, you need to configure A pacheto serve up Python code from there. Here's
an examplethat you can placein your Apache configurationfile (or. htaccessfiles, if
you delete the first and last lines):

<Directory /usr/loca/mod_python>
AddHandler mod _python .prog
PythonHandler test
PythonDebug On

</Directory>

Savethis file and adjust directory names if necessary Now you'll need a
program to test with. Here's some code that you can use. Name it test. py and
placeit inyour mod_pythondirectory, lusr/locallmod_python inthis example.
Notethat unlike CGI scriptsor standal one Pythonapplications, youdon't needto
mark this script executable on UNIX or Linux platforms. Apache importsit
directly into arunning Python interpreter instead, as shown here:

mod python test example - Chapter 19 - test.py

from mod_python import apache
from sys import version

def writeinfo(req, name, value):
reqwrite("<DT>%s</DT><DD>%s</DD>\n" % (name, value))

mod-python

def handler(req):
reg.content_type = "text/html"
if reg.header_only:
Don't supply the body
return gpache OK

req.write(""" <HTML><HEAD><TITLE>mod_python is working</TITLE>
</HEAD>

<BODY>

<HI>mod_python is working</HI>

You have successfully configured mod python on your Apache system.
Here is some information about the environment and this request:
<P>

<DL>

"11)

writeinfo(req, "Client IP", regget remote host(gpache REMOTE NOLOOKUP))
writeinfo(req, "URI", req.uri)

writeinfo(req, "Filename', req.filename)

writeinfo(req, "Canonica filename", reg.canonica_filename)
writeinfo(req, "Path_info", req.path_info)

writeinfo(req, "Python version”, version)

reqwrite("</DL></BODY ></HTML>\n")
return apache OK

Save thisfile. Then stop and start Apache as described earlier inthis chapter.

NOTE Apache with mod_python doesn't dways restart or reload propetly
when changes have been made to the mod_python configuration. After
alteringmod_python settings, you may need to completely stop and then
start the Apache server.

You should now be able to access this document. !fyou used Ipy as an alias
for the mod_python directory, you should be able to access the document at
http://local hostipy/test. prog. You'll see a screen of information that says
"mod_python is working" at the top. On my system, that information screen
looked like this:

397

Chapter 19

398

mod_python is working

You have successfully configured mod python on your Apache sysem. Here is
some information about the environment and this request:

Client IP
127.0.0.1

URI
| py/test.prog

Filename
lusr/local/mod_python/test.prog

Canonicd filename
lusr/local/mod_python/test.prog

Path info

Python version
2.3.3 (#1, Feb 24 2004, 09:29:13) [GCC 3.3.3 (Debian)]

Y ou might notice that some of this information looks similar to the infor-
mationthat you can obtain from the environment inaCGlI script, and indeedthe
information available to youviaCGl is also available viathe Apache APL.

Fixing Configuration Problems

Ifyou got an error instead, you'll need to fix your Apache configuration before
proceedingwiththe examplesintheremainder of this chapter. The Apacheerror
logfile oftenwill have ahint that can help you solvethe problem. Thisfile usually
is named something like error .log or error_log and is typically located in /var/
log/apache, Ivar /log/httpd, or /var/log/apache2, though its |ocation varies from
system to system.

Ifyou're still stuck, some of these hints may help:

« IfApachefailed to even start (or your browser yields a " Connection
refused” error), chances are that you have a problem with your configu-
ration. Make sure that the mod_python moduleis beingloaded and that
there are no typos. The apache2ctl configtest or apachectl configtest
commands can help find problems.

» IfApache started but generated a "4xx" error (such as a “not found" or
"permissions” problem), make sureyou have an Alias directive and that it
pointsto the proper directory. Also make sure that the directory has per-
missions that allow the Apache server to accessit. Ifyou're using. htaccess
files, make surethat Apache is configured to use them and to servefiles
from the directory inwhich they're located.

 Ifyougot aninternal server error, verify that you accurately typed in the
example code and that the configuration file is correct. Then check your
error log for a cause.

 Ifyou see Python code instead of HTML output, check your Directory
section. Make surethe path has no typos and that all necessary lines are
present.

» Try stopping Apache. Wait one minute. Then start it up again. Seeif that
fixes the problem.

Ifyou still cannot solve the problem, try consulting the documentation and
FAQ on mod_python's home page at www.modpython.org. You might also ask for
assistance on the comp .lang. python newsgroup or the mod_python mailinglist,
whichisavailable from http://mailman .modpython. org/mailmanllistinfo/mod_python.

Underganding mod_python Basics

Let'slook at the preceding example and seewhat went on under the hood. The
first important piecesare inthe Directory sectionyou added to your Apache con-
figuration file. Thefirst line, AddHandler mod_python . prog, tells Apache that the
PythonHandler should be used for arequest for anyfile endingin .progin that
directory. That meansyou could also request http://local hostlpy/fake. prog and
get the same document. Thisisapowerful capability that actually letsyou override
Apache's normal document-selection logic; more on that later.

The PythonHandler test line effectively causesApacheto runimport test whenit
initializes. Whenever arelevant request arrives, the test. handler() function will
be called, and an A pache request o bject will be passed in.

The PythonDebug line requests that exception traces are sent to both Apache's
error log and the client. Normally, these are sent solely to the error log, but you
may find it easier to develop programs whenyou can see those errorsintheweb
browser inreal time.

mod...,python

399

Chapter 19

Now let'slook at the code for test. py and examine what happens onthe
Python side. The test. py codeitself isloaded once per server process. Apache
often creates several server processeswhen it'sinitialized; afresh copy of test . py
will beloaded and initialized for each server process. However, thiswill generally
be done only once per server process. Server processes can also be created during
the execution of Apache. Thismay happen, for instance, when server loadsincrease.
Python scripts aren't dways|oaded immediately when a server process starts,
but may instead be loaded when thefirst request arrives. Whenever arequest for
a Python program arrives, Apache calls handler (). Thisfunction receives the
request and processes it. The returnvalue from handler() indicates what sort of
response gets sent back to the client.

Thefirst thing handler () doesis check to see if the request was for a header
only. Ifso, that's all it hands out. Otherwise, it proceeds to generate the entire
body. Many mod_python programs and CGI scripts don't makethis check, and
hand out the entire body regardless of the type of request. That usually works,
but it's more politefor clientsto do theright thing when possible.

The bulk of handler () is spent generating and writing the document being
sent to the client. Note that you can usereq. wri te() to transmit datato the client.
Finaly, an OK status code is returned.

The Role of the PythonHandler

While talking about the preceding PythonHandler line, | made the point that the
handler is used for arequest for anyfile endingin .progin that directory. Thisis
extremely important and may seem counterintuitive at first glance. For just about
any other method of working with aweb server, including both staticHTML and
CGlI scripts, you expect theweb server to select a different document based on
the URL requested. Youwould also expectitto returnan error itselfiftherequested
document didn't exist.

Not so with the PythonHandler. With mod_python, all requests that matchthe
AddHandler directive are passed to the Python handler. The Python handler is
then left to determinewhat to do with them-use the request to select among
different documents, return an error, or ignore the filename altogether asinthe
previous example.

This presents atremendously powerful tool. You can, for instance, present a
completevirtual hierarchy for a software download site. Or you canwriteyour
own logic to determine whether a given request is valid. Perhaps you usethe
filename to look up functions in a Python dictionary or to import your own
modules.

Here are some different URLs. Given the preceding example program and
configuration, seeif you canfigure out what Apachewill return for each of the
following:

http://local host/py/test.prog

http://local host/py/nonexistent.prog

http://local host/py/somedir/test.prog

http://local host/py/somedir/nonexistent.prog

http://local host/py/nonexistent.html

Thefirst two examples both return the previous sample "mod_pythonis
working" page. Thesecond one doesthat becausethe Pythonhandler for it is still
test. py. Youll notice that inthe generated output, the URI is different. Thisis
your key to differentiating between requests later on.

The last three exampleswill dl giveyou a404, File Not Found error. Forthe
"somedir" examples, it's because the handler is only defined for one specific
directory inthis example, and even though those are virtual subdirectories, the
physical subdirectory does not exist. Apache will generate an error. For the last
example, an error is generated because no special handler is defined for. html
files. Processing reverts to Apache's default handler, whichjust reads the file and
sendsitto the client. Sincethefile doesn't exist, the client receives the error message.

This single difference between mod_python programs and other types of
web programming represents the most common mod_python confusion. Make
surethat you always remember that your single PythonHandler is called for al
requests that match AddHandler.

One consequence of this is that the user-visible URLs need not end in . prog
or. py. They could, infact, have any extension-. cgi or even. html (thoughifyou
do that, make sureyou're really serving up HTML; you could confuse some browsers
otherwise),

Handler Return Values

Thereturnvalue of the handler governs what sort of HTTP status code Apache
deliversto the client. These HTTP status codes are things like 200, Success, or
404, File Not Found. The full list of possible return-value constants is defined by
Apache and listed in the mod_python documentation. Many are rarely, if ever,
used. Here are the more popular ones:

mod...,python

401

Chapter 19

402

« apache .HTTP_OK (200) indicatesthat therequest isvalid and that adocwnent or
header will be sent.

+ apache.HTTP_MOVED_PERMANENTLY (301) and apache. HTTP_MOVED_TEMPORARILY
(302) issue aHTTP redirect.

+ apache.HTTP_UNAUTHORIZED (401) indicatesthat HTTP authorizationis
required or that it failed.

+ apache. HTTP_FORBIDDEN (403) isageneric "permission denied" error tmrelated
to HTTP authentication.

+ apache. HTTP_NOT_FOUND (404) is ageneric “not found" message that's used
when arequest doesn't match anything valid.

Inthe brief example earlier inthe chapter, the program always returned
apache. HTTP_OK to indicate a successful request. Most mod_python scriptswill,
at minimum, also return apache. HTTP_NOT_FOUND in some situations.

It's also possibleto raise an exception that causes a particular result code to
be transmitted to the client. For instance, consider the situationinwhichyou're
checkingthe supplied URIi to determinewhat function to perform. Ifyou couldn't
find amatch, you could cal raise apache «SERVER RETURN Of apache. HTTP_NOTJOUND.

Dispatching Regueds

Earlier, | mentioned that Apache will call asingle Python handler for al Python-
related requestsin agiven directory, regardless of the filename. While this can
provide powerful capabilities, for smaller projects, perhaps a more CGl-like
interfaceiswhat'sdesired. Calling a different URi would execute a different
Python script. Infact, in this chapter, you'll see anumber of different example
programs. It would be nice to be ableto put them al inadirectory and invoke
them at will from aweb browser.

By using Python's dynamicimporting features and doing some simple parsing
ofthe URI, you can accomplishthat. Here'san example of adispatcher program-
one that receives requests and then sends them off to the appropriate script.
With thisexample, you can split up your codewith the same ease asyou canwith
CGl. You can separatethelogicfor different pages, even using codefrom multiple
sourcesinthe same directory, and all of it will beinvisibleto the user.

mod-python

mod _python dispatcher - Chapter 19 - dispatcher.py

from mod_python import gpache
import re

def raised404(logmsg):
""" Log an explanatory error message and send 404 to the client"""
apache.log_error(logmsg, apache APLOG _ERR)
raise gacheSERVER RETURN, apacheHTTP NOT FOUND

def gethandlerfunc(modname):
""Given a module name from a URL, obtain the handler function from it
and return the function object."""
try:
Import the module
mod = _ import__ (modname)
except ImportError:
No module with this name
raise404(" Couldn't import module’ + modname)

try:
Find the handler function
handler = mod.handler
except AttributeError:
No handler function
raise404(" Couldn't find handler function in module " + modname)

iIf not callable(handler):
It's not a function
raise404("Handler is not callable in module® + modname)

return handler

def gethandlername(URL):
I""Given a URL, find the handler module name"""
maich =re.search("/([a-zA-20-9_-]+)\.prog($|/|\?)", URL)
if not match:
Couldn't find the requested module
raise404(“Couldn't find a module name in URL " + URL)
return match.group(l)

403

Lnapter /9

404

def handler(req):
"""Man entry point to the program. Find the handler function,
call it, and return the result.""
name = gethandlername(reg.uri)
if name == "dispatcher. .
raised04("Can't display the dispatcher")
handlerfunc = gethandlerfunc(name)
return handlerfunc(req)

This program grabs the filename from a URi and makes sure it fits the
prescribed pattern (al phanumeric plus dashes or underscores). Thenthe
gethandlerfunc () functioniscalled. It importsthe specified module name (given
by the filename) and finds the handler () function inthat module, whichisthen
returned. The dispatcher's handler () function then callsthe new handler ()
function, passingin req and returning the result. To the newly found script, in
many ways the program behaves as if Apache had called it as ahandler directly.

In a setting where persistent datais needed or performanceiscritical, you
may wish to import al possible moduleswhen dispatcher. py itselfinitializes,
and hold them throughout the lifetime of the program. I nthis case, you'll haveto
know all the modulesyou'll use in advance.

To implement dispatcher .py onyour Apache system, simply take the config-
uration file example from earlier. Change thisline:

PythonHandler test

to the following:
PythonHandler dispatcher

Next, stop and start Apache. After restarting, you should still be ableto display
test. prog, except thistime, the dispatcher isloadingit. Also, nonexistent URis
will actually generate 404 errorslike you would normally expect.

Digpatching and mod_python's Publisher

Thisdispatcher example usesthe same concept asthe Publisher handler that is
distributed with mod_python. Ifyou'll be doing alot of work with adispatcher,
you may wish to investigate that handler as wdll.

In this chapter, acustom dispatcher was developed. The Publisher canleadto
insecure codeif not used carefully. A custom dispatcher also permitsevenmore
flexibility than Publisher.

Handling Input

Most peoplewho wish to build dynamic websites will want to interact with the
users. There are two primary ways of gathering input: viaform (or form-like)
fields, and with extracomponents on the URL. Ifyou've read Chapter 18 (on
CaGl), you'll notethat CGI presents exactly the same options. (If you'reinterested
inthe client side, Chapter 6 also discusses submissionsfrom aclient.) To help
you understand how input worksin mod_python, I've modified the CGlI examples
from Chapter 18. Uyou're contempl ating a choice between CGl and mod_python,
comparing thetwo examplesis agreat way to seethe differences betweenthe
two technologies.

Extra URL Components

Aswith CGl, you can put whatever you likeinthe part of the URi that follows the
Python handler. The extrapart is saved as req . path_info in the object passed to
your handler() function. Here'saversion of the CGI demonstration of this same
principle, modifiedto function as astandard mod_python program. Thisexample
will quiz you about today's date, as shown here:

mod_python path_info example -- Chapter 19 -- pathinfo.py

from mod_python import apache
import time

monthmep = {1: 'January', 2: 'February', 3 'March’, 4 'April’, 5 'May',
6. 'June’, 7. 'July’', 8 ‘'August’, 9. 'September’, 10. .October',
11: 'November', 12: 'December’}

daymap ={o: 'Monday’, 1: 'Tuesday', 2: 'Wedneday', 3: 'Thursday’,
4. 'Friday', 5 'Saturday', 6. 'Sunday'}

def getscriptname(req):
if not len(req.path_info):
return req.uri
return req.uri[:-len(req.path_info)J

def month_quiz(req):
reg.write("What month is it?<P>\n")
for code, name in monthmap.items():
req.write('%s
, % (getscriptname(req),
code, name))

mod-python

cnapter 19

def

def

def

def

day_quiz(req):
month = time.localtime()[l]
reg.write("What day is it?<P>\n")
for code, name in daymap.items():
reg.write('%s
, % (getscriptname(req),
month, code, name))

check_month_answer(reg, answer):

month = time.localtime()[l]

if int(answer) == month:
reg.write("Yes, this is %s<P>\n" % monthmap[month])
return 1

else:
reg.write("Sorry, you're wrong. Tryagain:<P>\n")
month_quiz(req)
return a

check _day answer(req, answer):

day = time.localtime()[6]

if int(answer) == day:
reg.write("Yes, this is %s\n" % daymap[day])
return 1

else:
reg.write("Sorry, you're wrong. Try again:<P>\n")
day_quiz(req)
return a

handler(req):
reg.content_type = "text/html"
If reg.header_only:

return apache OK

reqwrite("l"<HTML>

<HEAD>
<TITLE>mod python PATH_INFO Example</TITLE></HEAD><BODy>" ",

406

input = req.path_info.split(‘'/*)[l:]

iIf not len(input):
month_quiz(req)
elif len(input) = 1.
ismonthright = check_month_answer(reg, input[O])
if ismonthright:
day_quiz(req)

mod-python

else:
ismonthright = check_month_answer(req, input[oJ)
if ismonthright:
check_day answer(reg, input[lJ)

regwrite(If\n</BODY ></HTML>\n",
return apache OK

Taking alook at the program, you can seeit'svery similar to pathinfo. cgi
from Chapter 18. Infact, the only changes necessary wereto obtain datafrom req
rather than the environment and to use reg.write() instead of print to send data
back to the client.

The program works by appending information after the script namein the
URI. These new pieces of dataare parsed off into reg. path_info by Apache and
are available to the program. Using those new pieces of data, the program can
determine what the user supplied and generate an appropriate response.

Ifyou've been using the example Apache configurationfrom earlierin the
chapter, you can run this example by accessing http://local hostJpy | pathinfo. prog.
Youll first be asked what month it is. Onceyou answer correctly, you'll be asked
what day of theweek it is Whenyou finally get both correct, you'll see amessage
confirming your choices.

Why Not the CGI Handler?

Themod_python distribution includes a CGI handler that's designed to emul ate
the traditional Python CGl environment. However, due to the great differences
between the Apache mod_python environment and a CGl environment, this
emulationisimperfect and, infact, resultsin the loss of many of the benefits of
using mod_pythoninthefirst place. Therefore, neither mod_python's authors
nor | recommend using it. Ifyou're going to be using mod_python, it'sfar better
to rework your code to work with mod_python natively.

The GET Method

I nstead of adding avirtual file path, the GET method can be used to pass datato
the program. GET encodes parameters at the end of the URI. You can either con-
struct the URL manually or use an HTML form to have the browser construct it
for you based on input. Hereisamodified version of the previous example that

407

Chapter 19

uses the GET method. Like the previous example, thiswill present a quiz based
ontoday's date:

mod_python GET example -- Chapter 19 -- get.py

from mod_python import apache, util
import time

monthmap = {1: 'January', 2. 'February', 3: 'March’, 4 'April', 5 'May,
6. 'June', 7. 'July', 8 'August’, 9. 'September’) 10: 'October")
11: 'November', 12: 'December’}

daymap ={o: 'Monday’, 1. 'Tuesday', 22 'Wedneday', 3: 'Thursday’,
4. 'Friday', 5 ‘'Saturday', 6. 'Sunday'}

def month_quiz(req):
reg.write("What month is it?<P>\n")
for code, name in monthmap.items():
reg.write('%s
, %/(req.uri,
code, name))

def day_quiz(req):
month = time.localtime()[1]
reg.write("What day is it?<P>\n")
for code) name in daymap.items():
reg.write('%s
, %\
(reg.uri, month, code, name))

def check_month_answer(reg, answer):

month = time.localtime()[1]

if int(answer) == month:
reg.write("Yes, this is %s<P>\n" % monthmap[month])
return 1

else:
reg.write("Sorry, you're wrong. Try again:<P>\n")
month_quiz(req)
return O

def check day answer(req, answer):
day = time.localtime()[6]
if int(answer) = day:
reg.write("Yes, this is %s\n" % daymap[day])
return 1

el se:
reg.write("Sorry, you're wrong. Try again:<P>\n")
day quiz(req)
return a

def handler(req):
reg.content_type = "text/html"
if reg.header_only:
return gpacheOK

regwrite("""<HTML>
<HEAD>
<TITLE>mod _python GET Example</TITLE></HEAD><BODY>"")

form = util.FieldStorage(req)

if form.getfirst('month’) None:
month_quiz(req)
elif form.getfirst('day') == None
ismonthright = check_month_answer(req, form.getfirst('month’))
if ismonthright:
day_quiz(req)
else:
ismonthright = check_month_answer(req, form.getfirst(‘month’))
if ismonthright:
check day answer(reg, form.getfirst(‘day’))

regwrite("</BODY ></HTML>\n")
return apache.OK

In this case, we use mod_python's util. FieldStorage class to parsethe
GET request. This class isdesigned to be as compatible as possible with CGl's
FieldStorage class. Infact, in Chapter 18 the code from the CGl GET examplethat
dealswith the form can be used almost unmodified inthis situation. To this
program, it doesn't matter whether things are submitted viaaform or by manually
generating a URL aswas doneinthis example.

Noticethat inthisprogram, req. uri held the name of the Python script itself,
whereasit didn't inthe pathinfo. py example. When using the pathinfo style of
input, Apache doesn't strip the input dataout of req. uri, but it doeswhenyou're
using the GET method ofform submission. Therefore, no getscriptnameO function
was necessary in this example.

mod...,python

409

wrupiel 19

Ifyou're using the example configuration from earlier in this chapter, you
can access this example by loading http://local hostlpy/get. prog. The interface
will be the same as the pathi nfo. py example.

The POST Method

The POST method receives HTML form submissions exclusively. Its chief advan-
tages over GET tend to liein thefact that it can handle much larger amounts of
data. Sometimes, the fact that aPOST result cannot be bookmarked isan advantage
aswell, such aswhenyou're dealing with sensitive data. Here isyet another
version of the month and day quiz example, except thistimeyou'll use POST with
mod_python, asfollows:

mod_python POST example -- Chapter 19 -- post.py

from mod_python import apache} util
import time

import cgi} time} as

monthmgp = {1: 'January'} 2 'February'} 3. 'March} 4: 'April'} 5 'May?}
6: 'June'} 7. 'July'} 8. 'August’} 9. 'September'} 10: 'October’}
11: 'November'} 12: 'December’}

daymgp = {o: 'Monday} 1: 'Tuesday', 2. 'Wednesday', 3: 'Thursday’,
4. 'Friday'} 5 'Saturday'} 6: 'Sunday'}

def month_quiz(req):
reg.write("What month is it?<P>\n")
reg.write('<FORM METHOD="POST" ACTION="%s">, %req.uri)

for code} name in monthmap.items():
red. write(" dNPUT NAME="month" TYPE="radio" VALUE="%d"> %s
' %\
(code, name))

reg.write('<INPUT TYPE="submit" NAME::"submit" VALUE="Next >>">")
reg.write("</FORM>\n")

def day_quiz(req):
month;:: time.localtime() [1]
reg.write("What day is it?<P>\n")
reg.write('<FORM METHOD="POST" ACTION="%s">, %req.uri)
reg.write('<INPUT TYPE="hidden” NAME="month" VALUE="%d">, % month)

410

def

def

def

for code, name in daymap.items():
req.write('<INPUT NAME="day" TYPE=Iradio" VALUE=I%d™> %s
' %\
(code, name»

req .write(' <INPUT TYPE=lsubmit" NAME=Isubmit” VALUE="Next > > ">")
reqwrite(rr</FORM>\n")

check_month_answer(req, answe):

month = time.localtime()[l]

if int(answer) = month:
req.write("Yes, this is %s<P>\n" %monthmap[month])
return 1

else:
reg.write("Sorry, you're wrong. Try again:<P>\n")
month_quiz(req)
return a

check day answer(reg, answer):

day = time.localtime()[6]

if int(answer) = day:
reqwrite(rrYes, this is %s\n" %daymap[day])
return 1

else:
reg.write("Sorry, you're wrong. Try again:<P>\n")
day_quiz(req)
return a

handler(req):
reg.content_type = "text/html"
if reg.header_only:

return gpacheOK

regwrite("""<HTML>

<HEAD>
<TITLE>mod_python POST Example</TITLE></HEAD><BODY>"|l)

form = util.FieldStorage(req)

if form.getfirst('month’) None:
month_quiz(req)
elif form.getfirst('day') == None
ismonthright = check_month_answer(req, forrn.getfirst(‘'month'»
if ismonthright:
day_quiz(req)

mod-python

411

Chapter 19

412

else:
ismonthright = check_month_answer(req, form.getfirst('month’))
if ismonthright:
check day answer(reg, form.getfirst(‘day'))

regwrite("</BODY></HTML>\n",
return gpache.OK

This program usesthe exact same form logic as the GET version did. In fact,
theonlyreal changeisthe HTML codethat was generated to present the menu of
selections. The mechanics of handlingthe POST dataarethe same asfor the CGI
script thanksto the interface compatibility of FieldStorage.

Sincethe mod_python FieldStorage is largely compatible with CGl's
HeldStorage, many of the principles of handling form datadescribed inthe CGI
chapter apply to mod_python aswell.

You can run this example by loading http://local hostipy | post. prog if you're
using the example Apache configuration from earlier in this chapter.

Escaping

The mod_python module doesn't directly provide support for escaping HTML
dataor URLs. However, it's possible to use the functions inthe cgi and urllib
modulesto do this.

Normally, you should never access anything from the CGlI libraryin a
mod_python program. Its escape() function is a special-case exemption. Here's
amod_python version of the escaping demonstration presented for CGl.

mod python escgpe example -- Chapter 19 -- escape.py

from mod_python import apache, util
import urllib
from cgi import escape

def handler(req):
reg.content_type - "text/html"
if reg.header_only:
Don't supply the body
return goacheOK

mod_python

reg.write("1 *<HTML>
<HEAD>
<TITLE>mod_python Escgpe Example</TITLE></HEAD><BODY>"")

form = util.FieldStorage(req)

if form.getfirst('data’) = None
reg.write("No submitted data.<P>\n")
else:
reg.write(" Submitted data<P>\n")
req.write('<TT>USKITT><P>, %\
(req.uri,
urllib.quote_plus(form.getfirst(‘data’)),
escape(form.getfirst('data’))))

reqwrite("ll1<FORM METHOD="GET" ACTION=1%s">
Supply some data:

<INPUT TYPE="text" NAME="dad' WIDTH=140">

<INPUT TYPE="submit" NAME="submit" VALUE="Submit">
</FORM>

</BODY></HTML>\n"" %req.uri)

return apacheOK

Notice the careful import from the cgi module. You could, of course, use
import cgi andthen cgi.escape() instead of from cgi import escape. By using from
cgi import escape, you remove the possibility that other functionsfrom cgi could
be accidentally used. Becausethe cgi functions assume the CGI environment of
one processper request, they can cause serious conflictswithmod_python'svery
different environment.

Underganding Interpreter Instances

The mod_python system embeds Python inside Apache, but actually, in many
situations, it will use more than one Pythoninstancefor the server. In the default
configuration, the Python programsin each Apache virtual server executein
their own Python interpreter instance. That is, the Python codein onevirtual
server is completely unable to interact with the Python code in another virtual
server because they exist in separate Python interpreters. Thisis usually abenefit,
because it prevents errant or malicious Python programsfrom causingtrouble
with unrelated sites.

413

Chapter 19

414

But sometimesit can be aproblem. For instance, perhapsyou have many
virtual serversrunningthe same Python program. If each virtual server uses its
own Python environment, resource requirementswill be increased on the web
sarver. Theseincreased requirements generally mean more RAM since more copies
than necessary of your script will beloaded into RAM at once. It would also
increase the number of connectionsto adatabase server that may be kept open.

I n other situations, you may wish to increase the number of separate inter-
preters. This may occur when you run many different Python programson a
singlevirtual server. Increasing the number of separate interpreterswill make it
more difficult for aproblem in one Python program to impact another one. For
instance, abugin one program may corrupt adatabase connectionthat's also
used by another program.

The mod_python module definesthree Apache configuration directives to
control this behavior. PythonlInterpreter givesfine-grained control over exactly
how interpreters are used. It takes asingle string parameter. Every Python program
that falls under a Pythonl nterpreter with that name will use the same interpreter
namespace. You can force the entire system to use oneinterpreter by placing
something like Pythonlnterpreter GLOBAL at the top level of your server configu-
ration. Note that the text GLOBAL could be replaced by any other name of your
choosing.

There are also two other options: PythonlnterpPerDirectory and
PythonlnterpPerDirective. These request separate interpretersfor each
directory or Apache directive area, respectively.

While these directives offer acertainlevel of control, they still may not nec-
essarily do what you expect. For instance, specifying a single PythonInterpreter
at the top level of your configuration doesn't necessarily mean that only one
interpreter will exist; it just meansthat new interpreters aren't created based on
the location of Python scripts.

Internally, Apache often uses aforking method to handle multiple client
requests simultaneously. Each forked Apache processisits own entity, and thus
each forked Apache processwill have its own Python interpreter set. The rules
just described govern how the interpreters within a singleforked process can
interact. With mod_python, there's no such thing as atrue global variable that
can be accessed by al Python programs for al connections. Interpreterswithin
different forked processes are automatically isolated. As aprogrammer, you have
no control over which forked processiscalled to handle agiven connection, and
you don't have control over thelongevity of agiven forked process. Given the
forked-process model, you must, for example, be surethat your database server
can handle an amount of simultaneous connections equal to the maximum
number of forked processesin Apache.

Prebuilt Handlers in mod_python

In the examplesinthis chapter, handlers for mod_python were designed from
scratch. The mod_python distribution shipsthree handlersthat can be useful for
your projects.

First, the Publisher handler isamore sophisticated version of the dispatcher
example presented in this chapter. The Publisher handler presents not only
Python scripts but also functions within them as paths. This can simplify your
codein some cases, but unless due care is taken, the Publisher handler can also
lead to security risksif certain functions are exposed unintentionally.

The CGI handler is designed to ease the migration from true CGl scripts
to mod_python scripts. Ifyou have existing CGI scripts and wish to moveto
mod_python, thismay help you. However, themod_python authorswarn against
using thisfor new development, as many of the benefits of mod_python are for-
feited. Additionally, some CGI scriptsthat take advantage of the nature of CGI to
perform process-alteringtasks, such as changing directories or the environment,
may cause failures when used with the CGI handler.

Finaly, the Python Server Pages (PSP) handler isdesigned to processHTML
or XHTML documents, and alows you to embed Python code inside them. This
issimilar in concept to PHP programming.

Summary

The mod_python module is away of embedding Python inside the Apache web
server. It can often provide increased performance and greater flexibility if you're
able to standardize on the Apache web server for your projects.

Installation of mod_python varies depending on your system, but generally
involvesinstalling Python, Apache, and then the mod_python module. Youll
need to add afew lines of codein the Apache configuration file aswell.

With mod_python, all requestsin aparticular directory that match the handler
pattern are passed to a single Python function. Ifyou want amore CGl-like
behavior, inwhich programswith different names handl e requests for different
files, you can use aprogram similar to the dispatcher examplein this chapter to
send them off to the appropriate handlers. The mod_python-supplied Publisher
handler also performs asimilar service.

Programswritten with mod_python have options similar to CGl programs
for receiving and sending data, though the mechanics of accomplishing these
things can differ. The mod_python module providesautil . FieldStorage class
that's designed to mimic CGlI's FieldStorage class, which means that form-
processing codeis often quite similar between CGlI and mod_python programs.
The escapeO function can be used directly from the cgi module.

mod-python

415

Chapter 19

Apache normally separates Python programs so that programs running for
onevirtual server cannot access programs running in another. However, this
behavior can be changed. I n any case, Apache may create several Python inter-
preters dueto itsinternal multitasking mechanisms.

The mod_python distributionincludesthree built-in handlersthat may be
ableto saveyou somework: Publisher, whichisamore sophisticated dispatcher;
CGl, which can help migrate existing CGI scriptsto amod_python system; and
PSp' which processes Python code embedded in HTML or XHTML documents.
When using any of these built-in handlers, make sure you understand the
security implicationsfirst.

416

Part Six
Multitasking

CHAPTER 20

Forking

VIRTUALLY ALL AuTHORS Of servers, and many authors of clients, need to write pro-
gramsthat can effectively handle multiple network connections simultaneously.
As an example, consider aweb server. Ifyour server could only handle one con-
nection at atime, you could only betransmitting asingle page at atime. Ifyou
have alarge file on your server and a user on aslow link is downloading it, that
user could completelytie up your server for an hour or more. During that time,
nobody elsewould be ableto view any pages on that server. Virtually al servers
want to be able to serve more than one client at once.

To serve multiple clients simultaneously, you nheed to have someway to handle
several network connections at once. Python provides three primary ways to
meet that objective: forking, threading, and asynchronous 1/O (also known as
nonblocking sockets). I'll cover al three: forking in this chapter, threadingin
Chapter 21, and asynchronous I/O in Chapter 22.

Ofthesethree, forking is probably the easiest to understand and use. However,
it's not completely portable; forking may be unavailable on platforms that aren't
derived from UNIX.

Forkinginvolves multitasking-theability to run multiple processes at once,
or to simulatethat ability. Inthis chapter, you'Ulearn how to apply forking to
your programs. First, you'll learn about how forking works with your operating
system and some common pitfallsto avoid. Next, you'll see how to apply forking
to server programs. Findly, the chapter will concludewithinformation on locking
and error handling.

Understanding Processes

Forkingistiedin closely withthe operating system's nature of aprocess. A process
is usually defined as "an executing instance of aprogram.” Whenyoustart up an
editor such as Emacs, the operating system creates a new process that runsit.
When Emacs terminates, that process goes away. Ifyou open up two copies of
Emacs, there will be two Emacs processes running. Although they both may be
instances of /usr/bin/emacs and maybe started up the same way, they may be
doing different things-perhaps editing different files. Each processis distinct.

419

Chapter 20

Each process has a unique identification number called a processID (PID).
The operating system assignsthe PID to aprocesswhenit starts. Inthe preceding
Emacs example, the two Emacs processes would each have a unique PID.

NOTE This chapter focuses on UNIX and Linux platforms, since those are
platformsfor which forking is best supported. Theinformation containedin
this chapter may not apply to other operating systems such as Windows.

However, although the details may differ inimportant ways, al multitasking
operating systems (including Wmdows) have some notion of aprocess, even
if they don't refer to it by that name. Single-tasking operating systems, such
as DOS, will usually have no notion of a process.

You can gatherinfonnation about running processes by usingthe ps command.
Thesyntax for ps differsfrom one UNIX to the next. Here's an examplefrom Linux,
which should also work on any BSD operating system and AIX.:

$ ps X
prD TTY STAT TIME COMMAND
19817 ? 5 0:00 /bin/sh /usr/bin/startkde
19866 ? 5s 0:00 /usr/bin/ssh-agent startkde
19877 ? 5s 0:02 kdeinit: Running...
19830 ? 5 0:18 kdeinit: dcopserver --nosid
19882 2 5 0: 01 kdeinit: klauncher
19885 ? 5 0:26 kdeinit: kded
19966 ? 5 34:11 /usr/bin/artsd -F 5 -5 4096 -a alsa -s 60 -m artsmess
120%6 2 5 0:00 xterm
12097 pts/668 5s 0:00 -bash
12154 pts/668 5t 0:00 emacs -nw letter. txt
12155 2 5 0:00 xterm
12156 pts/669 5s 0:00 -bash
12163 pts/669 5+ 0:00 emacs -nw report. txt

Thefirst columninthe ps output shows the PID of a given process. Thelast
column, in most cases, showswhat program that process is executing. Inthis
example, thefirst processeslisted correspondto the graphical ehvironment KDE.
They represent things such as the sound system. I've cut out several dozen other
processes for this example.

420

Farther down, you can see two different versions of Emacsrunningasinthe
previous example. One has PID 12154 and the other has PID 12163. Thefirst was
originally started to edit l etter. txt and the secondwas started to edit report. txt.

Each process has uniqueattributes. For instance, PID 12154 may have an open
file descriptor for letter. txt while PID 12163 may have an open file descriptor
for report. txt. Processes can aso have unique environment variables, datain
memory, and open network connections.

The processis the fundamental unit of multitasking. Several processes may
be running simultaneously. For instance, my two Emacs processes could be
running at the same time as aweb browser, afile downloading process, a data
analysis process, and a CD burning process. A single process doesn't have more
than one thing executing at once. Threading, discussed in Chapter 21, can blur
that line.

Understanding fork()

The system call used to implement forking is called fork(). It'savery unique call.
Most functions will return exactly once (with or without avalue). The sys.exit ()
function never returns since it terminates the program. By contrast, Python's
os.fork() istheonly function that actually returns twice. After calling fork(), there
are two copies of your program running at once. But the second copy doesn't
restart from the beginning; both copies continue directly after the call to fork () -
the process's entire address space is copied. Errors are possible, and os. fork()
could raise an exception; seethe "Error Handling" sectionin this chapter for details.

Thefork() cal returnsthe process ID (PID) of the newly created process to
theoriginal ("parent") process. To the new ("child") process, it returns a PID ofO.
Therefore, logic like thisis common:

def handleO:

pid = os.forkO

if pid:
& Parent
close_child_connections()
handle_more_connections()

else:
Child
close_parent_connections()
process_this_connection()

When | said beforethat os. fork() isthe only function that returns twice,
that's not entirely accurate. | could write the following:

Forking

421

Chapter 20

422

def dothefork():
pid = os.forkO
if pid:
return "server"
else:
return "client”

In this instance, dothefork() would actually return twice aswell. 1t should
be noted, though, that any function that returns twice does, at some point, call
os. forkO to make that possible.

Forking is one of the most common and best-understood methods of multi-
tasking, and using forks is especially common for servers, whereby the server
typically forks for each new incoming request.

After afork, each process has a distinct address space. Modifying avariable
in one process will not modify it inanother, and that is akey difference from
threads (discussed inthe next chapter). Thisleavesyour code less vulnerable to
errorsthat may cause the server process for one connectionto interferewiththat
of another.

Forkingis used, on UNIX systems, for more than just network purposes. For
instance, the typical way (and what Python does under the hood whenyou call
os. system ()) to execute aprogramisto fork and then use one of the os. exec.... ()
functions to start the new program. The parent process can then continue on,
monitoring the child, or it can opt to have its execution blocked until the child
terminates by using one of the wai t () functions (which will be described later in
the section "The Zombie Problem™).

However, forking isafairly low-level operation. The process of actually doing
afork takes alittle bit of work to make surethat you're doing everything the oper-
ating system expects of you.

Duplicated File Descriptors

There are several side effects of forking. One of the most obvious is that of dupli-
cated file descriptors. Afile descriptor can refer to things such as asocket, afile
ondisk, aterminal (standard input/output! error), or certain other file-like objects.
Sinceaforked copy of aprocessis an exact copy; itinheritsall the file descriptors
and socketsthat the parent process had. Soyouwind up with asituationinwhich
both the parent and child process have a connection open to asingle remote host.
That's bad for several reasons. Oneisthat if both processestry to commu-
nicate over that socket, the result will likely be garbled. Another is that a call to
close() doesn't actually close the connection until both processes have calledit.

Therefore, protocols (such as FTP) that usethe closing of asocket as asignal that
some action has completed will be broken unless sockets are closed both places.
Some authors do, on occasion, exploit the fact that two processes can access the
socket, but this requires great care and is quite rare.

The solutionto this problem is to have whichever process doesn't need a
socket closeitimmediately after forking. For thetypical case of aserver that forks
anew processto handl e eachincoming request, you'll noticethat the parent process
will close the socket for the child, and the child will close the master listening
socket that the parent uses. Thiswill ensure proper operation for both processes.

Zombie Processes

The semantics of fork() are built around the assumptionthat the parent process
isinterested infinding out when and how a child processterminated. For instance,
ashell scriptisinterested infinding out the exit code from aprogram that is run.
A parent process can find out not just the exit code, but also if a process crashed
or terminated due to asignal. Theway a parent gathers this informationisvia
os.wait O or asimilar call.

During the time between the termination of the child process, and the time
the parent callswaitO init, the child processis said to be azombieprocess. It'sno
longer executing, yet certainmemory structures are still present in order to permit
the parent to wait () onit.

For most servers, theinformationreturned bywait () isirrelevant. Ifaworker
process dies, the server will not do anything different; it shouldstill go onservicing
requests from other clients.

However, you must still call wait() onthe child process at some point after it
terminates. Otherwise, system resources will be consumed by the vast amount of
zombie processes, which could eventually render the server machine unusable.

The operating system makes that job fairly easy, though. Each timea child
process terminates, it sends the SIGCHLD signal to its parent process. (A signal isa
rudimentary way to inform a process of certain events.) The parent process can
set asignal handler to receive 51GCHLD and clean up any children that have termi-
nated. While this sounds tricky, I'll show you an exampleinthe “The Zombie
Problem™ section later in this chapter that can accomplishthisvery easly.

Ifthe parent process dies beforeits children, the childrenwill continue running.
The system re-parents them, settingtheir parent to beinit (process 1). Theinit
process will then take care of cleaning up zombies.

Forking

Chapter 20

424

Performance

You may think that using fork () is aslow proposition sinceit must copy over al
of aserver each timeaclient connects. Inredlity, the performance hit of fork () is
insignificant and unnoticeable to al but the most heavily |oaded systems.

Most modern operating systems, such as Linux, implement fork() with copy-
on-write memory. That means that memory isn't actually copied until it needsto
be (when one process or the other modifiesit). The call to fork () itselfis usually
virtually instantaneous.

Thefork() call isused alloverinthe system. For instance, when you're using
ashell and type 1s, the shell will fork a copy of itself, and the new process will
invokels. A similar thing happensifyou click anicon to launch aprogramin a
graphical environment. The desktop manager or window manager will fork itself,
and then call exec() to start the new program. When you callos. system() from a
Python program, there's aninternal cal for fork() and exec() in the same manner.

Extremely heavily loaded systemsthat serve many brief connections, such as
web serversfor very popular sites, may not want to put up with even the small
overhead of forking. These servers sometimes use aforked pool, inwhich the
forking is donein advance and processes are reused. They might also choose to
use asynchronous /O, which has no per-process overhead, or threading, which
has |less of an overhead. For general -purpose use, forking remains a good choice.

Forking First Steps

Here's asimplefirst example offorking. It's going to fork, and both processes will
display some messages.

#!/usr/bin/env python
First fork example - Chepter 20 - firstfork.py

import o) time
print "Before the fork) my PID is") os.getpidO
if os.forkO:
print "Hdlo from the parent. My PID is") os getpidO
else:

print "Hello from the child. My PID is") os.getpid()

time.sleep(i)
print "Hello from both of us."

Forking

This program will print out its process ID prior to forking. Then, because
fork () returnstwice, the parent and child each print out a unique message, and
they both fallout of the if, wait for one second, then display a greeting. Here's
what the output looks like:

$.Ifirstfork. py

Before the fork, my PID is 2700

Hello from the child. My PD is 2701
Hello from the parent. My PID is 2700
.+ One second later .e.

Hello from both of us.

Hello from both of us

On some systems, you may o bservethat the order of the parent and child
messages is different, and they may be different each time you run the program.
The operating system makes no guarantee about that, as infact, both processes
should be executing simultaneously.

Noticehow Hello from both of usisdisplayed twice, eventhoughit occursin
the code only once. That's because, by the time the execution reachesthat point,
there are actually two copies of the program running.

The Zombie Problem

Let's take alook at the aforementioned zombie problem in action. The UNIX
command ps shows alist of active processes. Here's an example that will demon-
strate the zombie problem. Whileit's running, open up another terminal session
and take alook at the state of processes.

#!/usr/bin/env python
Zombie problem demonstration - Chapter 20 - zombieprob.py

import os, time
print "Before the fork, my PID is", os.getpidO
pid = os.fork ()
if pid:
print "Hello from the parent. The child will be PID %d" %pid

print "Sleeping 120 seconds..."
time.sleep(120)

425

Chapter 20

The child processwill terminate immediately after the fork (fork() returns
PID Ofor the child, so it will fail the i f test, and there's nothing else for it to do).
Theparent doesn't cleanit up, but rather waits around for awhile. Run the program
asfollows:

$./zombieprob.py

Before the fork, my PD is 2719

Hello from the parent. The child will be PID 2720
Sleeping 120 secondse.e

Now, in another terminal session, inspect the results without stopping
the program:

$ps ax | grep 2719

2719 ptS/2 S 0:00 python ./zombieprob.py
$ps ax | grep 2720

2120 ptS2 Z 0:00 [python] <defunct>

You can seethat the child processis a zombie; the Zin the third column, as
well as the <defunct> at the end of the output, indicate that. Once the parent ter-
minates, you'll be able to confirm that neither process exists. The shell cleans up
the parent process, and the child process gets re-parented to init, which will
clean it up.

The Role of init

Theinit programisawaysthefirst processthat runs on the system and always
has PID 1. Itsmain roles are starting up and shutting down the system. Inthis
case, there's another special rolefor init. If aprocessdies, and thereare still
children of it out there on the system (zombie or not), the operating systemwill
changethat processsparentto bePID I —i nit. Theinit programwill watch for
zombie childrenin the sameway that normal processeswill, so these processes
will get cleaned up.

Solving the Zombie Problem with Sgnals

Here's a program that solves the zombie problem:

426

Forking

#!/usr/bin/env python
Zombie problem solution - Chapter 20 - zombiesol.py

import os, time, signal
def chldhandler(signum, stackframe):

""" Signal handler. Runs on the parent and is called whenever
a child terminates."""

while 1.
Repeat as long as there are children to collect.
try:
result os.waitpid(-1, ocsWNOHANG)
except:
bresk

print "Regped child process %d" %result[0]
Resst the signal handler so future signals trigger this function
signal.signal(signal.SIGCHLD, chldhandler)

Install signal handler so that chldhandler() gets called whenever
child process terminates.
signa.signal(signa .SIGCHLD, chldhandler)

print "Before the fork, my PID is", os.getpidO

pid - os.forkO
if pid:
print "Hello from the parent. The child will be PD %d" %pid
print "Sleeping 10 seconds..."
time.sleep(10)
print "Sleep done."
else:
print "Child sleeping 5 seconds..."
time.sleep(5)

First, the program defines the signal handler chidhandler (). Thisfunctionis
calledwhenever SGCH LD isreceived. It hasasimpleloop calling os. watpid (). The
first argument to as .waitpid(), -1, means to wait for any terminated child process,
and the second tells it to return immediately if no more terminated processes
exidt. Ifthere are child processes waiting, waitpid () returns a tuple of aprocess's
PTO and exit information. Gtherwise, i 1aises an excepion. The act of ushng wait()

orwaitpid () to collect information about terminated processes is called reaping.
Thecall isin aloop because a single SGCHLD could indicate multiple child
processes have died. Finaly, after the loop, the signal handler isreactivated. This

427

Chapter 20

428

is necessary because some UNIX implementations deactivate the signal handler
when it's called. By explicitly reactivating it, you ensure that it gets called again
when the next child process terminates. (1t won't happenin this example, but it
will in real servers.)

Thecall to signal. signal O establishesthesignal handler. Thefirst argument
isthe signal of interest, and the second one names the function that should be
called whenit arrives. That function must accept two arguments: the signal
number and an optional stack frame.

The remainder of the program is fairly typical. Whenyou run the program,
you'll see output like this:

$./zombiesol.py

Before the fork, my PID is 2931

Child sleeping 5 seconds...

Hello from the parent. The child will be PID 2932
Sleeping 10 seconds...

Regped child process 2932

Seep done

You'll notice that the parent reaps the child process only five secondsinto its
sleep, since that's how long it takes before the child process terminates. The signal
handler is called immediately.

You might also notice that the parent process never finishes its sleep. There's
aspecial casewithtime. sleep () inthat if any signal handler is called, the sleep
will terminateimmediately, rather than continuewaiting the remaining amount
of time. Sinceyou'll rarely need to use time. sleep () with networking code, this
shouldn't be an issue.

Solving the Zombie Problem with Polling

Another approach to solving the zombie problem is to periodically check for
zombie children. This method doesn't involve asignal handler, and as such, will
not cause problems for sleep (). Signal handlers can also cause problems with
I/O functions on some operating systems, whichis alarger problem for network
clients.

Here's another solution to the zombie problem. Instead of using asignal
handler, it will periodically try to collect any zombie processes.

Forking

#!/usr/bin/env python
Zombie problem solution with polling - Cheapter 20 - zombiepoll.py

import os, time

def reapO:
"""Try to collect zombie processes, if any."""
while 1
try:
result os.waitpid(-1, 0sWNOHANG)
except:
bresk

print "Regped child process %d" %result[O]
print "Before the fork, my PID is", os.getpidO

pid = os.forkO

if pid:
print "Hello from the parent. The child will be PID %d" % pid
print "Parent sleeping 60 seconds..."
time.sleep(60)
print "Parent sleep done”
reapO
print "Parent sleeping 60 seconds..."
time.sleep(60)
print "Parent sleep done”

else:
print "Child sleeping 5 seconds..."
time.sleep(5)
print "Child terminating."

This program will simply call reap() to gather up the child processes. This
functionisvery similar to the signal handler in the previous example. A server
process would probably call reapO at the bottom of its primary acceptO loop.
While there will sometimes be zombie processes out there, they won't build up,
since new oneswould be created only after cleaning up the older ones.

Whenyou runthis problem, you'll see output like this:

429

Chapter 20

430

$./zombiepoll.py

Before the fork, my PID is 3667

Child sleeping 5 seconds...

Hello from the parent. The child will be PD 3668
Parent sleeping 60 seconds...

Child terminating.

Parent sleep done.

Regped child process 3663

Parent sleeping 60 seconds...

Parent sleep done.

Ifyou runthe program, you'll notice several differences betweenit and the
previous one. First of al, the child process wasn't reaped immediately when it
terminated. Secondly, the call to time. sleep () wasn't interrupted. Findly, if you
do a ps during the 55 seconds between the time the child exits and the time it's
reaped, you'll seeit listed as azombie. But you can seethat it's been cleaned up
during the last 60 seconds of the program.

Forking Servers

Forking is most commonly used for network servers. | presented code for several
different serversin Chapter 3, but each sample shared acommon problem: It
could only serve oneclient at atime. Thisisrarely an acceptable limitation, and
forking is one of the most common ways to solve the problem. The concepts
demonstrated earlier can be applied to the server code. Here's an example of an
echo server that uses forking. Because it uses forking, it can echo text back to
several clients at once.

#t/usr/bin/env python
Echo Server with Forking - Chapter 20 - echoserver.py
Compare to echo server in Chapter 3

import socket, traceback, os, sys

def reapO:
Collect any child processes that may be outstanding
while 1.
try:
result = os.waitpid(-1, osWNOHANG)
if not result[o]: break

Forking

except:
bresk
print "Regped child process %d" %result[O]

host ' # Bind to all interfaces
port 51423

s = socket.socket(socket.AF INET) socket. SOCK_ STREAM)
ssetsockopt(socket. SOL_SOCKET , socket. SO REUSEADDR) 1)
s.bind((host) port))

s.listen(l)

print "Parent at %d listening for connections' % os. getpid O

while 1:
try:
clientsock, clientaddr s.accept()
except Keyboardinterrupt:
raise
except:
traceback.print_exc()
continue

Cleen up old children.
reap()

Fork a process for this connection.
pid = os.forkO

if pid:
This is the parent process. Close the child's socket
and return to the top of the loop.
clientsock.close()
continue
else:

From here on) this is the child.
s.closeO # Close the parent's socket

Process the connection

431

Chapter 20

432

try:

print "Child from %s being handled by PID %d" %\
(clientsock.getpeername(), os.getpid())
while 1:
data - clientsock.recv(4096)
iIf not len(data):
break
clientsock.sendall (data)
except (Keyboardinterrupt, SystemExit):
raise
except:
traceback.print_exc()

Close the connection

try:
clientsock.close()
except Keyboardinterrupt:
raise
except:
traceback. print_exc ()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys. exit (0)

Let'slook at this program, whichisthe TCP echo server from Chapter 3with
forking added in. Now it can handle multiple clients simultaneously.

Fird, thefunction reap() isdefined similarly to the previous examples. However,
there's an additional test: to see whether or not the PID returned by waitpid ()
is zero. Inthe previous cases, this test was skipped, since we always knew that
reapO was called when there was at | east one zombi e process, but that might not

be the case here.
Then, the code proceeds unmodified until after the call to accept (). Thefirst

new call isto reap(). Thiswill clean up any zombie processes that have terminated
sincethelast time aclient connected. Next, the program forks and uses the usual
if pid design.

If the process post-fork isthe parent, itwill closethe child's socket and return
to the top of theloop with continue to list for more connections. Ifwereinthechild
process, it closes the parent process's socket and then processes the connection
as usual. However, there's a change at the end-thechild calls sys.exit (0) when
it's done processing. Thisisvitallyimportant. Ifit didn't do this, executionwould

returnto the top of thewhileloop, and the childwould try to accept new connec-
tions aswell as the parent. In this particular case, it will generate an error since
theclient closed its copy of the master socket. The sys.exit() makes surethat the
client terminates when it should.

Try running the program. You can then connect to port 51423 and observe
that it echoes text back to you. Onthe console, the server will print out some
status messages. Here'swhat it looked like for me:

$./echoserver.py

Parent at 16271 listening for connections

Child from ('127.0.0.1', 37708) being handled by PID 16273
Child from ('127.0.0.1', 37709) being handled by PID 16285

This shows two incoming connections being handled by two different
processes.

L ocking

A simple program like an echo server never needsto writeto any files onthelocal
system. However, thisisn't necessarily the case for al servers. When using forking,
you haveto bewary of concurrencyissuesthat don't occur ifyouonly service one
connection at once.

For instance, if part ofthe task of your server istowritelinesto afile, itwould
be aproblemto havetwo serverswriting to the file at once. Changes could belost
or corrupted, and the two processes could overwrite each other's changes.

To solvethis problem, you'll need to use locking. In forking programs, locking
Is most frequently used to control access to files. Locking letsyou force only one
processto performcertainactions at atime. Here's an example of aforking server
that uses locking:

#!/usr/bin/env python
Locking server with Forking - Chapter 20 - lockingserver.py
NOTE lastaccess.txt will be overwritten!

import socket, traceback, os, sys, fcntl, time

def getlastaccess(fd, ip):
""Given a file descriptor and an IP, finds the date of last access
from that IP in the file and returns it. Returns None if there was
never an access from that IP."""

Forking

433

Chapter 20

Acquire a shared lock. We don't care if others are reading the file
right now, but they shouldn't be writing it.
fentl.flock(fd, fontl.LOCK_SH)

try:
Start at the beginning of the file
fd.seek(0)

for line in fd.readlines():
fileip, accesstime line.strip().split("1")
if fileip == ip:
Got a match -- return it
return accesstime
return None
finally:
Make sure the lock is released no matter what
fentl.flock(fd, fontl.LOCK_UN)

def writelastaccess(fd. ip):
"""Update file noting new last access time for the given IP. "mn

Acquire an exclusive lock. Nobody else can modify the file
while it's being used here.

fentl.flock(fd, fontl.LOCK _EX)

records = [J

try:
Read the existing records, *except* the one for this IP.
fd.seek(O)
for line in fd.readlines():
fileip, accesstime = line.stripO .split(nIn)
if fileip = ip:
records.append((fileip, accesstime))

fd.seek(O)

Write them back out, *plus* the one for this IP.
for fileip, accasstime in records + [(ip, time.asctime())J:
fd.write("%d%s\nn % (fileip, accesstime))
fd. truncate()
finally:
Release the lock no matter what
fentl.flock(fd, fent.LOCK_UN)

434

def reapO:
"""Collect any waiting child processes.
while 1:
try:
result = os.waitpid(-1, osWNOHANG)
if not result[o]: bresk
except:
bresk
print "Regped child process %d" %result[o]

hot '’ # Bind to all interfaces
port 51423

s = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
s.setsockopt(socket. SOL_SOCKET, socket. SO REUSEADDR, 1)
s.bind((host, port))

s.listen(l)

fd = open("lastaccess.txt", "w+")

while 1:
try:
clientsock, clientaddr s.accept()
except Keyboardinterrupt:
raise
except:
traceback.print_exc()
continue

Clean up old children.
reap()

Fork a process for this connection.
pid = os.fork O

if pid:
This is the parent process. Close the child's socket
and return to the top of the loop.
clientsock.close()
continue
else:
From here on, this i1s the child.
s. closeO # Close the parent's socket

Forking

435

Chapter 20

Process the connection

try:
print "Got connection from %5, servicing with PID %d" %\
(clientsock.getpeername(), os.getpid())
ip = clientsock.getpeername()[0]
clientsock.sendall("Welcome, %s\n" %ip)
last = getlastaccess(fd, ip)
if last:
clientsock.sendall("l last sa you at %s\n" %last)
else:
clientsock.sendall("1've never seen you before.\n")

writelastaccess(fd, ip)
clientsock.sendall ("l have noted your connection at %s\n" %\
getlastaccess(fd, ip))

except (Keyboardinterrupt, SystemExit):
raise

except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except Keyboardinterrupt:
raise

except:
traceback.print_exc()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys.exit(0)

Thisisafairly basic server. It simply notes thelast time a connectionwas
received from agiven IP and notes that in afile. The algorithm used to do that is
rather inefficient and vulnerable to race conditions-situationsinwhich the
outcome depends on which process happens to get to the datafirst.

436

Forking

To combat that, it uses fcntl. flock() to restrict accessto thefile. The
getlastaccessO function starts out by calling fentl. flock(fd, fentl. LOCK_SH).
Thisrequests a shared lock on thefile. Any number of processes can hold a
shared lock aslong as no process holds an exclusive lock. That's fine for this
function, because it'sonly reading. It's OK if other processes are reading at the
same time, but you don't want to be reading while someone else is writing.

Ifanother processtriesto acquire alock whilethis process holds it, the other
processwill stall at theflock() call until thelock can be acquired. Therefore, this
is ablockingcall because executionis blocked until alock is acquired.

At the end of getlastaccessO, flockO is called again, this timewith an
argument of LOCK_UN, which means "unlock" and effectively releases the lock
held. It's vital that all acquired locks must be released. Failure to do so can result
in deadlock, where processes are waiting on each other. The only time alock is
automatically released for youiswhenyour process terminates.

TIP Notice that the unlocking occursin afinal ly clause. This means that
whether an exception was caught or not, the unlocking command is always
run. Acommonerroristofail tousetry ... finallyaroundlocks. Unless you
usetry ...finally, an unexpected exception can cause the unlock command
to be skipped, resulting in deadlock.

The writel astaccessO function uses a pattern similar to getlastaccessO,
except that it acquires an exclusive lock with LOCK_EX. When a process holds an
exclusive lock, it guarantees that no other process can have alock of any type on
thefile That'swhat youwant here, sinceyouwant to lock out al the other readers as
well as other instances of writelastaccessO.

Mter the lock is acquired, writel astaccessO |oads the file from disk, then
writes it back out with the new information. You may bewondering why | didn't
first acquire a shared lock for reading, followed by an exclusive lock for writing.
The answer isthat thiswould introduce arace condition. If! used that approach,
then between the time the lock for reading is released and the lock for writing is
acquired, another process could have written out data. My process would not
know about this data (having just read the file premodification), and the change
would belost. That'swhy it's important to use asingle lock for this entire function.

Let'slook at what this program does when it's run. You can just use
.Jlockingserver. py to start it. Then, you can telnet to the server. Here's an
example of aclient-side session:

437

Chapter 20

438

$ tel net local host 51423

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]".

Welcome, 127.0.0.1.

I've never seen you before.

| have noted your connection at Thu Jul 1 06:06:42 2004.
Connection closed by foreign host.

$ tel net localhost 51423

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

Welcome, 127.0.0.1.

| last sawv you at Thu Jul 1 06:06:42 2004.

| have noted your connection at Thu Jul 1 06:08:44 2004.
Connection closed by foreign host.

Here, thefirst time the client connected, the server didn't have arecord of it
initslastaccess.txt file. It recorded the connectiontime. For the second connection,
the server reportsthe saved connection time and records the new connection time.

While these connectionswere occurring, the server was reporting this:

$./lockingserver.py

Got connection from ('127.0.0.1', 37742), servicing with PID 16348
Regped child process 16848

Got connection from ('127.0.0.1', 37743), servicing with PID 16850

Inthis particul ar case, the second child processwasn't yet reaped eventhough
it had terminated. When athird child would connect, it would be reaped.

Error Handling

Strange as it may seem, os.fork() canfail. Thisis rare but does happen. The cause
of afailure would be aresource limitation of some kind-the operating system
may be out of memory, it may be out of spaceinits process table, oryou may run
up against alimit on the maximum number of processes set by an administrator.

There'sno good way to deal with this situation. Ifyou don't check for an error,
afailure onos. fork() will terminate the program. For aclient, that’s OK, but for a
server, it means your server completely dies.

A better way is to kill off just the one connection that caused the problem,
and hope that the administrator notices the problem or that the thing causing
the problem (awayward program, for instance) goes away. Ifso, then when later

clients connect, the fork should succeed. Thisway, the server process itself need
not be restarted.

Remember at the beginning of the chapter | saidthat fork() returnstwice. To
be more specific, for k() either returns twice or raises an exception due to an error. I f
there's an error, there's no PID returned and execution doesn't fork off-after all,
that's why you're getting the exception.

Here's amodified version of the forking echo server that handles problems
withos.fork O:

#!/usr/bin/env python
Echo Server with Forking and Forking Error Detection - Chapter 20
errorserver.py

import socket) traceback) 0s) sys

def reapO:
while 1:
try:
result = os.waitpid(-1) osWNOHANG)
if not result[o]: bresk
except:

bresk
print "Regped child process %d" %result[O]

hot '’ # Bind to all interfaces
port 51423

s = socket.socket(socket AF_INET) socket. SOCK_STREAM)
ssetsockopt(socket. SOL_SOCKET) socket. SO REUSEADDR) 1)
s.bind((host) port))

s.listen(l)

while 1:
try:
clientsock) clientaddr s.accept()
except Keyboardinterrupt:
raise
except:
traceback.print_exc()
continue

Clean up old children.
reap()

Forking

439

Chapter 20

440

Fork a process for this connection.
try:
pid = os.fork ()
except:
print "BAD THING HAPPENED: fork failed"
clientsock.close()
continue

if pid:
This 1s the parent process. Close the child's socket
and return to the top of the loop.
clientsock.close()
continue
else:
print "New child", os.getpidO
From here on, this is the child.
s.closeO # Close the parent's socket

Process the connection

try:
print "Got connection from", clientsock.getpeernameO
while 1:
data = clientsock.recv(4096)
if not len(data):
break
clientsock.sendall (data)
except (Keyboardinterrupt, SystemExit):
raise
except:
traceback.print_exc()

Cloxe the connection

try:
clientsock.close()

except Keyboardlnterrupt:
raise

except:
traceback.print_exc()

Done handling the connection. Child process *must* terminate
and not go back to the top of the loop.
sys.exit(O)

You'll noticethat this programis mostly the same as the previous example. I f
forkO fails, the server displays an error message, closes the client socket, and
returns to the top of theloop. It'simportant to close that client socket-it will
never be used, and this ensures that the client knows not to try communicating
over it. Moreimportantly, imagine a scenario in which there was aprolonged
timeinwhich fork() fails-perhaps the system has run out of memory. It might
have to turn away thousands of client requests. Ifit doesn't close those sockets,
each discarded request will continue consuming resources. (Inthis particular
case, Python's garbage collector will likely keep that problem from getting very
bad, but it's bad practice to rely upon that behavior).

This program is also notable for what it doesn't do. It sends no message what-
soever to theclient. Theclientwill simply see aconnection reset by peer message
if the server cannot fork. Thisisn't particularly friendly to the client, but consider
the alternative. Ifthe server cannot fork, everythingit doesis taking placeinthe
master process. Ifit takes awhile to communicatewith apoorly connected client-
sy, three minutes-then during that time the server isn't accepting connections
at al. A few clients that are attempting to connect when the server can't fork
could cause the server to berendered effectively no better thanif it had crashed.

Unfortunately, testing your os.fork() error-handling codeisn't something
that's easily done. Causing os. for k() to fail means enforcing administrative
restrictions on process counts (not always easily done), or actually causing a
system problem.

Summary

Most server programs have a need to handle more than oneclient at once. There
are several methods available to the server designer who wants to accomplish
this. The easiest isforking, whichis available primarily onLinux and UNIX platforms.

To fork, you call os. fork (), which returnstwice. That function returns the
process ID of the child to the parent, and returns 0 to the child.

When a process terminates, information about its termination remains on
the system until its parent calls wait() or waitpid () onit. Therefore, programs
using forking must make sure to call wait() orwaitpid () whenachild processter-
minates. Oneway to do that isviaasignal handler. Alternatively, you could use
polling, and periodically check for terminated child processes.

Forking servers usuallywill usefork() to create anew processto handle each
incoming connection. It'simportant for both the parent and child to close any
file descriptors that won't be used in that particular process.

Forking

441

Chapter 20

I ffileswill be modified, lockingisimportant. Locking prevents datacorruption
that could occur if multiple processes attempt to modify afile at once, or if one
process reads afile while another iswritingto it.

The os.fork() function can raise an exception ifthe system cannot perform
afork. Thoughrare, this exception must be handled to prevent a server crash.

442

CHAPTER 21

Threading

FORKING, wHicH | biscusseD in Chapter 20, is ameans of permitting multiple
requests to be simultaneously handled. Forkingworks by creating two compl etely
separate processes out of one. Python also offers another mechanism, known as
threading. Threading can belooked at abstractly as having different parts of a
single process execute simultaneously. Y ou're probably wondering why you would
ever need an alternative method for managing multiple requests. Thisis best
explained by contemplating afew scenarios that may arise whenworking with
applicationsthat are capable of supporting multiple processes.

I n some cases, each connectionto a server istotally independent of every
other connection. For instance, an FTP server doesn't need to have any commu-
ni cation between processes that serve clients; each one simply dishes out files or
receives uploads. Yet in other cases, that's not quite so true. For instance, a database
server may need to block clients from accessing certain tableswhile other clients
are updating them. Althoughthere are ways to communi cate between processes
that use fork(), threading often makes the use of such methods unnecessary.
With threads, you really have only one instance of your program running-it's
just running multiple times. That meansthat if you change aglobal variable in
onethread, al the other threadswill seethat changeinstantly. That's becausethe
global variable-and indeed, all variables-is shared between al the threads of
the program. With aforked program, each process getsits own copy of thevariables,
so changing avariable in one process has no impact on other processes.

However, thisis somewhat of amixed blessing. While communication
between threads is easier than communication between processes, that's not
always good. It also means that the thread serving one client could accidentally
mess up the thread serving a different client. Extracare must be taken to ensure
that threads don't trampl e each other. Such problems are often difficult to detect
and debug.

Throughout this chapter, you'll learn how to take advantage of the easy com-
munication provided with threading and how to make surethis mixed blessing
doesn't turn out to be problematic. The chapter begins with an introductionto
threading in Python, and then provides solutions for several common threading
issues. Next, you'll see an example of multithreaded servers. Findly, the chapter
concludeswith adiscussion on multithreaded network clients.

Chapter 21

444

TIP Heresaquick terminology tip: Traditional programs that do not
explicitly use threading are said to have only one thread and are called
single-threaded. Programs that use threading are said to be multithreaded.
Using more than onethread in your program is called multithreading.

Threading in Python

Python exposes two modules that can be used for multithreading: thread and
threading. The thread modul e implements the low-level interface to threaded
programming, and threading provides a higher-level view. Most new Python
programs will use threading since it automates some tasks that would otherwise
need to be done manually.

Multithreading is available on most platformsthat Python supports, though
certainversions of UNIX may not supportit (or may not supportit by default). All of
the most common Python platforms, including Java (viaJdython), supportthreading.

Here's an exampl e of threading in Python. This example simply starts athread
and displays some messages to illustrate multithreading, as follows:

#!/usr/bin/env python
First thread example - Chapter 21 - firstthread.py
import threading, time

def sleepandprint():
time.sleep(l)
print "Helo from both of us. "

def threadcode():
stdout.write("Hello from the new thread. My name is %sin" %
threading.currentThread().getName())

sleepandprint()

print "Before starting a new thread, my name is", \
threading.currentThread().getName()

t# Cregte new thread.
t =threading.Thread(target = threadcode, name = "ChildThread")

This thread won't kegp the program from terminating.
t.setDaemon(l)

Threading

Start the new thread.

t. start ()

stdout.write("Hello from the man thread. My name is %s\n" %
threading.currentThread().getName())

sleepandprint()

Wat for the child thread to exit.
t.joinO

Theprogram begins by creating anew Thread object. Thetarget parameter to
the constructor pointsto the codeto run oncethethread starts. The name parameter
isoptional and simply setsavalue that you can retrieve | ater via getName O. In this
case, it is used to set the text that will later be displayed. The original thread that
your program starts with is aways named ManThreed.

One questionto consider: Exactly what constitutes termination of the appli-
cationwhen multiplethreads are concerned? By default, the application will not
terminate until al threads have terminated. Usually, whenwriting network code,
it's preferable to have all threads die when the main (control) thread dies. Ifyou
call setDaemon(l) on athread, Python pretendsthat the thread is already dead
when considering whether or not to shut everything down. This program calls
setDaemon(l) for thethread it creates, so the entire application will terminate
when MainThread terminates. Effectively, this is the same behavior youwould
have seen if sstDaemon() were never called.

Finally, the new thread is started with the call to start (). Because of the
earlier target setting, the new thread callsthe threadcode() function as soon as
it's created. Thisraises another difference betweenthreads and forking: Threading
ensures that the new thread exitswhen thread code () returns, rather than simply
returning and proceeding until an exit instruction appears somewhere asis the
case with forking.

At the end of the program, there'sacall to join(). Thiscall isn't requiredin
general (unlike the need to wait() with forked programs). Butinthis case, it avoids
arace condition. Since the new thread is set to daemonic mode, if the parent
happens to exit before the child has had a chance to print out its message, then
the child will beimmediately terminated. By calling join(), the parent's execution
is blocked until the child thread has terminated.

Ifyou runthis example, you'll see output like this:

$./firstthread.py

Before starting a new thread, my name is ManThread
Hello from the man thread. My name is ManThread
Hdlo from the new thread. My name is ChildThread
Hello from both of us

Hello from both of us.

Chapter 21
Usng Shared Variables

You'll recall my earlier statement that variables in multithreaded programs are
shared between all threads. With that in mind, can you predict the output of the
following program?

#l/usr/bin/env python
Threading with variables - Chapter 21 - vars.py
import threading, time

o o oo
&8 88

def printvars():

print "a a
print "b b
print 'c = , c
print "d d

def threadcode():
global a b, ¢, d

a+= 50

b=b+50

c =100

d - "Hdlo"

print "[ChildThread] Vdues of variables in child thread:"
printvars()

print "[ManThread] Vdues of variables before child thread:"
printvarsO

Create naw thread.
t = threading. Thread(target = threadcode, name = "ChildThread")

This thread won't keep the program from terminating.
t.setDaemon(l)

Start the new thread.
t. startO

446

Wat for the child thread to exit.
t.joinO

print "[ManThread] Vdues of variables after child thread:"
printvars()

The program begins by setting four variables to 50. It displays the values,
then creates athread. That thread modifies each variablein aslightly different
way, outputsthe values, and terminates. The main thread then resumes control
after the join() and prints out the values again. Note that the main thread never
makes any changesto the values. Here's what the output looks like:

$./vars.py

[ManThread] Vdues of variables before child thread:
a=3%

b =50

c =5

d=3%

[ChildThread] Vdues of variables in child thread:
a - 100

b =100

c =100

d = Helo

[MainThread] Vdues of variables after child thread:
a 100

b - 100

c - 100

d = Hdlo

You can see every one of those changesin the main thread, because the
memory is shared between the two threads. Thisillustrates the basic method of
communication between threads: setting variables. However, asyou'll seeinthe
next section, things aren't always that easy.

Beng Thread-Safe

Though all thissounds nice, there'sapotential down side: race conditions. Arace
condition occurswhenever the result of a calculation is different depending on
theway inwhich the operating system schedulestime. If, inthe previous example,
two different threads were running the code to add 50 to bat once, the result
could be as follows:

Threading

447

Chapter 21

« 150if onethread ran before the other, and each was able to add 50.

+ 100if both threads attempted to perform the cal culation simultaneously.
Inthis case, both threads would simultaneously retrieve the current value
of b (50), computethe new value by adding 50, and writethe new valueto h.

Inthe previous exampleyou don't have to worry about a += 50; it will always
be 150. That is becausethe += operationonintegersis saidto be atomic; the system
guaranteesthat the operationwill finish before others beginin any thread. However,
my adviceisto play it safe and not rely onatomic guarantees; it’s tough to remember
which operations are atomic and which aren't.

To combat the problem of race conditions, lockingis frequently used. In
Chapter 20, | discussed flock() 'srole inlocking files. Locking can also be used
arbitrarily-not necessarily connected to any particular file or other system object.

Python's threading modul e provides a Lock object. This object can be usedto
synchronize accessto code. The Lock object exposes two methods: acquireO and
releaseO. The acquireO method is responsible for acquiring alock. Uno thread
is presently holding the lock, the acquire method notes the interest in the lock
and returns immediately. Otherwise, it waits until the lock isreleased. In either
case, once acquire() returns, the thread that called it holds the lock.

The release() method releases alock. Ifany threads are waiting on the lock
(stalled at acquireOL oneof them will be awakened when releaseO is called.
That is, acquireO in onethread will return.

Here's an example of using locks. This program starts up several threads and
uses alock to protect aglobal variable.

#!/usr/bin/env python
Threading with locks - Chapter 21 - locks.py
import threading, time

Initialize a simple variable
b =50

And a lock object
1 =threading. Lock()

def threadcode():
"""This is run in the created threads"""
global b
print "Thread %s invoked" % threading. currentThreadO .getNameO

Threading

Acquire the lock (will not return until a lock is acquired)
1. acquireO
try:
print "Thread %s running” %threading. currentThread O. gefNameO
time.sleep(l)
b=b+ 50
print "Thread %s set b to %d" % (threading. currentThreadO .getNameO,
b)
finally:
1.releaseO

print "Vdue of b at start of program:") b
childthreads =[]

for i in range(l) 5):
Create new thread.
t - threading.Thread(target = threadcode, name = "Thread-%d" %i)

This thread won't keep the program from terminating.
t.setDaemon(l)

Start the new thread.
t.startO
childthreads.append(t)

for t in childthreads:
Wait for the child thread to exit.
t.joinO

print "New value of b:") b

This program creates four new threads. Each thread will display a message
that says it exists, acquire alock, delay for one second, update the value of b,
releasethelock, andthenterminate. Puttingthelock releaseinthefinally clause
is good practice and guarantees that it will be released even if an exception is
raised. Here's asampl e invocation:

449

Chapter 21

$./locks. py

Vdue of b at start of program: 50
Thread Thread-l invoked
Thread Thread-I running
Thread Thread-2 invoked
Thread Thread-3 invoked
Thread Thread-4 invoked
Thread Thread-l set b to 100
Thread Thread-2 running
Threed Thread-2 set b to 150
Thread Thread-3 running
Thread Thread-3 set b to 200
Thread Thread-4 running
Thread Thread-4 set b to 250
New value of b: 250

Eachthread got its own turn to run, and you should notice a one-second
delay betweenthe "running" messages.

Managing Access to Shared and Scarce Resources

Sometimes there are certain resources that several threads must access. There
may be more than one instance of the resource available, so asimple Lockwill not
do. One scenario might involve server thread pools. Once a server starts, it will
create a number of threads. These are worker threads that are responsible for
processingclients. Inthis scenario, the scarce resourceis client connections. The
threadswill wait for the mainthread to receive a connection, processit, andthen
restart beforewaiting for another connection. Ifnothreads are availableto process
something, the server shouldjust add it to a queue.

A synchronization object called asemaphoreis useful inthis situation. Sema-
phores are designed to manage access to limited resources. Like a Lock, a Semaphore
has an acquireO and a releaseO method. But the mechanics are different. A
semaphore has an internal counter that (by default) starts at one. Eachtime
release() iscalled, that counterisincremented. Eachtimeacquire() iscalled, the
counter is decremented. Ifacquire() is calledwhen the counter it zero, it doesn't
return until the counter is equal to or greater than one (that is, it doesn't return
until someone else calls rel ease(»). Here's a simple exampl e of semaphores. This
example provides afunction numbergenO that simulates alimited resource of
numbers (this could bethought of as client connectionsto aserver). Other threads
consume those numbers and act onthem, as shown here:

#!/usr/bin/env python
Threading with semaphores - Chapter 21 - sem.py
import threading, time, random

def numbergen(sem, queue, glock):
while 1.
time.sleep(2) # Simulate a complex /O load
If random.randint(o, 1):
Generate something half the time.
vaue = random.randint(o, 100)
glock. acquire()
try:
gueue.append(value)
finally:
glock. releaseO
print "Placed %d on the queue" %vaue

sem.release()

def numbercalc(sem, queue, glock):
while 1.

sem. acquire0

glock.acquire()

try:
value = queuepop(O)

finally:
glock.releaseO

print "%s Got % from the queue" %\
(threading.currentThread().getName(), vaue)

newaue = value * 2

time.sleep(3) # Simulate a complex calculation
childthreads = []

sm = threading.Semaphore(o)

Queue = []

glock = threading.Lock()

Create the number generator.

t =threading.Thread(target = numbergen, args [sem, queue, glock])
t.setDaemon(l)

t. startO

childthreads.append(t)

Threading

451

Chapter 21

452

Create the two threads that work with the numbers.
for i in range(l, 3):
t =threading.Thread(target = numbercac, args = [sem, queue, glock])
t.setDaemon(l)
t. startO
childthreads.append(t)

while 1:
Sleep forever
time. sleep(300)

This program consists of four threads: the main thread, a number generator
thread, and two number processor threads. The mai nthread takes care of creating
al the other threads, then effectively does nothing. The number generator gen-
erates adow, intermittent stream of numbers. The number processor threads
take these numbers and process them.

The Semaphore object isinitially set to zero. Whenever the number generator
has another number available, it will place it onthe queue (using a Lockto make
surethat this operationis safe), then signal its availability by calling release() on
the Semaphore. Note that this doesn't guarantee that the itemwill be immediately
processed (thoughinthis case it usually does); it just signals the availability of
datato the processor threads.

The processor threads call acquireO at the top of theirloop. They thenlock
the queue, retrieve the item off it, and unlock the queue again.

Here's sample output from thisprogram (you'll haveto terminateitwith Ctrl-Cif
you runit):

$./sem.py

Placed 56 on the queue.

Thread-2: Got 5 from the queue.

Placed 62 on the queue.

Thread-3: Got 62 from the queue.

Placed 54 on the queue.

Thread-2: Got 54 from the queue.

Placed 7 on the queue.

Thread-3: Got 7 from the queue.

Placed 77 on the queue.

Thread-2: Got 77 from the queue.

Traceback (most recent call last):
File "./sem.py", line 54, in ?

time. sleep(300)
Keyboardinterrupt

This particular exampleis an instance of a more general problem known as
theproducerlconsumerproblem. A producer/consumer problem consists of a set
ofthreadsthat are producing objects, and another set of threads that are con-
suming them. In this example, the producer was the generator thread, and the
consumerswere the cal culator threads. Producer/consumer is often used when
different sets of threads use different resources; for instance, some threads may
requirelots ofI/Oto load data, while other threads require lots of CPU to process
that data. By splitting those tasks out, you can keep more threads busy.

The producer/consumer model provides a good way to ook at many different
problems. Later inthis chapter, you'll see animplementation of producer/consumer
with thread pools.

Alternative to Semaphores. Queue

Python provides a modul e named Queue that can also be useful for solving
producer/consumer problems. Thoughit isn't necessarily asflexible as sema-
phores. the Queue module can till solve many different problems and can be
easier to use.

Avoiding Deadlock

Deadl ock occurswhen two or morethreads arewaiting for resources, butinsuch
away that it'simpossible for their requests to ever be satisfied because they're
waiting for each other. The best way to illustrate deadlock iswith an example. In
this example, you have two variables and two locks. There aretwo threads involved,
both wishing to modify both variables. Thefirst thread acquires both locks, as
doesthe second, but they do so in adifferent order. Seeifyou can spot the problem.

#!/usr/bin/env python
Deadlock - Chapter 21 - deadlock.py
import threading, time

a=>5
alack = threading.Lock()
b=5

block = threading.Lock()

Threading

Chapter21

def threadlcalc():
print "Threadl acquiring lock &'
alack. acquireQ
time.sleep(S)

print "Threadl acquiring lock b"
block. acquireO

time.sleep(S)

a+=5

b+ 5

print "Threadl releasing both locks'
block. releaseO
alack. releaseO

def thread2calc():
print "Thread2 acquiring lock b"
black.acquire()
time.sleep(s)

print "Thread2 acquiring lock &'
alack. acquireQ

time.sleep(S)

a+= 10

b += 10

print "Thread2 releasing both locks'
black.release()
alack.release()

t =threading.Thread(target = threadlcalc)
t.setDaeman(l)
t.startO

t =threading.Thread(target = thread2calc)
t.setDaeman(2)
t.startO

while 1:

Seep forever
time. sleep(300)

454

Threading

Inthis example, Threadl attemptsto acquire locka and then lockb. However,
Thread2 simultaneously attempts to acquire lockb and then locka. Deadlock will
result. (The callsto sleep() here ensurethat it does.)

Threadl got the lock on locka and Thread2 got the lock on lockb. Now, they
turn around. Threadl triesto get lockb but can't-Thread2 already hasit. And
Thread?2 triesto get locka but can't because Threadl hasit. And neither one of them
releases any lock until they've acquired both locks. The program is deadlocked
and can only bekilled with Ctrl-C. The output looks like this:

$./deadlock.py

Threadl acquiring lock a

Thread2 acquiring lock b

Threadl acquiring lock b

Thread2 acquiring lock a

Traceback (most recent call last):
File "./deadlock.py"”, line 50, in ?

time.sleep(300)
Keyboardinterrupt

Deadlock can bevery difficult to track down. Inthis example, if sleep () were
not used, deadlock may have only occurredin one out of ahundred executions of
the program. There are two simplerules to observeto avoid deadlock:

 First, always obtainlocksin afixed order. Inthis example, that would mean
always obtaining locka before lockb.

» Second, always release locks in the inverse order that they were obtained.
So, onewould release lockb first, and then locka

Writing Threaded Servers

One of the classic problems network programmers need to solveis how to write
efficient server programsthat can process multiple requests simultaneously.
Threads provide one convenient way to do that.

Most multithreaded servers use the same architecture: The MainThread isthe
thread that listens for requests. When arequest is received, a new worker thread
is created to handlethat particular client. Theworker thread for that client termi-
nates when the client disconnects.

Here's an example of such aserver. This example provides a TCP echo server
by modifying the code from Chapter 3 to make it multithreaded, as shown here:

455

Chapter 21

#!/usr/bin/env python
Echo Server with Threading - Chapter 21 - echoserver.py
Compare to echo server in Chapters 3 and 20

import socket) traceback) os) sys
from threading import *

host # Bind to all interfaces
port 51423

def handlechild(clientsock):

print "New child") currentThreadO.getNameO
print "Got connection from") clientsock.getpeername()
while 1.

data = clientsock.recv(4096)

if not len(data):

break
clientsock.sendall (data)

Close the connection
clientsock.close()

Set up the socket.

s = socket.socket(socket. AF_INET) socket. SOCK_STREAM)
s.setsockopt(socket. SOL_SOCKET) socket. SO REUSEADDR) 1)
s.bind((host) port))

s.listen(l)

while 1.
try:
clientsock) clientaddr s.accept()
except KeyboardInterrupt:
raise
except:
traceback.print_exc()
continue

t = Thread(target handlechild) args [clientsock])
t.setDaemon(l)
t.startO

Thisprogram isfairly straightforward. The handlechild() function takes care
of a given client connection. When a client connects, a new thread is created.

Whenthat thread is started, it calls handl echild (), passingthe client's socket asan
argument.

Ifyou comparethisprogramto the echoserver. py examplefrom Chapter 3or
the forking examplein Chapter 20, you'll noticethat the codethat handles all but
the Keyboardinterrupt exceptionsis missing from all the code in the handlechildO
function. That's possible because threading guarantees that the MainThread will
bethe only oneto ever receive UNIX signal s-and K eyboardInterrupt isgenerated
as aresult of a SIGINT signal on UNIX. (Windows doesn't use signals like this, so
it's not aconcern.) Therefore, it's not a concern for the worker threads. Also, the
worker threads canjust dieif an error occursinthis example.

An Exercise: Threaded Chat Server

Since threads make it easy to pass data between each other, they areideal for
serversonwhichall clients share some sort of state. One exampl e of such aserver
isachat server. You could write asimple chat server that extendsthe echo server
concept, thereby transmitting datareceived by any client to al clients.

You could start with the previous echoserver. py example and add this new
ability. There are several different ways to go about it, but inany case, you'll want
to make sure that the client threads do the transmission, not the main thread.

Oneway to accomplish that isto have a semaphore and a queue for each
client thread. You could maintain alist of these objects, adding and removing
entriesfromthelist asthreads come and go. When dataisto besent, it'sadded to
the appropriate queues and the semaphoreis signal ed.

Ifyouwant aworking example of a chat server with source code, Chapter 22
provides anasynchronous chat-serverimplementation, whichisyet another way
to solve the problem.

Usng Thread Pools

Although code that follows the previous pattern may work well for many servers,
some may have some special needs. One such need is to minimize the perfor-
mance overhead of creating a new thread. Though that overhead is small, some
applicationsmay needto do moreinitializationwork for anew thread-for instance,
by connectingto a database server. That could have a serious negative impact on
performance.

Another potential problemlieswith resource utilization. The previous program
will try to handle al incoming requests concurrently. That's fine for most servers.
But heavily loaded ones may wish to, for instance, say that only 1,000 threadswill
exist at any given moment.

Threading

457

Chapter 21

458

One solutionto this problemisthe use of thread pools. Athread pool design
will have each thread servicing only oneclient at atime, but the thread doesn't
die after it finishes servicingaclient. Threadsinthe pool may either beall created
up front or may be created as needs dictate.

A programthat usesthread pools still serves each client in aseparate thread.
However, unlike the previous example, the thread doesn't terminate when the
client disconnects. Rather, it remains dive, waiting for more connectionsto service.

Athread pool also typically has an upper limit on the number of threads to
use. Clientsthat attempt to connect once that limit has been reached will usually
be turned away with an error. Some servers also use a pool strategy with forking,
thoughit's much morerare because it's more difficult to manage. Apache issuch
aserver.

Thread pool serverstypically consist of several components:

* Amainlistener thread that accepts client connections and dispatches them
» A set of worker threads that process client requests

» Athread management system that handles threads that have died
unexpectedly

Here's an implementation of a thread pool echo server. This example main-
tains alist of busy threads, waiting threads, and a connection queue, and makes
surethat threads receive connectionsappropriately. I'll present this codein pieces,
explaining each part of it asyou go.

#!/usr/bin/env python
Threed pool - Chapter 21 - threadpool.py

import socket, traceback, as, sysJ time
from threading import *

host =" # Bind to all interfaces
port = 51423

MAXTHREADS 3

lockpool = Lock()

busylist ={}

waitinglist ={}

queve =]

sm = Semaphore(o)

Inthe previous code sample, some global variables are defined, including
queue, which isresponsible for holding pending client connections alongwith
two lists for tracking the state of the threads.

def handleconnection(clientsock):
"""Handle an incoming connection.
lockpool.acquire()
print "Received new client connection.”
try:
if len(waitinglist) == 0 and (activeCount() - 1))= MAXTHREADS
Too may connections. Just close it and exit.
clientsock.close()
return
if len(waitinglist) 0:
startthread()

queue.append(clientsock)
sm. rel easeO

finally:
lockpool.release()

Thefirst defined function is handleconnection(). It's called by the MainThread's
mainloop, listenO, when a new connection arrives. First, handleconnectionO
acquiresthe lockpoollock. Then, it checksto seeifthe system is already maxed
out. Ifso, itjust closesthe client socket and returns. Next, it determineswhether
al threads are busy. If so, a new thread is created.

Then, the client socket isadded to the queue, and the semaphoreisrel eased-
signaling a processor thread that a new connectionis available. Finaly, the pool
lock is released, as follows:

def startthread():
Cadled by handleconnection when a new thread is needed.
Note lockpool is already acquired when this function is called.
print "Starting new client processor thread"
t = Thread(target = threadworker)
t.setDaemon(l)
t. startO

The startthread () function contains codethat isvery similar to thread code
that you've already seenin earlier examples. Itsjob is merely to start a new thread,
as shown here:

Threading

459

Chapter 21

def threadworker():
global waitinglist, lockpool, busylist
time.sleep(l) # Smulate expensive startup
name = currentThread().getName()
try:
lockpool.acquire()
try:
waitinglistiname] 1
finally:
lockpool.release()

processclients()
finally:
Clean up if the thread is dying for some reason.
Can't lock here -- we may already hold the lock, but it's oK
print "** WARNING** Thread %s died" %name
If name in waitinglist:
del waitinglist[name]
if name in busylist:
del busylistiname]

Start a replacement thread.
startthreadO

The threadworker () isthefirst function called when anew thread is created.
It hastwo maintasks: 1) initializingthewaitinglist, and 2) handling threads that
are dying. Notice that withinthetry block, it calls processclientsO-that'sthe
function that does al the real work. Inthis program, since new threads aren't
necessarily created when an existing one dies, it'simportant to handl e threads
that are about to die for whatever reason (exception, and so on). Thefinally clause
doesjust that. Whenever thethread isabout to die, thefinal | y clause gets control. It
cleans up the datastructures (removing referencesto the almost-perished thread),
starts up a new thread, and then dies.

def processclients():
""" Main loop of client-processing threads."""
global sem, queue, waitinglist, busylist, lockpool
name = currentThread().getName()
while 1:
sm. acquireO
lockpool.acquire()

Threading

try:
clientsock = queue.pop(o)
del waitinglist{nameJ
busylistinameJ =1
finally:
lockpool.release()

try:
print "[%s] Got connection from %s' %\
(name, clientsock.getpeername())
clientsock.sendall (" Greetings. You are being serviced by %s\n" %
name)
while 1:
data = clientsock.recv(4096)
If data.startswith('DIE'):
sys.exit(0)
iIf not len(data):
break
clientsock.sendall (data)
except (Keyboardinterrupt, SystemExit):
raise
except:
traceback.print_exc()

Close the connection

try:
clientsock.close()

except KeyboardInterrupt:
raise

except:
traceback.print_exc()

lockpool.acquire()

try:
del busylistnamel]
waitinglistinameJ =1

finally:
lockpool.release()

In processclients(), you can see aloop similar to the other echo server
examples. It startsout by calling acquire() onthe semaphore. When that returns,
it knows that there's a client connection available to process, so it grabs the lock,
obtains the connection, updates the datastructures, and rel eases the connection.

461

Chapter 21

462

Thenit processes the connection (and has an extrafeature to help youtest the
thread-exiting scenario: Uyou send it the string DIE, it will do just that.) Finaly,
after the connectionis closed, processclientsO once again acquireslockpool and
updatesthe datastructures.

def

NOTE There's actually a buginthe previous code sample. It assumes that
thetext OI Ewill be sent in asingle packet by your telnet client. That may not
adways happen, and thus the code may not betriggered. For information
about maintaining read buffers, whichwould solve this problem, see
Chapter 22.

listenerO:

s = socket.socket(socket.AF INET, socket. SOCK STREAM)
s.satsockopt(socket. SOL_ SOCKET, socket. SO REUSEADDR, 1)
s.bind((host, port))

s.listen(l)

while 1:
try:
clientsock, clientaddr s.accept()
except KeyboardInterrupt:
raise
except:
traceback.print_exc()
continue

handleconnection(clientsock)

Thelistener() function runsin ManThread and is responsible for receiving

connections from clients. It simply does that and hands them off to
handleconnection().

And now, here'sthelast line of the example, which simply startsup themain

listening loop:

listenerO

Threading

| suggest running this code on your own machine (it'slong, so it would be
best to download it rather than typingit in). To runit, just run. /threadpool. py.
Try some of the following experiments:

* Noticethat it will take one second for the server to respond thefirst time
you connect. That's the simulated cost, using sl eep(), of creating anew
thread. Inreal life, the overhead will often be unnoticeable, but thisway,
you can fed the pool inaction. ! fyouclosethe connection and then connect
again, there's no delay.

* Youll also experiencethat delay the first timeyou have any number of
simultaneous connections, but not after that.

» Uyoutry to openafourth simultaneous connection, the server will close it
immediately because it enforces a maximum connection limit.

 Ifyousend aD1Estring, the client connectionwill freeze, but the server will
start up anew thread. (A production server would want to close the client
socket inthis situation.)

Writing Threaded Clients

Threading is sometimes also used for clients. One of the most common applica-
tions of threading for clientsisto separate time-critical user interface code from
slow network access. For instance, a user may be frustrated that amenu takes 20
secondsto display becausethe programiswaitingto receive aset of packetsfrom
the network.

Other clients may wish to carry out several network activities at once. For
instance, some FTP clients are capabl e of downloading several files simultaneously.
Most web browsers download several items at once.

Here's asample multithreaded client. It includes some extracalls to sleepO
to illustrate how it handles client connections and sinmltaneously provides a
"spinner" on the screen.

Chapter 21

#!/usr/bin/env python
Threaded Client - Chapter 21 - threadclient.py

import socket) sys) time
from threading import *

host = sys.argv[l]
textport = sys.argv[2]
filename = sys.argv[3]
cv = Condition()
spinners = *1/-\\"
spinpos =0

equeve = []

def fwrite(buf):
sys.stdout.write(buf)
sys.stdout.flush()

def spin():
global spinpos
fwrite(spinners[spinpos] + "\b")
spinpos += 1
if spinpos >= len(spinners):
spinpos 0

def uithread():

while 1.
cv. acquire()
while not |len(equeue):
cv. wait(0.15)

spin()

msy = equeue.pop(o)
cv.release()
iIf myg = "QUIT":
Terminae the Ul thread
fwrite("\n")
sys.exit(O)
fwrite(" \n %S\ %mg)

464

Threading
def msg(message):

cv. acquire()
equeue.append(message)
cv. notifyO
cv.releaseO

t =Thread(target uithread)
t.setDaemon(l)
t. startO

try:
msg(‘'Creating socket object’)
s = socket.socket(socket. AF_INET) socket. SaCK_STREAM)
except socket.error) e
print "Strange error creating socket: %s' %e
sys.exit(l)

Try parsing it as a numeric port number.

try:
port = int(textport)
except VauekError:
That didn't work. Look it up instead.
try:
port = socket.getservbyname(textport) 'tcp')
except socket.error) e
print "Couldn't find your port: %s' %e
sys.exit(l)

msg(‘Connecting to %s%d % (host) port))
time.sleep(5)
try:
s.connect((host) port))
except socket.gaierror) e:
print "Address-related error connecting to server: %s' %e
sys. exit (1)
except socket.error) e
print "Connection error: %s' %e

sys. exit(l)

465

Chapter 21

466

msg(‘'Sending query')
time.sleep(S)
try:
ssendall("GET % HTTP/1.0\r\n\r\n" %filename)
except socket. error) e
print "Error sending data: %s' %e
sys.exit(l)

msg('Shutting down socket')

time. sleep(3)

try:
s.shutdown(l)

except socket.error) e
print "Error sending data (detected by shutdown): %s' %e
sys.exit(l)

msg('Recelving data’)
count = O
while 1:
try:
buf = s.recv(2048)
except socket. error) e
print "Error receiving data: %s' %e
sys.exit(l)
if not len(buf):
break
count += len(buf)

msy("Recelved %l bytes' %count)

msy("QUIT")
t.joinO

Thisprogramisasimple clientwith theaddition of a" spinner”-asimplebit
oftext that appearsto rotate. The spinner rotates while time-consuming actions
aretaking place, even though those actions block the mainthread. Thisispossible
by shoving the spinner into a separate user interface thread.

ThefwriteO and spinO functions aresimply utilitiesfor the user interface.
The uithread () function runsthe user interface and makes use of a new threading
object: Condition. Inthis program, the user interface isimplemented as a
producer/consumer-themainthreadisthe producer of messagesfor the user,
and the interface thread consumes and displays them.

The Condition object has some interesting properties, and an underlying
Lock. The uithreadO function-the consumer-first acquiresthe lock. Then it

Threading

enters awhile loop, looping until something is present inthe queue. Eachtime
throughtheloop, it calswait O. That function releases the lock and blocks until
another thread calls notify(). But it always reacquires the lock before returning,
thus providing safe access to the queue for free.

In this case, you pass 0.15 to waitO. This means that waitO should give up
after 15/100 of asecond and just return anyway. Every timewait() returns, spin()
iscalled. Thus, you effectively rotatethe spinner every 15/100 of asecond. I fthere's
actually something available on the queue, you retrieve the value (storingitin
msg), then release the lock. The itemis processed (displayed) and the loop repeats.

The msgO function isthe producer side of the equation. It starts by acquiring
thelock. Thenit appendsthe messageto the queue, signalsthe other thread that
amessage is there (by calling notify (»), and finally releases the lock.

The remainder of the programlooksfairly normal. Callsto print are replaced
by calls to msg(). But other than that, the rest of the program need not even be
awarethat aseparate thread is running (except for the shutdown procedure at
the end).

Ifyou runthis program, you'll see output like this:

$./threadclient.py www.googlecom 80 /

Creating socket object
Connecting to www.google.com:80
Sending query
Shutting down socket

- Receiving data
Received 3010 bytes

Though, of course, while the programis actually running, there will be a
moving spinner on theleft side.

ummary

Threadingis one way of supporting multiple connectionsin a server. Like forking,
it permits multiple pieces of codeto be executed at once. Unlikeforking, threads
dl havethe same address space, so achangemadein onethread will affect dl others.
Most Python applications will use the threading moduleto create and work
with threads. Threading requires careful attentionto synchronizationissues. The
threading modul e provides objectsto help out: Lock, when used properly, alows
only onethread to access a piece of code at atime; Semaphore hel ps manage queues
that are shared between threads; and CondHion hel psthreadsto signal each other
when an event of interest occurs.

467

Chapter21

Threading can also be used for clientsto permit other tasksto be carried out
while the thread is communicating over the network.

Inthe next chapter, an alternative to forking and threading (asynchronous
1/0) is covered. Unlike forking and threading. asynchronous 1/0 doesn't involve
multiple pieces of code that are executing simultaneously.

468

CHAPTER 22

Asynchronous
Communication

IN cHAPTERS 20 AND 21, | introduced methods of handling multiple connections
at once through forking and threading. Both methods involve having the oper-
ating system execute multiple code paths simultaneously, though each code path
itselfis more or less the same as the way a single-socket application would work.

There'sa different option available. Instead of running several processes (or
threads) at once, one process could be used. This one process would watch over
the various connections, switching between them and servicing each one as
necessary. Thisis known as asynchronous communication. The traditional
method, used everywhere else in this book, is synchronous communicationin
which 1/O ishandled immediately and directly.

To implement asynchronous communication, some new features are needed.
One ofthemis away to handle network datawithout stopping everything. With
conventional methods, a call to, say, read O will not return until datais received
offthe network. Inthis case, that's bad since the processis unableto handle any-
thing else until that one readO call returns. Sockets can be put into nonblocking
mode. In nonblocking mode, if an action cannot be carried out immediately, the
call will immediately return a special error code. Processing can then continue.
Running around constantly trying to send or receive datafrom socketsthat aren't
ready is rather inefficient. It's better to have the operating systemtell youwhen
sockets are ready for action. Infact, there are two calls designed to do just that:
selectO and pollO. To use one of these functions, youfirst tell the system about
a set of socketsthat you'reinterested in. The call will block until one or more of
the socketsare ready for you. You canthenfind out which sockets are ready, process
them, and resumewaiting. The poll () call tendsto be preferred on modern
systems, so that isthe oneyou'll see used inthis chapter.

469

Chapter 22

470

Asynchronous /0 on Windows

Python on Windows has some undocumented differencesfrom other platforms
when dealing with asynchronous I/0. The examples using poll () may not
function properly on Windows platforms, but the Twisted examplesin this
chapter will. Ifyou'll beworking with Windows. | recommend using Twisted for
asynchronous 110. The Twisted authors have taken the steps necessary to make
most Twisted programswork on both Windows and other platforms.

Deciding Whether or Not to Use Asynchronous
Communication

Of course, there are trade-offsinvolved when you use asynchronous communi-
cation. One important characteristic of al asynchronous code is that anything
that blocksfor any period oftime must be eliminated. Servers that perform
compl ex cal culations or time-consuming operations (for instance, database servers)
generally cannot be purely asynchronous. On the other hand, asynchronous
communicationimposesvery little overhead on new connections. This makesit
well suited for serversthat process many connections requiring little server-side
processing. Web and FTP servers both happen to fit that requirement.

In some ways, writing an asynchronous server can be more complex than
writing aforking or athreading server. You have to maintain more state infor-
mation yourself, rather than let the operating system do so for you. And calls
such as sendall () must be avoided altogether.

Onthe other hand, since your server is entirely contained within asingle
process. there are no locking. deadlock, or synchronizationissuesto consider-
ever. Those are frequently the most difficult to track down among theissues
facing forking and threading server authors, so that alone could be abigwin.

Interms of libraries that ship with Python itself, few are equipped to work
asynchronously. There are two modules: asyncore and asynchat that help you
write asynchronous problemsin Python. However, the Twisted project provides
more such libraries-and they are, infact, more numerous than the standard
Python librariesfor servers.

Anotherimportant thingto consider is how much state information must be
kept. An FTP server, for instance, keeps little state information; it might store the
correct working directory. thefile being transferred, and its position inthat file
A server such as agame system may have alot moreto store.

Asynchronous Communication

Usng Asynchronous Communication

Let'stakethe simple echo server example from Chapter 3 and modify it to work
as an asynchronous program capabl e of handling several connections at once.
To do that, you need to add several things, the most notable of which isaway to
keep track of state.

Inthe echo server, keeping track of state means tracking two things: the set
of clientsthat you'reinterested in, and the datathat is to be written to each one.
With forking or threading, there's no codethat explicitly handlesthis. Each process
or thread handles a specific connection, and goes away when the connection
goes away. Moreover, those processes and threads can use normal (blocking) 1/0,
and maintain no long-lived buffer. They simply use sendall () and block until the
datahas al been sent.

Here, data can be sent in smaller chunks, and you can't block until it's all
sent. Infact, you can't block atall! Therefore, it'sstored inabuffer. The call to
send () will return the number of bytes that were actually sent without blocking,
and that number of bytesis subtracted from the buffer when sent. When new
dataarrives, it's added to the end of the buffer. In thisway, the asynchronous
echo server actually gainsanew feature that's absent from any of the other servers:
It can effectively transmit and receive simultaneously. Here'sthe codefor an echo
server. Thisprogram uses a classto maintaininformation about whatis going on
for each connection. Here's the code, and a detailed explanation follows:

#!/usr/bin/env python
Asynchronous Echo Server - Chapter 2 - echoserver.py
Compare to echo server in Chapter 3

import socket, traceback, os, sys, select

class stateclass:
gddmask - sdectPOLLERR | sdect.POLLHUP | sdect.POLLNVAL

def _init_ (self, mastersock):
""" Initialize the state class
self.p = select.poll()
self.mastersock = mastersock
self.watchread(mastersock)
self. buffers {}
self. sockets = { mastersock.fileno(): mastersock}

def fd2socket(self, fd):
""" Return a socket, given a file descriptor” -
return self.sockets[fd]

471

Chapter 22

def watchread(self, fd):
""" Note interest in reading"""
self.p.register(fd, sdect.POLLIN | self.stdmask)

def watchwrite(self, fd):
""" Note interest in writing"""
self.p.register(fd, sdecttPOLLOUT | self.stdmask)

def watchboth(self,fd):
""" Note interest in reading and writing"""
self.p.register(fd, sdectPOLLIN | sdect POLLOUT 1 self.stdmask)

def dontwatch(self, fd):
"""Don't watch anything about this fd""
self.p.unregister(fd)

def newconn(self, sock):
"""Process a new connection™""
fd = sock.fileno()

Start out watching both since there will be an outgoing message
self.watchboth(fd)

Put a greeting message into the buffer

self.buffers[fd] - "Wecome to the echoserver, %sin" % \
str(sock.getpeername())

self.sockets[fd] = sock

def readevent(self, fd):
"""Called when data is ready to read"™
try:
Read the data and append it to the write buffer.
self.buffers[fd] += self.fd2socket(fd).recv(4096)
except:
self.closeout(fd)

self.watchboth(fd)

def writeevent(self, fd):
""" Called when data is ready to write. """
iIf not len(self.buffers[fd]):
No data to send? Teke it out of the write list and return.
self.watchread(fd)
return

472

Asynchronous Communication

try:

byteswritten = self.fd2socket(fd).send(self.buffers[fd])
except:

self.closeout(fd)

Delete the text sent from the buffer
self.buffers[fd] = self.buffers[fd] [byteswritten:]

If the buffer is empty, we don't care about writing in the future.
If not len(self.buffers[fd]):
self.watchread(fd)

def errorevent(self, fd):
""" Called when an error occursTr
self.closeout(fd)

def closeout(self, fd):
"""Closes out a connection and removes it from data structures"""
self.dontwatch(fd)
try:
self.fd2socket(fd).close()
except:

pass

del self.buffers[fd]
del self.sockets[fd]

def loop(self):

while 1:
result = self.p.poll()
for fd, event in result:
If fd == self.mastersock.fileno() and event == select.POIIIN:
Magtersock events mean a new client connection.
Accept it, configure it, and pass it over to newconn()
try:
newsock, addr = self.fd2socket(fd).accept()
newsock.setblocking(o)
print "Got connection from", newsock.getpeernameO
self.newconn(newsock)
except:

pass

473

Chapter22

474

elif event = select.POIIIN:
self.readevent(fd)

elif event == salect.POIIOUT:
self.writeevent(fd)

else:
self.errorevent(fd)

host # Bind to all interfaces
port 51423

s = socket.socket(socket.AF INET, socket. SOCK_STREAM)
s.setsockopt(socket. SOl SOCKET, socket.SO REUSEADDR, 1)
s.bind((host, port))

s.listen(l)

s.setblocking(O)

state = stateclass(s)
state.loop()

Let'slook at this code. The majority of the action occurswithinthe class
stateclass. The init_O method takes a master socket and storesit off. It also
initializestwo datastructures. The buffers structurewill be usedto storethe buffer
for each client, and the sockets structure storesthe socket for each client. Both
areindexed by afile descriptor number, whichisanumber assigned by the operating
systemthat isuniqueto each socket. Finaly, a poll () object is created and saved.

Thefd2socket () method isasimplehel per method. It receives afile descriptor
(asreturned by poll ()) and yields a socket object.

The four methodswith "watch" in their names are helpers. They register
interest (or disinterest) in certain file descriptors with the poll object. Thereare
several different eventsthat a program may be interested in: reading, writing,
and various error conditions. These four methods always mark interest in error
conditions, and one or both of reading and writing.

The newconn() method is called when a new connection arrives. It notes an
interest in the socket, setsaninitial buffer value (which will be used as a greeting),
and updates the datastructures.

When dataarrives, readevent () is called. It reads datafrom the socket, adds it
to the buffer, and makes surethat both areading and writinginterest is noted for
the socket. Thisis done because as soon as data has been received therewill be
datato echo back out.

The writeevent () method is called whenyou have datato write out and the
system can guarantee that send () will accept a chunk of dataand thenreturn
immediately. Pending datais sent, and the amount of data actually sent is

Asynchronous Communication

removed from the buffer. Ifthe buffer is left empty, theinterest inthe socket is
changed to read only, so that the next time through the loop, no writewill be
attempted.

When an error occurs, erroreventO is called. 1t simply calls closeoutO. That
function removesall interest inthe socket from the poll object. Then, it closesthe
socket itself and removesit from the data structures.

The functionwhere the program spends most of itstimeisloop (). The program
will call self.p. poll () at thetop of theloop. Thisisthe one call inthe program
that is supposed to block. It will not return until something of interest happens
with one of the sockets. This behavior ensures that the server doesn't use CPU
resources unless something is actually going onwith the network.

When poll () returns, it returns alist of tuples. Each tupleinthat list corre-
spondsto a connection on which something of interest happened. Our task,
therefore, is to examine each tuple and decide what to do.

The tuple consists of afile descriptor of asocket and an event. The code first
checksto seeif this particular tuple corresponds to a new client connection-a
situation signified by aread event on the master socket. If that happens, it will
process the new connection the sameway as any other server-by calling acceptO.
Thenitwill passit over to newconn(). The remaining events get passed to readevent(),
writeeventO, and erroreventO.

There's alot of code there. 1t may be helpful to trace through the program
and follow the sequence of events.

When the program starts, it creates the master socket just like other servers
do. It then creates the statecl ass object, passing inthe master socket. Then it
calls state.loop() and enters the mainloop. The programwill invoke p. poll()
with asingleinteresting socket: the master socket. 1t will delay at p. poll() until a
client connects.

Thefirst client finally connects. The p. poll() call returns asingle tuple
corresponding to the master socket. The server calls accept(), retrieving the new
client socket. 1t then calls sel f. newconn (), which adds the socket to the data
structures. It initializes the buffer with the greeting message, and tells the poll
object to notify the programwhenever datacomes in or when data can go out.
Then the loop reverts to the top.

When data can be sent, p. poll O returns again-this time, the socket for the
clientisreturned, with aevent type indicating that writing is now permissible.
The writeeventO method gets called. 1t will attempt to sendO the entire buffer.
Thiswon't necessarily happen; send () will transmit the amount of datathat can
be sent without blocking. It then returns the number of bytesit actually sent. The
server removes those bytes from the start of the buffer, and then returns. (1fthe
buffer was emptied, the poll object is told to not notify the server about future
write events.)

475

Chapter 22

476

The server will sit at p. poll () until someone either connects or the server is
told that it can now read some datafrom the client. If datacomesin from the
client, readevent () is called. It will read up to thefirst 4,096 bytes of datafrom the
client, adding it to the end of the write buffer. If there's more datathan that, no
problem; when p. poll () is called next, it will againindicate that datais available
for reading. After the datais received and added to the buffer, waichboth () is call ed-
since you know there's datain the buffer, you're ready to writeit at any time.

That's alot to consider. Let's ook at the sequence of eventswhen a client
connects.

First, the call to p. poll() returnswith the master socket among the list of
sockets ready for reading. The server calls accept O and calls newconn O with the
new client socket. Then newconn () initializes the datastructures and places the
welcome message in the buffer for the client. Findly, it says to watch for both
reading and writing from the client before returning. Control will thenreturn
to p. pollO.

When the client is ready to receive data, p. poll () will return again with the
client's socket among thelist of sockets ready for writing. The server will transmit
some data, and if the entire contents of the buffer were sent, it will remove the
client from thelist of sockets for writing. Control returns to theloop once again.

When the client sends something to the server, p. poll () will return and
indicate that there's datato be read from the client. The readeventO method is
called. It receives the data, adds it to the end of the buffer, and makes sure that
the server isready to write data back to the client. Whenthe client is ready to
receive data, it's sent in the same manner as theinitial greeting.

When the client closes the connection, the server isnotified as an error and
cals erroreventO, which closes the socket on the server side and removesthe
client from the datastructures.

To run this server, you can simply use ./echoserver. py. You can connect to
localhost on port 51423. You'll see agreeting and, like the other echo server
examplesin this book, the server will return to you anything you send to it.

Advanced Server-Side Use

Many asynchronous servers will actually have two buffers per client-one for
incoming commands and one for outgoing data. This alowsthe server to account
for incoming commands that aren't contained entirely within a single packet.
The following is an example of avery primitive chat system. Datareceived is
relayed to all clients connected, but only when the text SEND is received, asfollows:

Asynchronous Communication

#!/usr/bin/env python
Asynchronous Cha Server - Chapter 22 - chatserver.py

import socket, traceback, os, sys, select

lass stateclass:
gddmask = salect.POIIERR | sdect.POIIHUP | sdect.POIINVAI

def

def

__init__(self, mastersock):

self.p =select.poll()

self.mastersock = mastersock
self.watchread(mastersock)

self.readbuffers ={}

self.writebuffers = {}

self. sockets = { mastersock.fileno(): mastersock}

fd2socket(self, fd):
return self.sockets[fd]

def watchread(self, fd):

self.p.register(fd, select.POIIIN | self.stdmask)

def watchwrite(self, fd):

self.p.register(fd, sdect.POIIOUT 1 self.stdmask)

def watchboth(self,fd):

def

def

self.p.register(fd, select.POIIIN | sdect.POIIOUT | self.stdmask)

dontwatch(self, fd):
self.p.unregister(fd)

sendtoall (self, text, originfd):
for line in text.split("\n"):
line =line.strip()
transmittext = str(self.fd2socket(originfd).getpeername()) + \
w. o + line + "\n"
for fd in self.writebuffers.keys():
self.writebuffersifd] += transmittext
self.watchboth(fd)

477

Chapter 22

478

def newconn(self J sock):
fd = sock.fileno()

self.watchboth(fd)
self.writebuffers[fd] = "Wedcome to the chat serverJ %sn" %\
str(sock.getpeername())

self.readbuffers[fd] = ™
self.sockets[fd] = sock

def readevent(selfJ fd):
try:
Read the data and append it to the write buffer.
self.readbuffers[fd] + self.fd2socket(fd).recv(4096)
except:
self.closeout(fd)

parts = self.readbuffers[fd].split(nSEND")
if len(parts) < 2
No SEND command received
return
elif parts[-1] = ...
Nothing follows the SEND command; send what we have and
ignore the rest.
self. reedbuffers[fd] = ..
sendlist = parts[:-I]
else:

The last dement has data for which a SEND has not yet been

seen; push it onto the buffer and process the rest.
self.readbuffers[fd] = parts[-1]
sendlist = parts[:-I]

for item in sendlist:
self.sendtoall (item.strip()J fd)

def writeevent(selfj fd):
if not len(self.writebuffers[fd]):

No data to send? Take it out of the write list ad return.

self.watchread(fd)
return

try:

byteswritten = self.fd2socket(fd).send(self.writebuffers[fd])

except:
self.closeout(fd)

Asynchronous Communi cation

self.writebuffers[fd] = self.writebuffers[fd][byteswritten:]

if not len(self.writebuffers[fd]):
self.watchread(fd)

def errorevent(self, fd):
self.closeout(fd)

def closeout(self, fd):
self.dontwatch(fd)
try:
self.fd2socket(fd).close()
except:
pass

del self.writebuffers[fd]
del self.sockets[fd]

def loop(self):
while 1.
result = self.p.poll()
for fd, event in result:
if fd == self.mastersock.fileno() and event == select.POIIIN:
try:
newsock, addr = self.fd2socket(fd).accept()
newsock.setbl ocking(o)
print "Got connection from", newsock.getpeername()
self.newconn(newsock)
except:
pass
elif event == select.POIIIN:
self.readevent(fd)
elif event == sdect.POIIOUT:
self.writeevent(fd)
else:
self.errorevent(fd)

host
port

Bind to all interfaces

"

51423

W

479

Chapter 22

480

s = socket.socket(socket. AF_ INET, socket. SOCK STREAM)
s.setsockopt(socket. SOL_SOCKET, socket. SO REUSEADDR, 1)
s.bind((host, port))

s.listen(l)

s.setblocking(o)

state = stateclass(s)
state.loopO

Theframework of this program looks similar to the previous example. However,
note the addition of aread buffer and the code that processesit. That code is of
particular interest in that it handles three distinct cases of input that might occur:
no end-of-command (SEND) received; one or more complete commands termi-
nated by SEND, and one or more complete commands followed by an incomplete
command. With asynchronous Il 0, the normal commands that are used, for
instanceto read afull line of input are unavailable. You must therefore buffer input
yourself, and be prepared to receive partial lines or multiplelines al at once.

You canrunthis program by running ./chatserver. py. To test it, open several
telnet clients directed at port 51423. In one of them, your session might look
like this:

$ telnet localhost 51423

Trying 127.0.0.1...

Connected to localhost.

Escgpe character is '~]'.

Wecome to the chat server, ('127.0.0.1', 48633)
Hello.

Testing.

SEND

('127.0.0.1', 48633): Hdlo.
('127.0.0.1', 48633): Testing.

How are you?

SEND

('127.0.0.1', 48633): How are you?

Monitoring Multiple Master Sockets

In the previous example, one master socket was used; the server listened on a
socket. It only ever handles asingle socket that'slistening. It's also possibleto use
asingle-tasking server to listen to many different ports. Infact, the standard
UNIX "superserver" inetd does exactly that.

Asynchronous Communication

inetd listens on many different ports. When aconnection arrives, it will start
up the programthat is supposed to handle that connection. In thisway, asingle
process can handle dozens of different sockets. On asystemwhere these different
processes aren't under constant, heavy use, thisis awin; one process listening
instead of dozens of different ones.

Oneway to implement an inetd-like server is to use poll O to watch awhole
set of master sockets. When a connection is received, it's moved to aknown file
descriptor and handed off to the program that will actually handle it. Chapter 3
contains some exampl es of programs that use inetd.

In actual fact, an i netd-like server will be something of ahybrid; it will use
poll() to monitor the master sockets, but forkO to passthem onto the handlers.
Thiswill expose animportant security considerationfor programslikethis. Here's
the example inetd server. This example will not work onWindows due to its use
of forking.

#!/usr/bin/env python
Asynchronous Inetd-like Server - Chapter 22 - inetd.py

import socket, traceback, as, sys, select

class stateclass:
def init (self):
self.p = select.poll()
self.mastersocks = {}
sdf.commands = {}

def fd2socket(self, fd):
return self.mastersocks|[fd]

def addmastersock(self, sockobj, command):
self.mastersocks[sockobj.fileno()] = sockobj
self.commands| sockobj.fileno()] = command
self.watchread(sockobj)

def watchread(self, fd):
self.p.register(fd, select.POIIIN)

def dontwatch(self, fd):
self.p.unregister(fd)

481

Chapter 22

def newconn(self, newsock, command):
try:
pid = os.forkO
except:
try:
newsock. close 0
except:

pass
return

if pid:
Parent process
newsock. closeO
return

Child process from here on

First, close all the master sockets.

for sock in self.mastersocks.values():
sock.closeO

Next, copy the socket's file descriptor to standard input (0),
standard output (1), and standard error (2).

fd = newsock.fileno()
os.dup2(fd, 0)
os.dup2(fd, 1)
os.dup2(fd, 2

Finally, call the command.
program = command. split (" ")[O]
args = command. split(* ")[1:]

try:

os.execvp(program, [program] + args)
except:

sys.exit(1)

482

Asynchronous Communication

def loop(self):
while 1:
result = self.p.poll()
for fd, event in result:
print "Received a child connection.
try:
newsock, addr = self.fd2socket(fd).accept()
self.newconn(newsock, self.commandgfd])
except:

pass

host = .. # Bind to all interfaces

state = stateclass()

config = open("inetd.txt")

for line in config:
line =line.strip()
port, command = line.split(":", 1)
port = int(port)

s = socket.socket(socket. AF_INET, socket. SOCK_STREAM)
ssatsockopt(socket. SOL_SOCKET, socket.SO REUSEADDR, 1)
s.bind((host, port))

s.listen(l)

s.setblocking(o)

state.addmastersock(s, command)

config. close()
state.loopO

Althoughthisserver doesn't have dl thefeatures of the standard inetd server,
it nevertheless does do the same basic task. First, it creates an instance of the
stateclass class. Thenit opensits configurationfile, inetd. txt, and readsit. Each
line gives aTCP port number and a command to runwhen a client connects to
that port. So, for each configurationfile line, anew socket object is created, bound,
configured, and added to the stateclass information. Finaly, when the configu-
rationfile has been completely processed, it's closed, and the mainloop is entered.

483

Chapter 22

484

Thisloop issimpler than the mainloop inthe chat server example. The inetd
loop only has to handle one event-aclient connecting. When that happens, the
client is passed off to sel f . newconn (), along withthe command that will be executed.

The newconn () method iswhere the real action happens. Noticethat it starts
off by forking. Thisisn't really standard practicefor asynchronous servers, but
can be useful, asyou see here. (For more details on forking, please refer to
Chapter 20.) After thefork, the parent process should go back to processing client
connections and the client process will handl e this connection.

So, by checking the pid value, if you're now in the parent, the new client
socket is closed (asis standard practicewith forking servers) and the codereturns
to the loop.

Onthe child-process side, the first thing it does is close down every single
one of the master sockets. In Chapter 20, | mentioned that achild process should
close the sockets it won't use so that it won't accidentally communicate onthem
or cause strange interactionswith closeO. Those reasons still hold. But inthis
case, there's an added reason to do that: security.

The child processwill later be calling anexec ... () function to execute another
program. We might not necessarily trust this other program to be secure and to
be ableto handle dl these master socketsin asecureway. For instance, amalicious
program might be able to find the master socket for a particular port and "take
over" that port, handling itsrequests instead ofl etting the inetd server do that. It
might be able to record somebody's password-the person may think they're
sending it to thereal server, butinredlity, it'sgoing to afake one. Thisproblem s
known as afile descriptor leak. So it's vital to close down al the sockets that the
client won't need in this situation.

After doing that, the next thing the client doesis callos. dup2 () three times.
You'll recall from Chapter 3that inetd passes the socket to its server program on
standard input, standard output, and standard error. Those are file descriptors 0,
1, and 2 on UNIX. The os. dup2() call letsyou duplicate asocket (or file, or any-
thing elsethat has a UNIX file descriptor) to afile descriptor with aparticular
number. We duplicatethe client's socket threetimes so that it's present in standard
input, standard output, and standard error.

Finally, the client is executed. The call to os. execvp () might have surprising
semanticsifyou're unfamiliarwith UNIX. Unlessthere's an error, it never returns.
Onsuccessful completion, os. execvp() (or the otherexec... () functions) completely
replaces the calling processin memory. So the forked child of inetd. py ceasesto
exist. However, the process environment-includingitsfile descriptors-is copied
over to the newly executed program. Therefore, the program receives the client
socket asit should.

Let's take alook at how this might work. First, here's asample configuration
file that will let a client connect to the server at two different portsto runtwo
different examples from Chapter 3:

Asynchronous Communi cation

55100: .. 103/inetdsocket.py
55101: .. 103/inetdserver.py

This file doesn't use the same format as the system's | etc/inetd.conf, but it
gets the job done for this example. Now, let's see what happens:

$ telnet local host 55100

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

Welcome.

According to our records} you are connected from ('127.0.0.1'} 52385).
The local time is Man Ma 8 10:06:02 2004.
Connection closed by foreign host.

$ telnet localhost 55101

Trying 127.0.0.1...

Connected to localhost.

Escape character is '~]'.

Welcome.

Please enter a string:

Testing

You entered 7 characters.

Connection closed by foreign host.

It worked. By connecting to adifferent port, adifferent server process was
run. Yet asingle process-our example inetd |ook-alike-handled the connections
on both ports.

This "hybrid" technique (using polling and forking in asingle program) can
have other uses, too. For instance, an asynchronousserver may make sense for most
of what you do, but certain commands are processor-intensive; executing them
in the single-server process may cause undesired blocking. A new process may
be forked, or athread created, to handle that, with the results passed back later.

Usng Twised for Servers

If you think about the chat server example abstractly, you can visualize the program
as two main components: the poll () loop that takes care of the mechanics of
watching for data, and the actual code that receives datadispatched from the
loop and processes it. With somework, the mainloop could be made generic-
the same code could be used to drive various different asynchronous servers.
Thisisthe approach that the Twisted system takes. Twisted providesthe core
libraries that implement the central loop for the server. It provides base classes

485

Chapter 22

486

that you override, adding your own functionality where appropriate. They often
cal thisthe"Don't call us, we'll call you" design. Your application never explicitly
receives data anywhere. Rather, when data arrives, a class method is called. You
process the data, possibly queue datafor transmission, then return. Twisted, of
course, handles sending the dataout as appropriate, using an internal buffer
similar to the chat server. Thisforms the core of Twisted.

TIP Another description of some Twisted basics can be found in
Chapter 12. Many IMAP examples in that chapter use Twisted for
client-side communication.

The Twisted system, though, takes this several steps farther. It offers some
generic helper classes, such as the LineOnlyReceiver. Inthe chat server, you had
to write code that deals with receiving partial or multiple "lines" at once.
LineOnlyReceiver will take care of this automatically. Twisted also provides
server-side modules for some common network protocols, though this chapter
doesn't go into detail on them.

Twisted isn't part of the standard Python library. You can download it from
www.twistedmatrix.com. Y our operating system provider may also make available
Twisted packages; if 0, those packages may aso suffice. The examplesin this
chapter assume you have Twisted 1.1.1 or higher installed.

TIP ThisTwisted code probably looks complex and hard to follow. However,
Twisted is really an elegant system, and with alittle expenence, it can fed
just as easy asmore traditional programming.

Here's an example implementation of achat server in Twisted. Noticethat it
doesn't have to keep track of any state.

#!/usr/bin/env python

Asynchronous Chat Server with Twised - Chapter 22
twistedchatserver.py

Twised 1.1.1 or above required for this example
-- download from www.twistedmatrix.com

Asynchronous Communication

from twisted.internet.protocol import Factory
from tWisted.protocols.basic import LineOnlyRecever
from twisted. internet import reactor

class Chat(LineOnlyReceiver):
def lineReceived(self, data):
self.factory.sendAll("%s: %s' %(self.getldO, data))

def getld(self):
return str(self.transport.getPeer())

def connectionMade(self):
print "New connection from", self.getldO
self.transport.write("Welcome to the chat server, %sn" %self.getld())
self.factory.addClient(self)

def connectionLost(self, reason):
self.factory.del Client(self)

class ChatFactory(Factory):
protocol = Chat

def _init_ (self):
self. clients = [J

def addClient(self, newclient):
self.clients.append(newclient)

def delClient(self, client):
self.clients.remove(client)

def sendAll(self, message):
for proto in self.clients:
proto.transport.write(message + "\n")

reactor.listenTCP(51423, ChatFactory())
reactor.run()

Thefirst thing that might strikeyou about this exampleisthat it's alot shorter
thanthefirg chat server example. Infact, it'sabout one-thirdthe size. Thisdifference
occurs because Twisted provided alot of the basics that the first example had to
providefor itself. Under the hood, both programs do essentially the same thing.

487

Chapter 22

488

The Twisted program is based around two main classes. Chat and ChatFactory.
The Chat Factory is somewhat of a"master” classthat's instantiated only oncein
the entire application. The Chat classis instantiated once for each client that
connects; its datastructures are unique to each client. This structure makes it
easy to both maintain datathat's global for the entire system and datathat's
unique for each client. Sincethere's a separate class instance for each client,
there's no master dictionary like thefirst chat server example had.

Both classes derive from Twisted-supplied base classes. The Chat classis a
child of Twisted's LineOnlyReceiver, whichisitself achild of Protocol. The Protocol
class handles the receiving of dataand calls the dataReceived() method when
dataarrives. Theideais that you can subclass Protocol and provide your own
implementation of dataReceived() that processes theinformation.

Infact, that's exactly what LineOnl yRece ver does. Whenever acomplete
line of datahas arrived, LineOnlyReceiver's dataReceivedO method will call the
lineReceivedO method. Again, this method is designed to be overriddenin asub-
class. The Chat class does exactly that. Whenever alineis completely received
from the client, the Twisted code calls lineReceived(), passing thelineto it. That
function, inturn, calls self. factory. sendAll(). Twisted automatically stores a
reference to the Factory object in the Protocol object (Chet) for you.

Like lineReceived O, the connectionMade() method is called when an event
occurs. Twisted calls connectionMade () when aclient first connects. Inthis example,
the connectionMade () method sendsthe greeting and addsitself to the datastructure
by calling sel f. factory. addClient (). Similarly, when the client disconnects,
connectionL ost() is called, which asks the factory object to removeitsinformation
about the client.

The ChatFactory classisfairly simple. Its_init_ () method simply creates
an empty list of clients. The addClient O and delclient O methods straightforwardly
add or remove aclient from the list of clients. The sendAll () method takes a
message as an argument and iterates over thelist of al client objects, calling
transport. writeO on each one of them.

ThiswriteO method is not the same as socket. send(), socket. sendall O, or
the write() method of Python file-like objects. Twisted'swrite() method will
store the datato be sent in abuffer, and then returns immediately. Behind the
scenes, it asks theinternal poll o bject to notify itwhen the client can receive data,
and will thus send out datauntil its buffer is exhausted. Internally, writeO uses
the same sort oflogic that the example before did. But it does it dl behind the
scenes; you don't have to worry about buffering and managing clients that are
ready (or not) to receive data.

The program ends with two lines of code that set up and run the server. By
calling listenTCH), thelistening socket isset up. Thereactor. run() methodisthe
mai n loop of the program; it's not generally set to ever return, and instead must
be terminated by something such as asignal with Ctrl-C or Ctrl-Break.

Asynchronous Communication

Summary

Asynchronous communication provides away to handle multiple connections at
once. Unlike forking and threading, asynchronous communication doesn't actually
have the server executing different code simultaneously. Rather, it uses non-
blocking 110 and polling to service each client when it becomes ready.

Asynchronous 11 0 is centered on amain loop that waits for eventsto arrive.
In this chapter, that loop uses poll () to look for events on file descriptors. When
an event occurs-such as datathat's available to read, or ready-to-write data-
the program can seewhat happened and take the appropriate action. The poll()
function is designed to watch many sockets at once.

It's a'so possible to monitor multiple master sockets. In this chapter, an
example inetd implementation demonstrated doing that.

The Twisted framework provides many tools for writing asynchronous servers.
It can saveyou agreat deal of effort. Inthis chapter, the Twisted implementation
of achat server was approximately one-third the size of the implementationthat
was done from scratch.

489

| ndex

Symbols

& character, 383

> character, 383

&It character, 383

*folder pattern, 238

+= operator, 448

< character, 383
<affiliation> child, 153
<broadcast> address (DNS), 95
== self.processing tag, 137
> character, 383

A

A DNS records, 76
AAAA DNS records, 76
accept(),14,40,41,42,43,429,432,475,476
account FTP authentication token, 276
acquire(), 448,450,452,461
addBoth(), 235
addCallback(), 227, 230
addClient(), 488
addFlags(),252
addGETdata(),120
AddHandler, 401
addressjamilyvariable, 352
adns Pythonlibrary, 65
advanced network operations, 87-110
binding to specific addresses, 102-3
half-open sockets, 87-88
overview, 87
timeouts, 89-90

transmitting strings, 90-92
leading sizeindicator, 92

unique end-of-string identifiers,
91-92

understanding network byte order,
93-94

using broadcast data, 95-97

using event notification with poll() or
select(), 104-9

working with IPv6, 97-102
handling family preferences, 10D-102
resolving addresses, 98-100

AF_INET protocol, 20, 99, 101

AFP (Apple File Sharing) protocol, 20
Alias directive, 396, 399
allow_nonevariable, 360
allow_reuse addressvariable, 351
alternative multiparts (MIME), 180
alternative subtype (MIME), 186
answers attribute (PyDNS), 78

ANY query (DNS), 82

ApacheAH, 397

apache2ctl configtest command, 398
apache2ctl restart command, 395
apachectl configtest command, 398
apachect| restart command, 395

apache. HTTP_FORBIDDEN (403) status
code, 402

apache HTTP_MOVED PERMANENTLY
(301) statuscode, 402

apache. HTTP_MOVED TEMPORARILY
(302) status code, 402

apache. HTTP_NOT_FOUND (404) status
code, 402

apache.HTTP_OK (200) status code, 402

491

I ndex

492

apache. HTTP_UNAUTHORIZED (401)
status code, 402

apache. SERVER_RETURN command, 402

APOp, 212, 213

apop(), 214

append(), 270

appendChild(),156

application/octet-stream type (MIME), 183

arguments parameter, inetd, 47

arraysize attribute, 311,312

as string(), 182

ASCII characters, 92, 93

ASCII files, downloading with FTp, 278-79

asynchat module, 470

asynchronous communication, 469-89
advanced server-side use, 476-80

monitoring multiple master sockets,
480-85

overview, 469-70
using, 471-76
using Twisted for servers, 485-88
whether to use, 470
asyncore module, 470
atomic operation, 448
attachment(), 183
attacks, 323
authentication
FTp, 276-77
POP (Post Office Protocol), 212-14
SMTp, 208-9
Web client access, 115-18
"Authenticationfailed" error, 209

B

Base-64 encoding, 181

base64 module, 92

basehttp.py file, 342
BaseHTTPRequestHandler class, 341-42

BaseHT TPServer, 341-48

handling multiple requests
simultaneously, 346-48

handling requests for specific
documents, 343-46

overview, 341-43
BEGIN CERTIFICATE block, 332
Binary(), 317
binary files, downloading with FTp, 279-81
binary word, 93
bind(), 39, 43
bind package (Linux) , 68
blocking call, 437
body of e-mail messages, 169-70
broadcast data, 95-97
BSD UNIX, 19, 46
buffers structure, 474
buflen option, 37
build_opener(), 117
built-in SSL, 326-30
byte order, network, 93-94

C

Cconnect(), 21
Clanguage, la, 11, 12,25,53,55,93,159
callback function, 225
catch statement, 121
Cc Header (MIME), 171
certfiles.crtfile, 332
Certificate Authorities (CAs), 325
certificates, server. See server certificates
CGI (Common Gateway Interface), 369-92
escaping special characters, 383-85
getting input, 375-83
extraURL components, 375-78
GET method, 378-80
overview, 375
POST method, 380-83
handling multipleinputsper field, 385-86

overview, 369

retrieving environment information,
373-75

scripts, 349-50, 365, 367, 393,397,
405,415

setting up, 370
understanding CGlI, 370-72
uploading files, 386-88
using cookies, 388-92
CGl handler, 407, 415
cgi interface, 387
cgi library, 380
cgimodule,371,373,383,385,386,412-13
cgi-bin directory, 349, 370, 373
cgi.escape(), 383, 413
cgL FieldStorage(),380
CGIHTTPServer, 349-50,370
cgilib.escape(),385
cgitb module, 372
CGIXMLRPCRequestHandler, 365-67
character references, translating, 132-33
character set, ASCII, 181
Chat class, 488
chat server exercise, threaded, 457
Chatfactory class, 488
checksum, 5
chldhandler(), 427
CLASSPATH variable, 300
cleanse(), 139
client_address variable, 352
clients, database. See database clients
clients, network. See network clients
client! server networking, 3-18
Ethernet, 9
networking in Python, 9-16
high-level interface, 15-16
low-level interface, 10-15
overview, 3
physical transports, 9

I ndex

TCP basics, 3-6
addressing, 4
reliability,4-5
routing, 5
security,6
user datagram protocol, 7-8
using client! server model, 6-7
close(),19,42,43,88,218,422,484
closeout(), 475
CN (common name) attribute, 335
CNAME record, 76, 79, 82
cnverifiedvariable, 335
codecs module, 194
column names, 314
command channel, 276
commands
executing, 301-2
repeating, 305-10
executemany(),307-10
parameter styles, 305-7
Comment objects, 150
commit(), 302-3, 304, 305, 310

Common Gateway Interface. See CGl
(Common Gateway | nterface)

common name (CN) attribute, 335

Common Object Request Broker
Architecture (CORBA), 159

comp.lang.pythonnewsgroup, 399

composing e-mail. See e-mail composition
and decoding

compromised server, 324
Conditionobject, 466
configure script, 395
connect(), 21,26,32, 33,35, 52, 54,68
connecting, 297-301
Jython zxJDBC, 299-301
MySQL,299
POP (Post Office Protocol), 212-14
PostgreSQL, 298

493

494

Connection object, 331

connection reset by peer message, 441
connectionL ost(),488
connectionMade(), 227, 231, 488
content types (MIME), 181

Content-Disposition header (MIME), 183,
184, 186

Content-Length header (MIME), 123
Content-type header, 372
Content-Typeline (MIME), 184
Context object, 331

continue statement, 41, 42
conversation debugging (SMTP), 199-202
Cookie module, 389

cookie.output(), 392

cookies, CGlI, 388-92

Coordinated Universal Time (UTC), 178
copy(),270

CORBA (Common Object Request Broker
Architecture), 159

create(), 270

CR-LF character, 268
cross-site scripting attack, 383
cursor object, 301-2

cwd(), 278, 290

D

daemonlogfile, 60
datachannel, 276
datacommand, 202
dataitem, 386
database clients, 295-320
connecting, 297-301
Jython zxJDBC, 299-301
MySQL,299
PostgreSQL, 298
executing commands, 301-2
overview, 295

reading metadata, 313-16
counting rows, 313-14

retrieving dataas dictionaries,
315-16

repeating commands, 305-10
executemany(), 307-10
parameter styles, 305-7

retrieving data, 310-13
using fetchall (), 310-11
using fetchmany(), 311-12
using fetchone(), 312-13

QL and networking, 295

L inpython, 296-97

transactions, 302-5
hiding changes until finished, 303-5

performanceimplications of
transactions, 303

using datatypes, 317-19
datareceived(), 474, 488
datasockclose(), 283
Date(),317
Date header (MIME), 173, 178, 180
Datestring, 179
DateFromTicks(), 317
date-1D headers, 174-75
db parameter, 299

DB-API specification, 296-97, 300, 305, 306,
310,317

dbh (database handle), 297
Debian GNU/Linux, 77
decode(), 194

decoding e-mail. See e-mail composition
and decoding

def gethostname(ipaddr), 73-74
Deferredfrom list(), 238

Deferred object, 227, 228; 230, 231,234
DeferredList object, 248, 259, 260

del Client(),488

dele(),218

DELE command, 218
delete(), 270, 293
\Deleted flag, 252, 255
deletemessages(),255
deleting
folders, 293
messages, 218-21, 252-55
deletion attacks, 323
descriptionvariable, 313
dgram socket type, 49
dgram type, 47
DHCP, 77
dictfetchalH), 316
dictfetchone(), 316
dictionaries, retrieving dataas, 315-16
dir(), 284, 285, 288, 290
directories. See folders
Directory section, 399
DirEntry class, 288, 290, 292
DirScanner class, 288, 292
dispatching requests (mod_python), 402-4
dispCookie(),391
displayinfo(), 260
dlist list, 248
DNS (Domain Name System), 21, 65-85
DiscoverNameServers(), 77
making DNS queries, 65-66
overview, 65
Request(), 77

using operating system lookup
services, 66-75

obtaining information about your
environment, 74-75

performing basic lookups, 66-70
performing reverse lookups, 70-74

using PyDNS for advanced | ookups,
76-85

DNS records, 76-77

I ndex

installing PyDNS, 77

querying specific name servers,
79-81

resolving lookup results, 82-85
simple PyDNS queries, 77-79
DNS module, 77
dnslook,65
dnspython, 65, 77
do_...(),342
do_GETY(), 345, 348
DocBook, 145, 148
docstring, 358
document type definition (DTD), 145, 148
DocXMLRPCServer, 364-65
DOM
full parsing with, 151-54
generating documentswith, 154-57
typereference, 157-58
domai n attribute, 389

Domain Name System. See DNS (Domain
Name System)

dothefork(),422
downloaddir(), 292
downloadfile(),292
downloadinfo(), 259,260
downloading
ASCII files (FTP), 278-79
binary files (FTP), 279-81
messages (IMAP), 24349
messages (POP), 216-18
recursively (FTP), 290-93
DSO (Dynamic Shared Objects) support, 395
DTD (document type defmition), 145
dup(),19

~dup2(), 19,484

Dynamic Shared Objects (DSO) support, 395

495

496

E

echo client, 62, 63

echo server, 61-62, 63

ehlo(), 204, 205, 209

EHLO command, 205

EHLO, getting informationfrom, 202-4
EHLO method, 210

Element objects, 150

e-mail. Seealso IMAP (Internet Message
Access Protocol)

e-mail composition and decoding, 169-95
MIME
composing alternatives, 185-87
composing attachments, 182-84
parsing, 190-95
understanding, 180-81
nested multiparts, composing, 188-90

non-English headers, composing,
187-88

overview, 169
traditional messages
composing, 173-76
parsing, 176-80
understanding, 169-73
email module, 169, 176, 190, 192
email package, 173
email. Header module, 193
email.messagejrom_file(), 177
email.Utils module, 178
email. Utils.formatdate(), 174
email. Utils.make_msgid(), 174
encode(), 194
END CERTIFICATE block, 332
end_headers(),342
entries.append(), 286
envelopevalue, 260
crrback notion, 232

error handling
forking, 438-41
FTp, 283-84
network clients, 23-31
errorswithfile-like objects, 29-31
missed errors, 26-28
socket exceptions, 24-26
network servers, 41-43
SMTp, 199-202
Web client access, 121-25
connectionerrors, 121-23
dataerrors, 123-25
XML-RPC, 165
errocall.pyexample, 125
errorevent(), 475,476
errorhappened(), 234, 235, 236
escape(), 412
escaping mod_python, 412-13
ESMTp, 202-3, 204
Ethernet, 9
Ethernet LAN, 37

event notification, with poll() or select(),
104-9

event-based parser, 148
event-based programming, 225
examine(), 239, 240, 245
except clause, 60

exec(),424

exec... () type functions, 422, 484
execute(), 302, 308, 310
executemany(),307-10
executing commands, 301-2
execvp(), 484

EXISTS summary item, 240
expunge(), 252, 255

F

facility argument, 57

factory class, 227

factory object, 231

Factory object, 438

failure(), 363

Failure object, 234, 235, 236

fake server (traffic redirection), 324
fentl() , 216

fd2socket(),474

f.dir(), 286, 288

FETCH command, 243

fetch...(), 310, 315
fetchallC),310-11
fetchBodyStructure(), 256,260
fetchFlags(), 250

fetchmany(), 311-12
fetchone(),312-13
fetchSimplifiedBody(), 256, 259, 260
fetchSpecific(), 245, 248,249,256,260
fetchUIDC 1:*"),248

FieldStorage class, 409, 412
FieldStorageinstances, 385

file attribute, 387

file descriptor, 19

file descriptor leak, 484

File Not Found (404) error, 401

FileTransfer Protocol. See FTP (File
Transfer Protocol)

file.cgi script, 388
File-likeobjects, 23
filename attribute, 387
files
binary, downloading (FTP), 279-81
moving (FTP), 294
renaming (FTP), 294
uploading (CGl), 386-88
fmally clause, 292, 437, 449, 460

I ndex

finding messages (IMAP), 262-67
composing queries, 263-65
running queries, 265-67

finishprocessing(), 81, 137, 142

Flag-related search keywords, 263

flags option, 49

flags, reading (IMAP), 250-51, 252

FLAGS summary item, 240

flock(),216,437,448

flush(), 30, 46

folders
creating

FTp, 294

IMABP, 270
deleting

FTp, 293

IMAP, 270
examining (IMAP), 239-43
folder list, scanning (IMAP), 236-39
moving messages between (IMAP), 270
scanning (FTP), 284-90

for loop, 377

fork(), 54, 88,425,438, 439,441,481

forked pool, 424

forking, 419-42
error handling, 438-41
first steps, 424-30

overview, 424-25
zombie problem, 425-30
fork(),421-24
duplicated file descriptors, 422-23
overview, 421-22
performance, 424
zombie processes, 423
locking, 433-38
overview, 419
processes, 419-21
servers, 430-33

497

I ndex

498

ForkingMixIn class, 363
form data, submitting, 118-21
with GET, 118-20
with POST, 120-21
FORM tag, 383
formatstyle, 306,307
FreeBSD search engine, 118
from cgi import escape command, 413
From header (MIME), 173
fromfd(),51
fromtimestamp(),180
FTP (File Transfer Protocol), 117,275-94

authentication and anonymous FTp,
276-77

communication channels, 276
creating directories, 294

deleting files and directories, 293
downloading ASCII files, 278-79
downloading binary files, 279-81
downloading recursively, 290-93
handling errors, 283-84

moving and renaming files, 294
overview, 275

scanning directories, 284-90

discovering informationwithout
parsing listings, 288-90

parsing UNIX directory listings,
286-88

uploading data, 281-83

using in Python, 277-78
FTP protocol, 114
FTPURL, 125
ftplib module, 277, 279, 283,284,293
ftplib.alLerrors tuple, 283
ftplib.errocperm exception, 290
function query type, 81
fwrite(), 466

G

Gadfly, 297

GET method, 342, 343, 383
CGl,378-80
and mod_python, 407-10

submitting form datawith, 118-20

getaddrinfo(), 70, 75, 98-100,101
getAttribute(), 153
getCapabilities(),227
getCookie(), 391

getdate(), 180

_getdoc(),345

getdsn(), 298
getElementsByTagNameO,153
getfilename(),288
getfirst(),380
gethandlerfunc(), 404
gethostbyname(),67
getlastaccess(), 437

getlist(), 380, 385

getName(), 445

getpeername(), 51
getrecordsfromnameserver(),81
getmntime(),367
getscriptname(), 409
getservbyname(),21
getsockopt(), 37, 38
getstats(),363

gettype(), 288

geturl (), 115

Gopher handler, 125

Gopher Protocol, 10-11, 114
gopherlib module, 15
gotcapabilities(), 227
gotmessage(),249,255
gotmessages(),245

H

H string format, 93

h_errno C exception, 25

half-open sockets, 87-88

handle(), 351

handle_request(),367

handlechild(), 456-57

handleconnection(), 459,462

handler(), 400, 404, 405

handleuids(), 248, 254

handling input (mod_python), 405-12
extraURL components, 405-7
GET method, 407-10
overview, 405
POST method, 410-12

\HasChildren flag, 239

\HasNoChildren flag, 239

HEAD method, 342

Header.decode_header(), 194

Header-rel ated search keywords, 264

headers (MIME), 169

helo(),204

HELO command, 203

hex(),357

hierquery(),81

high-level interface, 15-16

hijacking, session, 323

host command, 68

host parameter, 299

hostsfile, 66

.htaccessfiles, 399

htbin directory, 349

HTML, 118, 187

HTML and XHTML, parsing, 127-43
handling unbalanced tags, 133-37
overview, 127-30

translating character references,
132-33

I ndex

translating entities, 130-32
working example, 137-43
HTML code, 114
HTML file, 370
HTML form, 410
htmlentitydefs class, 132
htmllib, 128

HTML Parser module, 127, 128, 130,137,
142, 148

HTML Parser's feed() method module, 129
htonl(),94

HTTp, 15,39, 113, 115, 116, 117, 122,388
HTTP authentication, 388

HTTP headers, 125, 389

HTTPprotocol, 114

HTTP status code, 401

HTTP COOKIE environment variable,
389,391

HTTPBasicAuthHandler handler, 117
HTTPError exception, 122, 123
httplib module, 15
HTTPServerclass, 341,348

human engineering, 324

HUP signal, 48

| format, 93

IANA (Internet Assigned Numbers
Authority),7

ident parameter, 57
if statement, 424
if test, 426

IMAP (Internet Message Access Protocol),
223-72

adding messages, 268-70
creating and deleting folders, 270
downloading, 243-49
entire mailbox, 243-45
messages individually, 245-49

499

I ndex

examining folders, 239-43
message numbersvs. UIDs, 239-40
message ranges, 240
finding messages, 262-67
composing queries, 263-65
running queries, 265-67
flagging and del eting messages, 249-55
deleting messages, 252-55
reading flags, 250-51
setting flags, 252
moving messages between folders, 270
overview, 223-25
retrieving message parts, 255-62
finding message structures, 256-60
retrieving numbered parts, 260-62
scanning folder list, 236-39
in Twisted, 225-36
error handling, 231-36
logging in, 228-31
overview, 226-28
IMAPACIient class, 227, 230
IMAPFactory object, 227, 231
imaplib module, 224
IMAPLogic object, 231, 234
import cgi command, 413
IN-ADDR.ARPA extension, 84
INBOXfolder, 239, 243, 245
indexCBODY"),249
index.html file, 348
inetd
configuring, 47-48
handling errorswith, 54-55
using socket objectswith, 51
using UDP with, 51-54
when not to use, 55
inetd loop, 484
inetd server, 480-81, 483, 484

inetd.py file, 484
infiniteloop, 40-41
info(), 125

init process, 423

init(), 230, 231, 234, 260, 290, 488

initsyslog(), 60

INPUT tag, 388

In-Reply-To header, 173
INSERT INTO command, 305
insertion attacks, 323

installing and configuring mod_python,
394-99

configuring Apache directories, 396-98
fixing configuration problems, 398-99
loading the module, 395
overview, 394-95

int(), 359, 360

Internet Assigned Numbers Authority
(IANA),7

I nternet Message Access Protocol .
See IMAP (Internet Message
Access Protocol)

interpreter instances (mod_python),
413-14

introspection, 355
Invocationtype parameter, 47
| OError exception, 283
IP address, 4, 9,21,76
IPv4,20,67,97-98,99, 100, 101-2
IPv6,26,67,97-102,352-53
address, 76
handling family preferences, 100-102
queries, 77
resolving addresses, 98-100
IPX/SPX (NetWare) protocol, 20
ISO 8859-1,187,188
isvalid(), 288

J

Java, 159,300

JDBC driver conversion layer, 297
join(), 445, 447

Jython interpreter, 297

Jython zxJDBc, connecting, 299-301

K
key pair, 325

KeyboardInterrupt exception, 32, 40,42,
43,457

L

level parameter, 37
libxml2library, 149
LineOnlyReceiver class, 486, 4388
lineReceived(),488

Lines header, 171

Linux, 7,14,16,38,46,68,172,216,346,
372,386,388

Linux platform, 396,420

list(), 215, 238

listen(), 14,39,43,54,459
listener(), 462

listenTCP(),488
listMethods(),360

list.sort(), 359
load_verify_locations(),335
LoadModuleline, 395

local areanetwork (LLAN), 95, 97
locale.getpreferredencoding(),194
localhost server, 198

Lock object, 448, 450, 452, 466
LOCK_EX argument, 437
LOCK_UN argument, 437
locking, 448

lockpoollock, 459, 462

I ndex

LOG_ syslog priority, 59
LOG_ALERT syslog priority, 59
LOG_AUTH syslog facility, 58
LOG_CONS syslog option, 57
LOG_CRIT syslog priority, 59
LOG_CRON syslog facility, 58
LOG_DAEMON syslog facility, 58
LOG_DEBUG syslog priority, 59
LOG_EMERG syslog priority, 59
LOG_ERR syslog priority, 59
LOG_INFO syslog priority, 58, 59
LOG_KERN syslog facility, 58
LOG_LOCALXx syslog facility, 58
LOG_LPR syslog facility, 58
LOG_MAIL syslog facility, 58
LOG_NDELAY syslog option, 57
LOG_NEWS syslog facility, 58
LOG_NOTICE syslog priority, 59
LOG_NOWAIT syslog option, 57
LOG_PERROR syslog option, 57
LOG_PID syslog option, 57
LOG_USER syslog facility, 58
LOG_UUCP syslog facility, 58
logexception(), 60
logexception(l) calL 188
loggedin(), 230, 231
logging module, 55,56
login(), 208, 228, 230, 231, 278
loginerror(), 234, 235, 236
logout(), 231, 235, 248
loop(), 475
loopback interlace, 102
low-level interface, 10-15
basic client operation, 10-1I
basic server operation, 13-15
errors and exceptions, 11-12
file-like objects, 12-13

501

inaex

502

M

Mac OS 9,77
mail from command, 202
mailboxinformation (POP), 215-16
Maildir specification, 216
MainThread thread, 445,455,457,459,462
make install command, 395
makefile(), 12-13,15,29,30,31
man-in-the-middle (MITM) attacks, 322
\Marked flag, 238
Math class, 362
max-age attribute, 389
md5 command, 386, 388
MD5 sum, 386, 388
md5sum command, 386, 388
Meerkat service, 162
Message-1D header, 171, 173, 174-75
messageJrfc822 type, 259
M essageSet object, 240, 254
metadata, reading, 313-16

counting rows, 313-14

retrieving dataas dictionaries, 315-16
method parameter, 118
METHOD parameter, 383
MIME header, 173
MIME message, 192

MIME (Multipurpose Internet Mail
Extensions)

composing alternatives, 185-87
composing attachments, 182-84
parsing, 190-95
understanding, 180-81
MIMEBase generic object, 183
MIMEMultipart object, 182, 183, 186
MIMEText module, 173
MIMEText object, 183
mimetypes module, 183

minidom
Document object, 156
parse(), 151
MITM (man-in-the-middle) attacks, 322
mkd(),294
mktime_tz(), 179
mod_python, 393-416
basics of, 399-402
handler return values, 401-2
overview, 399-400
role of PythonHandler, 400-401
dispatching requests, 402-4
escaping, 412-13
handlinginput, 405-12
extraURL components, 405-7
GET method, 407-10
overview, 405
POST method, 410-12
installing and configuring, 394-99

configuring apache directories,
396-98

fixing configuration problems,
398-99

loading the module, 395
overview, 394-95
interpreter instances, 413-14
need for, 393-94
overview, 393
prebuilt handlersin, 415
mod_python mailinglist, 399
mods-available directory, 395
Morsel object, 389, 391, 392
moving files (FTP), 294
Mozilla, 122
msg(),467
mtr program, 5
multi part messages, 180
multipart! alternative part, 259

multipleinputs per field, handling (CGlI),
385-86

Multipurpose I nternet Mail Extensions
(MIME),169

multi-threaded program, 444
multithreading, 444

MX record, 76, 78,82

mxTidy, 128, 133

MySQL, connecting, 299
MySQLdb,299

MySQLdb connect(),299
MySQL-Python, 299

N

\n line ending, 268
name argument, 77
named style, 307
NAMEINARGS flag, 49
netmask,9
Network applet, 66
network clients, 19-34
handling errors, 23-31
errorswith file-like objects, 29-31
missed errors, 26-28
socket exceptions, 24-26
overview, 19
sockets
communicatingwith, 23
creating, 20-22
overview, 19-20
using user datagram protocol, 31-33
Network File System (NFS), 216

network operations, advanced. See
advanced network operations

network servers, 35-64
accepting connections, 40-41
avoiding deadlock, 60-63
handling errors, 41-43

I ndex

inetd
configuring, 47-48
handling errorswith, 54-55
using socket objectswith, 51
using UDPwith, 51-54
when not to use, 55

logging with syslog, 55-60

overview, 35

preparing for connections, 35-39
binding the socket, 39
creating socket object, 36
listening for connections, 39

setting and getting socket options,
36-38

using user datagram protocol, 43-45
xinetd, configuring, 48-50
network vulnerabilities
reducingwith SS., 324-25
understanding, 322-24
compromised server, 324
deletion attacks, 323
fake server (traffic redirection), 324
human engineering, 324
insertion attacks, 323
overview, 322
replay attacks, 323
session hijacking, 323
sniffing, 322
newconn(), 474, 475, 476, 484
newline character, 91
Next » button, 382
NFS (Network File System), 216
nist(), 284, 288
Node Types, 158
A\Noinferiorsflag, 238
nonblocking mode, 469
None object, 318
non-HTTP protocols, 123, 125
non-UNIX platforms, 55, 56
\Noselect flag, 238

Not(), 263

notify(), 467

nowait implementation, 52-53
nowait server, 52

nowait type, 47

NS record, 76, 79, 82
nslookup(),81
NTEventLogHandler(), 55
ntransfercmd(), 279, 280-81,282,284
numbergen(),450

numeric style, 306

O

ODBC driver conversion layer, 297
ok parameter, 335

openlog(),56

OpenSSL, 330-31

OpenSSL, verifying server certificateswith,
331-38

obtaining root certificate authority
certificates, 332

overview, 331
verifying the certificates, 332-38
operating system lookup services, 66-75

obtaining information about your
environment, 74-75

performing basic lookups, 66-70
performing reverse lookups, 70-74
opportunistic encryption, 206
Or(),263
O'Rellly's Meerkat service, 160
osslverify.py file, 338

P

paramstyle variable, 306
parse(), 151
parsedate tz(), 179

parsing HTML and XHTML. See HTML and
XHTML, parsing

pass (), 212

passive mode, 276
passwd parameter, 299
path attribute, 389
path parameter, 47

PATH_INFO environment variable, 374,
375,377-78,380

peek,245

PERMANENTFLAGS summary item, 240
physical transports, 9

pickle module, 159,361

PID (process ID), 420-21, 421, 484

plain encoding, 181

Point to Point Protocol (PPP), 9

poll(), 104-9,469,470,474,475,476,
481,485

POLLERR option, 106

POLLHUP option, 106

POLLIN option, 106

POLLNVAL option, 106

POLLOUT option, 106

POLLPRIoption, 106

POP (Post Office Protocol), 211-22
connecting and authenticating, 212-14
deleting messages, 218-21
downloading messages, 216-18
obtaining mailbox information, 215-16
overview, 211

POP3 object, 212

poplib module, 211, 216

poplib.errocproto, 212

port name 3-4, 21

port number, 4

port option, 49

port parameter, 47, 299

POST method, 342, 387
CGl, 380-83
and mod_python, 410-12
submitting form datawith, 120-21

Post Office Protocol. See POP (Post Office
Protocol)

PostgreSQL, connecting, 298
pow(), 357,358
PPP (Point to Point Protocol), 9
prebuilt handlers, in mod_python, 415
print statement, 372
prinCday_quiz(),382
printf(), 306
printpart(), 260
printqueryresult(), 267
printXS09 (), 335
private key, 325
process ID (PID), 420-21, 484
processclients(), 460, 461, 462
producer/consumer problem, 453
protocol class, 227
Protocol class, 488
protocol object, 231
Protocol object, 488
protocol option, 49
ps command, 420, 424
PSP (Python Server Pages) handler, 415
psycopg connect(), 298
psycopg module, 298
PTR record, 76, 82
public-key cryptography, 325
Publisher handler, 404, 415
pwd(),278
pwd module, 159
PyDNS,65
PyDNS, using for advanced lookups, 76-85
DNS records, 76-77
installing PyDNS, 77
querying specific name servers, 79-81
resolving lookup results, 82-85
simple PyDNS queries, 77-79
pyformatstyle, 307,308
pyOpenSSL,326,330

I ndex

Python 2.1,301

Python Database Topic Guide, 296
Python Server Pages (PSP) handler, 415
PythonDebug line, 399

PythonHandler, 400-401
PythonHandler test line, 399

PythonlnterpPerDirective configuration
directive, 414

PythonlnterpPerDirectory configuration
directive, 414

Pythonlnterpreter configuration
directive, 414

Q

gmark style, 306, 307

gtype argument, 77

Query(), 263

quit(), 212, 218, 278
Quoted-printable encoding, 181

R

race conditions, 436, 447

rcpt to command, 202
reactor.run(),227
reactor.stop(), 227, 231
read(), 19,23, 122, 123,281,327
readevent(),474,475,476
readline(), 23, 91, 281
readlines(), 13

reap(), 429, 432

reaping, 427

Recelved headers, 176
Received headers (MIME), 171
\Recent flag, 249, 251
RECENT summary item, 240
recursive name server, 65

recv(), 19,23,26,29,33,38,63,90,104,
105,281

recvfirom(),23,33,44,52,53

505

Red Hat, 46 rmd(), 293

release(), 448, 450, 452 RMI (Remote Method Invocation), 159
reliable protocol, 5 \r\nline ending, 268
Remote Method Invocation (RMI), 159 rollback(), 303, 305

Remote Procedure Call (RPC) server, 159,355 rowcount attribute, 315

REMOTE_AD DR environment variable, 374 RPC (Remote Procedure Cdl) server, 159,355
REMOTE_HOST environment variable, 374 runO,488

REMOTE_USER environment variable, 388 runquery(), 267

removeFlags(), 252 RuntimeError exceptions, 60
rename(),294
renamingfiles (FTP), 294 S
replay attacks, 323 SampleScanner class, 151
Reply-To header (MIME), 173 SAX, 154,157
repr(),94 scanning folders (FTP), 284-90
req(),77 scanNode(), 151
reg.path_info file, 405, 407 SCRIPT_NAME environment variable, 377
Request object, 114, 115 search(), 262-63, 267
request variable, 352 search keywords, 264
RequestHandler instance, 342 secure attribute, 389
req.write(), 400, 407 Secure Sockets Layer. See SSL (Secure
resolver libraries, 66 Sockets Layer)
retr(), 216, 217 secure sockets layer, 205-8
RETR command, 283 Secure Sockets Layer (SSL), 6
retrbinary(), 279, 283 \Seen flag, 245
retrieving data, 310-13 select(), 104-9,239,240,469
using fetchall(), 310-11 sdf.data, 137
using fetchmany(), 311-12 self.logout(), 235
using fetchone(), 312-13 self.processing flag, 136
retrieving message parts (IMAP) , 255-62 self.stopreactor callback, 231,235
finding message structures, 256-60 self.taglevelslist, 136-37
retrieving numbered parts, 260-62 semaphore, 450
retrlines(),278 Semaphore object, 452
RFC2109,389 send(), 12, 19,23,29,30,63, 104,471,
RFC3501,225,228,249 474,475
RFC86.33 SEND text, 476, 480
RFC959,275 send_header(),342
rtile object, 351 send_response(),342
rfile variable, 342 send_selector(), 15

sendall(), 26, 28, 90, 327,470,471

506

sendAll(), 488

Sender line, 171

sendmail(), 198-99,203,207,209
sendmail command line, 172
sendto(), 23, 33, 44
serve_forever(), 342,367

server certificates, verifying with OpenSSL,
331-38

obtaining root certificate authority
certificates, 332

overview, 331

verifying the certificates, 332-38
server option, 49
server_args option, 49
SERVER _NAME environment variable, 375
SERVER PORT environmentvariable, 375
server-side port numbers, 7
service declaration, 48
session hijacking, 323
session token, 388
set_server_... functions, 365
set_verify(), 335
setCookie(), 391, 392
setDaemon(), 445
setFlags(), 252
setsockopt(), 37, 96
setsockopt(2) manpage, 38
settimeout(), 25, 89
SGML,147
SGML Framework, 128
SGML (Standard Generalized Markup

Language), 145

SGML tag, 145
shared variables, and threading, 446-47
s.has_extn(),205,209
shutdown(), 26-28, 29, 31, 43, 88
SIGCHLD signal, 423, 427
SIGINT signal, 457
signal.signal (),428

I ndex

Simple APl for XML (SAX), 148

simple message transport protocol. See
SMTP (simple message transport
protocol); SMTP (simple message
transport protocol)

Simple Object Access Protocol (SOAP), 159
SimpleCookie object, 391, 392
1simplehttp.py file, 349
SimpleHTTPServer, 348-49
SimpleHTTPServer module, 345
Isimple.pyfile,357
SimpleXMLRPCServer,355-68
basics, 356-58
CGIXMLRPCRequestHandler, 365-67
DocXMLRPCServer, 364-65
exploiting classfeatures, 361-63
overview, 355-56
serving functions, 359-60
single-threaded program, 444
sleep(), 455, 463

SMTP (simple message transport protocol),
197-210

authenticating, 208-9

error handling and conversation
debugging,199-202

exchange, 171, 172

getting information from EHLO, 202-4
overview, 197

SMTP library, 197-99

tips, 209-10

using secure sockets layer and
transport layer security, 205-8

smtplib module, 197, 199,202,208,210
smtplib.SMTP object, 198
smtplib.SMTPException, 199

. smtpobj.secdebugievel(l) cal, 199

sniffing, 322, 323

SO BINDTODEVICE option, 37
SO _BROADCAST option, 37

SO DONTROUTE option, 37

507

508

SO KEEPALIVE option, 38
SO_OOBINLINE option, 38
SO_REUSEADDR flag, 351
SO _REUSEADDR socket object, 36-37, 38
SO_TYPE option, 38
SOA records SOA = Start of Authority, 76
SOCK_DGRAM protocol, 20, 32, 100
SOCK_STREAM protocol family, 20, 32
SOCK_STREAM socket type, 99, 100
sockaddr data, 67, 68
socket(), 19
socket module, 20, 66, 94,326
Socket objects, 23
socket_type option, 49
socket(7) manpage, 38
socket.AF_INET socket, 98
socket.AF_INET®6 socket, 98
socket.connect(), 67
socket.error, 199
socket.error exception, 25, 26, 104, 123, 283
socketJromfd(),51
socket.gaierror, 199
socket.gaierror exception, 11, 25, 26
socket.getaddrinfo(),67-69
socket.getfqdn(), 74-75
socket.gethostbyname(), 67
socket.gethostname(),74-75
socket.getservbyname(),32
socket.herror(), 71, 199
socket.herror exception, 25
socket.makefile(), 351
sockets

binding, 39

communicating with, 23

creating, 20-22

creating socket object, 36

overview, 19-20

setting and getting socket options,
36-38

SocketServer, 341-54
BaseHTTPServer, 341-48

handling multiple requests
simultaneously, 346-48

handling requestsfor specific
documents,343-46

overview, 341-43
CGIHTTPServer, 349~50
implementing new protocols, 350-52
IPv6,352-53
overview, 341
SimpleHTTPServer, 348-49

socket. SOCK_STREAM protocol type,
69-70

socket.socket(), 10, 14,51,67
socket.timeout exception, 25, 89, 90
SOL_SOCKET socket options, 37
sort(),360

sortlist(), 360

spam scanner, 172

special characters, escaping (CGlI), 383-85
spin(), 466,467

spinner, 466

split(), 215

SQL. 295, 296-97
srvr.registecintrospection_functions(),365
srvr.register_multicall_functions(), 367
s.sendall(), 12

s.setsockopt(socket. SOL_SOCKET,
socket.SO_BROADCAST, 1) call, 95

SSL (Secure Sockets Layer), 321-38
overview, 321
in Python, 326
reducing vulnerabilitieswith SS_, 324-25

understanding network vulnerabilities,
322-24

compromised server, 324
deletion attacks, 323
fake server (traffic redirection), 324

human engineering, 324
insertion attacks, 323
overview, 322
replay attacks, 323
session hijacking, 323
sniffing, 322
using built-in SSL, 326-30
using OpenSSL, 330-31

verifying server certificates with
OpenSSL, 331-38

obtaining root certificate authority
certificates, 332

overview, 331

verifying the certificates, 332-38
SSL-Enabled Communication (HTTPS), 116
sslwrapper class, 330

Standard Generalized Markup Language
(SGML),145

start(), 445
startthread(),459
starttls(), 205, 210
statU, 212
stateclass object, 474,475,483
statel ess protocol, 388
Stats class, 362
stopreactor(), 230, 231
storbinary(), 281, 282
storlines(), 281, 282
str(),319
Stream Protocol, 98
stream socket type, 49
stream (TCP) communication, 10
stream type, 47
StreamRequestHandler class, 351, 352
StringlO module, 270
strings, transmitting, 90-92
|eading size indicator, 92
unique end-of-string identifiers, 91-92

I ndex

struct function, 94

struct module, 93

structurevalue, 260

Subject header, 173

Subject line, 178, 188
synchronous communication, 469
sys.exc_info(), 60

sys.exit(), 42, 125,421,432-33
sys.exit(l) cal, 60

sysog, logging with, 55-60
sys.stdout line, 46

system(), 424

SystemExit exception, 42
system.listMethods(), 161,365
system.methodHelp(), 161,365
system.methodSignature(), 161,365

T
target setting, 445
tar.gz file, 332
TCP basics, 3-6

addressing, 4

reliability, 4-5

routing, 5

security,6
telnet command, 41
Telnet Protocol, 15
Terminal Password class, 117
testclient. py file, 367
testcookie key, 392
test.handler(),399
Text objects, 150
text/plain component, 262
text/x-diff, 259

.thread module, 444

Thread object, 445
thread pools, 450

I ndex

510

threadcode(),445

threading, 443-68
avoiding deadlock, 453-55
being thread-safe, 447-50

managing access to shared and scarce
resources, 450-53

overview, 443-45,444-45
using shared variables, 446-47
writing threaded clients, 463-67
writing threaded servers, 455-63
overview, 455-57
threaded chat server exercise, 457
using thread pools, 457-63
threading module, 444, 448
ThreadingHTTPServer class, 348
ThreadingMixIn class, 348, 363
threads.def handleconnection(), 459
threadworker(),460
"Tidy" library, 128
Time(),317
TimeFromTicks(), 317
time.mktime(), 179
timeouts, 89-90
TimeRequestHandler, 351
TimeServer class, 351
time.sleep(), 428, 430
Timestamp(),317
TimestampFromTicks(), 317
time.time(),317
TitleParser class, 129
TLS (Transport Layer Security), 6, 205-8, 321
To Header (MIME), 171
To header (MIME), 172
toprettyxmH), 157
toxml(), 157

traceroute program, 5

transactions, 302-5
hiding changes until finished, 303-5

performance implications of
transactions, 303

transfer encodings, 181
transmitting strings, 90-92
leading size indicator, 92
unique end-of-string identifiers, 91-92
Transport Layer Security (TLS), 6, 205-8,321
tree-based parser, 148
try blocks, 42, 460
try except clause, 60
try finally blocks, 43, 214, 437
TT tags, 385
Twisted
and IMAp, 225-36
error handling, 231-36
logging in, 228-31
overview, 226-28
using for servers, 485-88
Twisted IMAP library, 240, 243
Twisted project, 470
twisted.protocols.imap4 module, 263
TXT records, 76

u

UDP (User Datagram Protocol), 7-8,20,23,
31-33,37,43-45,47,49,95,96,100

udpechoserver.py server, 32

UID, 245, 248

uid parameter, 240, 243

UIDNEXT summary item, 240
UIDVALIDITY summary item, 241, 243
uithread(), 466

UNIX, 45, 46, 55, 159, 172,218,346,386,
388,396,420,422,424,427,457,484

UNIX-like operating system, 7, 14, 16, 19,
21,38,45,55,56,66,68,77

UNLISTED type, 49

unlock command, 437
\Unmarked flag, 238
UNSEEN summary item, 241
url variable, 357,367
URLError exception, 122, 123
urllib, 16, 113, 119, 120

urllib module, 412

urllib2 module, 113, 114, 115, 116, 118, 121,
122,125,277

HTTPError exception, 118
HTTPPasswordMgr class, 117
URLError class, 123
URLError exception, 121
urlopen(), 117
urllib.quote_plus(), 383, 385
user(), 212
user parameter, 299
user xinetd option, 49
user-visible URLs, 401
using datatypes, 317-19
uTidyliblibrary, 133
util.FieldStorage class, 409
UUCP (UNIX-to-UNIX Copy Protocol), 58

Vv

v-card,259

verify(), 335, 338
version attribute, 389
virus scanners, 172
voidcmd(),280
voidresp(),281

vulnerabilities, network. See network
vulnerabilities

I ndex

W
wait(), 422, 423, 427, 467
wait server, 51-52, 54
wait type, 47
wait xinetd option, 49
waitpid(), 427, 432
watchboth('), 476
Web client access, 113-26
authenticating, 115-18
fetching Web pages, 114-15
handling errors, 121-25
connection errors, 121-23
dataerrors, 123-25
overview, 113
submitting form data, 118-21
with GET, 118-20
with POST, 120-21
using non-HTTP protocols, 125
wfile object, 351
wfile variable, 342
Windows, 46,55,66,68,69,77,104,346,356
write(), 13, 19,23,28,218,279,327,488
writeevent(), 474, 475
_writeheaders(),345
writelastaccess(),437
writeline(), 279
writerow(), 142
writing threaded clients, 463-67
writing threaded servers, 455-63
overview, 455-57
threaded chat server exercise, 457
using thread pools, 457-63

X

\xfc code, 188

XHTML, 148. See IITML and XHTML, parsing
xinetd, configuring, 48-50

XML,127-28

511

XML and XML-RPC, 145-66 xml.dom.minidom directory, 157

overview, 145-48 xml.dom.Node directory, 157
summary, 166 XML-RPC Type Conversion, 166
using DaM, 148-58 xmlrpclib Exceptions, 165
full parsingwith DaM, 151-54 xmlrpclib module, 160, 165
generating documentswith DOM, xml.sax.saxutils. XML Generator class, 157
154-57
type reference, 157-58 Z
using XML-RPC, 159-66 ZoleraSOAP Infrastructure (ZS), 159

error handling, 165
full-featured example, 162-65
introspection, 160-62

type handling, 165-66

