

III

4. Place the magnified image into the white circular hole.

The magnified image can now be copied into the white hole using the "or" or
under rule to ensure that only the circular portion of the magnified image form is
copied.

"Fourth, OR the magnified image onto the magnification area with the white hole."
magnifiedlmage displayOn: mergedForm at: relativeDisplayRectangle origin

clippingBox: relativeDisplayRectangle rule: Form under mask: nil.

S. Outline the circular hole.

Finally. to make the magnified image stand out more clearly. we create a black
circle around the display rectangle on the merged form.

"Fifth, draw a circle around the magnified section to make it stand out."
dot +- (Form extent: 3@3) bleck.
(Circle new form: dot; radius: radius * magnification - 1;

center: relativeDisplayRectangle center - (1@1))
displayOn: mergedForm at: O@O
clippingBox: refativeDisplayRectangle rule: Form over mask: nil.

10"3.6 Class MagnifyingGlass

For completeness. we include the final class definition for class MagnifyingGlass.

class
superclass
instance variables

comment

class methods

instance creation

MagnifyingGlass
Object
radius magnification magnifierForm
backgroundForm largeBlackHole
backgroundForm mergedForm
backgroundRectangledisplayRectangle
mergedRectangle relativeBackgroundRectangle
relativeDisplayRectangle

A magnifying glass (magnifier for short) of specified radius
and magnification can be created and subsequently
activated. When activated, the cursor is replaced by the
magnifying glass. As long as the red (standard) mouse
button is depressed, the area under the magnifying glass is
magnified and displayed over it. Depressing the yellow
(option+mouse) button deactivates the magnifying glass and
restores the cursor to what it was. Note that the magnifier
has a round (as opposed to square) glass.

For speed. two forms are initialized at creation time: (1)
magnifierForm which contains the magnifier icon and, (2)
largeBlackHole, a circular mask to capture the portion of the
magnified picture to be displayed.

new
·Creates a default magnifying glass.·
i self radius: 20 magnification: 4

Chapter 10 Graphical Applications 481

482

radius: anlnteger magnification: anotherlnteger
"Creates a magnifying glass of a specified size and magnification."
i super new radius: anlnteger magnification: anotherlnteger

examples

example1
"MagnifyingGlass new activate"
"(MagnifyingGlass radius: 40 magnification: 5) activate"

instance methods

instance initialization

radius: anlnteger magnification: anotherlnteger
"Initializes the magnifying glass instance."

"Save the radius and magnification."
radius ~ anlnteger. magnification ~ anotherlnteger.

"Create the utility forms."
self makeMagnifierForm.
self makeLargeBlackHole.
self makeBackgroundAndMergedForms

instance activation

activate
"Make the magnifier track the mouse and display a magnified version of the area
underneath it if the mouse button is depressed; otherwise, display the magnifier
itself. Depressing the yellow button (option + mouse down) deactivates the mouse
and restores everything to its former state."
I magnifying newCenter I

"Initialize. "
magnifying ~ false. backgroundRectangle ~ Sensor cursorPoint extent: O@O.

"Hide the cursor."
Cursor blank showWhile:[

"Quit when a yellow button is pressed."
[Sensor yellowButtonPr-.d1 whilaFalse: [

"Determine if magnification status has changed."
magnifying~ Sensor redButtonPre••ed.
"Display either the magnifier or the magnified area."
newCenter~ Sensor curaorPoint.
magnifying

ifTrue:[
displayRectangle ~ newCenter - (radius@radius*magnification)

extent: largeBlackHole extent.
self restoreBeckgroundAndDisplayUsing:

#displayMagnifiedAreaOnMergedForml
ifFalse: [

displayRectangle ~ newCenter - lradius@radiusl
extent: magnifierForm extent.

self restoreBackgroundAndDisplayUsing:
#displayMagnifierOnMergedFormll.

self restoreBackgroundAndDisplayUsing: #isNill

Inside Smalltalk

displaying

displeyMagnifieclA....OnMergedFonn
"In-place Magnifies a circular area centered at newCenter in aForm..
I imageRectangle imageForm magnifiedlmage dot I

"First, obtain a magnified square image of the area"
imageRectangle +-

relativeDisplayRectangle center - (radius@radius) extent: (radius@radius)*2.
imageForm +- Form new extent: imageRectangle extent.
imageForm copyBits: imageReetangle from: mergedForm at: O@O

clippingBox: (O@O extent: imageRectangle extent) rule: Form over mesk: nil.

magnifiedlmage +- imageForm megnifyBy: magnification@magnification.

"Second, AND it with the black hole."
largeBlackHole displayOn: magnifiedlmage at: O@O

clippingBox: magnifiedlmage boundingBox rule: Form and mesk: nil.

"Third, create a white hole in the magnified area (erase changes black to white)"
largeBlackHole displayOn: mergedForm at: relativeDisplayRectangle origin

clippingBox: relativeDisplayRectangle rule: Form erase mesk: nil.

"Fourth, OR the magnified image onto the magnification area containing the white
hole."
magnifiedlmage displayOn: mergedForm at: relativeDisplayRectangle origin

clippingBox: relativeDisplayRectangle rule: Form under mesk: nil.

"Fifth, draw a circle around the magnified section to make it stand out,"
dot +- (Form extent: 3@3) bleck.
(Circle new form: dot; radius: radius * magnification - 1;

center: relativeDisplayRectangle center - (1@1»
displayOn: mergedForm at: O@O clippingBox: relativeDisplayRectangle

rule: Form over mask: nil

displeyMegnifierOnMergedForm
magnifierForm

displayOn: mergedForm at: relativeDisplayRectangle origin
clippingBox: relativeDisplayRectangle rule: Form under mesk: nil

,.storeBeckgroundAndDispleyUsing: displayOnMergedFormSymbol
"If the background form were restored in one step followed by a display of the new
information (either the magnifier or a circular magnification area) in a second step,
flickering would occur when the two areas overlap. We can avoid this by first
displaying the information on a temporary form called the merged form and then
displaying this merged form on the screen using one display message."

"First, obtain a copy of the screen that contains both the background and display
areas. Note: if the background and/or display forms partially reside off the screen,
we may need a larger merged form to avoid information loss by clipping."

mergedRectangle +- backgroundRectangle merge: displayRectangle.

mergedRectangle extent x > mergedForm extent x I
(mergedRectangle extent y > mergedForm extent y)

ifTrue: ImergedForm +-
Form new

extent: (mergedRectangle extent mex: mergedForm extent)).

Chapter 10 Graphical Applications 483

484

mergedForm copyBita: mergedRectangle from: Display at: 0 @ 0
clippingBox: (0 @ 0 extent: mergedRectangle extent)
nale: Form over mask: nil.

·Second, compute background and display rectangles relative to the merged form
origin.·
relativeBackgroundRectangle ~

backgroundRectangle translateBy: 0 @ 0 . mergedRectangle origin.
relativeDisplayRectangle ~

displayRectangle translateBy: 0 @ 0 - mergedRectangle origin.

·Third, restore the merged form to what it used to be and save the display area for
later use."
backgroundForm displayOn: mergedForm

at: relativeBackgroundRectangle origin
clippingBox: relativeBackgroundRectangle
rule: Form over mask: nil.

backgrou ndForm
copyBits: relativeDisplayRectangle from: mergedForm
at: O@O clippingBox: (0 @ 0 extent: relativeDisplayRectangle extent)
nale: Form over mask: nil.

backgroundRectangle ~ displayRectangle.

·Fourth, display the display form onto the merged form (in-place modify)."
self perform: displayOnMergedFormSymbol.

·Finally, display the merged form onto the screen."
mergedForm displayOn: Display at: mergedRectangle origin

clippingBox: mergedRectangle rule: Form over mask: nil

private form initialization

mekeMagnifierForm
·Creates and initializes the form containing the magnifying glass and handle."
I diameter center dot I

·Compute often used values."
diameter ~ 2*radius. center ~ radius@radius.
magnifierForm ~ Form new extent: (radius@radius)*3.
dot~ (Form extent: 3@3) black.

"Draw a solid black handle."
(Line from: center to: center*4 ·off the form!!·

withForm: (Form new extent: (radius // 41 @ (radius //4); black))
displayOn: magnifierForm.

·Draw a solid white circle over the top left part of the handle."
(Form dotOfSize: 2 * radius + 1)

offset: O@O; displayOn: magnifierForm at: O@O rule: Form erase.

·Create the circle for the magnifying glass."
(Circle new form: dot; radius: radius; center: center) displayOn: magnifierForm.

·Create the horizontal line across the magnifying glass."
lLine from: O@radius to: diameter@radius withForm: dot) displayOn: magnifierForm.

"Create the vertical line across the magnifying glass."
lLine from: radius@O to: radius@diameter withForm: dot) displayOn: magnifierForm

Inside Smalltalk

mekeLargeBlackHole
·Create a black hole (a large black dot) and save it in the instance.·
I magnifiedDiameter I

magnifiedDiameter ~ radius * magnification * 2.
largeBlackHole~ (Form dotOfSize: magnifiedDiameter) off.et: O@O

·Creates forms for keeping track of the background and merged forms.·
I size extent I

size ~ radius * magnification * 2 max: radius * 3.
extent ~ size@size.
backgroundForm ~ Form new extent: extent.
mergedForm~ Form new extent: Display extent

10.4 THE DESIGN AND IMPLEMENTATION OF A SIMPLE VIDEO GAME

Designing applications is not made easier by object-oriented languages - in fact, it's harder.
The goal of writing down a good design on paper in one pass is rarely achieved - it is
possible only with hindsight; i.e., if you've done it before. More likely, your design, if it's
any good, will have undergone an extensive evolution. To do this properly, a desktop
even an electronic desktop with diagramming tools - is inadequate. An interactive design
tool is needed. We claim that the Smalltalk environment (not the language) is in fact such a
tool.

In this case study, we focus not so much on the tool but on the notion that design is
an interactive process. We present a design history for a simplified version of the Brickles4

game. Working code for the end product is provided, but the important issue is the ongoing
evolution of the design. Because of space limitations, it will not be possible to detail
everything that transpired during the evolution, much less show all the discarded code.
Nevertheless, we will attempt to provide a condensed but reasonable idea.

At the very least, we hope to convey the notion that designing is hard. A secondary
goal is to show that designing must include programming to be properly evaluated and that
most of what we do in an environment like Smalltalk's is design.

A typical display for the game is shown in Fig. 10.9. The objective of the game is to
remove all the bricks from the wall. When the ball strikes a brick, the brick disappears. The
ball can be redirected using the paddle, which the player can move to the left or right using
the mouse. The ball bounces off the sides, bricks, and paddle in a conventional fashion. The
player has three balls with which to remove all the bricks. A ball is lost if it passes below
the paddle; i.e., if the player misses it!

10A.1 Designing Is Prototyping

We started off by finding the objects; i.e., attempting to determine the object classes and
their representation - the object fields (see Fig. 10.10). Next we introduced an abstract

4Shareware distributed by Ken Winograd.

Chapter 10 Graphical Applications 4S5

Ball

/
•

/paddl.
-

Figure 10.9 The video game.

class VideoGameComponent to tie together the game elements. This also led to an
abstract class MovingGameComponent to tie together the Ball and Paddle classes. For
the moment, it was to contain only a direction (actual contents undecided).

The VideoGame fields suggest the creation of a container class for the bricks called
Wall (the notion brick wall comes to mind), and another one, called Sides, to contain the
left, top, and right side of the game.

We considered creating an abstract superclass for Wall and Sides, because they are
examples of components with parts, but put it on hold for later. We decided instead to
temporarily add a field parts to VideoGameComponent with the understanding that only
Wall and Sides would really use them.

Object

VideoGame Ball Brick Side Paddle
ball position position position position

padille radius width width width
sides height height height
wall

Figure 10.10 Initial class hierarchy.

486 Inside Smalltalk

".

VideoGame
Component

parts
boundingBox

Sides Side MovingGame Wall Brick
Component

direction

I

Ball Paddle

Figure 10.11 Next class hierarchy.

The resulting design so far (ignore field changes for the moment) is summarized in
Fig. 10.11. It suggested that we might be able to move the radius and width/heigbt fields
into the superclass if a more general notion was used. We decided on the concept of a
boundingBox.

With respect to operations, we introduced new at the top level for creating initialized
instances, protocol for accessing and changing the fields, an addPart: at the top level, and
both an initialize and display method unique to each class at the bottom of the hierarchy.
Since the display methods for Sides and Wall were the same (they just displayed the parts),
it was moved up to the superclass. The reader could glance ahead to the end of the chapter for
a look at the ball, brick, paddle, and side initialization code - most of it came from this
early stage.

We also introduced protocol for determining and changing the position of an object
(position and position:) and changing the size of the bounding box without moving it
(extent:). Soon afterward, we replaced the position concept by a center notion to
eliminate confusion (the position of a rectangle is usually understood to be the top comer;
for a circle, it's usually the center). Finally, we added play to VideoGame so that it could at
least display the sides, wall, ball, and paddle. We now had a prototype without moving
objects.

10.4.2 Getting into Details

We deliberated over whether direction should be an angle that would ultimately require the
use of sin and cos or a quantized direction - we chose the latter because we suspected a
potential future speed problem, but we were prepared to change our minds (see
directionIndex). Anticipating bouncing objects, we added method reverseDirection.

We added move methods to classes Ball and Paddle - using a fixed step size of 5
pixels in x and/or y to begin with. VideoGame method play was extended so that the ball
started in the center and moved upward in a loop (for testing).

Chapter 10 Graphical Applications

The move methods give a flavor of the quantization and the distinction between a ball
and a paddle.

Moving Methods

aMovingGameObject directionlndex
j#Oeft right up down leftUp rightUp ...1 indexOf: direction

aBall move
I delta aPoint I

delta r #(
(-501 "'eft" (501 "right"
(0 -5) "up" (051 "down"
(-5 -51 "leftUp" (5 -5) "rightUp"
(-5 5) "leftDown" (5 5) "rightDown"
) at: self directionlndex.

aPoint r (delta at: 1)@(delta at: 2).
self center: self center + aPoint

aPaddle move
self center: Sensor cursorPoint x @ self center y

Now the ball could "climb up" the screen and the paddle could track the mouse but old
images remained on the screen.

10.4.3 Taking Movement More Seriously

To prevent flicker, we modified the design to avoid displaying individual objects directly on
the screen; i.e., we replaced the display methods by 'displayOn: aForm' and displayed the
form only after both the ball and paddle had been displayed on it.

When a moving object changes location, the old location must be restored to its
former state - only then is the object displayed at the new location. To simplify the use of
moving objects, we decided to have the moving object do this as part of the displayOn: pro
tocol. We introduced fields underneath and underneathOrigin for this purpose. Note that
after restoring the old background and before displaying the object, the new background is
saved in the new fields.

To properly distribute the new functionality, we decided to have method displayOn: in
MovingGameComponent restore the old and save the new. Existing methods displayOn:
in Ball and Paddle were extended with an initial super displayOn:.

We introduced a naive collision handling method, 'bounceOff: aGameObject', in Ball.
It needs to do two things: detect a collision (required a top-level query method 'intersect:
aGameObject') and determine a rebound direction ('pushOff: aGameObject'). For composite
objects, the intersect: method is relayed to the parts; for the others, a test for intersecting
bounding boxes is used. For an explanation of the heuristic used in pushOff:, see class
ObstacleSet.

Finally, we extended play to create a form the size of the display, repeat 'self
playOneBallOn: aForm' three times, and finally display a "game over" message. Most of
the work was done by method playOneBaIlOn:.

488 Inside Smalltalk

The Playing Algorithm

aVideoGame playOneBallOn: aForm
ball center: Display center; direction: MovingGameComponent randomDirection.
[self ballOutOfPlay) whileFalse: [

ball
bounceOff: sides;
bounceOff: wall;
bounceOff: paddle;
move;
displayOn: aForm.

paddle move; displayOn: aForm.
aForm displayl

The next stage was to make the bricks vaporize. We extended bounceOff: to return the
obstacles it intersected with (there could be more than one; e.g., two bricks at a time). Then
if the obstacle was a brick, we removed it from the wall - we added a removePart: method
to complement addPart:.

We also attempted to generalize the intersects: method at the top level so that we
could eliminate the ones in the non-composite object subclasses. It ended up being too
complex and we rejected it.

A Method That Was Too Complex

intersects: anObject
self == anObject ifTrue: [tfalsel.
(boundingBox intersects: anObject boundingBoxl ifFalse: [tfalsel.
self hasNoParta & anObject hasNoParta ifTrue: [ttruel.
self hasNoParta ifTrue: [tanObject intersects: self).
parts do: [:aPart I (aPart intersects: anObjeetlifTrue: [ttrueJl.
tfalse

We felt confident it was time to try out the game again. We found the rebound
heuristic worked most of the time but it failed when hitting the side of a brick (as opposed to
the bottom) - a new version worked better. On occasion, the ball escaped through the sides.
The problem was the timing for the intersection test. It was performed when the ball was on
one side of the barrier (before moving) and also when it was on the other side (after moving).
It wasn't designed to consider the intermediate positions - the side was only 1 pixel wide
and the ball jumped in increments of five.

10.4.4 Extending and Improving the Design

We next introduced an interaction abstraction to enable us to better understand how to
control moving objects. More specifically, we defined moveOn: to mean the sequence
'hideOn:, move, showOn:', where hideOn! restores overwritten background and showOn:
saves the new one about to be written and displays it. It's now possible to hide for long
periods of time while other intervening displays are performed.

We also had to develop a more sophisticated collision detector that projected the
receiver's bounding box from the start point to the end point.

Chapter 10 Graphical Applications 489

Next, we replaced the notion of direction by a velocity vector of the form
deltaX@deltaY, where each delta could be a floating point value. This also permitted
directions at arbitrary angles to be specified. We introduced a corresponding protocol
direction, direction:, velocity, velocity:. On a minor note, we tired of the name
GameComponent and changed it to GameObject.

Finally, we decided to reorganize the hierarchy by (1) adding CompositeGameObject
as a superclass of Wall and Sides and (2) BasicGameObject as a superclass of Ball,
Brick, and Paddle (see Fig. 10.12). However, there were now two ways of classifying
objects: composite/non-composite and moving/nonmoving - a multiple inheritance issue?
No matter how we did it, we decided we didn't want to consider all combinations. The simple
solution was to assume all objects could be moving - for our game, most would have
velocity zero.

Game
Object

boundingBox
underneath

undemeathOrigin
velocity

•
Basic Composite
Game Game
Object Object

parts

Ball Brick Paddle Side Wall Sides

Figure 10.12 Final class hierarchy.

Finally, we had a working system (but see the conclusions). However, it was slow.

10.4.5 Designing for Speed

To speed up the game, we decided to precompute pictures of the basic objects and cache them
into a new field picture. Since this would have to be recomputed if the size of the object
changed, we introduced a method relnitialize to do this. We added this message at the end
of methods that changed the receiver's bounding box size. We also decided that the bounding
box for a composite object should automatically be recomputed if one of its parts was
removed. Moreover, it was to be the union of the bounding boxes of its parts. Not
unexpectedly, this slowed down the system.

Another possibility was to decompose the bricks into a hierarchy of composite
objects, providing an O(log n) search path to the bricks rather than O(n). This helped a

490 Inside Smalltalk

"'I

little, but removing a brick from the wall became slower because a more complex search was
needed to find it.

To avoid drawing the complete form (the same size as the display) when little changed,
we decided to maintain a rectangle that is the union of all the areas modified. When the form
is written, only the area inside the rectangle is displayed and then the rectangle is reset to nil
(unused). To isolate the changes, we created GameForm, a subclass of Form, which
maintained this additional rectangle. All messages of the form 'displayOn: aGameForm'
ultimately result in a copyBits: ... message to aGameForm. It simply merges the size of the
form being copied with the existing rectangle it maintains and relays the message to the
superclass. A display is also introduced to display only the portion specified by the
rectangle. This extension was particularly interesting because it was a transparent change;
i.e., no existing code had to be modified.

We finally decided to speed up the brick removal operation by ensuring that all
contained objects kept track of their container; i.e., the addition of a container field to all
game objects. We resisted this for a long time but it paid off - removing a brick was now
0(1). With little additional overhead, we also provided a facility to recompute the bounding
boxes covered by composite objects higher up (see release and superRelease in class
GameObject). This sped up the system as the number of bricks decreased.

10.4.6 More Refinements and Further Polishing

Every now and then, bits and pieces of the code failed to be object-oriented; i.e., it
considered the object types to determine what to do. Eliminating such code generally required
high-level abstractions and usually caused the design to improve. A specific example is
shown below- it led to the higher-level recoil abstraction. Now it was up to individual
objects to decide what to do when they were hit; e.g., bricks hid and then released themselves
from their containers; all other objects stayed put.

Obs1acle Handling

UOld approach u

". determine all obstacles ".
obstacles do: [:obstacle I

(obstacle isKindOf: Brick)
ifTrue:[obstacle hid.On: aForm. wall removePart: obstacleJl

." determine all obstacles '"
obstacles do: [:obstacle I obstacle recoilOn: aForml

The above statement suggested another abstraction to simplify the design - a
complementary 'obstacle pushOff: approachingObject' operation. This made it simple to
extend the paddle so that it imparts spin to the ball; all other objects push off by deflection.

Additionally, much of the collision detection code was designed to ask questions of a
bounding box as opposed to a game object. Thus, some methods had the flavor of
'anyGameObject queryAbout: boundingBox using: additionallnformation'. We were able to

Chapter 10 Graphical Applications 491

remove about half of such methods by introducing a virtual ball, one that starts off as a
copy of the original ball and then is successively modified as simulated movement is
performed. We didn't want to use the original ball because alternative scenarios were
successively tried.

Finally, we abandoned the field underneathOrigin since it occurred to us that we
could store it in the underneath form's offset. In hindsight, we should have thought of this
right at the beginning - did you? Various cosmetic name changes were also made.

And just when we thought we were finished, we tried it and 'the last bug' appeared. It
was introduced by the pushOtT: abstraction, which tried to distribute computation that was
previously performed as a unit. More specifically, the heuristic used to determine the bounce
direction could not be applied by having successive obstacles modify the approaching
object's velocity. The solution required a new abstraction, ObstacieSet, which could
perform this computation as a unit. It also enabled us to integrate at least one Set method
that we placed in GameObject so as not to modify the system class.

Additional improvements to the collision detection algorithm then obviated the need or
use for virtual balls and they were eliminated. The source code for the classes making up the
video game application is listed at the end of this chapter.

10.4.7 The Video Game: Conclusions

We started this case study with the thesis that object-oriented software design is hard. We
hope the case study has shown you some of the extra dimensionality that exists when
designing in an OOP environment. In all, we produced eighteen variations of the game, each
differing from the other in some major way. In many cases, the code size increases in one
variation only to subsequently decrease in the next - something we couldn't explicitly
show. The design process is clearly interactive and involves notions that don't exist using
conventional methodologies; e.g., reusability, specialization, generalization, and so on.
Designing with OOP cannot be done on paper. It requires an OOP environment with OOP
tools that support exploratory programming, class reorganization, and protocol migration.
The Smalltalk system is the best and perhaps the only system so far to support this process
well.

But are we done? We don't believe so. There are still issues that haven't been properly
abstracted, code that is too complex, and in fact bugs to eliminate. Perhaps some of you will
wish to continue the design!

10.4.8 Source Code for Video Game

Class VideoGame

class
superclass
instance variables
class methods

instance creation

VideoGame
Object
ballObstacles sides wall paddle ball

492

-- ·Create a new video game."
i super new initialize

Inside Smalltalk

examples

eumple1
·VideoGame example1·
VideoGame new pley

instance methods

instance initialization

initialize
·Obtain an instance of each game component."
ballObstacles +- CompositeGameObject new

ecldPert: (sides +- Sides new);
eddPert: (wall +- BrickWall with: Brick new);
ecldPert: (paddle +- Paddle new); relnitielize.

ball +- Ball new rediu.: 8

playing

pIey
·Play an entire game."
I aForm farewell magnifiedFarewell I
·Prepare to play.·
ball center: Display boundingBox center.
aForm +- GameForm extent: Display extent.
self .howOn: aForm.
aForm di.pley.

·Hide the cursor and play."
Cursor blenk _owWhile: (3 timnRepeet: (self pleyOneBellOn: aFormll.

·Quit."
farewell +- ' Game Over' e.DiepleyText form.
magnifiedFarewell +- farewell megnifyBy: 8@8.
magnifiedFarewell

di.pleyOn: Display
et: Display boundingBox center - magnifiedFarewell boundingBox center.

(Delay forSecond.: 10) weit.
ScheduledControllers re.tore

pleyOneBellOn: aForm
·Play until the ball is lost."
I obstacles I
ball

center: Display boundingBox center;
velocity: GameObject defeultVelocity;
direction: GameObject rendomUp.

(self bellOutOfPley Iwall perm ieNiI) whileFel..: (
ball hideOn: aForm.
paddle move. ·if the mouse moves after this, it will have velocity·
obstacles +- ball moveUpTo: ballObstacles.
obstacles pu.hOff: ball; .pin: ball; recoilOn: aForm.
paddle mov.on: aForm.
ball .howOn: aForm.
aForm diepleV).

aForm di.pleV. 4 time-Repeet: (Display reve,.e; rev.,...]

Chapter 10 Graphical Applications 493

querying

ballOutOfPlay
iball boundingBox corner y > paddle boundingBox corner y

displaying

showOn: aForm
"Show all components of the game."
"We want the sides to be above the wall of bricks but when a brick is removed, we
want it to appear as if were underneath the sides. We can achieve this by showing
the sides twice (see below)."
sides showOn: aForm.
wall showOn: aForm.
sides showOn: aForm.
paddle showOn: aForm.
ball showOn: aForm

Class GameObjeet

class
superclass
instance variables

class methods

instance creation

GameObject
Object
container boundingBox underneath velocity

494

new
"Create a new video game component."
i super new initialize relnitialize

querying

defaultVelocity
i20@20

randomUp
"Returns a random vertical direction as an angle. Vertical is 180 through 360
degrees exclusive (use 200 through 340)."
i200 + (141 * (Random new next)) rounded

instance methods

instance initialization

initialize
"Initialize so that there is nothing underneath and not moving."
boundingBox ~ O@Ocorner: -1@-1.
underneath ~ Form extent: O@O.
velocity ~ O@O

relnitialize
"No-op unless redefined by a subclass."

query/modification

center
iboundingBox center

Inside Smalltalk

ill

center: aPoint
boundingBox moveTo: aPoint - (boundingBox extent II 2)

boundingBox
iboundingBox

boundingBox: aRectangle
boundingBox +- aRectangle.
self relnitielize

ext8nt
iboundingBox extent

extent: aPoint
I oldCenter I
oldCenter +- boundingBox center.
boundingBox +- oldCenter - (aPoint 112) extent: aPoint.
self relnitielize

copying

copy
i selfUowCopy boundingBox: self boundingBox copy

container

contain.'
icontainer

container: aGameObject
container +- aGameObject

,......
"Makes the receiver no longer a part of some container and returns the container."
I myContainer I
(myContainer +- container) i.NiI ifTrue: [inil).
container removePart: self.
container +- nil.
imyContainer

.uperRe.....
"Releases objects bottom-up as long as the containers have no parts (after the
change). Also, causes the bounding boxes higher up to be adjusted. Returns self."
I myContainer I
(myContainer +- self rei....) isNil ifTrue: [inil).
myContainer pens isEmpty

ifTrue: [myContainer .uper......)
ifFal..: [myContainer .uperRelnitialize)

superRelnitielize
"Relnitialize bottom-up as long as changes occur."
I save I
save +- boundingBox.
self reinitielize.
save =boundingBox

ifFal.e: [container i.Nil ifFaI.e: [container .uperRelnitializen

careless moving

direction
ivelocity theta radian.ToDegr...

Chapter 10 Graphical Applications 495

496

direction: angle
I radians I
radians ~ angle degreeaToRadiana.
velocity ~ (radians coa@radians ain) * velocity r

reveraeXDirection
"Negate the x-component of the velocity."
velocity ~ velocity x negated@velocity y

reveraeYDirection
"Negate the y-component of the velocity."
velocity ~ velocity x@velocity y negated

velocity
ivelocity

velocity: aPoint
velocity ~ aPoint

move
"Advance in the current direction."
self center: self center + velocity rounded

moveOn: aForm
self hideOn: aForm.
self move.
self ahowOn: aForm

recoilOn: aForm
"React graphically to having been bumped (default is to do nothing)."
iself

careful moving

projectedBoundingBox
iboundingBox translateBy: velocity rounded

projectedBoundingBoxesDo: aBlock
"Poor man's Bresenham's algorithm."
I size offset previous current roundedCurrent repetitions increment I
size ~ boundingBox extent. offset ~ size //2.
previous ~ current~ roundedCurrent ~ self center.
repetitions~ velocity x aba max: velocity yaba.
increment ~ velocity / repetitions.
repetitions rounded + 1 timesRepeat: [

roundedCurrent =previous
ifFalse: [aBlock value: (roundedCurrent - offset extent: sizel].

previous ~ roundedCurrent.
current ~ current + increment. roundedCurrent ~ current rounded]

moveUpTo: potentialObstacles
"Performs a standard move if possible and returns an empty obstacle set.
Otherwise, determines which potential obstacles (a composite object) are first hit,
moves to the obstacles, and returns the non-empty obstacle set. Generally, more
than one obstacle can be encountered; e.g. at a corner or between two objects."
I roughObstacles I
rough Obstacles ~ self roughObstacles: potentialObstacles.
rough Obstacles isEmpty ifTrue: [self move. i roughObstaclesl.
i self moveToExactObstaclea: roughObstacles.

Inside Smalltalk

roughObstec'es: candidatesGameObject
"Determine which candidates are in the path from the start to the end point of the
receiver's next movement using a simple but fast technique."
I roughObstacles box I
roughObstacles ~ ObstacleSet new.
box~ boundingBox merge: self projectedBoundingBox.
(candidatesGameObject intersects: box) ifF.'se: [lroughObstacles!.
candidatesGameObject addTo: roughObstacies ifTouching: box.
i roughObstacles

moveToExactObatee"': candidates
"Determine which candidates are in the path from the start to the end point of the
receiver's next movement using an exact but slower technique. We permit starting
on an obstacle."
I onObstacles exactObstacles I
"Eliminate the obstacles we are currently on."
onObstacles ~ ObstacleSet new.
candidates addTo: onObstacles ifTouching: boundingBox.
candidates removeAII: onObstacles.
candidates isEmpty ifTrue: [self move. i candidates!.

exactObstacles ~ ObstacleSet new.
self projectedBoundingBoxeaDo: [:box I

candidates addTo: exactObstacles ifTouching: box.
exactObstacles isEmpty ifFa',,: [self center: box center. i exactObstaclesll.

self move. i exactObstacles "none after all"

colliding

conteinaPoint aPoint
"The containsPoint: method in Rectangle considers points on the bottom to be
outside:
iboundingBox origin <= aPoint and: [aPoint <= boundingBox corner!

intersects: aRectangle
"The standard Rectangle intersects: uses < instead of <="
i(boundingBox origin max: aRectangle origin)

<= (boundingBox corner min: aRectangle corner)

spin: gameObject
"Add spin to the approaching object. Generally does nothing."
iself

Class BasicGameObject

class
superclass
instance variables

instance methods

colliding

BasicGameObject
GameObject
picture

addTo: aSet ifTouching: aRectangle
(self intersects: aRectangle) ifTrue: [aSet add: self]

Chapter 10 Graphical Applications 497

displaying

displayOn: aForm
"Display the picture."
picture displayOn: aForm at: boundingBox origin

hideOn: aForm
"Restores the background of the receiver."
underneath displayOn: aForm.
underneath f- Form extent: O@O

showOn: aForm
"Previously hidden, become visible."
"First, save the background of the object for later restoration."
underneath f- Form extent: boundingBox extent.
aForm displayOn: underneath at: O@O - boundingBox origin.
underneath offset: boundingBox origin.
"Second, display it."
self displayOn: aForm

Class Ball

class
superclass
instance variables

instance methods

instance initialization

Ball
BasicGameObject
"none"

initialize
super initialize.
boundingBox f- Display extent II 2 extent: 8@8

relnitialize
picture f- (Form dotOfSize: self extent xl offset: O@O

query/modification

radius
i self extent II 2

radius: anlnteger
self extent: 2*anlnteger

boundingBox: aRectangle
"Make sure it's square."
I diameter I
diameter f- aRectangle width roundTo: 2.
super boundingBox: (aRectangle origin extent: diameter@diameterl

Class Brick

498

class
superclass
instance variables

Brick
BasicGameObject
tl none"

Inside Smalltalk

"I

instance methods

instance initialization

initialize
"Create a reasonably sized brick."
I width I
super initi.liz•.
width (- Display .xtent x 1/20.
boundingBox (- O@O .xt.nt: width@(width//3)

relniti.lize
"Create a black outline with a gray interior"
picture (- (Form .xt.nt: boundingBox .xtent) black.
(Form .xtent: boundingBox extent - (4@4ll gr.y

di.pl.yOn: picture .t: 2@2 clippingBox: picture boundingBox
rula: Form over mask: nil

moving

recoilOn: aForm
"React graphically to having been bumped (default is to do nothing)"
self hid.On: aForm; .uperRel••••

Class Paddle

class
superclass
instance variables
instance methods

instance initialization

Paddle
BasicGameObject
"none"

initializ.
"Initialize the paddle."
super initialize.
boundingBox (- O@O comer: <Display extent 1/ (10@30ll.
self c.nter: (Display extent x //2) @(Display .xtent y - SO)

relnitialize
"Create a black rectangle."
picture (- (Form .xt.nt: boundingBox .xtent) black

moving

velocity
i(Sensor cursorPoint x - self center x)@ self cent.r y

InOII8

"Move to the mouse location (horizontally only)."
self center: Sensor cursorPoint x @ self center y

colliding

.pin: gameObject
"Add spin to the game object."
I speed I
(speed (- self v.locity x) > 0

ifTrue: [gameObject dir.ction: gameObject direction + 10).
(speed < 0) ifTrue: [gameObject direction: gameObject direction - 10)

Chapter 10 Graphical Applications 499

Class Side

class
superclass
instance variables

instance methods

instance initialization

Side
BasicGameObject
"none"

relnitielize
·Create a gray rectangle."
picture f- (Form extent: boundingBox extent) grey

Class CompositeGameObject

class
superclass
instance variables

class methods

instance creation

CompositeGameObject
GameObject
parts

500

withAlIPerts: aCollection
"Constructs a composite object with the given elements as parts."
i self new eddAIIPerts: aCollection; relnitielize

hiererchicellyWithAlIPerts: aCollection
"Constructs a composite object with the given elements hierarchically decomposed
into a binary tree of composite game objects parts."
aCollection .ize <= 2 ifTrue: [iself withAIIParta: aCollectionJ.
i self withAlIPerts: (Array

with: (self hierarchicellyWithAlIParts:
(aCollection copyFrom: 1 to: aCollection size 1/2))

with: (self hiererchicellyWithAlIParts:
(aCollection copyFrom: aCollection size //2 + 1 to: aCollection size)))

instance methods

instance initialization

initielize
"Initialize to no parts,"
super initialize.
parts f- Set new.

relnitielize
"Recompute the bounding box for the whole as the unions of those for the parts."
boundingBox f- parts isEmpty

ifTrue: [O@O corner: O@OJ
ifFelse: [parts

inject: (parts detect: [:part Itrue)) boundingBox
into: [:box :part I box merge: part boundingBoxlJ

Inside Smalltalk

"I

part manipulation

perta
iparts

eddPert: part
"Adds the new part to the existing collection of parts."
parts edd: part. part conteiner: self

removePert: part
"Removes the old part from the existing collection of parts.·
parts remove: part. part conteiner: nil

acIcIAlIPerte: aCollection
"Adds the new parts to the existing collection of parts."
parts eddAII: aColleetion.
parts do: [:anObject I anObject conteiner: selfl

colliding

acIdTo: aSet ifTouching: aReetangle
(self interNeD: aReetanglel ifTrue: [

parts do: [:part I part eddTo: aSet ifTouching: aReetanglell

displaying

diapleyOn: aForm
"Display all its parts."
parts do: [:part I part diapleyOn: aForml.

hideOn: aForm
"Hide all its parts."
parts do: [:part I part hideOn: aForml.

ahowOn: aForm
·Show all its parts."
parts do: [:part I part lIhowOn: aForml.

Class BrickWall

class
superclass
instance variables

class methods

instance creation

BrickWall
CompositeGameObject
"none"

with: aSampleBrick
I rowsOfBricks bricksPerRow I
rowsOfBricks +- 5.
bricksPerRow +- (Display extent x /I aSampleBrick extent xl + 1. "to handle
truncation"
iselfnew

relnitielizeAt: O@50 extent: bricksPerRow@rowsOfBricks with: aSampleBrick

Chapter 10 Graphical Applications 501

instance methods

instance initialization

relnitializeAt: wall Base extent: aPoint "xBricks@yBricks" with: aSampleBrick
"Initialize a wall."
I brickSize bricksPerRow rowsOfBricks xOffset yOffset delta start I
"Initialize the wall parameters."
brickSize +- aSampleBrick extent.
bricksPerRow +- aPoint x.
rowsOfBricks +- aPoint V.

"Create the wall out of properly positioned bricks."
self addAllParts:

((0 to: rowsOfBricks-1) collect: [:brickRow I
xOffset +- brickRow odd ifTrue: [(brickSize xJ/2) negatedI ifFalee: [01.
yOffset +- brickRow*brickSize V.
delta +- brickSize x@O. start +- waliBase + (xOffset@yOffsetl - delta.
CompositeGameObject hierarchicallvWithAIIParts:

((1 to: bricksPerRow+1) collect: [:bricklndex I
sta rt +- sta rt + delta.
Brick new boundingBox: (start extent: brickSize)])]).

"Determine the overall wall boundaries."
self relnitialize

Class Sides (a composite of side elements)

class
superclass
instance variables

instance methods

instance initialization

Sides
CompositeGameObject
"none"

initialize
"Create three sides (no bottom)."
I thickness I
super initialize.
thickness +- 10.
self

addPart: (Side new "left side"
boundingBox: (O@O corner: thickness@Display extent V»;

addPart: (Side new "top"
boundingBox: (O@Ocorner: Display extent x@thickness»;

addPart: (Side new "right side"
boundingBox: (Display extent x - thickness@O corner: Display extent));

relnitialize.

Class ObstacleSet

502

class
superclass
instance variables

ObstacleSet
Set
"none"

Inside Smalltalk

instance methods

collision

eddTo: anObstacleSet ifTouching: aRectangle
self do: [:aGameObject I

aGameObject addTo: anObstacleSet ifTouching: aRectangle)

pushOff: approachingObject
"A simple test is used to determine the direction in which to push off an
approaching object. Consider one of the possible four cases: that the bottom left
corner of the object has met (is inside) the receiver; e.g., a wall. Then we will push
it towards its center (more specifically, to the right and up; i.e., +1@-1). We do this
for all corner points and then sum up the contributions. If it is opposite to the
direction of the approaching object, we reverse its direction."
I delta box I
delta to- O@O. box to- approachingObject boundingBox.
self do: [:obstacle I

(obstacle conteinaPoint: box origin) ifTrue: [delta to- delta + (1@1n.
(obstacle containaPoint: box bottomLeft) ifTrue: [delta to- delta + (1@-1».
(obstacle conteinaPoint: box topRight) itTrue: (delta to- delta + (-1@1»).
(obstacle conteinaPoint: box com.) ifTrue: (delta to- delta + (-1@-1))).

(delta x * approachingObject velocity x) negative
ifTrue: (approachingObject re".....XDirection).

(delta y * approachingObject velocity y) negetive
ifTrue: (approachingObject reveraeYDirection)

recoilOn: aForm
self do: (:obstacle I obstacle recoilOn: aForm).

spin: gameObject
"Add spin to the approaching object."

, self do: (:obstacle I obstacle spin: gameObject)

Class GameForm

class
superclass
instance variables

instance methods

GameForm
Form
modifiedArea

displaying

copyBite: aRectangle from: aDisplayObject at: aPoint clippingBox: clipRectangle
rule: rulelnteger mesk: aForm

I newArea I
newArea to- aPoint extent: aRectangle extent.
modifiedArea to- modifiedArea i.NiI

ifTrue: (newArea) ifFalse: [modifiedArea merge: newArea].
super copyBits: aRectangle from: aDisplayObject at: aPoint

clippingBox: clipRectangle rule: rulelnteger mesk: aForm

display
modifiedArea isNii

ifTrue: [super display]
ifFal_: (self displayOn: Display at: O@O clippingBox: modifiedAreal.

modifiedArea to- nil

Chapter 10 Graphical Applications 503

10.5 SUMMARY

This chapter has focused on the use of graphics and graphics-oriented techniques. Examples
focused on three major examples:

• A film loop facility that integrates simple animation, flicker-free displays, storage
of graphical forms on disk, and object mutation.

• A magnifying glass that illustrates mouse control, bitblt rule selection, and
techniques for displaying circular rather than rectangular forms.

• A simple video game that illustrates the evolutionary approach characterizing the
design and development of Smalltalk applications.

10.6 EXERCISES

The following exercises are intended to cause some of the material presented in this chapter
to be reviewed and elaborated upon. Not all questions have the same degree ofdifficulty.

1. Extend the film loop facility so that
speed can be controlled with mouse
buttons; e.g., speeding up with the
red button and slowing down with the
yellow button.

2. Extend the magnifying glass applica
tion so that magnification can be ei
ther increased or decreased while the
magnifier is being used. More specif
ically, during magnification, if the
user types the + key, magnification
is to be increased by 1 unit; con
versely, if the user types the - key,
magnification is to be decreased by
1. Alternatively, use the technique
suggested for Problem 1.

10.7 GLOSSARY

selected terminology

disk form A form variant in which the data
resides in a file.

film loop A never ending movie in which the
end is spliced with the beginning; i.e., a
circular sequence of frames repeatedly dis
played at a fast enough rate to provide the
illusion of motion.

504

3. Create a class of forms calIed
CircularForm that captures the func
tionality of the magnifying glass.
Optionally, reimplement the magni
fying glass with this more flexible
form.

4. Generalize the CircularForm class to
arbitrary shape. How does this gener
alization compare with opaque forms?

5. Extend the video game to allow any
number of balls to be in play simul
taneously. Alternatively, permit a
grid of paddles to be used; i.e., what
appears to be a larger paddle with
rectangular holes.

frame rate The speed at which a film is dis
played.

hot spot A point that is considered to be the
center of a picture.

Inside Smalltalk

magnifying glass A facility that permits a cir
cular area under the mouse to be magnified
when the red button is down; illustrates
processing required to draw circular forms.

Chapter 10 Graphical Applications

Ijl

object-oriented design A methodology for
software development; much more powerful
when integrated with a prototyping facil
ity.

505

Class Index

SYSTEM CLASSES

Are, 430-432, 439-440

ArithmeticValue, 246, 255

Array, 281-282

ArrayedCollection, 281-283

Association, 305-306

Bag, 353-357

Bitblt, 392-402

BlockContext (Blocks), 214-220

Boolean, 220-223

Character, 274-275

Circle, 430-432, 439-440

Cursor, 424

Curve, 430-432, 437-438

Date, 265-273

Dictionary, 304-310

DisplayBitmap, 427

DisplayMedium, 402, 408-412

DisplayObject, 402-408
DisplayScreen, 427-428

DisplayText, 402,

ExternalStream, 282
False, 180,220-223

Filename, 340-342

Float, 247-260

Form, 402, 412-421

506

FormBitmap, 427

Fraction, 247-260

IdentityDictionary, 304-310

IdentitySet, 353-357

InfiniteForm, 402, 421

InputSensor, 427

Integer, 247-265

InternalStream, 282

Interval,327-329

LimitedPrecisionReal,246

Line, 430-432,435-436

LinearFit, 430-432, 437

LinkedList, 343,351-353

List, 363-370

Magnitude, 245-276

MappedCollection, 324-327

Message, 210-211

Number 247-265
Object, 181-188

OpaqueForm, 392, 421-424

OrderedCollection, 343-350

Path, 402, 430-439

PeekableStream, 282

Pen, 447-451

Point, 380-392

PositionableStream, 282

Random, 275-276, 330

ReadStream, 334-340

ReadWriteStream, 334-340

Rectangle, 380-392

RunArray,324-327
SequenceableCollection,281-283

Set, 353-357

SortedCollection, 343, 350-351

Spline, 430-432, 438-439

DEMONSTRATION CLASSES

AbsoluteTime,269-273

Binary Tree, 223-233

BitString, 262-265

Complex, 44-45

ConstrainedPen, 59-60

DiskForm, 464-469

GLOBAL VARIABLES

Display, 49, 427

Sensor, 427

Class Index

;i11

Stream, 329-342

String, 317-324

Symbol, 317-324

SystemDictionary,283

Text, 317-324

TextStream, 340

Time, 265-273

True, 180, 220-223

UndefinedObject,213-214

WriteStream, 334-340

Ellipse, 440-444

Indirection, 211-213

MagnifyingGlass,469-485

RangedRandom, 275-276

SimpleFilmLoop,457-462

VideoGame,485-503

Smalltalk, 49-50

Transcript, 49,71

507

____________________---J,'

Index

A

Abstract class, 60

Abstract data type, 8

Abstraction
abstract data type, 8
information hiding, 8, 23-24
representation, 24, 42-43, 51-53,181,186-188

Animation, 408, 429-430

Anthropomorphic programming, 1

Assignment, 30

B

Binding
dynamic binding, 12-13,29-30
shallow versus deep copying, 198-200, 287
static binding, 12
variable binding, 30, 184-186

Bit manipulation, 260-265

Bitblt (see Forms)

Block, 32-39, 179,214-220
block arguments, 48
block temporaries, 48

Borders, 408-412

Browsers, 71, 99-132
kind,

category browsers, 123-124
class browsers, 123-124
class hierarchy browsers, 126-127
file-list browsers, 135-139
message browsers, 125-126
message category browsers, 124-125
message-set browsers, 127-132
system browsers, 101-123

using,
adding a class, 114

508

adding and modifying class
comments, 115

adding class categories, 119
adding method categories, 116-118
adding methods, 118-119
determining class references, 132
determining class variable

references, 131-132
determining implementers, 128-129
determining instance variable

references, 131-132
determining global references, 132
determining senders, 127-128
finding a class, 104
finding a method, 109
getting explanations, 109-110
modifying a method, 112-114
modifying class definitions, 119-120
removing classes, categories, and

methods, 122-123
renaming classes and

categories, 121-122
viewing a class definition, 104-106
viewing methods, 107-108
viewing the class hierarchy, 106-107

c

Categories, 41
class, 119
method, 41,116-118

Class, 10-11,40,43,233-237
abstract, 60
categories, 41,119
meta class, 233-237
subclass, 15, 51
superclass, 15,43

Class variables, 42-43

Coercion (see converting)

Collections
characterization (overview), 281, 299-300, 330,

343, 353-354
comparing collections, 291-292
converting, 287-290,322-323
creating collections, 286, 290, 300-304,

331-332,343-345,355
creating collection subclasses, 357-370
keyed classes, 284, 298-329
ordered classes, 284, 342-353
sequencing, 292-298,310
streamable classes, 284, 329-342
unordered classes, 284,353-357

Colors, 408-412
Conditional expressions, 33-35

Confirmers, 79-80
Control Structures, 32-39

assignment, 30
blocks, 32-39,179,214-220
comparison with Pascal, 32-37

conditional expressions, 33-35
looping expressions, 35-37

return expressions, 38
user-defined, 39, 218-219, 296-298

Converting, 201-206, 248-255, 266-267,

274-275,287·290

Copying
shallow versus deep copying, 198-200,287
variable binding, 30,184-186

Cursors
creating, 426
existing, 424-426

D

Debuggers, 148, 160-174
breakpoints, 158
single stepping, 165-174

Differential programming, 51,100

Double dispatching, 254-255
Dynamic binding, 12-13,29-30

E

Encapsulation, 5-6

Index

"I

F

Files, 282,284-285, 329-332, 340-342
filing in, 135
filing out, 133-135
printing, 135

Forms, 390, 398-421
borders and colors, 417-418
combination rules, 396-400, 417
converting, 418
creating, 400, 414-415
displaying, 416-417
halftones, 396, 417
region filling, 420-421
transforming, 418-421

G

Garbage collection, 32
Generality number, 250-254

Generalization, 14

Graphics
animation, 408, 429-430
characterization (overview), 402-403
cursors

creating, 426
existing, 424-426

display medium
borders and colors, 408-412
displaying, 412

displayable object
displaying, 403-407

forms and bitblt, 390, 398-400, 414-421
graphical interaction, 428-430
graphical model, 378
opaque forms, 423
paths, 432-439
pens, 447-451
points, 380-391
rectangles, 380-392
rubber-banding, 436

Graphical Applications
disk forms, 464-469
film loops, 457-469
magnifying glasses, 469-485
video games, 485-503

509

---------------_/

H

Hashing, 200-201, 246-247

Identity versus equality, 200-201

Image
image file, 140
updating the image, 139-141

Information hiding, 8, 23-24

Inheritance, 13,51-62
multiple, 237-239

Inspectors, 148-155, 193-195
dictionary inspectors, 152-155

Instance, 10-11,40

Instance variables, 10,42-43,46-47, 182
indexed, 47,182-183
named, 47,182-183

K

Keyed classes, 284, 298-329

L

Literal, 24-25
collections, 286-287
introduction, 24-25
numbers, 247-248

Looping expressions, 35-37

M

Magnitudes
bit manipulation, 260-265
characterization (overview), 245-246
comparing, 246-247
converting, 248-255, 266-267, 274-275
creating number subclasses, 259-260
dividing, 255-258
double dispatching, 254-255
generality number, 250-254
mathematical operations, 258-259
truncating, 255-258

Mathematical operations, 258-259

510

Menus, 75
blue button menu, 75
quit menu, 93-94
red button menu, 72-73, 78-79, 83, 85-87,102
system menu, 75
yellow button menu, 75

Message-passing, 6, 25
Method, 6, 23, 43, 45

categories, 41, 116-118
method arguments, 48
method lookup, 53
method temporaries, 48

Messages, 7, 25-29
binary, 26
cascaded, 28-29
keyword,26-27
priority, 28
receiver, 7, 25
selector, 7,25
unary, 25-26

Meta class, 233-237
Meta operations, 195-198

perform:, 206-208
become:, 208-210,465-467
doesNotUnderstand:, 210-211

Mouse, 73
double clicking, 87, 95
dragging, 86, 95
selection, 70, 72

extended selection, 70
single clicking, 70, 95

N

Notifiers, 148, 155-160

o
Objects

coercion (see converting)
converting, 201-206,248-255,266-267,

274-275, 287-290
hashing, 200-201,246-247
identity versus equality, 200-201
meta-operations, 195-198

perform:, 206-208
become:, 208-210, 465-467
doesNotUnderstand:, 210-211

Inside Smalltalk

printing and storing, 201-206, 248-249,
332-333

reading, 203-206
representation, 24, 42-43, 51-53, 181, 186-188
shallow versus deep copying, 198-200, 287

Object-Oriented Terminology
arguments, 7,25
class, 10-11,40,43,233-237

abstract, 60
meta class, 233-237

dynamic binding, 12-13,29-30
encapsulation, 5-6
garbage collection, 32
generalization, 14
inheritance, 13, 51-62

multiple, 237-239
instance, 10-11,40
message, 7, 25-29
message-passing, 6, 25
method, 6, 23, 43, 45

method lookup, 53
object, 9, 23
overloading, 29
polymorphism, 11
protocol, 6, 23, 41

class, 41
instance, 41

receiver, 7, 25
selector, 7, 25
specialization, 14
static binding, 12
subclass, 15, 51
superclass, 15,43
variable binding, 30, 184-186

Opaque forms, 423
creating, 423
displaying, 423

Ordered classes, 284, 342-353
Overloading, 29

p

Paths, 432-439
creating, 432, 435,437-439
displaying, 434-435
sequencing, 433
transforming, 434

Pens, 447-451
creating, 447-448

Index

'II'

scribbling and doodling, 448
turtle graphics, 449-451

Points, 380-391
arithmetic, 385-386
comparing, 386-387
converting 383, 385
creating, 380-381
polar coordinates, 388
transforming, 390-391
truncating and rounding, 387-388

Polymorphism, 11
Pool dictionaries, 43, 49
Printing and storing, 201-206, 248-249,

332-333
Private variables, 46
Programming Styles

anthropomorphic programming, 1
differential programming, 51,100
programming by classification, 9
programming by extension, 100
programming by personification, 1
programming by simulation, 1
programming with inheritance, 13
programming with polymorphism, 11
programming with specialization and

generalization, 14

Prompters, 80

Protocol, 6, 23, 41
class, 41
instance, 41

Pseudo-variables, 50
self,50
super, 57-58

R

Receiver, 7, 25

Recovery
surviving a crash, 141

Rectangles, 380-392
comparing, 387
converting 383
creating, 380-382
transforming, 390-392
truncating and rounding, 388

Return expressions, 38

511

--'----------- J-

S

Selector, 7, 25

self, 50

Sequencing, 292-298, 310, 433

Shallow versus deep copying, 198-200,287

Shared, 46, 49-50
global,49
pool,49-50

Specialization, 14

Streamable classes, 284,329-342

Subclass, 15,51

super, 57-58

Superclass, 15,43

System files,
changes file, 140-141
image file, 140

updating the image, 139-141
sources file, 140

T

Temporary variables, 38, 46-48
method arguments, 48
method temporaries, 48
block arguments, 48
block temporaries, 48

Text editing, 85-93
cutting, copying, and pasting, 88
deleting text, 88
evaluating text, 90-91

do it, 90-91
print it, 90-91
syntax error, 91-93

inserting text, 86
repeating commands (again), 89-90
replacing text, 87-88
selecting text, 86-87
undoing, 89-90

Transcript, 71

u
Unordered classes, 284, 353-357

v

Variables
class variables, 42-43

512

instance variables, 10,42-43,46-47, 182
indexed, 47,182-183
named, 47,182-183

pool dictionaries, 43, 49
private, 46
pseudo-variables, 50

self,50
super, 57-58

scope, 46-50
shared, 46, 49-50

global,49
pool,49-50

temporary variables, 38, 46-48
block arguments, 48
block temporaries, 48
method arguments, 48
method temporaries, 48

w

Window Types
browsers, 71, 99-132

kind, 101-132, 135-139
using, 104-123, 127-132

confirmers, 79-80
debuggers, 148, 160-174

breakpoints, 158
single stepping, 165-174

inspectors, 148-155, 193-195
dictionary inspectors, 152-155

notifiers, 148, 155-160
prompters, 80
transcript, 71
workspace, 71

system workspace, 71

Window Usage
closing, 79
collapsing, 79
creating 77
framing, 79
making active, 72
moving, 79
relabelling, 80
scrolling, 81-85
selecting under, 79

Workspace, 71
system workspace, 71

Inside Smalltalk

