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• Software Engineer since 1996

– Assembly x86, C/C++, Java, Perl, PHP

• PHP Engineer at Zend Technologies in the 
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• International speaker, author of articles and 

books on PHP and secure programming

• Researcher programmer at Informatics 

Institute of University of Amsterdam 

• Co-founder of PUG Torino (Italy)

About me

http://framework.zend.com/
http://torino.grusp.org/
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OWASP Top Ten Attacks

1)  Cross-Site Scripting (XSS)

2)  Injection Flaws

3)  Malicious File Execution

4)  Insecure Direct Object Reference

5)  Cross Site Request Forgery (CSRF)

6)  Information Leakage and Improper Error Handling

7)  Broken Authentication and Session Management

8)  Insecure Cryptographic Storage

9)  Insecure Communications

10) Failure to Restrict URL Access
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Security practices

“Filter Input, Escape Output”

Yes, but it's not enough!
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Security tools in ZF2

● Zend\Authentication

● Zend\Captcha

● Zend\Crypt

● Zend\Escaper

● Zend\Filter

● Zend\InputFilter

● Zend\Permissions

● Zend\Math

● Zend\Validator
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Zend\Authentication 
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Authentication

● Zend\Authentication provides API for authentication 
and includes concrete authentication adapters for 
common use case scenarios.

● Adapters:
▶ Database Table
▶ Digest
▶ HTTP
▶ LDAP
▶ Your adapter
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Example
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Zend\Permissions 
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Zend\Permissions\Acl

● The component provides a lightweight and flexible 
access control list (ACL) implementation for 
privileges management

● Terminology:

▶ a resource is an object to which access is 
controlled

▶ a role is an object that may request access 
to a resource
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Example
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Zend\Permissions\Rbac (≥ ZF2.1)

● Provides a lightweight Role-Based Access Control 
implementation based around PHP 5.3’s SPL 
RecursiveIterator and RecursiveIteratorIterator

● RBAC differs from access control lists (ACL) by 
putting the emphasis on roles and their 
permissions rather than objects (resources)

● Terminology:

▶  an identity has one or more roles
▶  a role requests access to a permission
▶  a permission is given to a role
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Zend\Filter 
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Zend\Filter

● The Zend\Filter component provides a set of 
commonly needed data filters. It also provides a 
simple filter chaining mechanism by which 
multiple filters may be applied to a single datum 
in a user-defined order.

● Remember: “Filter the input, always”
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Standard Filter Classes

● Alnum

● Alpha

● BaseName

● Boolean

● Callback

● Compress/Decompress

● Digits

● Dir

● Encrypt/Decrypt

● HtmlEntities

● Int

● Null

● NumberFormat

● PregReplace

● RealPath

● StringToLower/ToUpper

● StringTrim

● StripNewLines/Tags
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Zend\Validator
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Zend\Validator

● The Zend\Validator component provides a set of 
commonly needed validators. It also provides a 
simple validator chaining mechanism by which 
multiple validators may be applied to a single 
datum in a user-defined order.

● A validator examines its input with respect to some 
requirements and produces a boolean result - 
whether the input successfully validates against 
the requirements. 
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Example
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Standard Validator Classes
● Alnum
● Alpha
● Barcode
● Between
● Callback
● CreditCard
● Date
● Db\RecordExists and NoRecordExists
● Digits
● EmailAddress
● GreaterThan/LessThan
● Hex

● Hostname
● Iban
● Identical
● InArray
● Ip
● Isbn
● NotEmpty
● PostCode
● Regex
● Sitemap
● Step
● StringLength
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Zend\InputFilter
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Zend\InputFilter

● The Zend\InputFilter component can be used to 
filter and validate generic sets of input data. For 
instance, you could use it to filter $_GET or 
$_POST values, CLI arguments, etc.

● Remember: “Filter the input, always”
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Example
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Zend\Escaper 
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Escaper

● Escape the output, multiple formats:
▶ escapeHtml()
▶ escapeHtmlAttr()
▶ escapeJs()
▶ escapeUrl()
▶ EscapeCss()

● Remember: “Escape the output, always”
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Zend\Captcha 
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Zend\Captcha

● CAPTCHA stands for “Completely Automated 
Public Turing test to tell Computers and 
Humans Apart”; it is used as a challenge-
response to ensure that the individual 
submitting information is a human and not an 
automated process

● A captcha is used to prevent spam submissions 
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Example
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Captcha adapters

● Zend\Captcha\AbstractWord
● Zend\Captcha\Dumb
● Zend\Captcha\Figlet
● Zend\Captcha\Image
● Zend\Captcha\ReCaptcha 
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Zend\Crypt
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Cryptography is hard

● Cryptography is hard, and the implementation is 
even more hard!

● PHP offers some crypto primitives but you need some 
cryptography background to use it (this is not 
straightforward)

● This can respresent a barrier that discouraged most 
of the PHP developers
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Cryptography using ZF2

● Zend\Crypt wants to help PHP developers to use strong 
cryptography in their projects

● In PHP we have built-in functions and extensions for 
cryptography scopes:

▶ crypt()
▶ Mcrypt
▶ OpenSSL
▶ Hash (by default in PHP 5.1.2)
▶ Mhash (emulated by Hash from PHP 5.3)
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Zend\Crypt

● Zend\Crypt components:

▶ Zend\Crypt\Password
▶ Zend\Crypt\Key\Derivation
▶ Zend\Crypt\Symmetic
▶ Zend\Crypt\PublicKey
▶ Zend\Crypt\Hash
▶ Zend\Crypt\Hmac
▶ Zend\Crypt\BlockCipher
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How to encrypt 
sensitive data
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Encrypt and Authenticate

● Zend\Crypt\BlockCipher can be used to encrypt/decrypt 
sensitive data (symmetric encryption) 

● Provides encryption + authentication (HMAC)

● Simplified API:

▶ setKey($key)
▶ encrypt($data)
▶ decrypt($data)

● It uses the Mcrypt adapter (Zend\Crypt\Symmetric\Mcrypt)
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Default encryption values

● Default values used by BlockCipher:

▶ AES algorithm (key of 256 bits)
▶ CBC mode + HMAC (SHA-256)
▶ PKCS7 padding mode (RFC 5652)
▶ PBKDF2 to generate encryption key + 

authentication key for HMAC
▶ Random IV for each encryption

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/SHA-2
http://tools.ietf.org/html/rfc5652#section-6.3
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Initialization_vector
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Example: AES encryption

The encrypted text is encoded in Base64, you can switch to 
binary output using setBinaryOutput(true)
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Example: encryption output

064b05b885342dc91e7915e492715acf0f896620d
bf9d1e00dd0798b15e72e8cZg+hO34C3f3eb8TeJ
M9xWQRVex1y5zeLrBsNv+dYeVy3SBJa+pXZbUQY
NZw0xS9s

Zend\Crypt\BlockCipher::encrypt

“This is the message to encrypt”

“this is the
encryption key”

HMAC, IV, ciphertext
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Example: decrypt
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How to safely store 
a user's password 
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How to store a password

● How do you safely store a password?
● Old school (insecure):

▶ MD5/SHA1(password) 
▶ MD5/SHA1(password . salt)

where salt is a random string
● New school (secure):

▶ bcrypt
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Why MD5/SHA1 ±salt is not secure?

● Dictionary/brute force attacks more efficient

● GPU-accelerated password hash:

▶ Whitepixel project
whitepixel.zorinaq.com
 4 Dual HD 5970, ~ $2800
 

Algorithm Speed 8 chars 9 chars 10 chars

md5($pass) 33 billion p/s 1 ½ hour 4 ½ days 294 days

http://whitepixel.zorinaq.com/
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bcrypt

● bcrypt uses Blowfish cipher + iterations to generate 
secure hash values

● bcrypt is secure against brute force attacks because is 
slow, very slow (that means attacks need huge amount 
of time to be completed)

● The algorithm needs a salt value and a work factor 
parameter (cost), which allows you to determine how 
expensive the bcrypt function will be

http://en.wikipedia.org/wiki/Blowfish_(cipher)
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Zend\Crypt\Password\Bcrypt

● We used the crypt() function of PHP to implement the 
bcrypt algorithm

● The cost is an integer value from 4 to 31

● The default value for Zend\Crypt\Password\Bcrypt is 14 
(that is equivalent to 1 second of computation using an 
Intel Core i5 CPU at 3.3 Ghz).

● The cost value depends on the CPU speed, check on your 
system! We suggest to consume at least 1 second.
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Example: bcrypt

● The output of bcrypt ($hash) is a string of 60 bytes



© All rights reserved. Zend Technologies, Inc.

How to verify a password

● To check if a password is valid against an hash value 
we can use the method:

▶ Bcrypt::verify($password, $hash)

where $password is the value to check and $hash is 
the hash value generated by bcrypt

● This method returns true if the password is valid and 
false otherwise
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Secure random 
numbers in PHP
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PHP vs. randomness

● How generate a pseudo-random value in PHP?
● Not good for cryptography purpose:

▶ rand()
▶ mt_rand() 

● Good for cryptography (PHP 5.3+):

▶ openssl_random_pseudo_bytes() 
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rand() is not so random :(

rand() of PHP on Windows Pseudo-random bits 

Source: random.org 
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Random Number Generator in ZF2

● We refactored the random number generator in ZF2 to 
use (in order):

1) openssl_random_pseudo_bytes()

2) mcrypt_create_iv(), with MCRYPT_DEV_URANDOM

3) mt_rand(), not used for cryptography!
● OpenSSL provides secure random numbers

● Mcrypt with /dev/urandom provides good security

● mt_rand() is not secure for crypto purposes



© All rights reserved. Zend Technologies, Inc.

Random number in Zend\Math

● We provides a couple of methods for RNG:
▶ Zend\Math\Math::randBytes($length, $strong = false)

▶ Zend\Math\Math::rand($min, $max, $strong = false)

● randBytes() generates $length random bytes

● rand() generates a random number between $min and $max

● If $strong === true, the functions use only OpenSSL or Mcrypt 
(if PHP doesn't support these extensions throw an Exception)
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Some references

● Colin Percival, Stronger Key Derivation via Sequential Memory-Hard 
Functions, presented at BSDCan'09, May 2009 (link)

● T. Myer, M. Southwell, Pro PHP Security: From Application Security 
Principles to the Implementation of XSS Defenses, Apress, 2 edition, 
2010 

● P. Niels, T. J. Sutton, A Future-Adaptable Password Scheme, 
Proceedings of USENIX Annual Technical Conference, 1999 (link)

● Chris Shiflett, Essential PHP Security. A Guide to Building Secure 
Web Applications, O'Reilly Media, 2005

● Enrico Zimuel, Cryptography made easy using Zend Framework 2, 
Zend Webinar, 2012 (video - slides)

● Enrico Zimuel, Cryptography in PHP. How to protect sensitive data 
in PHP using cryptography, Web & PHP Magazine. Issue 2/2012 (link)

http://www.tarsnap.com/scrypt/scrypt.pdf
http://static.usenix.org/event/usenix99/provos/provos.pdf
http://www.zend.com/webinar/Framework/70170000000bm7f-crypZF2-20120531.flv
http://static.zend.com/topics/Cryptography-made-easy-with-ZF2.pdf
http://webandphp.com/issue-2
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Thank you!

● More information

▶ http://framework.zend.com
▶ Send an email to enrico@zend.com

● IRC channels (freenode)

▶ #zftalk, #zftalk.dev

http://framework.zend.com/
mailto:enrico@zend.com
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