
© All rights reserved. Zend Technologies, Inc.

Building secure web
applications using ZF2

by Enrico Zimuel (enrico@zend.com)
Senior Software Engineer
Zend Framework Core Team
Zend Technologies Ltd

mailto:enrico@zend.com

© All rights reserved. Zend Technologies, Inc.

• Enrico Zimuel (@ezimuel)

• Software Engineer since 1996

– Assembly x86, C/C++, Java, Perl, PHP

• PHP Engineer at Zend Technologies in the

Zend Framework Team

• International speaker, author of articles and

books on PHP and secure programming

• Researcher programmer at Informatics

Institute of University of Amsterdam

• Co-founder of PUG Torino (Italy)

About me

http://framework.zend.com/
http://torino.grusp.org/

© All rights reserved. Zend Technologies, Inc.

OWASP Top Ten Attacks

1) Cross-Site Scripting (XSS)

2) Injection Flaws

3) Malicious File Execution

4) Insecure Direct Object Reference

5) Cross Site Request Forgery (CSRF)

6) Information Leakage and Improper Error Handling

7) Broken Authentication and Session Management

8) Insecure Cryptographic Storage

9) Insecure Communications

10) Failure to Restrict URL Access

© All rights reserved. Zend Technologies, Inc.

Security practices

“Filter Input, Escape Output”

Yes, but it's not enough!

© All rights reserved. Zend Technologies, Inc.

Security tools in ZF2

● Zend\Authentication

● Zend\Captcha

● Zend\Crypt

● Zend\Escaper

● Zend\Filter

● Zend\InputFilter

● Zend\Permissions

● Zend\Math

● Zend\Validator

© All rights reserved. Zend Technologies, Inc.

Zend\Authentication

© All rights reserved. Zend Technologies, Inc.

Authentication

● Zend\Authentication provides API for authentication
and includes concrete authentication adapters for
common use case scenarios.

● Adapters:
▶ Database Table
▶ Digest
▶ HTTP
▶ LDAP
▶ Your adapter

© All rights reserved. Zend Technologies, Inc.

Example

© All rights reserved. Zend Technologies, Inc.

Zend\Permissions

© All rights reserved. Zend Technologies, Inc.

Zend\Permissions\Acl

● The component provides a lightweight and flexible
access control list (ACL) implementation for
privileges management

● Terminology:

▶ a resource is an object to which access is
controlled

▶ a role is an object that may request access
to a resource

© All rights reserved. Zend Technologies, Inc.

Example

© All rights reserved. Zend Technologies, Inc.

Zend\Permissions\Rbac (≥ ZF2.1)

● Provides a lightweight Role-Based Access Control
implementation based around PHP 5.3’s SPL
RecursiveIterator and RecursiveIteratorIterator

● RBAC differs from access control lists (ACL) by
putting the emphasis on roles and their
permissions rather than objects (resources)

● Terminology:

▶ an identity has one or more roles
▶ a role requests access to a permission
▶ a permission is given to a role

© All rights reserved. Zend Technologies, Inc.

Zend\Filter

© All rights reserved. Zend Technologies, Inc.

Zend\Filter

● The Zend\Filter component provides a set of
commonly needed data filters. It also provides a
simple filter chaining mechanism by which
multiple filters may be applied to a single datum
in a user-defined order.

● Remember: “Filter the input, always”

© All rights reserved. Zend Technologies, Inc.

Standard Filter Classes

● Alnum

● Alpha

● BaseName

● Boolean

● Callback

● Compress/Decompress

● Digits

● Dir

● Encrypt/Decrypt

● HtmlEntities

● Int

● Null

● NumberFormat

● PregReplace

● RealPath

● StringToLower/ToUpper

● StringTrim

● StripNewLines/Tags

© All rights reserved. Zend Technologies, Inc.

Zend\Validator

© All rights reserved. Zend Technologies, Inc.

Zend\Validator

● The Zend\Validator component provides a set of
commonly needed validators. It also provides a
simple validator chaining mechanism by which
multiple validators may be applied to a single
datum in a user-defined order.

● A validator examines its input with respect to some
requirements and produces a boolean result -
whether the input successfully validates against
the requirements.

© All rights reserved. Zend Technologies, Inc.

Example

© All rights reserved. Zend Technologies, Inc.

Standard Validator Classes
● Alnum
● Alpha
● Barcode
● Between
● Callback
● CreditCard
● Date
● Db\RecordExists and NoRecordExists
● Digits
● EmailAddress
● GreaterThan/LessThan
● Hex

● Hostname
● Iban
● Identical
● InArray
● Ip
● Isbn
● NotEmpty
● PostCode
● Regex
● Sitemap
● Step
● StringLength

© All rights reserved. Zend Technologies, Inc.

Zend\InputFilter

© All rights reserved. Zend Technologies, Inc.

Zend\InputFilter

● The Zend\InputFilter component can be used to
filter and validate generic sets of input data. For
instance, you could use it to filter $_GET or
$_POST values, CLI arguments, etc.

● Remember: “Filter the input, always”

© All rights reserved. Zend Technologies, Inc.

Example

© All rights reserved. Zend Technologies, Inc.

Zend\Escaper

© All rights reserved. Zend Technologies, Inc.

Escaper

● Escape the output, multiple formats:
▶ escapeHtml()
▶ escapeHtmlAttr()
▶ escapeJs()
▶ escapeUrl()
▶ EscapeCss()

● Remember: “Escape the output, always”

© All rights reserved. Zend Technologies, Inc.

Zend\Captcha

© All rights reserved. Zend Technologies, Inc.

Zend\Captcha

● CAPTCHA stands for “Completely Automated
Public Turing test to tell Computers and
Humans Apart”; it is used as a challenge-
response to ensure that the individual
submitting information is a human and not an
automated process

● A captcha is used to prevent spam submissions

© All rights reserved. Zend Technologies, Inc.

Example

© All rights reserved. Zend Technologies, Inc.

Captcha adapters

● Zend\Captcha\AbstractWord
● Zend\Captcha\Dumb
● Zend\Captcha\Figlet
● Zend\Captcha\Image
● Zend\Captcha\ReCaptcha

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt

© All rights reserved. Zend Technologies, Inc.

Cryptography is hard

● Cryptography is hard, and the implementation is
even more hard!

● PHP offers some crypto primitives but you need some
cryptography background to use it (this is not
straightforward)

● This can respresent a barrier that discouraged most
of the PHP developers

© All rights reserved. Zend Technologies, Inc.

Cryptography using ZF2

● Zend\Crypt wants to help PHP developers to use strong
cryptography in their projects

● In PHP we have built-in functions and extensions for
cryptography scopes:

▶ crypt()
▶ Mcrypt
▶ OpenSSL
▶ Hash (by default in PHP 5.1.2)
▶ Mhash (emulated by Hash from PHP 5.3)

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt

● Zend\Crypt components:

▶ Zend\Crypt\Password
▶ Zend\Crypt\Key\Derivation
▶ Zend\Crypt\Symmetic
▶ Zend\Crypt\PublicKey
▶ Zend\Crypt\Hash
▶ Zend\Crypt\Hmac
▶ Zend\Crypt\BlockCipher

 © All rights reserved. Zend Technologies, Inc.

How to encrypt
sensitive data

© All rights reserved. Zend Technologies, Inc.

Encrypt and Authenticate

● Zend\Crypt\BlockCipher can be used to encrypt/decrypt
sensitive data (symmetric encryption)

● Provides encryption + authentication (HMAC)

● Simplified API:

▶ setKey($key)
▶ encrypt($data)
▶ decrypt($data)

● It uses the Mcrypt adapter (Zend\Crypt\Symmetric\Mcrypt)

© All rights reserved. Zend Technologies, Inc.

Default encryption values

● Default values used by BlockCipher:

▶ AES algorithm (key of 256 bits)
▶ CBC mode + HMAC (SHA-256)
▶ PKCS7 padding mode (RFC 5652)
▶ PBKDF2 to generate encryption key +

authentication key for HMAC
▶ Random IV for each encryption

http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Block_cipher_modes_of_operation#Cipher-block_chaining_.28CBC.29
http://en.wikipedia.org/wiki/HMAC
http://en.wikipedia.org/wiki/SHA-2
http://tools.ietf.org/html/rfc5652#section-6.3
http://en.wikipedia.org/wiki/PBKDF2
http://en.wikipedia.org/wiki/Initialization_vector

© All rights reserved. Zend Technologies, Inc.

Example: AES encryption

The encrypted text is encoded in Base64, you can switch to
binary output using setBinaryOutput(true)

© All rights reserved. Zend Technologies, Inc.

Example: encryption output

064b05b885342dc91e7915e492715acf0f896620d
bf9d1e00dd0798b15e72e8cZg+hO34C3f3eb8TeJ
M9xWQRVex1y5zeLrBsNv+dYeVy3SBJa+pXZbUQY
NZw0xS9s

Zend\Crypt\BlockCipher::encrypt

“This is the message to encrypt”

“this is the
encryption key”

HMAC, IV, ciphertext

© All rights reserved. Zend Technologies, Inc.

Example: decrypt

 © All rights reserved. Zend Technologies, Inc.

How to safely store
a user's password

© All rights reserved. Zend Technologies, Inc.

How to store a password

● How do you safely store a password?
● Old school (insecure):

▶ MD5/SHA1(password)
▶ MD5/SHA1(password . salt)

where salt is a random string
● New school (secure):

▶ bcrypt

© All rights reserved. Zend Technologies, Inc.

Why MD5/SHA1 ±salt is not secure?

● Dictionary/brute force attacks more efficient

● GPU-accelerated password hash:

▶ Whitepixel project
whitepixel.zorinaq.com
 4 Dual HD 5970, ~ $2800

Algorithm Speed 8 chars 9 chars 10 chars

md5($pass) 33 billion p/s 1 ½ hour 4 ½ days 294 days

http://whitepixel.zorinaq.com/

© All rights reserved. Zend Technologies, Inc.

bcrypt

● bcrypt uses Blowfish cipher + iterations to generate
secure hash values

● bcrypt is secure against brute force attacks because is
slow, very slow (that means attacks need huge amount
of time to be completed)

● The algorithm needs a salt value and a work factor
parameter (cost), which allows you to determine how
expensive the bcrypt function will be

http://en.wikipedia.org/wiki/Blowfish_(cipher)

© All rights reserved. Zend Technologies, Inc.

Zend\Crypt\Password\Bcrypt

● We used the crypt() function of PHP to implement the
bcrypt algorithm

● The cost is an integer value from 4 to 31

● The default value for Zend\Crypt\Password\Bcrypt is 14
(that is equivalent to 1 second of computation using an
Intel Core i5 CPU at 3.3 Ghz).

● The cost value depends on the CPU speed, check on your
system! We suggest to consume at least 1 second.

© All rights reserved. Zend Technologies, Inc.

Example: bcrypt

● The output of bcrypt ($hash) is a string of 60 bytes

© All rights reserved. Zend Technologies, Inc.

How to verify a password

● To check if a password is valid against an hash value
we can use the method:

▶ Bcrypt::verify($password, $hash)

where $password is the value to check and $hash is
the hash value generated by bcrypt

● This method returns true if the password is valid and
false otherwise

 © All rights reserved. Zend Technologies, Inc.

Secure random
numbers in PHP

© All rights reserved. Zend Technologies, Inc.

PHP vs. randomness

● How generate a pseudo-random value in PHP?
● Not good for cryptography purpose:

▶ rand()
▶ mt_rand()

● Good for cryptography (PHP 5.3+):

▶ openssl_random_pseudo_bytes()

© All rights reserved. Zend Technologies, Inc.

rand() is not so random :(

rand() of PHP on Windows Pseudo-random bits

Source: random.org

© All rights reserved. Zend Technologies, Inc.

Random Number Generator in ZF2

● We refactored the random number generator in ZF2 to
use (in order):

1) openssl_random_pseudo_bytes()

2) mcrypt_create_iv(), with MCRYPT_DEV_URANDOM

3) mt_rand(), not used for cryptography!
● OpenSSL provides secure random numbers

● Mcrypt with /dev/urandom provides good security

● mt_rand() is not secure for crypto purposes

© All rights reserved. Zend Technologies, Inc.

Random number in Zend\Math

● We provides a couple of methods for RNG:
▶ Zend\Math\Math::randBytes($length, $strong = false)

▶ Zend\Math\Math::rand($min, $max, $strong = false)

● randBytes() generates $length random bytes

● rand() generates a random number between $min and $max

● If $strong === true, the functions use only OpenSSL or Mcrypt
(if PHP doesn't support these extensions throw an Exception)

© All rights reserved. Zend Technologies, Inc.

Some references

● Colin Percival, Stronger Key Derivation via Sequential Memory-Hard
Functions, presented at BSDCan'09, May 2009 (link)

● T. Myer, M. Southwell, Pro PHP Security: From Application Security
Principles to the Implementation of XSS Defenses, Apress, 2 edition,
2010

● P. Niels, T. J. Sutton, A Future-Adaptable Password Scheme,
Proceedings of USENIX Annual Technical Conference, 1999 (link)

● Chris Shiflett, Essential PHP Security. A Guide to Building Secure
Web Applications, O'Reilly Media, 2005

● Enrico Zimuel, Cryptography made easy using Zend Framework 2,
Zend Webinar, 2012 (video - slides)

● Enrico Zimuel, Cryptography in PHP. How to protect sensitive data
in PHP using cryptography, Web & PHP Magazine. Issue 2/2012 (link)

http://www.tarsnap.com/scrypt/scrypt.pdf
http://static.usenix.org/event/usenix99/provos/provos.pdf
http://www.zend.com/webinar/Framework/70170000000bm7f-crypZF2-20120531.flv
http://static.zend.com/topics/Cryptography-made-easy-with-ZF2.pdf
http://webandphp.com/issue-2

© All rights reserved. Zend Technologies, Inc.

Thank you!

● More information

▶ http://framework.zend.com
▶ Send an email to enrico@zend.com

● IRC channels (freenode)

▶ #zftalk, #zftalk.dev

http://framework.zend.com/
mailto:enrico@zend.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

