
Beginning PHP
and Oracle
From Novice to Professional

■ ■ ■

W. Jason Gilmore and Bob Bryla

Beginning PHP and Oracle: From Novice to Professional

Copyright © 2007 by W. Jason Gilmore, Bob Bryla

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-770-5

ISBN-10 (pbk): 1-59059-770-2

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Gennick
Technical Reviewer: Matt Wade
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jonathan Gennick, Jason Gilmore, Jonathan

Hassell, Chris Mills, Matthew Moodie, Jeffrey Pepper, Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade,
Tom Welsh

Project Manager: Kylie Johnston
Copy Editors: Jennifer Whipple, Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Kelly Winquist
Compositor: Susan Glinert Stevens
Proofreader: April Eddy
Indexer: John Collin
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Source Code/Download
section.

I dedicate this book to the open source community,

whose determined work is changing the world for the better.

—W. Jason Gilmore

To CRB and ESB, even with my long hours we had a great summer of fun!

—Bob Bryla

v

Contents at a Glance

About the Authors . xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Introduction .xxxiii

■CHAPTER 1 Introducing PHP . 1

■CHAPTER 2 Configuring Your Environment . 9

■CHAPTER 3 PHP Basics . 39

■CHAPTER 4 Functions . 81

■CHAPTER 5 Arrays . 91

■CHAPTER 6 Object-Oriented PHP . 117

■CHAPTER 7 Advanced OOP Features . 139

■CHAPTER 8 Error and Exception Handling . 151

■CHAPTER 9 Strings and Regular Expressions . 163

■CHAPTER 10 Working with the File and Operating System 195

■CHAPTER 11 PEAR . 219

■CHAPTER 12 Date and Time . 229

■CHAPTER 13 Forms . 249

■CHAPTER 14 Authentication . 261

■CHAPTER 15 Handling File Uploads . 277

■CHAPTER 16 Networking . 287

■CHAPTER 17 PHP and LDAP . 305

■CHAPTER 18 Session Handlers . 319

■CHAPTER 19 Templating with Smarty . 339

■CHAPTER 20 Web Services . 361

■CHAPTER 21 Secure PHP Programming . 387

■CHAPTER 22 SQLite . 407

■CHAPTER 23 Introducing PDO . 425

vi

■CHAPTER 24 Building Web Sites for the World . 441

■CHAPTER 25 MVC and the Zend Framework . 449

■CHAPTER 26 Introducing Oracle . 463

■CHAPTER 27 Installing and Configuring Oracle Database XE 469

■CHAPTER 28 Oracle Database XE Administration . 481

■CHAPTER 29 Interacting with Oracle Database XE . 501

■CHAPTER 30 From Databases to Datatypes . 513

■CHAPTER 31 Securing Oracle Database XE . 535

■CHAPTER 32 PHP’s Oracle Functionality . 565

■CHAPTER 33 Transactions . 591

■CHAPTER 34 Using HTML_Table with Advanced Queries 601

■CHAPTER 35 Using Views . 621

■CHAPTER 36 Oracle PL/SQL Subprograms . 633

■CHAPTER 37 Oracle Triggers . 649

■CHAPTER 38 Indexes and Optimizing Techniques . 661

■CHAPTER 39 Importing and Exporting Data . 675

■CHAPTER 40 Backup and Recovery . 687

■INDEX . 697

vii

Contents

About the Authors . xxvii

About the Technical Reviewer . xxix

Acknowledgments . xxxi

Introduction .xxxiii

■CHAPTER 1 Introducing PHP . 1

History . 1

PHP 4 . 2

PHP 5 . 3

PHP 6 . 4

General Language Features . 5
Practicality . 5

Power . 5

Possibility. 6

Price . 6

Summary . 7

■CHAPTER 2 Configuring Your Environment . 9

Installation Prerequisites . 9
Downloading Apache . 10

Downloading PHP . 11

Obtaining the Documentation . 11

Installing Apache and PHP on Linux . 12

Installing Apache and PHP on Windows . 13

Installing IIS and PHP on Windows . 15

Installing IIS and PHP . 15

Configuring FastCGI to Manage PHP Processes 16

Testing Your Installation . 17

Configuring PHP . 19

Configuring PHP at Build Time on Linux. 19

Customizing the Windows Build . 19

viii ■CO N T E N T S

Run-Time Configuration . 20

Managing PHP’s Configuration Directives . 20

PHP’s Configuration Directives . 22

Choosing a Code Editor . 35

Adobe Dreamweaver CS3 . 35

Notepad++ . 35

PDT (PHP Development Tools). 35

Zend Studio . 36

Choosing a Web Hosting Provider . 36

Seven Questions for Any Prospective Hosting Provider 37

Summary . 38

■CHAPTER 3 PHP Basics . 39

Embedding PHP Code in Your Web Pages . 39

Default Syntax . 40

Short-Tags . 40

Script . 41

ASP Style . 41

Embedding Multiple Code Blocks . 41

Commenting Your Code . 42

Single-Line C++ Syntax. 42

Shell Syntax. 42

Multiple-Line C Syntax . 42

Outputting Data to the Browser . 43

The print() Statement . 43

The printf() Statement . 44

The sprintf() Statement . 46

PHP’s Supported Datatypes . 46

Scalar Datatypes . 46

Compound Datatypes . 47

Converting Between Datatypes Using Type Casting 48

Adapting Datatypes with Type Juggling . 50

Type-Related Functions . 50

Type Identifier Functions . 51

Identifiers . 51

Variables . 52

Variable Declaration . 52

Variable Scope . 54

PHP’s Superglobal Variables . 56

Variable Variables . 60

■C ON TE N TS ix

Constants . 61

Expressions . 61

Operands . 62

Operators . 62

String Interpolation . 68

Double Quotes. 68

Single Quotes . 69

Heredoc . 69

Control Structures . 70

Conditional Statements . 70

Looping Statements . 72

File Inclusion Statements. 77

Summary . 80

■CHAPTER 4 Functions . 81

Invoking a Function . 81

Creating a Function . 82

Passing Arguments by Value . 82

Passing Arguments by Reference . 83

Default Argument Values . 84

Returning Values from a Function. 85

Recursive Functions . 86

Function Libraries . 89

Summary . 90

■CHAPTER 5 Arrays . 91

What Is an Array? . 91

Creating an Array . 92

Creating Arrays with array() . 93

Extracting Arrays with list() . 94

Populating Arrays with a Predefined Value Range 94

Testing for an Array . 95

Adding and Removing Array Elements . 96

Adding a Value to the Front of an Array . 96

Adding a Value onto the End of an Array . 96

Removing a Value from the Front of an Array 97

Removing a Value from the End of an Array 97

x ■CO N T E N T S

Locating Array Elements . 97

Searching an Array . 97

Retrieving Array Keys . 98

Retrieving Array Values . 99

Traversing Arrays . 99

Retrieving the Current Array Key. 99

Retrieving the Current Array Value . 100

Retrieving the Current Array Key and Value 100

Moving the Array Pointer . 100

Passing Array Values to a Function . 101

Determining Array Size and Uniqueness . 102

Determining the Size of an Array . 102

Counting Array Value Frequency . 103

Determining Unique Array Values . 103

Sorting Arrays . 104

Reversing Array Element Order . 104

Flipping Array Keys and Values . 104

Sorting an Array . 105

Merging, Slicing, Splicing, and Dissecting Arrays 109

Merging Arrays . 109

Recursively Appending Arrays. 110

Combining Two Arrays . 110

Slicing an Array . 111

Splicing an Array. 112

Calculating an Array Intersection . 112

Calculating Associative Array Intersections 113

Calculating Array Differences . 113

Calculating Associative Array Differences . 114

Other Useful Array Functions . 114

Returning a Random Set of Keys . 114

Shuffling Array Elements . 115

Summary . 116

■CHAPTER 6 Object-Oriented PHP . 117

The Benefits of OOP . 117

Encapsulation . 118

Inheritance. 118

Polymorphism . 118

■C ON TE N TS xi

Key OOP Concepts . 119

Classes. 119

Objects . 120

Fields . 120

Properties . 123

Constants . 125

Methods . 126

Constructors and Destructors . 129

Constructors . 130

Destructors . 132

Static Class Members . 133

The instanceof Keyword . 134

Helper Functions . 135

Autoloading Objects . 136

Summary . 137

■CHAPTER 7 Advanced OOP Features . 139

Advanced OOP Features Not Supported by PHP 139

Object Cloning . 140

Cloning Example . 140

The __clone() Method . 141

Inheritance . 142

Class Inheritance . 143

Inheritance and Constructors . 145

Interfaces . 146

Implementing a Single Interface . 147

Implementing Multiple Interfaces . 148

Abstract Classes . 149

Summary . 150

■CHAPTER 8 Error and Exception Handling . 151

Configuration Directives . 151

Error Logging . 154

Exception Handling . 156

Why Exception Handling Is Handy. 157

PHP’s Exception-Handling Implementation 158

Summary . 162

xii ■CO N T E N T S

■CHAPTER 9 Strings and Regular Expressions . 163

Regular Expressions . 163

Regular Expression Syntax (POSIX). 164

PHP’s Regular Expression Functions (POSIX Extended) 166

Regular Expression Syntax (Perl) . 169

Other String-Specific Functions . 175

Determining the Length of a String . 175

Comparing Two Strings . 176

Manipulating String Case . 177

Converting Strings to and from HTML . 179

Alternatives for Regular Expression Functions . 183

Padding and Stripping a String . 190

Counting Characters and Words . 191

Taking Advantage of PEAR: Validate_US . 193

Installing Validate_US. 193

Using Validate_US . 194

Summary . 194

■CHAPTER 10 Working with the File and Operating System 195

Learning About Files and Directories . 195

Parsing Directory Paths . 196

Calculating File, Directory, and Disk Sizes 197

Determining Access and Modification Times 200

Working with Files . 201

The Concept of a Resource . 201

Recognizing Newline Characters . 202

Recognizing the End-of-File Character . 202

Opening and Closing a File . 202

Reading from a File . 204

Writing a String to a File . 209

Moving the File Pointer . 210

Reading Directory Contents . 210

Executing Shell Commands . 212

System-Level Program Execution . 213

Sanitizing the Input . 213

PHP’s Program Execution Functions. 214

Summary . 217

■C ON TE N TS xiii

■CHAPTER 11 PEAR . 219

Popular PEAR Packages . 219

Preinstalled Packages . 219

Installer-Suggested Packages. 220

The Power of PEAR: Converting Numeral Formats 221

Installing and Updating PEAR . 222

Installing PEAR . 222

PEAR and Hosting Companies . 223

Updating PEAR . 223

Using the PEAR Package Manager . 223

Viewing an Installed PEAR Package . 224

Learning More About an Installed PEAR Package 224

Installing a PEAR Package . 225

Including a Package Within Your Scripts . 226

Upgrading Packages. 227

Uninstalling a Package . 228

Downgrading a Package . 228

Summary . 228

■CHAPTER 12 Date and Time . 229

The Unix Timestamp . 229

PHP’s Date and Time Library . 230

Validating Dates . 230

Formatting Dates and Times . 231

Converting a Timestamp to User-Friendly Values 234

Working with Timestamps . 235

Date Fu . 236

Displaying the Localized Date and Time . 237

Displaying the Web Page’s Most Recent Modification Date 240

Determining the Number of Days in the Current Month 240

Determining the Number of Days in Any Given Month 241

Calculating the Date X Days from the Present Date 241

Taking Advantage of PEAR: Creating a Calendar 242

Date and Time Enhancements for PHP 5.1+ Users 245

Introducing the DateTime Constructor . 245

Formatting Dates . 245

Setting the Date After Instantiation . 245

Setting the Time After Instantiation . 246

Modifying Dates and Times . 246

Summary . 247

xiv ■CO N T E N T S

■CHAPTER 13 Forms . 249

PHP and Web Forms . 249

A Simple Example . 250

Passing Form Data to a Function . 251

Working with Multivalued Form Components 252

Taking Advantage of PEAR: HTML_QuickForm . 253

Installing HTML_QuickForm . 254

Creating a Simple Form . 254

Using Auto-Completion . 258

Summary . 259

■CHAPTER 14 Authentication . 261

HTTP Authentication Concepts . 261

PHP Authentication . 262

Authentication Variables . 262

Useful Functions . 263

PHP Authentication Methodologies . 264

Hard-Coded Authentication . 264

File-Based Authentication . 265

Database-Based Authentication . 266

IP-Based Authentication. 268

User Login Administration . 270

Testing Password Guessability with the CrackLib Library 270

One-Time URLs and Password Recovery. 272

Summary . 275

■CHAPTER 15 Handling File Uploads . 277

Uploading Files via HTTP . 277

Uploading Files with PHP . 278

PHP’s File Upload/Resource Directives . 278

The $_FILES Array . 279

PHP’s File-Upload Functions . 280

Upload Error Messages . 281

A Simple Example . 282

■C ON TE N TS xv

Taking Advantage of PEAR: HTTP_Upload . 283

Installing HTTP_Upload . 283

Uploading a File . 283

Learning More About an Uploaded File . 284

Uploading Multiple Files . 285

Summary . 285

■CHAPTER 16 Networking . 287

DNS, Services, and Servers . 287

DNS . 288

Services . 291

Establishing Socket Connections . 292

Mail . 294

Configuration Directives . 294

Sending E-mail Using a PHP Script. 295

Common Networking Tasks . 299

Pinging a Server . 299

Creating a Port Scanner . 300

Creating a Subnet Converter . 301

Testing User Bandwidth . 302

Summary . 303

■CHAPTER 17 PHP and LDAP . 305

Using LDAP from PHP . 306

Connecting to an LDAP Server . 306

Retrieving LDAP Data . 309

Counting Retrieved Entries . 312

Sorting LDAP Records . 312

Inserting LDAP Data . 313

Updating LDAP Data . 314

Deleting LDAP Data . 314

Working with the Distinguished Name . 315

Error Handling . 316

Summary . 317

xvi ■CO N T E N T S

■CHAPTER 18 Session Handlers . 319

What Is Session Handling? . 319

Configuration Directives . 321

Managing the Session Storage Media . 321

Setting the Session Files Path . 321

Automatically Enabling Sessions . 322

Setting the Session Name . 322

Choosing Cookies or URL Rewriting . 322

Automating URL Rewriting . 322

Setting the Session Cookie Lifetime . 323

Setting the Session Cookie’s Valid URL Path 323

Setting Caching Directions for Session-Enabled Pages 323

Working with Sessions . 324

Starting a Session . 324

Destroying a Session . 325

Setting and Retrieving the Session ID . 325

Creating and Deleting Session Variables . 326

Encoding and Decoding Session Data . 326

Practical Session-Handling Examples . 328

Automatically Logging In Returning Users . 328

Generating a Recently Viewed Document Index 330

Creating Custom Session Handlers . 332

Tying Custom Session Functions into PHP’s Logic 333

Custom Oracle-Based Session Handlers . 333

Summary . 337

■CHAPTER 19 Templating with Smarty . 339

What’s a Templating Engine? . 339

Introducing Smarty . 341

Installing Smarty . 342

Using Smarty . 343

Smarty’s Presentational Logic . 344

Comments . 345

Variable Modifiers . 345

Control Structures. 348

Statements . 352

Creating Configuration Files . 354

config_load . 355

Referencing Configuration Variables . 355

■C ON TE N TS xvii

Using CSS in Conjunction with Smarty . 356

Caching . 357

Working with the Cache Lifetime . 357

Eliminating Processing Overhead with is_cached() 358

Creating Multiple Caches per Template . 358

Some Final Words About Caching . 359

Summary . 360

■CHAPTER 20 Web Services . 361

Why Web Services? . 361

Real Simple Syndication . 363

RSS Syntax . 365

MagpieRSS . 366

SimpleXML . 372

Loading XML . 373

Parsing the XML . 374

SOAP . 377

SOAP Messages . 378

PHP’s SOAP Extension . 378

Summary . 385

■CHAPTER 21 Secure PHP Programming . 387

Configuring PHP Securely . 387

Safe Mode . 387

Other Security-Related Configuration Parameters 390

Hiding Configuration Details . 391

Hiding Apache . 392

Hiding PHP . 393

Hiding Sensitive Data . 394

Hiding the Document Root . 394

Denying Access to Certain File Extensions 394

Sanitizing User Data . 395

File Deletion. 395

Cross-Site Scripting . 395

Sanitizing User Input: The Solution . 397

Taking Advantage of PEAR: Validate. 399

Data Encryption . 400

PHP’s Encryption Functions . 401

The MCrypt Package . 403

Summary . 405

xviii ■CO N T E N T S

■CHAPTER 22 SQLite . 407

Introduction to SQLite . 407

Installing SQLite . 407

Using the SQLite Command-Line Interface 408

PHP’s SQLite Library . 409

sqlite.assoc_case = 0 | 1 | 2 . 409

Opening a Connection . 410

Creating a Table in Memory . 411

Closing a Connection . 411

Querying a Database . 412

Parsing Result Sets. 413

Retrieving Result Set Details . 416

Manipulating the Result Set Pointer . 418

Retrieving a Table’s Column Types . 419

Working with Binary Data . 420

Creating and Overriding SQLite Functions . 421

Creating Aggregate Functions . 422

Summary . 423

■CHAPTER 23 Introducing PDO . 425

Another Database Abstraction Layer? . 426

Using PDO . 427

Installing PDO . 427

PDO’s Database Support . 428

Connecting to a Database Server and Selecting a Database. 428

Handling Errors . 430

Executing Queries . 431

Prepared Statements . 433

Retrieving Data . 436

Setting Bound Columns . 439

Transactions . 440

Summary . 440

■CHAPTER 24 Building Web Sites for the World . 441

Approaches to Internationalizing and Localizing Applications 441

Translating Web Sites with Gettext . 442

Localizing Dates, Numbers, and Times . 446

Summary . 447

■C ON TE N TS xix

■CHAPTER 25 MVC and the Zend Framework . 449

Introducing MVC . 449

PHP’s Framework Solutions . 451

The CakePHP Framework . 452

The Solar Framework . 452

The symfony Framework . 452

The Zend Framework . 453

Introducing the Zend Framework . 453

Downloading and Installing the Zend Framework 454

Creating Your First Zend Framework-Driven Web Site 455

Searching the Web with Zend_Service_Yahoo 460

Summary . 462

■CHAPTER 26 Introducing Oracle . 463

Oracle’s Database Family . 463

Express Edition (XE) . 463

Standard Edition One . 465

Standard Edition . 465

Enterprise Edition . 465

Personal Edition . 466

Other Products in the Oracle Family . 466

Developer and Client-Side Tools . 466

Summary . 467

■CHAPTER 27 Installing and Configuring Oracle Database XE 469

Ensuring Installation Prerequisites . 469

Windows Installation Tasks . 470

Windows Prerequisites. 470

Downloading the Installation Files . 470

Performing the Installation. 470

Configuring Oracle and PHP . 474

Linux Installation Tasks . 474

Linux Prerequisites . 475

Downloading the Installation Files . 476

Performing the Installation. 477

Configuring Oracle and PHP . 478

Performing Post-Installation Tasks . 479

Creating User Accounts . 479

Summary . 480

xx ■CO N T E N T S

■CHAPTER 28 Oracle Database XE Administration . 481

Understanding the Oracle Architecture . 481

Oracle Storage Structures . 482

Oracle Memory Structures . 485

Initialization Parameters. 487

Connecting to the Database . 489

Running SQL*Plus from the Command Line 489

Running SQL Commands Using the XE Home Page 492

Starting and Stopping Oracle Database XE . 494

Starting Oracle Database XE . 494

Stopping Oracle Database XE . 495

Using Oracle-Supplied Utilities . 496

Administration . 497

Object Browser . 497

SQL . 498

Utilities . 498

Application Builder . 498

Troubleshooting in Oracle . 499

Summary . 500

■CHAPTER 29 Interacting with Oracle Database XE . 501

XE Home Page . 501

Installing the Oracle Database XE Client . 501

Installing the Windows Client . 502

Installing the Linux Client. 503

Using SQL Command Line . 504

Using SQL Developer . 504

Using Application Express . 506

Using PHP . 510

Summary . 511

■CHAPTER 30 From Databases to Datatypes . 513

Creating and Managing Tablespaces . 513

Tablespace Types . 513

Creating a New Tablespace . 515

Understanding Oracle Datatypes . 516

Built-in Datatypes . 516

ANSI-Supported Datatypes . 522

■C ON TE N TS xxi

Creating and Maintaining Tables . 523

Creating a Table . 523

Using Constraints . 525

Setting Column Defaults . 529

Creating a Table Using a Query Against Another Table 529

Modifying Table Characteristics . 529

Creating and Maintaining Indexes . 531

Using B-tree Indexes . 531

Using Bitmap Indexes. 532

Creating and Using Sequences . 532

Summary . 534

■CHAPTER 31 Securing Oracle Database XE . 535

Security Terminology Overview . 535

Security First Steps . 536

Understanding Database Authentication . 537

Database Authentication Overview . 537

Database Administrator Authentication . 537

User Accounts . 540

Creating Users. 540

Altering Users . 542

Dropping Users . 542

Becoming Another User . 543

User-Related Data Dictionary Views . 543

Understanding Database Authorization Methods 544

Profile Management . 544

Using System Privileges . 549

Using Object Privileges. 551

Creating, Assigning, and Maintaining Roles 553

Using Database Auditing . 558

Auditing Locations . 558

Statement Auditing . 559

Privilege Auditing . 561

Schema Object Auditing. 562

Protecting the Audit Trail . 563

Summary . 563

xxii ■CO N T E N T S

■CHAPTER 32 PHP’s Oracle Functionality . 565

Prerequisites . 565

Using Database Connections . 565

Connecting to the Database . 566

Database Connection Strings . 567

Disconnecting from the Database. 570

Retrieving and Modifying Data . 570

Preparing, Binding, and Executing Statements 571

Retrieving Table Rows . 573

Inserting Rows . 575

Modifying Rows. 578

Deleting Rows . 579

Counting Rows Selected or Affected . 581

Retrieving Database Metadata . 581

Viewing Database Characteristics . 582

Viewing User Tables . 583

Viewing Table Columns and Column Characteristics 584

Using Other Database Functions . 587

oci_error() . 587

oci_password_change() . 588

Summary . 589

■CHAPTER 33 Transactions . 591

Using Transactions: Overview . 591

Understanding Transaction Components . 592

Explicit COMMIT Statement . 592

Implicit COMMIT Statement . 594

Explicit ROLLBACK Statement . 594

The SAVEPOINT Statement . 595

Performing Transactions Using PHP . 597

Summary . 600

■CHAPTER 34 Using HTML_Table with Advanced Queries 601

Using HTML_Table . 601

Installing HTML_Table . 602

Creating a Simple Table . 603

Creating More Readable Row Output . 605

Creating a Table from Database Data . 606

■C ON TE N TS xxiii

Leveraging Subqueries . 607

Performing Comparisons with Subqueries 608

Determining Existence with Subqueries . 609

Database Maintenance with Subqueries . 610

Generalizing the Output Process . 610

Sorting Output . 612

Creating Paged Output . 614

Listing Page Numbers . 617

Summary . 619

■CHAPTER 35 Using Views . 621

Introducing Views . 621

Creating and Executing User Views . 622

Modifying a View . 625

Deleting a View . 626

Updating a View . 626

Other View Types . 627

Data Dictionary Views . 627

Dynamic Performance Views. 629

Using Views to Restrict Data Access . 629

Incorporating Views into Web Applications . 630

Summary . 631

■CHAPTER 36 Oracle PL/SQL Subprograms . 633

Should You Use PL/SQL Subprograms? . 633

Subprogram Advantages . 634

Subprogram Disadvantages . 634

How Oracle Implements Subprograms . 635

Creating a Stored Procedure . 635

Parameters . 637

Declaring and Setting Variables . 638

PL/SQL Constructs . 639

Creating and Using a Stored Function . 644

Modifying, Replacing, or Deleting Subprograms 644

Integrating Subprograms into PHP Applications 645

Summary . 647

xxiv ■CO N T E N T S

■CHAPTER 37 Oracle Triggers . 649

Introducing Triggers . 649

Taking Action Before an Event . 650

Taking Action After an Event . 650

Before Triggers vs. After Triggers . 651

Oracle’s Trigger Support . 652

Understanding Trigger Events . 652

Creating a Trigger . 652

Viewing Existing Triggers. 656

Modifying or Deleting a Trigger. 657

Leveraging Triggers in PHP Applications . 658

Summary . 660

■CHAPTER 38 Indexes and Optimizing Techniques . 661

Understanding Oracle Index Types . 661

B-tree Indexes. 662

Bitmap Indexes . 663

Creating, Dropping, and Maintaining Indexes . 663

Monitoring Index Usage . 668

Using Oracle Text . 669

Summary . 673

■CHAPTER 39 Importing and Exporting Data . 675

Exporting Data . 675

Using the SPOOL Command . 675

Exporting Using GUI Utilities . 676

Importing Data . 680

Summary . 685

■C ON TE N TS xxv

■CHAPTER 40 Backup and Recovery . 687

Backup and Recovery Best Practices . 687

Multiplexing Redo Log Files. 688

Multiplexing Control Files. 690

Enabling ARCHIVELOG Mode . 691

Backing Up the Database . 693

Manual Backups . 693

Automatic Backups. 693

Recovering Database Objects . 694

Summary . 696

■INDEX . 697

xxvii

About the Authors

■W. JASON GILMORE has been obsessing over all things open source for more
than ten years, with a primary focus on Web development technologies.
He has been extensively published in publications such as Developer.com,
TechTarget, and Linux Magazine, with his writings adopted for use within
the United Nations and Ford Foundation educational programs. Jason is the
author of four books, including the best-selling Beginning PHP and MySQL 5,
Second Edition (http://www.beginningphpandmysql.com/), published by Apress.
 Jason spends his days running Apress’s open source program and his
evenings writing, coding, and consulting. He’s a founding board member
of CodeMash (http://www.codemash.org/), an organization dedicated to

educating the development community. When not in front of the computer, Jason can typically be
found dreaming up home-remodeling projects, playing chess, and making homemade pasta. In his
effort to occasionally get away from the keyboard, he recently bought, of all things, a piano.

■BOB BRYLA is an Oracle 9i and 10g Certified Professional with more than
20 years of experience in database design, database application development,
training, and database administration. He is an Internet database analyst
and Oracle DBA at Lands’ End, Inc., in Dodgeville, Wisconsin. He is the
author of several other Oracle DBA books for both the novice and seasoned
professional.

xxix

About the Technical Reviewer

■MATT WADE is a programmer, database developer, and system administrator.
He currently works for a large financial firm by day and freelances by night.
He has experience programming in several languages, though he most
commonly utilizes PHP and C. On the database side of things, he regularly
uses MySQL and Microsoft SQL Server. As an accomplished system adminis-
trator, he regularly has to maintain Windows servers and Linux boxes and
prefers to deal with FreeBSD.
 Matt resides in Jacksonville, Florida, with his wife, Michelle, and their
three children, Matthew, Jonathan, and Amanda. When not working, Matt
can be found fishing, doing something at his church, or playing some video
game. Matt was the founder of Codewalkers.com, a leading resource for
PHP developers, and ran the site until 2007.

xxxi

Acknowledgments

Although it’s the author who tends to receive all the credit, this material would never have seen the
light of day without the tireless efforts of a truly talented supporting cast. Project managers Tracy
Brown-Collins and Kylie Johnston deftly guided us through the wilderness from the very beginning,
attempting to keep us on schedule despite our best efforts to do otherwise. Technical reviewer Matt
Wade tracked down countless issues and provided invaluable feedback. Copy editor Jennifer Whipple
did a fantastic job turning our gibberish into English. Editor and Oracle expert Jonathan Gennick
helped improve both the book’s instructional and technical approaches throughout.

I’d also like to especially thank Oracle oracle Bob Bryla for joining me on this long but exciting
project. You did a tremendous job, and I look forward to working with you again!

Of course, this book wouldn’t exist without the amazing contributions of the open source
community and the groundbreaking efforts of the Oracle Corporation. Thank you for making such
amazing software available to the world.

I’d like to thank Apress cofounder and publisher Gary Cornell, assistant publisher Dominic
Shakeshaft, associate publisher Grace Wong, assistant publisher Jeff Pepper, and my other Apress
colleagues for yet another opportunity to work with the greatest publisher on the planet!

Finally, I’d like to thank my friends and family for their best attempts to occasionally pry me
away from the laptop. At least you tried!

W. Jason Gilmore

Columbus, Ohio

I would like to thank the many people at Apress for helping me along this new and winding road,
especially Jonathan Gennick for convincing me to get on board in the first place, Kylie Johnston for
her relentless but appreciated schedule reminders, Matt Wade for seeing things during the technical
edit that would have slipped by me otherwise, Jennifer Whipple for reminding me of all those pesky
grammar rules from college that I have long forgotten, and Kelly Winquist for making me appreciate
Adobe Acrobat Professional.

Thanks also to all of my professional colleagues, both past and present, who provided me with
inspiration, guidance, courage, and many other intangibles without which this book would not be
possible. The list is long, but I would be remiss if I did not mention my co-workers, friends, and managers
at Lands’ End who provided expertise, advice, and M&Ms: Phil DeKok, Brook Swenson, Martha Graber,
Joe Johnson, Karen Shelton, and Amy Rees.

Bob Bryla

xxxiii

Introduction

Mahatma Gandhi once famously said, “First they ignore you, then they laugh at you, then they
fight you, then you win.” Although there’s not yet any clear winner, the software industry seems to
be following a similar path. Although the open source movement began back in the 1970s due to
Richard Stallman’s printer-borne frustrations in an MIT computer lab, it wasn’t until the late 1990s
that the community-driven approach to software development began to make any significant waves
in the business environment.

And with it came gasps of both horror and hilarity among the proprietary software elite. After all,
a bunch of volunteers could hardly produce code of a quality approaching, let alone surpassing, that
which is built in the hallowed cathedrals of software development, right? Such guffaws rang increasingly
loudly despite numerous clear successes in the open source community, such as the Apache dominating
position in the Web server market and Linux’s meteoric rise to become one of the world’s most
popular operating systems.

But soon it became apparent this approach did work after all, as was evidenced by the rapid
adoption of open source solutions for commonplace tasks such as code editing, FTP transfer, file
compression, databasing, and word processing. The commercial software industry responded with
overt attempts to discredit the competing open source competitors, highlighting feature deficiencies,
scaling problems, lack of traditional user support, and anything else that would justify its products’
often hefty price tags.

Yet more recently, many traditional software developers are coming to the conclusion that a
more cooperative attitude must be adopted if they are going to survive, let alone compete, in this
brave new world. Many have even determined that open source is actually a beneficial part of the
ecosystem and are making great strides toward not only making sure their software interoperates with
open source projects but also offering considerable contributions by way of resources and even code.

One of the most exciting such instances of the opportunities that can arise from such efforts
is the ability to use PHP, an open source project that also happens to be the world’s most popular
programming language for dynamic Web development, with Oracle, a proprietary database that also
happens to be the world’s most popular solution for managing data. Although for some time it has
been possible to use PHP and Oracle together, only recently have these efforts really begun to pay off
because of increased activities in both camps by way of not only improvements to the interface but
also to the creation of learning resources, documentation, and other utilities.

It seems as with most things in life, the success of the software development industry does not
lie squarely within one extreme approach but rather somewhere in between. We hope this book will
highlight the riches that can be wrought from a successful collaboration between the two.

Who This Book Is For
Although this book presumes the reader has no prior experience using PHP or Oracle, seasoned users
of these technologies may find it equally satisfactory because the authors have strived to create a
book that strikes a balance between tutorial and reference. Our goal is to provide you with a resource
that can be repeatedly referred to as you progress from a novice to an experienced developer.

xxxiv ■IN TR O D U CT IO N

Although basic introductions are often provided, this book does not seek to teach you funda-
mental programming concepts. After all, the book is not titled Beginning Programming with PHP
and Oracle. And it does not teach you HTML and Cascading Style Sheets (CSS). If you are a program-
ming novice or are not yet versed in the aforementioned Web technologies, consider picking up one
or several of the fine Apress books covering these topics.

Downloading the Code
Experimenting with the code found in this book is the most efficient way to understand the concepts
presented within it. For your convenience, a ZIP file containing all of the examples is freely available
for download from http://www.apress.com/.

Contacting the Authors
Jason loves corresponding with readers and invites you to e-mail him at jason@wjgilmore.com.
Follow his latest activities at http://www.wjgilmore.com/.

To contact Bob Bryla, you can e-mail him at rjbryla@centurytel.net.

1

■ ■ ■

C H A P T E R 1

Introducing PHP

In many ways the PHP language is representative of the stereotypical open source project, created
to meet a developer’s otherwise unmet needs and refined over time to meet the needs of its growing
community. As a budding PHP developer, it’s important you possess some insight into how the
language has progressed, as it will help you to understand the language’s strengths, and to some
extent the reasoning behind its occasional idiosyncrasies.

Additionally, because the language is so popular, having some understanding of the differences
between the versions—most notably versions 4, 5, and 6—will help when evaluating Web hosting
providers and PHP-driven applications for your own needs.

To help you quickly get up to speed in this regard, this chapter will get you acquainted with PHP’s
features and version-specific differences. By the conclusion of this chapter, you’ll learn the following:

• How a Canadian developer’s Web page traffic counter spawned one of the world’s most popular
scripting languages

• What PHP’s developers did to reinvent the language, making version 5 the best yet released

• Why PHP 6 is going to further propel PHP’s adoption in the enterprise

• Which features of PHP attract both new and expert programmers alike

■Note At the time of publication, PHP 6 was still a beta release, although many of the features are stable enough
that they can safely be discussed throughout the course of the book. But be forewarned; some of these features
could change before the final version is released.

History
The origins of PHP date back to 1995 when an independent software development contractor named
Rasmus Lerdorf developed a Perl/CGI script that enabled him to know how many visitors were reading
his online résumé. His script performed two tasks: logging visitor information, and displaying the
count of visitors to the Web page. Because the Web as we know it today was still young at that time,
tools such as these were nonexistent, and they prompted e-mails inquiring about Lerdorf’s scripts.
Lerdorf thus began giving away his toolset, dubbed Personal Home Page (PHP).

The clamor for the PHP toolset prompted Lerdorf to continue developing the language, with
perhaps the most notable early change being a new feature for converting data entered in an HTML
form into symbolic variables, encouraging exportation into other systems. To accomplish this, he
opted to continue development in C code rather than Perl. Ongoing additions to the PHP toolset
culminated in November 1997 with the release of PHP 2.0, or Personal Home Page/Form Interpreter

2 CH AP T E R 1 ■ I N TR O D U C I N G P H P

(PHP/FI). As a result of PHP’s rising popularity, the 2.0 release was accompanied by a number of
enhancements and improvements from programmers worldwide.

The new PHP release was extremely popular, and a core team of developers soon joined Lerdorf.
They kept the original concept of incorporating code directly alongside HTML and rewrote the parsing
engine, giving birth to PHP 3.0. By the June 1998 release of version 3.0, more than 50,000 users were
using PHP to enhance their Web pages.

Development continued at a hectic pace over the next two years, with hundreds of functions
being added and the user count growing in leaps and bounds. At the beginning of 1999, Netcraft
(http://www.netcraft.com/), an Internet research and analysis company, reported a conservative
estimate of a user base of more than 1 million, making PHP one of the most popular scripting languages
in the world. Its popularity surpassed even the greatest expectations of the developers, as it soon
became apparent that users intended to use PHP to power far larger applications than originally
anticipated. Two core developers, Zeev Suraski and Andi Gutmans, took the initiative to completely
rethink the way PHP operated, culminating in a rewriting of the PHP parser, dubbed the Zend scripting
engine. The result of this work was in the PHP 4 release.

■Note In addition to leading development of the Zend engine and playing a major role in steering the overall
development of the PHP language, Suraski and Gutmans are cofounders of Zend Technologies Ltd. (http://
www.zend.com/). Zend is the most visible provider of products and services for developing, deploying, and
managing PHP applications. Check out the Zend Web site for more about the company’s offerings, as well as
an enormous amount of free learning resources.

PHP 4
On May 22, 2000, roughly 18 months after the first official announcement of the new development
effort, PHP 4.0 was released. Many considered the release of PHP 4 to be the language’s official debut
within the enterprise development scene, an opinion backed by the language’s meteoric rise in
popularity. Just a few months after the major release, Netcraft estimated that PHP had been installed
on more than 3.6 million domains.

PHP 4 added several enterprise-level improvements to the language, including the following:

Improved resource handling: One of version 3.X’s primary drawbacks was scalability. This was
largely because the designers underestimated how rapidly the language would be adopted for
large-scale applications. The language wasn’t originally intended to run enterprise-class Web
sites, and continued interest in using it for such purposes caused the developers to rethink much
of the language’s mechanics in this regard.

Object-oriented support: Version 4 incorporated a degree of object-oriented functionality,
although it was largely considered an unexceptional and even poorly conceived implementa-
tion. Nonetheless, the new features played an important role in attracting users used to working
with traditional object-oriented programming (OOP) languages. Standard class and object
development methodologies were made available in addition to features such as object over-
loading and run-time class information. A much more comprehensive OOP implementation
has been made available in version 5 and is introduced in Chapter 6.

Native session-handling support: HTTP session handling, available to version 3.X users through
the third-party package PHPLIB (http://phplib.sourceforge.net) was natively incorporated
into version 4. This feature offers developers a means for tracking user activity and preferences
with unparalleled efficiency and ease. Chapter 18 covers PHP’s session-handling capabilities.

CH AP T E R 1 ■ IN TR O D U C I N G P H P 3

Encryption: The MCrypt (http://mcrypt.sourceforge.net) library was incorporated into the
default distribution, offering users both full and hash encryption using encryption algorithms
including Blowfish, MD5, SHA1, and TripleDES, among others. Chapter 21 delves into PHP’s
encryption capabilities.

ISAPI support: ISAPI support offered users the ability to use PHP in conjunction with Microsoft’s
IIS Web server. Chapter 2 shows you how to install PHP on both the IIS and Apache Web servers.

Native COM/DCOM support: Another bonus for Windows users is PHP 4’s ability to access and
instantiate COM objects. This functionality opened up a wide range of interoperability with
Windows applications.

Native Java support: In another boost to PHP’s interoperability, support for binding to Java
objects from a PHP application was made available in version 4.0.

Perl Compatible Regular Expressions (PCRE) library: The Perl language has long been heralded as
the reigning royalty of the string parsing kingdom. The developers knew that powerful regular
expression functionality would play a major role in the widespread acceptance of PHP and opted to
simply incorporate Perl’s functionality rather than reproduce it, rolling the PCRE library package
into PHP’s default distribution (as of version 4.2.0). Chapter 9 introduces this important feature
in great detail and offers a general introduction to the often confusing regular expression syntax.

In addition to these features, literally hundreds of functions were added to version 4, greatly
enhancing the language’s capabilities. Many of these functions are discussed throughout the course
of the book.

PHP 4 represented a gigantic leap forward in the language’s maturity, offering new features,
power, and scalability that swayed an enormous number of burgeoning and expert developers alike.
Yet the PHP development team wasn’t content to sit on their hands for long and soon set upon
another monumental effort, one that could establish the language as the 800-pound gorilla of the
Web scripting world: PHP 5.

PHP 5
Version 5 was yet another watershed in the evolution of the PHP language. Although previous major
releases had enormous numbers of new library additions, version 5 contains improvements over
existing functionality and adds several features commonly associated with mature programming
language architectures:

Vastly improved object-oriented capabilities: Improvements to PHP’s object-oriented archi-
tecture is version 5’s most visible feature. Version 5 includes numerous functional additions
such as explicit constructors and destructors, object cloning, class abstraction, variable scope,
and interfaces, and a major improvement regarding how PHP handles object management.
Chapters 6 and 7 offer thorough introductions to this topic.

Try/catch exception handling: Devising custom error-handling strategies within structural
programming languages is, ironically, error-prone and inconsistent. To remedy this problem,
version 5 supports exception handling. Long a mainstay of error management in many languages,
such as C++, C#, Python, and Java, exception handling offers an excellent means for standard-
izing your error-reporting logic. This convenient methodology is introduced in Chapter 8.

Improved XML and Web Services support: XML support is now based on the libxml2 library, and
a new and rather promising extension for parsing and manipulating XML, known as SimpleXML,
has been introduced. In addition, a SOAP extension is now available. In Chapter 20, these two exten-
sions are introduced, along with a number of slick third-party Web Services extensions.

4 CH AP T E R 1 ■ I N TR O D U C I N G P H P

Native support for SQLite: Always keen on choice, the developers added support for the powerful
yet compact SQLite database server (http://www.sqlite.org/). SQLite offers a convenient solu-
tion for developers looking for many of the features found in some of the heavyweight database
products without incurring the accompanying administrative overhead. PHP’s support for this
powerful database engine is introduced in Chapter 22.

■Note The enhanced object-oriented capabilities introduced in PHP 5 resulted in an additional boost for the
language: it opened up the possibility for cutting-edge frameworks to be created using the language. Chapter 25
introduces you to one of the most popular frameworks available today, namely the Zend Framework (http://
framework.zend.com/).

With the release of version 5, PHP’s popularity hit what was at the time a historical high, having
been installed on almost 19 million domains, according to Netcraft. PHP was also by far the most
popular Apache module, available on almost 54 percent of all Apache installations, according to
Internet services consulting firm E-Soft Inc. (http://www.securityspace.com/).

PHP 6
At press time, PHP 6 was in beta and scheduled to be released by the conclusion of 2007. The decision to
designate this a major release (version 6) is considered by many to be a curious one, in part because
only one particularly significant feature has been added— Unicode support. However, in the program-
ming world, the word significant is often implied to mean sexy or marketable, so don’t let the addition of
Unicode support overshadow the many other important features that have been added to PHP 6.
A list of highlights is found here:

• Unicode support: Native Unicode support has been added.

• Security improvements: A considerable number of security-minded improvements have
been made that should greatly decrease the prevelance of security-related gaffes that to be
frank aren’t so much a fault of the language, but are due to inexperienced programmers running
with scissors, so to speak. These changes are discussed in Chapter 2.

• New language features and constructs: A number of new syntax features have been added,
including, most notably, a 64-bit integer type, a revamped foreach looping construct for
multidimensional arrays, and support for labeled breaks. Some of these features are discussed
in Chapter 3.

At press time, PHP’s popularity was at a historical high. According to Netcraft, PHP has been
installed on more than 20 million domains. According to E-Soft Inc., PHP remains the most popular
Apache module, available on more than 40 percent of all Apache installations.

So far, this chapter has discussed only version-specific features of the language. Each version
shares a common set of characteristics that play a very important role in attracting and retaining a
large user base. In the next section, you’ll learn about these foundational features.

■Note You might be wondering why versions 4, 5, and 6 were mentioned in this chapter. After all, isn’t only the
newest version relevant? While you’re certainly encouraged to use the latest stable version, versions 4 and 5 remain
in widespread use and are unlikely to go away anytime soon. Therefore having some perspective regarding each
version’s capabilities and limitations is a good idea, particularly if you work with clients who might not be as keen
to keep up with the bleeding edge of PHP technology.

CH AP T E R 1 ■ IN TR O D U C I N G P H P 5

General Language Features
Every user has his or her own specific reason for using PHP to implement a mission-critical applica-
tion, although one could argue that such motives tend to fall into four key categories: practicality,
power, possibility, and price.

Practicality
From the very start, the PHP language was created with practicality in mind. After all, Lerdorf’s orig-
inal intention was not to design an entirely new language, but to resolve a problem that had no readily
available solution. Furthermore, much of PHP’s early evolution was not the result of the explicit
intention to improve the language itself, but rather to increase its utility to the user. The result is a
language that allows the user to build powerful applications even with a minimum of knowledge.
For instance, a useful PHP script can consist of as little as one line; unlike C, there is no need for the
mandatory inclusion of libraries. For example, the following represents a complete PHP script, the
purpose of which is to output the current date, in this case one formatted like September 23, 2007:

<?php echo date("F j, Y");?>

Don’t worry if this looks foreign to you. In later chapters, the PHP syntax will be explained in
great detail. For the moment just try to get the gist of what’s going on.

Another example of the language’s penchant for compactness is its ability to nest functions. For
instance, you can effect numerous changes to a value on the same line by stacking functions in a
particular order. The following example produces a string of five alphanumeric characters such
as a3jh8:

$randomString = substr(md5(microtime()), 0, 5);

PHP is a loosely typed language, meaning there is no need to explicitly create, typecast, or destroy a
variable, although you are not prevented from doing so. PHP handles such matters internally, creating
variables on the fly as they are called in a script, and employing a best-guess formula for automatically
typecasting variables. For instance, PHP considers the following set of statements to be perfectly valid:

<?php
 $number = "5"; // $number is a string
 $sum = 15 + $number; // Add an integer and string to produce integer
 $sum = "twenty"; // Overwrite $sum with a string.
?>

PHP will also automatically destroy variables and return resources to the system when the script
completes. In these and in many other respects, by attempting to handle many of the administrative
aspects of programming internally, PHP allows the developer to concentrate almost exclusively on
the final goal, namely a working application.

Power
PHP developers have more than 180 libraries at their disposal, collectively containing well over 1,000
functions. Although you’re likely aware of PHP’s ability to interface with databases, manipulate form
information, and create pages dynamically, you might not know that PHP can also do the following:

• Create and manipulate Adobe Flash and Portable Document Format (PDF) files

• Evaluate a password for guessability by comparing it to language dictionaries and easily
broken patterns

6 CH AP T E R 1 ■ I N TR O D U C I N G P H P

• Parse even the most complex of strings using the POSIX and Perl-based regular expression
libraries

• Authenticate users against login credentials stored in flat files, databases, and even Microsoft’s
Active Directory

• Communicate with a wide variety of protocols, including LDAP, IMAP, POP3, NNTP, and
DNS, among others

• Tightly integrate with a wide array of credit-card processing solutions

And this doesn’t take into account what’s available in the PHP Extension and Application
Repository (PEAR), which aggregates hundreds of easily installable open source packages that serve
to further extend PHP in countless ways. You can learn more about PEAR in Chapter 11. In the coming
chapters you’ll learn about many of these libraries and several PEAR packages.

Possibility
PHP developers are rarely bound to any single implementation solution. On the contrary, a user is
typically fraught with choices offered by the language. For example, consider PHP’s array of database
support options. Native support is offered for more than 25 database products, including Adabas D,
dBase, Empress, FilePro, FrontBase, Hyperwave, IBM DB2, Informix, Ingres, InterBase, mSQL,
Microsoft SQL Server, MySQL, Oracle, Ovrimos, PostgreSQL, Solid, Sybase, Unix dbm, and Velocis.
In addition, abstraction layer functions are available for accessing Berkeley DB–style databases.
Several generalized database abstraction solutions are also available, among the most popular being
PDO (http://www.php.net/pdo) and MDB2 (http://pear.php.net/package/MDB2). Finally, if you’re
looking for an object relational mapping (ORM) solution, projects such as Propel (http://propel.
phpdb.org/trac/) should fit the bill quite nicely.

PHP’s flexible string-parsing capabilities offer users of differing skill sets the opportunity to
not only immediately begin performing complex string operations but also to quickly port programs
of similar functionality (such as Perl and Python) over to PHP. In addition to more than 85 string-
manipulation functions, both POSIX- and Perl-based regular expression formats are supported.

Do you prefer a language that embraces procedural programming? How about one that embraces
the object-oriented paradigm? PHP offers comprehensive support for both. Although PHP was orig-
inally a solely functional language, the developers soon came to realize the importance of offering
the popular OOP paradigm and took the steps to implement an extensive solution.

The recurring theme here is that PHP allows you to quickly capitalize on your current skill set
with very little time investment. The examples set forth here are but a small sampling of this strategy,
which can be found repeatedly throughout the language.

Price
PHP is available free of charge! Since its inception, PHP has been without usage, modification, and
redistribution restrictions. In recent years, software meeting such open licensing qualifications has
been referred to as open source software. Open source software and the Internet go together like bread
and butter. Open source projects such as Sendmail, Bind, Linux, and Apache all play enormous roles
in the ongoing operations of the Internet at large. Although open source software’s free availability
has been the point most promoted by the media, several other characteristics are equally important
if not more so:

CH AP T E R 1 ■ IN TR O D U C I N G P H P 7

Free of licensing restrictions imposed by most commercial products: Open source software
users are freed of the vast majority of licensing restrictions one would expect of commercial
counterparts. Although some discrepancies do exist among license variants, users are largely
free to modify, redistribute, and integrate the software into other products.

Open development and auditing process: Although not without incidents, open source soft-
ware has long enjoyed a stellar security record. Such high-quality standards are a result of the
open development and auditing process. Because the source code is freely available for anyone
to examine, security holes and potential problems are rapidly found and fixed. This advantage
was perhaps best summarized by open source advocate Eric S. Raymond, who wrote “Given
enough eyeballs, all bugs are shallow.”

Participation is encouraged: Development teams are not limited to a particular organization.
Anyone who has the interest and the ability is free to join the project. The absence of member
restrictions greatly enhances the talent pool for a given project, ultimately contributing to a
higher-quality product.

Summary
Understanding more about the PHP language’s history and widely used versions is going to prove
quite useful as you become more acquainted with the language and begin seeking out both hosting
providers and third-party solutions. This chapter satisfied that requirement by providing some insight
into PHP’s history and an overview of version 4, 5, and 6’s core features.

In Chapter 2, prepare to get your hands dirty, as you’ll delve into the PHP installation and configu-
ration process, and learn more about what to look for when searching for a Web hosting provider.
Although readers often liken these types of chapters to scratching nails on a chalkboard, you can gain
a lot from learning more about this process. Much like a professional cyclist or race car driver, the
programmer with hands-on knowledge of the tweaking and maintenance process often holds an
advantage over those without by virtue of a better understanding of both the software’s behaviors
and quirks. So grab a snack and cozy up to your keyboard—it’s time to build.

9

■ ■ ■

C H A P T E R 2

Configuring Your Environment

Chances are you’re going to rely upon an existing corporate IT infrastructure or a third-party Web
hosting provider for hosting your PHP-driven Web sites, alleviating you of the need to attain a deep
understanding of how to build and administrate a Web server. However, as most prefer to develop
applications on a local workstation or laptop, or on a dedicated development server, you’re likely going
to need to know how to at least install and configure PHP and a Web server (in this case, Apache and
Microsoft IIS).

Having at least a rudimentary understanding of this process has a second benefit as well: it provides
you with the opportunity to learn more about the many features of PHP and the Web server, which
might not otherwise be commonly touted. This knowledge can be useful not only in terms of helping
you to evaluate whether your Web environment is suited to your vision for a particular project, but
also in terms of aiding you in troubleshooting problems with installing third-party software (which
may arise due to a misconfigured or hobbled PHP installation).

To that end, in this chapter you’ll be guided through the process of installing PHP on both the
Windows and Linux platforms. Because PHP is of little use without a Web server, along the way you’ll
learn how to install and configure Apache on both Windows and Linux, and Microsoft IIS 7 on Windows.

This chapter concludes with an overview of select PHP editors and IDEs (integrated develop-
ment environments), and shares some insight into what you should keep in mind when choosing a
Web hosting provider.

Specifically, you’ll learn how to do the following:

• Install Apache and PHP on the Linux platform

• Install Apache, IIS, and PHP on the Microsoft Windows platform

• Test your installation to ensure that all of the components are properly working and trouble-
shoot common pitfalls

• Configure PHP to satisfy practically every conceivable requirement

• Choose an appropriate PHP IDE to help you write code faster and more efficiently

• Choose a Web hosting provider suited to your specific needs

Installation Prerequisites
Let’s begin the installation process by downloading the necessary software. At a minimum, this will
entail downloading PHP and the appropriate Web server (either Apache or IIS 7, depending on your
platform and preference). If your platform requires additional downloads, that information will be
provided in the appropriate section.

10 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

■Tip In this chapter you’ll be guided through the manual installation and configuration process. Manually installing and
configuring Apache and PHP is a good idea because it will familiarize you with the many configuration options at
your disposal, allowing you to ultimately wield greater control over how your Web sites operate. However, if you’re
ultimately going to rely on the services of a Web hosting provider and just want to quickly set up a test environment
so you can get to coding, consider downloading XAMPP (http://www.apachefriends.org/en/xampp.html),
a free automated Apache installer that includes, among other things, PHP, Perl, and MySQL. XAMPP is available for
Linux and Windows, with Mac OS X and Solaris solutions in development.

Downloading Apache
These days, Apache is packaged with all mainstream Linux distributions, meaning if you’re using
one of these platforms, chances are quite good you already have it installed or can easily install it
through your distribution’s packaging service (e.g., by running the apt-get command on Ubuntu).
Therefore, if this applies to you, by all means skip this section and proceed to the section “Down-
loading PHP.” However, if you’d like to install Apache manually, follow along with this section.

Because of tremendous daily download traffic, it’s suggested you choose a download location
most closely situated to your geographical location (known as a mirror). At the time of this writing, the
following page offered a listing of 251 mirrors located in 52 global regions: http://www.apache.org/
mirrors/.

Navigate to this page and choose a suitable mirror by clicking the appropriate link. The resulting
page will consist of a list of directories representing all projects found under the Apache Software
Foundation umbrella. Enter the httpd directory. This will take you to the page that includes links to
the most recent Apache releases and various related projects and utilities. The distribution is avail-
able in two formats:

Source: If your target server platform is Linux, consider downloading the source code. Although
there is certainly nothing wrong with using one of the convenient binary versions, the extra
time invested in learning how to compile from source will provide you with greater configura-
tion flexibility. If your target platform is Windows and you’d like to compile from source, a
separate source package intended for the Win32 platform is available for download. However,
note that this chapter does not discuss the Win32 source installation process. Instead, this chapter
focuses on the much more commonplace (and recommended) binary installer.

Binary: Binaries are available for a number of operating systems, among them Microsoft
Windows, Sun Solaris, and OS/2. You’ll find these binaries under the binaries directory.

So which Apache version should you download? Although Apache 2 was released more than five
years ago, version 1.X remains in widespread use. In fact, it seems that the majority of shared-server
ISPs have yet to migrate to version 2.X. The reluctance to upgrade doesn’t have anything to do with
issues regarding version 2.X, but rather is a testament to the amazing stability and power of version 1.X.
For standard use, the external differences between the two versions are practically undetectable;
therefore, consider going with Apache 2 to take advantage of its enhanced stability. In fact, if you
plan to run Apache on Windows for either development or deployment purposes, it is recommended
that you choose version 2 because it is a complete rewrite of the previous Windows distribution and
is significantly more stable than its predecessor.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 11

Downloading PHP
Although PHP comes bundled with most Linux distributions nowadays, you should download the
latest stable version from the PHP Web site. To decrease download time, choose from the approxi-
mately 100 mirrors residing in more than 50 countries, a list of which is available here: http://
www.php.net/mirrors.php.

Once you’ve chosen the closest mirror, navigate to the downloads page and choose one of the
available distributions:

Source: If Linux is your target server platform, or if you plan to compile from source for the
Windows platform, choose this distribution format. Building from source on Windows isn’t
recommended and isn’t discussed in this book. Unless your situation warrants very special
circumstances, the prebuilt Windows binary will suit your needs just fine. This distribution is
compressed in Bzip2 and Gzip formats. Keep in mind that the contents are identical; the different
compression formats are just there for your convenience.

Windows zip package: If you plan to use PHP in conjunction with Apache on Windows, you
should download this distribution because it’s the focus of the later installation instructions.

Windows installer: This version offers a convenient Windows installer interface for installing
and configuring PHP, and support for automatically configuring the IIS, PWS, and Xitami servers.
Although you could use this version in conjunction with Apache, it is not recommended. Instead,
use the Windows zip package version. Further, if you’re interested in configuring PHP to run
with IIS, see the later section titled “Installing IIS and PHP on Windows.” A recent collaboration
between Microsoft and PHP product and services leader Zend Technologies Ltd. has resulted in a
greatly improved process that is covered in that section.

If you are interested in playing with the very latest PHP development snapshots, you can down-
load both source and binary versions at http://snaps.php.net/. Keep in mind that some of the
versions made available via this Web site are not intended for use with live Web sites.

Obtaining the Documentation
Both the Apache and PHP projects offer truly exemplary documentation, covering practically every
aspect of the respective technology in lucid detail. You can view the latest respective versions online
via http://httpd.apache.org/ and http://www.php.net/, or download a local version to your local
machine and read it there.

Downloading the Apache Manual

Each Apache distribution comes packaged with the latest versions of the documentation in XML and
HTML formats and in nine languages (Brazilian Portuguese, Chinese, Dutch, English, German, Japa-
nese, Russian, Spanish, and Turkish). The documentation is located in the directory docs, found in
the installation root directory.

Should you need to upgrade your local version, require an alternative format such as PDF or
Microsoft Compiled HTML Help (CHM) files, or want to browse it online, proceed to the following
Web site: http://httpd.apache.org/docs-project/.

12 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

Downloading the PHP Manual

The PHP documentation is available in more than 20 languages and in a variety of formats, including
a single HTML page, multiple HTML pages, and CHM files. These versions are generated from DocBook-
based master files, which can be retrieved from the PHP project’s CVS server should you wish to
convert to another format. The documentation is located in the directory manual in the installation
directory.

Should you need to upgrade your local version or retrieve an alternative format, navigate to the
following page and click the appropriate link: http://www.php.net/docs.php.

Installing Apache and PHP on Linux
This section guides you through the process of building Apache and PHP from source, targeting
the Linux platform. You need a respectable ANSI-C compiler and build system, two items that are
commonplace on the vast majority of distributions available today. In addition, PHP requires both
Flex (http://flex.sourceforge.net/) and Bison (http://www.gnu.org/software/bison/bison.html),
while Apache requires at least Perl version 5.003. If you’ve downloaded PHP 6, you’ll also need to install
the International Components for Unicode (ICU) package version 3.4 (http://icu.sourceforge.net/),
although this may very well be bundled with PHP in the future. Again, all of these items are prevalent
on most, if not all, modern Linux platforms. Finally, you’ll need root access to the target server to
complete the build process.

For the sake of convenience, before beginning the installation process, consider moving both
packages to a common location—/usr/src/, for example. The installation process follows:

1. Unzip and untar Apache and PHP. In the following code, the X represents the latest stable
version numbers of the distributions you downloaded in the previous section:

%>gunzip httpd-2_X_XX.tar.gz
%>tar xvf httpd-2_X_XX.tar
%>gunzip php-XX.tar.gz
%>tar xvf php-XX.tar

2. Configure and build Apache. At a minimum, you’ll want to pass the option --enable-so,
which tells Apache to enable the ability to load shared modules:

%>cd httpd-2_X_XX
%>./configure --enable-so [other options]
%>make

3. Install Apache:

%>make install

4. Configure, build, and install PHP (see the section “Configuring PHP at Build Time on Linux”
for information regarding modifying installation defaults and incorporating third-party
extensions into PHP). In the following steps, APACHE_INSTALL_DIR is a placeholder for the
path to Apache’s installed location, for instance /usr/local/apache2:

%>cd ../php-X_XX
%>./configure --with-apxs2=APACHE_INSTALL_DIR/bin/apxs [other options]
%>make
%>make install

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 13

5. PHP comes bundled with a configuration file that controls many aspects of PHP’s behavior.
This file is known as php.ini, but it was originally named php.ini-dist. You need to copy this
file to its appropriate location and rename it php.ini. The later section “Configuring PHP”
examines php.ini’s purpose and contents in detail. Note that you can place this configu-
ration file anywhere you please, but if you choose a nondefault location, you also need to
configure PHP using the --with-config-file-path option. Also note that there is another
default configuration file at your disposal, php.ini-recommended. This file sets various non-
standard settings and is intended to better secure and optimize your installation, although
this configuration may not be fully compatible with some of the legacy applications. Con-
sider using this file in lieu of php.ini-dist. To use this file, execute the following command:

%>cp php.ini-recommended /usr/local/lib/php.ini

6. Open Apache’s configuration file, known as httpd.conf, and verify that the following lines
exist. (The httpd.conf file is located at APACHE_INSTALL_DIR/conf/httpd.conf.) If they don’t
exist, go ahead and add them. Consider adding each alongside the other LoadModule and
AddType entries, respectively:

LoadModule php6_module modules/libphp6.so
AddType application/x-httpd-php .php

Because at the time of publication PHP 6 wasn’t yet official, you should use the latest stable
version of PHP 5 if you’re planning on running any production applications. In the case of PHP 5, the
lines will look like this:

LoadModule php5_module modules/libphp5.so
AddType application/x-httpd-php .php

Believe it or not, that’s it. Restart the Apache server with the following command:

%>/usr/local/apache2/bin/apachectl restart

Now proceed to the section “Testing Your Installation.”

■Tip The AddType directive in step 6 binds a MIME type to a particular extension or extensions. The .php exten-
sion is only a suggestion; you can use any extension you like, including .html, .php5, or even .jason. In addition,
you can designate multiple extensions simply by including them all on the line, each separated by a space. While
some users prefer to use PHP in conjunction with the .html extension, keep in mind that doing so will ultimately
cause the file to be passed to PHP for parsing every single time an HTML file is requested. Some people may
consider this convenient, but it will come at the cost of performance.

Installing Apache and PHP on Windows
Whereas previous Windows-based versions of Apache weren’t optimized for the Windows platform,
Apache 2 was completely rewritten to take advantage of Windows platform-specific features. Even if
you don’t plan to deploy your application on Windows, it nonetheless makes for a great localized
testing environment for those users who prefer it over other platforms. The installation process follows:

1. Start the Apache installer by double-clicking the apache_X.X.XX-win32-x86-no_ssl.msi icon.
The Xs in this file name represent the latest stable version numbers of the distributions you
downloaded in the previous section.

14 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

2. The installation process begins with a welcome screen. Take a moment to read the screen
and then click Next.

3. The license agreement is displayed next. Carefully read through the license. Assuming that
you agree with the license stipulations, click Next.

4. A screen containing various items pertinent to the Apache server is displayed next. Take a
moment to read through this information and then click Next.

5. You will be prompted for various items pertinent to the server’s operation, including the
network domain, the server name, and the administrator’s e-mail address. If you know this
information, fill it in now; otherwise, just enter localhost for the first two items and put in any
e-mail address for the last. You can always change this information later in the httpd.conf
file. You’ll also be prompted as to whether Apache should run as a service for all users or only
for the current user. If you want Apache to automatically start with the operating system,
which is recommended, then choose to install Apache as a service for all users. When you’re
finished, click Next.

6. You are prompted for a Setup Type: Typical or Custom. Unless there is a specific reason you
don’t want the Apache documentation installed, choose Typical and click Next. Otherwise,
choose Custom, click Next, and on the next screen, uncheck the Apache Documentation option.

7. You’re prompted for the Destination folder. By default, this is C:\Program Files\Apache
Group. Consider changing this to C:\, which will create an installation directory C:\apache2\.
Regardless of what you choose, keep in mind that the latter is used here for the sake of con-
vention. Click Next.

8. Click Install to complete the installation. That’s it for Apache. Next you’ll install PHP.

9. Unzip the PHP package, placing the contents into C:\php6\. You’re free to choose any installation
directory you please, but avoid choosing a path that contains spaces. Regardless, the instal-
lation directory C:\php6\ will be used throughout this chapter for consistency.

10. Navigate to C:\apache2\conf and open httpd.conf for editing.

11. Add the following three lines to the httpd.conf file. Consider adding them directly below the
block of LoadModule entries located in the bottom of the Global Environment section:

LoadModule php6_module c:/php6/php6apache2.dll
AddType application/x-httpd-php .php
PHPIniDir "c:\php6"

Because at the time of publication PHP 6 wasn’t yet official, you should use the latest stable
version of PHP 5 if you’re planning on running any production applications. To do so, you’ll need to
make some minor changes to the previous lines, as follows:

LoadModule php5_module c:/php5/php5apache2.dll
AddType application/x-httpd-php .php
PHPIniDir "c:\php5"

■Tip The AddType directive in step 11 binds a MIME type to a particular extension or extensions. The .php
extension is only a suggestion; you can use any extension you like, including .html, .php5, or even .jason. In
addition, you can designate multiple extensions simply by including them all on the line, each separated by a space.
While some users prefer to use PHP in conjunction with the .html extension, keep in mind that doing so will cause
the file to be passed to PHP for parsing every single time an HTML file is requested. Some people may consider this
convenient, but it will come at the cost of a performance decrease. Ultimately, it is strongly recommended you stick
to common convention and use .php.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 15

12. Rename the php.ini-dist file to php.ini and save it to the C:\php6 directory. The php.ini file
contains hundreds of directives that are responsible for tweaking PHP’s behavior. The later
section “Configuring PHP” examines php.ini’s purpose and contents in detail. Note that you
can place this configuration file anywhere you please, but if you choose a nondefault location,
you also need to configure PHP using the --with-config-file-path option. Also note that
there is another default configuration file at your disposal, php.ini-recommended. This file
sets various nonstandard settings and is intended to better secure and optimize your instal-
lation, although this configuration may not be fully compatible with some of the legacy
applications. Consider using this file in lieu of php.ini-dist.

13. If you’re using Windows NT, 2000, XP, or Vista, navigate to Start ➤ Settings ➤ Control Panel ➤
Administrative Tools ➤ Services. If you’re running Windows 98, see the instructions provided
at the conclusion of the next step.

14. Locate Apache in the list and make sure that it is started. If it is not started, highlight the label and
click Start the Service, located to the left of the label. If it is started, highlight the label and click
Restart the Service, so that the changes made to the httpd.conf file take effect. Next, right-click
Apache and choose Properties. Ensure that the startup type is set to Automatic. If you’re still
using Windows 95/98, you need to start Apache manually via the shortcut provided on the
start menu.

Installing IIS and PHP on Windows
Microsoft Windows remains the operating system of choice even among most open source–minded
developers, largely due to reasons of convenience; after all, as the dominant desktop operating
system, it makes sense that most would prefer to continue using this familiar environment. Yet for
reasons of both stability and performance, deploying PHP-driven Web sites on Linux running an
Apache Web server has historically been the best choice.

But this presents a problem if you’d like to develop and even deploy your PHP-driven Web site
on a Windows server running the Microsoft IIS Web server. Microsoft, in collaboration with PHP
products and services provider Zend Technologies Ltd., is seeking to eliminate this inconvenience
through a new IIS component called FastCGI. FastCGI greatly improves the way IIS interacts with
certain third-party applications that weren’t written with IIS in mind, including PHP (versions 5.X
and newer are supported). Though FastCGI wasn’t intended for use within production environments
at the time of publication, it is ready for testing and development purposes. In this section you’ll
learn how to configure PHP to run in conjunction with IIS.

Installing IIS and PHP
To begin, download PHP as explained in the earlier section “Downloading PHP.” Be sure to choose
the Windows zip package distribution as described in that section. Extract the zip file to C:\php.
Believe it or not, this is all that’s required in regard to installing PHP.

Next you’ll need to install IIS. In order to take advantage of FastCGI, you’ll need to install IIS
version 5.1 or greater. IIS 5.1 is available for Windows 2000 Professional, Windows 2000 Server, and
Windows XP Professional, whereas IIS 6 is available for Windows 2003 Server. You can verify whether
IIS is installed on these operating systems by navigating to Start ➤ Run and executing inetmgr at the
prompt. If the IIS manager loads, it’s installed and you can proceed to the next section, “Configuring
FastCGI to Manage PHP Processes.” If it is not installed, insert the Windows XP Professional CD into
your CD-ROM drive and navigate to Start ➤ Control Panel ➤ Add/Remove Programs, and select Add/
Remove Windows Components. From here, check the box next to Internet Information Services (IIS) and
click Next, then click OK.

16 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

■Note It’s not possible to download any version of IIS; they are bundled solely with the corresponding version of
Windows, therefore you will need the Windows installation disk if IIS isn’t already installed on your computer. Also,
IIS is not available nor installable on Windows 98, Windows ME, or Windows XP Home Edition.

IIS 7 is bundled with both Windows Vista and Windows Server “Longhorn”; however, it may not
be installed on your machine. You can verify whether IIS is installed on these operating systems by
navigating to Start ➤ Run and executing inetmgr at the prompt. If the IIS manager loads, it’s installed,
and you can proceed to the next section, “Configuring FastCGI to Manage PHP Processes.” Other-
wise, install IIS 7 by navigating to Start ➤ Settings ➤ Control Panel ➤ Programs and Features and
clicking the Turn Windows Features On and Off link appearing to the right of the window. As shown
in Figure 2-1, a new window will appear containing a list of features you’re free to enable and disable
at will, including IIS. Enable IIS by clicking the checkbox next to it.

You’ll also want to enable FastCGI by clicking the checkbox next to CGI. Once both of these
checkboxes have been enabled, click the OK button.

Once the installation process completes, you’ll need to restart the operating system for the
changes to take effect.

Figure 2-1. Enabling IIS on Vista

Configuring FastCGI to Manage PHP Processes
Next you’ll need to configure FastCGI to handle PHP-specific requests. This is done by navigating to
the IIS Manager (Start ➤ Run, then enter inetmgr), clicking Handler Mappings, clicking Add Module
Mapping, and then entering the mapping as shown in Figure 2-2.

PHP and IIS are now properly installed and configured on your machine. Proceed to the next
section to test your installation.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 17

Figure 2-2. Confirming the FastCGI Handler Mapping is installed

Testing Your Installation
The best way to verify your PHP installation is by attempting to execute a PHP script. Open a text
editor and add the following lines to a new file:

<?php
 phpinfo();
?>

If you’re running Apache, save the file within the htdocs directory as phpinfo.php. If you’re
running IIS, save the file within C:\inetpub\wwwroot\.

Now open a browser and access this file by entering the following URL: http://localhost/
phpinfo.php.

If all goes well, you should see output similar to that shown in Figure 2-3. If you’re attempting
to run this script on a Web hosting provider’s server, and you receive an error message stating phpinfo()
has been disabled for security reasons, you’ll need to try executing another script. Try executing this one
instead, which should produce some simple output:

<?php
 echo "A simple but effective PHP test!";
?>

18 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

■Tip Executing the phpinfo() function is a great way to learn about your PHP installation, as it offers extensive
information regarding the server, operating system environment, and available extensions.

Figure 2-3. Output from PHP’s phpinfo() function

If you encountered no noticeable errors during the build process but you are not seeing the
appropriate output, it may be due to one or more of the following reasons:

• Changes made to Apache’s configuration file do not take effect until it has been restarted.
Therefore, be sure to restart Apache after adding the necessary PHP-specific lines to the
httpd.conf file.

• When you modify the Apache configuration file, you may accidentally introduce an invalid
character, causing Apache to fail upon an attempt to restart. If Apache will not start, go back
and review your changes.

• Verify that the file ends in the PHP-specific extension as specified in the httpd.conf file. For
example, if you’ve defined only .php as the recognizable extension, don’t try to embed PHP
code in an .html file.

• Make sure that you’ve delimited the PHP code within the file. Neglecting to do this will cause
the code to output to the browser.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 19

• You’ve created a file named index.php and are trying unsuccessfully to call it as you would a
default directory index. Remember that by default, Apache only recognizes index.html in this
fashion. Therefore, you need to add index.php to Apache’s DirectoryIndex directive.

• If you’re running IIS, make sure the appropriate mapping is available, as shown in Figure 2-2.
If not, something went awry during the FastCGI installation process. Try removing that mapping
and installing FastCGI anew.

Configuring PHP
Although the base PHP installation is sufficient for most beginning users, chances are you’ll soon
want to make adjustments to the default configuration settings and possibly experiment with some
of the third-party extensions that are not built into the distribution by default. In this section you’ll
learn all about how to tweak PHP’s behavior and features to your specific needs.

Configuring PHP at Build Time on Linux
Building PHP as described earlier in the chapter is sufficient for getting started; however, you should
keep in mind many other build-time options are at your disposal. You can view a complete list of
configuration flags (there are more than 200) by executing the following:

%>./configure --help

To make adjustments to the build process, you just need to add one or more of these arguments
to PHP’s configure command, including a value assignment if necessary. For example, suppose you
want to enable PHP’s FTP functionality, a feature not enabled by default. Just modify the configura-
tion step of the PHP build process like so:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs --enable-ftp

As another example, suppose you want to enable PHP’s Java extension. Just reconfigure PHP
like so:

%>./configure --with-apxs2=/usr/local/apache2/bin/apxs \
 >--enable-java=[JDK-INSTALL-DIR]

One common point of confusion among beginners is to assume that simply including addi-
tional flags will automatically make this functionality available via PHP. This is not necessarily the case.
Keep in mind that you also need to install the software that is ultimately responsible for enabling the
extension support. In the case of the Java example, you need the Java Development Kit (JDK).

Customizing the Windows Build
A total of 45 extensions are bundled with PHP 5.1 and 5.2, a number that was pared to 35 extensions
with the current alpha version of PHP 6. However, to actually use any of these extensions, you need
to uncomment the appropriate line within the php.ini file. For example, if you’d like to enable PHP’s
XML-RPC extension, you need to make a few minor adjustments to your php.ini file:

1. Open the php.ini file and locate the extension_dir directive and assign it C:\php\ext\. If you
installed PHP in another directory, modify this path accordingly.

2. Locate the line ;extension=php_xmlrpc.dll. Uncomment this line by removing the preceding
semicolon. Save and close the file.

20 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

3. Restart the Web server and the extension is ready for use from within PHP. Keep in mind that
some extensions have additional configuration directives that may be found later in the
php.ini file.

When enabling these extensions, you may occasionally need to install other software. See the
PHP documentation for more information about each respective extension.

Run-Time Configuration
It’s possible to change PHP’s behavior at run time on both Windows and Linux through the php.ini
file. This file contains a myriad of configuration directives that collectively control the behavior of
each product. The remainder of this chapter focuses on PHP’s most commonly used configuration
directives, introducing the purpose, scope, and default value of each.

Managing PHP’s Configuration Directives
Before you delve into the specifics of each directive, this section demonstrates the various ways in
which these directives can be manipulated, including through the php.ini file, Apache’s httpd.conf
and .htaccess files, and directly through a PHP script.

The php.ini File

The PHP distribution comes with two configuration templates, php.ini-dist and php.ini-recommended.
You’ll want to rename one of these files to php.ini and place it in the location specified by the PHPIniDir
directive found in Apache’s httpd.conf file. It’s suggested that you use the latter because many of the
parameters found within it are already assigned their suggested settings. Taking this advice will likely
save you a good deal of initial time and effort securing and tweaking your installation because there
are well over 200 distinct configuration parameters in this file. Although the default values go a long
way toward helping you to quickly deploy PHP, you’ll probably want to make additional adjustments to
PHP’s behavior, so you’ll need to learn a bit more about php.ini and its many configuration parameters.
The upcoming section “PHP’s Configuration Directives” presents a comprehensive introduction to
many of these parameters, explaining the purpose, scope, and range of each.

The php.ini file is PHP’s global configuration file, much like httpd.conf is to Apache. This file
addresses 12 different aspects of PHP’s behavior:

• Language Options

• Safe Mode

• Syntax Highlighting

• Miscellaneous

• Resource Limits

• Error Handling and Logging

• Data Handling

• Paths and Directories

• File Uploads

• Fopen Wrappers

• Dynamic Extensions

• Module Settings

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 21

The section “PHP’s Configuration Directives” that follows will introduce many of the directives
found in the php.ini file. Later chapters will introduce module-specific directives as appropriate.

Before you are introduced to them, however, take a moment to review the php.ini file’s general
syntactical characteristics. The php.ini file is a simple text file, consisting solely of comments and the
directives and their corresponding values. Here’s a sample snippet from the file:

;
; Allow the <? tag
;
short_open_tag = Off

Lines beginning with a semicolon are comments; the parameter short_open_tag is assigned the
value Off.

■Tip Once you’re comfortable with a configuration parameter’s purpose, consider deleting the accompanying
comments to streamline the file’s contents, thereby decreasing later editing time.

Exactly when changes take effect depends on how you install PHP. If PHP is installed as a CGI
binary, the php.ini file is reread every time PHP is invoked, thus making changes instantaneous. If
PHP is installed as an Apache module, php.ini is only read in once, when the Apache daemon is first
started. Therefore, if PHP is installed in the latter fashion, you must restart Apache before any of the
changes take effect.

The Apache httpd.conf and .htaccess Files

When PHP is running as an Apache module, you can modify many of the directives through either
the httpd.conf file or the .htaccess file. This is accomplished by prefixing directive/value assign-
ment with one of the following keywords:

• php_value: Sets the value of the specified directive.

• php_flag: Sets the value of the specified Boolean directive.

• php_admin_value: Sets the value of the specified directive. This differs from php_value in that
it cannot be used within an .htaccess file and cannot be overridden within virtual hosts or
.htaccess.

• php_admin_flag: Sets the value of the specified directive. This differs from php_value in that
it cannot be used within an .htaccess file and cannot be overridden within virtual hosts or
.htaccess.

For example, to disable the short tags directive and prevent others from overriding it, add the
following line to your httpd.conf file:

php_admin_flag short_open_tag Off

Within the Executing Script

The third, and most localized, means for manipulating PHP’s configuration variables is via the
ini_set() function. For example, suppose you want to modify PHP’s maximum execution time for
a given script. Just embed the following command into the top of the script:

ini_set("max_execution_time","60");

22 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

Configuration Directive Scope

Can configuration directives be modified anywhere? The answer is no, for a variety of reasons,
mostly security related. Each directive is assigned a scope, and the directive can be modified only
within that scope. In total, there are four scopes:

• PHP_INI_PERDIR: Directive can be modified within the php.ini, httpd.conf, or .htaccess files

• PHP_INI_SYSTEM: Directive can be modified within the php.ini and httpd.conf files

• PHP_INI_USER: Directive can be modified within user scripts

• PHP_INI_ALL: Directive can be modified anywhere

PHP’s Configuration Directives
The following sections introduce many of PHP’s core configuration directives. In addition to a
general definition, each section includes the configuration directive’s scope and default value.
Because you’ll probably spend the majority of your time working with these variables from within
the php.ini file, the directives are introduced as they appear in this file.

Note that the directives introduced in this section are largely relevant solely to PHP’s general
behavior; directives pertinent to extensions, or to topics in which considerable attention is given
later in the book, are not introduced in this section but rather are introduced in the appropriate
chapter.

Language Options

The directives located in this section determine some of the language’s most basic behavior. You’ll
definitely want to take a few moments to become acquainted with these configuration possibilities.

engine = On | Off

Scope: PHP_INI_ALL; Default value: On
This parameter is responsible for determining whether the PHP engine is available. Turning it

off prevents you from using PHP at all. Obviously, you should leave this enabled if you plan to use PHP.

zend.ze1_compatibility_mode = On | Off

Scope: PHP_INI_ALL; Default value: Off
Some three years after PHP 5.0 was released, PHP 4.X is still in widespread use. One of the

reasons for the protracted upgrade cycle is due to some significant object-oriented incompatibilities
between PHP 4 and 5. The zend.ze1_compatibility_mode directive attempts to revert several of these
changes in PHP 5, raising the possibility that PHP 4 applications can continue to run without change
in version 5.

■Note The zend.ze1_compatibility_mode directive never worked as intended and was removed in PHP 6.

short_open_tag = On | Off

Scope: PHP_INI_ALL; Default value: On
PHP script components are enclosed within escape syntax. There are four different escape formats,

the shortest of which is known as short open tags, which looks like this:

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 23

<?
 echo "Some PHP statement";
?>

You may recognize that this syntax is shared with XML, which could cause issues in certain environ-
ments. Thus, a means for disabling this particular format has been provided. When short_open_tag is
enabled (On), short tags are allowed; when disabled (Off), they are not.

asp_tags = On | Off

Scope: PHP_INI_ALL; Default value: Off
PHP supports ASP-style script delimiters, which look like this:

<%
 echo "Some PHP statement";
%>

If you’re coming from an ASP background and prefer to continue using this delimiter syntax,
you can do so by enabling this tag.

■Note ASP-style tags are no longer available as of PHP 6.

precision = integer

Scope: PHP_INI_ALL; Default value: 12
PHP supports a wide variety of datatypes, including floating-point numbers. The precision

parameter specifies the number of significant digits displayed in a floating-point number representation.
Note that this value is set to 14 digits on Win32 systems and to 12 digits on Linux.

y2k_compliance = On | Off

Scope: PHP_INI_ALL; Default value: Off
Who can forget the Y2K scare of just a few years ago? Superhuman efforts were undertaken to

eliminate the problems posed by non-Y2K-compliant software, and although it’s very unlikely, some
users may be using wildly outdated, noncompliant browsers. If for some bizarre reason you’re sure
that a number of your site’s users fall into this group, then disable the y2k_compliance parameter;
otherwise, it should be enabled.

output_buffering = On | Off | integer

Scope: PHP_INI_SYSTEM; Default value: Off
Anybody with even minimal PHP experience is likely quite familiar with the following two

messages:

"Cannot add header information – headers already sent"
"Oops, php_set_cookie called after header has been sent"

These messages occur when a script attempts to modify a header after it has already been sent
back to the requesting user. Most commonly they are the result of the programmer attempting to send
a cookie to the user after some output has already been sent back to the browser, which is impossible
to accomplish because the header (not seen by the user, but used by the browser) will always precede
that output. PHP version 4.0 offered a solution to this annoying problem by introducing the concept

24 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

of output buffering. When enabled, output buffering tells PHP to send all output at once, after the
script has been completed. This way, any subsequent changes to the header can be made throughout
the script because it hasn’t yet been sent. Enabling the output_buffering directive turns output buff-
ering on. Alternatively, you can limit the size of the output buffer (thereby implicitly enabling output
buffering) by setting it to the maximum number of bytes you’d like this buffer to contain.

If you do not plan to use output buffering, you should disable this directive because it will hinder
performance slightly. Of course, the easiest solution to the header issue is simply to pass the infor-
mation before any other content whenever possible.

output_handler = string

Scope: PHP_INI_ALL; Default value: NULL
This interesting directive tells PHP to pass all output through a function before returning it to

the requesting user. For example, suppose you want to compress all output before returning it to the
browser, a feature supported by all mainstream HTTP/1.1-compliant browsers. You can assign
output_handler like so:

output_handler = "ob_gzhandler"

ob_gzhandler() is PHP’s compression-handler function, located in PHP’s output control library.
Keep in mind that you cannot simultaneously set output_handler to ob_gzhandler() and enable
zlib.output_compression (discussed next).

zlib.output_compression = On | Off | integer

Scope: PHP_INI_SYSTEM; Default value: Off
Compressing output before it is returned to the browser can save bandwidth and time. This

HTTP/1.1 feature is supported by most modern browsers and can be safely used in most applications.
You enable automatic output compression by setting zlib.output_compression to On. In addition,
you can simultaneously enable output compression and set a compression buffer size (in bytes) by
assigning zlib.output_compression an integer value.

zlib.output_handler = string

Scope: PHP_INI_SYSTEM; Default value: NULL
The zlib.output_handler specifies a particular compression library if the zlib library is not

available.

implicit_flush = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
Enabling implicit_flush results in automatically clearing, or flushing, the output buffer of its

contents after each call to print() or echo(), and completing each embedded HTML block. This
might be useful in an instance where the server requires an unusually long period of time to compile
results or perform certain calculations. In such cases, you can use this feature to output status updates to
the user rather than just wait until the server completes the procedure.

unserialize_callback_func = string

Scope: PHP_INI_ALL; Default value: NULL
This directive allows you to control the response of the unserializer when a request is made to

instantiate an undefined class. For most users, this directive is irrelevant because PHP already outputs a
warning in such instances if PHP’s error reporting is tuned to the appropriate level.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 25

serialize_precision = integer

Scope: PHP_INI_ALL; Default value: 100
The serialize_precision directive determines the number of digits stored after the floating

point when doubles and floats are serialized. Setting this to an appropriate value ensures that the
precision is not potentially lost when the numbers are later unserialized.

allow_call_time_pass_reference = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
Function arguments can be passed in two ways: by value and by reference. Exactly how each

argument is passed to a function at function call time can be specified in the function definition,
which is the recommended means for doing so. However, you can force all arguments to be passed
by reference at function call time by enabling allow_call_time_pass_reference.

The discussion of PHP functions in Chapter 4 addresses how functional arguments can be
passed both by value and by reference, and the implications of doing so.

Safe Mode

When you deploy PHP in a multiuser environment, such as that found on an ISP’s shared server, you
might want to limit its functionality. As you might imagine, offering all users full reign over all PHP’s
functions could open up the possibility for exploiting or damaging server resources and files. As a
safeguard for using PHP on shared servers, PHP can be run in a restricted, or safe, mode.

Enabling safe mode will disable quite a few functions and various features deemed to be potentially
insecure and thus possibly damaging if they are misused within a local script. A small sampling of
these disabled functions and features includes parse_ini_file(), chmod(), chown(), chgrp(), exec(),
system(), and backtick operators. Enabling safe mode also ensures that the owner of the executing
script matches the owner of any file or directory targeted by that script. However, this latter restric-
tion in particular can have unexpected and inconvenient effects because files can often be uploaded
and otherwise generated by other user IDs.

In addition, enabling safe mode opens up the possibility for activating a number of other restric-
tions via other PHP configuration directives, each of which is introduced in this section.

■Note Due in part to confusion caused by the name and approach of this particular feature, coupled with the
unintended consequences brought about due to multiple user IDs playing a part in creating and owning various files,
PHP’s safe mode feature has been removed from PHP 6.

safe_mode = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
Enabling the safe_mode directive results in PHP being run under the aforementioned constraints.

safe_mode_gid = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
When safe mode is enabled, an enabled safe_mode_gid enforces a GID (group ID) check when

opening files. When safe_mode_gid is disabled, a more restrictive UID (user ID) check is enforced.

safe_mode_include_dir = string

Scope: PHP_INI_SYSTEM; Default value: NULL

26 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

The safe_mode_include_dir provides a safe haven from the UID/GID checks enforced when
safe_mode and potentially safe_mode_gid are enabled. UID/GID checks are ignored when files are
opened from the assigned directory.

safe_mode_exec_dir = string

Scope: PHP_INI_SYSTEM; Default value: NULL
When safe mode is enabled, the safe_mode_exec_dir parameter restricts execution of executa-

bles via the exec() function to the assigned directory. For example, if you want to restrict execution
to functions found in /usr/local/bin, you use this directive:

safe_mode_exec_dir = "/usr/local/bin"

safe_mode_allowed_env_vars = string

Scope: PHP_INI_SYSTEM; Default value: PHP_
When safe mode is enabled, you can restrict which operating system–level environment variables

users can modify through PHP scripts with the safe_mode_allowed_env_vars directive. For example,
setting this directive as follows limits modification to only those variables with a PHP_ prefix:

safe_mode_allowed_env_vars = "PHP_"

Keep in mind that leaving this directive blank means that the user can modify any environment
variable.

safe_mode_protected_env_vars = string

Scope: PHP_INI_SYSTEM; Default value: LD_LIBRARY_PATH
The safe_mode_protected_env_vars directive offers a means for explicitly preventing certain

environment variables from being modified. For example, if you want to prevent the user from modi-
fying the PATH and LD_LIBRARY_PATH variables, you use this directive:

safe_mode_protected_env_vars = "PATH, LD_LIBRARY_PATH"

open_basedir = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Much like Apache’s DocumentRoot directive, PHP’s open_basedir directive can establish a base

directory to which all file operations will be restricted. This prevents users from entering otherwise
restricted areas of the server. For example, suppose all Web material is located within the directory
/home/www. To prevent users from viewing and potentially manipulating files like /etc/passwd via a
few simple PHP commands, consider setting open_basedir like this:

open_basedir = "/home/www/"

Note that the influence exercised by this directive is not dependent upon the safe_mode directive.

disable_functions = string

Scope: PHP_INI_SYSTEM; Default value: NULL
In certain environments, you may want to completely disallow the use of certain default functions,

such as exec() and system(). Such functions can be disabled by assigning them to the disable_functions
parameter, like this:

disable_functions = "exec, system";

Note that the influence exercised by this directive is not dependent upon the safe_mode directive.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 27

disable_classes = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Given the capabilities offered by PHP’s embrace of the object-oriented paradigm, it likely won’t

be too long before you’re using large sets of class libraries. There may be certain classes found within
these libraries that you’d rather not make available, however. You can prevent the use of these classes via
the disable_classes directive. For example, if you want to disable two particular classes, named
vector and graph, you use the following:

disable_classes = "vector, graph"

Note that the influence exercised by this directive is not dependent upon the safe_mode directive.

ignore_user_abort = Off | On

Scope: PHP_INI_ALL; Default value: On
How many times have you browsed to a particular page only to exit or close the browser before

the page completely loads? Often such behavior is harmless. However, what if the server is in the
midst of updating important user profile information, or completing a commercial transaction?
Enabling ignore_user_abort causes the server to ignore session termination caused by a user- or
browser-initiated interruption.

Syntax Highlighting

PHP can display and highlight source code. You can enable this feature either by assigning the PHP
script the extension .phps (this is the default extension and, as you’ll soon learn, can be modified) or
via the show_source() or highlight_file() function. To use the .phps extension, you need to add the
following line to httpd.conf:

AddType application/x-httpd-php-source .phps

You can control the color of strings, comments, keywords, the background, default text, and
HTML components of the highlighted source through the following six directives. Each can be assigned
an RGB, hexadecimal, or keyword representation of each color. For example, the color we commonly
refer to as black can be represented as rgb(0,0,0), #000000, or black, respectively.

highlight.string = string

Scope: PHP_INI_ALL; Default value: #DD0000

highlight.comment = string

Scope: PHP_INI_ALL; Default value: #FF9900

highlight.keyword = string

Scope: PHP_INI_ALL; Default value: #007700

highlight.bg = string

Scope: PHP_INI_ALL; Default value: #FFFFFF

highlight.default = string

Scope: PHP_INI_ALL; Default value: #0000BB

28 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

highlight.html = string

Scope: PHP_INI_ALL; Default value: #000000

Miscellaneous

The Miscellaneous category consists of a single directive, expose_php.

expose_php = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
Each scrap of information that a potential attacker can gather about a Web server increases the

chances that he will successfully compromise it. One simple way to obtain key information about
server characteristics is via the server signature. For example, Apache will broadcast the following
information within each response header by default:

Apache/2.2.0 (Unix) PHP/6.0.0 PHP/6.0.0-dev Server at www.example.com Port 80

Disabling expose_php prevents the Web server signature (if enabled) from broadcasting the fact
that PHP is installed. Although you need to take other steps to ensure sufficient server protection,
obscuring server properties such as this one is nonetheless heartily recommended.

■Note You can disable Apache’s broadcast of its server signature by setting ServerSignature to Off in the
httpd.conf file.

Resource Limits

Although PHP’s resource-management capabilities were improved in version 5, you must still be
careful to ensure that scripts do not monopolize server resources as a result of either programmer-
or user-initiated actions. Three particular areas where such overconsumption is prevalent are script
execution time, script input processing time, and memory. Each can be controlled via the following
three directives.

max_execution_time = integer

Scope: PHP_INI_ALL; Default value: 30
The max_execution_time parameter places an upper limit on the amount of time, in seconds,

that a PHP script can execute. Setting this parameter to 0 disables any maximum limit. Note that any
time consumed by an external program executed by PHP commands, such as exec() and system(),
does not count toward this limit.

max_input_time = integer

Scope: PHP_INI_ALL; Default value: 60
The max_input_time parameter places a limit on the amount of time, in seconds, that a PHP

script devotes to parsing request data. This parameter is particularly important when you upload
large files using PHP’s file upload feature, which is discussed in Chapter 15.

memory_limit = integerM

Scope: PHP_INI_ALL; Default value: 8M

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 29

The memory_limit parameter determines the maximum amount of memory, in megabytes, that
can be allocated to a PHP script.

Data Handling

The parameters introduced in this section affect the way that PHP handles external variables— that
is, variables passed into the script via some outside source. GET, POST, cookies, the operating system,
and the server are all possible candidates for providing external data. Other parameters located in
this section determine PHP’s default character set, PHP’s default MIME type, and whether external
files will be automatically prepended or appended to PHP’s returned output.

arg_separator.output = string

Scope: PHP_INI_ALL; Default value: &
PHP is capable of automatically generating URLs and uses the standard ampersand (&) to separate

input variables. However, if you need to override this convention, you can do so by using the
arg_separator.output directive.

arg_separator.input = string

Scope: PHP_INI_ALL; Default value: ;&
The ampersand (&) is the standard character used to separate input variables passed in via the

POST or GET methods. Although unlikely, should you need to override this convention within your
PHP applications, you can do so by using the arg_separator.input directive.

variables_order = string

Scope: PHP_INI_ALL; Default value: EGPCS
The variables_order directive determines the order in which the ENVIRONMENT, GET, POST, COOKIE,

and SERVER variables are parsed. While seemingly irrelevant, if register_globals is enabled (not
recommended), the ordering of these values could result in unexpected results due to later variables
overwriting those parsed earlier in the process.

register_globals = On | Off

Scope: PHP_INI_SYSTEM; Default value: Off
If you have used a pre-4.0 version of PHP, the mere mention of this directive is enough to evoke

gnashing of the teeth and pulling of the hair. To eliminate the problems, this directive was disabled
by default in version 4.2.0 , but at the cost of forcing many long-time PHP users to entirely rethink
(and in some cases rewrite) their Web application development methodology. This change, although
done at a cost of considerable confusion, ultimately serves the best interests of developers in terms
of greater application security. If you’re new to all of this, what’s the big deal?

Historically, all external variables were automatically registered in the global scope. That is, any
incoming variable of the types COOKIE, ENVIRONMENT, GET, POST, and SERVER were made available globally.
Because they were available globally, they were also globally modifiable. Although this might seem
convenient to some people, it also introduced a security deficiency because variables intended to be
managed solely by using a cookie could also potentially be modified via the URL. For example, suppose
that a session identifier uniquely identifying the user is communicated across pages via a cookie.
Nobody but that user should see the data that is ultimately mapped to the user identified by that
session identifier. A user could open the cookie, copy the session identifier, and paste it onto the end
of the URL, like this:

http://www.example.com/secretdata.php?sessionid=4x5bh5H793adK

30 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

The user could then e-mail this link to some other user. If there are no other security restrictions
in place (e.g., IP identification), this second user will be able to see the otherwise confidential data.
Disabling the register_globals directive prevents such behavior from occurring. While these external
variables remain in the global scope, each must be referred to in conjunction with its type. For example,
the sessionid variable in the previous example would instead be referred to solely as the following:

$_COOKIE['sessionid']

Any attempt to modify this parameter using any other means (e.g., GET or POST) causes a new
variable in the global scope of that means ($_GET['sessionid'] or $_POST['sessionid']). In Chapter 3,
the section on PHP’s superglobal variables offers a thorough introduction to external variables of the
COOKIE, ENVIRONMENT, GET, POST, and SERVER types.

Although disabling register_globals is unequivocally a good idea, it isn’t the only factor you
should keep in mind when you secure an application. Chapter 21 offers more information about PHP
application security.

■Note The register_globals feature has been a constant source of confusion and security-related problems
over the years. Accordingly, it is no longer available as of PHP 6.

register_long_arrays = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
This directive determines whether to continue registering the various input arrays (ENVIRONMENT,GET,

POST, COOKIE, SYSTEM) using the deprecated syntax, such as HTTP_*_VARS. Disabling this directive is
recommended for performance reasons.

■Note The register_long_arrays directive is no longer available as of PHP 6.

register_argc_argv = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
Passing in variable information via the GET method is analogous to passing arguments to an

executable. Many languages process such arguments in terms of argc and argv. argc is the argument
count, and argv is an indexed array containing the arguments. If you would like to declare variables
$argc and $argv and mimic this functionality, enable register_argc_argv.

post_max_size = integerM

Scope: PHP_INI_SYSTEM; Default value: 8M
Of the two methods for passing data between requests, POST is better equipped to transport

large amounts, such as what might be sent via a Web form. However, for both security and perfor-
mance reasons, you might wish to place an upper ceiling on exactly how much data can be sent via
this method to a PHP script; this can be accomplished using post_max_size.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 31

WORKING WITH SINGLE AND DOUBLE QUOTES

Quotes, both of the single and double variety, have long played a special role in programming. Because they are
commonly used both as string delimiters and in written language, you need a way to differentiate between the two
in programming, to eliminate confusion. The solution is simple: escape any quote mark not intended to delimit the
string. If you don’t do this, unexpected errors could occur. Consider the following:

$sentence = "John said, "I love racing cars!"";

Which quote marks are intended to delimit the string, and which are used to delimit John’s utterance? PHP
doesn’t know, unless certain quote marks are escaped, like this:

$sentence = "John said, \"I love racing cars!\"";

Escaping nondelimiting quote marks is known as enabling magic quotes. This process could be done either
automatically, by enabling the directive magic_quotes_gpc (introduced in this section), or manually, by using the
functions addslashes() and stripslashes(). The latter strategy is recommended because it enables you to
wield total control over the application, although in those cases where you’re trying to use an application in which
the automatic escaping of quotations is expected, you’ll need to enable this behavior accordingly.

Three parameters have long determined how PHP behaves in this regard: magic_quotes_gpc,
magic_quotes_runtime, and magic_quotes_sybase. However, because this feature has long been a source
of confusion among developers, it’s been removed as of PHP 6.

magic_quotes_gpc = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
This parameter determines whether magic quotes are enabled for data transmitted via the GET,

POST, and cookie methodologies. When enabled, all single and double quotes, backslashes, and null
characters are automatically escaped with a backslash.

magic_quotes_runtime = On | Off

Scope: PHP_INI_ALL; Default value: Off
Enabling this parameter results in the automatic escaping (using a backslash) of any quote marks

located within data returned from an external resource, such as a database or text file.

magic_quotes_sybase = On | Off

Scope: PHP_INI_ALL; Default value: Off
This parameter is only of interest if magic_quotes_runtime is enabled. If magic_quotes_sybase is

enabled, all data returned from an external resource will be escaped using a single quote rather than
a backslash. This is useful when the data is being returned from a Sybase database, which employs a
rather unorthodox requirement of escaping special characters with a single quote rather than a
backslash.

auto_prepend_file = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Creating page header templates or including code libraries before a PHP script is executed is

most commonly done using the include() or require() function. You can automate this process and
forgo the inclusion of these functions within your scripts by assigning the file name and corresponding
path to the auto_prepend_file directive.

32 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

auto_append_file = string

Scope: PHP_INI_SYSTEM; Default value: NULL
Automatically inserting footer templates after a PHP script is executed is most commonly done

using the include() or require() functions. You can automate this process and forgo the inclusion
of these functions within your scripts by assigning the template file name and corresponding path to
the auto_append_file directive.

default_mimetype = string

Scope: PHP_INI_ALL; Default value: text/html
MIME types offer a standard means for classifying file types on the Internet. You can serve any

of these file types via PHP applications, the most common of which is text/html. If you’re using PHP in
other fashions, however, such as a content generator for WML (Wireless Markup Language) applications,
you need to adjust the MIME type accordingly. You can do so by modifying the default_mimetype
directive.

default_charset = string

Scope: PHP_INI_ALL; Default value: iso-8859-1
As of version 4.0, PHP outputs a character encoding in the Content-Type header. By default this

is set to iso-8859-1, which supports languages such as English, Spanish, German, Italian, and
Portuguese, among others. If your application is geared toward languages such as Japanese, Chinese,
or Hebrew, however, the default_charset directive allows you to update this character set setting
accordingly.

always_populate_raw_post_data = On | Off

Scope: PHP_INI_PERDIR; Default value: On
Enabling the always_populate_raw_post_data directive causes PHP to assign a string consisting

of POSTed name/value pairs to the variable $HTTP_RAW_POST_DATA, even if the form variable has no
corresponding value. For example, suppose this directive is enabled and you create a form consisting of
two text fields, one for the user’s name and another for the user’s e-mail address. In the resulting
form action, you execute just one command:

echo $HTTP_RAW_POST_DATA;

Filling out neither field and clicking the Submit button results in the following output:

name=&email=

Filling out both fields and clicking the Submit button produces output similar to the following:

name=jason&email=jason%40example.com

Paths and Directories

This section introduces directives that determine PHP’s default path settings. These paths are used
for including libraries and extensions, as well as for determining user Web directories and Web
document roots.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 33

include_path = string

Scope: PHP_INI_ALL; Default value: NULL
The path to which this parameter is set serves as the base path used by functions such as

include(), require(), and fopen_with_path(). You can specify multiple directories by separating
each with a semicolon, as shown in the following example:

include_path=".:/usr/local/include/php;/home/php"

By default, this parameter is set to the path defined by the environment variable PHP_INCLUDE_PATH.
Note that on Windows, backward slashes are used in lieu of forward slashes, and the drive letter

prefaces the path:

include_path=".;C:\php6\includes"

doc_root = string

Scope: PHP_INI_SYSTEM; Default value: NULL
This parameter determines the default from which all PHP scripts will be served. This parameter

is used only if it is not empty.

user_dir = string

Scope: PHP_INI_SYSTEM; Default value: NULL
The user_dir directive specifies the absolute directory PHP uses when opening files using the

/~username convention. For example, when user_dir is set to /home/users and a user attempts to
open the file ~/gilmore/collections/books.txt, PHP knows that the absolute path is /home/ users/
gilmore/collections/books.txt.

extension_dir = string

Scope: PHP_INI_SYSTEM; Default value: ./
The extension_dir directive tells PHP where its loadable extensions (modules) are located. By

default, this is set to ./, which means that the loadable extensions are located in the same directory
as the executing script. In the Windows environment, if extension_dir is not set, it will default to
C:\PHP-INSTALLATION-DIRECTORY\ext\. In the Linux environment, the exact location of this directory
depends on several factors, although it’s quite likely that the location will be PHP-INSTALLATION-
DIRECTORY/lib/php/extensions/no-debug-zts-RELEASE-BUILD-DATE/.

enable_dl = On | Off

Scope: PHP_INI_SYSTEM; Default value: On
The enable_dl() function allows a user to load a PHP extension at run time—that is, during a

script’s execution.

Fopen Wrappers

This section contains five directives pertinent to the access and manipulation of remote files.

allow_url_fopen = On | Off

Scope: PHP_INI_ALL; Default value: On
Enabling allow_url_fopen allows PHP to treat remote files almost as if they were local. When

enabled, a PHP script can access and modify files residing on remote servers, if the files have the
correct permissions.

34 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

from = string

Scope: PHP_INI_ALL; Default value: NULL
The title of the from directive is perhaps misleading in that it actually determines the password,

rather than the identity, of the anonymous user used to perform FTP connections. Therefore, if from
is set like this

from = "jason@example.com"

the username anonymous and password jason@example.com will be passed to the server when authen-
tication is requested.

user_agent = string

Scope: PHP_INI_ALL; Default value: NULL
PHP always sends a content header along with its processed output, including a user agent

attribute. This directive determines the value of that attribute.

default_socket_timeout = integer

Scope: PHP_INI_ALL; Default value: 60
This directive determines the time-out value of a socket-based stream, in seconds.

auto_detect_line_endings = On | Off

Scope: PHP_INI_ALL; Default value: Off
One never-ending source of developer frustration is derived from the end-of-line (EOL) character

because of the varying syntax employed by different operating systems. Enabling auto_detect_
line_endings determines whether the data read by fgets() and file() uses Macintosh, MS-DOS, or
Linux file conventions.

Dynamic Extensions

This section contains a single directive, extension.

extension = string

Scope: PHP_INI_ALL; Default value: NULL
The extension directive is used to dynamically load a particular module. On the Win32 operating

system, a module might be loaded like this:

extension = php_java.dll

On Unix, it would be loaded like this:

extension = php_java.so

Keep in mind that on either operating system, simply uncommenting or adding this line doesn’t
necessarily enable the relevant extension. You’ll also need to ensure that the appropriate software is
installed on the operating system. For example, to enable Java support, you also need to install the JDK.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 35

Choosing a Code Editor
While there’s nothing wrong with getting started writing PHP scripts using no-frills editors such as
Windows Notepad or vi, chances are you’re soon going to want to graduate to a full-fledged PHP-
specific development solution. Several open source and commercial solutions are available.

Adobe Dreamweaver CS3
Formerly known as Macromedia Dreamweaver MX, Adobe’s Dreamweaver CS3 is considered by many
to be the ultimate Web designer’s toolkit. Intended to be a one-stop application, Dreamweaver CS3
supports all of the key technologies, such as Ajax, CSS, HTML, JavaScript, PHP, and XML, which
together drive cutting-edge Web sites.

In addition to allowing developers to create Web pages in WYSIWYG (what-you-see-is-what-
you-get) fashion, Dreamweaver CS3 offers a number of convenient features for helping PHP developers
more effectively write and manage code, including syntax highlighting, code completion, and the
ability to easily save and reuse code snippets.

Adobe Dreamweaver CS3 (http://www.adobe.com/products/dreamweaver/) is available for the
Windows and Mac OS X platforms, and retails for $399.

■Tip If you settle upon Dreamweaver, consider picking up a copy of The Essential Guide to Dreamweaver CS3
with CSS, Ajax, and PHP by David Powers (friends of ED, 2007). Learn more about the book at http://www.
friendsofed.com/.

Notepad++
Notepad++ is a mature open source code editor and avowed Notepad replacement available for
the Windows platform. Translated into 41 languages, Notepad++ offers a wide array of convenient
features one would expect of any capable IDE, including the ability to bookmark specific lines of a
document for easy reference; syntax, brace, and indentation highlighting; powerful search facilities;
macro recording for tedious tasks such as inserting templated comments; and much more.

PHP-specific support is fairly slim, with much of the convenience coming from the general
features. However, rudimentary support for auto-completion of function names is offered, which
will cut down on some typing, although you’re still left to your own devices regarding remembering
parameter names and ordering.

Notepad++ is only available for the Windows platform and is released under the GNU GPL.
Learn more about it and download it at http://notepad-plus.sourceforge.net/.

PDT (PHP Development Tools)
The PDT project (http://www.eclipse.org/pdt/) is currently seeing quite a bit of momentum. Backed
by leading PHP products and services provider Zend Technologies Ltd. (http://www.zend.com/), and
built on top of the open source Eclipse platform (http://www.eclipse.org/), a wildly popular extensible
framework used for building development tools, PDT is the likely front-runner to become the de
facto PHP IDE for hobbyists and professionals alike.

36 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

■Note The Eclipse framework has been the basis for a wide array of projects facilitating crucial development
tasks such as data modeling, business intelligence and reporting, testing and performance monitoring, and, most
notably, writing code. While Eclipse is best known for its Java IDE, it also has IDEs for languages such as C, C++,
Cobol, and more recently PHP.

Zend Studio
Zend Studio is far and away the most powerful PHP IDE of all commercial and open source offerings
available today. A flagship product of leading PHP products and services provider Zend Technologies
Ltd., Zend Studio offers all of the features one would expect of an enterprise IDE, including compre-
hensive code completion, CVS and Subversion integration, internal and remote debugging, code
profiling, and convenient code deployment processes.

Facilities integrating code with popular databases such as MySQL, Oracle, PostgreSQL, and
SQLite are also offered, in addition to the ability to execute SQL queries and view and manage data-
base schemas and data.

Zend Studio (http://www.zend.com/products/zend_studio/) is available for the Windows, Linux,
and Mac OS X platforms in two editions: standard and professional. The Standard Edition lacks key
features such as database, CVS/Subversion, and Web Services integration but retails at just $99. The
Professional Edition offers all of the aforementioned features and more and retails at $299.

Choosing a Web Hosting Provider
Unless you work with an organization that already has an established Web site hosting environment,
eventually you’re going to have to evaluate and purchase the services of a Web hosting provider.
Thankfully this is an extremely crowded and competitive market, with providers vying for your busi-
ness, often by offering an impressive array of services, disk space, and bandwidth at very low prices.

Generally speaking, hosting providers can be broken into three categories:

• Dedicated server hosting: Dedicated server hosting involves leasing an entire Web server,
allowing your Web site full reign over server CPU, disk space, and memory resources, as well
as control over how the server is configured. This solution is particularly advantageous because
you typically have complete control over the server’s administration while not having to
purchase or maintain the server hardware, hosting facility, or the network connection.

• Shared server hosting: If your Web site will require modest server resources, or if you don’t
want to be bothered with managing the server, shared server hosting is likely the ideal solu-
tion. Shared hosting providers capitalize on these factors by hosting numerous Web sites on
a single server and using highly automated processes to manage system and network resources,
data backups, and user support. The result is that they’re able to offer appealing pricing
arrangements (many respected shared hosting providers offer no-contract monthly rates for
as low as $8 a month) while simultaneously maintaining high customer satisfaction.

• Virtual private server hosting: A virtual private server blurs the line between a dedicated and
shared server, providing each user with a dedicated operating system and the ability to install
applications and fully manage the server by way of virtualization. Virtualization provides a
way to run multiple distinct operating systems on the same server. The result is complete
control for the user while simultaneously allowing the hosting provider to keep costs low and
pass those savings along to the user.

CH AP T E R 2 ■ C ON F I G U R IN G Y O U R E N V IR O N M E N T 37

Keep in mind this isn’t necessarily a high-priority task; there’s no need to purchase Web hosting
services until you’re ready to deploy your Web site. Therefore, even in spite of the trivial hosting
rates, consider saving some time, money, and distraction by waiting to evaluate these services until
absolutely necessary.

Seven Questions for Any Prospective Hosting Provider
On the surface, most Web hosting providers offer a seemingly identical array of offerings, boasting
absurd amounts of disk space, endless bandwidth, and impressive guaranteed server uptimes. Frankly,
chances are that any respected hosting provider is going to meet and even surpass your expecta-
tions, not only in terms of its ability to meet the resource requirements of your Web site, but also in
terms of its technical support services. However, as a PHP developer, there are several questions you
should ask before settling upon a provider:

1. Is PHP supported, and if so, what versions are available? Many hosting providers have been
aggravatingly slow to upgrade to the latest PHP version, with many still offering only PHP 4,
despite PHP 5 having been released more than three years ago. Chances are it will take at
least as long for most to upgrade to PHP 6, therefore, if you’re planning on taking advantage
of version-specific features, be sure the candidate provider supports the appropriate version.
Further, it would be particularly ideal if the provider simultaneously supported multiple
PHP versions, allowing you to take advantage of various PHP applications that have yet to
support the latest PHP version.

2. Is MySQL/Oracle/PostgreSQL supported, and if so, what versions are available? Like PHP,
hosting providers have historically been slow to upgrade to the latest database version.
Therefore, if you require features available only as of a certain version, be sure to confirm
that the provider supports that version.

3. What PHP file extensions are supported? Inexplicably, some hosting providers continue to
demand users use deprecated file extensions such as .php3 for PHP-enabled scripts, despite
having upgraded their servers to PHP version 4 or newer. This is an indicator of the provider’s
lack of understanding regarding the PHP language and community and therefore you should
avoid such a provider. Only providers allowing the standard .php extension should be
considered.

4. What restrictions are placed on PHP-enabled scripts? As you learned earlier in this chapter,
PHP’s behavior and capabilities can be controlled through the php.ini file. Some of these
configuration features were put into place for the convenience of hosting providers, who
may not always want to grant all of PHP’s power to its users. Accordingly, some functions and
extensions may be disabled, which could ultimately affect what features you’ll be able to
offer on your Web site.

Additionally, some providers demand all PHP-enabled scripts are placed in a designated
directory, which can be tremendously inconvenient and of questionable advantage in terms
of security considerations. Ideally, the provider will allow you to place your PHP-enabled
scripts wherever you please within the designated account directory.

5. What restrictions are placed on using Apache .htaccess files? Some third-party software,
most notably Web frameworks (see Chapter 25), require that a feature known as URL rewriting
be enabled in order to properly function; however, not all hosting providers allow users to tweak
Apache’s behavior through special configuration files known as .htaccess files. Therefore,
know what limitations, if any, are placed on their use.

38 CH AP T E R 2 ■ CO N F I G U R IN G Y O U R E N V IR O N M E N T

6. What PHP software do you offer by default, and do you support it? Most hosting providers
offer automated installers for installing popular third-party software such as Joomla!, WordPress,
and phpBB. Using these installers will save you some time, and will help the hosting provider
troubleshoot any problems that might arise. However, be wary that some providers only offer
this software for reasons of convenience and will not offer technical assistance. Therefore, be
prepared to do your own homework should you have questions or encounter problems
using third-party software. Additionally, you should ask whether the provider will install
PEAR and PECL extensions upon request (see Chapter 11).

7. Does (insert favorite Web framework or technology here) work properly on your servers?
If you’re planning on using a particular PHP-powered Web framework (see Chapter 25 for
more information about frameworks) or a specific technology (e.g., a third-party e-commerce
solution), you should take care to make sure this software works properly on the hosting pro-
vider’s servers. If the hosting provider can’t offer a definitive answer, search various online
forums using the technology name and the hosting provider as keywords.

Summary
In this chapter you learned how to configure your environment to support the development of PHP-
driven Web applications. Special attention was given to PHP’s many run-time configuration options.
Finally, you were presented with a brief overview of the most commonly used PHP editors and IDEs,
in addition to some insight into what to keep in mind when searching for a Web hosting provider.

In the next chapter, you’ll begin your foray into the PHP language by creating your first PHP-
driven Web page and learning about the language’s fundamental features. By its conclusion, you’ll
be able to create simplistic yet quite useful scripts. This material sets the stage for subsequent chapters,
where you’ll gain the knowledge required to start building some really cool applications.

39

■ ■ ■

C H A P T E R 3

PHP Basics

You’re only two chapters into the book and already quite a bit of ground has been covered. By now,
you are familiar with PHP’s background and history and have delved deep into the installation and
configuration concepts and procedures. This material sets the stage for what will form the crux of
much of the remaining material in this book: creating powerful PHP applications. This chapter
initiates this discussion, introducing a great number of the language’s foundational features. Specif-
ically, you’ll learn how to do the following:

• Embed PHP code into your Web pages

• Comment code using the various methodologies borrowed from the Unix shell scripting, C,
and C++ languages

• Output data to the browser using the echo(), print(), printf(), and sprintf() statements

• Use PHP’s datatypes, variables, operators, and statements to create sophisticated scripts

• Take advantage of key control structures and statements, including if-else-elseif, while,
foreach, include, require, break, continue, and declare

By the conclusion of this chapter, you’ll possess not only the knowledge necessary to create
basic but useful PHP applications, but also an understanding of what’s required to make the most
of the material covered in later chapters.

■Note This chapter simultaneously serves as both a tutorial for novice programmers and a reference for experi-
enced programmers who are new to the PHP language. If you fall into the former category, consider reading the
chapter in its entirety and following along with the examples.

Embedding PHP Code in Your Web Pages
One of PHP’s advantages is that you can embed PHP code directly alongside HTML. For the code to
do anything, the page must be passed to the PHP engine for interpretation. But the Web server doesn’t
just pass every page, rather, it passes only those pages identified by a specific file extension (typically
.php) as configured per the instructions in Chapter 2. But even selectively passing only certain pages
to the engine would nonetheless be highly inefficient for the engine to consider every line as a poten-
tial PHP command. Therefore, the engine needs some means to immediately determine which areas
of the page are PHP-enabled. This is logically accomplished by delimiting the PHP code. There are
four delimitation variants, all of which are introduced in this section.

40 CH AP T E R 3 ■ P HP B AS I CS

Default Syntax
The default delimiter syntax opens with <?php and concludes with ?>, like this:

<h3>Welcome!</h3>
<?php
 echo "<p>Some dynamic output here</p>";
?>
<p>Some static output here</p>

If you save this code as test.php and execute it from a PHP-enabled Web server, you’ll see the
output shown in Figure 3-1.

Figure 3-1. Sample PHP output

Short-Tags
For less motivated typists an even shorter delimiter syntax is available. Known as short-tags, this
syntax forgoes the php reference required in the default syntax. However, to use this feature, you
need to enable PHP’s short_open_tag directive. An example follows:

<?
 print "This is another PHP example.";
?>

■Caution Although short-tag delimiters are convenient, keep in mind that they clash with XML, and thus XHTML,
syntax. Therefore, for conformance reasons you shouldn’t use short-tag syntax.

C H AP T E R 3 ■ P HP B A S I CS 41

When short-tags syntax is enabled and you want to quickly escape to and from PHP to output a
bit of dynamic text, you can omit these statements using an output variation known as short-circuit
syntax:

<?="This is another PHP example.";?>

This is functionally equivalent to both of the following variations:

<? echo "This is another PHP example."; ?>
<?php echo "This is another PHP example.";?>

Script
Historically, certain editors, Microsoft’s FrontPage editor in particular, have had problems dealing
with escape syntax such as that employed by PHP. Therefore, support for another mainstream
delimiter variant, <script>, is offered:

<script language="php">
 print "This is another PHP example.";
</script>

■Tip Microsoft’s FrontPage editor also recognizes ASP-style delimiter syntax, introduced next.

ASP Style
Microsoft ASP pages employ a similar strategy, delimiting static from dynamic syntax by using a
predefined character pattern, opening dynamic syntax with <%, and concluding with %>. If you’re
coming from an ASP background and prefer to continue using this escape syntax, PHP supports it.
Here’s an example:

<%
 print "This is another PHP example.";
%>

■Caution ASP-style syntax was removed as of PHP 6.

Embedding Multiple Code Blocks
You can escape to and from PHP as many times as required within a given page. For instance, the
following example is perfectly acceptable:

<html>
 <head>
 <title><?php echo "Welcome to my Web site!";?></title>
 </head>
 <body>
 <?php
 $date = "July 26, 2007";
 ?>
 <p>Today's date is <?=$date;?></p>
 </body>
</html>

42 CH AP T E R 3 ■ P HP B AS I CS

As you can see, any variables declared in a prior code block are “remembered” for later blocks,
as is the case with the $date variable in this example.

Commenting Your Code
Whether for your own benefit or for that of a programmer later tasked with maintaining your code,
the importance of thoroughly commenting your code cannot be overstated. PHP offers several
syntactical variations, each of which is introduced in this section.

Single-Line C++ Syntax
Comments often require no more than a single line. Because of its brevity, there is no need to delimit
the comment’s conclusion because the newline (\n) character fills this need quite nicely. PHP supports
C++ single-line comment syntax, which is prefaced with a double slash (//), like this:

<?php
 // Title: My first PHP script
 // Author: Jason
 echo "This is a PHP program";
?>

Shell Syntax
PHP also supports an alternative to the C++-style single-line syntax, known as shell syntax, which is
prefaced with a hash mark (#). Revisiting the previous example, we use hash marks to add some
information about the script:

<?php
 # Title: My PHP program
 # Author: Jason
 echo "This is a PHP program";
?>

Multiple-Line C Syntax
It’s often convenient to include somewhat more verbose functional descriptions or other explana-
tory notes within code, which logically warrants numerous lines. Although you could preface each
line with C++ or shell-style delimiters, PHP also offers a multiple-line variant that can open and close
the comment on different lines. Here’s an example:

<?php
 /*
 Title: My PHP Program
 Author: Jason
 Date: July 26, 2007
 */
?>

C H AP T E R 3 ■ P HP B A S I CS 43

ADVANCED DOCUMENTATION WITH PHPDOCUMENTOR

Because documentation is such an important part of effective code creation and management, considerable effort
has been put into devising methods for helping developers automate the process. In fact, these days documentation
solutions are available for all mainstream programming languages, PHP included. phpDocumentor (http://www.
phpdoc.org/) is an open source project that facilitates the documentation process by converting the comments
embedded within the source code into a variety of easily readable formats, including HTML and PDF.

phpDocumentor works by parsing an application’s source code, searching for special comments known as
DocBlocks. Used to document all code within an application, including scripts, classes, functions, variables, and
more, DocBlocks contain human-readable explanations along with formalized descriptors such as the author’s
name, code version, copyright statement, function return values, and much more.

Even if you’re a novice programmer, it’s strongly suggested you become familiar with advanced documentation
solutions and get into the habit of using them for even basic applications.

Outputting Data to the Browser
Of course, even the simplest of Web sites will output data to the browser, and PHP offers several
methods for doing so.

■Note Throughout this chapter, and indeed the rest of this book, when introducing functions we’ll refer to their
prototype. A prototype is simply the function’s definition, formalizing its name, input parameters, and the type of
value it returns, defined by a datatype. If you don’t know what a datatype is, see the section “PHP’s Supported
Datatypes” later in this chapter.

The print() Statement
The print() statement outputs data passed to it to the browser. Its prototype looks like this:

int print(argument)

All of the following are plausible print() statements:

<?php
 print("<p>I love the summertime.</p>");
?>

<?php
 $season = "summertime";
 print "<p>I love the $season.</p>";
?>

<?php
 print "<p>I love the
 summertime.</p>";
?>

All these statements produce identical output:

44 CH AP T E R 3 ■ P HP B AS I CS

I love the summertime.

■Note Although the official syntax calls for the use of parentheses to enclose the argument, they’re not required.
Many programmers tend to forgo them simply because the target argument is equally apparent without them.

Alternatively, you could use the echo() statement for the same purposes as print(). While there
are technical differences between echo() and print(), they’ll be irrelevant to most readers and there-
fore aren’t discussed here. echo()’s prototype looks like this:

void echo(string argument1 [, ...string argumentN])

As you can see from the prototype, echo() is capable of outputting multiple strings. The utility
of this particular trait is questionable; using it seems to be a matter of preference more than anything
else. Nonetheless, it’s available should you feel the need. Here’s an example:

<?php
 $heavyweight = "Lennox Lewis";
 $lightweight = "Floyd Mayweather";
 echo $heavyweight, " and ", $lightweight, " are great fighters.";
?>

This code produces the following:

Lennox Lewis and Floyd Mayweather are great fighters.

If your intent is to output a blend of static text and dynamic information passed through vari-
ables, consider using printf() instead, which is introduced next. Otherwise, if you’d like to simply
output static text, echo() or print() works great.

■Tip Which is faster, echo() or print()? The fact that they are functionally interchangeable leaves many
pondering this question. The answer is that the echo() function is a tad faster because it returns nothing, whereas
print() will return 1 if the statement is successfully output. It’s rather unlikely that you’ll notice any speed differ-
ence, however, so you can consider the usage decision to be one of stylistic concern.

The printf() Statement
The printf() statement is ideal when you want to output a blend of static text and dynamic informa-
tion stored within one or several variables. It’s ideal for two reasons. First, it neatly separates the
static and dynamic data into two distinct sections, allowing for easy maintenance. Second, printf()
allows you to wield considerable control over how the dynamic information is rendered to the screen in
terms of its type, precision, alignment, and position. Its prototype looks like this:

boolean printf(string format [, mixed args])

For example, suppose you wanted to insert a single dynamic integer value into an otherwise
static string:

C H AP T E R 3 ■ P HP B A S I CS 45

printf("Bar inventory: %d bottles of tonic water.", 100);

Executing this command produces the following:

Bar inventory: 100 bottles of tonic water.

In this example, %d is a placeholder known as a type specifier, and the d indicates an integer value
will be placed in that position. When the printf() statement executes, the lone argument, 100, will
be inserted into the placeholder. Remember that an integer is expected, so if you pass along a number
including a decimal value (known as a float), it will be rounded down to the closest integer. If you
pass along 100.2 or 100.6, 100 will be output. Pass along a string value such as "one hundred", and 0
will be output. Similar logic applies to other type specifiers (see Table 3-1 for a list of commonly used
specifiers).

So what do you do if you want to pass along two values? Just insert two specifiers into the string
and make sure you pass two values along as arguments. For example, the following printf() statement
passes in an integer and float value:

printf("%d bottles of tonic water cost $%f", 100, 43.20);

Executing this command produces the following:

100 bottles of tonic water cost $43.20

When working with decimal values, you can adjust the precision using a precision specifier. An
example follows:

printf("$%.2f", 43.2); // $43.20

Table 3-1. Commonly Used Type Specifiers

Type Description

%b Argument considered an integer; presented as a binary number

%c Argument considered an integer; presented as a character corresponding to that
ASCII value

%d Argument considered an integer; presented as a signed decimal number

%f Argument considered a floating-point number; presented as a floating-point number

%o Argument considered an integer; presented as an octal number

%s Argument considered a string; presented as a string

%u Argument considered an integer; presented as an unsigned decimal number

%x Argument considered an integer; presented as a lowercase hexadecimal number

%X Argument considered an integer; presented as an uppercase hexadecimal number

46 CH AP T E R 3 ■ P HP B AS I CS

Still other specifiers exist for tweaking the argument’s alignment, padding, sign, and width.
Consult the PHP manual for more information.

The sprintf() Statement
The sprintf() statement is functionally identical to printf() except that the output is assigned to a
string rather than rendered to the browser. The prototype follows:

string sprintf(string format [, mixed arguments])

An example follows:

$cost = sprintf("$%.2f", 43.2); // $cost = $43.20

PHP’s Supported Datatypes
A datatype is the generic name assigned to any data sharing a common set of characteristics. Common
datatypes include Boolean, integer, float, string, and array. PHP has long offered a rich set of datatypes,
and in this section you’ll learn about them.

Scalar Datatypes
Scalar datatypes are capable of containing a single item of information. Several datatypes fall under
this category, including Boolean, integer, float, and string.

Boolean

The Boolean datatype is named after George Boole (1815–1864), a mathematician who is considered
to be one of the founding fathers of information theory. A Boolean variable represents truth, supporting
only two values: TRUE and FALSE (case insensitive). Alternatively, you can use zero to represent FALSE,
and any nonzero value to represent TRUE. A few examples follow:

$alive = false; // $alive is false.
$alive = 1; // $alive is true.
$alive = -1; // $alive is true.
$alive = 5; // $alive is true.
$alive = 0; // $alive is false.

Integer

An integer is representative of any whole number or, in other words, a number that does not contain
fractional parts. PHP supports integer values represented in base 10 (decimal), base 8 (octal), and
base 16 (hexadecimal) numbering systems, although it’s likely you’ll only be concerned with the first
of those systems. Several examples follow:

42 // decimal
-678900 // decimal
0755 // octal
0xC4E // hexadecimal

The maximum supported integer size is platform-dependent, although this is typically positive
or negative 231 for PHP version 5 and earlier. PHP 6 introduced a 64-bit integer value, meaning PHP
will support integer values up to positive or negative 263 in size.

C H AP T E R 3 ■ P HP B A S I CS 47

Float

Floating-point numbers, also referred to as floats, doubles, or real numbers, allow you to specify
numbers that contain fractional parts. Floats are used to represent monetary values, weights, distances,
and a whole host of other representations in which a simple integer value won’t suffice. PHP’s floats
can be specified in a variety of ways, each of which is exemplified here:

4.5678
4.0
8.7e4
1.23E+11

String

Simply put, a string is a sequence of characters treated as a contiguous group. Strings are delimited
by single or double quotes, although PHP also supports another delimitation methodology, which is
introduced in the later section “String Interpolation.”

The following are all examples of valid strings:

"PHP is a great language"
"whoop-de-do"
'*9subway\n'
"123$%^789"

Historically, PHP treated strings in the same fashion as arrays (see the next section, “Compound
Datatypes,” for more information about arrays), allowing for specific characters to be accessed via
array offset notation. For example, consider the following string:

$color = "maroon";

You could retrieve a particular character of the string by treating the string as an array, like this:

$parser = $color[2]; // Assigns 'r' to $parser

Compound Datatypes
Compound datatypes allow for multiple items of the same type to be aggregated under a single
representative entity. The array and the object fall into this category.

Array

It’s often useful to aggregate a series of similar items together, arranging and referencing them in
some specific way. This data structure, known as an array, is formally defined as an indexed collection of
data values. Each member of the array index (also known as the key) references a corresponding
value and can be a simple numerical reference to the value’s position in the series, or it could have
some direct correlation to the value. For example, if you were interested in creating a list of U.S. states,
you could use a numerically indexed array, like so:

$state[0] = "Alabama";
$state[1] = "Alaska";
$state[2] = "Arizona";
...
$state[49] = "Wyoming";

48 CH AP T E R 3 ■ P HP B AS I CS

But what if the project required correlating U.S. states to their capitals? Rather than base the
keys on a numerical index, you might instead use an associative index, like this:

$state["Alabama"] = "Montgomery";
$state["Alaska"] = "Juneau";
$state["Arizona"] = "Phoenix";
...
$state["Wyoming"] = "Cheyenne";

Arrays are formally introduced in Chapter 5, so don’t worry too much about the matter if you
don’t completely understand these concepts right now.

■Note PHP also supports arrays consisting of several dimensions, better known as multidimensional arrays. This
concept is introduced in Chapter 5.

Object

The other compound datatype supported by PHP is the object. The object is a central concept of the
object-oriented programming paradigm. If you’re new to object-oriented programming, Chapters 6
and 7 are devoted to the topic.

Unlike the other datatypes contained in the PHP language, an object must be explicitly declared.
This declaration of an object’s characteristics and behavior takes place within something called a
class. Here’s a general example of class definition and subsequent invocation:

class Appliance {
 private $_power;
 function setPower($status) {
 $this->_power = $status;
 }
}
...
$blender = new Appliance;

A class definition creates several attributes and functions pertinent to a data structure, in this
case a data structure named Appliance. There is only one attribute, power, which can be modified by
using the method setPower().

Remember, however, that a class definition is a template and cannot itself be manipulated.
Instead, objects are created based on this template. This is accomplished via the new keyword. There-
fore, in the last line of the previous listing, an object of class Appliance named blender is created.

The blender object’s power attribute can then be set by making use of the method setPower():

$blender->setPower("on");

Improvements to PHP’s object-oriented development model are a highlight of PHP 5 and are
further enhanced in PHP 6. Chapters 6 and 7 are devoted to thorough coverage of PHP’s object-
oriented development model.

Converting Between Datatypes Using Type Casting
Converting values from one datatype to another is known as type casting. A variable can be evaluated
once as a different type by casting it to another. This is accomplished by placing the intended type
in front of the variable to be cast. A type can be cast by inserting one of the operators shown in Table 3-2
in front of the variable.

C H AP T E R 3 ■ P HP B A S I CS 49

Let’s consider several examples. Suppose you’d like to cast an integer as a double:

$score = (double) 13; // $score = 13.0

Type casting a double to an integer will result in the integer value being rounded down, regard-
less of the decimal value. Here’s an example:

$score = (int) 14.8; // $score = 14

What happens if you cast a string datatype to that of an integer? Let’s find out:

$sentence = "This is a sentence";
echo (int) $sentence; // returns 0

In light of PHP’s loosely typed design, it will simply return the integer value unmodified. However,
as you’ll see in the next section, PHP will sometimes take the initiative and cast a type to best fit the
requirements of a given situation.

You can also cast a datatype to be a member of an array. The value being cast simply becomes
the first element of the array:

$score = 1114;
$scoreboard = (array) $score;
echo $scoreboard[0]; // Outputs 1114

Note that this shouldn’t be considered standard practice for adding items to an array because
this only seems to work for the very first member of a newly created array. If it is cast against an existing
array, that array will be wiped out, leaving only the newly cast value in the first position. See Chapter 5
for more information about creating arrays.

One final example: any datatype can be cast as an object. The result is that the variable becomes
an attribute of the object, the attribute having the name scalar:

$model = "Toyota";
$obj = (object) $model;

The value can then be referenced as follows:

print $ obj->scalar; // returns "Toyota"

Table 3-2. Type Casting Operators

Cast Operators Conversion

(array) Array

(bool) or (boolean) Boolean

(int) or (integer) Integer

(int64) 64-bit integer (introduced in PHP 6)

(object) Object

(real) or (double) or (float) Float

(string) String

50 CH AP T E R 3 ■ P HP B AS I CS

Adapting Datatypes with Type Juggling
Because of PHP’s lax attitude toward type definitions, variables are sometimes automatically cast to
best fit the circumstances in which they are referenced. Consider the following snippet:

<?php
 $total = 5; // an integer
 $count = "15"; // a string
 $total += $count; // $total = 20 (an integer)
?>

The outcome is the expected one; $total is assigned 20, converting the $count variable from
a string to an integer in the process. Here’s another example demonstrating PHP’s type-juggling
capabilities:

<?php
 $total = "45 fire engines";
 $incoming = 10;
 $total = $incoming + $total; // $total = 55
?>

The integer value at the beginning of the original $total string is used in the calculation.
However, if it begins with anything other than a numerical representation, the value is 0. Consider
another example:

<?php
 $total = "1.0";
 if ($total) echo "We're in positive territory!";
?>

In this example, a string is converted to Boolean type in order to evaluate the if statement.
Consider one last particularly interesting example. If a string used in a mathematical calculation

includes ., e, or E (representing scientific notation), it will be evaluated as a float:

<?php
 $val1 = "1.2e3"; // 1,200
 $val2 = 2;
 echo $val1 * $val2; // outputs 2400
?>

Type-Related Functions
A few functions are available for both verifying and converting datatypes; they are covered in this
section.

Retrieving Types

The gettype() function returns the type of the variable specified by var. In total, eight possible
return values are available: array, boolean, double, integer, object, resource, string, and unknown
type. Its prototype follows:

string gettype (mixed var)

