

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MEDEIROS et al.: DETECTING AND REMOVING WEB APPLICATION VULNERABILITIES WITH STATIC ANALYSIS AND DATA MINING 7

TABLE II
CONFUSION MATRIX (GENERIC)

labeled data. This section presents the machine learning algo-
rithms that were studied to identify the best approach to classify
candidate vulnerabilities. We also discuss the metrics used to
evaluate the merit of the classifiers.
Machine Learning Classifiers: We studied machine learning

classifiers from three classes.
Graphical and Symbolic Algorithms: This class includes al-

gorithms that represent knowledge using a graphical model. In
the ID3, C4.5/J48, RandomTree, and Random Forest classifiers,
the graphical model is a decision tree. They use the information
gain rate metric to decide how relevant an attribute is to clas-
sify an instance in a class (a leaf of the tree). An attribute with
a small information gain has big entropy (degree of impurity of
attribute or information quantity that the attribute offers to the
obtention of the class), so it is less relevant for a class than an-
other with a higher information gain. C4.5/J48 is an evolution of
ID3 that does pruning of the tree, i.e., removes nodes with less
relevant attributes (with a bigger entropy). The Bayesian Net-
work is an acyclic graphical model, where the nodes are repre-
sented by random attributes from the data set.
Probabilistic Algorithms: This category includes Naive

Bayes (NB), K-Nearest Neighbor (KNN), and Logistic Regres-
sion (LR). They classify an instance in the class that has the
highest probability. NB is a simple probabilistic classifier based
on Bayes' theorem, based on the assumption of conditional
independence of the probability distributions of the attributes.
K-NN classifies an instance in the class of its neighbors. LR
uses regression analysis to classify an instance.
Neural Network Algorithms: This category has two algo-

rithms:Multi-Layer Perceptron (MLP), and Support VectorMa-
chine (SVM). These algorithms are inspired on the functioning
of the neurons of the human brain. MLP is an artificial neural
network classifier that maps sets of input data (values of at-
tributes) onto a set of appropriate outputs (our class attribute,
Yes or No). SVM is an evolution of MLP.
Classifier Evaluation Metrics: To evaluate the classifiers, we

use ten metrics that are computed based mainly on four parame-
ters of each classifier. These parameters are better understood in
terms of the quadrants of a confusion matrix (Table II). This ma-
trix is a cross reference table where its columns are the observed
instances, and its rows are the predicted results (instances clas-
sified by a classifier). Note that through all the paper we use the
terms false positive (FP) and true positive (not FP) to express
that an alarm raised by the taint analyzer is incorrect (not a real
vulnerability) or correct (a real vulnerability). In this section, we
use the same terms, false positive (fp), and true positive (tp), as
well as false negative (fn), and true negative (tn), for the output
of the next stage, the FP classifier. To reduce the possibility of
confusion, we use uppercase FP and lowercase fp, tp, fn, tn con-
sistently as indicated.
True positive rate of prediction (tpp) measures how good the

classifier is: .

Fig. 6. Number of attribute occurrences in the original data set.

False positive rate of prediction (fpp)measures how the clas-
sifier deviates from the correct classification of a candidate vul-
nerability as FP: .
Precision of prediction (prfp)measures the actual FPs that are

correctly predicted in terms of the percentage of total number of
FPs: .
Probability of detection (pd) measures how the classifier is

good at detecting real vulnerabilities: .
Probability of false detection (pfd) measures how the classi-

fier deviates from the correct classification of a candidate vul-
nerability that was a real vulnerability: .
Precision of detection (prd) measures the actual vulnerabil-

ities (not FPs) that are correctly predicted in terms of a per-
centage of the total number of vulnerabilities:

.
Accuracy (acc) measures the total number of instances well

classified: .
Precision (pr) measures the actual FPs and vulnerabilities

(not FPs) that are correctly predicted in terms of a percentage
of the total number of cases: .
Kappa statistic (kappa) measures the concordance between

the classes predicted and observed. It can be stratified into six
categories: worst, bad, reasonable, good, very good, excellent.

, where , and
to , ,

, and .
Wilcoxon signed-rank test (wilcoxon) compares classifier re-

sults with pairwise comparisons of the metrics and , or
and , with a benchmark result of , and

[22].
Some of these metrics are statistical, such as rates and ,

while and are probabilistic, and the last is a test.

C. Evaluation of Classifiers

Here we use the metrics to select the best classifiers for our
case. Our current data set has 76 vulnerabilities labeled with 16
attributes: 15 to characterize the candidate's vulnerabilities, and
1 to classify it as being false positive (Yes) or a real vulner-
ability (No). For each candidate vulnerability, we used a ver-
sion of WAP to collect the values of the 15 attributes, and we
manually classified them as false positives or not. Needless to
say, understanding if a vulnerability was real or a false positive

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON RELIABILITY

TABLE III
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO THE ORIGINAL DATA SET

was a tedious process. The 76 potential vulnerabilities were dis-
tributed by the classes Yes, and No, with 32, and 44 instances,
respectively. Fig. 6 shows the number of occurrences of each
attribute.
The 10 classifiers are available in WEKA, an open source

data mining tool [23]. We used it for training and testing the
ten candidate classifiers with a standard 10-fold cross valida-
tion estimator. This estimator divides the data into 10 buckets,
trains the classifier with 9 of them, and tests it with the 10th.
This process is repeated 10 times to test every bucket, with the
classifier trained with the rest. This method accounts for hetero-
geneities in the data set.
Table III shows the evaluation of the classifiers. The first ob-

servation is the rejection of the K-NN and Naive Bayes algo-
rithms by the Wilcoxon signed-rank test. The rejection of the
K-NN algorithm is explained by the classes Yes and No not
being balanced, where the first class has fewer instances, 32,
than the second class, 44, which leads to unbalanced numbers
of neighbors, and consequently to wrong classifications. The
Naive Bayes rejection seems to be due to its naive assump-
tion that attributes are conditionally independent, and the small
number of observations of certain attributes.
In the first four columns of the table are the decision tree

models. These models select for the tree nodes the attributes
that have higher information gain. The C4.5/J48 model prunes
the tree to achieve better results. The branches that have nodes
with weak information gain (higher entropy), i.e., the attributes
with less occurrences, are removed (see Fig. 6). However, an
excessive tree pruning can result in a tree with too few nodes to
do a good classification. This was what happened in our study,
where J48 was the worst decision tree model. The results of ID3
validate our conclusion because this model is the J48 model
without tree pruning. We can observe that ID3 has better ac-
curacy and precision results when compared with J48: 89.5%
against 82.2%, and 91% against 84.2%, respectively. The best
of the tree decision models is the Random Tree. The table shows
that this model has the highest accuracy (90.8% which repre-
sents 69 of 76 instances well classified) and precision (92%),
and the kappa value is in accordance (81%, excellent). This re-
sult is asserted by the 100% of that tells us that all false
positive instances were well classified in class Yes; also the
100% of tells us that all instances classified in class No were
well classified. The Bayes Net classifier is the third worst model

TABLE IV
CONFUSION MATRIX OF THE TOP 3 CLASSIFIERS (FIRST TWO WITH ORIGINAL

DATA, THIRD WITH A BALANCED DATA SET)

in terms of kappa, which is justified by the random selection of
attributes to be used as the nodes of its acyclic graphical model.
Some selected attributes have high entropy, so they insert noise
in the model that results in bad performance.
The last three columns of Table III correspond to threemodels

with good results. MLP is the neural network with the best re-
sults, and curiously with the same results as ID3. Logistic Re-
gression (LR) was the best classifier. Table IV shows the con-
fusion matrix of LR (second and third columns), with values
equivalent to those in Table III. This model presents the highest
accuracy (92.1%, which corresponds to 70 of 76 instances well
classified) and precision (92.5%), and has an excellent kappa
value (84%). The prediction of false positives (first 3 rows of
Table III) is very good, with a great true positive rate of predic-
tion (, 27 of 32 instances), very low false alarms
(, 1 of 44 instances), and an excellent precision
of the prediction of false positives (, 27 of 28
instances). The detection of vulnerabilities (next 3 rows of the
Table III) is also very good, with a great true positive rate of
detection (, 43 of 44 instances), low false alarms
(, 5 of 32 instances), and a very good precision of
detection of vulnerabilities (, 43 of 48 instances).
Balanced Data Set: To try to improve the evaluation, we

applied the SMOTE filter to balance the classes [23]. This filter
doubles instances of smaller classes, creating a better balance.
Fig. 7 shows the number of occurrences in this new data set.
Table V shows the results of the re-evaluation with balanced
classes. All models increased their performance, and passed the
Wilcoxon signed-rank test. The K-NN model has much better
performance because the classes are now balanced. However,
the kappa, accuracy, and precision metrics show that the Bayes
models continue to be the worst. The decision tree models
present good results, with the Random Tree model again the
best of them, and the C4.5/J48 model still the worst. Observing
Fig. 7, there are attributes with very low occurrences that are

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MEDEIROS et al.: DETECTING AND REMOVING WEB APPLICATION VULNERABILITIES WITH STATIC ANALYSIS AND DATA MINING 9

TABLE V
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED TO THE BALANCED DATA SET

Fig. 7. Number of attribute occurrences in the balanced data set.

TABLE VI
CONFUSION MATRIX OF LOGISTIC REGRESSION CLASSIFIER

APPLIED TO A FALSE POSITIVES DATA SET

pruned in the C4.5/J48 model. To increase the performance of
this model, we remove the lowest information gain attribute
(the biggest entropy attribute) and re-evaluate the model. There
is an increase in its performance to 92.6% of , 93,7% of ,
and 85.0% (excellent) of kappa, in such a way that it is equal to
the performance of the Random Tree model. Again, the neural
networks and LR models have very good performance, but
SVM is the best of the three (accuracy of 92.6%, precision of
92.3%, and of 100%).
Main Attributes: To conclude the study of the best classi-

fier, we need to understand which attributes contribute most to
a candidate vulnerability being a false positive. For that purpose,
we extracted from our data set 32 false positive instances, and
classified them in three sub-classes, one for each of the sets of
attributes of Section V-A: string manipulation, SQL query ma-
nipulation, and validation. Then, we used WEKA to evaluate
this new data set with the classifiers that performed best (LR,
Random Tree, and SVM), with and without balanced classes.
Table VI shows the confusion matrix obtained using LR without

balanced classes. The 32 instances are distributed by the three
classes with 17, 3, and 12 instances. The LR performance was

, , and (very good).
All 17 instances of the string manipulation class were correctly
classified. All 3 instances from the SQL class were classified in
the string manipulation class, which is justified by the presence
of the concatenation attribute in all instances. The 11 instances
of the validation class were well classified, except one that was
classified as string manipulation. This mistake is explained by
the presence of the add char attribute in this instance. This anal-
ysis lead us to the conclusion that the stringmanipulation class is
the one that most contributes to a candidate vulnerability being
a false positive.

D. Selection of Classifiers

After the evaluation of classifiers, we need to select the clas-
sifier that is best at classifying candidate vulnerabilities as false
positives or real vulnerabilities. For that purpose, we need a
classifier with great accuracy and precision, but with a rate of

as low as possible, because this rate measures the false neg-
atives of the classifier, which is when a candidate vulnerability
is misclassified as being a false positive. We want also a classi-
fier with a low rate of , which is when a candidate vulnera-
bility is misclassified as being a real vulnerability. This rate
being different from zero means that source code with a false
positive may be corrected, but it will not break the behavior of
the application because the fixes are designed to avoid affecting
the behavior of the application. Finally, we want to justify why
a candidate vulnerability is classified as a false positive, i.e.,
which attributes lead to this classification.
Meta-Models: To optimize the classification performed by

classifiers, our first attempt was to combine machine learning
algorithms. WEKA allows us to do this using meta-models. In
the evaluation made in the previous section, the Random Tree
(RT) and LR were two of the best classifiers. We used the Bag-
ging, Stacking, and Boosting algorithms with RT; and Boosting
with LR (LogitBoost). The Stacking model had the worst per-
formance with an , and thus we removed it from
the evaluation. The others meta-models had in average

, , , and 66 instances well clas-
sified. Given these results, we concluded that the meta-models
had no benefit, as they showed worst performance than RT and
LR separately (see Tables III, and V for these two classifiers).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON RELIABILITY

TABLE VII
EVALUATION OF THE INDUCTION RULE CLASSIFIERS

APPLIED TO OUR ORIGINAL DATA SET

TABLE VIII
SET OF INDUCTION RULES FROM THE JRIP CLASSIFIER

Top 3 Classifiers: LR was the best classifier with our orig-
inal data set, but had so it can misclassify can-
didate vulnerabilities as false positives. With the balanced data
set, it was one of the best classifiers, despite remaining un-
changed. On the other hand, RTwas the best decision tree classi-
fier in both evaluations with , i.e., no false negatives.
Also, the SVM classifier was one of the best with the original
data set, and the best with the balanced data set, with
unlike the in the first evaluation. It was visible
that SVM with the balanced data set classified correctly the two
false negative instances that it classified wrongly with the orig-
inal data set. Table IV shows the confusion matrix for RT (4th
and 5th columns), and SVM (last two columns) with no false
negatives; and for LR (2nd and 3rd columns) with the number
of false positives (a false positive classified as a vulnerability)
lower than the other two classifiers.
Rules of Induction: Data mining is typically about corre-

lation, but the classifiers presented so far do not show this
correlation. For that purpose, our machine learning approach
allows us to identify combinations of attributes that are corre-
lated with the presence of false positives, i.e., what attributes
justify the classification of false positives. To show this corre-
lation, we use induction or coverage rules for classifying the
instances, and for presenting the attributes combination to that
classification. For this effect, we evaluated the JRip, PART,
Prism, and Ridor induction classifiers. The results are presented
in Table VII. Clearly, JRip was the best induction classifier,
with higher and , and the only one without false negatives

. It correctly classified 67 out of 76 instances. The
instances wrongly classified are expressed by .
As explained, this statistic reports the number of instances that
are false positives but were classified as real vulnerabilities.
In our approach, these instances will be corrected with unnec-
essary fixes, but a fix does not interfere with the functionality
of the code. So, although JRip has a higher than the other
classifiers, this is preferable to a different from zero.
Table VIII shows the set of rules defined by JRip to classify

our data set. The first six columns are the attributes involved in
the rules, the seventh is the classification, and the last is the total

number of instances covered by the rule, and the number of in-
stances wrongly covered by the rule (the two numbers are sepa-
rated by a comma). For example, the first rule (second line) clas-
sifies an instance as being false positive (Class Yes) when the
String concatenation and Replace string attributes are present.
The rule covers 9 instances in these conditions, from the 32 false
positives instances from our data set, none were wrongly clas-
sified (9, 0). The last rule classifies as real vulnerability (Class
No) all instances that are not covered by the previous five rules.
The 44 real vulnerabilities from our data set were correctly clas-
sified by this rule. The rule classified five instances in class No
that are false positives. These instances are related with Black
list and SQL attributes, which are not cover by the other rules.
This classification justifies the value in Table VII. Notice
that the attributes involved in this set of rules confirms the study
of main attributes presented in Section V-C, where the SQL at-
tributes are not relevant, and the string manipulation and vali-
dation attributes (string manipulation first) are those that most
contribute to the presence of false positives.

E. Final Selection and Implementation

The main conclusion of our study is that there is no single
classifier that is the best for classifying false positives with our
data set. Therefore, we opted to use the top 3 classifiers to in-
crease the confidence in the false positive classification. The
top 3 classifiers include Logistic Regression and Random Tree
trained with the original data set, and SVM trained with the bal-
anced data set. Also, the JRip induction rule is used to present
the correlation between the attributes to justify the false posi-
tives classification. The combination of 3 classifiers is applied
in sequence: first LR; if LR classifies the vulnerability as false
positive, RT is applied; if false positive, SVM is applied. Only if
SVM considers it a false positive is the final result determined to
be a false positive. These classifiers were implemented in WAP,
and trained with the original and balanced data sets as indicated.

VI. FIXING AND TESTING THE VULNERABLE CODE

A. Code Correction
Our approach involves doing code correction automatically

after the detection of the vulnerabilities is performed by the
taint analyzer and the data mining component. The taint an-
alyzer returns data about the vulnerability, including its class
(e.g., SQLI), and the vulnerable slice of code. The code cor-
rector uses these data to define the fix to insert, and the place to
insert it. Inserting a fix involves modifying a PHP file.
A fix is a call to a function that sanitizes or validates the data

that reaches the sensitive sink. Sanitization involves modifying
the data to neutralize dangerous metacharacters or metadata, if
they are present. Validation involves checking the data, and ex-
ecuting the sensitive sink or not depending on this verification.
Most fixes are inserted in the line of the sensitive sink instead
of, for example, the line of the entry point, to avoid interference
with other code that sanitizes the variable. Table IX shows the
fixes, how they are inserted, and other related information.
For SQLI, the fix is inserted into the last line where the query

is composed, and before it reaches the sensitive sink. However,
the fix can be inserted in the line of the sensitive sink, if the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MEDEIROS et al.: DETECTING AND REMOVING WEB APPLICATION VULNERABILITIES WITH STATIC ANALYSIS AND DATA MINING 11

TABLE IX
ACTION AND OUTPUT OF THE FIXES

query is composed there. The san_sqli fix applies PHP saniti-
zation functions (e.g., mysql_real_escape_string), and lets the
sensitive sink be executed with its arguments sanitized. The
SQLI sanitization function precedes any malicious metachar-
acter with a backslash, and replaces others by their literal, e.g.,
\n by ‘\n’. The sanitization function applied by the san_sqli fix
depends on the DBMS, and the sensitive sink. For example, for
MySQL, the mysql_real_escape_string is selected if the sen-
sitive sink mysql_query is reached; but for PostgreSQL, the
pg_escape_string is used if the sensitive sink is pg_query. For
XSS, the fixes use functions from the OWASP PHP Anti-XSS
library that replace dangerous metacharacters by their HTML
entity (e.g., becomes <). For stored XSS, the sanitization
function addslashes is used, and the validation process verifies
in runtime if an attempt of exploitation occurs, raising an alarm
if that is the case. For these two classes of vulnerabilities, a fix
is inserted for each malicious input that reaches a sensitive sink.
For example, if three malicious inputs appear in an echo sensi-
tive sink (for reflectedXSS), then the san_out fixwill be inserted
three times (one per each malicious input).
The fixes for the other classes of vulnerabilities were devel-

oped by us from scratch, and perform validation of the argu-
ments that reach the sensitive sink, using black lists, and emit-
ting an alarm in the presence of an attack. The san_eval fix
also performs sanitization, replacing malicious metacharacters
by their HTML representation, for example backtick by `.
The last two columns of the table indicate if the fixes output

an alarm message when an attack is detected, and what happens
to the execution of the web application when that action is made.
For SQLI, reflected XSS, and PHPCI, nothing is outputted, and
the execution of the application proceeds. For stored XSS, an
alarm message is emitted, but the application proceeds with its
execution. For the others, where the fixes perform validation,
when an attack is detected, an alarm is raised, and the execution
of the web application stops.

B. Testing Fixed Code

Our fixes were designed to avoid modifying the (correct) be-
havior of the applications. So far, we witnessed no cases in
which an application fixed by WAP started to function incor-
rectly, or that the fixes themselves worked incorrectly. However,
to increase the confidence in this observation, we propose using
software testing techniques. Testing is probably the most widely
adopted approach for ensuring software correctness. The idea is

to apply a set of test cases (i.e., inputs) to a program to determine
for instance if the program in general contains errors, or if mod-
ifications to the program introduced errors. This verification is
done by checking if these test cases produce incorrect or unex-
pected behavior or outputs. We use two software testing tech-
niques for doing these two verifications, respectively: 1) pro-
gram mutation, and 2) regression testing.
1) Program mutation: We use a technique based on program

mutation to confirm that the inserted program fixes prevent the
attacks as expected. Program mutation is a form of code-based
testing, as it involves using the source code of the program [24].
This technique consists in generating variations of the program
(mutants), which are afterwards used to verify if the outputs they
produce differ from those produced by the unmodified program.
The main idea is that, although understanding if the behavior
of a program is incorrect or not is not trivial, on the contrary
comparing the results of two tests of similar programs is quite
feasible.
A mutant of a program is defined as a program derived

from by making a single change to [25], [26]. Given pro-
grams and , and a test-case , (A1) differentiates from

if executions of and with produce different results;
and (A2) if fails to differentiate from , either is func-
tionally equivalent to , or is ineffective in revealing the
changes introduced into . For each vulnerability it detects,
WAP returns the vulnerable slice of code, and the same slice
with the fix inserted, both starting in an entry point, and ending
in a sensitive sink. Consider that is the original program (that
contains the vulnerable slice), and is the fixed program (with
the fix inserted). Consider that both and are executed with
a test case .

Differentiates from (A1): If is a malicious input
that exploits the vulnerability in , then executed with
produces an incorrect behavior. is the fixed version of .
Therefore, if the fix works correctly, the result of the execution
of with differs from the result of the execution of with
. As explained above, comparing the results of the two tests is

quite feasible.
does not differentiate from (A2): If is a benign

input, and and are executed with , a correct behavior
is obtained in both cases, and the result produced by both pro-
grams is equal. Input sanitization and validation do not interfere
with benign inputs, so the fixes only act on malicious inputs,
leaving the benign inputs untouched, and remaining the correct
behavior.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON RELIABILITY

Applying this approach with a large set of test cases, we can
gain confidence that a fix indeed corrects a vulnerability.
2) Regression testing: A concern that may be raised about

the use of WAP for correcting web applications is that the ap-
plications may start to function incorrectly due to the modifica-
tions made by the tool. As mentioned, we have some experience
with the tool, and we never observed this problem. Neverthe-
less, we propose using regression testing to verify if the (cor-
rect) behavior of an application was modified by WAP. Regres-
sion testing consists in running the same tests before and after
the program modifications [24]. The objective is to check if the
functionality that was working correctly before the changes still
continues to work correctly.
We consider that the result of running an application test can

be either pass or fail, respectively if the application worked as
expected with that test case or not. We are not concerned about
how the test cases are obtained. If WAP is used by the applica-
tion developers, then they can simply do their own regression
testing process. If WAP is employed by others, they can write
their own suite of tests, or use the tests that come with the appli-
cation (something that happens with many open source applica-
tions). Regression testing is successful if all the test cases that
resulted in pass before the WAP modification also result in pass
after inserting the fixes.

VII. EXPERIMENTAL EVALUATION
WAPwas implemented in Java, using the ANTLR parser gen-

erator. It has around 95,000 lines of code, with 78,500 of which
generated by ANTLR. The implementation followed the archi-
tecture of Fig. 3, and the approach of the previous sections.
The objective of the experimental evaluation was to answer

the following questions.
1) Is WAP able to process a large set of PHP applications?

(Section VII-A)
2) Is it more accurate and precise than other tools that

do not combine taint analysis and data mining?
(Section VII-B through VII-C)

3) Does it correct the vulnerabilities it detects?
(Section VII-D)

4) Does the tool detect the vulnerabilities that it was pro-
grammed to detect? (Section VII-D)

5) Do its corrections interfere with the normal behavior of
applications? (Section VII-E)

A. Large Scale Evaluation
To show the ability of using WAP with a large set of

PHP applications, we run it with 45 open source packages.
Table X shows the packages that were analyzed, and summa-
rizes the results. The table shows that more than 6,700 files and
1,380,000 lines of code were analyzed, with 431 vulnerabilities
found (at least 43 of which were false positives (FP)). The
largest packages analyzed were Tikiwiki version 1.6 with
499,315 lines of code, and phpMyAdmin version 2.6.3-pl1
with 143,171 lines of code. We used a range of packages from
well-known applications (e.g., Tikiwiki) to small applications
in their initial versions (like PHP-Diary). The functionality
was equally diverse, including for instance a small content
management application like phpCMS, an event console for
the iPhone (ZiPEC), and a weather application (PHP Weather).

The vulnerabilities found in ZiPEC were in the last version, so
we informed the programmers, who then acknowledged their
existence and fixed them.

B. Taint Analysis Comparative Evaluation
To answer the second question, we compare WAP with Pixy

and PhpMinerII. To the best of our knowledge, Pixy is the most
cited PHP static analysis tool in the literature, and PhpMinerII
is the only tool that does data mining. Other open PHP verifica-
tion tools are available, but they are mostly simple prototypes.
The full comparison of WAP with the two tools can be found
in the next section. This one has the simpler goal of comparing
WAP's taint analyzer with Pixy, which does this same kind of
analysis. We consider only SQLI and reflected XSS vulnerabil-
ities, as Pixy only detects these two (recall that WAP detects
vulnerabilities of eight classes).
Table XI shows the results of the execution of the two tools

with a randomly selected subset of the applications of Table X:
9 open source applications, and all PHP samples of NIST's
SAMATE [41]. Pixy did not manage to process mutilidae and
WackoPicko because they use the object-oriented features of
PHP 5.0, whereas Pixy supports only those in PHP 4.0. WAP's
taint analyzer (WAP-TA) detected 68 vulnerabilities (22 SQLI,
and 46 XSS), with 21 false positives (FP). Pixy detected 73
vulnerabilities (20 SQLI, and 53 XSS), with 41 false positives,
and 5 false negatives (FN, i.e., it did not detect 5 vulnerabilities
that WAP-TA did).
Pixy reported 30 false positives that were not raised by

WAP-TA. This difference is explained in part by the interpro-
cedural, global, and context-sensitive analyses performed by
WAP-TA, but not by Pixy. Another part of the justification is
the bottom-up taint analysis carried out by Pixy (AST navigated
from the leafs to the root of the tree), whereas the WAP-TA
analysis is top-down (starts from the entry points, and verifies
if they reach a sensitive sink).
Overall, WAP-TA was more accurate than Pixy: it had an

accuracy of 69%, whereas Pixy had only 44%.

C. Full Comparative Evaluation
This section compares the complete WAP with Pixy and Ph-

pMinerII.
PhpMinerII does data mining of program slices that end at a

sensitive sink, regardless of data being propagated through them
starting at an entry point or not. PhpMinerII does this analysis to
predict vulnerabilities, whereas WAP uses data mining to pre-
dict false positives in vulnerabilities detected by the taint ana-
lyzer.
We evaluated PhpMinerII with our data set using the same

classifiers as PhpMinerII's authors [27], [28] (a subset of the
classifiers of Section V-B). The results of this evaluation are in
Table XII. It is possible to observe that the best classifier is LR,
which is the only one that passed theWilcoxon signed-rank test.
It had also the highest precision and accuracy , and
the lowest false alarm rate .
The confusion matrix of the LR model for PhpMinerII

(Table XIII) shows that it correctly classified 68 instances, with
48 as vulnerabilities, and 20 as non-vulnerabilities. We can
conclude that LR is a good classifier for PhpMinerII, with an
accuracy of 87.2%, and a precision of 85.3%.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MEDEIROS et al.: DETECTING AND REMOVING WEB APPLICATION VULNERABILITIES WITH STATIC ANALYSIS AND DATA MINING 13

TABLE X
SUMMARY OF THE RESULTS OF RUNNING WAP WITH OPEN SOURCE PACKAGES

TABLE XI
RESULTS OF RUNNING WAP'S TAINT ANALYZER (WAP-TA), PIXY, AND WAP

COMPLETE (WITH DATA MINING)

We now compare the three tools. The comparison with Pixy
can be extracted from Table XI; however, we cannot show the

TABLE XII
EVALUATION OF THE MACHINE LEARNING MODELS APPLIED

TO THE DATA SET RESULTING FROM PHPMINERII

results of PhpMinerII in the table because it does not really iden-
tify vulnerabilities. The accuracy of WAP was 92.1%, whereas

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

14 IEEE TRANSACTIONS ON RELIABILITY

TABLE XIII
CONFUSION MATRIX OF PHPMINERII WITH LR

TABLE XIV
SUMMARY FOR WAP, PIXY AND PHPMINERII

TABLE XV
RESULTS OF THE EXECUTION OF WAP WITH ALL
VULNERABILITIES IT DETECTS AND CORRECTS

the accuracy of WAP-TA was 69%, and of Pixy was only 44%.
The PHPminerII results (Tables XII and XIII) are much better
than Pixy's, but not as good as WAP's, which has an accuracy of
92.1%, and a precision of 92.5% (see Table III) with the same
classifier.
Table XIV summarizes the comparison between WAP, Pixy,

and PhpMinerII. We refined these values for a more detailed
comparison. We obtained the intersection between the 53 slices
classified as vulnerable by PHPminerII and the 68 vulnerabili-
ties found by WAP. Removing from the 68 those found in ap-
plications that PHPminerII could not process, 37 remain, 11 of
which are false positives. All the 22 real vulnerabilities detected
by PHPminerII were also detected byWAP, and PHPminerII did
not detect 4 vulnerabilities that WAP identified. The 11 false
positives from WAP are among the 31 false positives of PHP-
minerII.

D. Fixing Vulnerabilities

WAP uses data mining to discover false positives among the
vulnerabilities detected by its taint analyzer. Table XI shows that
in the set of 10 packages WAP detected 47 SQLI, and reflected
XSS vulnerabilities. The taint analyzer raised 21 false positives
that were detected by the data mining component. All the vul-
nerabilities detected were corrected (right-hand column of the
table).
WAP detects several other classes of vulnerabilities be-

sides SQLI and reflected XSS. Table XV expands the data of
Table XI for all the vulnerabilities discovered by WAP. The 69
XSS vulnerabilities detected include reflected and stored XSS
vulnerabilities, which explains the difference to the 46 reflected

XSS of Table XI. Again, all vulnerabilities were corrected by
the tool (last column).

E. Testing Fixed Applications
WAP returns new application files with the vulnerabilities re-

moved by the insertion of fixes in the source code. As explained
in Section VI-B, regression testing can be used to check if the
code corrections made byWAP compromise the previously cor-
rect behavior of the application.
For this purpose, we did regression testing using Selenium

[42], a framework for testing web applications. Selenium auto-
mates browsing, and verifies the results of the requests sent to
web applications. The DVWA 1.0.7 application and the sam-
ples in SAMATE were tested because they contain a variety
of vulnerabilities detected and corrected by the WAP tool (see
Table XV). Specifically, WAP corrected 6 files of DVWA 1.0.7,
and 10 of SAMATE.
The regression testing was carried out in the following way.

First, we created in Selenium a set of test cases with benign
inputs. Then, we ran these test cases with the original DVWA
and SAMATEfiles, and observed that they passed all tests. Next,
we replaced the 16 vulnerable files by the 16 files returned by
WAP, and reran the tests to verify the changes introduced by the
tool. The applications passed again all the tests.

VIII. DISCUSSION

The WAP tool, like any other static analysis approach, can
only detect vulnerabilities it is programmed to. WAP can, how-
ever, be extended to handle more classes of input validation vul-
nerabilities. We discuss it considering WAP's three main com-
ponents: taint analyzer, data mining component, and code cor-
rector. The taint analyzer has three pieces of data about each
class of vulnerabilities: entry points, sensitive sinks, and sani-
tization functions. The entry points are always a variant of the
same set (functions that read input parameters, e.g., $_GET),
whereas the rest tend to be simple to identify once the vulner-
ability class is known. The data mining component has to be
trained with new knowledge about false positives for the new
class. This training may be skipped at first, and improved incre-
mentally when more data become available. For the training, we
need data about candidate vulnerabilities of that kind found by
the taint analyzer, which have to be labeled as true or false pos-
itives. Then, the attributes associated to the false positives have
to be used to configure the classifier. The code corrector needs
data about what sanitization function has to be used to handle
that class of vulnerability, and where it shall be inserted. Again,
getting this information is doable once the new class is known
and understood.
A limitation of WAP derives from the lack of formal spec-

ification of PHP. During the experimentation of the tool with
many open source applications (Section VII-A), several times
WAP was unable to parse the source code for lack of a grammar
rule to deal with strange constructions. With time, these rules
were added, and these problems stopped appearing.

IX. RELATED WORK

There is a large corpus of related work, so we just summa-
rize the main areas by discussing representative papers, while
leaving many others unreferenced to conserve space.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

MEDEIROS et al.: DETECTING AND REMOVING WEB APPLICATION VULNERABILITIES WITH STATIC ANALYSIS AND DATA MINING 15

Detecting Vulnerabilities with Static Analysis: Static anal-
ysis tools automate the auditing of code, either source, binary,
or intermediate. In this paper, we use the term static analysis in a
narrow sense to designate static analysis of source code to detect
vulnerabilities [8]–[10], [29]. The most interesting static anal-
ysis tools do semantic analysis based on the abstract syntax tree
(AST) of a program. Data flow analysis tools follow the data
paths inside a program to detect security problems. The most
commonly used data flow analysis technique for security anal-
ysis is taint analysis, which marks data that enters the program
as tainted, and detects if it reaches sensitive functions.
Taint analysis tools like CQUAL [10] and Splint [19] (both

for C code) use two qualifiers to annotate source code: the un-
tainted qualifier indicates either that a function or parameter re-
turns trustworthy data (e.g., a sanitization function), or a param-
eter of a function requires trustworthy data (e.g., mysql_query).
The tainted qualifier means that a function or a parameter re-
turns non-trustworthy data (e.g., functions that read user input).
Pixy [9] uses taint analysis for verifying PHP code, but ex-

tends it with alias analysis that takes into account the existence
of aliases, i.e., of two or more variable names that are used to
denominate the same variable. SaferPHP uses taint analysis to
detect certain semantic vulnerabilities in PHP code: denial of
service due to infinite loops, and unauthorized operations in
databases [29]. WAP also does taint analysis and alias anal-
ysis for detecting vulnerabilities, although it goes further by also
correcting the code. Furthermore, Pixy does only module-level
analysis, whereas WAP does global analysis (i.e., the analysis is
not limited to a module or file, but can involve several).
Vulnerabilities and Data Mining: Data mining has been used

to predict the presence of software defects [30]–[32]. These
works were based on code attributes such as numbers of lines
of code, code complexity metrics, and object-oriented features.
Some papers went one step further in the direction of our work
by using similar metrics to predict the existence of vulnera-
bilities in source code [33]–[35]. They used attributes such as
past vulnerabilities and function calls [33], or code complexity
and developer activities [34]. Contrary to our work, these other
works did not aim to detect bugs and identify their location, but
to assess the quality of the software in terms of the prevalence
of defects and vulnerabilities.
Shar and Tan presented PhpMinerI, and PhpMinerII, which

are two tools that use data mining to assess the presence of vul-
nerabilities in PHP programs [27], [28]. These tools extract a set
of attributes from program slices, then apply data mining algo-
rithms to those attributes. The data mining process is not really
done by the tools, but by theWEKA tool [23].More recently, the
authors evolved this idea to use also traces or program execu-
tion [36]. Their approach is an evolution of the previous works
that aimed to assess the prevalence of vulnerabilities, but ob-
taining a higher accuracy. WAP is quite different because it has
to identify the location of vulnerabilities in the source code, so
that it can correct them with fixes. Moreover, WAP does not use
data mining to identify vulnerabilities, but to predict whether
the vulnerabilities found by taint analysis are really vulnerabil-
ities or false positives.
Correcting Vulnerabilities: We propose to use the output of

static analysis to remove vulnerabilities automatically. We are
aware of a few works that use approximately the same idea of

first doing static analysis then doing some kind of protection,
but mostly for the specific case of SQL injection and without at-
tempting to insert fixes in a way that can be replicated by a pro-
grammer. AMNESIA does static analysis to discover all SQL
queries, vulnerable or not; and in runtime it checks if the call
being made satisfies the format defined by the programmer [37].
Buehrer et al. do something similar by comparing in runtime the
parse tree of the SQL statement before and after the inclusion
of user input [38]. WebSSARI also does static analysis, and in-
serts runtime guards, but no details are available about what the
guards are, or how they are inserted [8]. Merlo et al. present a
tool that does static analysis of source code, performs dynamic
analysis to build syntactic models of legitimate SQL queries,
and generates code to protect queries from input that aims to
do SQLI [39]. saferXSS does static analysis for finding XSS
vulnerabilities, then removes them using functions provided by
OWASP's ESAPI [43] to wrap user inputs [40]. None of these
works use data mining or machine learning.

X. CONCLUSION
This paper presents an approach for finding and correcting

vulnerabilities in web applications, and a tool that implements
the approach for PHP programs and input validation vulnerabil-
ities. The approach and the tool search for vulnerabilities using
a combination of two techniques: static source code analysis,
and data mining. Data mining is used to identify false positives
using the top 3 machine learning classifiers, and to justify their
presence using an induction rule classifier. All classifiers were
selected after a thorough comparison of several alternatives. It
is important to note that this combination of detection tech-
niques cannot provide entirely correct results. The static anal-
ysis problem is undecidable, and resorting to data mining cannot
circumvent this undecidability, but only provide probabilistic
results. The tool corrects the code by inserting fixes, i.e., saniti-
zation and validation functions. Testing is used to verify if the
fixes actually remove the vulnerabilities and do not compromise
the (correct) behavior of the applications. The tool was exper-
imented with using synthetic code with vulnerabilities inserted
on purpose, and with a considerable number of open source PHP
applications. It was also compared with two source code anal-
ysis tools: Pixy, and PhpMinerII. This evaluation suggests that
the tool can detect and correct the vulnerabilities of the classes it
is programmed to handle. It was able to find 388 vulnerabilities
in 1.4 million lines of code. Its accuracy and precision were ap-
proximately 5% better than PhpMinerII's, and 45% better than
Pixy's.

REFERENCES
[1] Symantec, Internet threat report. 2012 trends, vol. 18, Apr. 2013.
[2] W. Halfond, A. Orso, and P. Manolios, “WASP: protecting web ap-

plications using positive tainting and syntax aware evaluation,” IEEE
Trans. Softw. Eng., vol. 34, no. 1, pp. 65–81, 2008.

[3] T. Pietraszek and C. V. Berghe, “Defending against injection attacks
through context-sensitive string evaluation,” in Proc. 8th Int. Conf. Re-
cent Advances in Intrusion Detection, 2005, pp. 124–145.

[4] X. Wang, C. Pan, P. Liu, and S. Zhu, “SigFree: A signature-free buffer
overflow attack blocker,” in Proc. 15th USENIX Security Symp., Aug.
2006, pp. 225–240.

[5] J. Antunes, N. F. Neves, M. Correia, P. Verissimo, and R. Neves, “Vul-
nerability removal with attack injection,” IEEE Trans. Softw. Eng., vol.
36, no. 3, pp. 357–370, 2010.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

16 IEEE TRANSACTIONS ON RELIABILITY

[6] R. Banabic and G. Candea, “Fast black-box testing of system recovery
code,” in Proc. 7th ACM Eur. Conf. Computer Systems, 2012, pp.
281–294.

[7] Y.-W. Huang et al., “Web application security assessment by fault in-
jection and behavior monitoring,” in Proc. 12th Int. Conf. World Wide
Web, 2003, pp. 148–159.

[8] Y.-W. Huang et al., “Securing web application code by static anal-
ysis and runtime protection,” in Proc. 13th Int. Conf. World Wide Web,
2004, pp. 40–52.

[9] N. Jovanovic, C. Kruegel, and E. Kirda, “Precise alias analysis for
static detection of web application vulnerabilities,” inProc. 2006Work-
shop Programming Languages and Analysis for Security, Jun. 2006,
pp. 27–36.

[10] U. Shankar, K. Talwar, J. S. Foster, and D. Wagner, “Detecting format
string vulnerabilities with type qualifiers,” in Proc. 10th USENIX Se-
curity Symp., Aug. 2001, vol. 10, pp. 16–16.

[11] W. Landi, “Undecidability of static analysis,” ACM Lett. Program.
Lang. Syst., vol. 1, no. 4, pp. 323–337, 1992.

[12] N. L. de Poel, “Automated security review of PHP web applica-
tions with static code analysis,” M.S. thesis, State Univ. Groningen,
Groningen, The Netherlands, May 2010.

[13] WAP tool website [Online]. Available: http://awap.sourceforge.net/
[14] Imperva, Hacker intelligence initiative, monthly trend report #8, Apr.

2012.
[15] J. Williams and D. Wichers, OWASP Top 10 - 2013 rcl - the ten most

critical web application security risks, OWASP Foundation, 2013,
Tech. Rep.

[16] R. S. Sandhu, “Lattice-based access control models,” IEEE Comput.,
vol. 26, no. 11, pp. 9–19, 1993.

[17] A. Sabelfeld and A. C. Myers, “Language-based information-flow se-
curity,” IEEE J. Sel. Areas Commun., vol. 21, no. 1, pp. 5–19, 2003.

[18] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,
“Automatically hardening web applications using precise tainting,” in
Security and Privacy in the Age of Ubiquitous Computing, 2005, pp.
295–307.

[19] D. Evans and D. Larochelle, “Improving security using extensible
lightweight static analysis,” IEEE Softw., pp. 42–51, Jan./Feb. 2002.

[20] T. Parr, Language Implementation Patterns: Create Your Own Domain
Specific and General Programming Languages.. Frisco, TX, USA:
Pragmatic Bookshelf, 2009.

[21] G.Wassermann and Z. Su, “Sound and precise analysis of web applica-
tions for injection vulnerabilities,” in Proc. 28th ACM SIGPLAN Conf.
Programming Language Design and Implementation, 2007, pp. 32–41.

[22] J. Demšar, “Statistical comparisons of classifiers over multiple data
sets,” J. Mach. Learn. Res., vol. 7, pp. 1–30, Dec. 2006.

[23] I. H.Witten, E. Frank, andM. A. Hall, DataMining: Practical Machine
Learning Tools and Techniques, 3rd ed. San Francisco, CA, USA:
Morgan Kaufmann, 2011.

[24] J. C. Huang, Software Error Detection through Testing and Analysis.
. New York, NY, USA: Wiley, 2009.

[25] T. Budd et al., “The design of a prototype mutation system for program
testing,” in Proc. AFIPS National Computer Conf., 1978, pp. 623–627.

[26] R. A. DeMillo, R. J. Lipton, and F. G. Sayward, “Hints on test data
selection: Help for the practicing programmer,” Computer, vol. 11, no.
4, pp. 34–41, Apr. 1978.

[27] L. K. Shar and H. B. K. Tan, “Mining input sanitization patterns for
predicting SQL injection and cross site scripting vulnerabilities,” in
Proc. 34th Int. Conf. Software Engineering, 2012, pp. 1293–1296.

[28] L. K. Shar et al., “Predicting common web application vulnerabilities
from input validation and sanitization code patterns,” in Proc. 27th
IEEE/ACM Int. Conf. Automated Software Engineering, 2012, pp.
310–313.

[29] S. Son and V. Shmatikov, “SAFERPHP: Finding semantic vulnera-
bilities in PHP applications,” in Proc. ACM SIGPLAN 6th Workshop
Programming Languages and Analysis for Security, 2011.

[30] E. Arisholm, L. C. Briand, and E. B. Johannessen, “A systematic and
comprehensive investigation ofmethods to build and evaluate fault pre-
diction models,” J. Syst. Softw., vol. 83, no. 1, pp. 2–17, 2010.

[31] L. C. Briand, J. Wüst, J. W. Daly, and D. Victor Porter, “Exploring the
relationships between design measures and software quality in objec-
toriented systems,” J. Syst. Softw., vol. 51, no. 3, pp. 245–273, 2000.

[32] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
classification models for software defect prediction: A proposed frame-
work and novel findings,” IEEE Trans. Softw. Eng., vol. 34, no. 4, pp.
485–496, 2008.

[33] S. Neuhaus, T. Zimmermann, C. Holler, and A. Zeller, “Predicting vul-
nerable software components,” inProc. 14th ACMConf. Computer and
Communications Security, 2007, pp. 529–540.

[34] Y. Shin, A.Meneely, L.Williams, and J. A. Osborne, “Evaluating com-
plexity, code churn, developer activity metrics as indicators of software
vulnerabilities,” IEEE Trans. Softw. Eng., vol. 37, no. 6, pp. 772–787,
2011.

[35] J. Walden, M. Doyle, G. A. Welch, and M. Whelan, “Security of open
source web applications,” Proc. 3rd Int. Symp. Empirical Software En-
gineering and Measurement, pp. 545–553, 2009.

[36] L. K. Shar, H. B. K. Tan, and L. C. Briand, “Mining SQL injection and
cross site scripting vulnerabilities using hybrid program analysis,” in
Proc. 35th Int. Conf. Software Engineering, 2013, pp. 642–651.

[37] W. Halfond and A. Orso, “AMNESIA: analysis and monitoring for
neutralizing SQL-injection attacks,” in Proc. 20th IEEE/ACM Int.
Conf. Automated Software Engineering, Nov. 2005, pp. 174–183.

[38] G. T. Buehrer, B. W. Weide, and P. Sivilotti, “Using parse tree vali-
dation to prevent SQL injection attacks,” in Proc. 5th Int. Workshop
Software Engineering and Middleware, Sep. 2005, pp. 106–113.

[39] E. Merlo, D. Letarte, and G. Antoniol, “Automated Protection of PHP
Applications Against SQL Injection Attacks,” in Proc. 11th Eur. Conf.
Software Maintenance and Reengineering, Mar. 2007, pp. 191–202.

[40] L. K. Shar and H. B. K. Tan, “Automated removal of cross site scripting
vulnerabilities in web applications,” Inf. Softw. Technol., vol. 54, no.
5, pp. 467–478, 2012.

[41] NIST's SAMATE Reference Dataset (SRD) [Online]. Available: http:/
/samate.nist.gov/SRD/

[42] Selenium IDE [Online]. Available: http://docs.seleniumhq.org
[43] OWASP ESAPI [Online]. Available: http://www.owasp.org/index.

php/ESAPI

Ibéria Medeiros is a Ph.D. student at the Department of Informatics, Faculty
of Sciences, University of Lisboa. She is a member of the Large-Scale Infor-
matics Systems (LaSIGE) Laboratory, and the Navigators research group. She
is also anAssistant Professor of the University of Azores, teaching courses of the
graduation in Informatics, Computer Networks, and Multimedia. Her research
interests are concerned with software security, source code static analysis, data
mining and machine learning, and security. More information about her can be
found at https://sites.google.com/site/ibemed/.

Nuno Neves is Associate Professor with Habilitation at the Faculty of Sciences
of the University of Lisboa. He is also Director of the LaSIGE Lab, and he
leads the Navigators group. His main research interests are in security and de-
pendability aspects of distributed systems. Currently, he is principal investigator
of the SUPERCLOUD and SEGRID European projects, and he is involved in
projects BiobankClouds and Erasmus+ ParIS. His work has been recognized in
several occasions, for example with the IBM Scientific Prize, and the William
C. Carter award. He is on the editorial board of the International Journal of
Critical Computer-Based Systems. More information about him can be found at
http://www.di.fc.ul.pt/~nuno.

Miguel Correia is an Associate Professor at Instituto Superior Técnico of the
Universidade de Lisboa, and a researcher at INESC-ID, in Lisboa, Portugal. He
has been involved in several international and national research projects related
to security, including the PCAS, TCLOUDS, ReSIST,MAFTIA, and CRUTIAL
European projects. He has more than 100 publications. His main research inter-
ests are security, intrusion tolerance, distributed systems, distributed algorithms,
software security, cloud computing, and critical infrastructure protection. More
information about him can be found at http://www.gsd.inesc-id.pt/~mpc/.

