
VIRUS BULLETIN www.virusbtn.com

4 FEBRUARY 2011

$$$_+$$+$$__+_$+$$_$+$$$_+$$_$
Peter Ferrie
Microsoft, USA

Imagine a JavaScript encoding method that produces fi les
that contain no alphanumeric characters, only symbols such
as ‘$’, ‘_’, and ‘+’. It would be diffi cult to imagine how it
could possibly work, but unfortunately one such encoder
exists. It is called ‘JJEncode’. A demonstration version is
freely available from the author’s website, and has already
been used in malware. This article provides a detailed
description of how it works.

_$+”\\”+__$+$_$+$_$+”\\”+__$+$__+$$$

We start with this:

$=~[];$={___:++$,$$$$:(![]+””)[$],__$:++$,$_
$_:(![]+””)[$],_$_:++$,$_$$:({}+””)[$],$$_
$:($[$]+””)[$],_$$:++$,$$$_:(!””+””)[$],$__:++$,$_
$:++$,$$__:({}+””)[$],$$_:++$,$$$:++$,$___:++$,$_
$:++$};$.$=($.$_=$+””)[$.$_$]+($._$=$.$_[$.__
$])+($.$$=($.$+””)[$.__$])+((!$)+””)[$._$$]+($.__
=$.$_[$.$$_])+($.$=(!””+””)[$.__$])+($._=(!””+””)[$._
$_])+$.$_[$.$_$]+$.__+$._$+$.$;$.$$=$.$+(!””+””)
[$._$$]+$.__+$._+$.$+$.$$;$.$=($.___)[$.$_][$.$_
];$.$($.$($.$$+”\””+ENCODED+”\””)())();

Note that the ‘ENCODED’ above does not appear in
encoded fi les, rather it is the location where the encoded
host code would appear. Also note that this algorithm does
not work in direct mode (that is, putting it in a .js won’t
work) because it requires a feature that was introduced in
HTML 4.0. As a result, it must appear in an HTML page,
and that HTML page must declare its need for HTML 4.0 or
later using a declaration like this:

<!DOCTYPE html PUBLIC “-//W3C//DTD HTML 4.0//EN”>

The ‘HTML 4.0’ string can be replaced by later versions,
such as ‘HTML 4.1’ or ‘XHTML 1.0’, etc.

On to the code...

$_
$=~[]

The expression ‘[]’ returns a reference to an empty array.
The operator ‘~’ accesses the value at that reference (‘0’ in
this case), and then inverts that value, resulting in the value
‘-1’. This value is assigned to the variable ‘$’.

$={___:++$,$$$$:(![]+””)[$],__$:++$,$_$_
:(![]+””)[$],_$_:++$,$_$$:({}+””)[$],$$_
$:($[$]+””)[$],_$$:++$,$$$_:(!””+””)[$],$__:++$,$_
$:++$,$$__:({}+””)[$],$$_:++$,$$$:++$,$___:++$,$__
$:++$}

This line can also be written as follows:

$=

 {

 ___:++$,

 $$$$:(![]+””)[$],

 __$:++$,

 $_$_:(![]+””)[$],

 $:++$,

 $_$$:({}+””)[$],

 $$_$:($[$]+””)[$],

 _$$:++$,

 $$$_:(!””+””)[$],

 $__:++$,

 $_$:++$,

 $$__:({}+””)[$],

 $$_:++$,

 $$$:++$,

 $___:++$,

 $__$:++$

 }

The ‘{’ and ‘}’ signify the creation of an object, and each
line between the braces creates a property and assigns it
a value during the object construction. We’ll examine the
lines one at a time.

___:++$

The expression ‘++$’ sets the value in the variable ‘$’ to ‘0’
(specifi cally, it is incremented by 1, from ‘-1’ to ‘0’). The
‘:’ assigns a value to a property, and the property name is
‘___’, so the property ‘___’ is set to ‘0’.

$$$$:(![]+””)[$],

The expression ‘[]’ returns a reference to an empty array, as
above. The operator ‘!’ tests if the reference is zero, which it
is not, resulting in the Boolean value ‘false’. The expression
‘+""’ causes the Boolean value to be converted to a string,
after which the empty string is appended to it. The result is
the string ‘false’. The expression ‘[$]’ causes the string to be
converted to an array1, and a single character to be returned.
The variable ‘$’ has the value ‘0’ from above, so the fi rst
character of the string ‘false’ (‘f’) is returned. That value is
assigned to the property ‘$$$$’.

__$:++$,

The expression ‘++$’ sets to ‘1’ the value of the variable
‘$’, and assigns that value to the property ‘__$’.

$_$_:(![]+””)[$],

The second character of the string ‘false’ (‘a’) is assigned
to the property ‘$_$_’. The use of the expression ‘![]’

1 This is HTML-specifi c behaviour. Normally, a string cannot be
converted to an array.

MALWARE ANALYSIS

VIRUS BULLETIN www.virusbtn.com

5FEBRUARY 2011

appears to be an oversight on the part of the author, since
the expression ‘!$’ could have been used instead, now that
the value of the variable ‘$’ is no longer zero. This change
would have saved one byte.

$:++$,

The expression ‘++$’ sets to ‘2’ the value of the variable
‘$’, and assigns that value to the property ‘_$_’.

$_$$:({}+””)[$],

The expression ‘{}’ returns a reference to an empty object.
As above, this reference is converted to a string. The result
is the string ‘[object Object]’. The third character of the
string ‘[object Object]’ (‘b’) is assigned to the property
‘$_$$’.

$$_$:($[$]+””)[$],

The expression ‘$[$]’ would access the third entry in the
array specifi ed by the variable ‘$’ if that array existed.
However, since the variable ‘$’ is not an array, the value
‘undefi ned’ is returned. As above, this value is converted
to the string ‘undefi ned’. The third character of the string
‘undefi ned’ (‘d’) is assigned to the property ‘$$_$’.

_$$:++$,

The expression ‘++$’ sets to ‘3’ the value of the variable
‘$’, and assigns that value to the property ‘_$$’.

$$$_:(!””+””)[$],

The expression ‘""’ returns an empty string. The operator
‘!’ tests if the string is zero, which it is, resulting in the
Boolean value ‘true’. As above, this value is converted to
the string ‘true’. The fourth character of the string ‘true’
(‘e’) is assigned to the property ‘$$$_’. The use of the
expression ‘!""+""’ appears to be an oversight, since the
string ‘object’ contains the letter ‘e’ immediately before the
letter ‘c’. Thus, this line could have been moved below the
following line, and the expression ‘!""+""’ could have been
replaced with the expression ‘{}+""’, to save one byte.

$__:++$,

The expression ‘++$’ sets to ‘4’ the value of the variable
‘$’, and assigns that value to the property ‘$__’.

$_$:++$,

The expression ‘++$’ sets to ‘5’ the value of the variable
‘$’, and assigns that value to the property ‘$_$’.

$$__:({}+””)[$],

The sixth character of the string ‘[object Object]’ (‘c’) is
assigned to the property ‘$$__’. The expression ‘({}+"")’
is duplicated because it is not possible to reference a newly
created property during the construction of an object. To
reduce the size of the code, it would be necessary to use a

second variable, where the ‘object’ string could be stored
prior to the construction of the ‘$’ object. Then the property
assignment line would become ‘$$__:var2[$]’, where ‘var2’
is the example name of the second variable.

$$_:++$,

The expression ‘++$’ sets to ‘6’ the value of the variable
‘$’, and assigns that value to the property ‘$$_’.

$$$:++$,

The expression ‘++$’ sets to ‘7’ the value of the variable
‘$’, and assigns that value to the property ‘$$$’.

$___:++$,

The expression ‘++$’ sets to ‘8’ the value of the variable
‘$’, and assigns that value to the property ‘$___’.

$__$:++$

The expression ‘++$’ sets to ‘9’ the value of the variable
‘$’, and assigns that value to the property ‘$__$’.

At this point, we have the properties ‘___’, ‘$$$$’, ‘__$’,
‘$_$_’, ‘_$_’, ‘$_$$’, ‘$$_$’, ‘_$$’, ‘$$$_’, ‘$__’, ‘$_$’,
‘$$__’, ‘$$_’, ‘$$$’, ‘$___’, and ‘$__$’. They contain the
values ‘0’, ‘f’, ‘1’, ‘a’, ‘2’, ‘b’, ‘d’, ‘3’, ‘e’, ‘4’, ‘5’, ‘c’, ‘6’,
‘7’, ‘8’, and ‘9’.

$$+”\””+$_+”\””
$.$_=($.$_=$+””)[$.$_$]+($._$=$.$_[$.__
$])+($.$$=($.$+””)[$.__$])+((!$)+””)[$._$$]+($.__
=$.$_[$.$$_])+($.$=(!””+””)[$.__$])+($._=(!””+””)[$._
$_])+$.$_[$.$_$]+$.__+$._$+$.$

This line contains multiple assignments to properties, and
character concatenation. It can also be written as follows:
$.$_=

 ($.$_=$+””)[$.$_$]

 +($._$=$.$_[$.__$])

 +($.$$=($.$+””)[$.__$])

 +((!$)+””)[$._$$]

 +($.__=$.$_[$.$$_])

 +($.$=(!””+””)[$.__$])

 +($._=(!””+””)[$._$_])

 +$.$_[$.$_$]

 +$.__

 +$._$

 +$.$

The references to ‘$’ refer to the object now, not the value
‘9’. The ‘$.’ in front of each property is required to access
an existing property.

($.$_=$+””)[$.$_$]

The string ‘[object Object]’ is assigned to the property ‘$_’.
The sixth character (‘$_$’ is ‘5’) of the string

VIRUS BULLETIN www.virusbtn.com

6 FEBRUARY 2011

‘[object Object]’ (‘c’) is returned. There is a missed
opportunity by the author here, since the ‘$$__’ property
also contains the character ‘c’. Five bytes could have
been saved by using that property instead, and moving the
assignment of the ‘$_’ property to the following line.

+($._$=$.$_[$.__$])

The second character (‘__$’ is ‘1’) of the string ‘[object
Object]’ (‘o’) is assigned to the property ‘_$’ and also
returned.

+($.$$=($.$+””)[$.__$])

The non-existent property ‘$’ is accessed, so the value
‘undefi ned’ is returned. This value is converted to a string,
as above. The second character (‘__$’ is ‘1’) of the string
‘undefi ned’ (‘n’) is assigned to the property ‘$$’ and also
returned.

+((!$)+””)[$._$$]

The expression ‘!$’ tests if the reference to the object ‘$’ is
zero, which it is not, resulting in the Boolean value ‘false’.
The value is converted to a string, as above, and the fourth
character (‘_$$’ is ‘3’) of the string ‘false’ (‘s’) is returned.
The parentheses surrounding the expression ‘!$’ are
unnecessary and could have been removed to save two bytes.

+($.__=$.$_[$.$$_])

The seventh character (‘$$_’ is ‘6’) of the string ‘[object
Object]’ (‘t’) is assigned to the property ‘__’ and also
returned. This line could have been written as ‘$.__’ if the
line ‘__:(!$+"")[$]’ were placed in the object construction
before the second ‘++$’. However, this alternative saves no
bytes.

+($.$=(!””+””)[$.__$])

The string ‘true’ is constructed, as above. The second
character (‘__$’ is ‘1’) of the string ‘true’ (‘r’) is assigned to
the property ‘$’ and also returned.

+($._=(!””+””)[$._$_])

The string ‘true’ is constructed, as above. The third
character (‘_$_’ is ‘2’) of the string ‘true’ (‘u’) is assigned
to the property ‘_’ and also returned. In this case, the entire
line is poorly thought out, since the ‘_’ property could
be assigned in the object constructor in a shorter way.
Three bytes could have been saved by placing the line
‘_:($[$]+"")[$]’ before the second ‘++$’, which would
access the fi rst character of the string ‘undefi ned’.

+$.$_[$.$_$]

The sixth character (‘$_$’ is ‘5’) of the string ‘[object
Object]’ (‘c’) is returned. This appears to be another
oversight since, as above, fi ve bytes could have been saved
by using the ‘$$__’ property instead. If the ‘c’ and ‘o’

characters were constructed using the alternative method,
then the fi rst assignment to the ‘$_’ property would be
completely unnecessary, resulting in the saving of another
fi ve bytes.

+$.__

The value of the property ‘__’ (‘t’) is returned.

+$._$

The value of the property ‘_$’ (‘o’) is returned.

+$.$

The value of the property ‘$’ (‘r’) is returned. The result is
that the string ‘constructor’ is assigned to the property ‘$_’.

$$+”\””+$$+”\””

$.$$=$.$+(!””+””)[$._$$]+$.__+$._+$.$+$.$$

This line contains more character concatenation. It can also
be written as follows:

$.$$=

 $.$

 +(!””+””)[$._$$]

 +$.__

 +$._

 +$.$

 +$.$$

Once again, we will look at each line in turn:

$.$

The value of the property ‘$’ (‘r’) is returned.

+(!””+””)[$._$$]

The string ‘true’ is constructed, as above. The fourth
character (‘_$$’ is ‘3’) of the string ‘true’ (‘e’) is returned.
Again, the entire line appears to have been poorly thought
out by the author, since nine(!) bytes could have been saved
by using the ‘$$$_’ property instead.

+$.__

The value of the property ‘__’ (‘t’) is returned.

+$._

The value of the property ‘_’ (‘u’) is returned.

+$.$

The value of the property ‘$’ (‘r’) is returned.

+$.$$

The value of the property ‘$$’ (‘n’) is returned. The result is
that the string ‘return’ is assigned to the property ‘$$’. This
assignment is completely unnecessary (see below).

VIRUS BULLETIN www.virusbtn.com

7FEBRUARY 2011

$$$_+”\\”+__$+$$_+$$_+$_$_+(![]+””)[_$_]

$.$=($.___)[$.$_][$.$_]

This translates to the expression ‘(0)[“constructor”]
[“constructor”]’, and is assigned to the property ‘$’. The
use of the expression ‘($.___)’ appears to be an oversight by
the author, since the expression ‘[]’ could have been used
instead. This change would have saved fi ve bytes. Further,
by assigning to the property ‘$_’ instead of ‘$’ at a cost
of two bytes, the fi ve bytes that are required to assign the
property ‘$$’ and the four bytes that are required to reference
it can be removed for an overall saving of seven bytes.

The expression ‘(0)[“constructor”][“constructor”]’ is
equivalent to the expression ‘0.constructor.constructor’,
but the brackets are required to delimit the two strings.
Otherwise, the expression would appear to reference a
single property several levels deep (‘$.$_.$.$_’). The
expression ‘<number>.constructor’ is a reference to the
constructor of a numeric object, while the expression
‘<object>.constructor.constructor’ is a reference to the
constructor of a generic object.

$.$($.$($.$$+”\””+ENCODED+”\””)())()

This line decodes and executes the encoded host code using
two constructor calls. The fi rst constructor call decodes the
encoded host code, and the second constructor call executes
it, in this way:

$.$$+”\””+ENCODED+”\””

The value of the property ‘$$’ (‘return’, however as noted
above, this property reference can be replaced by the
‘return’ concatenation from above) is used in the fi rst
constructor call to return the decoded host code that is
bounded by the ‘"’s and represented here by ‘ENCODED’.

$.$(return”ENCODED”)()

This line translates to the expression ‘0.constructor.
constructor(return“ENCODED”)()’, an anonymous function
that returns the decoded host code as a string object. This is
equivalent to executing the ‘eval()’ function.

$.$(DECODED)()

This line translates to the expression ‘0.constructor.
constructor(DECODED)()’, an anonymous function that
executes the decoded host code.

$$$_+$$+$$__+_$+$$_$+$$$_
Each character of the host code is encoded separately in one
of several ways:

If the character is ‘"’ or ‘\’, then the character is prepended
with the ‘\’ character (so ‘"’ becomes ‘\"’, and ‘\’ becomes
‘\\’).

If the character is a symbol already – that is, any of the
following:

!"#$%&’()*+,-./:;<>=?@[]^_`{|}~

then the character is used exactly as it appears.

If the character is numeric, or one of the letters ‘a’ to ‘f’,
‘o’, ‘t’, or ‘u’ (and the check is case-sensitive), then the
appropriate property is used.

If the character is the letter ‘l’, then the expression
‘(![]+"")[_$_]’ (that is, the third character of the string
‘false’) is used.

If the value of the character is less than 128, then the
expression ‘\<val>’ is used, where ‘<val>’ is the decimal
value of the character.

Otherwise, the expression ‘\u<val>’ is used, where ‘<val>’
is the hexadecimal value of the character.

It is interesting that some seemingly obvious encoding
opportunities were missed. For example, since the numbers
‘0’–’9’ are all available, it would be possible to use one
of them to index the entire string for the special texts
‘false’, ‘true’, ‘[object Object]’ and ‘undefi ned’ (the string
‘constructor’ exists, but all of the characters in that string
are present in the other four strings; the string ‘return’ also
exists, but all of the characters in that string are present in
the strings ‘true’ and ‘undefi ned’). Those four strings offer
six more lower case alphabetic characters (‘ijlnrs’, leaving
only ‘ghkmpqvwxyz’), and only the numbers ‘0’–‘5’ are
needed to access the entire set. If the host does not require
all of the numbers, then several lines could be removed
from the object construction code. That would allow the
code to be shortened further, since some variables could
then use shorter names.

CONCLUSION
As it stands, JJEncode carries a relatively large constant
body (even after applying the suggested size optimizations),
which makes it easy to recognize. It would remain easy to
recognize even if some ‘polymorphism’ were applied by
using alternative indexes for the shared characters in the
special texts (for example, the letter ‘c’ is at position ‘0’
in the word ‘constructor’, and at position ‘6’ in the string
‘[object’). It would also remain easy to recognize even if the
variables were renamed as a result of discarding the unused
numeric assignments. The only diffi culty is in knowing at
a glance what the encoded host does. However, the fi rst
constructor call (‘$.$(...)’) can be replaced with a function
to display the result, or even to write it to disk, instead of
executing it. Fortunately, the only way that someone could
defend against that would be to change the code to the point
where it is no longer JJEncode.

