The Java API for XML-Based Web
Services
(JAX-WS) 2.1

Maintenance Release
May 7, 2007

Editors:
Doug Kohlert
Arun Gupta

Comments to: jsr224-spec-comments@sun.com

Sun Microsystems, Inc.
4150 Network Circle

Santa Clara, CA 95054 USA

JAX-WS 2.1

May 7, 2007

Specification: JISR-000224 - Java™API for XML-Based Web Seiiees (“Specification”)
Version: 2.1
Status: Maintenance Release 2

Release: 7 May 2007

Copyright 2007 Sun Microsystems, Inc.

4150 Network Circle, Santa Clara, California 95054, U.S.A
All rights reserved.

LIMITED LICENSE GRANTS

1. License for Evaluation Purposes Sun hereby grants you a fully-paid, non-exclusive, namgferable, worldwide,
limited license (without the right to sublicense), undenSwapplicable intellectual property rights to view, dowatl,

use and reproduce the Specification only for the purposeteirial evaluation. This includes (i) developing appli-
cations intended to run on an implementation of the Spetificaprovided that such applications do not themselves
implement any portion(s) of the Specification, and (ii) dssing the Specification with any third party; and (iii) ex-
cerpting brief portions of the Specification in oral or weittcommunications which discuss the Specification provided
that such excerpts do not in the aggregate constitute disigmi portion of the Specification.

2. License for the Distribution of Compliant Implementations. Sun also grants you a perpetual, non-exclusive,
non-transferable, worldwide, fully paid-up, royalty frdinited license (without the right to sublicense) undey an
applicable copyrights or, subject to the provisions of gahien 4 below, patent rights it may have covering the Spec-
ification to create and/or distribute an Independent Impletation of the Specification that: (a) fully implements the
Specification including all its required interfaces anddiimnality; (b) does not modify, subset, superset or other-
wise extend the Licensor Name Space, or include any publicaiected packages, classes, Java interfaces, fields or
methods within the Licensor Name Space other than thoséreeifauthorized by the Specification or Specifications
being implemented; and (c) passes the Technology ComiitgtiKit (including satisfying the requirements of the
applicable TCK Users Guide) for such Specification (“Compliimplementation”). In addition, the foregoing license

is expressly conditioned on your not acting outside its scdyo license is granted hereunder for any other purpose
(including, for example, modifying the Specification, atligan to the extent of your fair use rights, or distributing
the Specification to third parties). Also, no right, title, interest in or to any trademarks, service marks, or trade
names of Sun or Sun’s licensors is granted hereunder. Jatdaaa-related logos, marks and names are trademarks
or registered trademarks of Sun Microsystems, Inc. in ti& &ind other countries.

3. Pass-through Conditions You need not include limitations (a)-(c) from the previguasagraph or any other par-
ticular “pass through”requirements in any license You gramcerning the use of your Independent Implementation
or products derived from it. However, except with respedhttependent Implementations (and products derived from
them) that satisfy limitations (a)-(c) from the previousggraph, You may neither: (a) grant or otherwise pass throug
to your licensees any licenses under Sun’s applicabldéctahl property rights; nor (b) authorize your licensees t
make any claims concerning their implementation’s conmgiéawith the Specification in question.

4. Reciprocity Concerning Patent Licenses

a. With respect to any patent claims covered by the liceresetgd under subparagraph 2 above that would be infringed
by all technically feasible implementations of the Speaiiizn, such license is conditioned upon your offering on
fair, reasonable and non-discriminatory terms, to anyypseeking it from You, a perpetual, non-exclusive, non-
transferable, worldwide license under Your patent righticlv are or would be infringed by all technically feasible
implementations of the Specification to develop, distetarid use a Compliant Implementation.

b With respect to any patent claims owned by Sun and coveréigeblycense granted under subparagraph 2, whether
or not their infringement can be avoided in a technicallysfiele manner when implementing the Specification, such

license shall terminate with respect to such claims if Yatidate a claim against Sun that it has, in the course of

performing its responsibilities as the Specification Léaduced any other entity to infringe Your patent rights.

¢ Also with respect to any patent claims owned by Sun and eavby the license granted under subparagraph 2
above, where the infringement of such claims can be avoidedtechnically feasible manner when implementing

May 7, 2007 JAX-WS 2.1 iii

the Specification such license, with respect to such clasimal] terminate if You initiate a claim against Sun that its
making, having made, using, offering to sell, selling or arti;ng a Compliant Implementation infringes Your patent
rights.

5. Definitions. For the purposes of this Agreement: “Independent Implaatem”shall mean an implementation
of the Specification that neither derives from any of Sunisrse code or binary code materials nor, except with an
appropriate and separate license from Sun, includes anycs Source code or binary code materials; “Licensor Name
Space”shall mean the public class or interface declaratidmose names begin with “java”, “javax”, “com.sun”or
their equivalents in any subsequent naming conventionteddgy Sun through the Java Community Process, or any
recognized successors or replacements thereof; and “@eghnCompatibility Kit"or “TCK”shall mean the test suite
and accompanying TCK User’s Guide provided by Sun whichesponds to the Specification and that was available
either (i) from Sun’s 120 days before the first release of Yioalependent Implementation that allows its use for
commercial purposes, or (ii) more recently than 120 daysifsach release but against which You elect to test Your

implementation of the Specification.

This Agreement will terminate immediately without notigerh Sun if you breach the Agreement or act outside the
scope of the licenses granted above.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED “AS IS”. SUN MAKES NO REPRESHNTIONS OR WARRANTIES, EI-
THER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRATIES OF MERCHANTABIL-
ITY, FITNESS FOR A PARTICULAR PURPOSE, NON-INFRINGEMENTNCLUDING AS A CONSEQUENCE
OF ANY PRACTICE OR IMPLEMENTATION OF THE SPECIFICATION), ORHAT THE CONTENTS OF THE
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE. This documermted not represent any commitment to
release or implement any portion of the Specification in amdpct. In addition, the Specification could include
technical inaccuracies or typographical errors.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITSLICENSORS BE LIABLE
FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR
SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVEDAMAGES, HOWEVER CAUSED
AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING OUT OF OR RLATED IN ANY WAY TO
YOUR HAVING, IMPLEMENTING OR OTHERWISE USING THE SPECIFICAON, EVEN IF SUN AND/OR
ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH IMAGES.

You will indemnify, hold harmless, and defend Sun and iterigors from any claims arising or resulting from: (i) your
use of the Specification; (ii) the use or distribution of ydava application, applet and/or implementation; andijr (i
any claims that later versions or releases of any Speciicétirnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by behalf of the U.S. Government or by a U.S. Gov-
ernment prime contractor or subcontractor (at any tiegntthe Government'’s rights in the Software and accompa-
nying documentation shall be only as set forth in this liegrikis is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitiars] with 48 C.F.R. 2.101 and 12.212 (for non-DoD ac-
quisitions).

REPORT

If you provide Sun with any comments or suggestions conogrttie Specification (“Feedback”), you hereby: (i)
agree that such Feedback is provided on a non-proprietamamn-confidential basis, and (ii) grant Sun a perpetual,
non-exclusive, worldwide, fully paid-up, irrevocableditse, with the right to sublicense through multiple levéls o
sublicensees, to incorporate, disclose, and use withoitalion the Feedback for any purpose.

GENERAL TERMS

Any action related to this Agreement will be governed by foafiia law and controlling U.S. federal law. The U.N.
Convention for the International Sale of Goods and the @hofdaw rules of any jurisdiction will not apply.

The Specification is subject to U.S. export control laws amy ime subject to export or import regulations in other

v JAX-WS 2.1 May 7, 2007

countries. Licensee agrees to comply strictly with all slesks and regulations and acknowledges that it has the
responsibility to obtain such licenses to export, re-ekpoimport as may be required after delivery to Licensee.

This Agreement s the parties’entire agreement relatinig tubject matter. It supersedes all prior or contemparase
oral or written communications, proposals, conditiongresentations and warranties and prevails over any congict
or additional terms of any quote, order, acknowledgmenttloer communication between the parties relating to its
subject matter during the term of this Agreement. No modificeto this Agreement will be binding, unless in writing
and signed by an authorized representative of each party.

May 7, 2007 JAX-WS 2.1 v

Vi

JAX-WS 2.1

May 7, 2007

Contents

[1__Introductionl 1
1 Goak . . . oo 1
2 Non-Goals............ 3
.3 Requirements 3

.31 Relationship TOJAXBo i 3
[1.32 Standardized WSDL MappIng oo oot e 3
[1.3.3 Customizable WSDL MapRing o o v oot e e e 4
[1.3.4 Standardized Protocol Bindihgs 4
[1.3.5 Standardized Transport Bindingso e e e 4
[L3.6 Standardized Handler Framedork oo 4
[L.3.7 Versioningand Evolutibn 5
[1.3.8 Standardized Synchronous and Asynchronous Inwmcati 5
[1.3.9 Session Managemlent 5
[La _UseCasbs 5
[L41 Handler Framewdrk\ 5
L5 _Conventionso 6
1.6 Expert Group Memberso v vt e 7
1.7 _Acknowledgements 7
[2__WSDL 1.1 to Java Mapping 9
D1 Definitions 9
P11 Extensibilify 10
D2 PortTyde 10
B3 Operatidn 11
231 Messageand Bart 12
.32 Parameter Orderand Return Type oo i 15
233 Halder Clads 17

May 7, 2007 JAX-WS 2.1 vii

Ra Typds . . . 21
.41 W3CEndpointRefereficeo 22

s _Fadlt. ... 22
P51 Example 23

6 BINAINY . . . o o e e 23
.61 GeneralConsideratibns 23
P62 SOAPBINdidgo\ 23
63 MIMEBINGINg o o o e 25

7 SeniceandPbrt. 26
P71 Example 29

28 XMI Nameb 30
281 NameColliSioNS oot 30
13__Java to WSDI 1.1 Mapping 31
Bl JavaNambs i 31
B11 NameColliSioNSo oo 31

B2 Packade 31
B3 Clads. o, 32
Ba Interfade 33
B41 Inheritande e 33

BE MethoH 33
B5.1 OneWayOperatidnsot 34

B.6 _Method Parameters and Return Type o v oo i 37
[3.6.1 Parameter and Return Type Classifichtion 37
B62 UseofJAXB 38

B.Z Service Specific Exceptlon 41
B8 Bindings o o 42
BB1 Interfade 43
B.8.2 Methodand Paramefers. 43

B9 Generils 44
B10 SOAPHTTPBRINAING . . . « . o v v o o e e e e e e e e e e 46
B101 Interfade 46
B.10.2 Methodand Paramelers o oo i e 46
B11 Service and POMS o vt ii 47

viii JAX-WS 2.1 May 7, 2007

May 7, 2007

JAX-WS 2.1

51
51
52
53
53
54
54
54
57
57
58
59
60
60
61
62
62
63
64

65
65
66
66
66
67
67
68
70
70
70
74
74
75
75

5.4__javax.xmlws.wsaddressing. W3CEndpoiniReferendé@iti 77
l6_Core API3 79
b1 javaxxmlwsBindidg 79
6.2 _javaxxmlws.SpiProvider 79
6.2.1 Canigu[a.tidn 80
6.2.2 Creating Endpaint Objelcts o oo 80
16.2.3 _Creating ServiceDelegate Objects 81
6.2.4 _EndpointReferendes 81
6.2.5 _Getting POrt ODIEELS o o o 81
6.3 javaxxmlws.spi.ServiceDelegate e e 81
6.4 ExcepIist .. 82
6.4.1 Protacol Specific Exception Handling 82
6.4.2 One-way Qpe[atidns 83

6.5 javaxxmlwsWebServiceFeature 83
6.5.1 _javax.xmlLws.soap.AddressingFeatureo o 83
6.5.2 javaxxmlws.soap. MTOMEEABIre o v v voo e e e o e e e e 84
6.5.3 _javax.xmlws.RespectBindingFeature oeee i 85
[Z__Annotations 87
21 javaxxmlwsServiceMade e 88
22 javaxxmlwsWebFalilt 88
7.3 javaxxmlws.RequestWrapper oo oo 88
2.4 _javaxxmlLws.ResponseWragpero oo e 89
.5 javaxxmlwsWebServiceClibnt 89
2.6 _javaxxmlws WebEndpoint 89
261 Example 90
[2.7 javax.xmlwsWebServiceProvidler 90
2.8 javaxxmlwsBindingTyPe o .o e 91
7.9 javaxxmlwsWehServiceRef 91
o1 Example 92
[2.10 javaxxmlwsWebServiceRefs e 93
2101 Example 93
[211 Annotations Defined by JSR-181 94

JAX-WS 2.1 May 7, 2007

May 7, 2007

JAX-WS 2.1

99
99
99

100

100
100
102
102
104
104
104
105
106
107
107
107
108
108

111
111

Xi

.12 Binding Responsibiliies 112
9.2 Configuratidn 114
9.2.1 Programmatic Configuration 114
922 DeploymentMadel 116
.3 ProcessingModel 116
.31 Handlerlifecyde. 116
032 Handler Executibn e 117
19.3.3 Handler Implementation Considerationscccoc. vt 119
0.4 Message CONEXt o o v oo 119
941 javaxxmlws.handlerMessageComtext e oo e 120
0.4.2 '|ayax.xm|.ws.handle[.LQg'|ca|Message£:thext 120
0.4.3 Relationship to Application COMEXES © v v e e e e 123

110 SOAP Binding 125
101 Configuratidn 125
[10.1.1 Programmatic Configurafion 125
1012 DeploymentMadel 127
102 ProcessingMadlel 127
1021 SOARwstUnderstand Processidgo vvv e v i 127
022 ExceptionHandlihg 128
[10.3 SOAP Message Conflext o oo 129
[10.4 SOAP Transport and Transfer Bindings v vvv e e 129
MOAT HITP . ..o, 129
[11 HTTP Binding 133
1.1 Configuratidn 133
[11.1.1 Programmatic Configuration 133
1112 DeploymentMadelo 134
[11.2 ProcessingModel 134
121 ExceptionHandlihg 134
D13 HITP Suppdrt o o 135
[11.3.1 One-way Operatidnso v 135
M132 Securily . . . o oo 136
[11.3.3 Session Management oot 136

Xii JAX-WS 2.1 May 7, 2007

May 7, 2007

JAX-WS 2.1

137

143
143
144
145
147
148
148

151

Xiii

Xiv JAX-WS 2.1 May 7, 2007

Chapter 1

Introduction

XML[L] is a platform-independent means of representingcttired information. XML Web Services use
XML as the basis for communication between Web-based snaad clients of those services and inherit
XMLU's platform independence. SOAR|2,[3, 4] describes orehsXML based message format and “defines,
using XML technologies, an extensible messaging frameworkaining a message construct that can be
exchanged over a variety of underlying protocols.”

WSDL[H] is “an XML format for describing network services aset of endpoints operating on messages
containing either document-oriented or procedure-cegmformation.” WSDL can be considered the de-
facto service description language for XML Web Services.

JAX-RPC 1.016] defined APIs and conventions for supportiRgC oriented XML Web Services in the
Java™ platform. JAX-RPC 1/1[7] added support for the WS4iB®&rofile 1.0[8] to improve interoperabil-
ity between JAX-RPC implementations and with services enm@nted using other technologies.

JAX-WS 2.0 (this specification) is a follow-on to JAX-RPCl1extending it as described in the following
sections.

1.1 Goals

Since the release of JAX-RPC 1.D[6], new specifications raawl versions of the standards it depends on
have been released. JAX-WS 2.0 relates to these spedifisatind standards as follows:

JAXB Due primarily to scheduling concerns, JAX-RPC 1.0 definscbivn data binding facilities. With
the release of JAXB 1.0[9] there is no reason to maintain temasate sets of XML mapping rules
in the Java™ platform. JAX-WS 2.0 will delegate data bindiaated tasks to the JAXB 2[0]10]
specification that is being developed in parallel with J®S 2.0.

JAXB 2.0[10] will add support for Java to XML mapping, addital support for less used XML
schema constructs, and provide bidirectional custonuimatif Java<= XML data binding. JAX-
WS 2.0 will allow full use of JAXB provided facilities includg binding customization and optional
schema validation.

JAX-WS 2.1 requires JAXB 2.1[11] which is being developegarnallel with JAX-WS 2.1.

SOAP 1.2 Whilst SOAP 1.1 is still widely deployed, it's expected tsatvices will migrate to SOAP 1[2[3,
4] now that it is a W3C Recommendation. JAX-WS 2.0 will addsonp for SOAP 1.2 whilst requiring
continued support for SOAP 1.1.

May 7, 2007 JAX-WS 2.1 1

Chapter 1. Introduction

WSDL 2.0 The W3C is expected to progress WSDL P.0[12] to Recommenlaliring the lifetime of this
JSR. JAX-WS 2.0 will add support for WSDL 2.0 whilst requginontinued support for WSDL 1.1.

Note: The expert group for the JSR decided against this goal farrtiease . We will look at adding
support in a future revision of the JAX-WS specification.

WS-I Basic Profile 1.1 JAX-RPC 1.1 added support for WS-I Basic Profile 1.0. WS-¢iB&rofile 1.1 is
expected to supersede 1.0 during the lifetime of this JSRIAXIWS 2.0 will add support for the
additional clarifications it provides.

A Metadata Facility for the Java Programming Language (JSR I5) JAX-WS 2.0 will define the use
of Java annotatioris[13] to simplify the most common develept scenarios for both clients and
servers.

Web Services Metadata for the Java Platform (JSR 181)JAX-WS 2.0 will align with and complement
the annotations defined by JSR 181[14].

Implementing Enterprise Web Services (JSR 109)The JSR 109]15] define@laxr pc- mappi ng-i nfo
deployment descriptor provides deployment time JavsVSDL mapping functionality. In conjunc-
tion with JSR 181[14], JAX-WS 2.0 will complement this mapgifunctionality with development
time Java annotations that control Ja¥aWSDL mapping.

Web Services Security (JSR 183)JAX-WS 2.0 will align with and complement the security APkEided
by JSR 183[16].

JAX-WS 2.0 will improve support for document/message denisage:

Asynchrony JAX-WS 2.0 will add support for client side asynchronousragiens.

Non-HTTP Transports JAX-WS 2.0 will improve the separation between the XML meggstormat and
the underlying transport mechanism to simplify use of JAX6With non-HTTP transports.

Message AccessAX-WS 2.0 will simplify client and service access to the sages underlying an ex-
change.

Session Management]AX-RPC 1.1 session management capabilities are tied toRHJAX-WS 2.0 will
add support for message based session management.

JAX-WS 2.0 will also address issues that have arisen witlespce of implementing and using JAX-RPC
1.0:

Inclusion in J2SE JAX-WS 2.0 will prepare JAX-WS for inclusion in a future viems of J2SE. Application
portability is a key requirement and JAX-WS 2.0 will defineechanisms to produce fully portable
clients.

Handlers JAX-WS 2.0 will simplify the development of handlers andvgfovide a mechanism to allow
handlers to collaborate with service clients and serviaipeimt implementations.

Versioning and Evolution of Web ServicesJAX-WS 2.0 will describe techniques and mechanisms to ease
the burden on developers when creating new versions ofrexisérvices.

2 JAX-WS 2.1 May 7, 2007

1.2. Non-Goals

1.2 Non-Goals
The following are non-goals:

Backwards Compatibility of Binary Artifacts Binary compatibility between JAX-RPC 1.x and JAX-WS
2.0 implementation runtimes.

Pluggable data binding JAX-WS 2.0 will defer data binding to JAXBIO0]; it is not a doa provide a
plug-in API to allow other types of data binding technolagie be used in place of JAXB. However,
JAX-WS 2.0 will maintain the capability to selectively dida data binding to provide an XML based
fragment suitable for use as input to alternative data hopéechnologies.

SOAP Encoding Support Use of the SOAP encoding is essentially deprecated in theserlices com-
munity, e.g., the WS-I Basic Profil€[8] excludes SOAP ericgd Instead, literal usage is preferred,
either in the RPC or document style.

SOAP 1.1 encoding is supported in JAX-RPC 1.0 and 1.1 buujgpart in JAX-WS 2.0 runs counter
to the goal of delegation of data binding to JAXB. Therefgk&JVS 2.0 will make support for SOAP
1.1 encoding optional and defer description of it to JAX-RRC

Support for the SOAP 1.2 Encoding[4] is optional in SOAP Ind 8AX-WS 2.0 will not add support
for SOAP 1.2 encoding.

Backwards Compatibility of Generated Artifacts JAX-RPC 1.0 and JAXB 1.0 bind XML to Java in dif-
ferent ways. Generating source code that works with unnestlfAX-RPC 1.x client source code is
not a goal.

Support for Java versions prior to J2SE 5.0 JAX-WS 2.0 relies on many of the Java language features
added in J2SE 5.0. It is not a goal to support JAX-WS 2.0 on Jeksions prior to J2SE 5.0.

Service Registration and Discoverylt is not a goal of JAX-WS 2.0 to describe registration andoigry
of services via UDDI or ebXML RR. This capability is providedlependently by JAXR[17].

1.3 Requirements

1.3.1 Relationship To JAXB

JAX-WS describes the WSDL> Java mapping, but data binding is delegated to JAXB[10]. 3jecif-
ication must clearly designate where JAXB rules apply toweDL < Java mapping without reproducing
those rules and must describe how JAXB capabilities (ehg. JAXB binding language) are incorporated

into JAX-WS. JAX-WS is required to be able to influence the BAnding, e.g., to avoid name collisions
and to be able to control schema validation on serializadiwh deserialization.

1.3.2 Standardized WSDL Mapping

WSDL is the de-facto service description language for XMLIW/&ervices. The specification must specify
a standard WSDk= Java mapping. The following versions of WSDL must be sugabrt

* WSDL 1.1/5] as clarified by the WS-I Basic Profilé|[8,]118]

May 7, 2007 JAX-WS 2.1 3

Chapter 1. Introduction

The standardized WSDL mapping will describe the default WS Java mapping. The default mapping
may be overridden using customizations as described below.

1.3.3 Customizable WSDL Mapping

The specification must provide a standard way to custonfizged/¥SDL < Java mapping. The following
customization methods will be specified:

Java Annotations In conjunction with JAXBI10] and JSR 181[14], the specifioa will define a set of

standard annotations that may be used in Java source figgetify the mapping from Java artifacts
to their associated WSDL components. The annotations wplbert mapping to WSDL 1.1.

WSDL Annotations In conjunction with JAXBI10] and JSR 1&1[14], the specifioa will define a set of
standard annotations that may be used either within WSDuumeats or as in an external form to
specify the mapping from WSDL components to their assodidssa artifacts. The annotations will
support mapping from WSDL 1.1.

The specification must describe the precedence rules giomgecombinations of the customization methods.

1.3.4 Standardized Protocol Bindings
The specification must describe standard bindings to thesing protocols:

» SOAP 1.112] as clarified by the WS-I Basic Profile[8] 18]
» SOAP 1.2[3[4]

The specification must not prevent non-standard bindiaggher protocols.

1.3.5 Standardized Transport Bindings
The specification must describe standard bindings to thesing protocols:
« HTTP/1.1[19].

The specification must not prevent non-standard bindiaggher transports.

1.3.6 Standardized Handler Framework
The specification must include a standardized handlerdvemnk that describes:

Data binding for handlers The framework will offer data binding facilities to handieand will support
handlers that are decoupled from the SAAJ API.

Handler Context The framework will describe a mechanism for communicatingpprties between han-
dlers and the associated service clients and service entdpgilementations.

Unified Response and Fault Handling Thehandl eResponse andhandl eFaul t methods will be unif-
ied and the the declarative model for handlers will be imptbv

4 JAX-WS 2.1 May 7, 2007

1.4. Use Cases

1.3.7 Versioning and Evolution

The specification must describe techniques and mechan@ssupport versioning of service endpoint inter-
faces. The facilities must allow new versions of an intexfacbe deployed whilst maintaining compatibility
for existing clients.

1.3.8 Standardized Synchronous and Asynchronous Invocati on

There must be a detailed description of the generated maigadtures to support both asynchronous and
synchronous method invocation in stubs generated by JAX-Bdé# forms of invocation will support a
user configurable timeout period.

1.3.9 Session Management

The specification must describe a standard session maeagenechanism including:

Session APIsDefinition of a session interface and methods to obtain #ssien interface and initiate ses-
sions for handlers and service endpoint implementations.

HTTP based sessionsThe session management mechanism must support HTTP caolidddRL rewrit-
ing.

SOAP based sessiond he session management mechanism must support SOAP baskh $eformation.

1.4 Use Cases

1.4.1 Handler Framework
1.4.1.1 Reliable Messaging Support

A developer wishes to add support for a reliable messagingFSf@ature to an existing service endpoint.
The support takes the form of a JAX-WS handler.

1.4.1.2 Message Logging

A developer wishes to log incoming and outgoing messagdatiranalysis, e.g., checking messages using
the WS- testing tools.

1.4.1.3 WS-l Conformance Checking

A developer wishes to check incoming and outgoing messagesiformance to one or more WS-I profiles
at runtime.

May 7, 2007 JAX-WS 2.1 5

Chapter 1. Introduction

1.5 Conventions

The keywords ‘MUST’, ‘MUST NOT’, ‘REQUIRED’, ‘SHALL', ‘'SHALL NOT’, ‘SHOULD’, ‘SHOULD
NOT’, ‘RECOMMENDED’, ‘MAY’, and ‘OPTIONAL' in this documert are to be interpreted as described
in RFC 2114[20].

For convenience, conformance requirements are calledamtthe main text as follows:

& Conformance (Example)mplementations MUST do something.

A list of all such conformance requirements can be found peapix(3.

Java code and XML fragments are formatted as shown in flgite 1

Figure 1.1: Example Java Code
package com exanpl e. hel | o;

public class Hello {
public static void main(String args[]) {
Systemout.println("Hello Wrld");

}

NOoO o~ WNPR

Non-normative notes are formatted as shown below.

Note: This is a note.

This specification uses a number of namespace prefixeaghout; they are listed in Table1.1. Note that
the choice of any namespace prefix is arbitrary and not stoadlg significant (see XML Infoset[21]).

Prefix Namespace Notes

env http://www.w3.0rg/2003/05/soap-envelope A normadML Scheméd[2Pl, 23] document for
the http://www.w3.0rg/2003/05/soap-envelope
namespace can be found at
http://www.w3.0rg/2003/05/soap-envelope.

xsd http://www.w3.0rg/2001/XMLSchema The namespace ®XNIL schemé][2P], 23]
specification
wsdl http://schemas.xmlsoap.org/wsdl/ The namespadeedMSDL schema[5]

soap http://schemas.xmlsoap.org/wsdl/soap/ The namegbahe WSDL SOAP binding
schemal22, 23]

jaxb http://java.sun.com/xml/ns/jaxb The namespace®flthiXB [C] specification

jaxws http://java.sun.com/xml/ns/jaxws The namespadbeIAX-WS specification

wsa http://iww.w3.0rg/2005/08/addressing The namesphttee WS-Addressing 1.0[24]
schema

Table 1.1: Prefixes and Namespaces used in this spedificati

Namespace names of the general form ‘http://example.orghd ‘http://example.com/...” represent appli-

cation or context-dependent URIs (see RFC 2396[19]).

All parts of this specification are normative, with the egtien of examples, notes and sections explicitly
marked as ‘Non-Normative’.

6 JAX-WS 2.1 May 7, 2007

1.6. Expert Group Members

1.6 Expert Group Members

The following people have contributed to this specificatio

Chavdar Baikov (SAP AG)

Russell Butek (IBM)

Manoj Cheenath (BEA Systems)
Shih-Chang Chen (Oracle)

Claus Nyhus Christensen (Trifork)

Ugo Corda (SeeBeyond Technology Corp)
Glen Daniels (Sonic Software)

Alan Davies (SeeBeyond Technology Corp)
Thomas Diesler (JBoss, Inc.)

Jim Frost (Art Technology Group Inc)
Alastair Harwood (Cap Gemini)

Marc Hadley (Sun Microsystems, Inc.)
Kevin R. Jones (Developmentor)

Anish Karmarkar (Oracle)

Toshiyuki Kimura (NTT Data Corp)

Jim Knutson (IBM)

Doug Kohlert (Sun Microsystems, Inc)
Daniel Kulp (IONA Technologies PLC)
Sunil Kunisetty (Oracle)

Changshin Lee (Tmax Soft, Inc)

Carlo Marcoli (Cap Gemini)

Srividya Natarajan (Nokia Corporation)
Sanjay Patil (SAP AG)

Greg Pavlik (Oracle)

Bjarne Rasmussen (Novell, Inc)
Sebastien Sahuc (Intalio, Inc.)

Rahul Sharma (Motorola)

Rajiv Shivane (Pramati Technologies)
Richard Sitze (IBM)

Dennis M. Sosnoski (Sosnoski Software)
Christopher St. John (WebMethods Corporation)
Mark Stewart (ATG)

Neal Yin (BEA Systems)

Brian Zotter (BEA Systems)

1.7 Acknowledgements

Robert Bissett, Arun Gupta, Graham Hamilton, Mark Hapriegndra Kotamraju, Vivek Pandey, Santiago
Pericas-Geertsen, Eduardo Pelegri-Llopart, Rama PtitévBaul Sandoz, Bill Shannon, and Kathy Walsh
(all from Sun Microsystems) have provided invaluable técdinnput to the JAX-WS 2.0 specification.

May 7, 2007 JAX-WS 2.1 7

Chapter 1. Introduction

8 JAX-WS 2.1 May 7, 2007

Chapter 2

WSDL 1.1 to Java Mapping

This chapter describes the mapping from WSDL 1.1 to Javas aipping is used when generating web
service interfaces for clients and endpoints from a WSDLdedcription.

{ Conformance (WSDL 1.1 support)mplementations MUST support mapping WSDL 1.1 to Java.

The following sections describe the default mapping fromhe&/SDL 1.1 construct to the equivalent Java
construct. In WSDL 1.1, the separation between the abspratttype definition and the binding to a
protocol is not complete. Bindings impact the mapping betw#/SDL elements used in the abstract port
type definition and Java method parameters. SeEfidn 2@itdes binding dependent mappings.

An application MAY customize the mapping using embeddedlibip declarations (see sectibnl8.3) or an
external binding file (see sectibn 8.4).

& Conformance (Customization requiredinplementations MUST support customization of the WSDL
1.1 to Java mapping using the JAX-WS binding language definehaptef1B.

In order to enable annotations to be used at runtime for ndetiepatching and marshalling, this specif-
ication requires generated Java classes and interfaces amrintated with the Web service annotations
described in sectidn ZJL1. The annotations present on aajedeclass MUST faithfully reflect the informa-
tion in the WSDL document(s) that were given as input to thpmiteg process, as well as the customizations
embedded in them and those specified via any external lgjrfdes.

{ Conformance (Annotations on generated class€lg values of all the properties of all the generated
annotations MUST be consistent with the information in tbarse WSDL document and the applicable
external binding files.

2.1 Definitions

A WSDL document has a roatsdl : def i ni ti ons element. Awsdl : definitions element and its
associated ar get Nanmespace attribute is mapped to a Java package. JAXB[10] (see app@&)diefines

a standard mapping from a namespace URI to a Java package Bgndefault, this algorithm is used to
map the value of asdl : defi ni ti ons element'st ar get Nanmespace attribute to a Java package name.

& Conformance (Definitions mapping)n the absence of customizations, the Java package namejecha
from the value of awsdl : defi ni ti ons element’st ar get Namespace attribute using the algorithm def-
ined by JAXB[10].

May 7, 2007 JAX-WS 2.1 9

Chapter 2. WSDL 1.1 to Java Mapping

An application MAY customize this mapping using thexws: package binding declaration defined in
sectiol 8.71.

No specific authoring style is required for the input WSDLcdment; implementations should support
WSDL that uses the WSDL and XML Schema import directives.

& Conformance (WSDL and XML Schema import directiveljiplementations MUST support the WS-I
Basic Profile 1.1[18] defined mechanisms (See R2001, R2a0& R2003) for use of WSDL and XML
Schema import directives.

2.1.1 Extensibility

WSDL 1.1 allows extension elements and attributes to bedhtidaany of its constructs. JAX-WS specifies

the mapping to Java of the extensibility elements and ati#defined for the SOAP and MIME bindings.

JAX-WS does not address mapping of any other extensibiléynents or attributes and does not provide
a standard extensibility framework though which such suppould be added in a standard way. Future
versions of JAX-WS might add additional support for staddaxtensions as these become available.

{ Conformance (Optional WSDL extensiong)n implementation MAY support mapping of additional
WSDL extensibility elements and attributes not descrilvedAX-WS.

Note that such support may limit interoperability and agggiion portability.

2.2 Port Type

A WSDL port type is a named set of abstract operation definiti Awsdl : port Type element is mapped
to a Java interface in the package mapped fromwdd : def i ni ti ons element (see sectidn_2.1 for a
description ofasdl : defi ni ti ons mapping). A Java interface mapped fromsadl : port Type is called

a Service Endpoint Interfacer SEI for short.

& Conformance (SEI naming)n the absence of customizations, the name of an SEI MUSTebeetlne of
thenane attribute of the correspondingsdl : por t Type element mapped according to the rules described
in sectio ZB.

An application MAY customize this mapping using fhexws: cl ass binding declaration defined in section
o. (.d.

< Conformancej(avax. j ws. WebSer vi ce required): A mapped SEI MUST be annotated witl avax-
. j ws. WebSer vi ce annotation.

A WSDL may define additional types via type substitution twa not referenced by a service directly but
may still need to be marshalled by JAX-WS. Tjheevax. xnl . bi nd. X SeeAl so annotation from JAXB
is used on the generated SEI to specify any additional tyjoes the WSDL.

{ Conformancej(avax. xni . bi nd. Xnl SeeAl so required): An SEI generated from a WSDL that de-
fines types not directly referenced by thert MUST contain thg avax. xm . bi nd. Xm SeeAl so an-
notation with all of the additional types referenced eittieectly or indirectly.

10 JAX-WS 2.1 May 7, 2007

2.3. Operation

1 // Types generated when inporting WSDL
2 package exanpl e;

3 public class A{ ... }

4

5 package exanpl el;

6 public class B extends A{ ... }

7

8 package exanpl e2;

9 public class Cextends A{ ... }

11 // Directly annotated SEI with classes B and C
12 @\ébService

13 @l SeeAl so({B.class, C.class})

14 public interface MyService {

15 public A echo(A a);

16 }

18 // Indirectly annotated SEI using generated JAXB Obj ect Fatories

19 @Xm SeeAl so({exanpl el. Obj ect Factory. cl ass, exanpl e2. Obj ect Factory. cl ass})
20 public interface MyService {

21 public A echo(A a);

22 '}

Figure 2.1: Directly and indirectly @XmlISeeAlso annotagdel

Figure[Z1 shows how an SEI can be annotated jathax. xn . bi nd. Xnl SeeAl so. This figures shows
some of the types that may have been created while importM¢SBL and the different approaches to
annotating the SEI.

An SEI contains Java methods mapped fromkel : oper at i on child elements of the corresponding
wsdl : port Type, see sectiof2 3 for further details aadl : oper at i on mapping. WSDL 1.1 does not
support port type inheritance so each generated SEI wilasmrmethods for all operations in the corre-
sponding port type.

2.3 Operation

Eachwsdl : operati oninawsdl : port Type is mapped to a Java method in the corresponding Java ser-
vice endpoint interface.

< Conformance (Method naming)n the absence of customizations, the name of a mapped Jdhadne
MUST be the value of thaane attribute of theasdl : oper at i on element mapped according to the rules
described in sectidn3.8.

An application MAY customize this mapping using thaxws: met hod binding declaration defined in
sectiol 8.71.

& Conformancej(avax. j ws. WebMet hod required): A mapped Java method MUST be annotated with a
j avax. j ws. WebMet hod annotation. The annotation MAY be omitted if all its propestwould have the
default values.

The WS-I Basic Profilé[118] R2304 requires that operatiorighiw awsdl : port Type have unique values
for their nae attribute so mapping of WS-I compliant WSDL descriptiongl wot generate Java inter-

May 7, 2007 JAX-WS 2.1 11

Chapter 2. WSDL 1.1 to Java Mapping

faces with overloaded methods. However, for backwards eitvifity, JAX-WS supports operation name
overloading provided the overloading does not cause ctaflas specified in the Java Language Specif-
ication[25]) in the mapped Java service endpoint interfiaaaration.

< Conformance (Transmission primitive supporin implementation MUST support mapping of opera-
tions that use thene- way andr equest - r esponse transmission primitives.

{ Conformance (Usingavax. j ws. OneWay): A Java method mapped from a one-way operation MUST
be annotated with pavax. j ws. OneWay annotation.

Mapping ofnot i fi cati on andsol i cit-response operations is out of scope.

2.3.1 Message and Part

Eachwsdl : oper at i on refers to one or moresdl : nessage elements via childhsdl : i nput , wsdl -

:out put, andwsdl : f aul t elements that describe the input, output, and fault mesdag¢he operation
respectively. Each operation can specify one input meszage or one output message, and zero or more
fault messages.

Fault messages are mapped to application specific exospfgee sectio 2.5). The contents of input and
output messages are mapped to Java method parameterswsidifférent styles: non-wrapper style and
wrapper style. The two mapping styles are described in thefing subsections. Note that the binding of
a port type can affect the mapping of that port type to Javaseetiol 2J6 for details.

{ Conformance (Usingavax. j ws. SOAPBi ndi ng): An SEI mapped from a port type that is bound using
the WSDL SOAP binding MUST be annotated with avax. j ws. SOAPBi ndi ng annotation describing
the choice of style, encoding and parameter style. The ationtMAY be omitted if all its properties would
have the default values (i.e. document/literal/wrapped).

& Conformance (Usingavax. j ws. WebPar am): Generated Java method parameters MUST be annotated
with aj avax. j ws. WebPar amannotation. If the style is rpc or if the style is Document #mel parameter
style is BARE then thepar t Nane element ofj avax. j ws. WebPar am MUST refer to thewsdl : part

name of the parameter.

& Conformance (Usingavax. j ws. WebResul t). Generated Java methods MUST be annotated with a
j avax. j ws. WebResul t annotation. If the style is rpc or if the style is Document #mel parameter style

is BARE then thepar t Nane element of avax. j ws. WebResul t MUST refer to theasdl : part name of

the parameter. The annotation MAY be omitted if all its pmties would have the default values.

When generating an SEI from WSDL and XML schema, occasiprathbiguities occur on what XML
infoset should be used to represent a method’s return valparameters. In order to remove these am-
biguities, JAXB annotations may need to be generated onadsthnd method parameters to assure that
the return value and the parameters are marshalled withrdpepXML infoset. A JAXB annotation on
the method is used to specify the binding of a methods refyra while an annotation on the parameter
specifies the binding of that parameter. If the default XMioget for the return type or parameters correctly
represents the XML infoset, no JAXB annotations are needed.

& Conformance (use of JAXB annotation#n SEI method MUST contain the appropriate JAXB anno-
tations to assure that the proper XML infoset is used whershadling/unmarshalling the return type.
Parameters of an SEI method MUST contain the appropriateBJAxhotations to assure that the proper

12 JAX-WS 2.1 May 7, 2007

2.3. Operation

XML infoset is used when marshalling/unmarshalling theapagters of the method. The set of JAXB an-
notations that MUST be supported ar@vax. xni . bi nd. annot ati on. Xm At t achenent Ref ,j avax-

. xm . bi nd. annot ati on. Xl Li st,j avax. xm . bi nd. Xml M neType andj avax. xnl . bi nd. annot -
ation. adapt ers. Xnl JavaTypeAdapt er.

2.3.1.1 Non-wrapper Style

A wsdl : nessage is composed of zero or monesdl : part elements. Message parts are classified as
follows:

i n The message part is present only in the operation’s inpusages

out The message part is present only in the operation’s outpssage.

i n/ out The message part is present in both the operation’s inpugagesand output message.

Two parts are considered equal if they have the same valuebdo nane attribute and they reference
the same global element or type. Using non-wrapper stylssage parts are mapped to Java parameters
according to their classification as follows:

i n The message part is mapped to a method parameter.

out The message partis mapped to a method parameter using adlakie(see sectidn 2.B.3) or is mapped
to the method return type.

i n/ out The message part is mapped to a method parameter using a tiakke

& Conformance (Non-wrapped parameter namirig)the absence of any customizations, the name of a
mapped Java method parameter MUST be the value oftime attribute of thensdl : part element mapped
according to the rules described in sectibn$ 2.8[and]2.8.1.

An application MAY customize this mapping using thexws: par anet er binding declaration defined in
sectiof8.7..

SectiofZ.3P defines rules that govern the ordering ofrpaters in mapped Java methods and identification
of the part that is mapped to the method return type.

2.3.1.2 Wrapper Style

A WSDL operation qualifies for wrapper style mapping onlyhié following criteria are met:

() The operation’s input and output messages (if presextth eontain only a single part

(i) The input message part refers to a global element detiter whose localname is equal to the opera-
tion name

(i) The output message (if present) part refers to a glabainent declaration

(iv) The elements referred to by the input and output mes@ageesent) parts (henceforth referred to as
wrapperelements) are both complex types defined usingc8e sequence compositor

May 7, 2007 JAX-WS 2.1 13

Chapter 2. WSDL 1.1 to Java Mapping

(v) The wrapper elements only contain child elements, théySW not contain other structures such
as wildcards (element or attributedsd: choi ce, substitution groups (element references are not
permitted) or attributes; furthermore, they MUST not béatile.

& Conformance (Default mapping moddlperations that do not meet the criteria above MUST be mapped
using non-wrapper style.

In some cases use of the wrapper style mapping can lead tgitatnle Java method signatures and use of
non-wrapper style mapping would be preferred.

{ Conformance (Disabling wrapper styledn implementation MUST support use of thaxws: enabl e-
W apper St yl e binding declaration to enable or disable the wrapper stdpping of operations (see sec-
tion[B.73).

Using wrapper style, the child elements of the wrapper etertteenceforth calledvrapper children are
mapped to Java parameters, wrapper children are clasasiéalows:

i n The wrapper child is only present in the input message parégpper element.

out The wrapper child is only present in the output messagesparipper element.

i n/ out The wrapper child is present in both the input and output agespart’s wrapper element.

Two wrapper children are considered equal if they have theedacal name, the same XML schema type
and the same Java type after mapping (see sdciibn 2.4 for Xé¥ierSa to Java type mapping rules). The
mapping depends on the classification of the wrapper chilii#ows:

i n The wrapper child is mapped to a method parameter.

out The wrapper child is mapped to a method parameter using a@holdss (see sectidn_2.B.3) or is
mapped to the method return value.

i n/ out The wrapper child is mapped to a method parameter using ahdiass.

& Conformance (Wrapped parameter naminig)the absence of customization, the name of a mapped Java
method parameter MUST be the value of the local name of thpperachild mapped according to the rules
described in sectioris 2.8 ahd 2]8.1.

An application MAY customize this mapping using thaxws: par anet er binding declaration defined in
sectiof8.71B.

< Conformance (Parameter name cladfithe mapping results in two Java parameters with the sammena
and one of those parameters is not mapped to the method tgperrsee sectidn 2.3.2, then this is reported as
an error and requires developer intervention to correttteeby disabling wrapper style mapping, modifying
the source WSDL or by specifying a customized parameter maapping.

& Conformance (Usingavax. xm . ws. Request W apper). If wrapper style is used, generated Java meth-
ods MUST be annotated withjaavax. xm . ws. Request W apper annotation. The annotation MAY be
omitted if all its properties would have the default values.

& Conformance (Usingavax. xm . ws. ResponseW apper). If wrapper style is used, generated Java
methods MUST be annotated withjavax. xml . ws. ResponseW apper annotation. The annotation
MAY be omitted if all its properties would have the defaultues.

14 JAX-WS 2.1 May 7, 2007

2.3. Operation

2.3.1.3 Example

Figure[Z2 shows a WSDL extract and the Java method thatisefsoin using wrapper and non-wrapper
mapping styles. For readability, annotations are omitted.

2.3.2 Parameter Order and Return Type

A wsdl : oper at i on element may have @ar anet er O der attribute that defines the ordering of parame-
ters in a mapped Java method as follows:

» Message parts are either listed or unlisted. If the valugwafdl : part element’snane attribute is
present in thear anet er O der attribute then the part is listed, otherwise it is unlisted.

Note: R2305 in WS-I Basic Profile 1.1 18] requires that if the pareterOrder attribute is present
then at most one part may be unlisted. However, the algoritluttined in this section supports
WSDLs that do not conform with this requirement.

» Parameters that are mapped from message parts are estieer ¢r unlisted. Parameters that are
mapped from listed parts are listed; parameters that ar@edaipom unlisted parts are unlisted.

» Parameters that are mapped from wrapper children (wragiplermapping only) are unlisted.

* Listed parameters appear first in the method signatureamtder in which their corresponding parts
are listed in thepar anet er Or der attribute.

» Unlisted parameters either form the return type or follbe listed parameters
* The return type is determined as follows:

Non-wrapper style mapping Only parameters that are mapped from parts in the abstrgmitomes-
sage may form the return type, parts from other messageg (@esectio 2.6.2.1) do not qual-
ify. If there is a single unlistedut part in the abstract output message then it forms the method
return type, otherwise the return typevisi d.

Wrapper style mapping If there is a singleut wrapper child then it forms the method return type,
if there is anout wrapper child with a local name of “return” then it forms thetmod return
type, otherwise the return typeusi d.

» Unlisted parameters that do not form the return type foltbe listed parameters in the following
order:

1. Parameters mapped fram andi n/ out parts appear in the same order the corresponding parts
appear in the input message.

2. Parameters mapped from andi n/ out wrapper children (wrapper style mapping only) appear
in the same order as the corresponding elements appearwrdbeer.

3. Parameters mapped framat parts appear in the same order the corresponding partsrappea
the output message.

4. Parameters mapped framat wrapper children (wrapper style mapping only) appear irstirae
order as the corresponding wrapper children appear in tapper.

May 7, 2007 JAX-WS 2.1 15

Chapter 2. WSDL 1.1 to Java Mapping

O©CoO~NOOUTA,WNPE

16

<l-- WBDL extract -->
<t ypes>
<xsd: el ement name="set Last TradePri ce">
<xsd: conpl exType>
<xsd: sequence>
<xsd: el ement nane="ticker Synbol " type="xsd:string"/>
<xsd: el ement nane="I| ast TradePrice" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el emrent >

<xsd: el ement name="set Last Tr adePri ceResponse" >
<xsd: conpl exType>
<xsd: sequence/ >
</ xsd: conpl exType>
</ xsd: el ement >
</types>

<message nanme="set Last TradePri ce">
<part name="set Last TradePri ce"
el ement ="t ns: set Last TradePri ce"/ >
</ nessage>

<message nane="set Last TradePri ceResponse" >
<part name="set Last TradePri ceResponse"
el ement ="t ns: set Last TradePri ceResponse"/ >
</ nessage>

<port Type name="St ockQuot eUpdat er">
<operation nane="set Last TradePrice">
<i nput nmessage="tns: set Last TradePrice"/>
<out put nessage="tns: set Last Tr adePri ceResponse"/ >
</ operation>
</ port Type>

/1 non-wrapper style mapping
Set Last TradePri ceResponse set Last TradePri ce(
Set Last TradePri ce setLast TradePri ce);
/'l wrapper style mapping
voi d setLast TradePrice(String tickerSynbol, float |astTradePrice);

Figure 2.2: Wrapper and non-wrapper mapping styles

JAX-WS 2.1 May 7, 2007

2.3. Operation

2.3.3 Holder Class

Holder classes are used to suppart andi n/ out parameters in mapped method signatures. They provide
a mutable wrapper for otherwise immutable object referenc#AX-WS defines a generic holder class
(j avax. xm . ws. Hol der <T>) that can be used for any Java class.

Parameters whose XML data type would normally be mapped ava @rimitive type (e.gxsd: i nt to

i nt) are instead mapped tadHal der whose type parameter is bound to the Java wrapper classpong-
ing to the primitive type. E.g., anut ori n/out parameter whose XML data type would normally be
mapped to a Javant is instead mapped teol der <j ava. | ang. | nt eger >.

< Conformance (Use dfol der): Implementations MUST maput andi n/ out method parameters us-
ing j avax. xm . ws. Hol der <T>, with the exception of aut part that has been mapped to the method’s
return type.

2.3.4 Asynchrony

In addition to the synchronous mappingvafd! : oper at i on described above, a client side asynchronous
mapping is also supported. It is expected that the asynoheomapping will be useful in some but not
all cases and therefore generation of the client side asgnohs methods should be optional at the users
discretion.

{ Conformance (Asynchronous mapping requireély implementation MUST support the asynchronous
mapping.

< Conformance (Asynchronous mapping optioAh implementation MUST support use of thexws-
: enabl eAsyncMappi ng binding declaration defined in sectibn8]7.3 to enable asalde the asynchronous

mapping.

Editors Note 2.1 JSR-181 currently does not define annotations that can ée tssmark a method as being
asynchronous.

2.3.4.1 Standard Asynchronous Interfaces
The following standard interfaces are used in the asyndusoperation mapping:

javax. xml . ws. Response A generic interface that is used to group the results of a atethvocation
with the response contexResponse extendsFut ur e<T> to provide asynchronous result polling
capabilities.

javax. xm . ws. AsyncHandl er A generic interface that clients implement to receive rssial an asyn-
chronous callback.

2.3.4.2 Operation

Eachwsdl : oper at i on is mapped to two additional methods in the corresponding@eendpoint inter-
face:

Polling method A polling method returns a typeBesponse<ResponseBeanthat may be polled using

methods inherited fronfut ur e<T> to determine when the operation has completed and to retriev
the results. See below for further detailsRasponseBean

May 7, 2007 JAX-WS 2.1 17

Chapter 2. WSDL 1.1 to Java Mapping

Callback method A callback method takes an additional final parameter thair instance of a typed
AsyncHandl er <ResponseBearand returns a wildcarBut ur e<?> that may be polled to determine
when the operation has completed. The object returned Foinur e<?>. get () has no standard
type. Client code should not attempt to cast the object tomicular type as this will result in
non-portable behavior.

& Conformance (Asynchronous method naming)the absence of customizations, the name of the polling
and callback methods MUST be the value of tleare attribute of thewsdl : oper at i on suffixed with
“Async” mapped according to the rules described in secibBsand Z.8l1.

{ Conformance (Asynchronous parameter namirigle name of the method parameter for the callback
handler MUST be “asyncHandler”. Parameter name collisi@tglire user intervention to correct, see
sectiofZ.81.

An application MAY customize this mapping using thexws: net hod binding declaration defined in
sectiof8.7B.

{ Conformance (Failed method invocationj:there is any error prior to invocation of the operation, an
implementation MUST throw s#ébSer vi ceExcept i on?.

2.3.4.3 Message and Part

The asynchronous mapping supports both wrapper and ngoperanapping styles, but differs in how it
mapsout andi n/ out parts or wrapper children:

in The part or wrapper child is mapped to a method parametersasided in sectioh 2.3.1.

out The part or wrapper child is mapped to a property of the resptean (see below).

infout The part or wrapper child is mapped to a method parameterdigeihclass) and to a property of the
response bean.

2.3.4.4 Response Bean

A response bean is a mapping of an operation’s output messgagmtains properties for eaaut and
i n/ out message part or wrapper child.

{ Conformance (Response bean namirig)the absence of customizations, the name of a response bean
MUST be the value of theane attribute of thewsdl : oper at i on suffixed with “Response” mapped ac-
cording to the rules described in sectiénd 2.8[and2.8.1.

A response bean is mapped from a global element declaratilonving the rules described in sectibnl2.4.
The global element declaration is formed as follows (in oafgreference):

« |If the operation’s output message contains a single parttzat part refers to a global element decla-
ration then use the referenced global element.

LErrors that occur during the invocation are reported whercttent attempts to retrieve the results of the operatiea,section

2325

18 JAX-WS 2.1 May 7, 2007

2.3. Operation

» Synthesize a global element declaration of a complex tyfmed using thexsd: sequence com-
positor. Each output message part is mapped to a child oftithesized element as follows:

— Each global element referred to by an output part is addedth#chof the sequence.

— Each part that refers to a type is added as a child of the segumncreating an element in no
namespace whose localname is the value ohtree attribute of theasdl : part element and
whose type is the value of the/pe attribute of theasdl : part element

If the resulting response bean has only a single propertyttteebean wrapper should be discarded in method
signatures. In this case, if the property is a Java primtipe then it is boxed using the Java wrapper type
(e.g.i nt tol nt eger) to enable its use witResponse.

2.3.45 Faults

Mapping of WSDL faults to service specific exceptions isitigal for both asynchronous and synchronous
cases, sectioh 2.5 describes the mapping. However, maggadrsonous methods do not throw service
specific exceptions directly. Insteag ava. uti | . concurrent. Executi onExcept i onis thrown when

a client attempts to retrieve the results of an asynchromoethod invocation via th&®esponse. get
method.

{ Conformance (Asynchronous fault reportingd:WSDL fault that occurs during execution of an asyn-
chronous method invocation MUST be mapped foa&a. uti |l . concurrent . Execut i onExcepti on
thrown when the client callResponse. get .

Response is a static generic interface whoget method cannot throw service specific exceptions. Instead
of throwing a service specific exceptionRasponse instance throws agxecut i onExcepti on whose
cause is set to an instance of the service specific exceptapped from the corresponding WSDL fault.

< Conformance (Asychronous fault caus@n Execut i onExcept i on that is thrown by thget method
of Response as a result of a WSDL fault MUST have as its cause the servieeifgpexception mapped
from the WSDL fault, if there is one, otherwise tReot ocol Except i on mapped from the WSDL fault
(sedGH).

2.3.4.6 Mapping Examples
Figure[ZB shows an example of the asynchronous operatippinta Note that the mapping usEsoat

instead of a response bean wrappt (Pr i ceResponse) since the synthesized global element declaration
for the operations output message (lines 17—24) maps t@arnss bean that contains only a single property.

2.3.4.7 Usage Examples

» Synchronous use.

1 Service service = ...;
2 StockQuote quoteService = (StockQuote)service. getPort(portNane);
3 Float quote = quoteService.getPrice(ticker);

» Asynchronous polling use.

May 7, 2007 JAX-WS 2.1 19

Chapter 2. WSDL 1.1 to Java Mapping

O©CoO~NOOOUOTPA,WNPE

20

<l-- WBDL extract -->
<message nane="getPrice">

<part name="ticker" type="xsd:string"/>
</ nessage>

<message nane="get Pri ceResponse">
<part name="price" type="xsd:float"/>
</ nessage>

<port Type name="St ockQuot e" >
<operation name="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
</ oper ati on>
</ port Type>

<!-- Synthesized response bean el enent -->
<xsd: el ement name="get Pri ceResponse" >
<xsd: conpl exType>
<xsd: sequence>
<xsd: el enent nane="price" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el emrent >

/1 synchronous nappi ng

@\ébServi ce

public interface StockQuote {
float getPrice(String ticker);

}

/'l asynchronous mappi ng
@\bSer vi ce
public interface StockQuote {
float getPrice(String ticker);
Response<Fl| oat > get Pri ceAsync(String ticker);
Fut ure<?> getPriceAsync(String ticker, AsyncHandl er<Fl oat >);

Figure 2.3: Asynchronous operation mapping

JAX-WS 2.1

May 7, 2007

2.4. Types

Service service = ...;
St ockQuot e quot eServi ce = (St ockQuot e)service. get Port (port Nane);
Response<Fl| oat > response = quot eServi ce. get Pri ceAsync(ticker);
whil e (!response.isbDone()) {

/1 do something while we wait
}

Fl oat quote = response.get();

No o~ wWNRE

» Asynchronous callback use.

cl ass MyPriceHandl er inpl ements AsyncHandl er <Fl oat > {

public voi d handl eResponse(Response<Fl oat > response) {
Fl oat price = response.get();
/1 do sonething with the result

}

Service service = ...;
St ockQuot e quot eServi ce = (St ockQuot e)service. get Port (port Nane);
MyPri ceHandl er nyPriceHandl er = new MyPri ceHandl er ();

1
2
3
4
5
6
7
8
9
10
11
12 quoteService.getPriceAsync(ticker, nmyPriceHandl er);

2.4 Types

Mapping of XML Schema types to Java is described by the JAXIBspecificatiori[1ll]. The contents of a
wsdl : t ypes section is passed to JAXB along with any additional type emant declarations (e.g., see
section[Z.3K) required to map other WSDL constructs to.J&g., sectio 2.314 defines an algorithm
for synthesizing additional global element declaratiomgrtovide a mapping from WSDL operations to
asynchronous Java method signatures.

JAXB supports mapping XML types to either Java interfaceslasses. By default JAX-WS uses the class
based mapping of JAXB but also allows use of the interfacedasapping.

& Conformance (JAXB class mappingih the absence of user customizations, an implementatiosMU
use the JAXB class based mapping witkner at eVal ueC ass set tot r ue andgener at eEl enent -
Cl ass set tof al se when mapping WSDL types to Java.

& Conformance (JAXB customization usédn implementation MUST support use of JAXB customiza-
tions during mapping as detailed in sectiod 8.5.

& Conformance (JAXB customization clastlio avoid clashes, if a user customizes the mapping, an im-
plementation MUST NOT add the default class based mappis@euzations.

In addition, for ease of use, JAX-WS strips al%XBEl enent <T> wrapper off the type of a method pa-
rameter if the normal JAXB mapping would result in 8neE.g. a parameter that JAXB would map to
JAXBEI enent <I nt eger > is instead be mapped tmt eger .

2JAXB maps an element declaration to a Java instance thagimgsits JAXBElement.

May 7, 2007 JAX-WS 2.1 21

Chapter 2. WSDL 1.1 to Java Mapping

JAXB provides support for the SOAP MTOM]|R6]/XAP]27] mecigan for optimizing transmission of bi-
nary data types. JAX-WS provides the MIME processing reglito enable JAXB to serialize and de-
serialize MIME based MTOM/XOP packages. The contract betw@AXB and an MTOM/XOP pack-
age processor is defined by thavax. xm . bi nd. At t achment Mar shal | er andj avax. xnl . bi nd-

. Attachment Unmar shal | er classes. A JAX-WS implementation can plug into it by registg its
ownAt t achment Mar shal | er andAt t achnment Unmar shal | er at runtime using theet At t achnent -
Unmar shal | er method ofj avax. xnl . bi nd. Unmar shal | er (resp. theset Att achment Mar shal | er
method off avax. xm . bi nd. Mar shal | er).

2.4.1 W3CEndpointReference

JAXB 2.1 by default does not magsa: Endpoi nt Ref er ence to thej avax. xnl . ws. wsaddr essi ng-

. VBCEndpoi nt Ref er ence class. However, for JAX-WS developers to fully utilize theeuof awsa-

: Endpoi nt Ref er ence, JAX-WS implementations MUST map thea: Endpoi nt Ref er ence toj avax-
.ws. xm . ws. WBCEndpoi nt Ref er ence. JAXB 2.1 provides a standard customization that can be tased
force this mapping.

{ Conformancej(avax. xnl . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence): Any schema element of
the typewsa: Endpoi nt Ref er ence MUST be mapped tpavax. xm . ws. wsaddr essi ng. WBCEndpoi nt -
Ref er ence.

2.5 Fault

A wsdl : faul t element is mapped to a Java exception.

{ Conformancej(avax. xni . ws. WebFaul t required): A mapped exception MUST be annotated with a
j avax. xnml . ws. WebFaul t annotation.

& Conformance (Exception naminghh the absence of customizations, the name of a mapped except
MUST be the value of thaeane attribute of thewsdl : message referred to by thewdl : f aul t element
mapped according to the rules in sectibn3 2.8[and]2.8.1.

An application MAY customize this mapping using fhaxws: cl ass binding declaration defined in section
c. (4.

Multiple operations within the same service can define \eajant faults. Faults defined within the same
service are equivalent if the values of theirssage attributes are equal.

& Conformance (Fault equivalenceln implementation MUST map equivalent faults within a seevio a
single Java exception class.

A wsdl : faul t element refers to asdl : message that contains a single part. The global element decla-
ratior? referred to by that part is mapped to a Java bean, hencefalitul @fault bean using the mapping
described in sectidnd.4. An implementation generates pperaexception class that extendssa. | ang-

. Except i on and contains the following methods:

WrapperException(St ri ng nmessage, FaultBean faul t | nf o) A constructor wheréVrapperExcep-
tion is replaced with the name of the generated wrapper exceptidfraultBeanis replaced by the
name of the generated fault bean.

3Ws-I Basic Profil€[1B] R2205 requires parts to refer to edets rather than types.

22 JAX-WS 2.1 May 7, 2007

2.6. Binding

WrapperException(St ri ng nmessage, FaultBean faul t|Info, Throwabl e cause) A constructor
whereWrapperExceptiois replaced with the name of the generated wrapper excemtidRaultBean
is replaced by the name of the generated fault bean. Thetashantcause, may be used to convey
protocol specific fault information, see sectlon 614.1.

FaultBean get Faul t I nfo() Getter to obtain the fault information, whelfaultBeanis replaced by the
name of the generated fault bean.

The WrapperExceptiortlass is annotated using teébFaul t annotation (see sectign¥.2) to capture the
local and namespace name of the global element mapped tautidéan.

Two wsdl : faul t child elements of the samesdl : oper ati on that indirectly refer to the same global
element declaration are considered to be equivalent sirare is no interoperable way of differentiating
between their serialized forms.

{ Conformance (Fault equivalenceit runtime an implementation MAY map a serialized fault irstoy
equivalent Java exception.

2.5.1 Example

FigurelZ% shows an example of the WSDL fault mapping desdrébove.

2.6 Binding

The mapping from WSDL 1.1 to Java is based on the abstractipése of awsdl : port Type and its
associated operations. However, the binding of a port tgpa protocol can introduce changes in the
mapping — this section describes those changes in the geasesand specifically for the mandatory WSDL
1.1 protocol bindings.

& Conformance (Required WSDL extensiong&n implementation MUST support mapping of the WSDL
1.1 specified extension elements for the WSDL SOAP and MIlfigihgs.

2.6.1 General Considerations

R2209 in WS-I Simple SOAP Binding Profile 1.1128] recommettidat all parts of a message be bound but
does not require it.

{ Conformance (Unbound message pari®):preserve the protocol independence of mapped operations
an implementation MUST NOT ignore unbound message part$wiegpping from WSDL 1.1 to Java.
Instead an implementation MUST generate binding code gmairesi n andi n/ out parameters mapped
from unbound parts and that preseots parameters mapped from unbound parts@d .

2.6.2 SOAP Binding

This section describes changes to the WSDL 1.1 to Java n@gimhmay result from use of certain SOAP
binding extensions.

May 7, 2007 JAX-WS 2.1 23

Chapter 2. WSDL 1.1 to Java Mapping

©CoOo~NOoOUThr~,WNE

24

<!-- WBDL extract -->
<types>
<xsd: schema t ar get Nanespace="...">
<xsd: el ement name="faultDetail ">
<xsd: conpl exType>
<xsd: sequence>

<xsd: el ement name="nmgj or Code" type="xsd:int"/>
<xsd: el ement name="ni nor Code" type="xsd:int"/>

</ xsd: sequence>
</ xsd: conpl exType>
</ xsd: el enent >
</ xsd: schema>
</types>

<message nane="operati onException">

<part name="faultDetail" elenent="tns:faultDetail"/>

</ nessage>

<port Type name="St ockQuot eUpdat er" >
<operation nane="set Last TradePrice" >
<input .../>
<output .../>
<fault name="operati onException”
nmessage="t ns: oper ati onExcepti on"/>
</ operati on>
</ port Type>

/1 fault mapping

@\ébFaul t (name="faul tDetail", targetNanespace="...")

cl ass Operati onExcepti on extends Exception {

Qper ati onException(String nessage, Faul tDetail
Qper ati onException(String nessage, Faul tDetail

Thr owabl e cause) {...}
Faul tDetail getFaultlnfo() {...}

Figure 2.4: Fault mapping

JAX-WS 2.1

faultinfo) {...}
faul t1nfo,

May 7, 2007

2.6. Binding

2.6.2.1 Header Binding Extension

A soap: header element may be used to bind a part from a message to a SOAPrhéadelarified by
R2208 in WS-I Basic Profile 1.1[18], the part may belong tinei the message bound by theap: body
or to a different message:

« If the part belongs to the message bound bysthep: body then it is mapped to a method parameter
as described in sectién?.3. Such a part is always mappeg th&mon-wrapper style.

« If the part belongs to a different message than that bountthdsyoap: body then it may optionally
be mapped to an additional method parameter. When mappegbi@meter, the part is treated as an
additional unlisted part for the purposes of the mappingdesd in sectioli 2]3. This additional part
does not affect eligibility for wrapper style mapping of timessage bound by tleap: body (see
sectiofZ.311); the additional part is always mapped usieghbn-wrapper style.

Note that the order of headers in a SOAP message is indepeoidér® order ofsoap: header elements

in the WSDL binding — see R2751 in WS-I Basic Profile [I10[8hid causes problems when two or more
headers with the same qualified name are present in a messdgme or more of those headers are bound
to a method parameter since it is not possible to determiniehwteader maps to which parameter.

& Conformance (Duplicate headers in binding¥hen mapping, an implemention MUST report an error
if the binding of an operation includes two or mareap: header elements that would result in SOAP
headers with the same qualified name.

< Conformance (Duplicate headers in messadge).implementation MUST generate a runtime error fif,
during unmarshalling, there is more than one instance ofaaldrewhose qualified name is mapped to a
method parameter.

2.6.3 MIME Binding

The presence of ai me: nul ti part Rel at ed binding extension element as a child ofedl : i nput or
wsdl : out put elementinawsdl : bi ndi ng indicates that the corresponding messages may be satiakze
MIME packages. The WS-I Attachments Profile[29] descritves separate attachment mechanisms, both
based on use of the WSDL 1.1 MIME bindibg[5]:

wsi ap: swaRef A schema type that may be used in the abstract message tiesciipindicate a reference
to an attachment.

m me: cont ent A binding construct that may be used to bind a message pantattachment.

JAXBILJ] describes the mapping from the WS-I defingsl ap: swar ef schema type to Java and, since

JAX-WS inherits this capability, it is not discussed funthere. Use of ther ne: cont ent construct is

outside the scope of JAXB mapping and the following subeactiescribes changes to the WSDL 1.1 to
Java mapping that results from its use.

2.6.3.1 mine: content

Message parts are mapped to method parameters as desorgmdio 2B regardless of whether the part
is bound to the SOAP message or to an attachment. JAXB rutessad to determine the Java type of

May 7, 2007 JAX-WS 2.1 25

Chapter 2. WSDL 1.1 to Java Mapping

message parts based on the XML schema type referenced bgdhepart. However, when a message
part is bound to a MIME part (using the ne: cont ent element of the WSDL MIME binding) additional
information is available that provides the MIME type of thetal and this can optionally be used to narrow
the default JAXB mapping.

{ Conformance (Use of MIME type informationAn implementation MUST support using thexws-
: enabl eM MECont ent binding declaration defined in sectibn_8]7.5 to enable salle the use of the
additional metadata imi me: cont ent elements when mapping from WSDL to Java.

JAXB defines a mapping between MIME types and Java types. idhgart is bound using one or more

n me: cont ent element$ and use of the additional metadata is enabled then the JAXEpimg is cus-
tomized to use the most specific type allowed by the set of HEifypes described for the part in the bind-
ing. The case where the parameter modeNGUT and is bound to different mime bindings in the input and
output messages using thene: cont ent element MUST also be treated in the same way as described
above. Please refer to appendix H in the JAXB 2.0 specitiogftL(] for details of the type mapping.

The part belongs to the message bound bysibep: body then it is mapped to a method parameter as
described in sectidnd.3. Such a part is always mapped usingan-wrapper style.

Parts bound to MIME using the me: cont ent WSDL extension are mapped as described in seffidn 2.3.
These parts are mapped using the non-wrapper style.

Figure[Zb shows an example WSDL and two mapped interfages:without using theri ne: cont ent
metadata, the other using the additional metadata to nahewinding. Note that in the latter the type of
thecl ai nPhot o method parameter istage rather than the defaultyt e[] .

{ Conformance (MIME type mismatchjon receipt of a message where the MIME type of a part does not
match that described in the WSDL an implementation SHOULDvwhaWebSer vi ceExcept i on.

< Conformance (MIME part identification)An implementation MUST use the algorithm defined in the
WS-I Attachments Profile[29] when generating the MIN&nt ent - | Dheader field value for a part bound
usingmni me: cont ent .

2.7 Service and Port

A wsdl : servi ce is a collection of relatedsdl : port elements. Awsdl : port element describes a port
type bound to a particular protocol ¢adl : bi ndi ng) that is available at particular endpoint address. On
the client side, asdl : servi ce element is mapped to a generated service class that extands. xn -

. ws. Ser vi ce (see sectiof4l1 for more information on ther vi ce class).

{ ConformanceSer vi ce superclass required)A generated service class MUST extendjthgax. xm -
. Ws. Servi ce class.

< Conformance (Service class namindp:the absence of customization, the name of a generatettserv
class MUST be the value of theane attribute of thewsdl : ser vi ce element mapped according to the
rules described in sectiohsP.8 dnd 2.8.1.

An application MAY customize the name of the generated sereiass using thpaxws: cl ass binding
declaration defined in sectién 8.7.7.

“Multiple m me: cont ent elements for the same part indicate a set of permissiblmatetypes.

26 JAX-WS 2.1 May 7, 2007

2.7. Service and Port

O©CoO~NOOOUOTA,WNLPE

<l-- WBDL extract -->
<wsdl : nressage nane="d ai m n">
<wsdl : part nanme="body" el enent="types: d ai nDetail"/>
<wsdl : part nane="d ai nPhot 0" type="xsd: base64Bi nary"/>
</ wsdl : nessage>

<wsdl : port Type nanme="d ai nPort Type" >
<wsdl : operati on nane="Sendd ai ni' >
<wsdl : i nput nessage="tns:dainn"/>
</ wsdl : oper ati on>
</ wsdl : port Type>

<wsdl : bi ndi ng nane="d ai nBi ndi ng" type="tns: C ai mPort Type" >

<soapbi nd: bi ndi ng styl e="docunent” transport="..."/>
<wsdl : operati on nane="Sendd ai ni' >
<soapbi nd: oper ati on soapAction="..."/>

<wsdl : i nput >
<m ne: mul ti part Rel at ed>
<m ne: part>
<soapbi nd: body parts="body" use="literal"/>
</ m ne: part >
<m me: part>
<m ne: content part="0C ai nPhot 0" type="inage/jpeg"/>
<m ne: content part="d ai nPhoto" type="inmage/gif"/>
</ m ne: part >
</mnme:nultipart Rel at ed>
</ wsdl : i nput >
</ wsdl : operati on>
</ wsdl : bi ndi ng>

/1 Mapped Java interface wi thout mnme:content mnetadata
@\bServi ce
public interface C ainPort Type {
public String sendd ai n{C ai nDetail detail, byte clainPhoto[]);

}
/1 Mapped Java interface using m ne:content metadata
@\bServi ce
public interface C ainPortType {
public String sendd ai n(C ai nDetail detail, Inmage clainPhoto);
}

Figure 2.5: Use ofri me: cont ent metadata

May 7, 2007 JAX-WS 2.1 27

Chapter 2. WSDL 1.1 to Java Mapping

In order to allow an implementation to identify the Web seevithat a generated service class corre-
sponds to, the latter is required to be annotated yvithax. xm . ws. WebSer vi ced i ent annotation.
The annotation contains all the information necessarydatiwa WSDL document and uniquely identify a
wsdl : servi ceinside it.

{ Conformancej(avax. xnl . ws. WebSer vi ced i ent required): A generated service class MUST be
annotated with favax. xnl . ws. WebSer vi ced i ent annotation.

JAX-WS 2.0 mandates that two constructors be present oy gesrerated service class.

{ Conformance:A generated service class MUST have a default (i.e. zeroraegt) public construc-
tor. This constructor MUST call the protected constructecldred inj avax. xm . ws. Ser vi ce, passing

as arguments the WSDL location and the service name. Thes/aluthe actual arguments for this call
MUST be equal (in thg ava. | ang. Obj ect . equal s sense) to the values specified in the mandatory
WebSer vi ced i ent annotation on the generated service class itself.

< Conformance.:The implementation class MUST have a public constructot thkes two arguments,
the wsdl location (g ava. net. URL) and the service name {(avax. xm . namespace. QNane). This
constructor MUST call the protected constructor Bivax. xm . ws. Ser vi ce passing as arguments the
WSDL location and the service name values with which it wasked.

For each port in the service, the generated client sideeolass contains the following methods, two for
each port defined by the WSDL service and whose binding ipatied by the JAX-WS implementation:

get PortName() One required method that takes no parameters and returrexy tiat implements the
mapped service endpoint interface. The method generakegiades to th€er vi ce. get Port (.. .)
method passing it the port name. The value of the port name Mi¢Sequal to the value specified in
the mandatory#bEndpoi nt annotation on the method itself.

get PortName(WebSer vi ceFeature. .. features) Onerequired method thattakes a variable-length
array ofj avax. xm . ws. W\ebSer vi ceFeat ur e and returns a proxy that implements the mapped
service endpoint interface. The method generated deketiatieeSer vi ce. get Port (QNane port -
Narme, O ass<T> SElI, WebServiceFeature... features) method passingitthe port name,
the SEI and the features. The value of the port name MUST bal éguhe value specified in the
mandatoryWwebEndpoi nt annotation on the method itself.

{ Conformance (Failed getPort Method): generatedyet PortNamemethod MUST throwj avax. xm -
. ws. WebSer vi ceExcept i on on failure.

The value ofPortNamen the above is derived as follows: the value of tlaere attribute of theasdl : port
element is first mapped to a Java identifier according tathes described in secti@n?.8, this Java identifier
is then treated as a JavaBean property for the purposesivihdeahe get PortNamemethod name.

An application MAY customize the name of the generated naHor a port using th¢ axws: net hod
binding declaration defined in sectibn 817.8.

In order to enable an implementation to determinevihdl : por t that a port getter method corresponds to,
the latter is required to be annotated withavax. xm . ws. WebEndpoi nt annotation.

{ Conformancej(avax. xnl . ws. WebEndpoi nt required): Theget PortNamemethods of generated ser-
vice interface MUST be annotated with avax. xm . ws. WebEndpoi nt annotation.

28 JAX-WS 2.1 May 7, 2007

2.7. Service and Port

2.7.1 Example

The following shows a WSDL extract and the resulting gemetatervice class.

O©CoO~NOOOUTPA,WNPE

<l-- WBDL extract -->
<wsdl : servi ce nane="St ockQuot eServi ce">
<wsdl : port nane="St ockQuot eHTTPPort" bi ndi ng="St ockQuot eHTTPBi ndi ng"/ >
<wsdl : port nanme="St ockQuot eSMIPPort" bi ndi ng="St ockQuot eSMIPBi ndi ng"/ >
</ wsdl : servi ce>

/'l Cenerated Service O ass
@\ébServi ced i ent (name="St ockQuot eSer vi ce",
t ar get Nanespace="htt p:// exanpl e. com st ocks",
wsdl Locati on="http://exanpl e. com st ocks. wsdl ")
public class StockQuoteService extends javax.xm .ws. Service {

public StockQuoteService() {
super (new URL("http://exanpl e. com stocks. wsdl"),
new QName("http://exanpl e. com st ocks",
" St ockQuot eService"));

}

public StockQuoteService(URL wsdl Locati on, QName servi ceNane) ({
super (wsdl Locati on, servi ceNane);
}

@\ebEndpoi nt (nane=" St ockQuot eHTTPPort ")
public StockQuoteProvi der get StockQuoteHTTPPort () {
return (StockQuoteProvider)super. getPort (

new QNanme("http://exanpl e. com st ocks", " St ockQuot eHTTPPort "),

St ockQuot ePr ovi der . cl ass) ;

}

@\ebEndpoi nt (nane=" St ockQuot eHTTPPort ")

public StockQuoteProvi der get St ockQuot eHTTPPort (
WebServi ceFeature... features)
return (StockQuot eProvider)super. getPort (

new QNanme("http://exanpl e. com st ocks", " St ockQuot eHTTPPort "),

St ockQuot eProvi der. cl ass, features);

}

@\¢bEndpoi nt (nane=" St ockQuot eSMIPPort ")
public StockQuoteProvi der get StockQuoteSMIPPort () {
return (StockQuoteProvider)super. getPort (

new QNanme("http://exanpl e. com st ocks", " St ockQuot eSMIPPort "),

St ockQuot ePr ovi der . cl ass) ;

}

@\ebEndpoi nt (nane=" St ockQuot eSMIPPort ")

public StockQuot eProvi der get St ockQuot eSMIPPort (
WebServi ceFeature... features)
return (StockQuoteProvider)super. getPort (

new QNanme("http://exanpl e. com st ocks", " St ockQuot eSMIPPort "),

St ockQuot eProvi der. cl ass, features);

May 7, 2007 JAX-WS 2.1 29

Chapter 2. WSDL 1.1 to Java Mapping

In the above St ockQuot ePr ovi der is the service endpoint interface mapped from the WSDL jyqe t
for both referenced bindings.

2.8 XML Names

Appendix C of JAXB 1.0[9] defines a mapping from XML names #wvd identifiers. JAX-WS uses this
mapping to convert WSDL identifiers to Java identifiershwtite following modifications and additions:

Method identifiers When mappingysdl : oper at i on names to Java method identifiers, thet or set
prefix is not added. Instead the first word in the word-lisshts first character converted to lower
case.

Parameter identifiers When mappingasdl : part names or wrapper child local names to Java method
parameter identifiers, the first word in the word-list h&sfirst character converted to lower case.
Clashes with Java language reserved words are reportetbes &nd require use of appropriate cus-
tomizations to fix the clash.

2.8.1 Name Collisions

WSDL name scoping rules may result in name collisions wheppimg from WSDL 1.1 to Java. E.g., a
port type and a service are both mapped to Java classes buL\AlBi¥s both to be given the same name.
This section defines rules for resolving such name cotiisio

The order of precedence for name collision resolution iolevws (highest to lowest);

1. Service endpoint interface
2. Non-exception Java class
3. Exception class
4. Service class
If a name collision occurs between two identifiers with elifnt precedences, the lower precedence item
has its name changed as follows:
Non-exception Java classThe suffix “_Type” is added to the class name.
Exception class The suffix “.Except i on” is added to the class name.
Service classThe suffix “ Ser vi ce” is added to the class name.
If a name collision occurs between two identifiers with tlaeng precedence, this is reported as an error

and requires developer intervention to correct. The erray be corrected either by modifying the source
WSDL or by specifying a customized name mapping.

If a name collision occurs between a mapped Java method arethedhinj avax. xm . ws. Bi ndi ng-
Provi der (an interface that proxies are required to implement, seeosd4.2), the prefix " is added to
the mapped method.

30 JAX-WS 2.1 May 7, 2007

Chapter 3

Java to WSDL 1.1 Mapping

This chapter describes the mapping from Java to WSDL 1.1s fapping is used when generating web
service endpoints from existing Java interfaces.

{ Conformance (WSDL 1.1 support)mplementations MUST support mapping Java to WSDL 1.1.

The following sections describe the default mapping frowhe#ava construct to the equivalent WSDL 1.1
artifact.

An application MAY customize the mapping using the annotatidefined in sectidd 7.

< Conformance (Standard annotationgn implementation MUST support the use of annotations @effin
in sectior¥ to customize the Java to WSDL 1.1 mapping.

3.1 Java Names

{ Conformance (Java identifier mappingh the absence of annotations described in this speciicati
Java identifiers MUST be mapped to XML names using the dlgoridefined in appendix B of SOAP
1.2 Part 4[4].

3.1.1 Name Collisions

WS-I Basic Profile 1.0]8] (see R2304) requires operatioithiwawsdl : por t Type to be uniquely named
— support for customization of the operation name allows teguirement to be met when a Java SEI
contains overloaded methods.

< Conformance (Method name disambiguatioAh implementation MUST support the use of jhevax-
. j ws. WebMet hod annotation to disambiguate overloaded Java method nanmes nvapped to WSDL.

3.2 Package

A Java package is mapped tonadl : def i ni ti ons element and an associatedr get Nanespace at-
tribute. Thewsdl : def i ni ti ons element acts as a container for other WSDL elements thathiegirm
the WSDL description of the constructs in the correspondiena package.

A default value for the ar get Nanespace attribute is derived from the package name as follows:

May 7, 2007 JAX-WS 2.1 31

Chapter 3. Java to WSDL 1.1 Mapping

1. The package name is tokenized using the “.” character abraitkr.
2. The order of the tokens is reversed.

3. The value of the ar get Nanmespace attribute is obtained by concatenating “http://"to thd I
tokens separated by “ . "and “/”.

E.g., the Java package “com.example.ws” would be mappedettatget namespace “http://ws.example-
.com/”.

{» Conformance (Package name mappirigirej avax. j ws. WebSer vi ce annotation (see sectign 7.11.1)
MAY be used to specify the target namespace to use for a Weiteeand MUST be used for classes or
interfaces in no package. In the absence johaax. j ws. WebSer vi ce annotation the Java package name
MUST be mapped to the value of thedl : def i ni ti ons element’st ar get Namespace attribute using
the algorithm defined above.

No specific authoring style is required for the mapped WSDBtuient; implementations are free to gen-
erate WSDL that uses the WSDL and XML Schema import direstive

{ Conformance (WSDL and XML Schema import directive§enerated WSDL MUST comply with the
WS-I Basic Profile 1.0IB] restrictions (See R2001, R200%] R2003) on usage of WSDL and XML Schema
import directives.

3.3 Class

A Java class (not an interface) annotated witlaaax. j ws. WebSer vi ce annotation can be used to define
a Web service.

In order to allow for a separation between Web service iaterfand implementation, if th&bSer vi ce
annotation on the class under consideration resd@oi nt | nt er f ace element, then the interface referred
by this element is for all purposes the SEI associated wélclhss.

Otherwise, the class implicitly defines a service endpiitdrface (SEI) which comprises all of the public
methods that satisfy one of the following conditions:

1. They are annotated with thevax. j ws. WebMet hod annotation with theexcl ude element set to
f al se or missing (sincé al se is the default for this annotation element).

2. They are not annotated with thavax. j ws. WebMet hod annotation but their declaring class has a
j avax. j ws. WebSer vi ce annotation.

For mapping purposes, this implicit SEI and its methods ansiclered to be annotated with the same Web
service-related annotations that the original class anché@thods have.

In pratice, in order to exclude a public method of a class tatad withWebSer vi ce and not directly
specifying aendpoi nt | nt er f ace from the implicitly defined SElI, it is necessary to annotte method
with awebMet hod annotation with thexcl ude element set tor ue.

& Conformance (Class mappingkn implementation MUST support the mappingjafvax. j ws. Web-
Ser vi ce annotated classes to implicit service endpoint interfaces

For mapping purposes, this class must be a top level classtatiainner class. As defined by JSR 181, a
class annotated withavax. j ws. WebSer vi ce must have a default public constructor.

32 JAX-WS 2.1 May 7, 2007

3.4. Interface

3.4 Interface

A Java service endpoint interface (SEI) is mapped t@dl : port Type element. Thensdl : port Type
element acts as a container for other WSDL elements thathiegéorm the WSDL description of the
methods in the corresponding Java SEI. An SEl is a Javaacethat meets all of the following criteria:

It MUST carry aj avax. j ws. WebSer vi ce annotation (see7.11.1).

Any of its methods MAY carry @ avax. j ws. WebMet hod annotation (see7.11.2).

* javax.jws. WebMet hod if used, MUST NOT have thexcl ude element set tor ue.

All method parameters and return types are compatible théhJAXB 2.0[10] Java to XML Schema
mapping definition

{» Conformance (portType namingIlhej avax. j ws. WebSer vi ce annotation (see sectién 7.111.1) MAY
be used to customize tlmame andt ar get Nanespace attributes of thensdl : port Type element. If not
customized, the value of theane attribute of theasdl : port Type element MUST be the name of the SEI
not including the package name and the target namespacejmuted as defined above in sectionl 3.2.

Figure[3.1 shows an example of a Java SEI and the corresppwsiét : por t Type.

Multiple SEls in the same package may result in name clash#eaesult of sectioiS3.6.P.1 dndl 3.7 of the
specification. Customizations may be used to resolve tHashes. See sectiohsI12]7.3 7.4 for more
information on these customizations.

3.4.1 Inheritance

WSDL 1.1 does not define a standard representation for theritance ofwsdl : port Type elements.
When mapping an SEIl that inherits from another interface 3l is treated as if all methods of the inherited
interface were defined within the SEI.

{ Conformance (Inheritance flatteningd mappedwsdl : port Type element MUST contain WSDL def-
initions for all the methods of the corresponding Java SElLising all inherited methods.

& Conformance (Inherited interface mappindn implementation MAY map inherited interfaces to addi-
tionalwsdl : port Type elements within thevsdl : def i ni ti ons element.

3.5 Method

Each public method in a Java SEIl is mapped @l : oper ati on element in the correspondingdl -
: port Type plus one or moresdl| : nessage elements.

{ Conformance (Operation namingh the absence of customizations, the value ofrthee attribute of
thewsdl : oper at i on element MUST be the name of the Java method. jTdheax. j ws. ebMet hod (see
[Z11.2) annotation MAY be used to customize the value ofntinee attribute of thewsdl : operati on
element and MUST be used to resolve naming conflicts. Ifethel ude element of thg avax. j ws-

. W\ebMet hod is set tat r ue then the Java method MUST NOT be present in the wsdlasih: oper at i on
element.

May 7, 2007 JAX-WS 2.1 33

Chapter 3. Java to WSDL 1.1 Mapping

Methods are either one-way or two-way: one way methods haveput but produce no output, two way
methods have an input and produce an output. Selcfion 3.5ctildes one way operations further.

Thewsdl : oper at i on element corresponding to each method has one or more céitteeks as follows:

* Awsdl : i nput element that refers to an associated| : message element to describe the operation
input.

» (Two-way methods only) an optionakdl : out put element that refers towsdl : mressage to de-
scribe the operation output.

» (Two-way methods only) zero or movesdl : f aul t child elements, one for each exception thrown
by the method. Thewsdl : f aul t child elements refer to associatedd! : nessage elements to
describe each fault. See sectionl 3.7 for further detailsxoamion mapping.

The value of axsdl : message element’snane attribute is not significant but by convention it is nornyall
equal to the corresponding operation name for input messaige the operation hame concatenated with
“Response” for output messages. Naming of fault messagkseibed in section sectibnB.7.

Eachwsdl : message element has one of the followihg

Document style A singlewsdl : part child element that refers, via ah enent attribute, to a global ele-
ment declaration in thesdl : t ypes section.

RPC style Zero or morewsdl : part child elements (one per method parameter and one for a ndn-vo
return value) that refer, viataype attribute, to named type declarations in ttszll : t ypes section.

Figure[31 shows an example of mapping a Java interfaceinomjaa single method to WSDL 1.1 using
document style. Figude—3.2 shows an example of mapping aidterface containing a single method to
WSDL 1.1 using RPC style.

Sectior-3.b describes the mapping from Java methods angtrameters to corresponding global element
declarations and named types in tsall : t ypes section.

3.5.1 One Way Operations

Only Java methods whose return typ@ @ d, that have no parameters that implemiesitder and that do
not throw any checked exceptions can be mapped to one-wagtmpes. Not all Java methods that fulfill
this requirement are amenable to become one-way operaimhgautomatic choice between two-way and
one-way mapping is not possible.

¢ Conformance (One-way mappingimplementations MUST support use of jhevax. j ws. OneWy (see
[ZI13) annotation to specify which methods to map to ong-eperations. Methods that are not annotated
with j avax. j ws. Oneway MUST NOT be mapped to one-way operations.

& Conformance (One-way mapping errorsinplementations MUST prevent mapping to one-way opera-
tions of methods that do not meet the necessary criteria.

Thej avax. j ws. WebPar amandj avax. j ws. WebResul t annotations can introduce additional parts into mes-
sages when thkeader elementid r ue.

34 JAX-WS 2.1 May 7, 2007

3.5. Method

©CoOoO~NOUTA, WNE

/'l Java
package com exanpl e;
@\bServi ce

public interface StockQuoteProvider {
float getPrice(String tickerSynbol)
throws Ti cker Excepti on;

}

<l-- WBDL extract -->
<types>
<xsd: schena tar get Nanespace="...">
<!-- elenent declarations -->
<xsd: el ement nanme="get Pri ce"
type="tns:getPriceType"/>
<xsd: el ement nane="get Pri ceResponse"
type="tns: getPri ceResponseType"/>
<xsd: el ement nanme="Ti cker Excepti on"
type="tns: Ti cker Excepti onType"/ >

<!-- type definitions -->

</ xsd: schena>
</types>

<message nane="getPrice">
<part nanme="getPrice" elenment="tns:getPrice"/>
</ nessage>

<message nane="get Pri ceResponse">
<part name="get Pri ceResponse" el ement ="t ns: get Pri ceResponse"/ >
</ nessage>

<message nane="Ti cker Excepti on">
<part name="Ti cker Exception" el enent="tns: Ti cker Excepti on"/>
</ nessage>

<port Type name="St ockQuot ePr ovi der" >
<oper ation name="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
<fault nessage="tns: Ti cker Exception"/>
</ oper ati on>
</ port Type>

Figure 3.1: Java interface to WSDL portType mapping usingudeent style

May 7, 2007 JAX-WS 2.1 35

Chapter 3. Java to WSDL 1.1 Mapping

O©CoOoO~NOOOUOTA~,WNLPE

36

/1 Java
package com exanpl e;
@\bSer vi ce

public interface StockQuoteProvider {
float getPrice(String tickerSynbol)
throws Ti cker Excepti on;

}
<!-- WBDL extract -->
<types>
<xsd: schenma t ar get Nanespace="...">
<!-- elenent declarations -->
<xsd: el ement nanme="Ti cker Excepti on"
type="tns: Ti cker Excepti onType"/ >
<!-- type definitions -->
</ xsd: schema>
</types>

<message nane="getPrice">
<part name="ticker Synbol " type="xsd:string"/>
</ nessage>

<message nane="get Pri ceResponse" >
<part name="return" type="xsd:float"/>
</ nessage>

<message nane="Ti cker Excepti on">
<part name="Ti cker Exception" el enent="tns: Ti cker Excepti on"/>
</ nessage>

<port Type name="St ockQuot ePr ovi der" >
<oper ation name="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
<fault nessage="tns: Ti cker Excepti on"/>
</ operati on>
</ port Type>

Figure 3.2: Java interface to WSDL portType mapping usin@ Rfle

JAX-WS 2.1

May 7, 2007

3.6. Method Parameters and Return Type

3.6 Method Parameters and Return Type

A Java method’s parameters and return type are mapped toocemmis of either the messages or the
global element declarations mapped from the method. Paeasnean be mapped to components of the
message or global element declaration for either the dparatput message, operation output message
or both. The mapping depends on the parameter classific@itiej avax. j ws. WebPar amannotation’s
header element MAY be used to map parameters to SOAP headers. Headeneters MUST be included
assoap: header elements in the operation’s input message. jTaeax.j ws. WebResul t annotation’s
header element MAY be used to map results to SOAP headers. HeaddtsrddUST be included as
soap: header elements in the operation’s output message.

Since JAX-WS uses JAXB for it data binding, JAXB annotationanethods and method parameters MUST
be honored. A JAXB annotation on the method is used to spdufpinding of a methods return type while
an annotation on the parameter specifies the binding of trangeter.

& Conformance (use of JAXB annotation#n implementation MUST honor any JAXB annotation that
exists on an SEI method or parameter to assure that the pidyleinfoset is used when marshalling/
unmarshalling the the return value or parameters of the adetfihe set of JAXB annotations that MUST be
supported arg:avax. xml . bi nd. annot ati on. X At t achenent Ref ,j avax. xm . bi nd. annot at i on-
. Xm Li st, javax. xni . bi nd. Xnl M neType andj avax. xnd . bi nd. annot ati on. adapt ers. Xmi -
JavaTypeAdapt er

3.6.1 Parameter and Return Type Classification

Method parameters and return type are classified as follows

i n The value is transmitted by copy from a service client to the I3t is not returned from the service
endpoint to the client.

out The value is returned by copy from an SEI to the client but istramsmitted from the client to the
service endpoint implementation.

i n/ out The value is transmitted by copy from a service client to teé&hd is returned by copy from the
SEl to the client.

A methods return type is alwaysut . For method parameters, holder classes are used to detetihdn
classification. j avax. xni . ws. Hol der. A parameter whose type is a parameterizadax. xnm . ws-
. Hol der <T> class is classified d@sn/ out orout, all other parameters are classified as

> Conformance (Parameter classificatiohej avax. j ws. WebPar amannotation (seE_Z.11.4) MAY be
used to specify whether a holder parameter is treatédi/asut orout . If not specified, the default MUST
bei n/ out .

¢ Conformance (Parameter naming)hej avax. j ws. WebPar amannotation (sde_Z.11.4) MAY be used to
specify thename of thewsdl : part or XML Schema element declaration corresponding to a Jazarpster.

If both the nane and part Nane elements are used in theavax. j ws. WebPar am annotation then the
part Name MUST be used for thesdl : part name attribute and theane element from the annotation
will be ignored. If not specified, the default is “@i whereN is replaced with the zero-based argument
index. Thus, for instance, the first argument of a methodilveive a default parameter name of “arg0”, the
second one “argl”and so on.

May 7, 2007 JAX-WS 2.1 37

Chapter 3. Java to WSDL 1.1 Mapping

{» Conformance (Result namingThej avax. j ws. WebResul t annotation (seE_Z11.4) MAY be used to
specify thenane of thewsdl : part or XML Schema element declaration corresponding to the deathod
return type. If both thename andpart Name elements are used in thavax. j ws. WebResul t annota-
tions then thepar t Nane MUST be used for thesdl : part name attribute and theane elment from the
annotation will be ignored. In the absence of customizatitime default name iset ur n.

& Conformance (Header mapping of parameters and resiiltg.j avax. j ws. WebPar am annotation’s -
header element MAY be used to map parameters to SOAP headers. Headaneters MUST be included
assoap: header elements in the operation’s input message. jTaeax.j ws. WebResul t annotation’s
header element MAY be used to map results to SOAP headers. HeaddtsrddUST be included as
soap: header elements in the operation’s output message.

3.6.2 Use of JAXB

JAXB 2.1 defines a mapping from Java classes to XML Schematrarts. JAX-WS uses this mapping
to generate XML Schema named type and global element déolesahat are referred to from within the
WSDL nessage constructs generated for each operation.

Three styles of Java to WSDL mapping are supported: documeagped, document bare and RPC. The
styles differ in what XML Schema constructs are generate@ fmethod. The three styles are described in
the following subsections.

Thej avax. j ws. SOAPBI ndi ng annotation MAY be used to specify at the type level whichestgluse for
all methods it contains or on a per method basis ifshel e is docunent .

3.6.2.1 Document Wrapped

This style is identified by fiavax. j ws. SOAPBi ndi ng annotation with the following properties:sayl e
of DOCUMENT, ause of LI TERAL and apar anet er St yl e of WRAPPED.

For the purposes of utilizing the JAXB mapping, each metlsabnverted to two Java bean classes: one for
the method input (henceforth called tiegjuest beanand one for the method output (henceforth called the
response begn

{ Conformance (Default wrapper bean namds)the absence of customizations, the wrapper request bean
class MUST be named the same as the method and the wrappensedpean class MUST be named the
same as the method with a “Response” suffix. The first laifezach bean name is capitalized to follow
Java class naming conventions.

< Conformance (Default wrapper bean packada)he absence of customizations, the wrapper beans pack-
age MUST be a generat¢adxws subpackage of the SEI package.

Thej avax. xm . ws. Request W apper andj avax. xn . ws. ResponseW apper annotations (se€_1.3
and[Z%) MAY be used to customize the name of the generategperdean classes.

& Conformance (Wrapper element namebej avax. xnl . ws. Request W apper andj avax. xm . ws-
. ResponseW apper annotations (sde_1.3 ahdl7.4) MAY be used to specify thefipchiname of the ele-
ments generated for the wrapper beans.

{ Conformance (Wrapper bean name clasBgnerated bean classes must have unigue names within a pack-
age and MUST NOT clash with other classes in that packagesh€$aduring generation MUST be reported

as an error and require user intervention via name custdioniza correct. Note that some platforms do not
distiguish filenames based on case so comparisons MUSTagase.

38 JAX-WS 2.1 May 7, 2007

3.6. Method Parameters and Return Type

A request bean is generated containing properties for eadmdi n/ out non-header parameter. A re-
sponse bean is generated containing properties for theothetkurn value, eactut non-header parameter,
andi n/ out non-header parameter. Method return values are represbptenout property named “re-
turn”. The order of the properties in the request bean is éineesas the order of parameters in the method
signature. The order of the properties in the response Isehe property corresponding to the return value
(if present) followed by the properties for the parameterthe same order as the parameters in the method
signature.

The request and response beans are generated with the r@goerdXB customizations to result in a global
element declaration for each bean class when mapped to XMeérsa by JAXB. The corresponding global
element declarations MUST NOT have the nillable attribetdsa value of true. Whereas the element name
is derived from theRequest W apper or ResponseW apper annotations, its type is named according to
the operation name (for the local part) and the target naavesfor the portType that contains the operation
(for the namespace name).

Figure[3.B illustrates this conversion.

1 float getPrice(@eébParan({nanme="tickerSynbol") String syn;
2

3 @ Root El enent (nanme="get Pri ce", targetNamespace="...")

4 @Xm Type(name="get Price", targetNanespace="...")

5 @Xm Accessor Type(AccessType. FI ELD)

6 public class GetPrice {

7 @mM El enent (name="t i cker Synbol ", target Nanespace="")

8 public String tickerSynbol;

9 }
11 @ Root El enent (nane="get Pri ceResponse", target Namespace="...")
12 @ Type(nane="get Pri ceResponse", target Namespace="...")

13 @ Accessor Type(AccessType. Fl ELD)
14 public class GetPriceResponse {

15 @l El ement (name="return", targetNamespace="")
16 public float _return;
17}

Figure 3.3: Wrapper mode bean representation of an operatio

When the JAXB mapping to XML Schema is utilized this resuttsgiobal element declarations for the
mapped request and response beans with child elementsforregthod parameter according to the param-
eter classification:

i n The parameter is mapped to a child element of the global eledezlaration for the request bean.

out The parameter or return value is mapped to a child elemeriteofiobal element declaration for the
response bean. In the case of a parameter, the class of tleeofahe holder class (see section 3.6.1)
is used for the mapping rather than the holder class itself.

i n/ out The parameter is mapped to a child element of the global eiedezlarations for the request and
response beans. The class of the value of the holder classdsgori-3.6]11) is used for the mapping
rather than the holder class itself.

The global element declarations are used as the values ofthie part elementsl enent attribute, see

figure[31.

May 7, 2007 JAX-WS 2.1 39

Chapter 3. Java to WSDL 1.1 Mapping

3.6.2.2 Document Bare

This style is identified by favax. j ws. SOAPBi ndi ng annotation with the following properties:sayl e
of DOCUMENT, ause of LI TERAL and apar anet er St yl e of BARE.

In order to qualify for use of bare mapping mode a Java methast falfill all of the following criteria:

1. It must have at most onien ori n/ out non-header parameter.
2. If it has a return type other thami d it must have no n/ out or out non-header parameters.

3. Ifit has a return type ofoi d it must have at most orien/ out or out non-header parameter.

If present, the type of the input parameter is mapped to a daxhl Schema type using the mapping
defined by JAXB. If the input parameter is a holder class tthenclass of the value of the holder is used
instead.

If present, the type of the output parameter or return vaduadpped to a named XML Schema type using
the mapping defined by JAXB. If an output parameter is used the class of the value of the holder class
is used.

A global element declaration is generated for the methodtiapd, in the absence ofV@&bPar amanno-
tation, its local name is equal to the operation name. A dlelEment declaration is generated for the
method output and, in the absence afébPar amor WebResul t annotation, the local name is equal to the
operation name suffixed with “Response”. The type of the édnents depends on whether a type was
generated for the corresponding element or not:

Named type generatedThe type of the global element is the named type.

No type generated The type of the element is an anonymous empty type.

The namespace name of the input and output global elemetite igalue of the ar get Nanespace at-
tribute of the WSDLdef i ni ti ons element.

The nillable attribute of the generated global elements Mi&ve a value of true if and only if the corre-
sponding Java types are reference types.

The global element declarations are used as the values abthie part elementsl enent attribute, see
figure[31.

3.6.2.3 RPC

This style is identified by fiavax. j ws. SOAPBi ndi ng annotation with the following properties:sayl e
of RPC, ause of LI TERAL and apar anet er St yl e of WRAPPED?.

The Java types of eadm, out andi n/ out parameter and the return value are mapped to named XML
Schema types using the mapping defined by JAXB.dwar andi n/ out parameters the class of the value
of the holder is used rather than the holder itself.

Each method parameter and the return type is mapped to agegsad according to the parameter classif-
ication:

2Use of RPC style requires use 8BARAPPED parameter style. Deviations from this is an error

40 JAX-WS 2.1 May 7, 2007

3.7. Service Specific Exception

i n The parameter is mapped to a part of the input message.
out The parameter or return value is mapped to a part of the ontpasage.

i n/ out The parameter is mapped to a part of the input and output messa

The named types are used as the values ofwfii : part elements ype attribute, see figure=3.2. The
value of thenane attribute of eaclwsdl : part element is the name of the corresponding method parameter
or “return”for the method return value.

Due to the limitations described in section 5.3.1 of the WE&sic Profile specification (segl [8]), null values
cannot be used as method arguments or as the return valua freethod which uses the rpc/literal binding.

< Conformance (Null Values in rpc/literal)f a null value is passed as an argument to a method, or returne
from a method, that uses the rpc/literal style, then an impletation MUST throw &ébSer vi ceExcepti on.

3.7 Service Specific Exception

A service specific Java exception is mapped tesdl : f aul t element, ansdl : message element with

a single childwsdl : part element and an XML Schema global element declaration. B : f aul t
element appears as a child of thedl : oper ati on element that corresponds to the Java method that
throws the exception and refers to thd| : message element. Thewsdl : part element refers to an XML
Schema global element declaration that describes the fault

& Conformance (Exception naminglh the absence of customizations, the name of the globalesiedec-
laration for a mapped exception MUST be the name of the Jaxeption. Thg avax. xm . ws. WebFaul t
annotation MAY be used to customize the local name and naswespame of the element.

Service specific exceptions are defined as all checked éanepxcepf ava. r mi . Renpt eExcept i on
and its subclasses.

{ Conformancej(ava. | ang. Runt i meExcept i ons andj ava. rni . Renot eExcepti ons): j ava. | ang-
. Runt i neExcepti on andj ava. r ni . Renot eExcept i on and their subclasses MUST NOT be treated as
service specific exceptions and MUST NOT be mapped to WSDL.

JAXB defines the mapping from a Java bean to XML Schema elemhetiarations and type definitions
and is used to generate the global element declaration ésatides the fault. For exceptions that match
the pattern described in sectibnl2.5 (i.e. exceptions theg laget Faul t | nf o method andrbFaul t
annotation), thd-aultBeanis used as input to JAXB when mapping the exception to XML &wde For
exceptions that do not match the pattern described in sd2ifh JAX-WS maps those exceptions to Java
beans and then uses those Java beans as input to the JAXBhgiafie following algorithm is used to
map non-matching exception classes to the corresponduagbéans for use with JAXB:

1. In the absence of customizations, the name of the bear isaime as the name of the Exception
suffixed with “Bean”.

2. In the absence of customizations, the package of the Beamgéneratefaxws subpackage of the
SEI package. E.g. if the SEI packagectsm exanpl e. st ockquot e then the package of the bean
would becom exanpl e. st ockquot e. j axws.

May 7, 2007 JAX-WS 2.1 41

Chapter 3. Java to WSDL 1.1 Mapping

3. For each getter in the exception and its superclassespany of the same type and name is added

to the bean. Theget Cause, get Local i zedMessage andget St ackTr ace getters fromj ava-
.l ang. Thr owabl e and theget Cl ass getter fromj ava. | ang. Obj ect are excluded from the list
of getters to be mapped.

The bean is annotated with a JAX&ni Type annotation whoseane property is set to the name

of the exception and whoseanespace property is set to the namespace name mapped from the
exception package name. Additionally, @ Type annotation has pr opOr der property whose
value is an array containing the names of all the propertigseoexception class that were mapped
in the previous bullet point, sorted lexicographically @wlng to the Unicode value of each of their
characters (i.e. using the same algorithm that tite j ava. | ang. Stri ng. conpar eTo(Stri ng)
method uses).

. The bean is annotated with a JAX&n1 Root El enent annotation whoseane property is set, in

the absence of customizations, to the name of the exception.

< Conformance (Fault bean name clas@enerated bean classes must have unique names within gpacka
and MUST NOT clash with other classes in that package. Céadheng generation MUST be reported as
an error and require user intervention via name custoroizat correct. Note that some platforms do not
distiguish filenames based on case so comparisons MUSTagrase.

Figure[3.4 illustrates this mapping.

1 @+bFaul t (nane="UnknownTi cker Faul t", target Namespace="...")
2 public class UnknownTi cker extends Exception {
3 .
4 public UnknownTi cker(Sting ticker) { ... }
5 public UnknownTicker(Sting ticker, String nessage) { ... }
6 public UnknownTi cker(Sting ticker, String nessage, Throwabl e cause)
7 { ...}
8 public String getTicker() { ... }
9 }
10
11 @ Root El enent (nane="UnknownTi cker Faul t" tar get Namespace="...")
12 @ Accessor Type(AccessType. Fl ELD)
13 @ Type(nanme="UnknownTi cker", namespace="...",
14 propOrder ={"nessage", "ticker"})
15 public class UnknownTi cker Bean {
16 -
17 public UnknownTi ckerBean() { ... }
18 public String getTicker() { ... }
19 public void setTicker(String ticker) { ... }
20 public String get Message() { ... }
21 public void set Message(String nmessage) { ... }
22}
Figure 3.4: Mapping of an exception to a bean for use with JAXB
3.8 Bindings

In WSDL 1.1, an abstract port type can be bound to multipléguals.

42

JAX-WS 2.1 May 7, 2007

3.8. Bindings

{ Conformance (Binding selectionn implementation MUST generate a WSDL binding according to
the rules of the binding denoted by tBiendi ngType annotation (see_4.8), if present, otherwise the default
is the SOAP 1.1/HTTP binding (sE€l10).

Each protocol binding extends a common extensible sketanture and there is one instance of each such
structure for each protocol binding. An example of a poretgmd associated binding skeleton structure is
shown in figurd_3b.

1 <portType nane="St ockQuot eProvi der" >

2 <operation nane="getPrice" paraneterOder="tickerSynbol ">
3 <i nput nessage="tns:getPrice"/>

4 <out put nessage="tns: get Pri ceResponse"/>

5 <fault nessage="tns: unknownti cker Exception"/>

6 </ operati on>

7 <l portType>

8

9 <bi ndi ng name="St ockQuot ePr ovi der Bi ndi ng" >

10 <l-- binding specific extensions possible here -->

11 <operation name="getPrice">

12 <!-- binding specific extensions possible here -->

13 <i nput nessage="tns:getPrice">

14 <l-- binding specific extensions possible here -->
15 </i nput >

16 <out put nessage="tns: get Pri ceResponse" >

17 <l-- binding specific extensions possible here -->
18 </ out put >

19 <fault nessage="tns: unknownti cker Exception">

20 <l-- binding specific extensions possible here -->
21 </faul t>

22 </ operati on>

23 </ bi ndi ng>

Figure 3.5: WSDL portType and associated binding

The common skeleton structure is mapped from Java as deddrilthe following subsections.

3.8.1 Interface

A Java SEI is mapped towesdl : bi ndi ng element and zero or movesdl| : port extensibility elements.

Thewsdl : bi ndi ng element acts as a container for other WSDL elements thathtegmrm the WSDL de-
scription of the binding to a protocol of the correspondisgll : port Type. The value of thaane attribute
of thewsdl : bi ndi ng is not significant, by convention it contains the qualifiegime of the corresponding
wsdl : por t Type suffixed with “Binding”.

Thewsdl : port extensibility elements define the binding specific endp@iddress for a given port, see
sectior3.1M.

3.8.2 Method and Parameters

Each method in a Java SEI is mapped tesal : oper at i on child element of the correspondingdl -
: bi ndi ng. The value of thenane attribute of thewsdl : oper ati on element is the same as the corre-

May 7, 2007 JAX-WS 2.1 43

Chapter 3. Java to WSDL 1.1 Mapping

spondingwsdl : oper at i on element in the boundsdl : port Type. Thewsdl : oper ati on element has
wsdl : i nput, wsdl : out put, andwsdl : faul t child elements if they are present in the corresponding
wsdl : oper ati on child element of thewsdl : port Type being bound.

3.9 Generics

In JAX-WS when starting from Java and if generics are usetiendocument wrapped case, impelementa-
tions are required to use type erasure(see JLS section ddéfiaition of Type Erasure) when generating
the request / response wrapper beans and exception beaps iextie case dfol | ect i ons. Type erasure

is a mapping from parameterized types or type variablespestyhat are never parameterized types or type
variables. Erasure basically gets rid of all the generie tiyfpormation from the runtime representation. In
the case ofol | ect i on instead of applying erasure on t@el | ect i on itself, erasure would be applied to
the type ofCol | ect i on i.e it would beCol | ect i on<er asur e(T) >. The following code snippets shows
the result of erasure on a wrapper bean that is generated wgiv@ngenerics:

public <T extends Shape> T setCol or (T shape, Color color) {
shape. set Col or (col or);
return shape;

A WNPE

The generated wrapper bean would be

1 @ Root El enent (nane = "setColor", nanespace = "...")
2 @M Accessor Type(AccessType. FlI ELD)

3 @m Type(nane = "setCol or", nanmespace = "...")
4 public class SetColor {

5

6 @mM El enent (nane = "arg0", nanespace = "")
7 privat e Shape argO;

8

9 @mM El enent (name = "argl", nanmespace = "")
10 private Col or argO;

13 publ i c Shape get Arg0() {

14 return this.argo;

15 }

17 public void set ArgO(Shape arg0) {

18 this.arg0 = arg0;

19 }

21 public Col or getArgl() {

22 return this.argi;

23 }

25 public void set Argl(Col or argl) {

26 this.argl = argl;

27 }

29 }

44 JAX-WS 2.1 May 7, 2007

3.9. Generics

The following code snippets shows the resulting wrappen lvdzen using Collections:

1 public List<Shape> echoShapeli st (List<Shape> list) {
2 return |list;
3 }

The generated wrapper bean would be

1 @ Root El emrent (name = "echoShapeli st", nanespace = "...")
2 @Xm Accessor Type(AccessType. FlI ELD)

3 @m Type(nane = "echoShapelist", nanmespace = "...")
4 public class EchoShapelList {

5

6 @mM El enent (nanme = "arg0", nanespace = "")
7 private List<Shape> arg0;

8

9 public List<Shape> getArgO() {

10 return this.argo;

11 }

12

13 public void set ArgO(List<Shape> arg0) {

14 this.arg0 = argO0;

15 }

16 }

17

1 public <T> T echoTList(List<T> list) {

2 if (list.size() == 0)

3 return null;

4 return list.iterator().next();

5 }

The generated wrapper bean would be

1 @ Root El ement (name = "echoTLi st", nanespace = "...")
2 @Xm Accessor Type(AccessType. FlI ELD)

3 @m Type(nane = "echoTList", nanespace = "...")
4 public class EchoTList {

5

6 @mM El enent (nanme = "arg0", nanespace = "")
7 private List<Object> arg0;

8

9 public List<Chject> getArg0() {

10 return this.argo;

11 }

12

13 public void set ArgO(List<Onject> arg0) {

14 this.arg0 = argO0;

15 }

16 }

17

1 public List<? extends Shape> set Area(List<? extends Shape> list) {

May 7, 2007 JAX-WS 2.1 45

Chapter 3. Java to WSDL 1.1 Mapping

Iterator iterator = list.iterator();

while(iterator. haNext()) {
iterator.next().setArea(...);

}

return |ist;

NOoO o~ wWN

}

The generated wrapper bean would be

1 @ Root El emrent (name = "set Area", nanmespace = "...")
2 @Xm Accessor Type(AccessType. FlI ELD)

3 @m Type(nane = "set Area", nanespace = "...")
4 public class SetArea {

5

6 @m El enent (nane = "arg0", nanespace = "")
7 private List<Shape> arg0;

8

9 public List<Shape> getArgO() {

10 return this.argo;

11 }

13 public void set ArgO(List<Shape> arg0) {

14 this.arg0 = argO;

15 }

16 }

3.10 SOAP HTTP Binding

This section describes the additional WSDL binding elemegenerated when mapping Java to WSDL 1.1
using the SOAP HTTP binding.

{ Conformance (SOAP binding supportinplementations MUST be able to generate SOAP HTTP bind-
ings when mapping Java to WSDL 1.1.

Figure[3.6 shows an example of a SOAP HTTP binding.

3.10.1 Interface
A Java SEI is mapped to soap: bi ndi ng child element of the correspondingdl : bi ndi ng element
plus asoap: addr ess child element of any correspondingdl : port element (see secti@n3111).

The value of the r ansport attribute of thesoap: bi ndi ngishttp://schemas. xm soap. or g/ soap-
/ ht t p. The value of thest ylI e attribute of thesoap: bi ndi ng is eitherdocunent orr pc.

< Conformance (SOAP binding style requirediplementations MUST include st yl e attribute on a
generatedoap: bi ndi ng.

3.10.2 Method and Parameters

Each method in a Java SEI is mapped teocap: oper at i on child element of the correspondingdl -
:operation. The value of thest yl e attribute of thesoap: operati on is docunent orrpc. If not

46 JAX-WS 2.1 May 7, 2007

3.11. Service and Ports

1 <bi ndi ng nanme="St ockQuot ePr ovi der Bi ndi ng" >

2 <soap: bi ndi ng

3 transport="http://schemas. xm soap. or g/ soap/ http"
4 styl e="docunent "/ >

5 <oper ation name="getPrice">

6 <soap: operation styl e="docunent|rpc"/>

7 <i nput nessage="tns:getPrice">

8 <soap: body use="literal"/>

9 </i nput >

10 <out put nessage="tns: get Pri ceResponse" >

11 <soap: body use="literal"/>

12 </ out put >

13 <fault nessage="tns: unknownti cker Exception">
14 <soap:fault use="literal"/>

15 </fault>

16 </ oper ati on>

17 </ bi ndi ng>

Figure 3.6: WSDL SOAP HTTP binding

specified, the value defaults to the value of the/l e attribute of thesoap: bi ndi ng. WS-I Basic Prof-
ile[8] requires that all operations within a given SOAP HTHIRding instance have the same binding style.

The parameters of a Java method are mappesiotp: body or soap: header child elements of the
wsdl : i nput andwsdl : out put elements for eachsdl : oper at i on binding element. The value of the
use attribute of thesoap: body is! i t er al . Figure[3.¥Y shows an example using document style, figie 3.
shows the same example using rpc style.

3.11 Service and Ports

A Java service implementation class is mapped to a singti : servi ce element that is a child of a
wsdl : defi ni ti ons element for the appropriate target namespace. The latteapped from the value of
thet ar get Nanespace element of therebSer vi ce annotation, if non-empty value, otherwise from the
package of the Java service implementation class accordlitihg rules in sectiop3.2.

In mapping a@\ébSer vi ce-annotated class (s€€13.3) tavad! : servi ce, theser vi ceNanme element
of the WebSer vi ce annotation are used to derive the service name. The valueeofane attribute of
thewsdl| : servi ce element is computed according to the JSR-181 [14] spetidita It is given by the
servi ceNane element of therebSer vi ce annotation, if present with a non-default value, othervifise
name of the implementation class with the “Service”sufispanded to it.

< Conformance (Service creationinplementations MUST be able to map classes annotatedhvajtat ax-
. j ws. WebSer vi ce annotation to WSDlwsdl : ser vi ce elements.

A WSDL 1.1 service is a collection of relateddl : port elements. Ansdl : port element describes a
port type bound to a particular protocolyad! : bi ndi ng) that is available at particular endpoint address.

Each desired port is represented bysall : port child element of the singlesdl : servi ce element
mapped from the Java package. JAX-WS 2.0 allows specifyimg port of one binding type for each
service defined by the application. Implementations MAYort additional ports, as long as their names
do not conflict with the standard one.

May 7, 2007 JAX-WS 2.1 47

Chapter 3. Java to WSDL 1.1 Mapping

©CoOo~NOoOUThr~,WNE

48

<types>
<schemm t ar get Namespace="...">
<xsd: el ement nanme="get Price" type="tns:getPriceType"/>
<xsd: conpl exType nanme="get Pri ceType">
<xsd: sequence>
<xsd: el enent nane="ticker Synbol " type="xsd:string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement name="get Pri ceResponse"
type="tns: getPri ceResponseType"/>
<xsd: conpl exType nane="get Pri ceResponseType" >
<xsd: sequence>
<xsd: el ement name="return" type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schema>
</types>

<message nane="getPrice">
<part name="getPrice"
el ement="tns: getPrice"/>
</ nessage>

<message nane="get Pri ceResponse">
<part name="get Pri ceResponse" el enment ="t ns: get Pri ceResponse"/ >
</ nessage>

<port Type name="St ockQuot ePr ovi der" >
<operation nane="getPrice" paraneterOder="tickerSynbol ">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng name=" St ockQuot ePr ovi der Bi ndi ng" >
<soap: bi ndi ng
transport="http://schemas. xnl soap. org/ soap/ http" styl e="docunment"/>
<operation nane="getPrice" paraneterOder="tickerSynbol ">
<soap: operati on/ >
<i nput nessage="tns:getPrice">

<soap: body use="literal"/>
</i nput >
<out put nessage="tns: get Pri ceResponse" >
<soap: body use="literal"/>
</ out put >
</ oper ati on>

</ bi ndi ng>

Figure 3.7: WSDL definition using document style

JAX-WS 2.1 May 7, 2007

3.11. Service and Ports

©CoOoO~NOoOULA~,WNE

<types>
<schemm t ar get Namespace="...">
<xsd: el ement nanme="get Price" type="tns:getPriceType"/>
<xsd: conpl exType nanme="get Pri ceType">
<xsd: sequence>
<xsd: el enent form="unqualified" name="ticker Synbol "
type="xsd: string"/>
</ xsd: sequence>
</ xsd: conpl exType>
<xsd: el ement nane="get Pri ceResponse"
type="tns: getPri ceResponseType"/>
<xsd: conpl exType nane="get Pri ceResponseType" >
<xsd: sequence>
<xsd: el ement form="unqualified" name="return"
type="xsd:float"/>
</ xsd: sequence>
</ xsd: conpl exType>
</ schema>
</types>

<message nane="getPrice">
<part name="ti cker Synbol " type="xsd:string"/>
</ nessage>

<message nane="get Pri ceResponse">
<part name="result" type="xsd:float"/>
</ nessage>

<port Type name="St ockQuot ePr ovi der" >
<oper ation name="getPrice">
<i nput nessage="tns:getPrice"/>
<out put nessage="tns: get Pri ceResponse"/ >
</ operati on>
</ port Type>

<bi ndi ng nanme=" St ockQuot ePr ovi der Bi ndi ng" >
<soap: bi ndi ng

transport="http://schemas. xnl soap. org/ soap/ http" style="rpc"/>

<operation name="getPrice">
<soap: operati on/ >
<i nput nessage="tns:getPrice">

<soap: body use="literal"/>
</input >
<out put nessage="tns: get Pri ceResponse" >
<soap: body use="literal"/>
</ out put >
</ oper ati on>

</ bi ndi ng>

Figure 3.8: WSDL definition using rpc style

May 7, 2007 JAX-WS 2.1

49

Chapter 3. Java to WSDL 1.1 Mapping

{ Conformance (Port selectionf:hepor t Narre element of the\ebSer vi ce annotation, if present, MUST
be used to derive the port name to use in WSDL. In the absena@mft Name element, an implementa-
tion MUST use the value of theane element of theAébSer vi ce annotation, if present, suffixed with
“Port”. Otherwise, an implementation MUST use the simplmeaf the class annotated witlsbSer vi ce
suffixed with “Port”.

¢ Conformance (Port binding)The WSDL port defined for a service MUST refer to a bindingled type
indicated by theBi ndi ngType annotation on the service implementation class[(Sde 3.8).

Binding specific child extension elements of thsdl : port element define the endpoint address for a port.
E.g. see theoap: addr ess element described in sectibn-3.70.1.

50 JAX-WS 2.1 May 7, 2007

Chapter 4

Client APlIs

This chapter describes the standard APIs provided fortdigle use of JAX-WS. These APIs allow a client
to create proxies for remote service endpoints and dyndsnmanstruct operation invocations.

Conformance requirements in this chapter use the term &mgphtation’ to refer to a client side JAX-WS
runtime system.

4.1 javax.xml.ws.Service

Ser vi ce is an abstraction that represents a WSDL service. A WSBivi ce is a collection of related
ports, each of which consists of a port type bound to a paatiqorotocol and available at a particular
endpoint address.

Ser vi ce instances are created as described in seCfion 4é&rl.i ce instances provide facilities to:
 Create an instance of a proxy via one of e Port methods. See secti@n 4.3 for information on
proxies.

» Create ai spat ch instance via ther eat eDi spat ch method. See sectidn 4.3 for information on
theDi spat ch interface.

» Create a new port via treedldPor t method. Such ports only include binding and endpoint infttiamn
and are thus only suitable for creatibgspat ch instances since these do not require WSDL port type
information.

» Configure per-service, per-port, and per-protocol mgssendlers using a handler resolver (see sec-

tion[£1.3).

» Configure thg ava. util . concurrent. Execut or to be used for asynchronous invocations (see

sectio4.T1).

{ Conformance (Service completeness)Ser vi ce implementation MUST be capable of creating prox-
ies,Di spat ch instances, and new ports.

All the service methods except the staticeat e methods and the constructors delegatgdeax. xni -
. Ws. spi . Servi ceDel egat e, see sectiofn 8 3.

May 7, 2007 JAX-WS 2.1 51

Chapter 4. Client APIs

4.1.1 Service Usage
4.1.1.1 Dynamic case

In the dynamic case, when nothing is generated, a J2SE sesli@nt usesSer vi ce. cr eat e to create
Ser vi ce instances, the following code illustrates this process.

1 URL wsdl Location = new URL("http://exanple.org/ nmy.wsdl");
2 (QNane serviceName = new QNane("http://exanple.org/sanple", "M/Service");
3 Service s = Service.create(wsdl Location, serviceNane);

The followingcr eat e methods may be used:

creat e(URL wsdl Location, QNane servi ceNane) Returns aservice object for the specified WSDL
document and service name.

creat e(QNane servi ceNane) Returns a service object for a service with the given nameWS$®L
document is attached to the service.

{ Conformance (Service Creation Failuréf):a cr eat e method fails to create a service object, it MUST
throwWebSer vi ceExcept i on. The cause of that exception SHOULD be set to an exceptidpthaides
more information on the cause of the error (e.gl @8xcepti on).

4.1.1.2 Static case

When starting from a WSDL document, a concrete service impfegation class MUST be generated as
defined in sectiofi.2]17. The generated implementation eléssave two public constructors, one with no
arguments and one with two arguments, representing thelacation (g ava. net . URL) and the service
name (g avax. xm . nanmespace. QNane) respectively.

When using the no-argument constructor, the WSDL locatimh service name are implicitly taken from
thewebSer vi ceCl i ent annotation that decorates the generated class.

The following code snippet shows the generated constrsictor

1 // Cenerated Service C ass

2

3 @\ebServiced ient(nanme="St ockQuot eService",

4 t ar get Nanespace="htt p:// exanpl e. com st ocks",

5 wsdl Locati on="http://exanpl e. com st ocks. wsdl ")
6 public class StockQuoteService extends javax.xm .ws. Service {

7 public StockQuoteService() {

8 super (new URL("http://exanpl e. com st ocks. wsdl "),

9 new QNanme("http://exanpl e. com st ocks",

10 " St ockQuot eService"));

11 }

13 public StockQuoteService(String wsdl Locati on, QNane servi ceName) {
14 super (wsdl Locati on, servi ceNane);

15 }

18 }

52 JAX-WS 2.1 May 7, 2007

4.1. javax.xml.ws.Service

4.1.2 Provider and Service Delegate

Internally, theSer vi ce class delegates all of its functionality tesar vi ceDel egat e object, which is part
of the SPI used to allow pluggability of implementations.

For this to work, evenSer vi ce object internally MUST hold a reference tojavax. xm . ws. spi -
. Ser vi ceDel egat e object (se€6l3) to which it delegates every non-static atedall. The field used to
hold the reference MUST be private.

The delegate is set when a n&er vi ce instance is created, which must necessarily happen when the
protected, two-argument constructor defined on3tevi ce class is called. The constructor MUST obtain

a Provider instance (s€e62.2) and caltiteat eSer vi ceDel egat e method, passing the two arguments
received from its caller and the class object for the instdraing created (i.@.hi s. get Cl ass()).

In order to ensure that the delegate is properly construdtesl staticcr eat e method defined on the
Servi ce class MUST call the protected constructor to create a newicgemstance, passing the same
arguments that it received from the application.

The following code snippet shows an implementation of$hevi ce API that satisfies the requirements
above:

1

2 public class Service {

3

4 private ServiceDel egate del egat e;

5

6 protected Service(java. net.URL wsdl Docunent Locati on,

7 ONane servi ceNanme) {

8 del egate = Provider. provider ()

9 . creat eServi ceDel egat e(wsdl Docunent Locat i on
10 servi ceNane,

11 this.getd ass());
12 }

14 public static Service create(java.net.URL wsdl Docunent Locati on,
15 QNane servi ceNane) {

16 return new Servi ce(wsdl Docunent Locati on, servi ceNane);

17 }

19 /1 begin del egat ed met hods
21 public <T> T getPort (C ass<T> servi ceEndpoi ntlnterface) {
22 return del egate. getPort (servi ceEndpoi ntinterface);
23 }
26 }

4.1.3 Handler Resolver

JAX-WS provides a flexible plug-in framework for messagecpssing modules, known as handlers, that
may be used to extend the capabilities of a JAX-WS runtiméesys Chaptef]9 describes the handler
framework in detail. ASer vi ce instance provides access tdHandl er Resol ver via a pair ofget -

Handl er Resol ver /set Handl er Resol ver methods that may be used to configure a set of handlers on a

May 7, 2007 JAX-WS 2.1 53

Chapter 4. Client APIs

per-service, per-port or per-protocol binding basis.

When aSer vi ce instance is used to create a proxy obisspat ch instance then the handler resolver
currently registered with the service is used to createdhjaired handler chain. Subsequent changes to the
handler resolver configured forSer vi ce instance do not affect the handlers on previously createxigs,

or Di spat ch instances.

4.1.4 Executor

Ser vi ce instances can be configured withj ava. util . concurrent. Execut or. The executor will
then be used to invoke any asynchronous callbacks requlegtéte application. Theet Execut or and
get Execut or methods ofSer vi ce can be used to modify and retrieve the executor configuredafo
service.

{ Conformance (Use of Executor)f an executor object is successfully configured for use Beavice via
theset Execut or method, then subsequent asynchronous callbacks MUST eréel using the specif-
ied executor. Calls that were outstanding at the timestiteExecut or method was called MAY use the
previously set executor, if any.

< Conformance (Default Executor):acking an application-specified executor, an implemigomaMUST
use its own executor, jgava. uti | . concurrent. Thr eadPool Execut or or analogous mechanism, to
deliver callbacks. An implementation MUST NOT use applmaiprovided threads to deliver callbacks,
e.g. by "borrowing” them when the application invokes a régraperation.

4.2 javax.xml.ws.BindingProvider

The Bi ndi ngPr ovi der interface represents a component that provides a protanding for use by
clients, it is implemented by proxies and is extended byDhepat ch interface. Figuré_4l1 illustrates
the class relationships.

A web service client can get gravax. xn . ws. Endpoi nt Ref er ence from a Bi ndi ngPr ovi der in-
stance that will reference the target endpoint.

& Conformancej(avax. xnl . ws. Bi ndi ngPr ovi der . get Endpoi nt Ref er ence).: An implementation
MUST be able to return gnavax. xni . ws. Endpoi nt Ref er ence for the target endpoint if a SOAP bind-
ing is being used. If thdi ndi ngPr ovi der instance has a binding that is either SOAP 1.1/HTTP or SOAP
1.2/HTTP, then aBCEndpoi nt Ref er ence MUST be returned. If the binding is XML/HTTP grava-

.l ang. Unsupport edQper ati onExcepti on MUST be thrown.

TheBi ndi ngPr ovi der interface provides methods to obtain Biendi ng and to manipulate the binding
providers context. Further details @nndi ng can be found in section ®.1. The following subsection
describes the function and use of context vidtimdi ngPr ovi der instances.

4.2.1 Configuration

Additional metadata is often required to control inforroatexchanges, this metadata forms the context of
an exchange.

A Bi ndi ngPr ovi der instance maintains separate contexts for the request apdnge phases of a mes-
sage exchange with a service:

54 JAX-WS 2.1 May 7, 2007

4.2. javax.xml.ws.BindingProvider

Binding

has-a

Map < String,Object >

BindingProvider y (Request Context)

get Bi ndi ng() : Bi ndi ng has-a
Map < String,Object >
implements extends (Response Context)
Proxy Dispatch

Figure 4.1: Binding Provider Class Relationships

Request The contents of the request context are used to initialieentessage context (see secfion 9.4.1)
prior to invoking any handlers (see chagdiér 9) for the outidomessage. Each property within the
request context is copied to the message context with a SEGNDLER.

ResponseThe contents of the message context are used to initiakzeeponse context after invoking any
handlers for an inbound message. The response contexdtisiiiptied and then each property in the
message context that has a scopaRrHLI CATI ONis copied to the response context.

{ Conformance (Message context decoupliniglodifications to the request context while previously in-
voked operations are in-progress MUST NOT affect the cdastehthe message context for the previously
invoked operations.

The request and response contexts are ofjtywa. util. Map<St ri ng, Obj ect > and are obtained using
theget Request Cont ext andget ResponseCont ext methods oBi ndi ngPr ovi der .

In some cases, data from the context may need to accompamgnition exchanges. When this is required,
protocol bindings or handlers (see chajifler 9) are respenfib annotating outbound protocol data units
and extracting metadata from inbound protocol data units.

Note: An example of the latter usage: a handler in a SOAP bindinchhiigroduce a header into a SOAP
request message to carry metadata from the request comdxnayht add metadata to the response context
from the contents of a header in a response SOAP message.

May 7, 2007 JAX-WS 2.1 55

Chapter 4. Client APIs

4.2.1.1 Standard Properties

Table[41 lists a set of standard properties that may be satBdmdi ngPr ovi der instance and shows
which properties are optional for implementations to suppo

Table 4.1: Standardi ndi ngPr ovi der properties.

Name Type Mandatory Description

j avax. xm . ws. servi ce. endpoi nt

. addr ess String Y The address of the service endpoint as
a protocol specific URI. The URI
scheme must match the protocol
binding in use.

javax.xm .ws. security.auth

. user nane String Y Username for HTTP basic
authentication.

. passwor d String Y Password for HTTP basic
authentication.

j avax. xm . ws. sessi on

. mai ntain Boolean Y Used by a client to indicate whether it
is prepared to participate in a service
endpoint initiated session. The default
value isf al se.

javax. xm . ws. soap. htt p. soapacti on

. use Boolean N Controls whether tI80APAct i on
HTTP header is used in SOAP/HTTP
requests. Default value isal se.

Luri String N The value of th&0APAct i on HTTP
header if thg avax. xnl . ws. soap-
. http. soapacti on. use property is
set tot r ue. Default value is an empty
string.

{ Conformance (Require®l ndi ngPr ovi der properties): Animplementation MUST support all proper-
ties shown as mandatory in tahlel4.1.

Note that properties shown as mandatory are not required fizdsent in any particular context; however,
if present, they must be honored.

{ Conformance (Optiondi ndi ngPr ovi der properties): An implementation MAY support the proper-
ties shown as optional in tadle’¥.1.

4.2.1.2 Additional Properties
< Conformance (Additional context propertiedinplementations MAY define additional implementation

specific properties not listed in tadle ¥.1. The java.* aaehi.* namespaces are reserved for use by Java
specifications.

56 JAX-WS 2.1 May 7, 2007

4.2. javax.xml.ws.BindingProvider

Implementation specific properties are discouraged aslthmt application portability. Applications and
binding handlers can interact using application specifipprties.

4.2.2 Asynchronous Operations

Bi ndi ngPr ovi der instances may provide asynchronous operation capakilfi#hen used, asynchronous
operation invocations are decoupled from Biendi ngPr ovi der instance at invocation time such that
the response context is not updated when the operation etesplinstead a separate response context is
made available using theesponse interface, see sectiofs 213.4 dnd 4.3.3 for further detailthe use of
asynchronous methods.

& Conformance (Asynchronous response contekbje local response context oBandi ngPr ovi der in-
stance MUST NOT be updated on completion of an asynchronpesation, instead the response context
MUST be made available viarResponse instance.

When using callback-based asynchronous operations, darmeptation MUST use thExecut or set on
the service instance that was used to create the proRyspat ch instance being used. See411.4 for more
information on configuring th&xecut or to be used.

4.2.3 Proxies

Proxies provide access to service endpoint interfacestitma without requiring static generation of a stub
class. Se¢ava.l ang.refl ect. Proxy for more information on dynamic proxies as supported by the
JDK.

{ Conformance (Proxy supportin implementation MUST support proxies.

& Conformance (Implementirgi ndi ngPr ovi der): An instance of a proxy MUST implemeptvax-
. xm . ws. Bi ndi ngProvi der.

A proxy is created using thget Port methods of &er vi ce instance:

T getPort (Cl ass<T> sei) Returns a proxy for the specified SEI, tBer vi ce instance is responsible
for selecting the port (protocol binding and endpoint addye

T getPort (QNanme port, C ass<T> sei) Returns a proxy for the endpoint specifiedfuyr t . Note
that the namespace componenpof t is the target namespace of the WSDL definitions document.

T getPort (Cl ass<T> sei, WbServiceFeature... features) Returns a proxy for the specif-
ied SEI, theSer vi ce instance is responsible for selecting the port (protoaundlinig and and endpoint
address). The specifiéctat ur es MUST be enabled/disabled and configured as specified.

T get Port (QNane port, C ass<T> sei, WbServiceFeature... features) Returnsa proxy
for the endpoint specified byor t . Note that the namespace component of port is the targetsaame
pace of the WSDL definition document. The specifiecht ur es MUST be enabled/disabled and
configured as specified.

T get Port (Endpoi nt Ref erence epr, C ass<T> sei, WbServiceFeature... features)
Returns a proxy for the endpoint specified dgyr . The address stored in tlegr MUST be used

May 7, 2007 JAX-WS 2.1 57

Chapter 4. Client APIs

during invocations on the endpoint. Tle@r MUST NOT be used as the value of any address-
ing header such assa: Repl yTo. The specified eat ures MUST be enabled/disabled and con-
figured as specified. Any JAX-WS supportedr metadata MUST match th&er vi ce instance’s
ServiceName, otherwiseV&bSer vi ceExept i on MUST be thrown. Any JAX-WS supportesbr
metadata MUST match the PortName for #e , otherwise arebSer vi ceExcepti on MUST be
thrown. If theSer vi ce instance has an associated WSDL, its WSDL MUST be used tondiet
any binding information, any WSDL in a JAX-WS suppportggt metadata MUST be ignored. If the
Ser vi ce instance does not have a WSDL, then any WSDL inlined in the-WAX supported meta-
data of theepr MUST be used to determine binding information. If there is @mmough metadata in
the Ser vi ce instance or in thepr metadata to determine a port, theiébSer vi ceExcept i on
MUST be thrown.

The ser vi ceEndpoi nt | nt er f ace parameter specifies the interface that will be implemeritgdhe
proxy. The service endpoint interface provided by the tleeds to conform to the WSDL to Java mapping
rules specified in chaptéf 2 (WSDL 1.1). Creation of a proawy fail if the interface doesn’t conform to the
mapping or if any WSDL related metadata is missing from3@evi ce instance.

< ConformanceSer vi ce. get Por t failure): If creation of a proxy fails, an implementation MUST throw
javax. xml . ws. WebSer vi ceExcept i on. The cause of that exception SHOULD be set to an exception
that provides more information on the cause of the error. @ng OExcept i on).

An implementation is not required to fully validate the seevendpoint interface provided by the client
against the corresponding WSDL definitions and may choogaplement any validation it does require in
an implementation specific manner (e.g., lazy and eagéatan are both acceptable).

4.2.3.1 Example

The following example shows the use of a proxy to invoke a weibet Last Tr adePri ce) on a service
endpoint interfacecom exanpl e. St ockQuot ePr ovi der). Note that no statically generated stub class is
involved.

javax. xm . ws. Servi ce service = ...;
com exanpl e. St ockQuot eProvi der proxy = service. get Port (port Nane,

com exanpl e. St ockQuot ePr ovi der. cl ass)
javax. xm . ws. Bi ndi ngProvi der bp = (javax.xm .ws. Bi ndi ngProvi der) pr oxy;
Map<Stri ng, Obj ect > context = bp. get Request Cont ext () ;
context.setProperty("javax.xm .ws. sessi on. nai ntain", Bool ean. TRUE);
proxy. get Last TradePri ce(" ACVE") ;

~No o~ WNE

Lines 1-3 show how the proxy is created. Lines 4—6 performesoanfiguration of the proxy. Lines 7
invokes a method on the proxy.

4.2.4 Exceptions

All methods of an SEI can throwavax. xnl . ws. WebSer vi ceExcept i on and zero or more service
specific exceptions.

{ Conformance (Remote Exceptionsj:an error occurs during a remote operation invocation, raplé-
mention MUST throw a service specific exception if possiliethe error cannot be mapped to a service

58 JAX-WS 2.1 May 7, 2007

4.3. javax.xml.ws.Dispatch

specific exception, an implementation MUST throwPreot ocol Except i on or one of its subclasses, as
appropriate for the binding in use. See secfion 6.4.1 forendetails.

& Conformance (Exceptions During Handler Processikggdceptions thrown during handler processing on
the client MUST be passed on to the application. If the exorpih question is a subclass \wébSer vi ce-
Except i on then an implementation MUST rethrow it as-is, without angiadnal wrapping, otherwise it
MUST throw avebSer vi ceExcept i on whose cause is set to the exception that was thrown durindjdran
processing.

{ Conformance (Other ExceptionsiFor all other errors, i.e. all those that don’t occur as pade ,emote
invocation or handler processing, an implementation MUB®W aWebSer vi ceExcept i on whose cause
is the original local exception that was thrown, if any.

For instance, an error in the configuration of a proxy inseamay result in &¢bSer vi ceExcept i on
whose cause isjaava. | ang. I | | egal Ar gurent Except i on thrown by some implementation code.

4.3 javax.xml.ws.Dispatch

XML Web Services use XML messages for communication betvgeevices and service clients. The higher
level JAX-WS APIs are designed to hide the details of comgibetween Java method invocations and the
corresponding XML messages, but in some cases operatifge ML message level is desirable. The

Di spat ch interface provides support for this mode of interaction.

< Conformancel§ spat ch support): Implementations MUST support theavax. xm . ws. Di spat chin-
terface.

Di spat ch supports two usage modes, identified by the consjantax. xnl . ws. Ser vi ce. Mbde. MESSAGE
andj avax. xm . ws. Servi ce. Mode. PAYLOADrespectively:

Messageln this mode, client applications work directly with protdespecific message structures. E.g.,
when used with a SOAP protocol binding, a client applicatiesuld work directly with a SOAP
message.

Message Payloadin this mode, client applications work with the payload ofss&ges rather than the
messages themselves. E.g., when used with a SOAP protoutihyj a client application would
work with the contents of the SOABbdy rather than the SOAP message as a whole.

Di spat ch is a low level API that requires clients to construct messaganessage payloads as XML and
requires an intimate knowledge of the desired message dwgzhgtructure.Di spat ch is a generic class
that supports input and output of messages or message gaydbany type. Implementations are required
to support the following types of object:

javax. xm . transf orm Sour ce Use ofSour ce objects allows clients to use XML generating and con-
suming APIs directly. Sour ce objects may be used with any protocol binding in either ngssa
or message payload mode. When used with the HTTP bindingc{ssggterTll) in payload mode,
the HTTP request and response entity bodies must contain Hikéctly or a MIME wrapper with
an XML root part. Anul | value forSour ce is allowed to make it possible to invoke an HTTP
GET method in the HTTP Binding case. WbSer vi ceExcepti on MUST be thrown when a
Di spat ch<Sour ce> is invoked and the Service returns a MIME message. When usetkssage
mode, if the message is not an XML messag@bSer vi ceExcepti on MUST be thrown.

May 7, 2007 JAX-WS 2.1 59

Chapter 4. Client APIs

JAXB Objects Use of JAXB allows clients to use JAXB objects generated feomXML Schema to cre-
ate and manipulate XML representations and to use thesetshjgth JAX-WS without requiring
an intermediate XML serialization. JAXB objects may be uséth any protocol binding in either
message or message payload mode. When used with the HTTiIRgb(sde chaptdr11) in payload
mode, the HTTP request and response entity bodies mustircofitél directly or a MIME wrap-
per with an XML root part. When used in mssage mode, if the agsss not an XML message a
WebSer vi ceExcepti on MUST be thrown.

j avax. xnl . soap. SOAPMessage Use ofSOAPMessage objects allows clients to work with SOAP mes-
sages using the convenience features provided by d&lva. xm . soap package. SOAPMessage
objects may only be used withi spat ch instances that use the SOAP binding (see chdpler 10) in
message mode.

javax. activati on. Dat aSour ce Use ofDat aSour ce objects allows clients to work with MIME-typed
messages.Dat aSour ce objects may only be used withi spat ch instances that use the HTTP
binding (see chapt&rlll) in message mode.

A JAX-WS implementation MUST honor allebSer vi ceFeat ur es (section[6.b) foDi spat ch based
applications.

4.3.1 Configuration

Di spat ch instances are obtained using thesat eDi spat ch factory methods of &er vi ce instance. The
nmode parameter ofr eat eDi spat ch controls whether the neld spat ch instance is message or message
payload oriented. Theype parameter controls the type of object used for messages ssage payloads.
Di spat ch instances are not thread safe.

Di spat ch instances are not required to be dynamically configurabtedifferent protocol bindings; the
WSDL binding from which theébi spat ch instance is generated contains static information inolydhe
protocol binding and service endpoint address. However,spat ch instance may support configuration
of certain aspects of its operation and provides methode(ited fromBi ndi ngPr ovi der) to dynamically
guery and change the values of properties in its requestemmibnse contexts — see secfion 4.2.1.1 for a list
of standard properties.

4.3.2 Operation Invocation

A Di spat ch instance supports three invocation modes:
Synchronous request response (ivoke methods) The method blocks until the remote operation com-
pletes and the results are returned.

Asynchronous request responséd fivokeAsync methods) The method returns immediately, any results
are provided either through a callback or via a polling objec

One-way [nvokeOneWay methods) The method is logically non-blocking, subject to the caliidds of
the underlying protocol, no results are returned.

Callingi nvoke on the differenDi spat ch types defined above withraul I value means an empty message
will be sent where allowed by the binding, message mode antMttP. So for example when using -

60 JAX-WS 2.1 May 7, 2007

4.3. javax.xml.ws.Dispatch

* SOAP 1.1/HTTP binding in payload mode usimg | will send a soap message with an empty body.

* SOAP 1.1/ HTTP binding in message maud | being passed tonvoke is an error condition and
will result in awebSer vi ceExcept i on.

e XML / HTTP binding both in payload and in message maodé | being passed tonvoke with the
HTTP POST and PUT operations is an error condition and wsllitedn awebSer vi ceExcept i on.

< Conformance (Failebi spat ch. i nvoke): When an operation is invoked using iamvoke method, an
implementation MUST throw &¢bSer vi ceExcept i on if there is any error in the configuration of the
Di spat ch instance or &r ot ocol Except i on if an error occurs during the remote operation invocation.

< Conformance (FaileDi spat ch. i nvokeAsync): When an operation is invoked usingiamvokeAsync

method, an implementation MUST throwV&bSer vi ceExcepti on if there is any error in the conf-
iguration of theDi spat ch instance. Errors that occur during the invocation are tegowhen the client
attempts to retrieve the results of the operation.

{ Conformance (Failedi spat ch. i nvokeOneWay): When an operation is invoked using anvoke-
OneWay method, an implementation MUST throwV&bSer vi ceExcept i on if there is any error in the
configuration of theDi spat ch instance or if an error is detecteduring the remote operation invocation.

See sectiof 10.4.1 for additional SOAP/HTTP requirements.

4.3.3 Asynchronous Response

Di spat ch supports two forms of asynchronous invocation:

Polling Thei nvokeAsync method returns &esponse (see below) that may be polled using the methods
inherited fromFut ur e<T> to determine when the operation has completed and to retifievresults.

Callback The client supplies ansyncHandl er (see below) and the runtime calls thendl eResponse
method when the results of the operation are available.i fhekeAsync method returns a wildcard
Fut ur e (Fut ur e<?>) that may be polled to determine when the operation has aigtpl The object
returned fromFut ur e<?>. get () has no standard type. Client code should not attempt to lcast t
object to any particular type as this will result in non-adate behavior.

In both cases, errors that occur during the invocation grerted via an exception when the client attempts
to retrieve the results of the operation.

< Conformance (Reporting asynchronous errolsjhe operation invocation fails, an implementation MUST
throw aj ava. uti | . concurrent. Executi onExcepti onfrom theResponse. get method.

The cause of aBixecut i onExcept i onis the original exception raised. In the case Btaponse instance
this can only be &ébSer vi ceExcept i on or one of its subclasses.

The following interfaces are used to obtain the results af@eration invocation:

1The invocation is logically non-blocking so detection ofaes during operation invocation is dependent on the ugiterl
protocol in use. For SOAP/HTTP it is possible that certainliRTevel errors may be detected.

May 7, 2007 JAX-WS 2.1 61

Chapter 4. Client APIs

javax. xnl . ws. Response A generic interface that is used to group the results of ancation with
the response contexResponse extends ava. uti | . concurrent. Fut ure<T>to provide asyn-
chronous result polling capabilities.

javax. xm . ws. AsyncHandl er A generic interface that clients implement to receive nssial an asyn-
chronous callback. It defines a sindglandl eResponse method that has Besponse object as its
argument.

4.3.4 Using JAXB

Ser vi ce provides acr eat eDi spat ch factory method for creatin@i spat ch instances that contain an
embedded AXBCont ext . Thecont ext parameter contains theAXBCont ext instance that the created
Di spat ch instance will use to marshall and unmarshall messages @magegayloads.

& Conformance (Marshalling failure)f an error occurs when using the suppli@dXBCont ext to mar-
shall arequest or unmarshall a response, an implementdtit8ir throw awebSer vi ceExcept i on whose
cause is set to the original AXBExcept i on.

4.3.5 Examples

The following examples demonstrate usébbgpat ch methods in the synchronous, asynchronous polling,
and asynchronous callback modes. For ease of reading hemdiing has been omitted.

4.3.5.1 Synchronous, Payload-Oriented

Source reqMsg = ...;

Service service = ...;

Di spat ch<Source> di sp = service. creat eDi spat ch(port Nane,
Sour ce. cl ass, PAYLQAD);

Source resMsg = di sp.invoke(reghMsg);

a b wNPE

4.3.5.2 Synchronous, Message-Oriented

SOAPMessage soapRequg ce

Service service = ...;

Di spat ch<SOAPMessage> di sp = servi ce. creat eDi spat ch(port Nane,
SOAPMessage. cl ass, MESSAGE) ;

SOAPMessage soapResMsg = di sp. i nvoke(soapReqgMsg);

a b wNPE

4.3.5.3 Synchronous, Payload-Oriented With JAXB Objects

JAXBCont ext jc JAXBCont ext . newl nst ance("pri ner. po");
Unmarshal ler u = jc.createUnmarshal l er();
PurchaseOrder po = (PurchaseOrder)u.unmarshal (
new Fi | el nput St rearr("po.xm"));
Service service = ...;
Di spat ch<(bj ect > di sp servi ce. creat eDi spatch(portNanme, jc, PAYLQOAD);
Order Confirmation conf = (OrderConfirnation)disp.invoke(po);

~No o~ WNERE

62 JAX-WS 2.1 May 7, 2007

4.4. Catalog Facility

In the above exampleur chaseOr der andOr der Conf i r mat i on are interfaces pre-generated by JAXB
from the schema document ‘primer.po’.

4.3.5.4 Asynchronous, Polling, Message-Oriented

SOAPMessage soapRegqMsg = .. .;
Service service = ...;
Di spat ch<SOAPMessage> di sp = servi ce. creat eDi spat ch(port Nane,
SOAPMessage. cl ass, MESSAGE) ;
Response<SOAPMessage> res = di sp.i nvokeAsync(soapReqMsg);
while (!res.isbDone()) {
/1 do sonething while we wait

}
SOAPMessage soapResMsg = res. get();

O©CoO~NOOUTA,WNPEP

4.3.5.5 Asynchronous, Callback, Payload-Oriented

cl ass MyHandl er i nmpl ements AsyncHandl er <Sour ce> {
public voi d handl eResponse(Response<Source> res) {

Source resMsg = res.get();
/1l do something with the results

}

©CoOo~NOoOUThr~, WNE

Source regMsg = ...;

10 Service service = ...;

11 Dispatch<Source> disp = service. createbDi spatch(portNane,
12 Sour ce. cl ass, PAYLQAD);

13 MyHandl er handl er = new MyHandl er () ;

14 di sp. i nvokeAsync(reqMsg, handl er);

4.4 Catalog Facility

JAX-WS mandates support for a standard catalog facilityetoded when resolving any Web service docu-
ment that is part of the description of a Web service, spelfi WSDL and XML Schema documents.

The facility in question is the OASIS XML Catalogs 1.1 spixifion [30]. It defines an entity catalog that
handles the following two cases:

* Mapping an external entity’s public identifier and/or ®m identifier to a URI reference.

» Mapping the URI reference of a resource to another URI egfes.

Using the entity catalog, an application can package oneave mescription and/or schema documents in
jar files, avoiding costly remote accesses, or remap retd&ks to other, possibly local ones. Since the
catalog is an XML document, a deployer can easily alter ituib the local environment, unbeknownst to

the application code.

The catalog is assembled by taking into account all acdessisources whose nameNETA- | NF/ j ax-
-ws- cat al og. xm . Each resource MUST be a valid entity catalog according ¢oXNIL Catalogs 1.1

May 7, 2007 JAX-WS 2.1 63

Chapter 4. Client APIs

specification. When running on the Java SE platform, theetiircontext class loader MUST be used to
retrieve all the resources with the specified name. RadtiRls inside a catalog file are relative to the
location of the catalog that contains them.

& Conformance (Use of the Catalogh the process of resolving a URI that points to a WSDL documen
or any document reachable from it, a JAX-WS implementatiddSW perform a URI resolution for it, as
prescribed by the XML Catalogs 1.1 specification, usingdii@log defined above as its entity catalog.

In particular, every JAX-WS APl argument or annotation ed@nwhose semantics is that of a WSDL
location URI MUST undergo URI resolution using the catalagility described in this section.

Although defined in the client API chapter for reasons ofeeafsexposure, use of the catalog is in no way
restricted to client uses of WSDL location URIs. In partaulresolutions of URIs to WSDL and schema
documents that arise during the publishing of the contractah endpoint (see_5.2.5) are subject to the
requirements in this section, resulting in catalog-basBd fdsolutions.

4.5 javax.xml.ws.EndpointReference

A javax. xm . ws. Endpoi nt Ref er ence is an abstraction that represents an invocable web sernite e
point. Client applications can use Bndpoi nt Ref er ence to get a port for an SEI although doing so pre-
vents them from getting/setting tlecut or or Handl er Resol ver which would normally be done on a
Ser vi ce instance. Thé&ndpoi nt Ref er ence class delegates to theavax. xm . ws. spi . Provi der to
perform theget Port operation. The following method can be used to get a proxg féort.

get Port (Cl ass<T> servi ceEndpoi ntInterface, WbServiceFeature... features) Getsa
proxy for theser vi ceEndpoi nt I nt er f ace that can be used to invoke operations on the end-
point referred to by th&ndpoi nt Ref er ence instance. The specifiedeat ures MUST be en-
abled/disabled and configured as specified. The returneg MST use theendpoi nt Ref er ence
instance to determine the endpoint address and any reéeparameters to be sent on endpoint in-
vocations. The&ndpoi nt Ref er ence instance MUST NOT be used directly as the value of an WS-
Addressing header such asa: Repl yTo. For this method to successfully return a proxy, WSDL
metadata MUST be available and tBedpoi nt Ref er ence instance MUST contain an implemen-
tation understoo@er vi ceNane in its metadata.

64 JAX-WS 2.1 May 7, 2007

Chapter 5

Service APIs

This chapter describes requirements on JAX-WS serviceemehtations and standard APIs provided for
their use.

5.1 javax.xml.ws.Provider

JAX-WS services typically implement a native Java servitgpeint interface (SEI), perhaps mapped from
a WSDL port type, either directly or via the use of annotatioBectiori-3]4 describes the requirements that
a Java interface must meet to qualify as a JAX-WS SEI. SeBlidrescribes the mapping from a WSDL
port type to an equivalent Java SEI.

Java SEls provide a high level Java-centric abstractiohhitkes the details of converting between Java
objects and their XML representations for use in XML-baseessages. However, in some cases it is
desirable for services to be able to operate at the XML meskagl. ThePr ovi der interface offers an
alternative to SEls and may be implemented by services mgsiai work at the XML message level.

& Conformance (Provider support requiredn implementation MUST suppoRr ovi der <Sour ce> in
payload mode with all the predefined bindings. It MUST alsport Pr ovi der <SOAPMessage> in
message mode in conjunction with the predefined SOAP bgsdandPr ovi der <j avax. acti vati on-
. Dat aSour ce> in message mode in conjunction with the predefined HTTPRibgd

< Conformance (Provider default constructoA.:Pr ovi der based service endpoint implementation MUST
provide a public default constructor.

A typed Pr ovi der interface is one in which the type parameter has been bouadctmcrete class, e.g.
Pr ovi der <Sour ce> or Pr ovi der <SOAPMessage>, as opposed to being left unbound, aBivi der <T>.

& Conformance (Provider implementatior): Pr ovi der based service endpoint implementation MUST
implement a typedbr ovi der interface.

& Conformance (WebServiceProvider annotatiof)Pr ovi der based service endpoint implementation
MUST carry avebSer vi cePr ovi der annotation (seE_4.7).

Provi der is alow level generic API that requires services to work withssages or message payloads and
hence requires an intimate knowledge of the desired messgogyload structure. The generic nature of
Provi der allows use with a variety of message object types.

May 7, 2007 JAX-WS 2.1 65

Chapter 5. Service APIs

A JAX-WS implementation MUST honor allebSer vi ceFeat ur es (section[6.b) forPr ovi der based
applications.

5.1.1 Invocation

A Provi der based service instancé’savoke method is called for each message received for the service.

5.1.1.1 Exceptions

The service runtime is required to catch exceptions throywa Provider instance. Rrovi der instance
may make use of the protocol specific exception handlinghaeism as described in sectiobn 614.1. The
protocol binding is responsible for converting the exaapinto a protocol specific fault representation and
then invoking the handler chain and dispatching the faukgage as appropriate.

5.1.2 Configuration

The Ser vi ceMbde annotation is used to configure the messaging modeRofoai der instance. Use of
@ser vi ceMbde(val ue=MESSAGE) indicates that the provider instance wishes to receive and sntire
protocol messages (e.g. a SOAP message when using the S@&RgDi absence of the annotation or
use of@ser vi ceMbde(val ue=PAYLOAD) indicates that the provider instance wishes to receive and s
message payloads only (e.g. the contents of a SOAP Body efemen using the SOAP binding).

Provider instances MAY use thibSer vi ceCont ext facility (se€[5.B) to access the message context and
other information about the request currently being served

The JAX-WS runtime makes certain properties availableRPoavi der instance that can be used to deter-
mine its configuration. These properties are passed tértbei der instance each time it is invoked using
the MessageCont ext instance accessible from thiebSer vi ceCont ext .

5.1.3 Examples

For brevity, error handling is omitted in the following expl®s.

Simple echo service, reply message is the same as the input me ssage

[

1 @\ébServiceProvider

2 @ervi ceMbde(val ue=Servi ce. Mbde. MESSAGE)

3 public class MyService inplenents Provi der <SOAPMessage> {
4 public MyService() {

5 }

6

7 publ i c SOAPMessage i nvoke(SOAPMessage request) {

8 return request;

9 }

0 }

66 JAX-WS 2.1 May 7, 2007

5.2. javax.xml.ws.Endpoint

Simple static reply, reply message contains a fixed acknowl egment element
1 @\ébServiceProvider

2 @pervi ceMbde(val ue=Servi ce. Mbde. PAYLOAD)

3 public class MyService inplenents Provider<Source> {

4 public MyService() {

5 }

6

7 public Source invoke(Source request) {

8 Sour ce request Payl oad = request. get Payl oad();

9 c.

10 String replyElenent = "<n:ack xmns:n=..."/>";

11 StreanSource reply = new StreanSource(new StringReader (repl yEl ement));

12 return reply;

13 }

14 1}

Using JAXB to read the input message and set the reply

1 @\ebServiceProvider

2 @ervi ceMbde(val ue=Servi ce. Mbde. PAYLOAD)

3 public class MyService inplenents Provider<Source> {

4 public MyService() {

5 }

6

7 public Source invoke(Source request) {

8 JAXBContent jc = JAXBCont ext.new nstance(...);
9 Unmarshal ler u = jc.createUnmarshal l er();

10 bj ect request Gbj = u.unnmarshal | (request);

11 C.
12 Acknowl edgenent reply = new Acknow edgenent (...);
13 return new JAXBSource(jc, reply);
14 }
15 }

5.2 javax.xml.ws.Endpoint

TheEndpoi nt class can be used to create and publish Web service endpoints

An endpoint consists of an object that acts as the Web seivipkementation (called herienplementoy
plus some configuration information, e.g.Bandi ng. Implementor and binding are set when the end-
point is created and cannot be modified later. Their val@ste retrieved using thget | npl enent or
andget Bi ndi ng methods respectively. Other configuration informationyrba set at any time after the
creation of arEndpoi nt but before its publication.

5.2.1 Endpoint Usage

Endpoints can be created using the following static metlood&dpoi nt :

creat e(Obj ect inplenmentor) Creates and returns &ndpoi nt for the specified implementor. If the
implementor specifies a binding using thavax. xm . ws. Bi ndi ngType annotation it MUST be

May 7, 2007 JAX-WS 2.1 67

Chapter 5. Service APIs

used else a default binding of SOAP 1.1 / HTTP binding MUST &edu

create(String bindingl D, Qoject inplenentor) Createsand returns &dpoi nt for the specif-
ied binding and implementor. If the bindingID il | and no binding information is specified via
thej avax. xm . ws. Bi ndi ngType annotation then a default SOAP 1.1 / HTTP binding MUST be
used.

publish(String address, Object inplenentor) Createsand publishesBndpoi nt for the given
implementor. The binding is chosen by default based on the sitkeme of the provided address
(which must be a URL). If a suitable binding if found, the eaity is created then published as if the
Endpoi nt . publ i sh(String address) method had been called. The creakedipoi nt is then
returned as the value of the method.

These methods MUST delegate the creation of Endpoint tpdkax. xm . ws. spi . Provi der SPI class
(sed&.R) by calling ther eat eEndpoi nt andcr eat eAndPubl i shEndpoi nt methods respectively.

An implementor object MUST be either an instance of a clasetated with theadWebSer vi ce annotation
according to the rules in chapter 3 or an instance of a clasetated with thenebSer vi cePr ovi der
annotation and implementing tire ovi der interface (seE&l1).

Thepublish(String, Obj ect) method is provided as a shortcut for the common operatiomeatting
and publishing aEndpoi nt . The following code provides an example of its use:

1 // assune Test is an endpoint inplenentation class annotated with @ebService
2 Test test = new Test();
3 Endpoint e = Endpoint.publish("http://local host:8080/test", test);

< Conformance (Endpoint publish(String address, Objectempntor) Method).The effect of invoking the
publ i sh method on aEndpoi nt MUST be the same as first invoking theeat e method with the binding
ID appropriate to the URL scheme used by the address, thekimy thepubl i sh(String address)
method on the resultingndpoi nt .

{ Conformance (Default Endpoint Binding)n the absence of a specified binding, if the URL scheme
for the address argument of tRadpoi nt . publ i sh method is "http” or "https” then an implementation
MUST use the SOAP 1.1/HTTP binding (see chapiér 10) as thirfgrfor the newly created endpoint.

{ Conformance (Other Bindings)An implementation MAY support using th&ndpoi nt . publ i sh method
with addresses whose URL scheme is neither "http” nor "https

The success of thendpoi nt . publ i sh method is conditional to the presence of the appropriateigsion
as described in sectién 5.P.3.

Endpoint implementors MAY use thibSer vi ceCont ext facility (sed5.B) to access the message context
and other information about the request currently beingeserinjection of therébSer vi ceCont ext , if
requested, MUST happen the first time the endpoint is plddis After any injections have been performed
and before any requests are dispatched to the implememamplementor method which carrieg avax-

. annot at i on. Post Const ruct annotation, if present, MUST be invoked. Such a method MU&IiBfy

the requirements for lifecycle methods in JSR-250 [31].

5.2.2 Publishing

An Endpoi nt is in one of three states: not published (the default), ghblil or stopped. Published end-
points are active and capable of receiving incoming reguastl dispatching them to their implementor.

68 JAX-WS 2.1 May 7, 2007

5.2. javax.xml.ws.Endpoint

Non published endpoints are inactive. Stopped endpoirg inethe published until some time ago, then got
stopped. Stopped endpoints cannot be published againicidih of anEndpoi nt can be achieved by
invoking one of the following methods:

publi sh(String address) Publishes the endpoint at the specified address (a URL)adthieess MUST
use a URL scheme compatible with the endpoint’s binding.

publ i sh(Obj ect server Cont ext) Publishes the endpoint using the specified server contdkte
server context MUST contain address information for thaltesy endpoint and it MUST be compat-
ible with the endpoint’s binding.

{» Conformance (Publishing over HTTPI the Bi ndi ng for anEndpoi nt is a SOAP (seEZ10) or HTTP
(sedTll) binding, then an implementation MUST support ghbig theEndpoi nt to a URL whose scheme
is either "http” or "https”.

The WSDL contract for an endpoint is created dynamicallyedasn the annotations on the implementor
class, thesi ndi ng in use and the set of metadata documents specified on theieh@ged 5.214).

{» Conformance (WSDL Publishing)An Endpoi nt that uses the SOAP 1.1/HTTP binding (E€k 10) MUST
make its contract available as a WSDL 1.1 document at thegtig address suffixed with "?WSDL” or
"?wsdl”.

An Endpoi nt that uses any other binding defined in this specificatioodnjunction with the HTTP trans-
port SHOULD make its contract available using the same auive. It is RECOMMENDED that an
implementation provide a way to access the contract for dp@nt even when the latter is published over
a transport other than HTTP.

The success of the twendpoi nt . publ i sh methods described above is conditional to the presence of th
appropriate permission as described in sedfion1s.2.3.

Applications that wish to modify the configuration infortin (e.g. the metadata) for &amdpoi nt must
make sure the latter is in the not-published state. Althdhghvarious setter methods @&ndpoi nt must
always store their arguments so that they can be retrievedidtgr invocation of a getter, the changes they
entail may not be reflected on the endpoint until the next imsepublished. In other words, the effects of
configuration changes on a currently published endpomuadefined.

Thest op method can be used to stop publishing an endpoint. A stoppeigoent may not be restarted. It
is an error to invoke aubl i sh method on a stopped endpoint. After #teop method returns, the runtime
MUST NOT dispatch any further invocations to the endpoimtiplementor.

An Endpoi nt will be typically invoked to serve concurrent requests,tsamplementor should be written
S0 as to support multiple threads. Téenchr oni zed keyword may be used as usual to control access to
critical sections of code. For finer control over the thieaded to dispatch incoming requests, an application
can directly set the executor to be used, as described iwsSECP.T.

5.2.2.1 Example

The following example shows the use of bl i sh(Obj ect) method using a hypothetical HTTP server
API that includes thett t pSer ver andHt t pCont ext classes.

1 // assune Test is an endpoint inplenentation class annotated with @ebService
2 Test test = new Test();

May 7, 2007 JAX-WS 2.1 69

Chapter 5. Service APIs

Htt pServer server = HttpServer.create(new | net Socket Addr ess(8080), 10);
server. set Execut or (Execut or. newri xedThr eadPool (10));

server.start();

Ht t pCont ext context = server.createContext("/test");

Endpoi nt endpoi nt = Endpoi nt. cr eat e(SOAPBi ndi ng. SOAP11HTTP_BI NDI NG test);
endpoi nt. publ i sh(context);

O~NO Ol bW

Note that the specified server context uses its own exeoutohanism. At runtime then, any other executor
set on theendpoi nt instance would be ignored by the JAX-WS implementation.

5.2.3 Publishing Permission

For security reasons, administrators may want to restnietability of applications to publish Web ser-
vice endpoints. To this end, JAX-WS 2.0 defines a new peionsdass, avax. xm . ws. WebSer vi ce-
Per mi ssi on, and one named permissigrybl i shEndpoi nt .

< Conformance (Checkingubl i shEndpoi nt Permission):When any of thepubl i sh methods defined
by the Endpoi nt class are invoked, an implementation MUST check whethg8eaur it yManager is
installed with the application. If it is, implementationsUBT verify that the application has thab-
Ser vi cePer m ssi on identified by the target namgubl i shEndpoi nt before proceeding. If the per-
mission is not granted, implementations MUST NOT publigheéhdpoint and they MUST throwjava-

.l ang. SecurityException.

5.2.4 Endpoint Metadata

A set of metadata documents can be associated witEnaipoi nt by means of theset Met adat a-

(Li st <Sour ce>) method. By setting the metadata of Bmdpoi nt , an application can bypass the auto-
matic generation of the endpoint’s contract and specifydfmred contract directly. This way it is possible,
e.g., to make sure that the WSDL or XML Schema document thatilidished contains information that
cannot be represented using built-in Java annotation§fjsee

{ Conformance (Required Metadata Type&)1implementation MUST support WSDL 1.1 and XML Schema
1.0 documents as metadata.

{ Conformance (Unknown Metadatahn implementation MUST ignore metadata documents whose typ
it does not recognize.

When specifying a list of documents as metadata, an apiplicaiay need to establish references between
them. For instance, a WSDL document may import one or more Y3dhema documents. In order to do
so, the application MUST use tlsyst el d property of theg avax. xml . t r ansf or m Sour ce class by
setting its value to an absolute URI that uniquely iderdifteamong all supplied metadata documents, then
using the given URI in the appropriate construct (&gl : i nport or xsd: i nport).

5.2.5 Determining the Contract for an Endpoint

This section details how the annotations on the endpointeémentation class and the metadata for an
endpoint instance are used at publishing time to create teambrior the endpoint.

Both thewebSer vi ce andWebSer vi cePr ovi der annotations define asdl Locat i on annotation ele-
ment which can be used to point to the desired WSDL documerthéendpoint. If such an annotation

70 JAX-WS 2.1 May 7, 2007

5.2. javax.xml.ws.Endpoint

element is present on the endpoint implementation classhaad value other than the default one (i.e.
it is not the empty string), then a JAX-WS implementation MUSe the document referred to from the
wsdl Locat i on annotation element to determine the contract, accorditigetoules in sectioh’5.2.5.3.

In addition to the case in which tiendpoi nt API is explicitly used, the requirements in this section are
also applicable to the publishing of an endpoint via detilegameans, e.g. in a servlet container. In this

case, there may not be an equivalent for the notion of metadatlescribed [0 ’5.2.4. In such an occurrence,
the rules in this section MUST be applied using an empty setaibdata documents as the metadata for the
endpoint.

In the context of the Java EE Platform, JSR-109 [15] defirgdayment descriptor elements that may be
used to override the value of thedl Locat i on annotation element. Please refer to that specification for
more details.

As we specify additional rules to be used in determining Wetract for an endpoint, we distinguish two
cases: that of a SEl-based endpoint (i.e. an endpoint thaiigtated with &ébSer vi ce annotation) and
that of a Provider-based endpoint.

5.2.5.1 SEl-based Endpoints

For publishing to succeed, a SEl-based endpoint MUST haessociated contract.

If the wsdl Locat i on annotation element is the empty string, then a JAX-WS impiaietion must obey
the following rules, depending on the binding used by thepeid:

SOAP 1.1/HTTP Binding A JAX-WS implementation MUST generate a WSDL descriptiontfee end-
point based on the rules in sectlon’5.2.5.3 below.

SOAP 1.2/HTTP Binding A JAX-WS implementation MUST NOT generate a WSDL descriptior the
endpoint.

HTTP Binding A JAX-WS implementation MUST NOT generate a WSDL descriptior the endpoint.

Any Implementation-Specific Binding A JAX-WS implementation MAY generate a WSDL description
for the endpoint.

Note: This requirements guarantee that future versions of thessigation may mandate support for ad-
ditional WSDL binding in conjunction with the predefineading identifiers without negatively affecting
existing applications.

A generated contract MUST follow the rules in chajfler 3 amdé¢hin the JAXB specification [10].

5.2.5.2 Provider-based Endpoints

Provider-based endpoints SHOULD have a hon-emgtyl Locat i on pointing to a valid WSDL descrip-
tion of the endpoint.

If thewsdl Locat i on annotation element is the empty string, then a JAX-WS implatation MUST NOT
generate a WSDL description for the endpoint.

May 7, 2007 JAX-WS 2.1 71

Chapter 5. Service APIs

5.2.5.3 Use of @ebServi ce(wsdl Locati on) and Metadata

A WSDL document contains two different kinds of informaticsbstract information (i.e. portTypes and
any schema-related information) which affects the fornidhe messages and the data being exchanged,
and binding-related one (i.e. bindings and ports) whicbaff the choice of protocol and transport as well as
the on-the-wire format of the messages. Annotations[{seee7provided to capture the former aspects but
not the latter. (The@BOAPBI ndi ng annotation is a bit of a hybrid, because it captures the tigaaelated
aspects of theoap: bi ndi ng binding extension in WSDL 1.1.)

At runtime, annotations must be followed for all the abdtespects of an interaction, but binding informa-
tion has to come from somewhere else. Although the choicéndliry is made at the time an endpoint is
created, this specification does not attempt to capturpaasible binding properties in its APIs, since the
extensibility of WSDL would make it a futile exercise. Rath@hen an endpoint is published, a description
for it, if present, is consulted to determine binding infation, using thewsdl : ser vi ce andwsdl : port
gualified names as a key.

In terms of priority, the description specified using thedl Locat i on annotation element, if present,
comes first, and the metadata documents are secondarg absence of a non-empty, non-defawltil Locat i on
annotation element, the metadata documents are consaliddritify as many description components as
possible that can be reused when producing the contradiéaridpoint.

There are some restrictions on the packaging of the deistriphd any associated metadata documents.
The goal of these restrictions is to make it possible to ghbin endpoint without forcing a JAX-WS
implementation to retrieve, store and patch multiple doents from potentially remote sites.

The value of theasdl Locat i on annotation element on an endpoint implementation classyif MUST
be a relative URL. The document it points to MUST be packagil tive application. Moreover, it MUST
follow the requirements in sectidn 5.26.4 below ("Apptioa-specified Service”).

In the Java SE platform, relative URLSs are treated as ressukt’hen running on the Java EE platform, the
dispositions in the JSR-109 specification apply.

For ease of identification, let’'s call this document thedtrdescription document”, to distinguish it from
any WSDL documents it might import.

At publishing time, a JAX-WS implementation MUST patch thedpoint address in the root description
document to match the actual address the endpoint is depaiye

In order to state the requirements for patching the locatimfinanywsdl : i nport -ed orxsd: i mport -ed
documents, let's define a document as bdowal if and only if

1. itis the root description document, or

2. itis reachable from a local document via an import statemdnose location is either a relative URL
or an absolute URL for which there is a corresponding metadatument (i.e. &our ce object
which is a member of the list of metadata documents and wigseen d property is equal to the
URL in question).

A JAX-WS implementation MUST patch the location attributg#fsall wsdl : i nport andxsd: i nport
statement in local documents that point to local documeAts.implementation MUST NOT patch any
other location attributes.

Please note that, although the catalog facility (Se¢ 4.4)sed to resolve any absolute URLs encoun-
tered while processing the root description document ordoguments transitively reachable from it via
wsdl : i nport andxsd: i mport statements, those absolute URLs will not be rewritten whenrmporting

72 JAX-WS 2.1 May 7, 2007

5.2. javax.xml.ws.Endpoint

document is published, since documents resolved via tiadogedire not considered local, even if the catalog
maps them to resources packaged with the application.

In what follows, for better readability, the term "metaddtaument” should be interpreted as also covering
the description document pointed to by thedl Locat i on annotation element (if any), while keeping in
mind the processing rules in the preceding paragraphs.

As a guideline, the generated contract must reuse as muabsaibie the set of metadata documents pro-
vided by the application. In order to simplify an implemearddask, this specification requires that only a
small number of well-defined scenarios in which the appilicaprovides metadata documents be supported.

Implementations MAY support other use cases, but they MUidw the general rule that any application-
provided metadata element takes priority over an impleaiem-generated one, with the exception of the
overriding of a port address.

For instance, if the application-provided metadata costa definition for portTypdoo that in no case
should the JAX-WS implementation create its ofwn portType to replace the one provided by the applica-
tion in the final contract for the endpoint.

The exception to using a metadata document as supplied gphiecation without any modifications is
the address of thesdl : port for the endpoint, which MUST be overridden so as to match tldress
specified as an argument to thebl i sh method or the one implicit in a server context.

When publishing the main WSDL document for an endpoint, geiémentation MUST ensure that all refer-
ences between documents are correct and resolvable. Thisemusre remapping the metadata documents
to URLs different from those set as theifst em d property. The renaming MUST be consistent, in that the
"imports” and "includes” relationships existing betweercdments when the metadata was supplied to the
endpoint MUST be respected at publishing time. Moreover,sitime metadata document SHOULD NOT
be published at multiple, different URLSs.

When resolving URI references to other documents when psing metadata documents or any of the
documents they may transitively reference, a JAX-WS imgletation MUST use the catalog facility def-
ined in sectiol4]4, except when there is a metadata documarste system id matches the URI in question.
In other words, metadata documents have priority over@gtbhsed mappings.

The scenarios which are required to be supported are troaviol:

5.2.5.4 Application-specified Service

One of the metadata documents, $aycontains a definition for a WSDL service whose qualifiecnea

, sayS, matches that specified by the endpoint being publishedhithcase, a JAX-WS implementation
MUST useD as the service description. No further generation of cottelated artifacts may occur.
The implementation MUST also override the port addred3 and thel ocat i on andschenmalLocat i on
attributes as detailed in the preceding paragraphs. Itésranif more than one metadata document contains
a definition for the sought-after servi&

5.2.5.5 Application-specified PortType

No metadata document contains a definition for the soufibt-aerviceS, but a metadata document, say
D, contains a definition for the WSDL portType whose quatifieame, say, matches that specified by the
endpoint being published. In this case, a JAX-WS implentemtaMUST create a new description &
including an appropriate WSDL binding element referenging TypeP. The metadata documeDtMUST

be imported/included so that the published contract usedéfinition ofP provided byD. No schema gen-

May 7, 2007 JAX-WS 2.1 73

Chapter 5. Service APIs

Table 5.1: StandarBndpoi nt properties.

Name Type Description

j avax. xm . ws. wsdl

. service QName Specifies the qualified name of the service.
. port QName Specifies the qualified name of the port.

eration occurs,aR is assumed to embed or import schema definitions for alltpesd/elements it requires.
Like in the previous case, the implementation MUST overadg| ocat i on andschenalLocati on at-
tributes. Itis an error if more than one metadata documentbaus a definition for the sought-after portType
P.

5.2.5.6 Application-specified Schema or No Metadata

No metadata document contains a definition for the soufibt-aerviceS and portTypeP. In this case, a
JAX-WS implementation MUST generate a complete WSDLSowWhen it comes to generating a schema
for a certain target namespace, gaythe implementation MUST reuse the schemaTfamong the avail-
able metadata documents, if any. Like in the preceding dasejmplementation MUST override any
schemaLocat i on attributes. It is an error if more than one schema documepgsified as metadata
for the endpoint attempt to define components in a namespased by the endpoint.

Note: The three scenarios described above cover several appkcase cases. The first one represents an
application that has full control over all aspects of the traot. The JAX-WS runtime just uses what the
application provided, with a minimum of adjustments to emswnsistency. The second one corresponds
to an application that defines all abstract aspects of the WSR. portType(s) and schema(s), leaving
up to the JAX-WS runtime to generate the concrete portionnkeotontract. Finally, the third case rep-
resents an application that uses one or more well-knownmeli®), possibly taking advantage of lots of
facets/constraints that JAXB cannot capture, and wantetse it as-is, leaving all the WSDL-specific as-
pects of the contract up to the runtime. This use case alsers@n application that does not specify any
metadata, leaving WSDL and schema generation up to the JBXavw JAXB) implementation.

5.2.6 Endpoint Properties

An Endpoi nt has an associated set of properties that may be read andnarging theyet Properti es
andset Pr operti es methods respectively.

Table[5.1 lists the set of standaEddpoi nt properties.

When present, the WSDL-related properties override theegaspecified using th&bSer vi ce andweb-
Ser vi ceProvi der annotations. This functionality is most useful with prasficbbjects (see section¥.7),
since the latter are naturally more suited to a more dynasdgelL For instance, an application that publishes
a provider endpoint can decide at runtime which web senacenpersonate by using a combination of
metadata documents and the properties described in thisrsec

5.2.7 Executor
Endpoi nt instances can be configured withj ava. util . concurrent. Execut or. The executor will

then be used to dispatch any incoming requests to the apiplical heset Execut or andget Execut or
methods oEndpoi nt can be used to modify and retrieve the executor configured fervice.

74 JAX-WS 2.1 May 7, 2007

5.3. javax.xml.ws.WebServiceContext

{ Conformance (Use of Executor)f an executor object is successfully set onEanipoi nt via theset -
Execut or method, then an implementation MUST use it to dispatch inogmequests upon publication of
the Endpoi nt by means of theubl i sh(String address) method. If publishing is carried out using
thepubl i sh(Obj ect server Cont ext)) method, an implementation MAY use the specified executor 0
another one specific to the server context being used.

{ Conformance (Default Executor)f an executor has not been set onErdpoi nt, an implementation
MUST use its own executor, jaava. uti | . concurrent. Thr eadPool Execut or or analogous mecha-
nism, to dispatch incoming requests.

5.2.8 javax.xml.ws.EndpointReference

The following methods can be used on a publisBedpoi nt to retrieve arj avax. xm . ws. Endpoi nt -
Ref er ence for the Endpoi nt instance.

get Endpoi nt Ref er ence(Li st <El enment > r ef er encePar anet ers) Creates and returns apdvax-
.xm . ws. Endpoi nt Ref er ence for a publishedEndpoi nt . If the binding is SOAP 1.1/HTTP or
SOAP 1.2/HTTP, thenpavax. xnl . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence MUST be re-
turned. Areturne®BCEndpoi nt Ref er ence MUST also contain the specifie@f er encePar anet er s.
An implementation MUST throw pavax. xmi . ws. WebSer vi ceExcept i on if the Endpoi nt in-
stance has not been published. An implementation MUST theowa. | ang. Unsuppor t edQOper at i on-
Excepti on if the Endpoi nt instance uses the XML/HTTP binding.

get Endpoi nt Ref er ence(Cl ass<T> cl azz, List<El enent> referenceParaneters) Createsand
returns and avax. xm . ws. Endpoi nt Ref er ence of type cl azz for a publishedEndpoi nt in-
stance. Ifcl azz is of typej avax. xm . ws. wsaddr essi ng. WBCEndpoi nt Ref er ence, then the
returnedWBCEndpoi nt Ref er ence MUST contain the specifiedef er encePar anet er s. An im-
plementation MUST throw @avax. xm . ws. WWebSer vi ceExcept i on if the Endpoi nt instance
has not been published. If the Classazz is not a subclass @hdpoi nt Ref er ence or theEndpoi nt
implementation does not suppdhdpoi nt Ref er ences of typecl azz aj avax. xm . ws. Web-
Ser vi ceExcept i on MUST be thrown. Animplementation MUST thrgvava. | ang. Unsuppor t ed-
Oper at i onExcept i on if the Endpoi nt instance uses the XML/HTTP binding.

5.3 javax.xml.ws.WebServiceContext

Thej avax. xm . ws. WebSer vi ceCont ext interface makes it possible for an endpoint implementation
object and potentially any other objects that share itsui@t context to access information pertaining to
the request being served.

The result of invoking any methods on tkébSer vi ceCont ext of a component outside the invocation
of one of its web service methods is undefined. An implementaSHOULD throw aj ava. | ang-
.I'l'l egal St at eExcepti onif it detects such a usage.

The WebSer vi ceCont ext is treated as an injectable resource that can be set at teeatinendpoint is
initialized. TheWebSer vi ceCont ext object will then use thread-local information to return tteerect
information regardless of how many threads are concuyrdrgting used to serve requests addressed to the
same endpoint object.

In Java SE, the resource injection denoted byisieSer vi ceCont ext annotation is REQUIRED to take
place only when the annotated class is an endpoint implextientclass.

May 7, 2007 JAX-WS 2.1 75

Chapter 5. Service APIs

The following code shows a simple endpoint implementatitass which requests the injection of its
WebSer vi ceCont ext :

@\ébServi ce
public class Test {
@Resour ce
private WbServi ceCont ext context;

public String reverse(String inputString) { ... }

~NOoO b~ WNPER

Thej avax. annot at i on. Resour ce annotation defined by JSR-250]31] is used to request injeaif
the WebSer vi ceCont ext . The following constraints apply to the annotation eleraesftaResour ce
annotation used to inject\&bSer vi ceCont ext :

» Thetype element MUST be eitherava. | ang. Obj ect (the default) orj avax. xm . ws. \eb-
Ser vi ceCont ext . If the former, then the resource MUST be injected into afied a method. In
this case, the type of the field or the type of the JavaBeamzeapty defined by the method MUST be
javax. xm . ws. WebSer vi ceCont ext .

» Theaut henti cati onType, shar eabl e elements, if they appear, MUST have their respective de-
fault values.

The above restriction onype guarantees that a resource typa\ebSer vi ceCont ext is either explicitly
stated or can be inferred from the annotated field/methathdstion. Moreover, the field/method type must
be assignable from the type described by the annotatigipe element.

When running on the Java SE platform, treare andmappedNane elements are ignored. As a consequence,
on Java SE there is no point in declaring a resource of WylsSer vi ceCont ext on the endpoint class
itself (instead of one of its fields/methods), since it widre accessible at runtime via JNDI.

When running on the Java EE 5 platform, resources of WgieSer vi ceCont ext are treated just like all
other injectable resources there and are subject to theramts prescribed by the platform specification
32].

Note: When using method-based injection, it is recommended lieatnethod be declared as non-public,
otherwise it will be exposed as a web service operation.ridtévely, the method can be marked with the
@webMet hod(excl ude=t r ue) annotation to ensure it will not be part of the generated Pypee for the
service.

5.3.1 MessageContext

The message context made available to endpoint instaredseviébSer vi ceCont ext acts as a restricted
window on to theMessageCont ext of the inbound message following handler execution (septeh®).
The restrictions are as follows:

» Only properties whose scopeAPPLI CATI ON are visible using &essageCont ext obtained from
aWebSer vi ceCont ext ; theget method returnsul | for properties wittHANDLER scope, theset
returned bykeySet only includes properties witAPPLI CATI ON scope.

» New properties set in the context are set in the underlyimgsageCont ext with APPLI CATI ON
scope.

76 JAX-WS 2.1 May 7, 2007

5.4. javax.xml.ws.wsaddressing. W3CEndpointReferendd8r

» An attempt to set the value of property whose scoptAlDLER in the underlyingvessageCont ext
results in an | | egal Ar gunent Except i on being thrown.

» Only properties whose scopeASPLI CATI ON can be removed using the context. An attempt to re-
move a property whose scopeH8NDLERin the underlyingvessageCont ext resultsinan | | egal -
Ar gunent Except i on being thrown.

» TheMap. put Al | method can be used to insert multiple properties at onceh praperty is inserted
individually, each insert operation being carried out amni¢losed by a try/catch block that traps any
Il | egal Argunent Excepti on. Consequentlyput Al | is not atomic: it silently ignores properties
whose scope iBANDLER and it never throws ahl | egal Ar gument Except i on.

The MessageCont ext is used to store handlers information between request aspbmee phases of a
message exchange pattern, restricting access to contgdrfies in this way ensures that endpoint imple-
mentations can only access properties intended for their us

5.4 javax.xml.ws.wsaddressing.W3CEndpointReferenceBu ilder

Occasionally it is necessary for one application compot@nteate arEndpoi nt Ref er ence for another
web service endpoint. TH8CEndpoi nt Ref er enceBui | der class provides a standard API for creating
VBCEndpoi nt Ref er ence instances for web service endpoints.

May 7, 2007 JAX-WS 2.1 77

Chapter 5. Service APIs

78

JAX-WS 2.1

May 7, 2007

Chapter 6

Core APIs

This chapter describes the standard core APIs that may lidbydsoth client and server side applications.

6.1 javax.xml.ws.Binding

Thej avax. xm . ws. Bi ndi ng interface acts as a base interface for JAX-WS protocol bggli Bindings
to specific protocols extendi ndi ng and may add methods to configure specific aspects of thabqub
binding’s operation. Chapt€rl0 describes the JAX-WS SOiBiihg; chaptef1l1 describes the JAX-WS
XML/HTTP binding.

Applications obtain @i ndi ng instance from @i ndi ngPr ovi der (a proxy orDi spat ch instance) or
from anEndpoi nt using theget Bi ndi ng method (see sectiofs ¥[Z.15.2).

A concrete binding is identified by kinding id i.e. a URI. This specification defines a number of stan-
dard bindings and their corresponding identifiers (se@EaID anf11). Implementations MAY support
additional bindings. In order to minimize conflicts, therdéer for an implementation-specific binding
SHOULD use a URI scheme that includes a domain name or equiyal.g. the "http” URI scheme. Such
identifiers SHOULD include a domain name controlled by timplementation’s vendor.

Bi ndi ng provides methods to manipulate the handler chain confibarean instance (see sectlon 92.1).

& Conformance (Read-only handler chaingh implementation MAY prevent changes to handler chains
configured by some other means (e.g. via a deployment gésQrby throwingunsuppor t edQper at i on-
Except i on from theset Handl er Chai n method of8i ndi ng

6.2 javax.xml.ws.spi.Provider

Provi der is an abstract service provider interface (SPI) factorgstaat provides various methods for the
creation ofEndpoi nt instances an@er vi ceDel egat e instances. These methods are designed for use by
other JAX-WS API classes, such &sr vi ce (sed4]l) an&ndpoi nt (sed5.R) and are not intended to be
called directly by applications.

TheProvi der SPI allows an application to use a different JAX-WS impletagan from the one bundled
with the platform without any code changes.

< Conformance (Concrejeavax. xm . ws. spi . Provi der required): Animplementation MUST provide

May 7, 2007 JAX-WS 2.1 79

Chapter 6. Core APIs

a concrete class that exterjdsvax. xm . ws. spi . Provi der . Such a class MUST have a public construc-
tor which takes no arguments.

6.2.1 Configuration

TheProvi der implementation class is determined using the followingpatgm. The steps listed below
are performed in sequence. At each step, at most one camdig@ementation class name will be produced.
The implementation will then attempt to load the class wlih given class name using the current context
class loader or, missing one, thava. | ang. d ass. f or Name(St ri ng) method. As soon as a step results
in an implementation class being successfully loaded, lgwithm terminates.

1. If aresource with the name BETA- | NF/ ser vi ces/ j avax. xml . ws. spi . Provi der exists, then
its first line, if present, is used as the UTF-8 encoded naftieecimplementation class.

2. Ifthe${j ava. hone}/ | i b/ j axws. proper ti es file exists and it is readable by thava. util -
. Properties. | oad(lnput Stream) method and it contains an entry whose key avax. xni -
. Ws. spi . Provi der, then the value of that entry is used as the name of the impiatien class.

3. If a system property with the namavax. xml . ws. spi . Provi der is defined, then its value is used
as the name of the implementation class.

4. Finally, a default implementation class name is used.

6.2.2 Creating Endpoint Objects

Endpoints can be created using the following methodBrarvi der :

creat eEndpoi nt (String bindingl D, Cbject inplenmentor) Creates and returns @amdpoi nt
for the specified binding and implementor.If thiendi ngl d i s nul | and no binding information is
specified via th¢ avax. xm . ws. Bi ndi ngType annotation then a default SOAP1.1/HTTP binding
MUST be used.

cr eat eAndPubl i shEndpoi nt (String address, Object inplenentor) Createsand publishes an
Endpoi nt for the given implementor. The binding is chosen by defaakdal on the URL scheme
of the provided address (which must be a URL). If a suitabialibig if found, the endpoint is cre-
ated then published as if ti®dpoi nt . publ i sh(Stri ng address) method had been called. The
createdEndpoi nt is then returned as the value of the method.

An implementor object MUST be either:

 an instance of a SEl-based endpoint class, i.e. a classaedavith the@bSer vi ce annotation
according to the rules in chapfdr 3, or

* an instance of a provider class, i.e. a class implementiagrtovi der interface and annotated with
theWebSer vi cePr ovi der annotation according to the ruledinl.1.

Thecr eat eAndPubl i shEndpoi nt (Stri ng, Obj ect) method is provided as a shortcut for the common
operation of creating and publishing &ndpoi nt . It corresponds to the statpubl i sh method defined
on theEndpoi nt class, seE5.2.1.

80 JAX-WS 2.1 May 7, 2007

6.3. javax.xml.ws.spi.ServiceDelegate

{ Conformance (Provider createAndPublishEndpoint Methddlle effect of invoking thecr eat eAnd-
Publ i shEndpoi nt method on &r ovi der MUST be the same as first invoking tlee eat eEndpoi nt
method with the binding ID appropriate to the URL scheme Uetie address, then invoking thebl i sh-
(String address) method on the resultingndpoi nt .

6.2.3 Creating ServiceDelegate Objects

javax. xml . ws. spi . Servi ceDel egat e[6.3 can be created using the following methodPonvi der :

creat eServi ceDel egat e(URL wsdl Docunent Locati on, QName servi ceNane, C ass serviceC ass)
Creates and returnsSer vi ceDel egat e for the specified service. When starting from WSDL the
serviceClass will be the generated service class as dedarilsectiof 217. In the dynamic case where
there is no service class generated it willjlzevax. xm . ws. Ser vi ce. The serviceClass is used by
the Ser vi ceDel egat e to get access to the annotations.

6.2.4 EndpointReferences

ThePr ovi der class provides the following methods to cregtelpoi nt Ref er ence instances.

r eadEndpoi nt Ref er ence(j avax. xnl . t ransf or m Sour ce source) Unmarshalls and returng avax-
. xm . ws. Endpoi nt Ref er ence from the infoset contained isour ce.

cr eat eWBCEndpoi nt Ref er ence Creates &BCEndpoi nt Ref er ence using the specifie@t ri ng addr ess,
QNarre servi ceNane, QNarme port Nane, Li st <El ement > nmet adata, Stri ng
wsdl Docunent Locat i on, andLi st <El enent > r ef er encePar anet er s parameters.

6.2.5 Getting Port Objects

The following method can be used to get a proxy for a Port.

get Port (Endpoi nt Ref erence epr, C ass<T> sei, WbServiceFeature... features) Gets
a proxy for thesei that can be used to invoke operations on the endpoint refésriy theepr . The
specifiedf eat ures MUST be enabled/disabled and configured as specified. Thenest proxy
MUST use theepr to determine the endpoint address and any reference paanteat MUST be
sent on endpoint invocations. Tepr MUST NOT be used directly as the value of an WS-Addressing
header such assa: Repl yTo.

6.3 javax.xml.ws.spi.ServiceDelegate

Thej avax. xm . ws. spi . Ser vi ceDel egat e class is an abstract class that implementations MUST pro-
vide. This is the class thatavax. xml . ws. Ser vi ce B class delegates all methods, except the static
cr eat e methods to. ServiceDelegate is defined as an abstractfolafsgure extensibility purpose.

{ Conformance (Concrejeavax. xml . ws. spi . Ser vi ceDel egat e required): Animplementation MUST
provide a concrete class that extenpdsax. xml . ws. spi . Ser vi ceDel egat e.

May 7, 2007 JAX-WS 2.1 81

Chapter 6. Core APIs

6.4 Exceptions
The following standard exceptions are defined by JAX-WS.

javax. xml . ws. WebSer vi ceExcept i on A runtime exception that is thrown by methods in JAX-WS
APIs when errors occur during local processing.

javax. xnml . ws. Prot ocol Excepti on A base class for exceptions related to a specific protocalibg.
Subclasses are used to communicate protocol level faoltnetion to clients and may be used by a
service implementation to control the protocol specifiglfaepresentation.

javax. xnml . ws. soap. SOAPFaul t Except i on A subclass ofPr ot ocol Excepti on, may be used to
carry SOAP specific information.

javax. xml . ws. htt p. HTTPExcept i on Asubclass ofr ot ocol Excepti on, may be used to carry HTTP
specific information.

Editors Note 6.1 A future version of this specification may introduce a newegtion class to distinguish
errors due to client misconfiguration or inappropriate jpaneters being passed to an API from errors that
were generated locally on the sender node as part of the atiat process (e.g. a broken connection or
an unresolvable server name). Currently, both kinds ofreraze mapped to WebServiceException, but the
latter kind would be more usefully mapped to its own excapiipe, much like ProtocolException is.

6.4.1 Protocol Specific Exception Handling

& Conformance (Protocol specific fault generatiodyhen throwing an exception as the result of a pro-
tocol level fault, an implementation MUST ensure that theegtion is an instance of the appropriate
Pr ot ocol Excepti on subclass. For SOAP the appropridteot ocol Except i on subclass isSOAP-
Faul t Excepti on, for XML/HTTP is isHTTPExcept i on.

{ Conformance (Protocol specific fault consumptiodyhen an implementation catches an exception thrown
by a service endpoint implementation and the cause of thaption is an instance of the appropriate

Pr ot ocol Except i on subclass for the protocol in use, an implementation MUSEcéfthe information
contained in thér ot ocol Except i on subclass within the generated protocol level fault.

6.4.1.1 Client Side Example

try {
response = di spatch.invoke(request);
}

catch (SOAPFaul t Exception e) {
MNane soapFaul t Code = e. get Faul t (). get Faul t CodeAsQNane();

NOo o~ wWNPRE

6.4.1.2 Server Side Example

1 public void endpoint Operation() {
2 c.
3 if (sonmeProblem {

82 JAX-WS 2.1 May 7, 2007

6.5. javax.xml.ws.WebServiceFeature

SQAPFaul t fault = soapBi ndi ng. get SOAPFact ory(). creat eFaul t (
faultcode, faultstring, faultactor, detail);
t hr ow new SOAPFaul t Exception(fault);

© oo~NOo Ohs

6.4.2 One-way Operations

{ Conformance (One-way operationd)/hen sending a one-way message, implementations MUST throw
aWebServi ceExcepti onif any error is detected when sending the message.

6.5 javax.xml.ws.WebServiceFeature

JAX-WS 2.1 introduces the notion of features. A feature samted with a particular functionality or be-
havior. Some features may only have meaning when used withicéindings while other features may be
generally useful. JAX-WS 2.1 introduces three standartufea,Addr essi ngFeat ur e, MTOVFeat ur e
andRespect Bi ndi ngFeat ur e as well as the baseebSer vi ceFeat ur e class. A JAX-WS 2.1 imple-
mentation may define its own features but they will be nortglade across all JAX-WS 2.1 implementations.

Each feature is derived from thavax. xm . ws. WebSer vi ceFeat ur e class. This allows the web service
developer to pass different typesw#bSer vi ceFeat ur es to the various JAX-WS APIs that utilize them.
Also, each feature should be documented using JavaDocseodeitived classes. EaalebSer vi ce-
Feat ure MUST have apublic static final String |IDfield that is used to uniquely identify the
feature.

{ Conformancej(avax. xnl . ws. WebSer vi ceFeat ur es): Each derived type gfavax. xm . ws. \eb-
Ser vi ceFeat ure MUST contain apublic static final String |Dfield that uniquely identifies
the feature against all features of all implementations.

Since vendors can specify their own features, care MUST kentavhen creating a feature ID so as to not
conflict with another vendor’s ID.

TheWebSer vi ceFeat ur e class also has agnabl ed property that is used to store whether a particular
feature should be enabled or disabled. Each derived typaldsipoovide either a constructor argument
and/or a method that will allow the web service developeetdlseenabl ed property. The meaning of en-
abled or disabled is determined by each individthSer vi ceFeat ur e. It is important that web services
developers be able to enable/disable specific features whgng their web applications. For example, a
developer may choose to implement WS-Addressing himselfewising the Dispatch and Provider APIs
and thus he MUST be able to tell JAX-WS to disable addressing.

{ Conformancednabl ed property): Each derived type gfavax. xn . ws. WebSer vi ceFeat ur e MUST
provide a constructor argument and/or method to allow thie sexvice developer to set the value of the
enabl ed property. The public default constructor MUST by defauttte enabl ed property tot r ue. An
implementation MUST honor the value of theabl ed property of any supportedébSer vi ceFeat ur e.

6.5.1 javax.xml.ws.soap.AddressingFeature

The Addr essi ngFeat ur e is used to control the use of WS-Addressing[24] by JAX-WSisTeature
MUST be supported with the SOAP 1.1/HTTP or SOAP 1.2/HTTRIinigs. Using this feature with any

May 7, 2007 JAX-WS 2.1 83

Chapter 6. Core APIs

other binding is undefined. This feature corresponds to ttdréssing annotation described in section

[CI41.

Enabling this feature on the server will result in the ruribeing capable of consuming and responding to
WS-Addressing headers.

Enabling this feature on the client will cause the JAX-WStime to include WS-Addressing headers in
SOAP messages as specified by WS-Addressing[24].

Disabling this feature will prevent a JAX-WS runtime fronmopessing or adding WS-Addressing headers
from/to SOAP messages even if the associated WSDL specifieswise. This may be necessary if a
client or endpoint needs to implement Addressing themselver example, a client that desires to use non-
anonymous ReplyTo can do so by disabling Aldelr essi ngFeat ur e and by usingdi spat ch<Sour ce>
with Message mode.

The Addr essi ngFeat ur e has one propertyequi r ed, that can be configured to control whether all in-
coming messages MUST contain Addressing headers..

TheAddr essi ngFeat ur e MAY be automatically enabled if the WSDL specifies its use manner sup-
ported by an implementation. Developers may choose to ptéhis from happening by explicitly disabling
the Addr essi ngFeat ur e.

6.5.1.1 javax.xml.ws.EndpointReference

The abstracEndpoi nt Ref er ence class is used by the JAX-WS APIs to reference a particulap@ntl
in accordance with the W3C Web Services Addressind_1.0R4¢h concrete instance of &ndpoi nt -
Ref er ence MUST contain avsa: Addr ess.

Applications may also use thlendpoi nt Ref er ence class in method signatures. JAXB 2.1 will will bind
theEndpoi nt Ref er ence base class tes: anyType. Applications should instead use concrete implemen-
tations ofEndpoi nt Ref er ence such ag avax. xml . ws. WBCEndpoi nt Ref er ence which will provide
better binding. JAX-WS implementations are required topsuptheVBCEndpoi nt Ref er ence class but
they may also provide oth&ndpoi nt Ref er ence subclasses that represent different versions of Address-

ing.

6.5.1.2 javax.xml.ws.W3CEndpointReference

The WBCEndpoi nt Ref er ence class is a concrete implementation of fh@vax. xnm . ws. Endpoi nt -
Ref er ence class and is used to reference endpoints that are complitimtive W3C Web Services Ad-
dressing 1.0 - Core[24] recommendation. Applications msg this class to paghdpoi nt Ref er ence
instancess as method parameters or return types. JAXB R.tiimd the WBCEndpoi nt Ref er ence class
to the W3C EndpointReference XML Schema in the WSDL.

6.5.2 javax.xml.ws.soap.MTOMFeature

The MrovFeat ur e is used to specify if MTOM should be used with a web services Téature should be
used instead of thpavax. xm . ws. soap. SOAPBI ndi ng. SOAP11HTTP_MIOMBI NDI NG, j avax. xm -

. Ws. soap. SOAPBi ndi ng. SOAP12HTTP_MIOMBI NDI NGand thg avax. xm . ws. soap. SOAPBi ndi ng-

. set MTOVEnabl ed() . This feature MUST be supported with the SOAP 1.1/HTTP or BAA/HTTP
bindings. Using this feature with any other bindings is dimd®l. This feature corresponds to thieOM
annotation described in sectibn 7.34.2.

84 JAX-WS 2.1 May 7, 2007

6.5. javax.xml.ws.WebServiceFeature

Enabling this feature on either the server or client willuteshe JAX-WS runtime using MTOM and for
binary data being sent as an attachment.

The MTOMFeature has one propettiir eshol d, that can be configured to serve as a hint for which binary
data SHOULD be sent as an attachment. Theeshol d is the size in bytes that binary data SHOULD be
in order to be sent as an attachment. Theeshol d MUST not be negative. The default valueis

& Conformancej(avax. xnl . ws. soap. MTOMFeat ur e): Animplementation MUST support thevax-
.xm . ws. soap. MTOVFeat ur e and itst hr eshol d property.

6.5.3 javax.xml.ws.RespectBindingFeature

TheRespect Bi ndi ngFeat ur e is used to control whether a JAX-WS implementation MUST eesihonor
the contents of thesdl : bi ndi ng associated with an endpoint. It has a correspon@gpect Bi ndi ng
annotation described in sectibn7.34.3.

{ Conformancej(avax. xnl . ws. Respect Bi ndi ngFeat ur e): Whenthg avax. xm . ws. Respect Bi ndi ng-
Feat ur e is enabled, a JAX-WS implementation MUST inspectihdl : bi ndi ng at runtime to determine
result and parameter bindings as well as asigll : ext ensi ons that have the equi r ed=t r ue attribute.

All requiredwsdl : ext ensi ons MUST be supported and honored by a JAX-WS implementatioassd
specificwsdl : ext ensi on has be explicitly disabled via\&bSer vi ceFeat ur e.

In order to not break backward compatibility with JAX-WS 2tle behavior with regards to respecting the
wsdl : bi ndi ng when this feature is disabled is undefined.

May 7, 2007 JAX-WS 2.1 85

Chapter 6. Core APIs

86

JAX-WS 2.1

May 7, 2007

Chapter 7

Annotations

This chapter describes the annotations used by JAX-WS.

For simplicity, when describing an annotation we use then troperty” in lieu of the more correct “an-
notation elements”. Also, for each property we list the difaalue, which is the default as it appears in
the declaration of the annotation type. Often propertie® hagical defaults which are computed based on
contextual information and, for this reason, cannot beuwraptusing the annotation element default facility
built into the language. In this case, the text described titealogical default is and how it is computed.

JAX-WS 2.0 uses annotations extensively. For an annotdtidme correct, besides being syntactically
correct, e.g. placed on a program element of the appropyipte it must obey a set of constraints detailed
in this specification. For annotations defined by JSR-1B&, annotation in question must also obey the
constraints in the relevant specification (se€ [14]).

< Conformance (Correctness of annotation&jr implementation MUST check at runtime that the annota-
tions pertaining to a method being invoked, either on thentlor on the server, as well as any containing
program elements (i.e. classes, packages) is in confoemaitic the specification for that annotation

{ Conformance (Handling incorrect annotationk)an incorrect or inconsistent annotation is detected:

* In a client setting, an implementation MUST NOT invoke tkenote operation being invoked, if any.
Instead, it MUST throw &¥bSer vi ceExcept i on, setting its cause to an exception approximating
the cause of the error (e.g. ahl egal Ar gunent Excepti on or ad assNot FoundExcepti on).

* In a server setting, annotation, an implementation MUSTINI3patch to an endpoint implementa-
tion object. Rather, it MUST generate a fault appropriatéhéobinding in use.

< Conformance (Unsupportét#bSer vi ceFeat ur eAnnot at i on): If an unrecongnized or unsupported
annotation annotated with th&bSer vi ceFeat ur eAnnot at i on meta-annotation:

* In a client setting, an implementation MUST NOT invoke tkenote operation being invoked, if any.
Instead, it MUST throw &¥bSer vi ceExcept i on, setting its cause to an exception approximating
the cause of the error (e.g. ahl egal Ar gunent Excepti on or ad assNot FoundExcepti on).

* In a server setting, annotation, an implementation MUSTINI3patch to an endpoint implementa-
tion object. Rather, it MUST generate a fault appropriatéhéobinding in use.

An implementation may check for correctness in a lazy waghaittime a method is invoked or a request
is about to be dispatched to an endpoint, or more aggregse.gl. when creating a proxy. In a container
environment, an implementation may perform any correstcegcks at deployment time.

May 7, 2007 JAX-WS 2.1 87

Chapter 7. Annotations

7.1 javax.xml.ws.ServiceMode

TheSer vi ceMode annotation is used to specify the mode for a provider classwihether a provider wants
to have access to protocol message payloads (e.g. a SOAP diotie entire protocol messages (e.g. a
SOAP envelope).

Table 7.1:Ser vi ceMbde properties.

Property Description Default

val ue The service mode, one of javax.xml.ws-
javax.xml.ws.Service.Mode. MESSAGE or .Service.Mode-
javax.xml.ws.Service.Mode.PAYLOAD. .PAYLOAD

MESSAGE means that the whole protocol
message will be handed to the provider
instance, PAYLOAD that only the payload of
the protocol message will be handed to the
provider instance.

The Ser vi ceMbde annotation type is marke@ nheri t ed, so the annotation will be inherited from the
superclass.

7.2 javax.xml.ws.WebFault

ThewebFaul t annotation is used when mapping WSDL faults to Java exaeptiee sectidn 2.5. Itis used
to capture the name of the fault element used when marshahm JAXB type generated from the global
element referenced by the WSDL fault message. It can alscé@ to customize the mapping of service
specific exceptions to WSDL faults.

Table 7.2:.WebFaul t properties.

Property Description Default

name The local name of the element

t ar get Nanespace The namespace name of the element

f aul t Bean The fully qualified name of the fault bean ™
class

7.3 javax.xml.ws.RequestWrapper

TheRequest W apper annotation is applied to the methods of an SEI. It is used ptuca the JAXB gen-
erated request wrapper bean and the element name and nam&spaarshalling / unmarshalling the bean.
The default value of ocal Nane element is th@per at i onNane as defined inébMet hod annotation and
the default value for thear get Namespace element is the target namespace of the SEI. When starting fro
Java, this annotation is used to resolve overloading ctsfhcdocument literal mode. Only th assName
element is required in this case.

88 JAX-WS 2.1 May 7, 2007

7.6. javax.xml.ws.WebEndpoint

Table 7.3:Request W apper properties.

Property Description Default
| ocal Nane The local name of the element

t ar get Nanespace The namespace name of the element
cl assNane The name of the wrapper class

7.4 javax.xml.ws.ResponseWrapper

The ResponseW apper annotation is applied to the methods of an SEI. It is used pduca the JAXB
generated response wrapper bean and the element name aggpaamfor marshalling / unmarshalling the
bean. The default value of thecal Nane element is theper at i onNane as defined in th&ebMet hod
appended with "Response” and the default value of theget Nanespace element is the target namespace
of the SEI. When starting from Java, this annotation is usegsolve overloading conflicts in document
literal mode. Only thel assNane element is required in this case.

Table 7.4:ResponseW apper properties.

Property Description Default
| ocal Nane The local name of the element

t ar get Nanespace The namespace nhame of the element
cl assNane The name of the wrapper class

7.5 javax.xml.ws.WebServiceClient

TheWebSer vi ced i ent annotation is specified on a generated service clas§ (d@gelPis used to asso-
ciate a class with a specific Web service, identify by a URla%/SDL document and the qualified name
of awsdl : servi ce element.

Table 7.5:WebSer vi ceCl i ent properties.

Property Description Default

name The local name of the service

t ar get Nanespace The namespace name of the service

wsdl Locati on The URL for the WSDL description of the ™
service

When resolving the URI specified as thedl Locat i on element or any document it may transitively
reference, a JAX-WS implementation MUST use the catalotjtiadefined in sectior’414.

7.6 javax.xml.ws.WebEndpoint

The WebEndpoi nt annotation is specified on thget PortNamé) methods of a generated service class
(seel2T7). Itis used to associate a get method with a spesitit: port, identified by its local name (a
NCNane).

May 7, 2007 JAX-WS 2.1 89

Chapter 7. Annotations

Table 7.6:WebEndpoi nt properties.

Property Description Default
name The local name of the port

7.6.1 Example

The following shows a WSDL extract and the resulting gemeratervice class.

1 <!-- WBDL extract -->

2 <wsdl:service nane="St ockQuot eServi ce">

3 <wsdl : port nanme="St ockQuot eHTTPPort" bi ndi ng="St ockQuot eHTTPBi ndi ng"/ >
4 <wsdl : port nane="St ockQuot eSMIPPort" bi ndi ng=" St ockQuot eSMIPBi ndi ng"/ >
5 </wsdl:service>

6

7 /]l Cenerated Service Interface

8 @\bServiced ient(name="St ockQuoteService",

9 tar get Nanespace="..."

10 wsdl Location="...")

11 public class StockQuoteService extends javax.xm .ws. Service {

12 public StockQuoteService() {

13 super (wsdl Locat i on_f romAnnot ati on, servi ceName_fromAnnot ati on);

14 }

15

16 public StockQuoteService(String wsdl Locati on, QNane servi ceName) {

17

18 }

19 @\ebEndpoi nt (nane=" St ockQuot eHTTPPort ")

20 public StockQuoteProvider get StockQuoteHTTPPort () {

21 return (StockQuoteProvider)super.gePort (portName, StockQuoteProvider.class);
22 }

23

24 @\¢bEndpoi nt (nane=" St ockQuot eSMIPPort ")

25 public StockQuoteProvider get StockQuoteSMIPPort () {

26 return (StockQuoteProvider)super.getPort(portName, StockQuoteProvider.class);
27 }

28 }

7.7 javax.xml.ws.WebServiceProvider

The WebSer vi cePr ovi der annotation is specified on classes that implement a styaygedj avax-
.xm . ws. Provi der. Itis used to declare that a class that satisfies the ragemés for a provider (see
[E.7) does indeed define a Web service endpoint, much like¢h&er vi ce annotation does for SEl-based
endpoints.

TheWebSer vi cePr ovi der andWebSer vi ce annotations are mutually exclusive.

& Conformance (WebServiceProvider and WebServiéeglass annotated with th&bSer vi cePr ovi der
annotation MUST NOT carry @ébSer vi ce annotation.

90 JAX-WS 2.1 May 7, 2007

7.9. javax.xml.ws.WebServiceRef

Table 7.7:WebSer vi cePr ovi der properties.

Property Description Default
wsdl Locati on The URL for the WSDL description
servi ceNane The name of the service
por t Nanme The name of the port

t ar get Nanespace The target namespace for the service

When resolving the URL specified as thsdl Locat i on element or any document it may transitively
reference, a JAX-WS implementation MUST use the cataloiljtiadefined in sectiod.414.

7.8 javax.xml.ws.BindingType

The Bi ndi ngType annotation is applied to an endpoint implementation cldtsspecifies the binding to
use when publishing an endpoint of this type.

Table 7.8:Bi ndi ngType properties.

Property Description Default
val ue The binding ID (a URI)

The default binding for an endpoint is the SOAP 1.1/HTTP a®ee (chaptdr0).

7.9 javax.xml.ws.WebServiceRef

TheWebSer vi ceRef annotation is used to declare a reference to a Web servidellolvs the resource
pattern exemplified by thpavax. annot at i on. Resour ce annotation in JSR-250[31].

ThewebSer vi ceRef annotation is required to be honored when running on the HBva platform, where
it is subject to the common resource injection rules deedrly the platform specification [32].

Table 7.9:WebSer vi ceRef properties.

Property Description Default
name The name identifying the Web service
reference.

wsdl Locati on A URL pointing to the location of the WSDL ™

document for the service being referred to.
type The resource type as a Java class object hj ect. cl ass
val ue The service type as a Java class object Obj ect. cl ass
mappedNane A product specific name that this resource ™

should be mapped to.

The name of the resource, as defined by thee element (or defaulted) is a name that is local to the
application component using the resource. (It's a name énJtiDI java.comp/env namespace.) Many

May 7, 2007 JAX-WS 2.1 91

Chapter 7. Annotations

application servers provide a way to map these local nameantes of resources known to the application
server. ThisrtappedNane is often a global INDI name, but may be a name of any form. Appbn servers
are not required to support any particular form or type of pegpname, nor the ability to use mapped
names. A mapped name is product-dependent and often atstaldependent. No use of a mapped name
is portable.

There are two uses to thvg&bSer vi ceRef annotation:

1. To define a reference whose type is a generated serviss. cla this case, theype andval ue
element will both refer to the generated service class tyyereover, if the reference type can be
inferred by the field/method declaration the annotatioagplied to, the ype andval ue elements
MAY have the default valuedbj ect . cl ass, that is). If the type cannot be inferred, then at least the
t ype element MUST be present with a non-default value.

2. To define a reference whose type is a SEI. In this caset, ythe element MAY be present with its
default value if the type of the reference can be inferrethftbe annotated field/method declaration,
but theval ue element MUST always be present and refer to a generateasateaiss type (a subtype
of j avax. xm . ws. Servi ce).

Thewsdl Locat i on element, if present, overrides the WSDL location informaspecified in th&ebSer vi ce
annotation of the referenced generated service class.

When resolving the URI specified as thedl Locat i on element or any document it may transitively
reference, a JAX-WS implementation MUST use the catalotjtiadefined in sectior’414.

7.9.1 Example

The following shows both uses of thiébSer vi ceRef annotation.

1

2 |l Cenerated Service Interface

3

4 @\ébServiced ient (name="St ockQuot eServi ce",

5 tar get Nanespace="..."

6 wsdl Location="...")

7 public interface StockQuoteService extends javax.xm .ws. Service {
8 @\ebEndpoi nt (nane="St ockQuot eHTTPPort ")

9 St ockQuot ePr ovi der get St ockQuot eHTTPPort () ;
10

11 @\ebEndpoi nt (nane=" St ockQuot eSMIPPort ")

12 St ockQuot ePr ovi der get St ockQuot eSMIPPort () ;
13 }

14

15 // Cenerated SEl

16

17 @+bServi ce(nane="St ockQuot eProvi der",

18 t ar get Namespace="...")

19 public interface StockQuoteProvider {

20 Doubl e get St ockQuote(String ticker);

21}

22

23 /] Sample client code

24

92 JAX-WS 2.1 May 7, 2007

7.10. javax.xml.ws.WebServiceRefs

25 (@t atel ess
26 public dientConponent {

27

28 /1 WebServi ceRef using the generated service interface type
29 @\ebSer vi ceRef

30 public StockQuoteService stockQuoteService;

31

32 /1 WebServi ceRef using the SElI type

33 @\ebServi ceRef (St ockQuot eSer vi ce. cl ass)

34 private StockQuoteProvider stockQuoteProvider;
35

36 /1 other nethods go here. ..

37}

7.10 javax.xml.ws.WebServiceRefs

TheWebSer vi ceRef s annotation is used to declare multiple references to Welcssron a single class.

It is necessary to work around the limition against speagyiepeated annotations of the same type on
any given class, which prevents listing multiglavax. ws. WebSer vi ceRef annotations one after the
other. This annotation follows the resource pattern exgieglby thej avax. annot ati on. Resour ces
annotation in JSR-250131].

Since no name and type can be inferred in this case,w&t$er vi ceRef annotation inside ®bSer vi ceRef s
MUST containnane andt ype elements with non-default values.

TheWebSer vi ceRef annotation is required to be honored when running on theB&va platform, where
it is subject to the common resource injection rules deedrity the platform specification [32].

Table 7.10:WebSer vi ceRef s properties.

Property Description Default
val ue An array ofWebSer vi ceRef annotations, {}
each defining a web service reference.

7.10.1 Example

The following shows how to use th&bSer vi ceRef s annotation to declare at the class level two web
service references. The first one uses the SEI type, whéleghond one uses a generated service class type.

1

2 @\ebServi ceRef s({ @\ebSer vi ceRef (nane="accounti ng"

3 t ype=Account i ngPort Type. cl ass,
4 val ue=Accounti ngServi ce. cl ass),
5 @\ebServi ceRef (name="payrol | ",

6 t ype=Payrol | Service. cl ass)})

7 (@tatel ess

8 public MyComponent {

9

10 /1 methods using the declared resources go here. ..

11}

May 7, 2007 JAX-WS 2.1 93

Chapter 7. Annotations

7.11 Annotations Defined by JSR-181

In addition to the annotations defined in the precedingi@ast JAX-WS 2.0 uses several annotations def-
ined by JSR-181.

& Conformance (JSR-181 conformancé).JAX-WS 2.0 implementation MUST be conformant to the JAX-
WS profile of JISR-181 1.1114].

As a convenience to the reader, the following sections chpre the definition of the JSR-181 annotations
applicable to JAX-WS.

7.11.1 javax.jws.WebService

@rar get ({ TYPE})

public @nterface WbService {
String name() default ""
String target Nanespace() default ""
String serviceNane() default ""
String wsdl Location() default "";
String endpointinterface() default "";
String portName() default "";

©CoOo~NOoOULh~, WNE

Consistently with the URI resolution process in JAX-WS, whesolving the URI specified as thwedl Locat i on
element or any document it may transitively reference, a-¥##X implementation MUST use the catalog
facility defined in sectioi 4l4.

7.11.2 javax.jws.WebMethod

@rar get ({ METHOD})

public @nterface WebMet hod {
String operationNane() default "";
String action() default ""
bool ean exclude() default false;

H

OO, WN PP

7.11.3 javax.jws.OneWay

1 @arget ({ METHOD})
2 public @nterface Oneway {
3 1

7.11.4 javax.jws.WebParam

@rar get ({ PARAMVETER})
public @nterface WebParam {
public enum Mode { IN, OUT, | NOUT };

abr wnNPE

String nane() default "";

94 JAX-WS 2.1 May 7, 2007

7.12. javax.xml.ws.Action

String target Nanespace() default
Mode node() default Mode.IN;
bool ean header () default false;
String partName() default "";

O ©OWow~NO®

7.11.5 javax.jws.WebResult

@rar get ({ METHOD})

public @nterface WebResult {
String nane() default "return";
String target Nanespace() default "";
bool ean header () default fal se;
String part Name() default ""

NOo o~ wWNPRE

7.11.6 javax.jws.SOAPBiInding
@arget ({ TYPE, METHOD})
public @nterface SOAPBI ndi ng {
public enum Style { DOCUMENT, RPC }
public enum Use { LI TERAL, ENCODED }

public enum ParaneterStyle { BARE, WRAPPED }

O©CoO~NOOOUOTA,WNLPE

Style style() default Style. DOCUMENT;
10 Use use() default Use. Ll TERAL;
11 Par amet er Styl e paraneterStyl e() default ParaneterStyle. WRAPPED;

7.11.7 javax.jws.HandlerChain

1 @arget ({TYPE})

2 public @nterface Handl er Chain {
3 String file();

4 String name() default

5 1}

7.12 javax.xml.ws.Action

The Act i on annotation is applied to the methods of a SEI. It used to §péle input, output WS-
Addressing Action values associated with the annotatetiodet

In this version of JAX-WS there is no standard way to specittién values in a WSDL and there is no
standard default value. It is intended that, after the W3C 0MEVS-Addressing has defined these items in
a recommendation, a future version of JAX-WS will require trew standards.

May 7, 2007 JAX-WS 2.1 95

Chapter 7. Annotations

Table 7.11:Act i on properties.

Property Description Default
faul t Array of Faul t Acti on for the
wsdl : f aul t s of the operation
i nput Action for thewsdl : i nput of the operation ™
out put Action for thewsdl : out put of the
operation

7.13 javax.xml.ws.FaultAction

TheFaul t Act i on annotation is used within th&ct i on annotation to specify the WS-Addressing Action
of a service specific exception as defined by se¢fidn 3.7.

In this version of JAX-WS there is no standard way to speciftién values in a WSDL and there is no
standard default value. It is intended that, after the W3C 0MEVS-Addressing has defined these items in
a recommendation, a future version of JAX-WS will require trew standards.

Table 7.12:Faul t Act i on properties.

Property Description Default
val ue Action for thewsdl : f aul t of the operation ™
out put Name of the exception class no defaults re-

quired propert

7.14 javax.xml.ws.spi.WebServiceFeatureAnnotation

TheWebSer vi ceFeat ur eAnnot at i on is a meta-annotation used by a JAX-WS implementation to-iden
tify other annotations agébSer vi ceFeat ures. JAX-WS provides the following annotations ‘asb-
Servi ceFeat ures: javax. xm . ws. soap. Addr essi ng, j avax. xnl . ws. soap. MTOM andj avax-

. xm . ws. Respect Bi ndi ng. If a JAX-WS implementation encounters an annotation atedtwith the
WebSer vi ceFeat ur eAnnot at i on that it does not support or recognize an ERROR MUST be given.

Table 7.13WebSer vi ceFeat ur eAnnot at i on properties.

Property Description Default

id Unique identifier for the No defaults re-
WebSer vi ceFeat ur e represented by the quired property
annotated annotation.

bean The class name of a derived No defaults re-
WebSer vi ceFeat ur e class associated with quired property
the annotated annotation.

The following shows how thaddr essi ng annotation uses th&bSer vi ceFeat ur eAnnot at i on meta-
annotation.

96 JAX-WS 2.1 May 7, 2007

7.14. javax.xml.ws.spi.WebServiceFeatureAnnotation

1 @+ebServi ceFeat ureAnnot ati on(i d=Addr essi ngFeat ure. |D,

2 bean=Addr essi ngFeat ur e. cl ass)
3 public @nterface Addressing {

4 [*%

5 * Specifies if this feature is enabl ed or disabled.
6 * |

7 bool ean enabl ed() default true;

8

9 | *x

10 * Property to determ ne whether WS- Addressing

11 * headers MJST be present on incom ng nessages.

12 * |

13 bool ean required() default false;

14 }

7.14.1 javax.xml.ws.soap.Addressing

The Addr essi ng annotation is applied to an endpoint implementation cligs.used to control the use of
WS-Addressin@[24[[33]. It corresponds with tAddr essi ngFeat ur e described in sectidn 6.%.1.

Table 7.14:Addr essi ng properties.

Property Description Default

enabl ed Specifies if WS-Addressing is enabled or not. true

requi red Specifies Adddressing headers MUST be false
present on incoming messages.

The definition of this annotation is incomplete in this releaf JAX-WS as there is no standard way to
convey the use of WS-Addressing via a WSDL and there is nalatdndefinition for the default value
of WS-Addressing Action headers; however, the runtime wiehaf this annotation is well-defined. It is
intended that a future version of JAX-WS will require the o$¢he standard mechanism to convey the use
of WS-Addressing via WSDL and default values for WS-Addimg#\ction headers as defined by the W3C
WG on WS-Addressing.

To write a portable endpoint and its corresponding clierthwhis version of JAX-WS, an endpoint MUST
explicitly specify what WS-Addressing Actions are to bedis@& theAct i on andFaul t Act i on annota-
tions. The client MUST explicitly enable addresssing viaAlddr essi ngFeat ur e, and for each invoca-
tion, the client MUST explicitly set thBi ndi ngPr ovi der . SOAPACTI ON.URI _PROPERTY. After the W3C
WG on WS-Addressing has specified how the use of WS-Addmgssiapecified in the WSDL, and what
the default value must be for Action headers, a future varefaJAX-WS will remove these requirements.

7.14.2 javax.xml.ws.soap.MTOM

TheMroMannotation is applied to an endpoint implementation cliss.used to control the use of MTOM.
It corresponds to theTOVFeat ur e described in sectidn 6.5.2.

Table 7.15:MrOMproperties.

Property Description Default
enabl ed Specifies if MTOM is enabled or not. true

May 7, 2007 JAX-WS 2.1 97

Chapter 7. Annotations

threshol d Specifies the size in bytes that binary data 0
SHOULD be before being sent as an
attachment.

7.14.3 javax.xml.ws.RespectBinding

The Respect Bi ndi ng annotation is applied to an endpoint implementation cldsss used to control
whether a JAX-WS implementation MUST respect/honor theaus of thewsdl : bi ndi ng associated
with an endpoint. It has a correspondiRgspect Bi ndi ngFeat ur e described in sectidn 6.5.3.

Table 7.16:Respect Bi ndi ng properties.
Property Description Default

enabl ed Specifies whether the wsdl:binding must be true
respected or not.

98 JAX-WS 2.1 May 7, 2007

Chapter 8

Customizations

This chapter describes a standard customization fadilday¢an be used to customize the WSDL 1.1 to Java
binding defined in sectionl 2.

8.1 Binding Language

JAX-WS 2.0 defines an XML-based language that can be useokttifg customizations to the WSDL 1.1
to Java binding. In order to maintain consistency with JAXE, call it abinding language Similarly,
customizations will hereafter be referred tob@sding declarations

All XML elements defined in this section belong to thet p: / / j ava. sun. coni xm / ns/ j axws names-
pace. For clarity, the rest of this section uses qualifiedneint names exclusively. Wherever it appears, the
j axws prefix is assumed to be bound to thiet p: / / j ava. sun. coml xm / ns/ j axws namespace name.

The binding language is extensible. Extensions are exguessng elements and/or attributes whose names-
pace name is different from the one used by this specificatio

{ Conformance (Standard binding declaratioriBlve ht t p: / / j ava. sun. com xm / ns/ j axws names-
pace is reserved for standard JAX-WS binding declaratiotm@lementations MUST support all standard
JAX-WS binding declarations. Implementation-specifinding declaration extensions MUST NOT use the
http://java. sun. com xm / ns/j axws namespace.

{ Conformance (Binding language extensibilitihynplementations MUST ignore unknown elements and
attributes appearing inside a binding declaration whoseespace name is not the one specified in the
standard, i.ehtt p: //j ava. sun. com xm / ns/ j axws.

8.2 Binding Declaration Container

There are two ways to specify binding declarations. In tret ipproach, all binding declarations pertaining
to a given WSDL document are grouped together in a standalonament, called aexternal binding
file (see[81). The second approach consists in embeddedinigditeclarations directly inside a WSDL
document (see8.3).

In either case, theaxws: bi ndi ngs element is used as a container for JAX-WS binding declaratidt
contains a (possibly empty) list of binding declaratiomsainy order.

May 7, 2007 JAX-WS 2.1 99

Chapter 8. Customizations

<j axws: bi ndi ngs wsdl Locati on="xs: anyURI " ?
node="xs:string"?
versi on="string"?>
...binding declarations...
</j axws: bi ndi ngs>

b wN k-

Figure 8.1: Syntax of the binding declaration container

Semantics

@wsdlILocation A URI pointing to a WSDL file establishing the scope of the s of this binding
declaration. It MUST NOT be present if theaxws: bi ndi ngs element is used as an extension
inside a WSDL document or one of its ancestaixws: bi ndi ngs elements already contains this
attribute.

@node An XPath expression pointing to the element in the WSDL filsgope that this binding declaration
is attached to. It MUST NOT be present if thaxws: bi ndi ngs appears inside a WSDL document.

@version A version identifier. It MUST NOT appear opaxws: bi ndi ngs elements which have any
j axws: bi ndi ngs ancestors (i.e. on non top-level binding declarations).

For the JAX-WS 2.0 specification, the version identifidrpiesent, MUST be 2. 0". If the @er si on
attribute is absent, it will implicitly be assumed to be0.

8.3 Embedded Binding Declarations

An embedded binding declaration is specified by usingj tivews: bi ndi ngs element as a WSDL exten-
sion. Embedded binding declarations MAY appear on any oélbments in the WSDL 1.1 namespace that
accept extension elements, per the schema for the WSDL ingspmce as amended by the WS-I Basic
Profile 1.1[18].

A binding declaration embedded in a WSDL document can orfigcathe WSDL element it extends. When
aj axws: bi ndi ngs element is used as a WSDL extension, it MUST NOT hawede attribute. Moreover,
it MUST NOT have an element whose qualified namgdsws: bi ndi ngs amongs its children.

8.3.1 Example

Figure[8.2 shows a WSDL document containing binding detitaraxtensions. For JAXB annotations, it
assumes that the prefiaxb is bound to the namespace name p: //j ava. sun. com’ xm / ns/ j axb.

8.4 External Binding File

Thej axws: bi ndi ngs element MAY appear as the root element of a XML document. Sudbcument is
called arexternal binding file

An external binding file specifies bindings for a given WSBacument. The WSDL document in question
is identified via the mandatorwsdl Locat i on attribute on the roof axws: bi ndi ngs element in the
document.

100 JAX-WS 2.1 May 7, 2007

8.4. External Binding File

O©CoOoO~NOOOUOTA,WNLPE

<wsdl : definitions target Nanespace="..." xnmns:tns=..." xmns:stns="...">
<wsdl : types>
<xs: schema tar get Nanmespace="http://exanpl e. org/ bar">
<xs:annot ati on>
<xs: appi nf o>
<j axb: bi ndi ngs>
...sone JAXB bindi ng decl arations..
</ j axb: bi ndi ngs>
</ xs: appi nf o>
</ xs: annot ati on>
<xs: el enent name="set Last TradePri ce">
<xs: conpl exType>
<XS:sequence>
<xs: el enent nanme="ti cker Synbol" type="xs:string"/>
<xs: el enent nanme="I| ast TradePrice" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el enent nanme="set Last TradePri ceResponse" >
<xs: conpl exType>
<xs:sequence/ >
</ xs: conpl exType>
</ xs: el ement >
</ xs: schema>
</ wsdl : types>

<wsdl : message nane="set Last TradePri ce" >
<wsdl : part nane="setPrice" el enent="stns: setlLast TradePrice"/>
</ wsdl : nessage>

<wsdl : message nane="set Last TradePri ceResponse" >

<wsdl : part nane="set Pri ceResponse" type="stns: setlast TradePri ceResponse"/>

</ wsdl : nressage>

<wsdl : port Type nane="St ockQuot eUpdat er " >
<wsdl : operati on nane="set Last TradePri ce">
<wsdl : i nput nessage="tns: set Last TradePrice"/>
<wsdl : out put nessage="tns: set Last TradePri ceResponse" />
<j axws: bi ndi ngs>
<j axws: net hod nane="updat ePrice"/ >
</ j axws: bi ndi ngs>
</ wsdl : oper ati on>
<j axws: bi ndi ngs>
<j axws: enabl eAsyncMappi ng>t r ue</ j axws: enabl eAsyncMappi ng>
</ j axws: bi ndi ngs>
</ wsdl : port Type>

<j axws: bi ndi ngs>
<j axws: package nanme="com acne. f 00"/ >
...additional binding declarations..

</ j axws: bi ndi ngs>

</wsdl : definitions>

Figure 8.2: Sample WSDL document with embedded bindingadatibns

May 7, 2007 JAX-WS 2.1 101

Chapter 8. Customizations

In an external binding filej axws: bi ndi ngs elements MAY appear as non-root elements, e.g. as a child
or descendant of the roptixws: bi ndi ngs element. In this case, they MUST carrypade attribute iden-
tifying the element in the WSDL document they annotate. Tdatjraxws: bi ndi ngs element implicitly
contains anode attribute whose value i/ , i.e. selecting the root element in the document. An XPath ex
pression on a hon-roptaxws: bi ndi ngs element selects zero or more nodes from the set of nodesexelec
by its parenf axws: bi ndi ngs element.

External binding files are semantically equivalent to edd®sl binding declarations (sE€l18.3). When a
JAX-WS implementation processes a WSDL document for whielnet is an external binding file, it MUST
operate as if all binding declarations specified in themekbinding file were instead specified as embedded
declarations on the nodes in the in the WSDL document thggetait is an error if, upon embedding the
binding declarations defined in one or more external bigdiles, the resulting WSDL document contains
conflicting binding declarations.

< Conformance (Multiple binding files)implementations MUST support specifying any number of exte
nal JAX-WS and JAXB binding files for processing in conjupatwith at least one WSDL document.

Please refer to sectién 8.5 for more information on proogs3AXB binding declarations.

8.4.1 Example

Figured 8B anfi’8 4 show an example external binding file\&&DL document respectively that express
the same set of binding declarations as the WSDL docum&nBid.8

©CoOoO~NOUTA~,WNE

<j axws: bi ndi ngs wsdl Location="http://exanpl e.org/foo.wsdl ">
<j axws: package nanme="com acne. f 00"/ >
<j axws: bi ndi ngs
node="wsdl : t ypes/ xs: scheng[t ar get Namespace="http://exanpl e.org/bar’]">
<j axb: bi ndi ngs>
...sone JAXB bi ndi ng decl arations..
</ j axb: bi ndi ngs>
</ j axws: bi ndi ngs>
<j axws: bi ndi ngs node="wsdl : port Type[@ane=" St ockQuot eUpdater’]">
10 <j axws: enabl eAsyncMappi ng>t rue</ j axws: enabl eAsyncMappi ng>
11 <j axws: bi ndi ngs node="wsdl : operati on[@amnme="set Last TradePrice’']">
12 <j axws: net hod nane="updat ePrice"/ >
13 </ j axws: bi ndi ngs>
14 </ j axws: bi ndi ngs>
15 ...additional binding declarations...
16 </ j axws: bi ndi ngs>

Figure 8.3: Sample external binding file for WSDL in figlr£l8

8.5 Using JAXB Binding Declarations

It is possible to use JAXB binding declarations in conjumativith JAX-WS.

The JAXB 2.0 bindings element, henceforth referred tpaah: bi ndi ngs, MAY appear as an annotation
inside a schema document embedded in a WSDL document, ieedescendant ofas: schena element
whose parent is thesdl : t ypes element. It affects the data binding as specified by JAXB 2.0

102 JAX-WS 2.1 May 7, 2007

8.5. Using JAXB Binding Declarations

O©CoOoO~NOUThA~,WNE

<wsdl : definitions target Nanespace="..." xnmns:tns="..." xmns:stns="...">
<wsdl : types>
<xs:schemn t ar get Namespace="htt p://exanpl e. org/ bar" >
<xs: el enent nanme="set Last TradePri ce">
<xs: conpl exType>
<XS:sequence>
<xs: el enent name="ticker Synbol" type="xs:string"/>
<xs: el enent nanme="I| ast TradePrice" type="xs:float"/>
</ xs: sequence>
</ xs: conpl exType>
</ xs: el enent >
<xs: el enent name="set Last TradePri ceResponse" >
<xs: conpl exType>
<xs:sequence/ >
</ xs: conpl exType>
</ xs: el enent >
</ xs: schema>
</ wsdl : types>

<wsdl : message nane="set Last TradePri ce" >
<wsdl : part nane="setPrice" el enent="stns: setLast TradePrice"/>
</ wsdl : nessage>

<wsdl : message nane="set Last TradePri ceResponse" >
<wsdl : part nane="set Pri ceResponse”
type="stns: set Last TradePri ceResponse"/ >
</ wsdl : nessage>

<wsdl : port Type nanme="St ockQuot eUpdat er " >
<wsdl : operati on nane="set Last TradePri ce">
<wsdl : i nput nessage="tns: set Last TradePrice"/>
<wsdl : out put nessage="tns: set Last TradePri ceResponse"/ >
</ wsdl : operati on>
</ wsdl : port Type>
</ wsdl : definitions>

Figure 8.4: WSDL document referred to by external bindimg ifi figure[8.3

May 7, 2007 JAX-WS 2.1 103

Chapter 8. Customizations

Additionally, j axb: bi ndi ngs MAY appear inside a JAX-WS external binding file as a chilapfaxws: -

bi ndi ngs element whoseaode attribute points to as: scherma element inside a WSDL document. When
the schema is processed, the outcome MUST be as jfakb: bi ndi ngs element was inlined inside the
schema document as an annotation on the schema component.

While processing a JAXB binding declaration (i.ej axb: bi ndi ngs element) for a schema document
embedded inside a WSDL document, all XPath expressiongpear inside it MUST be interpreted as if
the containings: schena element was the root of a standalone schema document.

Editors Note 8.1 This last requirement ensures that JAXB processors dowe ha be extended to incor-
porate knowledge of WSDL. In particular, it becomes posdibltake a JAXB binding file and embed itin a
JAX-WS binding file as-is, without fixing up all its XPatlpmssions, even in the case that the XML Schema
the JAXB binding file refers to was embedded in a WSDL.

8.6 Scoping of Bindings

Binding declarations are scoped according to the paraht-brerarchy in the WSDL document. For in-
stance, when determining the value of fhexws: enabl eW apper St yl e customization parameter for a
portType operation, binding declarations MUST be proagssehe following order, according to the el-
ement they pertain to: (1) the portType operation in quast(@) its parent portType, (3) the definitions
element.

Tools MUST NOT ignore binding declarations. It is an errougon applying all the customizations in
effect for a given WSDL document, any of the generated Jaueceacode artifacts does not contain legal
Java syntax. In particular, it is an error to use any resekegwords as the name of a Java field, method,
type or package.

8.7 Standard Binding Declarations

The following sections detail the predefined binding deatians, classified according to the WSDL ele-
ment they're allowed on. All these declarations reside miht p: //j ava. sun. coml xnml / ns/ j axws
namespace.

8.7.1 Definitions

The following binding declarations MAY appear in the coriteka WSDL document, either as an exten-
sion to thewsdl : defi ni ti ons element or in an external binding file at a place where thei@WSDL
document in scope.

1 <j axws: package name="xs:string">?

2 <j axws: j avadoc>xs: string</jaxws:javadoc>?
3 </j axws: package>
4

<j axws: enabl eW apper St yl e>?
Xs: bool ean
</ j axws: enabl eW apper St yl e>

<j axws: enabl eAsyncMappi ng>?

5
6
7
8
9
0 Xxs: bool ean

1

104 JAX-WS 2.1 May 7, 2007

8.7. Standard Binding Declarations

11 </ j axws: enabl eAsyncMappi ng>

12

13 <j axws: enabl eM MECont ent >?

14 Xs: bool ean

15 </ j axws: enabl eM MECont ent >
Semantics

package/@nameName of the Java package for the targetNamespace of thet pamiin defi ni ti ons
element.

package/javadoc/text() Package-level javadoc string.

enableWrapperStyle If present with a boolean value of ue (resp. f al se), wrapper style is enabled
(resp. disabled) by default for all operations.

enableAsyncMapping If present with a boolean value of ue (resp.f al se), asynchronous mappings are
enabled (resp. disbled) by default for all operations.

enableMIMEContent If present with a boolean value of ue (resp.f al se), use of theri ne: cont ent
information is enabled (resp. disabled) by default for pk@tions.

Theenabl eW apper St yl e declaration only affects operations that qualify for theappger style per the
JAX-WS specification. By default, this declarationtisue, i.e. wrapper style processing is turned on
by default for all qualified operations, and must be disddy using g axws: enabl eW apper Styl e
declaration with a value dfal se in the appropriate scope.

8.7.2 PortType

The following binding declarations MAY appear in the corteka WSDL portType, either as an extension
to thewsdl : port Type element or with aode attribute pointing at one.

<j axws: cl ass nane="xs:string">?
<j axws: j avadoc>xs: string</jaxws:javadoc>?
</jaxws:cl ass>

<j axws: enabl eW apper St yl e>?
Xs: bool ean
</j axws: enabl eW apper St yl e>

O©oO~NOOOUTA,WNLPE

<j axws: enabl eAsyncMappi ng>xs: bool ean</j axws: enabl eAsyncMappi ng>?

Semantics

class/@nameFully qualified name of the generated service endpointfate corresponding to the parent
wsdl : port Type.

class/javadoc/text() Class-level javadoc string.

enableWrapperStyle If present with a boolean value of ue (resp. f al se), wrapper style is enabled
(resp. disabled) by default for all operations in thesdl : port Type.

May 7, 2007 JAX-WS 2.1 105

Chapter 8. Customizations

enableAsyncMapping If present with a boolean value of ue (resp.f al se), asynchronous mappings are
enabled (resp. disabled) by default for all operationsisvkdl : port Type.

8.7.3 PortType Operation

The following binding declarations MAY appear in the coriteka WSDL portType operation, either as an
extension to thesdl : port Type/ wsdl : oper ati on element or with anode attribute pointing at one.

O©CoO~NOOUTA,WNPEP

<j axws: net hod nanme="xs:string">?
<j axws: j avadoc>xs: string</jaxws:javadoc>?
</j axws: met hod>
<j axws: enabl eW apper Styl e>?
xs: bool ean
</ j axws: enabl eW apper St yl e>
<j axws: enabl eAsyncMappi ng>?
10 xs: bool ean
11 </ j axws: enabl eAsyncMappi ng>
13 <j axws: parameter part="xs:string"
14 chi | dEl enent Name="xs: QNane" ?
15 nane="xs: string"/ >
Semantics

method/@name Name of the Java method corresponding tosigl : oper at i on.
method/javadoc/text() Method-level javadoc string.

enableWrapperStyle If present with a boolean value of ue (resp. f al se), wrapper style is enabled
(resp. disabled) by default for thigsdl : oper ati on.

enableAsyncMapping If present with a boolean value of ue, asynchronous mappings are enabled by
default for thiswsdl : oper ati on.

parameter/@part A XPath expression identifyingwsdl : part child of awsdl : message.

parameter/@childElementName The qualified name of a child element information item of tjiebal
type definition or global element declaration referredydahewsdl : part identified by the previous
attribute.

parameter/@name The name of the Java formal parameter corresponding to tfaengder identified by
the previous two attributes.

It is an error if two parameters that do not correspond to #mesJava formal parameter are assigned the
same name, or if a part/element that corresponds to the Jetvendhreturn value is assigned a name.

106 JAX-WS 2.1 May 7, 2007

[

8.7. Standard Binding Declarations

8.7.4 PortType Fault Message

The following binding declarations MAY appear in the coriteka WSDL portType operation’s fault mes-
sage, either as an extension to taall : port Type/ wsdl : operati on/ wsdl : f aul t element or with a
node attribute pointing at one.

<j axws: cl ass nane="xs:string">?
<j axws: j avadoc>xs: string</jaxws:javadoc>?
</jaxws: cl ass>
Semantics

class/@nameThe name of the generated exception class for this fault.

class/javadoc/text() Class-level javadoc string.

It is an error if faults that refer to the samed| : nessage element are mapped to exception classes with
different names.

8.7.5 Binding

The following binding declarations MAY appear in the corteka WSDL binding, either as an extension
to thewsdl : bi ndi ng element or with anode attribute pointing at one.

N

1 <j axws: enabl eM MECont ent >?
Xs: bool ean

3 </ j axws: enabl eM MECont ent >

Semantics

enableMIMEContent If present with a boolean value of ue (resp.f al se), use of thari ne: cont ent
information is enabled (resp. disabled) for all operatimnthis binding.

8.7.6 Binding Operation

The following binding declarations MAY appear in the conteka WSDL binding operation, either as an
extension to thesdl : bi ndi ng/ wsdl : oper ati on element or with amnode attribute pointing at one.

<j axws: enabl eM MECont ent >?
xs: bool ean
</ j axws: enabl eM MECont ent >

<j axws: parameter part="xs:string"
chi | dEl enent Nane="xs: QNane" ?
nane="xs: string"/ >

<j axws: exception part="xs:string">x
<j axws: cl ass name="xs: string">?

OQOWO~NOULA, WNPE

May 7, 2007 JAX-WS 2.1 107

Chapter 8. Customizations

11 <j axws: j avadoc>xs: string</jaxws:javadoc>?
12 </jaxws:cl ass>
13 </jaxws: excepti on>

Semantics

enableMIMEContent If present with a boolean value of ue (resp.f al se), use of theri ne: cont ent
information is enabled (resp. disabled) for this operation

parameter/@part A XPath expression identifyingwasdl : par t child of awsdl : nessage.

parameter/@childElementName The qualified name of a child element information item of tiebal
type definition or global element declaration referredydhewsdl : par t identified by the previous
attribute.

parameter/@name The name of the Java formal parameter corresponding to ttaengder identified by
the previous two attributes. The parameter in question Md&Tespond to aoap: header exten-
sion.

8.7.7 Service

The following binding declarations MAY appear in the corteka WSDL service, either as an extension
to thewsdl : servi ce element or with aode attribute pointing at one.

1 <j axws: cl ass nane="xs:string">?

2 <j axws: j avadoc>xs: string</jaxws:javadoc>?
3 </jaxws:cl ass>

Semantics

class/@nameThe name of the generated service interface.

class/javadoc/text() Class-level javadoc string.

8.7.8 Port

The following binding declarations MAY appear in the coriteka WSDL service, either as an extension
to thewsdl : port element or with anode attribute pointing at one.

1 <j axws: net hod name="xs: string">?

2 <j axws: j avadoc>xs: string</jaxws:javadoc>?
3 </j axws: met hod>

4

5 <j axws: provi der/ >?

Semantics

method/@name The name of the generated port getter method.

108 JAX-WS 2.1 May 7, 2007

8.7. Standard Binding Declarations

method/javadoc/text() Method-level javadoc string.
provider This binding declaration specifies that the annotated pidirbe used with thg avax. xm . ws-

. Provi der interface.

A port annotated with faxws: provi der binding declaration is treated specially. No service einttpo-
terface will be generated for it, since the application cadkeuse in its lieu thg avax. xnl . ws. Pr ovi der
interface. Additionally, the port getter method on the gatexl service interface will be omitted.

Editors Note 8.2 Omitting a getXYZPort() method is necessary for consigtdrecause if it existed it would
specify the non-existing SEI type as its return type.

May 7, 2007 JAX-WS 2.1 109

Chapter 8. Customizations

110 JAX-WS 2.1 May 7, 2007

Chapter 9

Handler Framework

JAX-WS provides a flexible plug-in framework for messagecpssing modules, known as handlers, that
may be used to extend the capabilities of a JAX-WS runtiméesys This chapter describes the handler
framework in detail.

{ Conformance (Handler framework supporin implementation MUST support the handler framework.

9.1 Architecture

The handler framework is implemented by a JAX-WS protocabbig in both client and server side run-
times. Proxies, andi spat ch instances, known collectively as binding providers, easd protocol bind-
ings to bind their abstract functionality to specific prodés (see figur€3l1). Protocol bindings can extend
the handler framework to provide protocol specific funatibity; chaptefZI0 describes the JAX-WS SOAP
binding that extends the handler framework with SOAP spefithctionality.

Client and server-side handlers are organized into an eddest known as a handler chain. The handlers
within a handler chain are invoked each time a message i®segteived. Inbound messages are processed
by handlers prior to binding provider processing. Outboorassages are processed by handlers after any
binding provider processing.

Handlers are invoked with a message context that providebkaug to access and modify inbound and
outbound messages and to manage a set of properties. Messaget properties may be used to facilitate
communication between individual handlers and betweedlaaand client and service implementations.
Different types of handlers are invoked with different tgp message context.

9.1.1 Types of Handler

JAX-WS 2.0 defines two types of handler:

Logical Handlers that only operate on message context propertiegaasage payloads. Logical handlers
are protocol agnostic and are unable to affect protocoliipg@arts of a message. Logical handlers
are handlers that implemejnavax. xn . ws. handl er . Logi cal Handl er.

Protocol Handlers that operate on message context properties atatplrepecific messages. Protocol
handlers are specific to a particular protocol and may acaed change protocol specific aspects of a

May 7, 2007 JAX-WS 2.1 111

Chapter 9. Handler Framework

Endpoint

has-a
get Bi ndi ng(): Bi ndi ng \ Binding

get Handl er Chai n() : Li st

BindingProvider set Handl er Chai n(Li st):void
has-a
get Bi ndi ng(): Bi ndi ng one-to-many
implements extends Handler

Proxy Dispatch

Figure 9.1: Handler architecture

message. Protocol handlers are handlers that implemeimtaniace derived fromavax. xm . ws-
. handl er . Handl er except avax. xm . ws. handl er. Logi cal Handl er .

Figure[Q.2 shows the class hierarchy for handlers.

Handlers for protocols other than SOAP are expected to imgie a protocol-specific interface that extends
javax. xm . ws. handl er. Handl er .

9.1.2 Binding Responsibilities

The following subsections describe the responsibilitieth® protocol binding when hosting a handler chain.

9.1.2.1 Handler and Message Context Management

The binding is responsible for instantiation, invocatiand destruction of handlers according to the rules
specified in sectiof 813. The binding is responsible fotanBation and management of message contexts
according to the rules specified in sectionl 9.4

& Conformance (Logical handler supporiMdl binding implementations MUST support logical handlers
(see sectioh 8.71.1) being deployed in their handler chains.

{ Conformance (Other handler suppoBinding implementations MAY support other handler typese(s
sectiof9.111) being deployed in their handler chains.

112 JAX-WS 2.1 May 7, 2007

9.1. Architecture

Handler<T>
T extends MessageContext

init(Map<String, Object>):void
destroy():void
handl eMessage(T) : bool ean
handl eFaul t (T) : bool ean
cl ose(MessageCont ext): void

extends extends
LogicalHandler<T> SOAPHandler<T>
T extends LogicalMessageContext T extends SOAPMessageContext

get Header s() : Set <QNanme>

Figure 9.2: Handler class hierarchy

& Conformance (Incompatible handlergdn implementation MUST thromébSer vi ceExcept i onwhen,
at the time a binding provider is created, the handler cheturned by the configuredandl er Resol ver
contains an incompatible handler.

& Conformance (Incompatible handlergjnplementations MUST throw\aébSer vi ceExcept i onwhen
attempting to configure an incompatible handler usingathedi ng. set Handl er Chai n method.

9.1.2.2 Message Dispatch

The binding is responsible for dispatch of both outbound iabdund messages after handler processing.
Outbound messages are dispatched using whatever meanstbeop binding uses for communication.
Inbound messages are dispatched to the binding providet:WA defines no standard interface between
binding providers and their binding.

9.1.2.3 Exception Handling

The binding is responsible for catching runtime exceptibmewn by handlers and respecting any resulting
message direction and message type change as describetion[8e3.2.

Outbound exceptionsare converted to protocol fault messages and dispatched udiatever means the
protocol binding uses for communication. Specific protdomdings describe the mechanism for their

1Outbound exceptions are exceptions thrown by a handlerésatt in the message direction being set to outbound aicgprd
to the rules in sectidi 3.3.2.

May 7, 2007 JAX-WS 2.1 113

Chapter 9. Handler Framework

particular protocol, sectidn 10.2.2 describes the meshamor the SOAP 1.1 binding. Inbound exceptions
are passed to the binding provider.

9.2 Configuration

Handler chains may be configured either programmaticallysing deployment metadata. The following
subsections describe each form of configuration.

9.2.1 Programmatic Configuration

JAX-WS only defines APIs for programmatic configurationatient side handler chains — server side han-
dler chains are expected to be configured using deploymetdadata.

9.2.1.1 javax.xml.ws.handler.HandlerResolver

A Servi ce instance maintains a handler resolver that is used wherirggearoxies orDi spat ch in-
stances, known collectively as binding providers. Durihg treation of a binding provider, the handler
resolver currently registered with a service is used toteraghandler chain, which in turn is then used to
configure the binding provider. MServi ce instance provides access tdhandl er Resol ver property,
viatheSer vi ce. get Handl er Resol ver andSer vi ce. set Handl er Resol ver methods. AHandl er -
Resol ver implements a single methoglet Handl er Chai n, which has one argumentPar t | nf o object.
The JAX-WS runtime uses tieor t | nf o argument to pass théandl er Resol ver of the service, port and
binding in use. Thefandl er Resol ver may use any of this information to decide which handlers wins
constructing the requested handler chain.

When aSer vi ce instance is used to create an instance of a binding provider the created instance is
configured with the handler chain created by Hendl er Resol ver instance registered on tiger vi ce
instance at that point in time.

¢ Conformance (Handler chain snapshdfhanging the handler resolver configured foBex vi ce in-
stance MUST NOT affect the handlers on previously createdi@s, orDi spat ch instances.

9.2.1.2 Handler Ordering

The handler chain for a binding is constructed by startir tie handler chain as returned by Heend! er -
Resol ver for the service in use and sorting its elements so that altdbdnandlers precede all protocol
handlers. In performing this operation, the order of harsdé# any given type (logical or protocol) in the
original chain is maintained. Figufe®.3 illustrates this.

Section[3.3P describes how the handler order relates torthex of handler execution for inbound and
outbound messages.

9.2.1.3 javax.jws.HandlerChain annotation

Thej avax. j ws. Handl er Chai n annotation defined by JSR-181]14] may be used to specifydectar-
ative way the handler chain to use for a service.

114 JAX-WS 2.1 May 7, 2007

9.2. Configuration

/Service \

Handler Resolver

L1 P1 P2 L2 P3 P4 P5 L3 P6

- /

Proxy/Dispatch creation

/" Binding Provider N

Binding

L1 | iL2i| | iL3i P1 P2 P3 P4 P5 P6

o /

Figure 9.3: Handler ordering,rLand Fh represent logical and protocol handlers respectively.

When used in conunction with JAX-WS, timanme element of theHandl er Chai n annotation, if present,
MUST have the default value (the empty string).

In addition to appearing on a endpoint implementation aassSEI, as specified by JSR-181, thend| er Chai n
annotation MAY appear on a generated service class. In #sg,dt affects all the proxies amilspat ch
instances created using any of the ports on the service.

& Conformance (HandlerChain annotatio®n implementation MUST support using thiandl er Chai n
annotation on an endpoint implementation class, inclu@irgovider, on an endpoint interface and on a
generated service class.

On the client, thedandl er Chai n annotation can be seen as a shorthand way of defining arallimgta
handler resolver (sée4.1.3).

{» Conformance (Handler resolver for a HandlerChain anrmtatiFor a generated service class (Eeg 2.7)
which is annotated with &8andl er Chai n annotation, the default handler resolver MUST return handl
chains consistent with the contents of the handler chaiorigsr referenced by theandl er Chai n anno-
tation.

Figure[9.3 shows an endpoint implementation class anmbveith aHandl er Chai n annotation.

9.2.1.4 javax.xml.ws.Binding

TheBi ndi ng interface is an abstraction of a JAX-WS protocol bindinge(sectiofLl6l1 for more details). As
described above, the handler chain initially configuredoinstance is a snapshot of the applicable handlers

May 7, 2007 JAX-WS 2.1 115

Chapter 9. Handler Framework

b wN P

@\ébServi ce
@andl er Chai n(fil e="sanpl e_chain.xm ")
public class MyService {

}

Figure 9.4: Use of thelandl er Chai n annotation

configured on theSer vi ce instance at the time of creatioBi ndi ng provides methods to manipulate the
initially configured handler chain for a specific instance

& Conformance (Binding handler manipulatiorfhanging the handler chain oBandi ng instance MUST
NOT cause any change to the handler chains configured orsdéhei ce instance used to create the
Bi ndi ng instance.

9.2.2 Deployment Model

JAX-WS defines no standard deployment model for handletssh@ model is provided by JSR 109[15]
“Implementing Enterprise Web Services”.

9.3 Processing Model

This section describes the processing model for handlgrsnithe handler framework.

9.3.1 Handler Lifecycle

In some cases, a JAX-WS implementation must instantiatellbaclasses directly, e.g. in a container
environment or when using th&andl er Chai n annotation. When doing so, an implementation must invoke
the handler lifecycle methods as prescribed in this section

If an application does its own instantiation of handlerg,. aising a handler resolver, then the burden of
calling any handler lifecycle methods falls on the applaaitself. This should not be seen as inconsistent,
because handlers are logically part of the applicationhs@ tontract will be known to the application
developer.

The JAX-WS runtime system manages the lifecycle of handdgrgwoking any methods of the handler
class annotated as lifecycle methods before and aftertdispg requests to the handler itself.

The JAX-WS runtime system is responsible for loading thedlerclass and instantiating the corresponding
handler object according to the instruction contained énapplicable handler configuration file or deploy-
ment descriptor.

The lifecycle of a handler instance begins when the JAX-W&ime system creates a new instance of the
handler class.

The runtime MUST then carry out any injections requested Hey Handler, typically via th¢ avax-
.annot ati on. Resour ce annotation. After all the injections have been carried mauding in the case
where no injections were requested, the runtime MUST intb&enethod carrying jpavax. annot at i on-
. Post Const ruct annotation, if present. Such a method MUST satisfy the requents in JSR-250 [31]

116 JAX-WS 2.1 May 7, 2007

9.3. Processing Model

for lifecycle methods (i.e. it has a void return type and takero arguments). The handler instance is then
ready for use.

& Conformance (Handler initialization)After injection has been completed, an implementation MUST
call the lifecycle method annotated wikwst Const r uct , if present, prior to invoking any other method
on a handler instance.

Once the handler instance is created and initialized itasqal into theReady state. While in theReady
state the JAX-WS runtime system may invoke other handlehaust as required.

The lifecycle of a handler instance ends when the JAX-WSimtsystem stops using the handler for
processing inbound or outbound messages. After taking dhdlér offline, a JAX-WS implementation
SHOULD invoke the lifecycle method which carrieg avax. annot at i on. Pr eDest r oy annotation, if
present, so as to permit the handler to clean up its resousced a method MUST satisfy the requirements
in JSR-250[[31] for lifecycle methods

An implementation can only release handlers after the riestahey are attached to, be it a proxy, a
Di spat ch object, an endpoint or some other component, e.g. a EJBtplgeeleased. Consequently,
in non-container environments, it is impossible to callheDest r oy method in a reliable way, and han-
dler instance cleanup must be left to finalizer methods agdlar garbage collection.

< Conformance (Handler destructiorin a managed environment, prior to releasing a handlernostaan
implementation MUST call the lifecycle method annotatethvifir eDest r oy method, if present, on any
Handl er instances which it instantiated.

The handler instance must release its resources and peatfieammup in the implementation of tPeeDest r oy
lifecycle method. After invocation of thier eDest r oy method(s), the handler instance will be made avail-
able for garbage collection.

9.3.2 Handler Execution

As described in sectidn 9.2.1.2, a set of handlers is managadinding as an ordered list called a handler

chain. Unless modified by the actions of a handler (see hatmrmal processing involves each handler in

the chain being invoked in turn. Each handler is passed aagesontext (see sectibn1d.4) whose contents
may be manipulated by the handler.

For outbound messages handler processing starts withrshadindler in the chain and proceeds in the same
order as the handler chain. For inbound messages the ordeva@ssing is reversed: processing starts with
the last handler in the chain and proceeds in the reverse oftlee handler chain. E.g., consider a handler
chain that consists of six handlef§; ... Hg in that order: for outbound messages handigrwould be
invoked first followed byHs, Hs, ..., and finally handlef; for inbound messagedg would be invoked
first followed by Hs, Hy, ..., and finallyH;.

In the following discussion the terms next handler and pnevihandler are used. These terms are relative
to the direction of the message, tablél 9.1 summarizes tresaning.

Handlers may change the direction of messages and the ditakendler processing by throwing an exception
or by returningf al se from handl eMessage or handl eFaul t . The following subsections describe each
handler method and the changes to handler chain processngnay cause.

May 7, 2007 JAX-WS 2.1 117

Chapter 9. Handler Framework

Message Direction Term Handler

Inbound Next H;_1
Previous H;ii

Outbound Next H;q

Previous H;_;
Table 9.1: Next and previous handlers for handigr

9.3.2.1 handl eMessage

This method is called for normal message processing. Fislppwompletion of its work theénandl e-
Message implementation can do one of the following:

Return t rue Thisindicates that normal message processing shouldhcantimhe runtime invokdsand| e-
Message on the next handler or dispatches the message (see sEdi@mYif there are no further
handlers.

Return f al se This indicates that normal message processing should.c&sgdesequent actions depend
on whether the message exchange pattern (MEP) in use reguiesponse to thmessage currently
being processedor not:

ResponseThe message direction is reversed, the runtime invokesil eMessage on the next
handler or dispatches the message (see sdcfion 9.1.h2jefare no further handlers.

No responseNormal message processing stogsese is called on each previously invoked handler
in the chain, the message is dispatched (see sdcfion 9.1.2.2

Throw Pr ot ocol Except i on or a subclass This indicates that normal message processing should.cease
Subsequent actions depend on whether the MEP in use requiesponse to the message currently
being processed or not:

ResponseNormal message processing stops, fault message processitsy The message direction
is reversed, if the message is not already a fault messagé theeplaced with a fault messége
and the runtime invokebandl eFaul t on the next handler or dispatches the message (see
sectio 9. 1.212) if there are no further handlers.

No responseNormal message processing stogsese is called on each previously invoked handler
in the chain, the exception is dispatched (see seCfion.9)1.2

Throw any other runtime exception This indicates that normal message processing should.c8abse-
quent actions depend on whether the MEP in use includes ansspo the message currently being
processed or not:

ResponseNormal message processing stagispse is called on each previously invoked handler in
the chain, the message direction is reversed, and the éxcéptlispatched (see section 9.112.3).

No responseNormal message processing stogsese is called on each previously invoked handler
in the chain, the exception is dispatched (see seCfion.9)1.2

2For a request-response MEP, if the message direction issesveluring processing of a request message then the message
becomes a response message. Subsequent handler protaesinthis change into account.

3Next in this context means the next handler taking into actthe message direction reversal

“The handler may have already converted the message to afestage, in which case no change is made.

118 JAX-WS 2.1 May 7, 2007

9.4. Message Context

9.3.2.2 handl eFaul t

Called for fault message processing, following completbits work thehandl eFaul t implementation
can do one of the following:

Return t rue This indicates that fault message processing should agntifihe runtime invokelsandl| e-
Faul t on the next handler or dispatches the fault message (seerdBcE.2.2) if there are no further
handlers.

Return f al se This indicates that fault message processing should cEasdt. message processing stops,
cl ose is called on each previously invoked handler in the chai félult message is dispatched (see

sectiof9.1.212).

Throw Pr ot ocol Except i on or a subclass This indicates that fault message processing should cease.
Fault message processing stopkpse is called on each previously invoked handler in the chain,
the exception is dispatched (see sedfion 9.11.2.3).

Throw any other runtime exception This indicates that fault message processing should cEBasé.mes-
sage processing stopd,ose is called on each previously invoked handler in the chaim gtkception
is dispatched (see sectibn 9.712.3).

9.3.2.3 close

A handler’'scl ose method is called at the conclusion of a message exchangamp@EP). It is called
just prior to the binding dispatching the final messageltfauexception of the MEP and may be used to
clean up per-MEP resources allocated by a handler.cThee method is only called on handlers that were
previously invoked via eithdrandl eMessage or handl eFaul t

< Conformance (Invoking| ose): Atthe conclusion of an MEP, an implementation MUST call¢hese
method of each handler that was previously invoked duriagMEP via eithehandl eMessage orhandl e-
Faul t .

< Conformance (Order afl ose invocations): Handlers are invoked in the reverse order in which they
were first invoked to handle a message according to the foiesormal message processing (Ee€®.3.2).

9.3.3 Handler Implementation Considerations

Handler instances may be pooled by a JAX-WS runtime systethingtances of a specific handler are
considered equivalent by a JAX-WS runtime system and artgrice may be chosen to handle a particular
message. Different handler instances may be used to haaclteneessage of an MEP. Different threads
may be used for each handler in a handler chain, for each geasan MEP or any combination of the
two. Handlers should not rely on thread local state to sha@mrmation. Handlers should instead use the
message context, see secfiod 9.4.

9.4 Message Context

Handlers are invoked with a message context that providékaug to access and modify inbound and
outbound messages and to manage a set of properties.

May 7, 2007 JAX-WS 2.1 119

Chapter 9. Handler Framework

Different types of handler are invoked with different typgfsmessage context. Sectidns 914.1 bnd 9.4.2
describeMessageCont ext andLogi cal MessageCont ext respectively. In addition, JAX-WS bindings
may define a message context subtype for their particutstopol binding that provides access to protocol
specific features. Secti@n1D.3 describes the messagextanibtype for the JAX-WS SOAP binding.

9.4.1 javax.xml.ws.handler.MessageContext

MessageCont ext is the super interface for all JAX-WS message contexts. terelsMap<Stri ng, -

Obj ect > with additional methods and constants to manage a set otgiep that enable handlers in a
handler chain to share processing related state. For egamplandler may use tipait method to insert

a property in the message context that one or more other dranidl the handler chain may subsequently
obtain via theget method.

Properties are scoped as eit®®PLI CATI ON or HANDLER. All properties are available to all handlers for
an instance of an MEP on a particular endpoint. E.g., if aclighandler puts a property in the message
context, that property will also be available to any protdwndlers in the chain during the execution of an
MEP instance APPLI CATI ON scoped properties are also made available to client afiplisa(see section
Z1) and service endpoint implementations. The defaapis for a property iSIANDLER.

< Conformance (Message context property scofepperties in a message context MUST be shared across
all handler invocations for a particular instance of an MEBRany particular endpoint.

9.4.1.1 Standard Message Context Properties

Table[9.2 lists the set of standavissageCont ext properties.

The standard properties form a set of metadata that desdtilzecontext of a particular message. The
property values may be manipulated by client applicatisesyice endpoint implementations, the JAX-WS
runtime or handlers deployed in a protocol binding. A JAX-Wi8time is expected to implement support
for those properties shown as mandatory and may implemppbsufor those properties shown as optional.

Table[Q@.3 lists the standankssageCont ext properties specific to the HTTP protocol. These properties
are only required to be present when using an HTTP-basethigind

Table[@.% lists those properties that are specific to emdpaiunning inside a servlet container. These
properties are only required to be present in the messagextaf an endpoint that is deployed inside a
servlet container and uses an HTTP-based binding.

9.4.2 javax.xml.ws.handler.LogicalMessageContext

Logical handlers (see sectibn@]1.1) are passed a messatgetauf typelLogi cal MessageCont ext when
invoked. Logi cal MessageCont ext extendsMessageCont ext with methods to obtain and modify the
message payload, it does not provide access to the profmaufis aspects of a message. A protocol binding
defines what component of a message are available via alagissage context. E.g., the SOAP binding,
see sectiof 10.1.].2, defines that a logical handler dedlay a SOAP binding can access the contents of
the SOAP body but not the SOAP headers whereas the XML/HTidhrig described in chapter]l1 defines
that a logical handler can access the entire XML payload oéssage.

Theget Sour ce() method ofLogi cal MessageCont ext MUST return null whenever the message doesn'’t
contain an actual payload. A case in which this might happemhen, on the server, the endpoint imple-

120 JAX-WS 2.1 May 7, 2007

9.4. Message Context

Table 9.2: StandarbiessageCont ext properties.
Mandatory Description

Name Type

j avax. xm . ws. handl er. message
. out bound Boolean

javax.xm . ws. bi ndi ng. attachment s
. i nbound

. out bound

javax. xm . ws.reference
. paraneters Li st <El enent >

j avax. xm . ws. wsdl
.description URI

.service QNane

. port QName
.interface QName
.operation QName

May 7, 2007

Y

Map< String,DataHandles Y

Map< String,DataHandler Y

JAX-WS 2.1

Specifies the message directionue
for outbound messagekal se for in-
bound messages.

A map of attachments to an inbound
message. The key is a unique identif-
ier for the attachment. The value is a
Dat aHandl er for the attachment data.

Bindings describe how to carry attach-
ments with messages.

A map of attachments to an outbound
message. The key is a unique identif-
ier for the attachment. The value is a
Dat aHandl er for the attachment data.

Bindings describe how to carry attach-
ments with messages.

A list of WS Addressing reference
parameters. The list MUST include all
SOAP headers marked with the

wsa: | sRef erencePar anet er =

"true" attribute.

A resolvable URI that may be used to
obtain access to the WSDL for the end-
point.

The name of the service being invoked
in the WSDL.

The name of the port over which the
current message was received in the
WSDL.

The name of the port type to which the
current message belongs.

The name of the WSDL operation to
which the current message belongs.
The namespace is the target namespace
of the WSDL definitions element.

121

Chapter 9. Handler Framework

Table 9.3: Standard HTTRessageCont ext properties.

Name Type

javax. xm . ws. http.request

. headers Map< String,List String>> Y

. met hod String Y
.querystring String Y

. pathinfo String Y
javax.xm . ws. http.response

. headers Map< String,List String>> Y

. code Integer Y
122 JAX-WS 2.1

Mandatory Description

A map of the HTTP headers for the re-
guest message. The key is the header
name. The value is a list of values for
that header.

The HTTP method for the request mes-
sage.

The HTTP query string for the
request message, onull if the
request does not have any. If
the address specified using the
javax.xml.ws.service.endpoint.address
in the BindingProvider contains a
query string and if the querystring
property is set by the client it will
override the existing query string in the
javax.xml.ws.service.endpoint.address
property. The value of the property
does not include the leading "?” of the
query string in it. This property is only
used with HTTP binding.

Extra path information associated with
the URL the client sent when it made
this request. The extra path informa-
tion follows the base url path but pre-
cedes the query string and will start
with a "/” character.

A map of the HTTP headers for the re-
sponse message. The key is the header
name. The value is a list of values for
that header.

The HTTP response status code.

May 7, 2007

9.4. Message Context

Table 9.4: Standard Servlet Container-Speditis sageCont ext properties.
Name Type Mandatory Description

j avax. xm . ws. servl et

. cont ext javax.servlet.ServletContext Y Theer vl et Cont ext ob-
ject belonging to the web
application that contains the
endpoint.

. request javax.servlet.http.HttpServietRequest Y THte: pSer vl et Request
object associated with the re-
quest currently being served.

.response javax.servlet.http.HttpServietResponse Y The
Ht t pSer vl et Response
object associated with the
request currently being
served.

mentation has thrown an exception and the protocol in use doedefine a notion of payload for faults
(e.g. the HTTP binding defined in chapled 11).

9.4.3 Relationship to Application Contexts

Client side binding providers have methods to access ctnfek outbound and inbound messages. As
described in sectioh 4.2.1 these contexts are used toliretia message context at the start of a message
exchange and to obtain application scoped properties fromessage context at the end of a message ex-
change.

As described in chaptél 5, service endpoint implementstinay require injection of a context from which
they can access the message context for each inbound masskageanipulate the corresponding application-
scoped properties.

Handlers may manipulate the values and scope of properitegvithe message context as desired. E.g.,
a handler in a client-side SOAP binding might introduce adeeanto a SOAP request message to carry
metadata from a property that originated iBiandi ngPr ovi der request context; a handler in a server-side
SOAP binding might add application scoped properties torthssage context from the contents of a header
in a request SOAP message that is then made available in titext@vailable (via injection) to a service
endpoint implementation.

May 7, 2007 JAX-WS 2.1 123

Chapter 9. Handler Framework

124 JAX-WS 2.1 May 7, 2007

Chapter 10

SOAP Binding

This chapter describes the JAX-WS SOAP binding and its si®es to the handler framework (described
in chaptefP) for SOAP message processing.

10.1 Configuration

A SOAP binding instance requires SOAP specific configoratn addition to that described in section]9.2.
The additional information can be configured either prograatically or using deployment metadata. The
following subsections describe each form of configuration

10.1.1 Programmatic Configuration

JAX-WS defines APIs for programmatic configuration of alieside SOAP bindings. Server side bindings
can be configured programmatically when usingEhdpoi nt API (sed5.R), but are otherwise expected to
be configured using annotations or deployment metadata.

10.1.1.1 SOAP Roles

SOAP 1.1[2] and SOAP 112[8] 4] use different terminology floe same concept: a SOAP Jattor is

equivalent to a SOAP 1.@le. This specification uses the SOAP 1.2 terminology.

An ultimate SOAP receiver always plays the following roles:

Next In SOAP 1.1, the next role is identified by the URI http://eofas.xmlsoap.org/soap/actor/next. In
SOAP 1.2, the next role is identified by the URI http://ww\v@.xrg/2003/05/soap-envelope/role/next.

Ultimate receiver In SOAP 1.1 the ultimate receiver role is identified by onuasof theact or attribute
from a SOAP header. In SOAP 1.2 the ultimate receiver rolddatified by the URI http://www.w3-
.0rg/2003/05/soap-envelope/role/ultimateReceiveryarrhission of the ol e attribute from a SOAP
header.

< Conformance (SOAP required roleshn implementation of the SOAP binding MUST act in the follow-
ing roles: next and ultimate receiver.

A SOAP 1.2 endpoint never plays the following role:

May 7, 2007 JAX-WS 2.1 125

Chapter 10. SOAP Binding

None In SOAP 1.2, the none role is identified by the URI http://wwe8.0rg/2003/05/soap-envelope/role-
/none.

{ Conformance (SOAP required roleshn implementation of the SOAP binding MUST NOT act in the
none role.

Thej avax. xm . ws. SOAPBI ndi ng interface is an abstraction of the JAX-WS SOAP binding. teexls
j avax. xm . ws. Bi ndi ng with methods to configure additional SOAP roles played leyghdpoint.

{ Conformance (Default role visibility)An implementation MUST include the required next and ultiema
receiver roles in th&et returned fromSOAPBI ndi ng. get Rol es.

& Conformance (Default role persistencéin implementation MUST add the required next and ultimate
receiver roles to the roles configured withAPBi ndi ng. set Rol es.

< Conformance (None role errorAn implementation MUST throw\bSer vi ceExcepti on if a client
attempts to configure the binding to play the none roleS@APBi ndi ng. set Rol es.

10.1.1.2 SOAP Handlers

The handler chain for a SOAP binding is configured as deedrih sectiod 8.2]11. The handler chain may
contain handlers of the following types:

Logical Logical handlers are handlers that implemgatax. xn . ws. handl er. Logi cal Handl er ei-
ther directly or indirectly. Logical handlers have accasdhe content of the SOAP body via the
logical message context.

SOAP SOAP handlers are handlers that implemjentax. xm . ws. handl er. soap. SOAPHandl er .

Mime attachments specified by thavax. xnl . ws. bi ndi ng. at t achnment s. i nbound andj avax. xni -
.ws. bi ndi ng. att achment s. out bound properties defined in theessageCont ext can be modif-
ied in logical handlers. A SOAP message with the attachmspesified using the properties is generated
before invoking the firsBOAPHandl er . Any changes to the two properites in consideration abowvhén
MessageCont ext after invoking the firstSOAPHandl er are ignored. The&OAPHandl er however may
change the properties in tiiessageCont ext

Use ofj avax. xm . ws. bi ndi ng. at t achnent s. out bound property in Dispatch

» When usingDi spat ch in SOAP / HTTP binding in payload mode, attachments spetifi©ing the
j avax. xm . ws. bi ndi ng. at t achment s. out bound property will be included as mime attach-
ments in the message.

* When usingDi spat ch in SOAP / HTTP binding in message mode, jtevax. xm . ws. bi ndi ng-
. attachnent s. out bound property will be ignored as the message type already pre\adeay to
specify attachments.

& Conformance (Incompatible handlerddn implementation MUST thromébSer vi ceExcept i onwhen,
at the time a binding provider is created, the handler cheturned by the configuredandl er Resol ver
contains an incompatible handler.

{ Conformance (Incompatible handlerdjnplementations MUST throw\abSer vi ceExcept i onwhen
attempting to configure an incompatible handler ushgdi ng. set Handl er Chai n.

{ Conformance (Logical handler acces#n implementation MUST allow access to the contents of the
SOAP body via a logical message context.

126 JAX-WS 2.1 May 7, 2007

10.2. Processing Model

10.1.1.3 SOAP Headers

The SOAP headers understood by a handler are obtained bsiggttHeader s method ofSOAPHandl er .

10.1.2 Deployment Model

JAX-WS defines no standard deployment model for handletssh@ model is provided by JSR 109[15]
“Implementing Enterprise Web Services”.

10.2 Processing Model

The SOAP binding implements the general handler framewookgssing model described in sectfon] 9.3
but extends it to include SOAP specific processing as dasdiin the following subsections.

10.2.1 SOAP nust Under st and Processing

The SOAP protocol binding performs the following additibpeocessing on inbound SOAP messages prior
to the start of normal handler invocation processing (setsd9.3.2). Refer to the SOAP specificatior[?, 3,
4] for a normative description of the SOAP processing moilkis section is not intended to supercede any
requirement stated within the SOAP specification, buteatb outline how the configuration information
described above is combined to satisfy the SOAP requirenent

1. Obtain the set of SOAP roles for the current binding instanThis is returned bg0APBI ndi ng-
. get Rol es.

2. Obtain the set aflandl er s deployed on the current binding instance. This is obtauee8i ndi ng-
. get Handl er Chai n.

3. Identify the set of header qualified names (QNames) timbinding instance understands. This is
the set of all headepNanes that satisfy at least one of the following conditions:

(a) that are mapped to method parameters in the service iemdperface;
(b) are members d8OAPHandl er . get Header s() for eachSOAPHandl er in the set obtained in
sted2;

(c) are directly supported by the binding instance.

4. ldentify the set of must understand headers in the inbowegsage that are targeted at this node. This
is the set of all headers withraist Under st and attribute whose value is or t r ue and anact or
orr ol e attribute whose value is in the set obtained in §lep 1.

5. For each header in the set obtained in §lep 4, the headedéstood if its QName is in the set
identified in ste B.

6. If every header in the set obtained in diép 4 is understibed, the node understands how to process
the message. Otherwise the node does not understand hoacesprthe message.

7. If the node does not understand how to process the megshageaeither handlers nor the endpoint
are invoked and instead the binding generates a SOAP musitsiadd exception. Subsequent actions
depend on whether the message exchange pattern (MEP) iequsecs a response to the message
currently being processed or not:

May 7, 2007 JAX-WS 2.1 127

Chapter 10. SOAP Binding

ResponseThe message direction is reversed and the binding disgatbeeSOAP must understand
exception (see sectign 10.P.2).
No response The binding dispatches the SOAP must understand exces@ansgection10.2.2).

10.2.2 Exception Handling

The following subsections describe SOAP specific requinets for handling exceptions thrown by handlers
and service endpoint implementations.

10.2.2.1 Handler Exceptions

A binding is responsible for catching runtime exceptiommawn by handlers and following the processing
model described in sectign 9.B.2. A binding is responsibtecbnverting the exception to a fault message
subject to further handler processing if the following erid are met:
1. A handler throws &r ot ocol Except i on from handl eMessage
2. The MEP in use includes a response to the message beirespeac
3. The current message is not already a fault message (théehamght have undertaken the work prior
to throwing the exception).

If the above criteria are met then the exception is convadedSOAP fault message as follows:

* If the exception is an instance &OAPFaul t Except i on then the fields of the contained SAAJ
SQOAPFaul t are serialized to a new SOAP fault message, see sécfio?1.d2he current message
is replaced by the new SOAP fault message.

* If the exception is of any other type then a new SOAP faultsags is created to reflect a server class
of error for SOAP 1.1]2] or a receiver class of error for SOAR3].

« Handler processing is resumed as described in s€ciiad. 9.3.

If the criteria for converting the exception to a fault megsaubject to further handler processing are not
met then the exception is handled as follows depending ooutirent message direction:

Outbound A new SOAP fault message is created to reflect a server clasga@ffor SOAP 1.1I2] or a
receiver class of error for SOAP 1.2[3] and the message [mttibed.

Inbound The exception is passed to the binding provider.

10.2.2.2 Service Endpoint Exceptions

Service endpoints can throw service specific exceptionsuotime exceptions. In both cases they can
provide protocol specific information using the cause na@i$m, see sectidn 6.4.1.

A server side implementation of the SOAP binding is resgmador catching exceptions thrown by a service
endpoint implementation and, if the message exchangepattase includes a response to the message that
caused the exception, converting such exceptions to SOAPessages and invoking thandl eFaul t
method on handlers for the fault message as described inrsECB.2.

SectiorZI0.Z. 213 describes the rules for mapping an exxefia SOAP fault.

128 JAX-WS 2.1 May 7, 2007

10.3. SOAP Message Context

10.2.2.3 Mapping Exceptions to SOAP Faults

When mapping an exception to a SOAP fault, the fields of thi# faessage are populated according to the
following rules of precedence:

f aul t code (Subcode in SOAP 1.2 Code set toenv: Recei ver)

1. SOAPFaul t Excepti on. get Faul t (). get Faul t CodeAsQNanme() !
2. env: Server (Subcode omitted for SOAP 1.2).

faul t string (Reason/ Text

1. SOAPFaul t Excepti on. get Faul t (). get Faul t String()?!
2. Excepti on. get Message()
3. Exception.toString()

e faul tactor (Rol e in SOAP 1.2)

1. SOAPFaul t Excepti on. get Faul t (). get Faul t Act or ()1
2. Empty

detail (Detail in SOAP 1.2)

1. Serialized service specific exception (S&empperExceptioget Faul t I nf o() in sectiofZb)
2. SOAPFaul t Exception. get Faul t (). getDetail ()?

10.3 SOAP Message Context

SOAP handlers are passedsa@APMessageCont ext when invoked. SOAPMessageCont ext extends
MessageCont ext with methods to obtain and modify the SOAP message payload.

10.4 SOAP Transport and Transfer Bindings

SOAP|[2,4] can be bound to multiple transport or transfetquols. This section describes requirements
pertaining to the supported protocols for use with SOAP.

10.4.1 HTTP

The SOAP 1.1 HTTP binding is identified by the URLt p: / / schenmas. xnl soap. or g/ wsdl / soap/ ht t p,
which is also the value of the constgrtvax. xnl . ws. soap. SOAPBi ndi ng. SOAP11HTTPBI NDI NG.

{ Conformance (SOAP 1.1 HTTP Binding Supporfin implementation MUST support the HTTP bind-
ing of SOAP 1.1[2] and SOAP With Attachmenis|34] as cladfiey the WS-I Basic Profile[18], WS-I
Simple SOAP Binding Profile[28] and WS-I Attachment Pre[29].

LIf the exception is &OAPFaul t Except i on or has a cause that isSOAPFaul t Except i on.

May 7, 2007 JAX-WS 2.1 129

Chapter 10. SOAP Binding

The SOAP 1.2 HTTP binding is identified by the URLt p: / / www. w3. or g/ 2003/ 05/ soap/ bi ndi ngs/ HTTP/ ,
which is also the value of the constdrstvax. xm . ws. soap. SOAPBi ndi ng. SOAP12HTTP_BI NDI NG,

< Conformance (SOAP 1.2 HTTP Binding Supporfin implementation MUST support the HTTP bind-
ing of SOAP 1.2]4].

10.4.1.1 MTOM
{> Conformance (SOAP MTOM Supportfn implementation MUST support MTONMI28]

SOAPBI ndi ng defines a property (in the JavaBeans sense) ciifié@Enabl ed that can be used to control
the use of MTOM. Thegyet MTOVEnabl ed method is used to query the current value of the property. The
set MTOVEnabl ed method is used to change the value of the property so as téeemablisable the use of
MTOM.

{ Conformance (Semantics of MTOM enabledithen MTOM is enabled, a receiver MUST accept both
non-optimized and optimized messages, and a sender MAY a&eraptimized message, hon-optimized
messages being also acceptable.

The heuristics used by a sender to determine whether to tisgizgition or not are implementation-specific.

& Conformance (MTOM support)PredefinedsOAPBI ndi ng instances MUST support enabling/disabling
MTOM support using theet MTOVenabl ed method.

& Conformance (SOAP bindings with MTOM disabled)he bindings corresponding to the following IDs:

j avax. xm . ws. soap. SOAPBI ndi ng. SOAP11HTTPBI NDI NG

j avax. xm . ws. soap. SOCAPBi ndi ng. SOAP12HTTPBI NDI NG

MUST have MTOM disabled by default.
For convenience, this specification defines two additidmading identifiers for SOAP 1.1 and SOAP 1.2
over HTTP with MTOM enabled.

The URL of the former isitt p: // schemas. xm soap. or g/ wsdl / soap/ ht t p?nt omet r ue and its predef-
ined constant avax. xm . ws. soap. SOAPBi ndi ng. SOAP11HTTP_MIOMBI NDI NG

The URL of the latter it t p: / / www. W3. or g/ 2003/ 05/ soap/ bi ndi ngs/ HTTP/ ?it omet r ue and its
predefined constaritavax. xm . ws. soap. SOAPBi ndi ng. SOAP12HTTP_MIOMBI NDI NG,

{ Conformance (SOAP bindings with MTOM enabled)he bindings corresponding to the following IDs:

j avax. xm . ws. soap. SCAPBIi ndi ng. SOAP11HTTP_MIOMLBI NDI NG

j avax. xm . ws. soap. SOAPBI ndi ng. SOAP12HTTP_MIOMLBI NDI NG

MUST have MTOM enabled by default.

{ Conformance (MTOM on Other SOAP Bindingspther bindings that exter&DAPBi ndi ng MAY NOT
support changing the value of tMEOVEnabl ed property. In this case, if an application attempts to change
its value, an implementation MUST throw&bSer vi ceExcept i on.

1JAX-WS inherits the JAXB support for the SOAP MTOM]26]/X (] mechanism for optimizing transmission of binary data
types, see sectidn 2.4.

130 JAX-WS 2.1 May 7, 2007

10.4. SOAP Transport and Transfer Bindings

10.4.1.2 One-way Operations

HTTP interactions are request-response in nature. Wheg &8I TP as the transfer protocol for a one-way
SOAP message, implementations wait for the HTTP resporeetaough there is no SOAP message in the
HTTP response entity body.

{ Conformance (One-way operationd)lhen invoking one-way operations, an implementation oB&\P-
/HTTP binding MUST block until the HTTP response is receioe@n error occurs.

Note that completion of the HTTP request simply means thatrdmsmission of the request is complete,
not that the request was accepted or processed.

10.4.1.3 Security

Section[£ZT]1 defines two standard context properfiesax. xm . ws. securi ty. aut h. user name
andj avax. xm . ws. security. aut h. passwor d) that may be used to configure authentication infor-
mation.

& Conformance (HTTP basic authentication suppofgimplementation of the SOAP/HTTP binding MUST
support HTTP basic authentication.

& Conformance (Authentication propertieg): client side implementation MUST support use of the the
standard propertigsavax. xm . ws. securi ty. aut h. user name andj avax. xm . ws. security. aut h-
. passwor d to configure HTTP basic authentication.

10.4.1.4 Session Management

Section[Z.Z.T]1 defines a standard context prop¢riygx. xm . ws. sessi on. mai nt ai n) that may be
used to control whether a client side runtime will join a s@ssitiated by a service.

A SOAP/HTTP binding implementation can use three HTTP meishas for session management:
Cookies To initiate a session a service includes a cookie in a messagdo a client. The client stores the
cookie and returns it in subsequest messages to the service.

URL rewriting To initiate a session a service directs a client to a new URIsiédsequent interactions.
The new URL contains an encoded session identifier.

SSL The SSL session ID is used to track a session.
R1120 in WS-I Basic Profile 1.[L[18] allows a service to uselllcookies. However, R1121 recommends
that a service should not rely on use of cookies for state gemant.

{ Conformance (URL rewriting supportAn implementation MUST support use of HTTP URL rewriting
for state management.

{ Conformance (Cookie supportfin implementation SHOULD support use of HTTP cookies fottesta
management.

{ Conformance (SSL session suppomn implementation MAY support use of SSL session based state
management.

May 7, 2007 JAX-WS 2.1 131

Chapter 10. SOAP Binding

10.4.1.5 Addressing

If the j avax. xnl . ws. soap. Addr essi ngFeat ur e is enabled, implementations are required to follow
WS-Addressin@[24]]33] protocols.

{ Conformance (SOAP Addressing Supporyn implementation MUST support WS-Addressing 1.0 SOAP
Binding[33].

132 JAX-WS 2.1 May 7, 2007

Chapter 11

HTTP Binding

This chapter describes the JAX-WS XML/HTTP binding. The S XML/HTTP binding provides
“raw” XML over HTTP messaging capabilities as used in manyb\lervices today.

11.1 Configuration

The XML/HTTP binding is identified by the URbt t p: / / ww. w3. or g/ 2004/ 08/ wsdl / ht t p, which
is also the value of the constgrdvax. xm . ws. htt p. HTTPBi ndi ng. HTTP_BI NDI NG.

& Conformance (XML/HTTP Binding Support)An implementation MUST support the XML/HTTP bind-
ing.

An XML/HTTP binding instance allows HTTP-specific configuion in addition to that described in section
[B2. The additional information can be configured eith@emgpammatically or using deployment metadata.
The following subsections describe each form of configarat

11.1.1 Programmatic Configuration

JAX-WS only defines APIs for programmatic configuration adient side XML/HTTP bindings — server
side bindings are expected to be configured using deploymetadata.

11.1.1.1 HTTP Handlers

The handler chain for an XML/HTTP binding is configured asatéed in section 3. 2.1. The handler chain
may contain handlers of the following types:

Logical Logical handlers are handlers that implemgatax. xm . ws. handl er. Logi cal Handl er ei-
ther directly or indirectly. Logical handlers have accasshie entire XML message via the logical
message context.

Use ofj avax. xnmi . ws. bi ndi ng. at t achnent s. out bound property in Dispatch

* When usingDi spat ch in XML / HTTP binding in payload mode, attachments specifiesing the
j avax. xml . ws. bi ndi ng. at t achment s. out bound property will be included as mime attach-
ments to the message.

May 7, 2007 JAX-WS 2.1 133

Chapter 11. HTTP Binding

* When usingDi spat ch in XML / HTTP binding in message mode, thavax. xm . ws. bi ndi ng-
. at tachnment s. out bound property will be ignored.Di spat ch of type Dat aSour ce should be
used to send mime attachments for the XML / HTTP binding insage mode.

& Conformance (Incompatible handlerddn implementation MUST thromébSer vi ceExcept i onwhen,
at the time a binding provider is created, the handler cheturned by the configuredandl er Resol ver
contains an incompatible handler.

{ Conformance (Incompatible handlerdjnplementations MUST throw\abSer vi ceExcept i onwhen
attempting to configure an incompatible handler ushgdi ng. set Handl er Chai n.

{ Conformance (Logical handler accesg&n implementation MUST allow access to the entire XML mes-
sage via a logical message context.

11.1.2 Deployment Model
JAX-WS defines no standard deployment model for handletssh@ model is provided by JSR 109[15]

“Implementing Enterprise Web Services”.

11.2 Processing Model

The XML/HTTP binding implements the general handler frarogprocessing model described in section
. d.
11.2.1 Exception Handling

The following subsections describe HTTP specific requésta for handling exceptions thrown by handlers
and service endpoint implementations.

11.2.1.1 Handler Exceptions

A binding is responsible for catching runtime exception®wn by handlers and following the processing
model described in sectign_9.B.2. A binding is responsibtecbnverting the exception to a fault message
subject to further handler processing if the following eriid are met:
1. A handler throws &r ot ocol Except i on from handl eMessage
2. The MEP in use includes a response to the message beirespeac
3. The current message is not already a fault message (thiehamght have undertaken the work prior
to throwing the exception).

If the above criteria are met then the exception is convededHTTP response message as follows:

« If the exception is an instance BT TPExcept i on then the HTTP response code is set according to
the value of thest at usCode property. Any current XML message content is removed.

134 JAX-WS 2.1 May 7, 2007

11.3. HTTP Support

* If the exception is of any other type then the HTTP statusededet to 500 to reflect a server class of
error and any current XML message content is removed.

« Handler processing is resumed as described in s€ciiad. 9.3.

If the criteria for converting the exception to a fault megsaubject to further handler processing are not
met then the exception is handled as follows depending oautirent message direction:

Outbound The HTTP status code is set to 500 to reflect a server classaf any current XML message
content is removed and the message is dispatched.

Inbound The exception is passed to the binding provider.

11.2.1.2 Service Endpoint Exceptions

Service endpoints can throw service specific exceptionasuptime exceptions. In both cases they can
provide protocol specific information using the cause na@i$m, see sectidn 6.4.1.

A server side implementation of the XML/HTTP binding is respible for catching exceptions thrown by
a service endpoint implementation and, if the message agehpattern in use includes a response to the
message that caused the exception, converting such excepti HTTP response messages and invoking
thehand! eFaul t method on handlers for the response message as descrildianS.3P.

SectioIT.Z.T13 describes the rules for mapping an exxefia HTTP status code.

11.2.1.3 Mapping Exceptions to a HTTP Status Code

When mapping an exception to a HTTP status code, the statiesafdhe HTTP fault message is populated
according to the following rules of precedence:

1. HTTPExcept i on. get St at usCode() !

2. 500.

11.3 HTTP Support

11.3.1 One-way Operations

HTTP interactions are request-response in nature. Whehfasene-way messages, implementations wait
for the HTTP response even though there is no XML messageiRTTP response entity body.

{ Conformance (One-way operationd)Nhen invoking one-way operations, an implementation oM. -
/HTTP binding MUST block until the HTTP response is receieg@n error occurs.

Note that completion of the HTTP request simply means thatrdmsmission of the request is complete,
not that the request was accepted or processed.

LIf the exception is &TTPExcept i on or has a cause that i TPExcept i on.

May 7, 2007 JAX-WS 2.1 135

Chapter 11. HTTP Binding

11.3.2 Security

Section[£ZT]1 defines two standard context properfiesax. xm . ws. securi ty. aut h. user name
andj avax. xm . ws. security. aut h. passwor d) that may be used to configure authentication infor-
mation.

& Conformance (HTTP basic authentication suppofgimplementation of the XML/HTTP binding MUST
support HTTP basic authentication.

& Conformance (Authentication propertied). client side implementation MUST support use of the the
standard propertigsavax. xml . ws. securi ty. aut h. user nane andj avax. xml . ws. security. aut h-
. passwor d to configure HTTP basic authentication.

11.3.3 Session Management

Section[Z.Z.T]1 defines a standard context prop¢riygx. xm . ws. sessi on. mai nt ai n) that may be
used to control whether a client side runtime will join a s@ssitiated by a service.

A XML/HTTP binding implementation can use three HTTP medbans for session management:
Cookies To initiate a session a service includes a cookie in a messaydo a client. The client stores the
cokkie and returns it in subsequest messages to the service.

URL rewriting To initiate a session a service directs a client to a new URIsédsequent interactions.
The new URL contains an encoded session identifier.

SSL The SSL session ID is used to track a session.

& Conformance (URL rewriting supportAn implementation MUST support use of HTTP URL rewriting
for state management.

{ Conformance (Cookie supportfn implementation SHOULD support use of HTTP cookies fottesta
management.

{ Conformance (SSL session suppomn implementation MAY support use of SSL session based state
management.

136 JAX-WS 2.1 May 7, 2007

Appendix A

Conformance Requirements

D1 WSDL 1.1suppdrt 9
22 Customizationrequited 9
[2.3__Annotations on generated clabses 9
2.4 Definitions mappidgt e 9
2.5 WSDI and XMI Schema import directiVes 10
2.6 _Optional WSDIL eXtensions o v v vt e e e 10
R7 SELNAMIOg o oo e 10
2.8 javax jws WehServicerequireH 10
2.9 javax xnl bind Xnd SeeAlsorequitell 10
210 Method namifg o o 11
R11javax. jws WebMethodrequirel 11
[2.12_Transmission primitive SUDQOMt 12
.13 Usingiavax. jws. OneVAY o 12
14 Usingiavax. jws. SOAPBIinding o . oo 12
[2.15 Usingi avax. jws VWEOPAram . . .« . o o v v e e e 12
[2.16 Usingiavax. jws WebResultl 12
17 useof IAXBannotatidns 12
[2.18 Non-wrapped parameter NamiNg oot ot e e e 13
[2.19 Default mapping male 14
[2.20 Disabling Wrapper StYIe 14
.21 Wrapped parameter namdingo 14
222 Parameternameclhsh 14
[2.23 Using avax. xm . ws. RequesStWapperlo 14
[2.24 Using avax. xm . ws. ResponseWapperl 14

May 7, 2007 JAX-WS 2.1 137

Appendix A. Conformance Requirements

25 Useotolderd, 17
[2.26 Asynchronous mapping requlred 17
[2.27 Asynchronous mapping oplion e 17
.28 Asynchronous method namding o ot 18
[2.29 Asynchronous parameter Namingottt e e 18
.30 Failed methadinvocation 18
[2.31 Responsebean namhingo i e 18
[2.32 Asynchronous faultreporting e e 19
[2.33 Asychronous faultcalse 19
234 JAXBclassmappihg 21
.35 JAXB cusStomization USeo 21
.36 JAXB customizationclash e 21
EMWMMMMM@ 22
[2.38 javax. xnol . ws. WehFaul t requirell 22
239 Exceptionnamihg 22
240 Faultequivalenteot 22
.41 Faultequivalenke 23
[2.42 Required WSDL eXIENSIONS o . v v oot e e e e e 23
[2.43 Unbound message PRIMS 23
.44 Duplicate headersinbinding 25
[2.45 Duplicate headersinmesdage oo 25
[2.46 Use of MIME type informatidn oo 26
.47 MIME type mismatdh oo 26
.48 MIME partidentification oo v ot e 26
[2.49 Service superclass requited e o 26
250 Service classnaming 26
251 javax xml . ws. WebServicedient required 28
B2l 28
B3] 28
254 Failed getPort Method o ot 28
[2.55 j avax. xnl . ws. WebFndpoint requirel L. 28
Bl WSDL1ISUPRAM . . o o ov e e e e 31
B2 Standardannotatibns 31
B3 Javaidentifier mappihg e 31

138 JAX-WS 2.1 May 7, 2007

B.5 _Package name mapiingot e e e 32
.6 WSDI and XMI Schema import directiVes 32
BZ Classmappifg o v oo o e e e 32
B8 portType nAMING o o oot e e e e 33
B9 Inheritance flattenihg 33
3.10 Inherited interface mapplng 33
B11 Operationnamihg oo 33
B12 One-waymapping v oo 34
313 One-way mapping errbrso vt e 34
B14 useof JAXBannotatidns 37
[3.15 Parameter classification 37
B.16 Parameternamingo 37
BA7Z Resultnamilg o v oo e e e 38
[3.18 Header mapping of parameters and résults 38
[3.19 Default wrapper bean nameso 38
3.20 Default wrapper bean packBgeo 38
321 Wrapper element DAMESot e 38
B.22 Wrapperbeannameclash e 38
B.23 NullValuesinrpe/literBl oo 41
B24 Exception DAMING« . o o e e e e 41
[3.25 j ava. | ang. Runt i neExcept i ons andj ava. roi . Renot eExceptions 41
326 Faultheannamecldsh., 42
B.27 Binding selectidn 43
.28 SOAP binding SUPPDIt o o 46
329 SOAPbinding stylerequiled 46
B.30 Service creatibn 47
B31 PortSelectidn oo 50
B32 Porthindifdg o 50
41 Service cCOMPIEIENESS o v ot e e 51
42 Service Creation FAIlre v v v vt 52
M3 Useof Execttbr e 54
b4 Default Executbr 54
4.5 javax. xml . ws. Bi ndingProvider.getEndpointReference. 54

May 7, 2007 JAX-WS 2.1 139

Appendix A. Conformance Requirements

4.6 Message context decouplingo i o 55
4.7 _RequiredBi ndi ngProvider PrOPErtiels 56
l4.8 OptionalBi ndi ngProvider propertiels 56
4.9 _Additional CONtEXt Properties o v v 56
410 Asynchronous response CoMtexXto vt i e 57
M1 Proxysuppdrto 57
412 Implementinggi ndingProviderl 57
W13 Service getPorf failurd oot 58
414 Remote EXCEPHANS o o v oo 58
l4.15 Exceptions During Handler Praceskingo oo o 59
416 Other EXCEptionS o oot 59
M7 Dispat ChSUPPOIt . . . o o vt e o e e 59
418 Faileddi spatch. invokd . . . o o oo 61
14.19 FailedDi spat ch. i nvOKEASYND . . o o o o e e e e e 61
420 Faileddi spatch.invokeQneWa 61
l4.21 Reporting asynchronous eforsot o i e e 61
U22 Marshalling failule 62
U23 Useofthe Catalbg o oo ot 64
B.1_Provider supportrequited 65
5.2__Provider default CONSIUGIOr o 65
b3 _Providerimplementatibn 65
5.4 __WebServiceProvider annotaiono e 65
5.5 __Endpoint publish(String address, Object implemeréghodl 68
.6 Default Endpoint BIndig o ot e 68
BZ _Other BINdINdS o v oo e 68
B.8 Publishing over HTTIP o o o o o e e e e e e e e 69
B9 WSDLPUBSHIAG . .« « o o v o o e e e 69
I5.10 Checkingoubl i shEndpai nt PErMISSIAN v v v oot e e 70
B.11 Required Metadata TYPES . . « . o v o v o e e e e e 70
512 UnknownMetaddta 70
B13 Useof Execuor o oo 75
514 Default Executbr 75
6.1 _Read-only handler Chains o oot 79
I6.2__Concretg avax. xnl . ws. spi . Provider requirel, 79

140 JAX-WS 2.1 May 7, 2007

6.4 Concret¢ avax. xnl . ws. spi. ServiceDel egaterequirel 81
I6.5__Protocol specific fault generation e 82
l6.6 _Protocol specific fault consumption 82
6.7 _One-way operations 83
6.8 javax xnml . ws WebServiceFeatured 83
6.9 enabledproperty 83
B.lm_alaum_m_s_o_ap_mzliem 85
16.11 j avax. xnol . ws. Respect Bindi ngEeAt ULE o o v oo 85
21 Correctnessofannotatibns 87
[2.2__Handling incorrect annotations oe e e e e 87
[7.3 UnsupportetehServi ceFeat ureAnnotati olov it 87
[2.4 WebServiceProvider and WebSetvice 90
- CC . e e e 94
[B.1 _Standard binding declaratibns 99
8.2 _Binding language extensibility 99
B3 Multiple binding filek 102
9.1 _Handler framework SUDPOIt 111
b2 logicalhandlersuppbrt 112
0.3 Otherhandlersuppbrt 112
9.4 Incompatible handlérs 113
0.5 Incompatible handIrs 113
9.6 Handler chainsnapshot 114
9.7 HandlerChain annotatlon 115
9.8 Handler resolver for a HandlerChain annotationo oo oot 115
l0.0 Binding handler manipulation 116
010 Handlerinitializatidn 117
911 Handlerdestructibn 117
.12 Invokingclosd 119
9.13 Order oftl ose inVoCatONE o oo 119
[9.14 Message context property SA0PEt it e e 120
101 SOAPrequired roles oo 125
102 SOAPrequired roles 126
[10.3 Default role visibility 126

May 7, 2007 JAX-WS 2.1 141

Appendix A. Conformance Requirements

[10.4 Defaultrole persistelce oo 126
05 Noneroleerbr e 126
[10.6 Incompatible handlérs 126
[10.7 Incompatible handldrs 126
[10.8 I ogical handler CCESS v v e e e 126
[10.9 SOAP 1.1 HTTP Binding Supplortottt 129
[10.10SOAP 1.2 HTTP Binding SUpdort o v o v o e e e e 130
1011SOAP MTOM SUDPROIt v o oo e e e e e e e e e 130
[10.12Semantics of MTOM enabled o 130
MO I3MTOMSSUPROIt . . . o o o o e e e 130
[10.14SOAP bindings with MTOM disabled 130
[10.15SOAP bindings with MTOM enabledc... 130
[10.16MTOM on Other SOAP BINAINGS .+ .+ « o « v v o v e e e e e e e 130
[10.170ne-way operatidns 131
[10.18HTTP basic authentication sUpbort v i 131
[10.19Authentication propertles 131
[10.20URL rewriting SUPROIt o o o o o e 131
[10.21Caokie sUpPdIt 131
[10.22SSI SesSIoN SUPHOIt o\ v v e 131
[10.23SOAP Addressing SUDDBOIt o v v v v e e e e 132
11 XMIHTTPBinding Suppdrt o o o 133
[11.2 Incompatible handl@rso 134
[11.3 Incompatible handdrs 134
[11.4 logicalhandler aCCeSS oot 134
[11.5 One-way operatidns o vt 135
[11.6 HTTP basic authentication SUPPOTt o oo e e 136
[11.7 Authentication propertles 136
1.8 URL rewriting SUPRAIt o oot 136
[11.9 Cookie suppdrt ot 136
[11.10SSI SesSIoN SUPHOIt . . . o o\ v v e 136

142 JAX-WS 2.1 May 7, 2007

Appendix B

Change Log

B.1 Changes since Final Draft

» Added JAXB 2.1 requirement (sections 1.1, 2.4, 3.6.2).

» Added wsa namespace definition (section 1.5).

» Added conformance requirement f@xnl SeeAl so annotation (section 2.2).
» Added conformance requirement for use of JAXB annotat{sestion 2.3.1).

» Added clarification that not both input and output messagest be present for wrapper style (section
2.3.1.2).

» Added section 2.4.WBCEndpoi nt Ref er ence.

» Addedget Port Nane(WebSer vi ceFeat ure. ..) method to generated Service (section 2.7).
» Added text describing the need to use customizations tvesome conflicts (section 3.4).

» Added conformance requirement to honor JAXB annotatigaest{on 3.6).

» Added conformance requirement for Exceptions that are $&Tice specific exceptions (section
3.7).

» Added conformance requirement f8irndi ngPr ovi der . get Endpoi nt Ref er ence (section 4.2).

» Added newget Port methods orser vi ce that takenebSer vi ceFeat ur es andEndpoi nt Ref er ence
(section 4.2.3).

» Added text stating thdli spat ch andPr ovi der based applications MUST honwoébSer vi ceFeat ur es
(section 4.3 and 5.1).

» Added sections 415, 5.2.8 ahd 6.5ljldvax. xm . ws. Endpoi nt Ref er ence.
» Added section 5.4 opavax. xnl . ws. wsaddr essi ng. WBCEndpoi nt Ref er enceBui | der.

» Modified description otr eat eEndpoi nt method to state to cover case when no binding is specified
(sectiol8.Z2R).

» Added sectio 6.214 EndpointReferences.

May 7, 2007 JAX-WS 2.1 143

Appendix B. Change Log

B.2

144

Added sectiol 6.215 Getting Port Objects.
Added sectiol 815 javax.xml.ws.WebServiceFeature.
Added conformance rquirement for unsupport@tSer vi ceFeat ur eAnnot at i ons (section 7).

AddedAct i on, Faul t Acti on andWebSer vi ceFeat ur eAnnot at i on annotations (sections 7.12,
7.13 and 7.14).

Addedj avax. xm . ws. r ef er ence. par anet er s standard message context property (table 9.2).

Added sectiol 10.4.71.5 Addressing.

Changes since Proposed Final Draft

Added clarification for usage gfavax. xni . ws. bi ndi ng. att achnent s. out bound in Dispatch
Added clarification for usage aoful | in Dispatch (section 4.3).

Removed requirement that the "name” element of the Welbleawlotation be always present, since
this conflicts with 3.7 (section 7.2).

Clarified usage of generics in document wrapped case.
Added inner class mapping requirements.

Rephrased rules on using WebServiceContext so that thigtioms that apply in the Java SE envi-
ronment are marked as such (section 5.3).

Added conformance requirements for RequestWrapper asgdRseeWrapper annotations (section
2.3.1.2).

Clarified order of invocation of Handler.close methodsc{fon 9.3.2.3).

Clarified requirement on additional context propertiad eeserved the java.* and javax.* namespaces
for Java specifications (section 4.2.1.2).

Added new binding identifiers for SOAP/HTTP bindings witTOM enabled (section 10.4.1.1).
Added requirement detailing the semantics of "MTOM endblsection 10.4.1.1).

Renamed section 5.2.5 and added new requirements aronathgen of the contract for an endpoint
(section 5.2.5).

Fixed example in figure 3.4 and added requirement on XrméTgmnotation on a generated fault bean
(section 3.7).

Removed references to WSDL 2.0 and updated goals to refl&@M2.0 support will be added a
future revision of the specification.

Clarified the nillability status of various elements iretdava to WSDL binding (sections 3.6.2.1,
3.6.2.2); this included adding a new conformance requirdgrfsection 3.6.2.3).

Added a requirement that a class annotated with WebS&mndealer must not be annotated with
WebService (section 7.7).

JAX-WS 2.1 May 7, 2007

B.3. Changes since Public Draft

» Added a conformance requirement for support of the XML/ITHinding, in analogy with the exist-
ing requirements for SOAP (section 11.1).

» Added explicit mention of the predefined binding idemr8 (sections 10.4.1 and 11.1).

» Added requirements around binding identifiers for impésration-specific bindings (section 6.1).
» Adding a requirement on dealing with exceptions thrownryhandler processing (section 4.2.4).
* Removed the javax.xml.ws.servlet.session messagextqutgperty (section 9.4.1.1).

« Fixed erroneous reference to a "generated service iotdrfa section 7.9 (the correct terminology is
"generated service class”).

» Added javax.xml.ws.WebServiceRefs annotation (seclidg).
» Added clarifications for XML / HTTP binding.

» Corrected signature f@ndpoi nt . cr eat e to use String for bindingld.

B.3 Changes since Public Draft
» Changed endpoint publishing so that endpoints cannotdppst and published again multiple times
(section 5.2.2).

« Clarified that request and response beans do not contapegres corresponding to header parame-
ters (section 3.6.2.1).

« Clarified that criteria for bare style take only parts bdua the body into account (section 3.6.2.2).
» Add a create(Object implementor) to Endpoint to create radp@int.

* Clarified the use of INOUT param with two different MIME kdings in the input and output mes-
sages.

» Use of WebParam and WebResult partName.

» Replaced the init/destroy methods of handlers with the@wsstruct and PreDestroy annotations
from JSR-250 (section 9.3.1).

* Replaced the BeginService/EndService annotations vaisti@nstruct and PreDestroy from JSR-250
in endpoint implementors (section 5.2.1).

» Added WebParam.header WebResult.header usage (sedpangd updated WSDL SOAP HTTP
Binding section (3.9.2).

» Removed requirements to support additional SOAP headappimg.

» Added support for DataSource as a message format for Ryoard clarified the requirement for the
other supported types (section 5.1). Same thing for Disp@tection 4.3).

« Clarified that LogicalMessageContext.getSource() neyrn null when there is no payload associ-
ated with the message (section 9.4.2).

» Clarified that parts bound to mime:content are treatedndistad from the point of view of applying
the wrapper style rules (section 2.6.3).

May 7, 2007 JAX-WS 2.1 145

Appendix B. Change Log

146

» Removed the Parameterindex annotation (chapters 3 and 7).

« Clarified naming rules for generated wrapper elementstlagid type (section 3.6.2.1).

« Clarified that holders should never be used for the retyppe bf a method (section 2.3.3).

» Added effect of the BindingType annotation on the gener@#SDL service (sections 3.8 and 3.10).
» Added condition that the wrapper elements be non-nillédblerapper style (section 2.3.1.2).

« Clarified use of targetNamespace from WebService in arl@dmpntation class and an SEI based on
181 changes.

» Updated the usage of WebMethod exclude element from JaAxSIOL mapping.

» Changed the algorithm for the default target namespace jmwa to WSDL (section 3.2).

» Added requirement that a provider’s constructor be puséction 5.1).

» Fixed some inconsistencies caused by the removal of R&xotption (e.g. in section 4.2.4).
» Added service delegate requirements to chapter 4.

» Added zero-argument public constructor requirement & ithplementation-specific Provider SPI
class (section 6.2).

» Updated use of SOAPBInding on a per method basis in the dectigtyle case and removed editor’'s
note about SOAPBInding not being allowed on methods (se&i8.1 and 3.6.2) .

» Added portName element to @WebServiceProvider annatatio

» Added requirement on correctness of annotation to thenbawi of chapter 7.

» Added requirement for conformance to the JAX-WS profild8R-181 (section 7.11).
« Clarified invocation of Handler.destroy (section 9.3.1)

» Added use of HandlerChain annotation (section 9.2.1.3).

» Updated 181 annotations (section 7.11).

» Added catalog facility (section 4.2.5) and clarified thiais required to be used when processing
endpoint metadata at publishing time (section 5.2.5) amdt@tions (chapter 7).

» Added WebServiceRef annotation (section 7.10).
» Added restrictions on metadata at the time an endpointbghed (section 5.2.7).

* Replaced HandlerRegistry with HandlerResolver (sesti2.1, 9.2.1.1, 10.1.1.2, 11.1.1.1). Fixed
handler ordering section accordingly (section 9.2.1.2).

« Clarified that endpoint properties override the valuefngel using the WebServiceProvider annota-
tion (section 5.2.8).

» Removed mapping of headerfaults (sections 2.6.2.2 an€l)8.7

+ Split standard message context properties into multgiidées and added servlet-specific properties
(section 9.4.1.1).

JAX-WS 2.1 May 7, 2007

B.4. Changes Since Early Draft 3

» Added WebServiceContext (section 5.3); refactored ngessantext section in chapter 5 so that it
applies to all kinds of endpoints.

» Added WebServicePermission (section 5.2.5).
» Added conformance requirement for one-way operationsi(se6.2.2).
» Added BindingType annotation (section 7.9).

» Added requirement the provider endpoint implementatiassccarry a WebServiceProvider annota-
tion (section 5.1).

» Fixed RequestWrapper and ResponseWrapper descriptigetthat they can be applied to the meth-
ods of an SEI (sections 7.4 and 7.5).

 Fixed package name for javax.xml.ws.Provider and updsg¢etion with WebServiceProvider anno-
tation (section 5.1).

» Added WebServiceProvider annotation iavax. xm . ws package (section 7.8).
» Changed Factory pattern to use javax.xml.ws.spi.Provide

» Removed javax.xml.ws.EndpointFactory (section 5.2).

* Removed javax.xml.ws.Servicefactory (section 4.1).

» Removed definition of message-level security annotati@ection 7.1), their use (sections 4.2.2 and
6.1.1) and the corresponding message context propertgdtioa 9.4).

» Removed WSDL 2.0 mapping (appendices A and B).

B.4 Changes Since Early Draft 3

» Added requirements on mapping @WebService-annotatedclasses to WSDL.

 Removed references to the RMI classes that JAX-RPC 1.1tosdghote remoteness, since their role
is now taken by annotationgava. r mi . Renot e andj ava. r mi . Renot eExcepti on.

» Addeds.2 on the new Endpoint API.

» Added the following new annotation types: @RequestWrgp@d&kesponseWrapper, @WebService-
Client, @WebEndpoint.

» Added the createService(Class servicelnterface) meth8erviceFactory.
* Renamed the Service.createPort method to Service.addPor
» Added MTOMEnNabled property to SOAPBInding.

* Removed the HTTP method getter/setter from HTTPBindird)r@placed them with a new message
context property called javax.xml.ws.http.request.rodth

¢ In section[I0.ZI1 clarified that SOAP headers directlypsufed by a binding must be treated as
understood when processing mustUnderstand attributes.

May 7, 2007 JAX-WS 2.1 147

Appendix B. Change Log

B.5

B.6

148

Added getStackTrace to the list of getters defined on farng. Throwable with must not be mapped
to fault bean properties.

In section4.2.T]1, removed the requirement that an eksepe thrown if the application attempts
to set an unknown or unsupported property on a binding peoyisince there are no stub-specific
properties any more, only those in the request context.

Changed the client API chapter to reflect the annotati®sethauntime. In particular, the distinc-
tion between generated stubs and dynamic proxies disagghesnd the spec now simply talks about
proxies.

Changed JAX-RPC to JAX-WS, javax.xml.rpc.xxx to javaxbws.xxx. Reflected resulting changes
made to APIs.

Added new context properties to provide access to HTTPdreaahd status code.

Added new XML/HTTP Binding, see chapfer11.

Changes Since Early Draft 2

Renamed "element” attribute of the jaxws:parameter atimt to "childParameterName” for clarity,
see sections 8.1.3 ahd 8]7.6.

Added javax.xml.ws.ServiceMode annotation type, se8®€Z.1.
Fixed example of external binding file to use a schema atiwot, see sectidn 8.4.

Modified Dispatch so it can be used with multiple messagms$yand either message payloads or
entire messages, see secfion 4.3.

Modified Provider so it can be used with multiple messagesyand either message payloads or entire
messages, see sectlon]5.1.

Added new annotation for generated exceptions, see s€CHo
Added default Java package name to WSDL targetNamespgmeimgaalgorithm, see sectifn 8.2.
Added ordering to properties in request and response bBeadsc/lit/wrapped, see section 3.612.1.

Clarified that SEI method should throw JAX-RPC exceptioithva cause of any runtime exception
thrown during local processing, see secfion 4.2.4.

Removed requirement that SEIs MUST NOT have constantsesgi®n3.4.

Updated document bare mapping to clarify ti@bPar amand @¥bResul t can be used to cus-
tomize the generated global element names, see s€ciiGnas.6.

Changes Since Early Draft 1

Added chaptelf]5 Service APIs.

Added chapteP? WSDL 2.0 to Java Mapping.

JAX-WS 2.1 May 7, 2007

B.6. Changes Since Early Draft 1

» Added chapteR? Java to WSDL 2.0 Mapping.

» Added mapping from Java tesdl : servi ce andwsdl : port, see sectiols 3.8, 3.7D.1 4nd B.11.
* Fixed sectiohZl4 to allow use of JAXB interface based nagpi

» Added support for document/literal/bare mapping in Javd/8DL mapping, see sectiénB.6.

» Added conformance requirement to describe the expecteavimir when two or more faults refer to
the same global element, see seclioh 2.5.

» Added resolution to issue regarding binding of duplicaaders, see sectibn 2.612.1.

» Added use of JAXB ns URI to Java package name mapping, stersgcl.

» Added use of JAXB package name to ns URI mapping, see s&fon

* Introduced new typographic convention to clearly mark-nomrmative notes.

* Removed references to J2EE and JNDI usage from Servicelyatgscription, see secti@?.
* Clarified relationship between TypeMappingRegistry dAXB.

» Emphasized control nature of context properties, addedyitle subsection.

« Clarified fixed binding requirement for proxies.

» Added section for SOAP proocol bindingsZ0.4. The HTTP eatisn of this now contains much of
the mterial from the JAX-RPC 1.1 ‘Runtime Services’ chapter

« Clarified that async methods are added to the regular sihavBen async mapping is enabled rather
than to a separate async-only SEI, see seffionl2.3.4.

 Added support for WSDL MIME binding, see section 216.3.

« Clarified that fault mapping should only generate a sir@deeption for each equivalent set of faults,
see sectioh215.

» Added property for message attachments.

» Removed element references to anonymous type as valid rigpper style mapping (this doesn’t
prevent substitution as orignally thought), see sediiGnl2.

« Removed implementation specific methods from generatedce interfaces, see sectionl2.7.
« Clarified behaviour under fault condition for asynchraemperation mapping, see secfion 2.3.4.5.

« Clarified that additional parts mapped using soapbiratiee cannot be mapped to a method return
type, see sectidn 2.3.2.

» Added new section to clarify mapping from exception to SGARt, sed_10.2.213.
« Clarified meaning obtherin the handler processing section, Ee€9.3.2.
» Added a section to clarify Stub use of RemoteException &xRPCException, see4.2.4.

» Added new Core API chapter and rearranged sections inte, @ient and Server API chapters.

May 7, 2007 JAX-WS 2.1 149

Appendix B. Change Log

150

Changes for context refactoring, removed message cqmiegerties that previously held request/response
contexts on client side, added description of rules for mg\between jaxws context and message
context boundaries.

Removed requirement for Response.get to throw JAXRPQtixee now throws standard java.util-
.concurrent.ExecutionException instead.

Added security APl information, see sectid?dand??.

Clarrified SOAP mustUnderstand processing, see secidghll. Made it clear that the handler rather
than the HandlerInfo is authoritative wrt which protocatrlents (e.g. SOAP headers) it processes.

Updated exception mapping for Java to WSDL since JAXB dassenvision mapping exception
classes directly, see sectionl3.7.

JAX-WS 2.1 May 7, 2007

Bibliography

[1] Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, and EvesMatxtensible Markup Language
(XML) 1.0 (Second Edition). Recommendation, W3C, Octol@0®@ See
http://mww.w3.0rg/TR/2000/REC-xmI-20001006.

[2] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layiidnah Mendelsohn, Henrik Nielsen,
Satish Thatte, and Dave Winer. Simple Object Access Prb{8AP) 1.1. Note, W3C, May 2000.
See http://www.w3.0rg/TR/SOAP/.

[3] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-GasgMoreau, and Henrik Frystyk Nielsen.
SOAP Version 1.2 Part 1: Messaging Framework. Recommergat3C, June 2003. See
http://iww.w3.0rg/TR/2003/REC-soapl12-part1-20030624

[4] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-GasgMoreau, and Henrik Frystyk Nielsen.
SOAP Version 1.2 Part 2: Adjuncts. Recommendation, W3Ce A00)3. See
http://www.w3.0rg/TR/2003/REC-soapl2-part2-20030624

[5] Erik Christensen, Francisco Curbera, Greg Mereditll, Sanjiva Weerawarana. Web Services
Description Language (WSDL) 1.1. Note, W3C, March 2001. See
http://www.w3.0rg/TR/2001/NOTE-wsdI-20010315.

[6] Rahul Sharma. The Java API for XML Based RPC (JAX-RPC) 18R, JCP, June 2002. See
http://jcp.org/en/jsr/detail?id=101.

[7] Roberto Chinnici. The Java API for XML Based RPC (JAX-RFCL. Maintenance JSR, JCP,
August 2003. See http://jcp.org/en/jsr/detail ?id=101.

[8] Keith Ballinger, David Ehnebuske, Martin Gudgin, Marlottingham, and Prasad Yendluri. Basic
Profile Version 1.0. Final Material, WS-I, April 2004. See
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-08.html.

[9] Joseph Fialli and Sekhar Vajjhala. The Java Architexfor XML Binding (JAXB). JSR, JCP,
January 2003. See http://jcp.org/en/jsr/detail?id=31.

[10] Joseph Fialli and Sekhar Vajjhala. The Java Architecfar XML Binding (JAXB) 2.0. JSR, JCP,
August 2003. See http://jcp.org/en/jsr/detail ?id=222.

[11] Kohsuke Kawaguchi. The Java Architecture for XML Bindi(JAXB) 2.1. JSR, JCP, August 2003.
See http://jcp.org/en/jsr/detail?id=222.

[12] Roberto Chinnici, Martin Gudgin, Jean-Jacques Moydatfrey Schlimmer, and Sanjiva
Weerawarana. Web Services Description Language (WSDlside2.0 Part 1: Core Language.
Working Draft, W3C, August 2004. See http://www.w3.0orgl2B804/WD-wsdl20-20040803.

May 7, 2007 JAX-WS 2.1 151

BIBLIOGRAPHY

[13] Joshua Bloch. A Metadata Facility for the Java Programgrhanguage. JSR, JCP, August 2003. See
http://jcp.org/en/jsr/detail ?id=175.

[14] Jim Trezzo. Web Services Metadata for the Java Platfd®iR, JCP, August 2003. See
http://jcp.org/en/jsr/detail?id=181.

[15] Jim Knutson and Heather Kreger. Web Services for J2BR, JCP, September 2002. See
http://jcp.org/en/jsr/detail ?id=109.

[16] Nataraj Nagaratnam. Web Services Message Securitg. AR, JCP, April 2002. See
http://jcp.org/en/jsr/detail ?id=183.

[17] Farrukh Najmi. Java API for XML Registries 1.0 (JAXRSR, JCP, June 2002. See
http://www.jcp.org/en/jsr/detail ?id=93.

[18] Keith Ballinger, David Ehnebuske, Chris Ferris, MarGudgin, Canyang Kevin Liu, Mark
Nottingham, Jorgen Thelin, and Prasad Yendluri. Basic rufirsion 1.1. Final Material, WS-,
August 2004. See http://www.ws-i.org/Profiles/BasicReefi. 1-2004-08-24.html.

[19] T. Berners-Lee, R. Fielding, and L. Masinter. RFC 239&iform Resource Identifiers (URI):
Generic Syntax. RFC, IETF, March 1997. See http://wwwoegirfc/rfc2396.txt.

[20] S. Bradner. RFC 2119: Keywords for use in RFCs to Indiddtquirement Levels. RFC, IETF,
March 1997. See http://www.ietf.org/rfc/rfc2119.txt.

[21] John Cowan and Richard Tobin. XML Information Set. Raooendation, W3C, October 2001. See
http://mww.w3.0rg/TR/2001/REC-xml-infoset-20011024/

[22] Henry S. Thompson, David Beech, Murray Maloney, andiNii@ndelsohn. XML Schema Part 1:
Structures. Recommendation, W3C, May 2001. See
http://iwww.w3.0rg/TR/2001/REC-xmlIschema-1-20010502/

[23] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Dgtes. Recommendation, W3C, May
2001. See http://wvww.w3.0rg/TR/2001/REC-xmischemad@iD502/.

[24] Tony Rogers Marting Gudgin, Marc Hadley. Web servicddrassing 1.0 - core. Recommendation,
W3C, May 2006. See http://www.w3.0rg/TR/2006/REC-ws+aciate-20060509/.

[25] James Gosling, Bill Joy, Guy Steele, and Gilad Brach#e Java Language Specification - second
edition. Book, Sun Microsystems, Inc, 2000.
http://java.sun.com/docs/books/jls/secaedition/html/j.title.doc.html.

[26] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, arehv¢ Ruellan. SOAP Message
Transmission Optimization Mechanism. RecommendationCWanuary 2005.
http://mww.w3.0org/TR/soap12-mtom/.

[27] Martin Gudgin, Noah Mendelsohn, Mark Nottingham, anehv¢ Ruellan. XML-binary Optimized
Packaging. Recommendation, W3C, January 2005. http://wa&wrg/TR/xop10/.

[28] Mark Nottingham. Simple SOAP Binding Profile Versio®1Working Group Draft, WS-I, August
2004. See http://lwww.ws-i.org/Profiles/SimpleSoapBigdHrofile-1.0-2004-08-24.html.

[29] Chris Ferris, Anish Karmarkar, and Canyang Kevin Liuta&hments Profile Version 1.0. Final
Material, WS-I, August 2004. See
http://www.ws-i.org/Profiles/AttachmentsProfile-1.062-08-24.html.

152 JAX-WS 2.1 May 7, 2007

BIBLIOGRAPHY

[30] Norm Walsh. XML Catalogs 1.1. OASIS Committee Spectima OASIS, July 2005. See
http://www.oasis-open.org/committees/download. phpAtl/xml-catalogs.html.

[31] Rajiv Mordani. Common Annotations for the Java PlatiolJSR, JCP, July 2005. See
http://jcp.org/en/jsr/detail ?id=250.

[32] Bill Shannon. Java Platform Enterprise Edition 5 Speation. JSR, JCP, August 2005. See
http://jcp.org/en/jsr/detail ?id=244.

[33] Tony Rogers Marting Gudgin, Marc Hadley. Web servicédrassing 1.0 - soap binding.
Recommendation, W3C, May 2006. See http://www.w3.0rgZDR6/REC-ws-addr-soap-20060509/.

[34] John Barton, Satish Thatte, and Henrik Frystyk Nielse@AP Messages With Attachments. Note,
W3C, December 2000. http://www.w3.0rg/TR/SOAP-attachise

May 7, 2007 JAX-WS 2.1 153

	1 Introduction
	1.1 Goals
	1.2 Non-Goals
	1.3 Requirements
	1.3.1 Relationship To JAXB
	1.3.2 Standardized WSDL Mapping
	1.3.3 Customizable WSDL Mapping
	1.3.4 Standardized Protocol Bindings
	1.3.5 Standardized Transport Bindings
	1.3.6 Standardized Handler Framework
	1.3.7 Versioning and Evolution
	1.3.8 Standardized Synchronous and Asynchronous Invocation
	1.3.9 Session Management

	1.4 Use Cases
	1.4.1 Handler Framework

	1.5 Conventions
	1.6 Expert Group Members
	1.7 Acknowledgements

	2 WSDL 1.1 to Java Mapping
	2.1 Definitions
	2.1.1 Extensibility

	2.2 Port Type
	2.3 Operation
	2.3.1 Message and Part
	2.3.2 Parameter Order and Return Type
	2.3.3 Holder Class
	2.3.4 Asynchrony

	2.4 Types
	2.4.1 W3CEndpointReference

	2.5 Fault
	2.5.1 Example

	2.6 Binding
	2.6.1 General Considerations
	2.6.2 SOAP Binding
	2.6.3 MIME Binding

	2.7 Service and Port
	2.7.1 Example

	2.8 XML Names
	2.8.1 Name Collisions

	3 Java to WSDL 1.1 Mapping
	3.1 Java Names
	3.1.1 Name Collisions

	3.2 Package
	3.3 Class
	3.4 Interface
	3.4.1 Inheritance

	3.5 Method
	3.5.1 One Way Operations

	3.6 Method Parameters and Return Type
	3.6.1 Parameter and Return Type Classification
	3.6.2 Use of JAXB

	3.7 Service Specific Exception
	3.8 Bindings
	3.8.1 Interface
	3.8.2 Method and Parameters

	3.9 Generics
	3.10 SOAP HTTP Binding
	3.10.1 Interface
	3.10.2 Method and Parameters

	3.11 Service and Ports

	4 Client APIs
	4.1 javax.xml.ws.Service
	4.1.1 Service Usage
	4.1.2 Provider and Service Delegate
	4.1.3 Handler Resolver
	4.1.4 Executor

	4.2 javax.xml.ws.BindingProvider
	4.2.1 Configuration
	4.2.2 Asynchronous Operations
	4.2.3 Proxies
	4.2.4 Exceptions

	4.3 javax.xml.ws.Dispatch
	4.3.1 Configuration
	4.3.2 Operation Invocation
	4.3.3 Asynchronous Response
	4.3.4 Using JAXB
	4.3.5 Examples

	4.4 Catalog Facility
	4.5 javax.xml.ws.EndpointReference

	5 Service APIs
	5.1 javax.xml.ws.Provider
	5.1.1 Invocation
	5.1.2 Configuration
	5.1.3 Examples

	5.2 javax.xml.ws.Endpoint
	5.2.1 Endpoint Usage
	5.2.2 Publishing
	5.2.3 Publishing Permission
	5.2.4 Endpoint Metadata
	5.2.5 Determining the Contract for an Endpoint
	5.2.6 Endpoint Properties
	5.2.7 Executor
	5.2.8 javax.xml.ws.EndpointReference

	5.3 javax.xml.ws.WebServiceContext
	5.3.1 MessageContext

	5.4 javax.xml.ws.wsaddressing.W3CEndpointReferenceBuilder

	6 Core APIs
	6.1 javax.xml.ws.Binding
	6.2 javax.xml.ws.spi.Provider
	6.2.1 Configuration
	6.2.2 Creating Endpoint Objects
	6.2.3 Creating ServiceDelegate Objects
	6.2.4 EndpointReferences
	6.2.5 Getting Port Objects

	6.3 javax.xml.ws.spi.ServiceDelegate
	6.4 Exceptions
	6.4.1 Protocol Specific Exception Handling
	6.4.2 One-way Operations

	6.5 javax.xml.ws.WebServiceFeature
	6.5.1 javax.xml.ws.soap.AddressingFeature
	6.5.2 javax.xml.ws.soap.MTOMFeature
	6.5.3 javax.xml.ws.RespectBindingFeature

	7 Annotations
	7.1 javax.xml.ws.ServiceMode
	7.2 javax.xml.ws.WebFault
	7.3 javax.xml.ws.RequestWrapper
	7.4 javax.xml.ws.ResponseWrapper
	7.5 javax.xml.ws.WebServiceClient
	7.6 javax.xml.ws.WebEndpoint
	7.6.1 Example

	7.7 javax.xml.ws.WebServiceProvider
	7.8 javax.xml.ws.BindingType
	7.9 javax.xml.ws.WebServiceRef
	7.9.1 Example

	7.10 javax.xml.ws.WebServiceRefs
	7.10.1 Example

	7.11 Annotations Defined by JSR-181
	7.11.1 javax.jws.WebService
	7.11.2 javax.jws.WebMethod
	7.11.3 javax.jws.OneWay
	7.11.4 javax.jws.WebParam
	7.11.5 javax.jws.WebResult
	7.11.6 javax.jws.SOAPBinding
	7.11.7 javax.jws.HandlerChain

	7.12 javax.xml.ws.Action
	7.13 javax.xml.ws.FaultAction
	7.14 javax.xml.ws.spi.WebServiceFeatureAnnotation
	7.14.1 javax.xml.ws.soap.Addressing
	7.14.2 javax.xml.ws.soap.MTOM
	7.14.3 javax.xml.ws.RespectBinding

	8 Customizations
	8.1 Binding Language
	8.2 Binding Declaration Container
	8.3 Embedded Binding Declarations
	8.3.1 Example

	8.4 External Binding File
	8.4.1 Example

	8.5 Using JAXB Binding Declarations
	8.6 Scoping of Bindings
	8.7 Standard Binding Declarations
	8.7.1 Definitions
	8.7.2 PortType
	8.7.3 PortType Operation
	8.7.4 PortType Fault Message
	8.7.5 Binding
	8.7.6 Binding Operation
	8.7.7 Service
	8.7.8 Port

	9 Handler Framework
	9.1 Architecture
	9.1.1 Types of Handler
	9.1.2 Binding Responsibilities

	9.2 Configuration
	9.2.1 Programmatic Configuration
	9.2.2 Deployment Model

	9.3 Processing Model
	9.3.1 Handler Lifecycle
	9.3.2 Handler Execution
	9.3.3 Handler Implementation Considerations

	9.4 Message Context
	9.4.1 javax.xml.ws.handler.MessageContext
	9.4.2 javax.xml.ws.handler.LogicalMessageContext
	9.4.3 Relationship to Application Contexts

	10 SOAP Binding
	10.1 Configuration
	10.1.1 Programmatic Configuration
	10.1.2 Deployment Model

	10.2 Processing Model
	10.2.1 SOAP mustUnderstand Processing
	10.2.2 Exception Handling

	10.3 SOAP Message Context
	10.4 SOAP Transport and Transfer Bindings
	10.4.1 HTTP

	11 HTTP Binding
	11.1 Configuration
	11.1.1 Programmatic Configuration
	11.1.2 Deployment Model

	11.2 Processing Model
	11.2.1 Exception Handling

	11.3 HTTP Support
	11.3.1 One-way Operations
	11.3.2 Security
	11.3.3 Session Management

	A Conformance Requirements
	B Change Log
	B.1 Changes since Final Draft
	B.2 Changes since Proposed Final Draft
	B.3 Changes since Public Draft
	B.4 Changes Since Early Draft 3
	B.5 Changes Since Early Draft 2
	B.6 Changes Since Early Draft 1

	Bibliography

