

Oracle JDeveloper
11gR2 Cookbook

Over 85 simple but incredibly effective recipes for using
Oracle JDeveloper 11gR2 to build ADF applications

Nick Haralabidis

BIRMINGHAM - MUMBAI

Oracle JDeveloper 11gR2 Cookbook

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: January 2012

Production Reference: 1170112

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-476-7

www.packtpub.com

Cover Image by Artie Ng (artherng@yahoo.com.au)

Credits

Author
Nick Haralabidis

Reviewers
Edwin Biemond

Spyros Doulgeridis

Frank Nimphius

Acquisition Editor
Stephanie Moss

Lead Technical Editor
Meeta Rajani

Technical Editors
Sonali Tharwani

Vishal D'souza

Copy Editor
Laxmi Subramanian

Project Coordinator
Leena Purkait

Proofreader
Dan McMahon

Indexers
Hemangini Bari

Monica Ajmera Mehta

Tejal Daruwale

Production Coordinator
Arvindkumar Gupta

Cover Work
Arvindkumar Gupta

Foreword

Oracle has a long and successful history of building enterprise application development
tools, including some that have outlived their competition. As a former Oracle Forms Product
Manager and current Oracle JDeveloper and Oracle Application Development Framework
(ADF) Product Manager, this part of the Oracle history has been mine for the last 15 years,
and I'm very grateful that there's currently no end in sight!

Building enterprise applications based on Java EE standards is a well-accepted and
understood concept for building Rich Internet Applications (RIA) and service-oriented user
interfaces. While Java language skills are standard knowledge for college graduates, broader
topics, such as service-enablement, persistence, application security, customization,
portalization, and so on are not always so well understood. Adding to this, the "framework-of-
the-day" problem—in which framework solutions quickly wax and wane in popularity—makes
it difficult for enterprises to adopt software. What most enterprise businesses require is the
benefit of standards, but with an end-to-end framework that provides a stable and consistent
interface, which can abstract away future technology shifts.

Proven by Oracle Fusion Applications and customer success, Oracle ADF fulfills that need:
a rapid application development environment that reduces the skills required for building
modern rich enterprise applications to a single learning curve.

Technically, Oracle ADF is an end-to-end Java EE framework for building rich enterprise web
and mobile applications based on Java EE services and SOA. Oracle ADF integrates existing
Java frameworks into a single architecture and a fully integrated declarative development
environment that shields developers from low-level API programming.

Besides being used by Oracle Fusion Applications and Oracle customers, Oracle ADF is at the
heart of Oracle Middleware and is the technology of choice for building Fusion Middleware
(FMW) products, such as Enterprise Manager, WebCenter, UCM, BPM, BI, and so on, showing
Oracle's commitment to ADF.

Technology alone, however, is no guarantee for success. Community acceptance and
contribution is also an important backbone and measurement of software frameworks and
products, including Oracle ADF.

Oracle ADF is supported by a very active and growing community of bloggers, forum posters,
and speakers, as well as book and article authors. The Oracle JDeveloper 11gR2 Cookbook
you hold in your hands is another example of the ongoing contribution from the ADF
community by author Nick Haralabidis.

The book is a practical guide to learning Oracle ADF, providing code solutions, and technical
explanations to common Oracle ADF questions and developer challenges. Being one of
the technical reviewers for this book and having written other titles as an author myself, I
appreciate the time, effort, and dedication Nick Haralabidis has put into writing this book, as
well as the Oracle ADF expertise and practices he shares with you, the reader. This book is
not a beginner's guide, but a useful reference for all developers starting enterprise application
development with Oracle ADF.

Frank Nimphius
Senior Principal Product Manager, Oracle Application Development Tools

About the Author

Nick Haralabidis has over 20 years experience in the Information Technology industry
and a multifaceted career in positions such as Senior IT Consultant, Senior Software
Engineer, and Project Manager for a number of U.S. and Greek corporations (Compuware,
Chemical Abstracts Service, NewsBank, CheckFree, Intrasoft International, Unisystems,
MedNet International, and others). His many years of experience have exposed him to a wide
range of technologies, such as Java, J2EE, C++, C, Tuxedo, and a number of other database
technologies.

For the last four years, Nick is actively involved in large implementations of next generation
enterprise applications utilizing Oracle's JDeveloper, Application Development Framework
(ADF), and SOA technologies.

He holds a B.S. in Computer Engineering and a M.S. in Computer Science from the University
of Bridgeport.

When he is not pursuing ADF professionally, he writes on his blogs JDeveloper Frequently
Asked Questions (http://jdeveloperfaq.blogspot.com) and ADF Code Bits
(http://adfcodebits.blogspot.com). He is active at the Oracle Technology Network
(OTN) JDeveloper and ADF forum where he both learns and helps.

To Aphrodite, Konstantina and Margaritta, my true inspirations.

To the Packt team and especially to Stephanie Moss for her trust,
encouragement, and direction.

To the book reviewers, Frank Nimphius, Edwin Biemond, and Spyros
Doulgeridis for their time, expertise, and invaluable insight.

About the Reviewers

Edwin Biemond is an Oracle ACE and Solution Architect at Amis, specializing in messaging
with Oracle SOA Suite and Oracle Service Bus. He is an expert in ADF development, WebLogic
Administration, high availability, and security. His Oracle career began in 1997, where he
was developing an ERP, CRM system with Oracle tools. Since 2001, Edwin has changed his
focus to integration, security, and Java development. Edwin was awarded with Java Developer
of the year 2009 by Oracle Magazine, won the EMEA Oracle Partner Community Award in
2010, and contributed some content to the Oracle SOA Handbook of Luces Jellema. He is
an international speaker at Oracle OpenWorld & ODTUG and has a popular blog called Java/
Oracle SOA blog at http://biemond.blogspot.com.

Spyros Doulgeridis holds two M.Sc. degrees, one in Telecommunication from Brunel
University in the U.K. and one in Software Engineering from N.T.U.A. in Greece. With proven
experience using major Java frameworks in JEE applications, he has been working with
Oracle technologies, and especially ADF 11g, since 2008 in a major Form to ADF migration
project—one of Oracle's Success Stories. During this project, he had many roles including
ADF developer, designer of Forms to ADF migration, ADF/Java reviewer, and was responsible
for the application's build process and deployment on Weblogic Server. He likes to share his
experiences by blogging on adfhowto.blogspot.com.

I would like to thank Packt Publishing and especially Mrs. Stephanie Moss
for giving me the opportunity to work on this book. Also, I would like to thank
the author for this interesting journey into Oracle ADF through his helpful
and practical recipes. Finally and above all, I would like to thank all of those
close to me, who missed me while working on this book.

Frank Nimphius is a Senior Principal Product Manager in the Oracle Application
Development Tools group at Oracle Corporation, where he specializes in Oracle JDeveloper
and the Oracle Application Development Framework (ADF).

As a speaker, Frank represents the Oracle ADF and Oracle JDeveloper development
team at user conferences world-wide. Frank owns the ADF Code Corner website
(http://www.oracle.com/technetwork/developer-tools/adf/learnmore/
index-101235.html), and the "OTN Forum Harvest" blog (http://blogs.oracle.com/
jdevotnharvest/).

As an author, Frank frequently writes for Oracle Magazine and co-authored the "Oracle Fusion
Developer Guide" book published in 2009 by McGraw Hill.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files
available? You can upgrade to the eBook version at www.PacktPub.com and as a print book
customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@
packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library.
Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
ff Fully searchable across every book published by Packt

ff Copy and paste, print and bookmark content

ff On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on Twitter,
or the Packt Enterprise Facebook page.

Table of Contents
Preface	 1
Chapter 1: Prerequisites to Success: ADF Project Setup and Foundations	 7

Introduction	 8
Installation of JDeveloper on Linux	 8
Breaking up the application in multiple workspaces	 12
Setting up BC base classes	 18
Setting up logging	 22
Using a custom exception class	 27
Using ADFUtils/JSFUtils	 32
Using page templates	 35
Using a generic backing bean actions framework	 42

Chapter 2: Dealing with Basics: Entity Objects	 47
Introduction	 47
Using a custom property to populate a sequence attribute	 48
Overriding doDML() to populate an attribute with a gapless sequence	 51
Creating and applying property sets	 54
Using getPostedAttribute() to determine the posted attribute's value	 58
Overriding remove() to delete associated children entities	 60
Overriding remove() to delete a parent entity in an association	 63
Using a method validator based on a view object accessor	 66
Using Groovy expressions to resolve validation error message tokens	 70
Using doDML() to enforce a detail record for a new master record	 73

Chapter 3: A Different Point of View: View Object Techniques	 75
Introduction	 75
Iterating a view object using a secondary rowset iterator	 76
Setting default values for view row attributes	 81
Controlling the updatability of view object attributes programmatically	 84

ii

Table of Contents

Setting the Queryable property of a view object attribute programmatically	 86
Using a transient attribute to indicate a new view object row	 88
Conditionally inserting new rows at the end of the rowset	 90
Using findAndSetCurrentRowByKey() to set the view object currency	 92
Restoring the current row after a transaction rollback	 95
Dynamically changing the WHERE clause of the view object query	 99
Removing a row from a rowset without deleting it from the database	 101

Chapter 4: Important Contributors: List of Values, Bind Variables,
View Criteria	 105

Introduction	 106
Setting up multiple LOVs using a switcher attribute	 106
Setting up cascading LOVs	 110
Creating static LOVs	 116
Overriding bindParametersForCollection() to set a view object bind variable	 118
Creating view criteria programmatically	 122
Clearing the values of bind variables associated with the view criteria	 126
Searching case insensitively using view criteria	 128

Chapter 5: Putting them all together: Application Modules	 131
Introduction	 131
Creating and using generic extension interfaces	 132
Exposing a custom method as a web service	 135
Accessing a service interface method from another application module	 139
A passivation/activation framework for custom session-specific data	 143
Displaying application module pool statistics	 151
Using a shared application module for static lookup data	 156
Using a custom database transaction	 159

Chapter 6: Go with the Flow: Task Flows	 163
Introduction	 163
Using an application module function to initialize a page	 164
Using a task flow initializer to initialize a task flow	 170
Calling a task flow as a URL programmatically	 176
Retrieving the task flow definition programmatically using
MetadataService	 182
Creating a train	 186

Chapter 7: Face Value: ADF Faces, JSF Pages, and User Interface
Components	 193

Introduction	 194
Using an af:query component to construct a search page	 194

iii

Table of Contents

Using an af:pop-up component to edit a table row	 198
Using an af:tree component	 205
Using an af:selectManyShuttle component	 210
Using an af:carousel component	 215
Using an af:poll component to periodically refresh a table	 219
Using page templates for pop-up reuse	 222
Exporting data to a client file	 228

Chapter 8: Backing not Baking: Bean Recipes	 233
Introduction	 234
Determining whether the current transaction has pending changes	 234
Using a custom af:table selection listener	 236
Using a custom af:query listener to allow execution of a custom
application module operation	 239
Using a custom af:query operation listener to clear both the
query criteria and results	 243
Using a session scope bean to preserve session-wide information	 248
Using an af:popup during long running tasks	 252
Using an af:popup to handle pending changes	 255
Using an af:iterator to add pagination support to a collection	 259

Chapter 9: Handling Security, Session Timeouts, Exceptions,
and Errors	 265

Introduction	 266
Enabling ADF security	 266
Using a custom login page	 272
Accessing the application's security information	 275
Using OPSS to retrieve the authenticated user's profile from the
identity store	 279
Detecting and handling session timeouts	 285
Using a custom error handler to customize how exceptions are
reported to the ViewController	 288
Customizing the error message details	 291
Overriding attribute validation exceptions	 295

Chapter 10: Deploying ADF Applications	 299
Introduction	 299
Configuring and using the Standalone WebLogic Server	 300
Deploying on the Standalone WebLogic Server	 306
Using ojdeploy to automate the build process	 311
Using Hudson as a continuous integration framework	 316

iv

Table of Contents

Chapter 11: Refactoring, Debugging, Profiling, and Testing	 323
Introduction	 323
Synchronizing business components with database changes	 324
Refactoring ADF components	 327
Configuring and using remote debugging	 329
Logging Groovy expressions	 333
Dynamically configuring logging in WebLogic Server	 335
Performing log analysis	 337
Using CPU profiler for an application running on a standalone
WebLogic server	 339
Configuring and using JUnit for unit testing	 343

Chapter 12: Optimizing, Fine-tuning, and Monitoring	 347
Introduction	 347
Using Update Batching for entity objects	 348
Limiting the rows fetched by a view object	 350
Limiting large view object query result sets	 352
Limiting large view object query result sets by using required view criteria	 356
Using a work manager for processing of long running tasks	 358
Monitoring the application using JRockit Mission Control	 369

Chapter 13: Miscellaneous Recipes
This chapter is not present in the book but is available as a free download from:
http://www.packtpub.com/sites/default/files/downloads/

4767EN_Chapter 13_Miscellaneous Recipes.pdf

Index	 373

Preface
This book contains a wealth of resources covering Oracle's JDeveloper 11g release and the
Application Development Framework (ADF) and how these technologies can be used for the
design, construction, testing, and optimizing of Fusion web applications. Being vast and
complex technologies, an attempt has been made to cover a wide range of topics related
specifically to Fusion web applications development with ADF, utilizing the complete ADF
stack. These topics are presented in the form of recipes, many of them derived from the
author's working experience covering real world use cases. The topics include, but are not
limited to, foundational recipes related to laying out the project groundwork, recipes related to
the ADF business components, recipes related to ViewController, recipes related to security,
optimization and so on.

In the maze of information related to Fusion web applications development with ADF, it is the
author's hope that aspiring ADF developers will find in this book some of the information they
are looking for. So lift up your sleeves, put on your ADF chef's hat, pick up a recipe or two, and
let's start cooking!

What this book covers
Chapter 1, Pre-requisites to Success: ADF Project Setup and Foundations, covers a number
of recipes related to foundational concepts of Fusion web application development with ADF.
By applying and expanding these recipes during the early architectural and design phases as
needed, subsequent application development takes on a form, a structure, and the necessary
uniformity. Many if not most of the recipes in the following chapters rely on these recipes.

Chapter 2, Dealing with Basics: Entity Objects, starts our journey into the world of ADF
business components. First stop: entity objects. The recipes in this chapter deal with some
of the most common framework functionality that is overridden in real world applications to
provide customized business functionality.

Preface

2

Chapter 3, A Different Point of View: View Objects Techniques, covers a number of recipes
related to view objects. This chapter explains how to control attribute updatability, how to set
attribute default values, how to iterate view object row sets, and many more.

Chapter 4, Important Contributors: List of Values, Bind Variables, View Criteria, covers
additional topics related to view objects. These topics include recipes related to list of values
(LOVs), bind variables and view criteria. The reader will learn, among other things, how to
setup multiple LOVs using a switcher attribute, cascading and static LOVs, and how to create
view criteria programmatically.

Chapter 5, Putting them all together: Application Modules, includes a number of recipes
related to application modules. You will learn, among others, how to create and use generic
extension interfaces, expose a custom application module method as a web service and
access a service interface from another application module. Additional recipes cover topics
such as a passivation/activation framework, using shared application modules for static
lookup data and custom database transactions.

Chapter 6, Go with the flow: Task Flows, delves into the world of ADF task flows. Among others,
you will learn how to use an application module function as a method call to initialize a page,
how to use a task flow initializer, how to retrieve the task flow definition programmatically and
how to create a train.

Chapter 7, Face Value: ADF Faces, JSPX Pages and Components, includes recipes detailing
the use of a variety of ADF Faces components, such as the query component, the popup
window component, the tree component, the select many shuttle component, the carousel
component, and others.

Chapter 8, Backing not Baking: Bean Recipes, introduces topics related to backing beans. A
number of topics are covered including the use of custom table selection listeners, custom
query and query operation listeners, session beans to preserve session-wide information,
popup windows to handle long running tasks.

Chapter 9, Handling Security, Session Timeouts, Exceptions and Errors, covers topics
related to handling security, session timeouts, exceptions and errors for an ADF Fusion web
application. The recipes in this chapter will show the reader how to enable ADF security, how
to use a custom login page, how to access the application's security information, how to
detect and handle session timeouts, and how to use a custom error handler.

Chapter 10, Deploying ADF Applications, includes recipes related to the deployment of ADF
Fusion web applications. These recipes include the configuration and use of the standalone
WebLogic server, the deployment of applications on the standalone WebLogic server, the use
of the ojdeploy tool and the use of Hudson as a continuous integration framework.

Preface

3

Chapter 11, Refactoring, Debugging, Profiling, Testing, deals with topics related to refactoring,
debugging, profiling, and testing ADF Fusion web applications. The recipes in this chapter
cover topics such as the synchronization of business components to changes in the database,
refactoring of ADF components, configuring and using remote debugging, configuring logging
in the WebLogic server, CPU profiling and the configuration, and usage of JUnit for unit testing.

Chapter 12, Optimizing, Fine-tuning and Monitoring, covers topics related to optimizing, fine-
tuning, and monitoring ADF Fusion web applications. The recipes in this chapter demonstrate
how to limit the rows fetched by view objects, how to limit large view object queries, how to
use work managers for processing long-running tasks and how to monitor your application
using the JRockit Mission Control.

Chapter 13, Miscellaneous Recipes, the additional content recipes cover topics related among
others to using JasperReports, uploading images to the server, and handling and customizing
database-related errors. This chapter is not present in the book but is available as a free
download from the following link: http://www.packtpub.com/sites/default/files/
downloads/4767EN_Chapter 13_Miscellaneous Recipes.pdf.

What you need for this book
The recipes in this book utilize the latest release of JDeveloper at the time of writing, namely
JDeveloper 11g R2 11.1.2.1.0. This release of JDeveloper comes bundled with the necessary
ADF libraries and a standalone installation of the WebLogic server. Ensure that the WebLogic
server is installed as part of the JDeveloper installation.

In addition, you will need a database connection to Oracle's HR schema. This schema is
provided along with the Oracle XE database.

A number of recipes cover topics that will require you to download and install the following
additional software: Hudson continuous integration, JRockit Mission Control, Jasper Reports,
and iReport.

Who this book is for
This book is targeted to intermediate or advanced developers, designers and architects
already utilizing JDeveloper, the ADF framework, and Oracle's Fusion technologies. Developers
utilizing the complete ADF stack for building ADF Fusion web applications will benefit most
from the book. The book uses ADF business components as its model layer technology, ADF
binding, ADF task flows and the ADF model for its controller layer technologies, and ADF Faces
as its view layer technology.

The introductory concepts in the first chapter, along with the chapters related to handling
exceptions, session timeouts, optimizing, and fine tuning may appeal more to application
designers and architects.

Preface

4

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "In addition to the session-timeout configuration
setting in web.xml, you can configure a session timeout warning interval by defining the
context parameter"

A block of code is set as follows:

public class SessionTimeoutFilter implements Filter {
 private FilterConfig filterConfig = null;
 public SessionTimeoutFilter() {
 super();
}

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

new ExportEmployeesWork(getEmployees().createRowSetIterator(null))

Any command-line input or output is written as follows:

$ chmod u+x ./jdevstudio11121install.bin

$./jdevstudio11121install.bin

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Using the Property Inspector
change the URL Invoke property to url-invoke-allowed."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this book—
what you liked or may have disliked. Reader feedback is important for us to develop titles that
you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, and
mention the book title through the subject of your message.

Preface

5

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased from your
account at http://www.packtpub.com. If you purchased this book elsewhere, you can
visit http://www.packtpub.com/support and register to have the files e-mailed directly
to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do
happen. If you find a mistake in one of our books—maybe a mistake in the text or the code—
we would be grateful if you would report this to us. By doing so, you can save other readers
from frustration and help us improve subsequent versions of this book. If you find any errata,
please report them by visiting http://www.packtpub.com/support, selecting your book,
clicking on the errata submission form link, and entering the details of your errata. Once your
errata are verified, your submission will be accepted and the errata will be uploaded to our
website, or added to any list of existing errata, under the Errata section of that title.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Prerequisites to

Success: ADF
Project Setup and

Foundations

In this chapter, we will cover:

ff Installation of JDeveloper on Linux

ff Breaking up the application in multiple workspaces

ff Setting up BC base classes

ff Setting up logging

ff Using a custom exception class

ff Using ADFUtils/JSFUtils

ff Using page templates

ff Using a generic backing bean actions framework

Prerequisites to Success: ADF Project Setup and Foundations

8

Introduction
JDeveloper and ADF (Application Development Framework) are amazing technologies. What
makes them even more incredible is their sheer complexity and the amount of knowledge and
effort that lies covered underneath the declarative, almost magical frontend. What amazes
me is that once you scratch the surface, you never stop realizing how much you really don't
know. Given this complexity, it becomes obvious that certain development guidelines and
practices must be established and followed early in the architectural and design phases of an
ADF project.

This chapter presents a number of recipes that are geared towards establishing some of
these development practices. In particular, you will see content that serves as a starting
point in making your own application modular when using the underlying technologies. You
will also learn the importance of extending the Business Components framework (ADF-BC)
base classes early in the development cycle. We will talk about the importance of laying out
other application foundational components, such as logging and exceptions, again early in
the development process, and continue with addressing reusability and consistency at the
ViewController layer.

The chapter starts with a recipe about installing and configuring JDeveloper on Linux.
So, let's get started and don't forget, have fun as you go along. If you get in trouble at any
point, take a look at the accompanying source code and feel free to contact me anytime at
nharalabidis@gmail.com.

Installation of JDeveloper on Linux
Installation of JDeveloper is, in general, a straightforward task. So, "why have a recipe for
this?" you might ask. Did you notice the title? It says "on Linux". You will be amazed at the
number of questions asked about this topic on a regular basis on the JDeveloper and ADF
OTN Forum. Besides, in this recipe, we will also talk about configuration options and the usage
of 64-bit JDK along with JDeveloper.

Getting ready
You will need a Linux installation of JDeveloper to use this recipe. For the 64-bit configuration,
you will need a 64-bit Linux distribution and a 64-bit version of the Java SDK. We will install
the latest version of JDeveloper, which is version 11.1.2.1.0 at the time of this writing.

Chapter 1

9

How to do it...
1.	 Download JDeveloper from the Oracle JDeveloper Software download page:

http://www.oracle.com/technetwork/developer-tools/jdev/
downloads/index.html.

2.	 Accept the license agreement, select Linux Install, and click on Download File to
begin with the download.

3.	 Once the file is downloaded, open a console window and start the installation, by
typing the following commands:
$ chmod u+x ./jdevstudio11121install.bin

$./jdevstudio11121install.bin

4.	 On the Choose Middleware Home Directory page, select Create a new Middleware
Home and enter the Middleware home directory.

5.	 On the Choose Install Type page, select Complete to ensure that JDeveloper, ADF
and WebLogic Server are installed.

6.	 Once you confirm your selections, proceed with the installation.

7.	 Upon a successful installation, you will see the Installation Complete page. Uncheck
the Run Quickstart checkbox and click Done.

Prerequisites to Success: ADF Project Setup and Foundations

10

8.	 To start JDeveloper, go to the /jdeveloper/jdev/bin directory under the
Middleware home directory you specified during the installation and type
the following:
$./jdev

9.	 To make things easier, create an application launcher on your Linux desktop for the
specific path indicated in the previous step.

How it works...
As noted earlier, installing JDeveloper on Linux is a straightforward task. You simply have to
download the binary executable archive and run it. Ensure that you give execute permissions
to the installation archive file and run it as noted. If you are having trouble seeing the
Welcome page in graphical mode, ensure that the $DISPLAY environment variable is set
correctly. The important thing to know here is the name of the file to execute in order to start
JDeveloper. As mentioned, it is called jdev and it is located in the /jdeveloper/jdev/bin
directory under the Middleware home directory.

There's more...
Now that you have successfully installed JDeveloper, let's spend some time configuring it for
optimal performance. Configuration parameters are added to any of the jdev.conf or ide.
conf files located in the /jdeveloper/jdev/bin and /jdeveloper/ide/bin directories
respectively, under the Middleware home directory.

The following is a list of the important tuning configuration parameters with some
recommendations for their values:

Parameter Description
AddVMOption -Xmx This parameter is defined in the ide.conf file and indicates

the maximum limit that you will allow the JVM heap size to grow
to. In plain words, it is the maximum memory that JDeveloper will
consume on your system. When setting this parameter, consider
the available memory on your system, the memory needed
by the OS, the memory needed by other applications running
concurrently with JDeveloper, and so on. On a machine used
exclusively for development with JDeveloper, as a general rule of
thumb consider setting it to around 50 percent of the available
memory.

Chapter 1

11

Parameter Description
AddVMOption -Xms This parameter is also defined in the ide.conf and indicates

the initial JVM heap size. This is the amount that will be allocated
initially by JDeveloper and it can grow up to the amount specified
by the previous -Xmx parameter. When setting this parameter,
consider whether you want to give JDeveloper a larger amount
in order to minimize frequent adjustments to the JVM heap.
Setting this parameter to the same value as the one indicated
by the -Xmx parameter will supply a fixed amount of memory to
JDeveloper.

AddVMOption
-XX:MaxPermSize

This parameter indicates the size of the JVM permanent
generation used to store class definitions and associated
metadata. Increase this value if needed in order to avoid java.
lang.OutOfMemoryError: PermGen space errors. A
256MB setting should suffice.

AddVMOption -DVFS_
ENABLE

Set it to true in jdev.conf if your JDeveloper projects consist
of a large number of files, especially if you will be enabling a
version control system from within JDeveloper.

Configuring JDeveloper with a 64-bit JDK
The JDeveloper installation is bundled by default with a 32-bit version of the Java JDK, which
is installed along with JDeveloper. On a 64-bit system, consider running JDeveloper with a 64-
bit version of the JDK. First download and install the 64-bit JDK. Then configure JDeveloper
via the SetJavaHome configuration parameter in the jdev.conf. This parameter should be
changed to point to the location of the 64-bit JDK. Note that the 64-bit JDK is supported by
JDeveloper versions 11.1.1.4.0 and higher.

Configuring the JDeveloper user directory
This is the directory used by JDeveloper to identify a default location where files will be
stored. JDeveloper also uses this location to create the integrated WebLogic domain and to
deploy your web applications when running them or debugging them inside JDeveloper. It is
configured via the SetUserHomeVariable parameter in the jdev.conf file. It can be set
to a specific directory or to an environment variable usually named JDEV_USER_DIR. Note
that when JDeveloper is started with the –singleuser command-line argument, the user
directory is created inside the /jdeveloper directory under the Middleware home directory.

Prerequisites to Success: ADF Project Setup and Foundations

12

Before starting your development in JDeveloper, consider setting the XML file
encoding for the XML files that you will be creating in JDeveloper. These files
among others include, the JSF pages, the business component metadata
files, application configuration files, and so on. You set the encoding via the
Tools | Preferences… menu. Select the Environment node on the left of
the Preferences dialog and the encoding from the Encoding drop-down. The
recommended setting is UTF-8 to support multi-lingual applications.

The minimum recommended open file descriptors limit for JDeveloper on
a Linux system is 4096. Use the command ulimit –n to determine the
open file descriptors limit for your installation and change it if needed in
the limits.conf file located in /etc/security/ directory.

Breaking up the application in multiple
workspaces

When dealing with large enterprise scale applications, the organization and structure of the
overall application in terms of JDeveloper workspaces, projects, and libraries is essential.
Organizing and packaging ADF application artifacts, such as business components, task flows,
templates, Java code, and so on, into libraries will promote and ensure modularity, and the
reuse of these artifacts throughout the application. In this recipe, we will create an application
that comprises reusable components. We will construct reusable libraries for shared
components, business domain specific components, and a main application for consuming
these components.

How to do it…
1.	 To create the SharedComponents library, start by selecting New Application… in

the Application Navigator. This will start the application creation wizard.

2.	 In the New Gallery dialog, click on the Applications node (under the General
category) and select Fusion Web Application (ADF) from the list of Items.

Chapter 1

13

3.	 In the Name your application page, enter the Application Name, Directory and the
Application Package Prefix.

4.	 In the Name your project page, enter the business component's Project Name and
Directory. For this recipe, we have called it SharedBC.

5.	 In the Configure Java settings page for the business components project, accept the
defaults for Default Package, Java Source Path, and Output Directory.

6.	 Similarly, in the Name your project page for the ViewController project, enter
the Project Name and Directory. For this recipe, we have called the project
SharedViewController. Ensuring that you enter a unique package structure for
both projects is the best guarantee for avoiding naming conflicts when these projects
are deployed as ADF Library JARs.

7.	 Accept the defaults in the Configure Java settings and click Finish to proceed with
the creation of the workspace.

