NN A

-
e
=n
—
*
="
W
e
=
-
Bur
—
=]
|
(=
—

R

SECOND EDITION

Spring in Action
Second Edition

CRAIG WALLS

with Ryan Breidenbach

MANNING

Greenwich

(74° w. long.)

For online information and ordering of this and other Manning books, please visit
www.manning.com. The publisher offers discounts on this book when ordered in quantity.
For more information, please contact:

Special Sales Department

Manning Publications Co.

Sound View Court 3B Fax: (609) 877-8256
Greenwick, CT 06830 Email: orders@manning.com

©2008 by Manning Publications Co. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in
any form or by means electronic, mechanical, photocopying, or otherwise, without prior written
permission of the publisher.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in the book, and Manning
Publications was aware of a trademark claim, the designations have been printed in initial caps
or all caps.

Recognizing the importance of preserving what has been written, it is Manning’s policy to have
the books we publish printed on acid-free paper, and we exert our best efforts to that end.

Manning Publications Co. Copyeditor: Liz Welch
Sound View Court 3B Typesetter: Dottie Marsico
Greenwich, CT 06830 Cover designer: Leslie Haimes

ISBN 1-933988-13-4
Printed in the United States of America
12345678910 - MAL - 13 12 11 10 09 08 07

For my wife Raymie and my daughters Maisy and Madison

I am endlessly mystified as to how I merit the love
of the world’s three most beautiful girls.

brief contents

N W N R

© 00 N O O

10
11
12

Springing into action 3
Basic bean wiring 31
Advanced bean wiring 72

Advising beans 116

Hitting the database 155

Managing transactions 220

Securing Spring 247

Spring and POJO-based remote services 305
Building contractfirst web services in Spring 343
Spring messaging 384

Spring and Enterprise JavaBeans 423

Accessing enterprise services 441

viii

BRIEF CONTENTS

13
14
15
16
appendix A
appendix B

Handling web requests 489
Rendering web views 533

Using Spring Web Flow 580
Integrating with other web frameworks
Setting up Spring 667

Testing with (and without) Spring 678

623

contents

preface xix

preface to the first edition xxii
acknowledgments xxv

about this book xxvii

about the title xxxiii

about the cover illustration xxxiv

Springing into action 3
1.1 Whatis Spring? 5
Spring modules 6
1.2 A Spring jump start 11
1.3 Understanding dependency injection 14

Injecting dependencies 14 = Dependency injection in action 15
Dependency injection in enterprise applications 21

1.4 Applying aspect-oriented programming 24
Introducing AOP 24 = AOP in action 26
1.5 Summary 30

CONTENTS

Basic bean wiring 31

21

2.2

2.3

2.4

25

2.6

Containing your beans 33

Introducing the BeanFactory 34 = Working with an application
context 35w A bean’s life 37

Creating beans 40
Declaring a simple bean 40 = Injecting through constructors 42
Injecting into bean properties 46

Injecting simple values 47 = Referencing other beans 48
Wiring collections 52 = Wiring nothing (null) 58

Autowiring 58

The four types of autowiring 59 = Mixing auto with explicit
wiring 63 % To autowire or not to autowire 63

Controlling bean creation 64

Bean scoping 65 = Creating beans from factory methods 66
Initializing and destroying beans 68

Summary 71

Advanced bean wiring 72

3.1

3.2

3.3
3.4
3.5

3.6

3.7

Declaring parent and child beans 73
Abstracting a base bean type 74 = Abstracting common
properties 76
Applying method injection 79
Basic method replacement 80 = Using getter injection 83
Injecting non-Spring beans 85
Registering custom property editors 88
Working with Spring’s special beans 92

Postprocessing beans 93 = Postprocessing the bean factory 95
Externalizing configuration properties 96 = Resolving text
messages 99 = Decoupling with application events 101
Making beans aware 103

Scripting beans 106

Putting the lime in the coconut 107 = Scripting a bean 108
Injecting properties of scripted beans 111 = Refreshing scripted
beans 112 = Writing scripted beans inline 113

Summary 114

CONTENTS

Advising beans 116

4.1

4.2

4.3

4.4
4.5
4.6

Introducing AOP 118
Defining AOP terminology 119 = Spring’s AOP support 122
Creating classic Spring aspects 125

Creating advice 127 = Defining pointcuts and advisors 132
Using ProxyFactoryBean 136

Autoproxying 139

Creating autoproxies for Spring aspects 140 = Autoproxying
@Aspect] aspects 141

Declaring pure-POJO aspects 145
Injecting Aspect] aspects 149
Summary 152

Hitting the database 155

5.1

5.2

5.3

5.4

5.5

Learning Spring’s data access philosophy 157

Getting to know Spring’s data access exception hierarchy 158
Templating data access 161 = Using DAO support classes 163

Configuring a data source 165

Using [NDI data sources 165 = Using a pooled data source 167
JDBC driver-based data source 168

Using JDBC with Spring 170
Tackling runaway [DBC code 170 = Working with [DBC
templates 173 = Using Spring’s DAO support classes for
JDBC 180

Integrating Hibernate with Spring 183

Choosing a version of Hibernate 185 = Using Hibernate
templates 186 = Building Hibernate-backed DAOs 190
Using Hibernate 3 contextual sessions 192

Spring and the Java Persistence AP 194

Using JPA templates 194 = Configuring an entity manager
factory 197 = Building a JPA-backed DAO 202

xii

CONTENTS

5.6 Spring and iBATIS 203

Configuring an iBATIS client template 204 = Building
an iBATIS-backed DAO 207

5.7 Caching 208
Configuring a caching solution 210 = Proxying beans
Jor caching 215 = Annotation-driven caching 217

5.8 Summary 218

Managing transactions 220
6.1 Understanding transactions 222

Explaining transactions in only four words 223
Understanding Spring’s transaction management
support 224

6.2 Choosing a transaction manager 225

JDBC transactions 226 = Hibernale transactions 227
Java Persistence API transactions 227 = Java Data
Objects transactions 228 = Java Transaction API
transactions 229

6.3 Programming transactions in Spring 229

6.4 Declaring transactions 232

Defining transaction attributes 233 = Proxying
transactions 238 = Declaring transactions in
Spring 2.0 241 = Defining annotation-driven
lransactions 243

6.5 Summary 245

Securing Spring 247
7.1 Introducing Spring Security 248
7.2 Authenticating users 252

Configuring a provider manager 253 = Authenticating
against a database 256 = Authenticating against
an LDAP repository 264

7.3 Controlling access 271

Voting access decisions 272 = Casting an access decision
vote 273 = Handling voter abstinence 275

CONTENTS

7.4 Securing web applications 275

Proxying Spring Security’s filters 278 = Handling the
security context 285 = Prompting the user to log

in 286 = Handling security exceptions 291 = Enforcing
web security 293 = Ensuring a secure channel 294

7.5 View-layer security 297

Conditionally rendering content 298 = Displaying user
authentication information 299

7.6 Securing method invocations 300

Creating a security aspect 301 = Securing methods using
metadata 303

7.7 Summary 304

Spring and POJO-based remote services 305
8.1 An overview of Spring remoting 306
8.2 Working with RMI 309
Wiring RMI services 310 = Exporting RMI services 312
8.3 Remoting with Hessian and Burlap 316

Accessing Hessian/Burlap services 317 » Exposing bean
Junctionality with Hessian/Burlap 318

8.4 Using Spring’s HttpInvoker 322

Accessing services via HI'TP 323 » Exposing beans as
HTTP Services 324

8.5 Spring and web services 326

Exporting beans as web services using XFire 326
Declaring web services with JSR-181 annotations 330

Consuming web services 333 ® Proxying web services with
an XFire client 340

8.6 Summary 341

Building contract-first web services in Spring 343
9.1 Introducing Spring-WS 345
9.2 Defining the contract (first!) 347
Creating sample XML messages 348

xiii

Xiv CONTENTS

9.3 Handling messages with service endpoints 353

Building a JDOM-based message endpoint 355 = Marshaling
message payloads 358

9.4 Wiring it all together 361

Spring-WS: The big picture 361 = Mapping messages to
endpoints 363 = Wiring the service endpoint 364
Configuring a message marshaler 364 = Handling endpoint
exceptions 367 = Serving WSDL files 369 = Deploying the
service 373

9.5 Consuming Spring-WS web services 373

Working with web service templates 374 = Using web service
gateway support 381

9.6 Summary 382

Spring messaging 384
10.1 A brief introduction to JMS 386
Architecting [MS 387 = Assessing the benefits of J]MS 390
Setting up ActiveMQ in Spring 392
10.2 Using JMS with Spring 393

Tackling runaway JMS code 393 = Working with [MS
templates 395 = Converting messages 402 = Using Spring’s
gateway support classes for [IMS 405

10.3 Creating message-driven POJOs 407

Creating a message listener 408 = Writing pure-POJO
MDPs 412

10.4 Using message-based RPC 416

Introducing Lingo 417 = Exporting the service 418
Proxying [MS 420

10.5 Summary 422

Spring and Enterprise JavaBeans 423
11.1 Wiring EJBs in Spring 425

Proxying session beans (EJB 2.x) 426 = Wiring E[Bs into Spring
beans 430

11.2 Developing Spring-enabled EJBs (EJB 2.x) 431

CONTENTS XV

11.3 Spring and E]B3 434

Introducing Pitchfork 435 = Getting started with Pitchfork 436
Injecting resources by annotation 437 = Declaring interceptors
using annotations 438

11.4 Summary 440

Accessing enterprise services 441
12.1 Wiring objects from JNDI 442
Working with conventional [INDI 443 = Injecting [NDI
objects 446 = Wiring [NDI objects in Spring 2 449
12.2 Sending email 450
Configuring a mail sender 451 = Constructing the email 453
12.3 Scheduling tasks 456

Scheduling with Java’s Timer 457 » Using the Quartz
scheduler 460 = Invoking methods on a schedule 464

12.4 Managing Spring beans with JMX 466

Exporting Spring beans as MBeans 467 = Remoting
MBeans 477 = Handling notifications 482

12.5° Summary 485

Handling web requests 489
13.1 Getting started with Spring MVC 490
A day in the life of a request 491 = Configuring
DispatcherServlet 492 = Spring MVC in a nutshell 495
13.2 Mapping requests to controllers 502

Using SimpleUriHandlerMapping 503 = Using
ControllerClassNameHandlerMapping 504 = Using metadata
to map controllers 505 = Working with multiple handler
mappings 505

13.3 Handling requests with controllers 506

Processing commands 509 = Processing form submissions 512
Processing complex forms with wizards 520 = Working with
throwaway controllers 528

xvi CONTENTS

13.4 Handling exceptions 531
13.5 Summary 532

Rendering web views 533

14.1 Resolving views 534

Using template views 535 = Resolving view beans 537
Choosing a view resolver 540

14.2 Using JSP templates 542
Binding form data 542 = Rendering externalized messages 544
Displaying errors 547
14.3 Laying out pages with Tiles 549
Tile views 550 = Creating Tile controllers 554
14.4 Working with JSP alternatives 556
Using Velocity templates 557 = Working with FreeMarker 564
14.5 Generating non-HTML output 569

Producing Excel spreadsheets 570 = Generating PDF
documents 573 = Developing custom views 576

14.6 Summary 578

Using Spring Web Flow 580
15.1 Getting started with Spring Web Flow 582

Installing Spring Web Flow 584 = Spring Web Flow
essentials 589 = Creating a flow 591

15.2 Laying the flow groundwork 591

Flow variables 591 = Start and end states 593 = Gathering
customer information 594 = Building a pizza order 601
Completing the order 605 = A few finishing touches 608

15.3 Advanced web flow techniques 611

Using decision states 612 = Extracting subflows and using
substates 614

15.4 Integrating Spring Web Flow with other frameworks 619
Jakarta Struts 619 = JavaServer Faces 620

15.5 Summary 622

CONTENTS

Integrating with other web frameworks 623
16.1 Using Spring with Struts 624

Registering the Spring plug-in with Struts 626 = Writing Spring-
aware Struts actions 627 = Delegating to Spring-configured
actions 629 = What about Struts 2?2 632

16.2 Working Spring into WebWork 2/Struts 2 633
16.3 Integrating Spring with Tapestry 636
Integrating Spring with Tapestry 3 637 = Integrating Spring with
Tapestry 4 641
16.4 Putting a face on Spring with JSF 643
Resolving J[SF-managed properties 644 = Resolving Spring
beans 646 = Using Spring beans in JSF pages 646
Exposing the application context in JSF 648
16.5 Ajax-enabling applications in Spring with DWR 648

Direct web remoting 650 = Accessing Spring-managed beans
DWR 659

16.6 Summary 664

appendix A Setting up Spring 667
appendix B Testing with (and without) Spring 678
index 707

web content
web chapter Building portlet applications
appendix C Spring XML configuration reference
appendix D Spring JSP tag library reference
appendix E Spring Web Flow definition reference

appendix F Customizing Spring configuration

xvii

preface

It was December 7, 2005. I was standing at the side of a large hotel meeting room
in Miami Beach, Florida. The room was filled with developers from all over the
world who had descended upon the beautiful sandy beaches of southern Florida
for a single purpose: to talk about Spring.

What can I say? It was a room full of nerds. Rather than soak in the sun and
surf, we all gathered inside to bask in the warm glow of our laptop screens to learn
more about our beloved framework from those who know it best.

On that particular night, we were hanging on the words of Spring’s creator,
Rod Johnson, as he presented the opening keynote for the conference. He spoke
of Spring’s origins and the successes it had enjoyed. Then he invited a few mem-
bers of the Spring team to the podium to introduce new features that were to be
in the next version.

He wasn’t far into his presentation when Rod made an announcement that
caught everyone’s attention. We were all expecting these great new features to be
available in Spring 1.3, the supposed next version of Spring. Much to our surprise,
Rod informed us that there would be no Spring 1.3; the next version would be
Spring 2.0.

The decision to bump up the major version number of the next release isn’t
made lightly. Such an action connotes a significant advance in Spring. If the next
version of Spring would be 2.0, then we could expect major enhancements.
Indeed, ten months later, Spring 2.0 would be released with an abundance of new
capabilities, including:

PREFACE

Simplified XML configuration and the option to create custom configura-
tion elements

Greatly simplified AOP and transactions

Support for Java 5 annotations for declaring aspects, transactions, and
required bean properties

The ability to create beans from scripts written in JRuby, Groovy, or Bean-
Shell

New JDBC templates to support named parameters and Java b features

Improved JMS support, including receiving messages asynchronously (for
creating message-driven POJOs)

A new form-binding JSP tag library

Several convention-over-configuration improvements to reduce the amount
of XML required to configure Spring

Support for the Java Persistence API (JPA)

Enhanced bean scoping, including request and session scoping of beans for
web applications

The ability to perform dependency injection on objects that Spring doesn’t
create (such as domain objects)

At one point in his keynote, Rod said that if the wealth of new features being
introduced didn’t justify a jump to 2.0, then how would they ever be able to justify
a 2.0 release?

That’s not all. In addition to the work being done on the core Spring Frame-
work, several interesting Spring-related projects were underway to provide addi-
tional capabilities on top of Spring. Among them:

Spring Web Flow, which is based on Spring MVC and enables development
of flow-based web applications

XFire, for exporting your Spring beans as SOAP web services
Spring-WS for creating contract-first web services

Spring Modules, which provides (among other things) declarative caching
and validation

Direct Web Remoting (DWR) for Ajax-enabling Spring beans

Lingo, which makes it possible to asynchronously invoke methods on
remote beans

PREFACE xxi

Then it occurred to me: if all of these new advances in Spring didn’t justify a sec-
ond edition of Spring in Action, then what would? As it turned out, Manning was
thinking the same thing.

And now, well over a year later, here’s the long-awaited update to Spring in
Action that covers many of the new features of Spring 2.0. It has taken me a lot
longer to finish than I had planned, but I hope that it was worth the wait. My goal
for this edition is the same as with the first: to share the joy of developing in
Spring. I hope this book will serve to enhance your enjoyment of Spring.

preface to the first edition

Software developers need to have a number of traits in order to practice their
craft well. First, they must be good analytical thinkers and problem solvers. A
developer’s primary role is to create software that solves business problems.
This requires analyzing customer needs and coming up with successful, cre-
ative solutions.

They also need to be curious. Developments in the software industry are mov-
ing targets, always evolving. New frameworks, new techniques, new languages, and
new methodologies are constantly emerging. Each one is a new tool that needs to
be mastered and added to the toolbox, allowing the developer to do his or her job
better and faster.

Then there is the most cherished trait of all, “laziness.” The kind of laziness
that motivates developers to work hard to seek out solutions with the least amount
of effort. It was with curiosity, a good dose of “laziness,” and all the analytical abili-
ties we could muster that the two of us struck out together four years ago to find
new ways to develop software.

This was the time when open source software was reaching critical mass in the
Java community. Tons of open source frameworks were blossoming on the Java
landscape. In order to decide to adopt one, it had to hit the sweet spot of our
needs—it had to do 80% of what we needed right out of the box. And for any
functionality that was not right out of the box, the framework needed to be easily
extendible so that functionality too would be included. Extending didn’t mean

xxii

PREFACE TO THE FIRST EDITION xxiii

kludging in some hack that was so ugly you felt dirty afterwards—it meant extend-
ing in an elegant fashion. That wasn’t too much to ask, right?

The first of these frameworks that gained immediate adoption on our team
was Ant. From the get-go, we could tell that Ant had been created by another
developer who knew our pain in building Java applications. From that moment
on, no more javac. No more CLASSPATH. All this with a straightforward (albeit
sometimes verbose) XML configuration. Huzzah! Life (and builds) just got easier.

As we went along, we began adopting more and more tools. Eclipse became
our IDE of choice. Log4] became our (and everybody else’s) default logging tool-
kit. And Lucene supplanted our commercial search solution. Each of these tools
met our criteria of filling a need while being easy to use, understand, and extend.

But something was lacking. These great tools were designed to help develop
software, like Ant and Eclipse, or to serve a very specific application need, like
searching in the case of Lucene and logging for Log4]. None of them addressed
the needs at the heart of enterprise applications: persistence, transactions, and
integration with other enterprise resources.

That all changed in the last year or so when we discovered the remarkable one-
two enterprise punch of Spring and Hibernate. Between these two frameworks
nearly all of our middle- and data-tier needs were met.

We first adopted Hibernate. It was the most intuitive and feature-rich object/
relational mapping tool out there. But it was by adopting Spring that we really got
our code to look good. With Spring’s dependency injection, we were able to get
rid of all our custom factories and configurers. In fact, that is the reason we first
integrated Spring into our applications. Its wiring allowed us to streamline our
application configurations and move away from homegrown solutions. (Hey,
every developer likes writing his own framework. But sometimes you just have to
let go!)

We quickly discovered a nice bonus: Spring also provided very easy integration
with Hibernate. This allowed us to ditch our custom Hibernate integration classes
and use Spring’s support instead. In turn, this led us directly to Spring’s support
for transparent persistence.

Look closely and you will see a pattern here. The more we used Spring, the
more we discovered new features. And each feature we discovered was a pleasure
to work with. Its web MVC framework worked nicely in a few applications. Its AOP
support has been helpful in several places, primarily security. The JDBC support
was quite nice for some smaller programs. Oh yeah, we also use it for scheduling.
And JNDI access. And email integration. When it comes to hitting development
sweet spots, Spring knocks the ball out of the park.

XXiV

PREFACE TO THE FIRST EDITION

We liked Spring so much, we decided somebody should write a book about it.
Fortunately, one of us had already written a book for Manning and knew how to
go about doing this sort of thing. Soon that “somebody who should write a book”
became us. In taking on this project we are trying to spread the gospel of Spring.
The Spring framework has been nothing but a joy for us to work with—we predict
it will be the same for you. And, we hope this book will be a pleasant vehicle for
you to get to that point.

acknowledgments

Wow! It took a lot longer to get this book done than I thought it would. But
there’s no way you would be holding it in your hands if it weren’t for the help,
inspiration, and encouragement of all of the great folks behind the scenes.

First, I'd like to acknowledge the hard-working souls at Manning who miracu-
lously turned my sloppily written manuscript into the fine piece of programming
literature that is now before you: Marjan Bace, Mary Piergies, Cynthia Kane, Dot-
tie Marsico, Karen Tegtmeyer, Leslie Haimes, Liz Welch, Gabriel Dobrescu, Ron
Tomich, Kerri Bonasch, Jackie Carter, Frank Blackwell, Michael Stephens, and
Benjamin Berg.

I’d also like to thank the reviewers who took the time to provide feedback and
criticism needed to shape the book: Doug Warren, Olivier Jolly, Matthew Payne,
Bill Fly, Jonathon Esterhazy, Philip Hallstrom, Mark Chaimungkalanont, Eric Ray-
mond, Dan Allen, George M. Jempty, Mojahedul Hasanat, Vlad Kofman, Ashik
Uzzaman, Norman Richards, Jeff Cunningham, Stuart Caborn, Patrick Dennis,
Bas Vodde, and Michael Masters. In addition, Erik Weibust and Valentin Crettaz
did a second technical review of the manuscript, just before it went to press.

Then there are those people who didn’t work on the book directly but had no
less of an impact on me or on how this book turned out.

To my best friend, loving wife, and most beautiful woman in the world, Ray-
mie. Thank you so much for your enduring patience another seemingly never-
ending book project. I'm sorry that it took so long. Now that it’s over, I owe you
more flowers and date nights. And maybe some yard work.

XXV

ACKNOWLEDGMENTS

My sweet and adorable little girls, Maisy and Madison: Thanks for your hugs
and laughs and playtime that gave me a pleasant break from the book.

To Ryan Breidenbach, my coauthor on the first edition: Many thanks for help-
ing me get this started and for your feedback on the second edition.

To the Spring team: No part of this book would be possible (or even necessary)
without your vision and drive to create such an awesome framework. I’d especially
like to thank Rod Johnson and Colin Sampaleanu for their comments on my blog
and IM sessions that helped guide my thinking, as well as Arjen Poutsma for
reviewing the Spring-WS chapter and keeping me in check.

To all of my coworkers over the past couple of years: I've learned many valu-
able things working alongside you and couldn’t thank you more for your profes-
sionalism, dedication, and friendship: Jeff Hanson, Jim Wallace, Don Beale, Van
Panyanouvong, James Tikalsky, Ryan Breidenbach, Marianna Krupin, Tonji Zim-
merman, Jeff Wellen, Chris Howard, Derek Lane, Tom McGraw, Greg Vaughn,
Doug Warren, Jon West, Peter Presland-Byrne, Ravi Varanasi, Srinivasa
Penubothu, Gary Edwards, Greg Helton, Jacob Orshalick, Valerie Crowley, Tyler
Osborne, Stephanie Co, Maggie Zhuang, Tim Sporcic, William Johnson, John
Moore, Brian Eschbach, Chris Morris, Dave Sims, Andy Cline, Bear Cahill, Greg
Graham, and Paul Nelson.

A shout-out to all of my other friends, colleagues, fellow nerds, people I've met
at conferences, members of my LinkedIn list, and those who bribed me to put
their name in the acknowledgments: James Bell, Daniel Brookshier, Scott Davis,
Ben Galbraith, Bill Fly, Justin Gehtland, Pete Gekas, Robert Gleaton, Stu Hallo-
way, Erik Hatcher, Rick Hightower, Ramnivas Laddad, Guillaume Laforge, Crazy
Bob Lee, Ted Neward, Matt Raible, Leo Ramirez, Arun Rao, Norman Richards,
Chris Richardson, James Strachan, Bruce Tate, Glenn Vanderburg, Becca
Wheeler, and Jay Zimmerman.

And finally, my endless gratitude to Jack Bauer...for saving the world, 24 hours
ata time.

about this book

The Spring Framework was created with a very specific goal in mind—to make
developing JEE applications easier. Along the same lines, Spring in Action was writ-
ten to make learning how to use Spring easier. My goal is not to give you a blow-by-
blow listing of Spring APIs. Instead, I hope to present the Spring Framework in a
way that is most relevant to a JEE developer by providing practical code examples
from real-world experiences.

Since Spring is a modular framework, this book was written in the same way. I
recognize that not all developers have the same needs. Some may want to learn
the Spring Framework from the ground up, while others may want to pick and
choose different topics and go at their own pace. That way, the book can act as a
tool for learning Spring for the first time as well as a guide and reference for those
wanting to dig deeper into specific features.

Roadmap

Spring in Action Second Edition is divided into three parts, plus two appendices.
Each of the three parts focuses on a general area of the Spring Framework: the
core framework, the business and data layers, and the presentation layer. While
each part builds on the previous section, each is also able to stand on its own,
allowing you to dive right into a certain topic without starting from the beginning.

In part 1, you’ll explore the two core features of the Spring framework: depen-
dency injection (DI) and aspect-oriented programming (AOP). This will give you a

xxVvii

chaiyilin
Highlight

XXViii

ABOUT THIS BOOK

good understanding of Spring’s fundamentals that will be utilized throughout the
book.

In chapter 1, you’ll be introduced to DI and AOP and how they lend themselves
to developing loosely coupled Java applications.

Chapter 2 takes a more detailed look at how to configure and associate your
application objects using dependency injection. You will learn how to write loosely
coupled components and wire their dependencies and properties within the
Spring container using XML.

Once you’ve got the basics of bean wiring down, you’ll be ready to look at
some of the more advanced features of the Spring container in chapter 3. Among
other things, you’ll learn how to hook into the lifecycle of your application com-
ponents, create parent/child relationships among your bean configurations, and
wire in scripted components written in Ruby and Groovy.

Chapter 4 explores how to use Spring’s AOP to decouple cross-cutting con-
cerns from the objects that they service. This chapter also sets the stage for later
chapters, where you’ll use Spring AOP to provide declarative services such as
transactions, security, and caching.

Part 2 builds on the DI and AOP features introduced in part 1 and shows you
how to apply these concepts in the data and business tiers of your application.

Chapter 5 covers Spring’s support for data persistence. You’ll be introduced to
Spring’s JDBC support, which helps you remove much of the boilerplate code
associated with JDBC. You’ll also see how Spring integrates with several popular
persistence frameworks such as Hibernate, iBATIS, and the Java Persistence API
(JPA).

Chapter 6 complements chapter 5, showing you how to ensure integrity in
your database using Spring’s transaction support. You will see how Spring uses
AOP to give simple application objects the power of declarative transactions.

In chapter 7 you will learn how to apply security to your application using
Spring Security. You’ll see how Spring Security secures application both at the web
request level using servlet filters and at the method level using Spring AOP.

Chapter 8 explores how to expose your application objects as remote services.
You’ll also learn how to seamlessly access remote services as though they were any
other object in your application. Remoting technologies explored will include
RMI, Hessian/Burlap, SOAP-based web services, and Spring’s own HttpInvoker.

Although chapter 8 covers web services in Spring, chapter 9 takes a different
look at web services by examining the Spring-WS project. In this chapter, you’ll
learn how to use Spring-WS to build contract-first web services, in which the ser-
vice’s contract is decoupled from its implementation.

ABOUT THIS BOOK XXiX

Chapter 10 looks at using Spring to send and receive asynchronous messages
with JMS. In addition to basic JMS operations with Spring, you’ll also learn how to
using the open source Lingo project to expose and consume asynchronous
remote services over JMS.

Even though Spring eliminates much of the need for E]JBs, you may have a
need to use both Spring and EJB together. Therefore, chapter 11 explores how to
integrate Spring with EJB. You’ll learn how to write Spring-enabled E]Bs, how to
wire EJB references into your Spring application context, and even how to use EJB-
like annotations to configure your Spring beans.

Wrapping up part 2, chapter 12 will show you how to use Spring to schedule
jobs, send e-mails, access JNDI-configured resources, and manage your application
objects with JMX.

Part 3 moves the discussion of Spring a little closer to the end user by looking
at the ways to use Spring to build web applications.

Chapter 13 introduces you to Spring’s own MVC web framework. You will dis-
cover how Spring can transparently bind web parameters to your business objects
and provide validation and error handling at the same time. You will also see how
easy it is to add functionality to your web applications using Spring’s rich selection
of controllers.

Picking up where chapter 13 leaves off, chapter 14 covers the view layer of
Spring MVC. In this chapter, you’ll learn how to map the output of a Spring MVC
controller to a specific view component for rendering to the user. You’ll see how to
define application views using JSP, Velocity, FreeMarker, and Tiles. And you’ll learn
how to create non-HTML output such as PDF, Excel, and RSS from Spring MVC.

Chapter 15 explores Spring Web Flow, an extension to Spring MVC that
enables development of conversational web applications. In this chapter you’ll
learn how to build web applications that guide the user through a specific flow.

Finally, chapter 16 shows you how to integrate Spring with other web frame-
works. If you already have an investment in another web framework (or just have a
preference), this chapter is for you. You’ll see how Spring provides support for
several of the most popular web frameworks, including Struts, WebWork, Tapestry,
and JavaServer Faces (JSF).

Appendix A will get you started with Spring, showing you how to download
Spring and configure Spring in either Ant or Maven 2.

One of the key benefits of loose coupling is that it makes it easier to unit-test
your application objects. Appendix B shows you how to take advantage of
dependency injection and some of Spring’s test-oriented classes for testing your
applications.

XXX

ABOUT THIS BOOK

Additional web content

As I was writing this book, I wanted to cover as much of Spring as possible. I got a
little carried away and ended up writing more than could fit into the printed
book. Just like with many Hollywood movies, a lot of material ended up on the
cutting room floor:

= “Building portlet applications” This chapter covers the Spring Portlet MVC
framework. Spring Portlet MVC is remarkably similar to Spring MVC (it even
reuses some of Spring MVC’s classes), but is geared for the special circum-
stances presented by portlet applications.

n Appendix C, “Spring XML configuration reference” This appendix documents
all of the XML configuration elements available in Spring 2.0. In addition, it
includes the configuration elements for Spring Web Flow and Direct Web
Remoting (DWR).

s Appendix D, “Spring JSP tag library reference” This appendix documents all of
the JSP tags, both the original Spring JSP tags and the new form-binding tags
from Spring 2.0.

» Appendix E, “Spring Web Flow definition reference” This appendix catalogs all
of the XML elements that are used to define a flow for Spring Web Flow.

n Appendix F “Customizing Spring configuration” This appendix, which was
originally part of chapter 3, shows you how to create custom Spring XML
configuration namespaces.

There’s some good stuff in there and I didn’t want that work to be for naught. So
I convinced Manning to give it all of the same attention that it would get if it were
to be printed and to make it available to download for free. You’ll be able to down-
load this bonus material online at http://www.manning.com/SpringinAction.

Who should read this book

Spring in Action Second Edition is for all Java developers, but enterprise Java devel-
opers will find it particularly useful. While I will guide you along gently through
code examples that build in complexity throughout each chapter, the true power
of Spring lies in its ability to make enterprise applications easier to develop.
Therefore, enterprise developers will most fully appreciate the examples pre-
sented in this book.

Because a vast portion of Spring is devoted to providing enterprise services,
many parallels can be drawn between Spring and EJB. Therefore, any experience
you have will be useful in making comparisons between these two frameworks.

ABOUT THIS BOOK XXXi

Finally, while this book is not exclusively focused on web applications, a good
portion of it is dedicated to this topic. In fact, the final four chapters demon-
strate how Spring can support the development your applications’ web layer. If
you are a web application developer, you will find the last part of this book espe-
cially valuable.

Code conventions

There are many code example throughout this book. These examples will always
appear in a fixed-width code font. If there is a part of example we want you to
pay extra attention to, it will appear in a bolded code font. Any class name,
method name, or XML fragment within the normal text of the book will appear in
code font as well.

Many of Spring’s classes and packages have exceptionally long (but expressive)
names. Because of this, line-continuation markers (=) may be included when
necessary.

Not all code examples in this book will be complete. Often we only show a
method or two from a class to focus on a particular topic.

Complete source code for the application found throughout the book can be
downloaded from the publisher’s website at www.manning.com/walls3 or
www.manning.com/SpringinAction.

About the author

Craig Walls is a software developer with more than 13 years’ experience and is the
coauthor of XDoclet in Action (Manning, 2003). He’s a zealous promoter of the
Spring Framework, speaking frequently at local user groups and conferences and
writing about Spring on his blog. When he’s not slinging code, Craig spends as
much time as he can with his wife, two daughters, six birds, four dogs, two cats,
and an everfluctuating number of tropical fish. Craig lives in Denton, Texas.

Author Online

Purchase of Spring in Action includes free access to a private web forum run by
Manning Publications where you can make comments about the book, ask techni-
cal questions, and receive help from the authors and from other users. To access
the forum and subscribe to it, point your web browser to www.manning.com/
walls3 or www.manning.com/SpringinAction. This page provides information on
how to get on the forum once you are registered, what kind of help is available,
and the rules of conduct on the forum.

http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/SpringinAction
http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/walls3
http://www.manning.com/SpringinAction
http://www.manning.com/SpringinAction

xXxxii

ABOUT THIS BOOK

Manning’s commitment to our readers is to provide a venue where a meaning-
ful dialogue between individual readers and between readers and the author can
take place. It is not a commitment to any specific amount of participation on the
part of the author, whose contribution to the book’s forum remains voluntary
(and unpaid). We suggest you try asking the author some challenging questions,
lest his interest stray!

The Author Online forum and the archives of previous discussions will be
accessible from the publisher’s website as long as the book is in print.

about the title

By combining introductions, overviews, and how-to examples, the In Action books
are designed to help learning and remembering. According to research in cogni-
tive science, the things people remember are things they discover during self-
motivated exploration.

Although no one at Manning is a cognitive scientist, we are convinced that for
learning to become permanent it must pass through stages of exploration, play,
and, interestingly, retelling of what is being learned. People understand and
remember new things, which is to say they master them, only after actively explor-
ing them. Humans learn in action. An essential part of an In Action guide is that it
is example-driven. It encourages the reader to try things out, to play with new
code, and explore new ideas.

There is another, more mundane, reason for the title of this book: our readers
are busy. They use books to do a job or to solve a problem. They need books that
allow them to jump in and jump out easily and learn just what they want just when
they want it. They need books that aid them n action. The books in this series are
designed for such readers.

iii

about the cover illustration

The figure on the cover of Spring in Action Second Edition is a “Le Caraco,” or an
inhabitant of the province of Karak in southwest Jordan. Its capital is the city of Al-
Karak, which boasts an ancient hilltop castle with maginficent views of the Dead
Sea and surrounding plains.

The illustration is taken from a French travel book, Encyclopedie des Voyages by
J. G. St. Saveur, published in 1796. Travel for pleasure was a relatively new phe-
nomenon at the time and travel guides such as this one were popular, introduc-
ing both the tourist as well as the armchair traveler to the inhabitants of other
regions of France and abroad.

The diversity of the drawings in the Encyclopedie des Voyages speaks vividly of the
uniqueness and individuality of the world’s towns and provinces just 200 years
ago. This was a time when the dress codes of two regions separated by a few dozen
miles identified people uniquely as belonging to one or the other. The travel
guide brings to life a sense of isolation and distance of that period and of every
other historic period except our own hyperkinetic present.

Dress codes have changed since then and the diversity by region, so rich at the
time, has faded away. It is now often hard to tell the inhabitant of one continent
from another. Perhaps, trying to view it optimistically, we have traded a cultural
and visual diversity for a more varied personal life. Or a more varied and interest-
ing intellectual and technical life.

We at Manning celebrate the inventiveness, the initiative, and the fun of the
computer business with book covers based on the rich diversity of regional life two
centuries ago brought back to life by the pictures from this travel guide.

XXXIV

Part 1

Core Spring

Spring does a lot of things, but when you break it down to its core parts,
Spring’s primary features are dependency injection (DI) and aspect-oriented
programming (AOP). Starting in chapter 1, “Springing into action,” you’ll be
given a quick overview of DI and AOP in Spring and see how they can help
you to decouple application objects.

In chapter 2, “Basic bean wiring,” we’ll take a more in-depth look at how
to keep all your application objects loosely coupled using DI. You’ll learn
how to define your application’s objects and then wire them with dependen-
cies in the Spring container using XML.

Turning it up a notch in chapter 3, “Advanced bean wiring,” we’ll explore
some of the more advanced features of the Spring container and see how to
use some of Spring’s more powerful configuration techniques.

Chapter 4, “Advising beans,” explores how to use Spring’s AOP fea-
tures to decouple systemwide services (such as security and auditing) from
the objects they service. This chapter sets the stage for chapters 6 and 7,
where you’ll learn how to use Spring AOP to provide declarative transac-
tion and security.

Springing inio action

This chapter covers
® Exploring Spring’s core modules
® Decoupling application objects

® Managing cross-cutting concerns with AOP

CHAPTER 1
Springing into action

It all started with a bean.

In 1996, the Java programming language was still a young, exciting, up-and-
coming platform. Many developers flocked to the language because they had seen
how to create rich and dynamic web applications using applets. But they soon
learned that there was more to this strange new language than animated juggling
cartoon characters. Unlike any language before it, Java made it possible to write
complex applications made up of discrete parts. They came for the applets, but
they stayed for the components.

It was in December of that year that Sun Microsystems published the JavaBeans
1.00-A specification. JavaBeans defined a software component model for Java.
This specification defined a set of coding policies that enabled simple Java objects
to be reusable and easily composed into more complex applications. Although
JavaBeans were intended as a general-purpose means of defining reusable appli-
cation components, they were primarily used as a model for building user inter-
face widgets. They seemed too simple to be capable of any “real” work. Enterprise
developers wanted more.

Sophisticated applications often require services such as transaction support,
security, and distributed computing—services not directly provided by the Java-
Beans specification. Therefore, in March 1998, Sun published the 1.0 version of
the Enterprise JavaBeans (EJB) specification. This specification extended the
notion of Java components to the server side, providing the much-needed enter-
prise services, but failed to continue the simplicity of the original JavaBeans speci-
fication. In fact, except in name, EJB bears little resemblance to the original
JavaBeans specification.

Despite the fact that many successful applications have been built based on
EJB, EJB never achieved its intended purpose: to simplify enterprise application
development. It is true that EJB’s declarative programming model simplifies many
infrastructural aspects of development, such as transactions and security. How-
ever, in a different way, EJBs complicate development by mandating deployment
descriptors and plumbing code (home and remote/local interfaces). Over time,
many developers became disenchanted with EJB. As a result, its popularity has
started to wane in recent years, leaving many developers looking for an easier way.

Today, Java component development has returned to its roots. New program-
ming techniques, including aspect-oriented programming (AOP) and depen-
dency injection (DI), are giving JavaBeans much of the power previously reserved
for E]JBs. These techniques furnish plain-old Java objects (POJOs) with a declara-
tive programming model reminiscent of EJB, but without all of EJB’s complexity.

11

What is Spring? 5

No longer must you resort to writing an unwieldy EJB component when a simple
JavaBean will suffice.

In all fairness, even EJBs have evolved to promote a POJO-based programming
model. Employing ideas such as DI and AOP, the latest EJB specification is signifi-
cantly simpler than its predecessors. For many developers, though, this move is
too little, too late. By the time the EJB 3 specification had entered the scene, other
POJO-based development frameworks had already established themselves as de
facto standards in the Java community.

Leading the charge for lightweight POJO-based development is the Spring
Framework, which we’ll be exploring throughout this book. In this chapter, we’re
going to explore the Spring Framework at a high level, giving you a taste of what
Spring is all about. This chapter will give you a good idea of the types of problems
Spring solves and will set the stage for the rest of the book. First things first—let’s
find out what Spring is.

What is Spring?

Spring is an open source framework, created by Rod Johnson and described in his
book Expert One-on-One: J2EE Design and Development. It was created to address the
complexity of enterprise application development. Spring makes it possible to use
plain-vanilla JavaBeans to achieve things that were previously only possible with
EJBs. However, Spring’s usefulness isn’t limited to server-side development. Any
Java application can benefit from Spring in terms of simplicity, testability, and
loose coupling.

NOTE To avoid ambiguity, I'll use the word “bean” when referring to conven-
tional JavaBeans and “EJB” when referring to Enterprise JavaBeans. I’ll
also throw around the term “POJO” (plain-old Java object) from time
to time.

Spring does many things, but when you strip it down to its base parts, Spring is a
lightweight dependency injection and aspect-oriented container and framework.
That’s quite a mouthful, but it nicely summarizes Spring’s core purpose. To make
more sense of Spring, let’s break this description down:

» Lightweight—Spring is lightweight in terms of both size and overhead. The
bulk of the Spring Framework can be distributed in a single JAR file that
weighs in at just over 2.5 MB. And the processing overhead required by
Spring is negligible. What’s more, Spring is nonintrusive: objects in a

chaiyilin
Highlight

111

CHAPTER 1
Springing into action

Spring-enabled application often have no dependencies on Spring-specific
classes.

» Dependency Injection—Spring promotes loose coupling through a technique
known as dependency injection (DI). When DI is applied, objects are pas-
sively given their dependencies instead of creating or looking for depen-
dent objects for themselves. You can think of DI as JNDI in reverse—instead
of an object looking up dependencies from a container, the container gives
the dependencies to the object at instantiation without waiting to be asked.

» Aspect-oriented—Spring comes with rich support for aspect-oriented pro-
gramming (AOP) that enables cohesive development by separating appli-
cation business logic from system services (such as auditing and
transaction management). Application objects do what they’re supposed
to do—perform business logic—and nothing more. They are not responsi-
ble for (or even aware of) other system concerns, such as logging or trans-
actional support.

= Container—Spring is a container in the sense that it contains and manages
the lifecycle and configuration of application objects. In Spring, you can
declare how each of your application objects should be created, how they
should be configured, and how they should be associated with each other.

= Framework—Spring makes it possible to configure and compose complex
applications from simpler components. In Spring, application objects are
composed declaratively, typically in an XML file. Spring also provides much
infrastructure functionality (transaction management, persistence frame-
work integration, etc.), leaving the development of application logic to you.

To restate: When you strip Spring down to its base parts, what you get is a frame-
work that helps you develop loosely coupled application code. Even if that were
all that Spring did, the benefits of loose coupling (maintainability and testability)
would make Spring a worthwhile framework to build applications on.

But Spring is more. The Spring Framework comes with several modules that
build on the foundation of DI and AOP to create a feature-filled platform on
which to build applications.

Spring modules

The Spring Framework is made up of several well-defined modules (see
figure 1.1). When taken as a whole, these modules give you everything you need
to develop enterprise-ready applications. But you don’t have to base your

chaiyilin
Highlight

chaiyilin
Highlight

chaiyilin
Highlight

chaiyilin
Highlight

What is Spring? 7

-

Portlet ;
MVC Remoting
ORM Web)
AOP — . JMX JCA JMS | S—
MVC
DAO Context

Core

Figure 1.1 The Spring Framework is composed of several well-defined modules built on top of the
core container. This modularity makes it possible to use as much or as little of the Spring
Framework as is needed in a particular application.

application fully on the Spring Framework. You are free to choose the modules
that suit your application and look to other options when Spring doesn’t fit the
bill. In fact, Spring offers integration points with several other frameworks and
libraries so you won’t have to write them yourself.

As you can see, all of Spring’s modules are built on top of the core container.
The container defines how beans are created, configured, and managed—more
of the nuts and bolts of Spring. You will implicitly use these classes when you con-
figure your application. But as a developer, you will most likely be interested in
the other modules that leverage the services provided by the container. These
modules will provide the frameworks with which you will build your application’s
services, such as AOP and persistence.

Let’s take a look at each of Spring’s modules in figure 1.1, one at a time, to see
how each fits into the overall Spring picture.

The core container

At the very base of figure 1.1, you’ll find Spring’s core container. Spring’s core
container provides the fundamental functionality of the Spring Framework. This
module contains the BeanFactory, which is the fundamental Spring container
and the basis on which Spring’s DI is based.

CHAPTER 1
Springing into action

We’ll be discussing the core module (the center of any Spring application)
throughout this book, starting in chapter 2, when we examine bean wiring
using DI

Application context module
Spring’s application context builds on the core container. The core module’s
BeanFactory makes Spring a container, but the context module is what makes it a
framework. This module extends the concept of BeanFactory, adding support for
internationalization (I18N) messages, application lifecycle events, and validation.
In addition, this module supplies many enterprise services such as email, JNDI
access, EJB integration, remoting, and scheduling. Also included is support for
integration with templating frameworks such as Velocity and FreeMarker.

Spring’s AOP module
Spring provides rich support for aspect-oriented programming in its AOP module.
This module serves as the basis for developing your own aspects for your Spring-
enabled application. Like DI, AOP supports loose coupling of application objects.
With AOP, however, applicationwide concerns (such as transactions and security)
are decoupled from the objects to which they are applied.

Spring’s AOP module offers several approaches to building aspects, including
building aspects based on AOP Alliance interfaces (http://aopalliance.sf.net) and
support for Aspect]. We’ll dig into Spring’s AOP support in chapter 4.

JDBC abstraction and the DAO module
Working with JDBC often results in a lot of boilerplate code that gets a connec-
tion, creates a statement, processes a result set, and then closes the connection.
Spring’s JDBC and Data Access Objects (DAO) module abstracts away the boiler-
plate code so that you can keep your database code clean and simple, and pre-
vents problems that result from a failure to close database resources. This module
also builds a layer of meaningful exceptions on top of the error messages given by
several database servers. No more trying to decipher cryptic and proprietary SQL
error messages!

In addition, this module uses Spring’s AOP module to provide transaction
management services for objects in a Spring application.

We’ll see how Spring’s template-based JDBC abstraction can greatly simplify
JDBC code when we look at Spring data access in chapter 5.

chaiyilin
Highlight

chaiyilin
Highlight

chaiyilin
Highlight

What is Spring? 9

Object-relational mapping (ORM) integration module
For those who prefer using an object-relational mapping (ORM) tool over straight
JDBC, Spring provides the ORM module. Spring’s ORM support builds on the DAO
support, providing a convenient way to build DAOs for several ORM solutions.
Spring doesn’t attempt to implement its own ORM solution, but does provide
hooks into several popular ORM frameworks, including Hibernate, Java Persis-
tence API, Java Data Objects, and iBATIS SQL Maps. Spring’s transaction manage-
ment supports each of these ORM frameworks as well as JDBC.

In addition to Spring’s template-based JDBC abstraction, we’ll look at how
Spring provides a similar abstraction for ORM and persistence frameworks in
chapter 5.

Java Management Extensions (JMX)
Exposing the inner workings of a Java application for management is a critical
part of making an application production ready. Spring’s JMX module makes it
easy to expose your application’s beans as JMX MBeans. This makes it possible to
monitor and reconfigure a running application.

We’ll take a look at Spring’s support for JMX in chapter 12.

Java EE Connector API (JCA)

The enterprise application landscape is littered with a mishmash of applications
running on an array of disparate servers and platforms. Integrating these applica-
tions can be tricky. The Java EE Connection API (better known as JCA) provides a
standard way of integrating Java applications with a variety of enterprise informa-
tion systems, including mainframes and databases.

In many ways, JCA is much like JDBC, except where JDBC is focused on database
access, JCA is a more general-purpose API connecting to legacy systems. Spring’s
support for JCA is similar to its JDBC support, abstracting away JCA’s boilerplate
code into templates.

The Spring MVC framework

The Model/View/Controller (MVC) paradigm is a commonly accepted approach
to building web applications such that the user interface is separate from the
application logic. Java has no shortage of MVC frameworks, with Apache Struts,
JSF, WebWork, and Tapestry among the most popular MVC choices.

Even though Spring integrates with several popular MVC frameworks, it also
comes with its own very capable MVC framework that promotes Spring’s loosely
coupled techniques in the web layer of an application.

We’ll dig into Spring MVC in chapters 13 and 14.

chaiyilin
Highlight

chaiyilin
Highlight

10

CHAPTER 1
Springing into action

Spring Portlet MVC
Many web applications are page based—that is, each request to the application
results in a completely new page being displayed. Each page typically presents a
specific piece of information or prompts the user with a specific form. In contrast,
portlet-based applications aggregate several bits of functionality on a single web
page. This provides a view into several applications at once.

If you’re building portlet-enabled applications, you’ll certainly want to look at
Spring’s Portlet MVC framework. Spring Portlet MVC builds on Spring MVC to pro-
vide a set of controllers that support Java’s portlet API.

Spring’s web module

Spring MVC and Spring Portlet MVC require special consideration when loading
the Spring application context. Therefore, Spring’s web module provides special
support classes for Spring MVC and Spring Portlet MVC.

The web module also contains support for several web-oriented tasks, such as
multipart file uploads and programmatic binding of request parameters to your
business objects. It also contains integration support with Apache Struts and Java-
Server Faces (JSF).

Remoting

Not all applications work alone. Oftentimes, it’s necessary for an application to
leverage the functionality of another application to get its work done. When the
other application is accessed over the network, some form of remoting is used
for communication.

Spring’s remoting support enables you to expose the functionality of your Java
objects as remote objects. Or if you need to access objects remotely, the remoting
module also makes simple work of wiring remote objects into your application as
if they were local POJOs. Several remoting options are available, including
Remote Method Invocation (RMI), Hessian, Burlap, JAX-RPC, and Spring’s own
HTTP Invoker.

In chapter 8, we’ll explore the various remoting options supported in Spring.

Java Message Service (JMS)
The downside to remoting is that it depends on network reliability and that both
ends of the communication be available. Message-oriented communication, on
the other hand, is more reliable and guarantees delivery of messages, even if the
network and endpoints are unreliable.

Spring’s Java Message Service (JMS) module helps you send messages to JMS
message queues and topics. At the same time, this module also helps you create

1.2

A Spring jump start 11

message-driven POJOs that are capable of consuming asynchronous messages.
We’ll see how to use Spring to send messages in chapter 10.

Although Spring covers a lot of ground, it’s important to realize that Spring
avoids reinventing the wheel whenever possible. Spring leans heavily on existing
APIs and frameworks. For example, as we’ll see later in chapter 5, Spring doesn’t
implement its own persistence framework—instead, it fosters integration with sev-
eral capable persistence frameworks, including simple JDBC, iBATIS, Hibernate,
and JPA.

Now that you’ve seen the big picture, let’s see how Spring’s DI and AOP features
work. We’ll get our feet wet by wiring our first bean into the Spring container.

A Spring jump start

Dependency injection is the most basic thing that Spring does. But what does DI
look like? In the grand tradition of programming books, I’ll start by showing you
how Spring works with the proverbial “Hello World” example. Unlike the original
Hello World program, however, this example will be modified a bit to demon-
strate the basics of Spring.

The first class that the “Springified” Hello World example needs is a service
class whose purpose is to print the familiar greeting. Listing 1.1 shows the
GreetingService interface, which defines the contract for the service class.

Listing 1.1 The interface for a greeting service

package com.springinaction.chapter0l.hello;
public interface GreetingService {
void sayGreeting() ;
}
||

GreetingServiceImpl (listing 1.2) implements the GreetingService interface.
Although it’s not necessary to hide the implementation behind an interface, it’s
highly recommended as a way to separate the implementation from its contract.

Listing 1.2 GreetingServiceImpl, which prints a friendly greeting

package com.springinaction.chapter0l.hello;
public class GreetingServiceImpl implements GreetingService {
private String greeting;
public GreetingServiceImpl () {}
public GreetingServiceImpl (String greeting) {
this.greeting = greeting;

}

chaiyilin
Highlight

12

CHAPTER 1
Springing into action

public void sayGreeting() {
System.out.println(greeting) ;

}

public void setGreeting(String greeting) {
this.greeting = greeting;

}

The GreetingServiceImpl class has a single property: greeting. This property is
simply a String that holds the message that will be printed when the sayGreet-
ing () method is called. You may have noticed that greeting can be set in two dif-
ferent ways: by the constructor or by the property’s setter method.

What’s not apparent just yet is who will make the call to either the constructor
or the setGreeting() method to set the property. As it turns out, we’re going to
let the Spring container set the greeting property. The Spring configuration file
(hello.xml) in listing 1.3 tells the container how to configure the greeting service.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xsi:schemalocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd">

<bean id="greetingService"
class="com.springinaction.chapter0l.hello.GreetingServiceImpl">
<property name="greeting" value="Buenos Dias!" />
</bean>
</beans>

The XML file in listing 1.3 declares an instance of a GreetingServiceImpl in the
Spring container and configures its greeting property with a value of “Buenos
Dias!” Let’s dig into the details of this XML file a bit to understand how it works.
At the root of this simple XML file is the <beans> element, which is the root
element of any Spring configuration file. The <bean> element is used to tell the
Spring container about a class and how it should be configured. Here, the id
attribute is used to name the bean greetingService and the class attribute spec-
ifies the bean’s fully qualified class name.
_Within the <bean> element, the <property> element is used to set a property,
in this case the greeting property. As shown here, the <property> element tells

chaiyilin
Highlight

chaiyilin
Inserted Text
a

A Spring jump start 13

the Spring container to call setGreeting (), passing in “Buenos Dias!” (for a bit of
Spanish flair) when instantiating the bean.
The following snippet of code illustrates roughly what the container does
when instantiating the greeting service based on the XML definition in listing 1.3:
GreetingServiceImpl greetingService = new GreetingServiceImpl () ;
greetingService.setGreeting ("Buenos Dias!");
_Alternatively, you may choose to have Spring set the greeting property through
GreetingServiceImpl’s single argument constructor. For example:
<bean id="greetingService"
class="com.springinaction.chapter0l.hello.GreetingServiceImpl">
<constructor-arg value="Buenos Dias!" />
</bean>
The following code illustrates how the container will instantiate the greeting ser-
vice when using the <constructor-arg> element:
GreetingServiceImpl greetingService =
new GreetingServiceImpl ("Buenos Dias");
The last piece of the puzzle is the class that loads the Spring container and uses it
to retrieve the greeting service. Listing 1.4 shows this class.

Listing 1.4 The Hello World main class

package com.springinaction.chapter0l.hello;

import org.springframework.beans.factory.BeanFactory;

import org.springframework.beans.factory.xml.XmlBeanFactory;
import org.springframework.core.io.FileSystemResource;

public class HelloZApp {
public static void main(String[] args) throws Exception {
BeanFactory factory =

new XmlBeanFactory (new FileSystemResource("hello.xml"));

GreetingService greetingService =
(GreetingService) factory.getBean("greetingService");

greetingService.sayGreeting () ;

The BeanFactory class used here is the Spring container. After loading the
hello.xml file into the container, the main () method calls the getBean () method
on the BeanFactory to retrieve a reference to the greeting service. With this

chaiyilin
Highlight

chaiyilin
Inserted Text
b

14

13

131

CHAPTER 1
Springing into action

reference in hand, it finally calls the sayGreeting() method. When you run the
Hello application, it prints (not surprisingly)

Buenos Dias!
This is about as simple a Spring-enabled application as I can come up with.
Despite its simplicity, however, it does illustrate the basics of configuring and
using a class in Spring. Unfortunately, it is perhaps too simple because it only illus-

trates how to configure a bean by injecting a String value into a property. The
real power of Spring lies in how beans can be injected into other beans using DI.

Understanding dependency injection

Although Spring does a lot of things, DI is at the heart of the Spring Framework. It
may sound a bit intimidating, conjuring up notions of a complex programming
technique or design pattern. But as it turns out, DI is not nearly as complex as it
sounds. In fact, by applying DI in your projects, you’ll find that your code will
become significantly simpler, easier to understand, and easier to test.

But what does “dependency injection” mean?

Injecting dependencies

Originally, dependency injection was commonly referred to by another name:
inversion of control. But in an article written in early 2004, Martin Fowler asked
what aspect of control is being inverted. He concluded that it is the acquisition of
dependencies that is being inverted. Based on that revelation, he coined the
phrase “dependency injection,” a term that better describes what is going on.

Any nontrivial application (pretty much anything more complex than Hel-
loWorld.java) is made up of two or more classes that collaborate with each other
to perform some business logic. Traditionally,
each object is responsible for obtaining its own
references to the objects it collaborates with (its
dependencies). This can lead to highly coupled
and hard-to-test code.

When applying DI, objects are given their
dependencies at creation time by some external

entity that coordinates each object in the system.
In other words, dependencies are injected into
objects. So, DI means an inversion of responsibil- Figure 1.2 Dependency injection in-

ity with regard to how an object obtains refer- volves giving an object its dependen-
cies as opposed to an object having to

ences to collaborating objects (see figure 1.2). acquire those dependencies on its own.

chaiyilin
Highlight

chaiyilin
Highlight

132

Understanding dependency injection 15

The key benefit of DI is loose coupling. If an object only knows about its
dependencies by their interface (not their implementation or how they were
instantiated) then the dependency can be swapped out with a different imple-
mentation without the depending object knowing the difference.

For example, if the Foo class in figure 1.2 only knows about its Bar dependency
through an interface then the actual implementation of Bar is of no importance
to Foo. Bar could be a local POJO, a remote web service, an E]JB, or a mock imple-
mentation for a unit test—Foo doesn’t need to know or care.

If you’re like me, you’re probably anxious to see how this works in code. I aim
to please, so without further delay...

Dependency injection in action

Suppose that your company’s crack marketing team culled together the results of
their expert market analysis and research and determined that what your custom-
ers need is a knight—that is, they need a Java class that represents a knight. After
probing them for requirements, you learn that what they specifically want is for
you to implement a class that represents an Arthurian knight of the Round Table
who embarks on brave and noble quests to find the Holy Grail.

This is an odd request, but you’ve become accustomed to the strange notions
and whims of the marketing team. So, without hesitation, you fire up your favorite
IDE and bang out the class in listing 1.5.

package com.springinaction.chapter01l.knight;

public class KnightOfTheRoundTable {
private String name;
private HolyGrailQuest quest;

public KnightOfTheRoundTable (String name) {
this.name = name;
quest = new HolyGrailQuest();

}

public HolyGrail embarkOnQuest ()
throws GrailNotFoundException {
return quest.embark() ;

}

16

CHAPTER 1
Springing into action

In listing 1.5, the knight is given a name as a parameter of its constructor. Its con-
structor sets the knight’s quest by instantiating a HolyGrailQuest. The implemen-
tation of HolyGrailQuest is fairly trivial, as shown in listing 1.6.

Listing 1.6 A query for the Holy Grail bean that will be given to the knight

package com.springinaction.chapter0l.knight;
public class HolyGrailQuest {
public HolyGrailQuest () {}

public HolyGrail embark() throws GrailNotFoundException {
HolyGrail grail = null;
// Look for grail

return grail;

}

Satisfied with your work, you proudly check the code into version control. You
want to show it to the marketing team, but deep down something doesn’t feel
right. You almost dismiss it as the burrito you had for lunch when you realize the
problem: you haven’t written any unit tests.

Knightly testing

Unit testing is an important part of development. Not only does it ensure that
each individual unit functions as expected, but it also serves to document each
unit in the most accurate way possible. Seeking to rectify your failure to write unit
tests, you put together the test case (listing 1.7) for your knight class.

Listing 1.7 Testing the knight

package com.springinaction.chapter0l.knight;

import junit.framework.TestCase;

public class KnightOfTheRoundTableTest extends TestCase {

public void testEmbarkOnQuest () throws GrailNotFoundException {
KnightOfTheRoundTable knight =
new KnightOfTheRoundTable ("Bedivere") ;

HolyGrail grail = knight.embarkOnQuest () ;
assertNotNull (grail) ;

assertTrue (grail.isHoly());
}

Understanding dependency injection 17

After writing this test case, you set out to write a test case for HolyGrailQuest. But
before you even get started, you realize that the KnightOfTheRoundTableTest test
case indirectly tests HolyGrailQuest. You also wonder if you are testing all contin-
gencies. What would happen if HolyGrailQuest’s embark() method returned
null? Or what if it were to throw a GrailNotFoundException?

Who'’s calling whom?

The main problem so far with KnightOfTheRoundTable is with how it obtains a
HolyGrailQuest. Whether it is instantiating a new HolyGrail instance or obtain-
ing one via JNDI, each knight is responsible for getting its own quest (as shown in
figure 1.3). Therefore, you have no way to test the knight class in isolation. As it
stands, every time you test KnightOfTheRoundTable, you will also indirectly test
HolyGrailQuest.

What’s more, you have no way of telling HolyGrailQuest to behave differently
(e.g., return null or throw a GrailNotFoundException) for different tests. What
would help is if you could create a mock implementation of HolyGrailQuest that
lets you decide how it behaves. But even if you were to create a mock implementa-
tion, KnightOfTheRoundTable still retrieves its own HolyGrailQuest, meaning
you would have to make a change to KnightOfTheRoundTable to retrieve the
mock quest for testing purposes (and then change it back for production).

Decoupling with interfaces
The problem, in a word, is coupling. At this point, KnightOfTheRoundTable is stat-
ically coupled to HolyGrailQuest. They're handcuffed together in such a way that
you can’t have a KnightOfTheRoundTable without also having a HolyGrailQuest.
Coupling is a two-headed beast. On one hand, tightly coupled code is difficult
to test, difficult to reuse, difficult to understand, and typically exhibits “whack-a-
mole” bugs (i.e., fixing one bug results in the creation of one or more new bugs).
On the other hand, completely uncoupled code doesn’t do anything. In order to

HolyGrailQuest

Roundtable
Figure 1.3
A knight is responsible for
getting its own quest,
through instantiation or some
other means.

JINDTT
00
kup RescueDamsel
Quest

chaiyilin
Highlight

18

CHAPTER 1
Springing into action

do anything useful, classes need to know about each other somehow. Coupling is
necessary, but it should be managed carefully.

A common technique used to reduce coupling is to hide implementation
details behind interfaces so that the actual implementation class can be swapped
out without impacting the client class. For example, suppose you were to create a
Quest interface:

package com.springinaction.chapter0l.knight;
public interface Quest {
abstract Object embark() throws QuestFailedException;
}
Then, you change HolyGrailQuest to implement this interface. Also, notice that
embark () now returns an Object and throws a QuestFailedException.
package com.springinaction.chapter0l.knight;
public class HolyGrailQuest implements Quest {
public HolyGrailQuest() {}
public Object embark() throws QuestFailedException {

// Do whatever it means to embark on a quest
return new HolyGrail () ;

}

Also, the following method must change in KnightOfTheRoundTable to be com-
patible with these Quest types:

private Quest quest;

public Object embarkOnQuest () throws QuestFailedException {
return quest.embark() ;
}
Likewise, you could also have KnightOfTheRoundTable implement the following
Knight interface:
public interface Knight {
Object embarkOnQuest () throws QuestFailedException;
}
Hiding your class’s implementation behind interfaces is certainly a step in the
right direction. But where many developers fall short is in how they retrieve a
Quest instance. For example, consider this possible change to KnightOfThe-
RoundTable:

public class KnightOfTheRoundTable implements Knight {
private String name;
private Quest quest;

