
Liferay Portal 4 - Portlet development
guide

Joseph Shum

Alexander Chow

Jorge Ferrer

Liferay Portal 4 - Portlet development guide
Joseph Shum
Alexander Chow
Jorge Ferrer

1.0
Copyright © 2000, 2007 Liferay Inc.

Table of Contents
Preface .. v
1. Introduction .. 1

1. Portlet Development vs Servlet Development .. 1
2. Java Portlet Specification (JSR-168) .. 1
3. Recommended Tools .. 2
3.1. JDK 1.5.0 or JDK 1.4.2 .. 2
3.2. Jikes 1.22 or Jikes 1.21 ... 2
3.3. Ant 1.6.5 ... 2
3.4. Subversion or a Similar Version Control System ... 2
4. Portlet development environments .. 3

2. Liferay Specific Descriptors ... 4
1. Extended Portlet Definition ... 4
2. Organizing Portlets in Categories .. 9

3. Liferay Portlet Frameworks ... 10
1. Writing a Simple JSPPortlet ... 10
2. StrutsPortlet Tutorial .. 12
2.1. Writting a Very Simple Struts Portlet .. 12
2.2. Adding an action ... 23
2.3. Conclusion ... 32

4. Portlet deployment ... 33
1. Liferay Hot Deploy .. 33
1.1. Layout Templates, Portlets and Themes ... 33
2. Manual Deployment ... 33

5. Liferay Services .. 35
1. Security and Permissions Service .. 35
1.1. Introduction ... 35
1.2. Overview ... 35
1.3. Implementing Permissions .. 35
1.4. Summary ... 44
1.5. Information .. 44
2. User service .. 46

6. Conclusions .. 48

iv

Preface
Intended audience. This document is intended for developers that want to develop portlets that will be
deployed in Liferay Portal. As Liferay supports the portlet specification (JSR-168), any portlet
developed according to that standard will work.

Liferay version. This guide has been written for Liferay 4. Some details might be different for previous
versions. Do not expect it to be accurate for even older versions.

Related documents. If this is not what you are looking for consider the following related documents

• Liferay Portal 4 - Customization Guide

• Liferay Portal 4 - Portal Users Guide

• Liferay Portal 4 - Development in the Extension Environment

More information and support. If you are looking for help for a specific issue we invite you to use our
community forums: http://www.liferay.com/web/guest/devzone/forums [http://forums.liferay.com] to
ask your questions. We also offer professional support services (support@liferay.com
[mailto:support@liferay.com]) where your company will be assigned a Liferay developer ensuring your
questions are answered promptly so that your project is never compromised. Purchased support always
gets first priority. This business model allows us to build a company that can contribute a great portal to
the open source community. If your company uses Liferay, please consider purchasing support. Liferay
has an extremely liberal license model (MIT, very similar to Apache and BSD), which means you can
rebundle Liferay, rename it, and sell it under your name. We believe free means you can do whatever
you want with it. Our only source of revenue is from professional support and consulting.

v

http://forums.liferay.com
http://forums.liferay.com
mailto:support@liferay.com
mailto:support@liferay.com

Chapter 1. Introduction
This guide covers the Liferay specific deployment description and explains the tools, additional features
and services that Liferay Portal offers to developers of portlets. A portlet is a web application that
follows a set of conventions that allow portals to manage its lifecycle and integrate them with other
portlets.

The following sections provide an introduction to the development of portlets and the environment
recommended for this task.

1. Portlet Development vs Servlet Development
Developing a Java Portlet is similar to the process of developing a Servlet based web applications. The
main differences are:

• The portlet only produces a fragment of the final HTML and not the full markup. The portal will join
the fragments of several portlets and will create the full page returned to the user.

• The class receiving the requests has to inherit from javax.portlet.Portlet instead of
javax.servlet.http.HttpServlet.

• A portlet request may involve a two phase process:

1. On each request at most one portlet will be able to perform an state-changing operation. This is
referred to as the Action phase and is implemented through a method called processAction.
Not always an action phase is needed. Requests that involved an action phase are invoked to an
URL known as an ActionURL, while those that only have a render phase are invoked through a
RenderURL.

2. Next is the render phase where all other portlets related to the page that is going to be returned may
be called in any order to produce the HTML fragment to draw themselves. Portlet implement this
functionality through a method called render.

• Existing web application development frameworks such as Struts, JSF, Webworks, etc can be used
through the use of Bridges. Other existing frameworks have been adapted to be usable directly
without the need of a bridge. An example is the Spring Portlet MVC framework.

A portlet container is a server side software component that is capable of running portlets. A portal is a
web application that includes a portlet container and may offer additional services to the user. Liferay
Portal includes its own portlet container and offers lots of functionalities such as user and organization
administration, creation of virtual communities, having pages based on portlet layouts, graphical
selection of portlets and drag&drop to place them, grouping pages into websites, several bundled
ready-to-use portlets, and much more.

2. Java Portlet Specification (JSR-168)
The Java platform provides an standard referred to as JSR-168 that standarizes how portlets interact with
portlet containers and ensures compatibility across different portal products as long as portlet adheres to
the standard. Liferay Portal provides a 100% compatible portlet container that guarantees that any
portlet that adheres to the standard specification will be able to run within Liferay.

In JSR-168 a portlet application may aggregate several different portlets and is packed in a WAR file
just as a standard Java web application. The portlets of the application are defined in a file called

1

portlet.xml that is placed in the WEB-INF directory inside the WAR file. This file can be seen as
an extension to the web.xml defined in the Java Servlet Specification. The Java Portlet specification
allows portlet containers

For more information related to JSR-168 it is recommended to read the specification itself. Also several
articles introducing development of JSR-168 portlets and explaining how to use several portlet
frameworks are available online.

3. Recommended Tools
The following instructions will help you get your development environment ready for working with the
source code. These instructions are specific to setting up for deployment to Orion server and Tomcat 5.5
developing with Java JDK 1.5. Liferay Portal is compatible with Java 1.4 also and a wide array of
application servers and containers. You will need to adjust your development environment according to
your platform.

Before we can get started, the following components must be installed on your machine.

3.1. JDK 1.5.0 or JDK 1.4.2

1. Download and install JDK 1.5.0 [http://java.sun.com/j2se/1.5.0/download.jsp]. JDK 1.4 is also
supported.

2. Set an environment variable called JAVA_HOME to point to your JDK directory.

3.2. Jikes 1.22 or Jikes 1.21
Jikes is a Java compiler by IBM that is much faster than the original one provided by the JDK.

1. Download and unzip Jikes 1.22 [http://www-124.ibm.com/developerworks/oss/jikes]. If using JDK
1.4 you have to use Jikes 1.21 instead.

2. Set an environment variable called JIKES_HOME to point to your Jikes directory.

3. Add JIKES_HOME\bin to your PATH environment variable.

3.3. Ant 1.6.5

1. Download and unzip the latest version of Ant [http://ant.apache.org/].

2. Set an environment variable called ANT_HOME to point to your Ant directory.

3. Add ANT_HOME\bin to your PATH environment variable.

3.4. Subversion or a Similar Version Control System
We recommend that you put all your code and configuration files into a version control system.
Subversion is free and open source and can be used through a set of commands, by installing a
subversion client such as SmartSVN [http://www.smartsvn.com/], TortoiseSVN [http://tortoisesvn.net/]
or through the integration mechanisms provided by most IDEs.

Introduction

2

http://java.sun.com/j2se/1.5.0/download.jsp
http://java.sun.com/j2se/1.5.0/download.jsp
http://www-124.ibm.com/developerworks/oss/jikes
http://www-124.ibm.com/developerworks/oss/jikes
http://ant.apache.org/
http://ant.apache.org/
http://www.smartsvn.com/
http://www.smartsvn.com/
http://tortoisesvn.net/
http://tortoisesvn.net/

4. Portlet development environments
Portlets for Liferay can be developed using general tools or Liferay specific tools. Here is a list of the
most common options:

Using an IDE that supports portlet
development

Increasingly IDEs are providing tools for developing portlets.
This is usually a good option for rapid application development,
mainly if you already have the knowledge set of that tool. In this
case the IDE must allow adding Liferay specific descriptors as
explained in chapter 3. The result provided by the IDE must be a
WAR file that can be deployed to Liferay using the method
described in Chapter 4.

Creating an custom environment Using tools such as ant or maven it's not difficult to create an
environment to create portlet applications that are packaged as
WAR and deployed by copying that file to the autodeploy
directory in a Liferay installation.

Using Liferay's development
environment

This environment provides a ready to use ant based system for
developing portlets and customizing Liferay Portal in general. It
is the option that gives most flexibility and access to all Liferay
specific APIs. Use this environment if you want to use the portlet
frameworks provided by Liferay such as JSPPortlet and
StrutsPortlet described in chapter 3. For detailed information
about this environment read Liferay Portal 4 - Development in the
Extension Environment.

Introduction

3

Chapter 2. Liferay Specific Descriptors
Liferay Portal has two specific deployment descriptors that extend the functionality provided by the
portlet.xml file. One of them provides the ability to use Liferay specific features and the second
one permits the configuration of the UI that will allow users to select the portlets. The next sections
describe both of them.

1. Extended Portlet Definition
The file liferay-portlet.xml may be placed in the WEB-INF directory of any portlet application
to configure Liferay Portal specific features. Following is an example of what this file may look like:

<?xml version="1.0"?>
<!DOCTYPE liferay-portlet-app PUBLIC "-//Liferay//DTD Portlet
Application 4.2.0//EN"
"http://www.liferay.com/dtd/liferay-portlet-app_4_2_0.dtd">

<liferay-portlet-app>
<portlet>

<portlet-name>1</portlet-name>
<struts-path>mail</struts-path>

<preferences-unique-per-layout>false</preferences-unique-per-layout>
<preferences-owned-by-group>false</preferences-owned-by-group>

<use-default-template>false</use-default-template>
<restore-current-view>false</restore-current-view>
<maximize-edit>true</maximize-edit>

<private-request-attributes>false</private-request-attributes>
<render-weight>0</render-weight>

</portlet>
...
</liferay-portlet-app>

The portlet-name element must be equal to the portlet name specified in the portlet.xml file.
Here is a complete list of all the available options.

struts-path This option is only useful when using the Liferay StrutsPortlet
framework. Suppose the struts-path value is "mail". This tells the
portal that all requests with the path mail/* are considered part of
this portlet's scope. Users who request paths that match mail/*
will only be granted access if they also have access to this portlet.
This is true for both portlet requests and regular servlet requests.

configuration-path The configuration-path value is a Struts path that allows users to
configure the portlet at runtime. The Struts path must reference a
class that extends com.liferay.portal.struts.PortletAction.

indexer-class The indexer-class value must be a class that implements
com.liferay.util.lucene.Indexer and is called to
create or update a search index for the portlet.

scheduler-class The scheduler-class value must be a class that implements
com.liferay.portal.job.Scheduler and is called to
schedule Quartz jobs for this portlet.

portlet-url-class The portlet-url-class value must be a class that extends
com.liferay.portlet.PortletURLImplWrapper. Set

4

this class to override the default portlet URL implementation.

portlet-url-class The portlet-url-class value must be a class that implements
com.liferay.portal.servlet.FriendlyURLPortletPlugin.
Use this if content inside a portlet needs to have a friendly URL.
See the Message Boards portlet source code for an example of its
uses.

portlet-data-handler-class The portlet-data-handler-class value must be a class that
implements
com.liferay.portal.kernel.lar.PortletDataHandler
and is called when archiving tasks are run.

smtp-message-listener-class The smtp-message-listener-class value must be a class that
implements
com.liferay.portal.kernel.smtp.MessageListener
and is called when processing emails.

preferences-company-wide Set the preferences-company-wide value to true if the preferences
for the portlet are across the entire company. Setting this value to
true means the value for preferences-unique-per-layout and
preferences-owned-by-group are not used. The default value is
false.

For example, an administrator could set the preferences to an
Announcements portlet that would save a message in the portlet's
preferences. This message would then be used across all pages for
that company. The portlet must not be instanceable because
instanceable portlets have uniquely generated portlet ids.

The default behavior of the bundled Announcements portlet sets
the instanceable value to true so that normal users cannot create
company wide messages. A future release would include
permissions for the edit mode versus the view mode which would
allow an administrator to set the message while users would just
view the message.

preferences-unique-per-layout Set the preferences-unique-per-layout value to true if the
preferences for the portlet are unique for each page. If set to false,
the preferences for the portlet are shared across all pages. The
default value is true.

The preferences-unique-per-layout element is used in
combination with the preferences-owned-by-group element. See
the comments for the preferences-owned-by-group element for
more information.

preferences-owned-by-group Set the preferences-owned-by-group value to true if the
preferences for the portlet are owned by the group when the
portlet is shown in a group page. If set to false, the preferences are
owned by the user at all times. The default value is true.

Suppose the Stocks portlet has preferences-unique-per-layout set
to true and preferences-owned-by-group set to false. Users can set
a different list of stocks for every personal page. Users can set a
different list of stocks for every community page.

Suppose the Stocks portlet has preferences-unique-per-layout set

Liferay Specific Descriptors

5

to false and preferences-owned-by-group set to false. Users can
set one list of stocks to be shared across all personal pages. Users
can set one list of stocks to be shared across a community's set of
pages.

Suppose the Stocks portlet has preferences-unique-per-layout set
to true and preferences-owned-by-group set to true. Users can set
a different list of stocks for every personal page. Administrators
set the portlet preferences for users in a community page.
Administrators can set a different list of stocks for every
community page that are then shared by all users within a
community.

Suppose the Stocks portlet has preferences-unique-per-layout set
to false and preferences-owned-by-group set to true. Users can set
one list of stocks to be shared across all personal pages.
Administrators set the portlet preferences for users in a
community page. Administrators can set one list of stocks to be
shared by all users across a community's set of pages.

use-default-template Set the use-default-template value to true if the portlet uses the
default template to decorate and wrap content. Setting this to false
allows the developer to own and maintain the portlet's entire
outputted content. The default value is true.

The most common use of this is if you want the portlet to look
different from the other portlets or if you want the portlet to not
have borders around the outputted content.

show-portlet-access-denied Set the show-portlet-access-denied value to true if users are
shown the portlet with an access denied message if they do not
have access to the portlet. If set to false, users are never shown the
portlet if they do not have access to the portlet. The default value
is set in portal.properties.

show-portlet-inactive Set the show-portlet-inactive value to true if users are shown the
portlet with an inactive message if the portlet is inactive. If set to
false, users are never shown the portlet if the portlet is inactive.
The default value is set in portal.properties.

action-url-redirect Set the action-url-redirect value to true if an action URL for this
portlet should cause an auto redirect. This helps prevent double
submits. The default value is false.

restore-current-view Set the restore-current-view value to true if the portlet restores to
the current view when toggling between maximized and normal
states. If set to false, the portlet will reset the current view when
toggling between maximized and normal states. The default value
is true.

maximize-edit Set the maximize-edit value to true if the portlet goes into the
maximized state when the user goes into the edit mode. This only
affects the default portal icons and not what may be
programmatically set by the portlet developer. The default value
is false.

maximize-help Set the maximize-help value to true if the portlet goes into the

Liferay Specific Descriptors

6

maximized state when the user goes into the edit mode. This only
affects the default portal icons and not what may be
programmatically set by the portlet developer. The default value
is false.

maximize-print Set the maximize-print value to true if the portlet goes into the
maximized state when the user goes into the edit mode. This only
affects the default portal icons and not what may be
programmatically set by the portlet developer. The default value
is false.

layout-cacheable Set the layout-cacheable flag to true if the data contained in this
portlet will never change unless the layout or portlet entry is
changed.

instanceable Set the instanceable value to true if the portlet can appear multiple
times on a page. If set to false, the portlet can only appear once on
a page. The default value is false.

private-request-attributes Set the private-request-attributes value to true if the portlet does
not share request attributes with any other portlet. The default
value is true.

render-weight The default value of render-weight is 1. If set to a value less than
1, the portlet is rendered in parallel. If set to a value of 1 or
greater, then the portlet is rendered serially. Portlets with a greater
render weight have greater priority and will be rendered before
portlets with a lower render weight.

If the ajaxable value is set to false, then render-weight is always
set to 1if it is set to a value less than 1. This means ajaxable can
override render-weight if ajaxable is set to false.

ajaxable The default value of ajaxable is true. If set to false, then this
portlet can never be displayed via Ajax.

add-default-resource If the add-default-resource value is set to false, and the portlet
does not belong to the page but has been dynamically added, then
the user will see that he does not have permissions to view the
portlet. If the add-default-resource value is set to true, the default
portlet resources and permissions are added to the page. The user
can then view the portlet. Most portlets are harmless and can
benefit from this flexibility. However, to prevent security loop
holes, the default value is false.

system Set the system value to true if the portlet is a system portlet that a
user cannot manually add to their page. The default value is false.

active Set the active value to true if the portlet is active and available to
users. If set to false, the portlet will not be active or available to
users. The default value is true.

This value can be changed at runtime via the Admin portlet.

include Set the include value to true to if the portlet is available to the
portal. If set to false, the portlet is not available to the portal. The
default value is true. Portlets that are not included as part of the
portal are never available to the user to be made active or inactive.
As far the user knows, the portlets do not even exist in the system.

Liferay Specific Descriptors

7

This allows the Liferay developers to bundle a lot of portlets in
one core package, and yet allow custom deployments to turn on or
off individual portlets or sets of portlets. This follows the Siebel
and Microsoft model of bundling everything in one core package,
but using XML configuration or registry settings to turn on and
off features or sets of features. We do not recommend that custom
deployers modify the core source by removing specific portlets
because this prevents an easy upgrade process in the future. The
best way to turn on and off portlets is to set the include element.
The advantage of this way of doing things is that it becomes very
easy to deploy Liferay. All features are available in one package.
The disadvantage is that by not utilizing all of the portlets, you are
wasting disk space and may even take a small but static memory
footprint. However, we feel that the extra disk space and memory
usage is a cheap price to pay in order to provide an easy
installation and upgrade path.

In addition to specifying the above parameters specific to each portlet, the liferay-portlet.xml
file can also be used to specify role mappings and custom user attributes global to the whole portlet
application. Here is an example:

<?xml version="1.0"?>
<!DOCTYPE liferay-portlet-app PUBLIC "-//Liferay//DTD Portlet
Application 4.2.0//EN"
"http://www.liferay.com/dtd/liferay-portlet-app_4_2_0.dtd">

<liferay-portlet-app>
...

<role-mapper>
<role-name>user</role-name>
<role-link>User</role-link>

</role-mapper>
<custom-user-attribute>

<name>user.name.random</name>
<custom-class>com.liferay.portlet.CustomUserAttributes</custom-class>

</custom-user-attribute>
</liferay-portlet-app>

Here is a more detailed description of these elements:

role-mapper The role-mapper contains two names specified by role-name and
role-link. The role-name value must be a role specified in portlet.xml.
The role-link value must be the name of a Liferay role that exists in
the database. The role-mapper element pairs up these two values to
map roles from portlet.xml to roles in the Liferay database. This is
needed because Liferay roles may contain spaces whereas roles in
portlet.xml cannot contain spaces. This also adds extra flexibility
where the portlet vendor does not need to have any knowledge about
Liferay's roles.

custom-user-attribute The custom-user-attribute contains a list of names that are retrieved
using a custom class that extends
com.liferay.portlet.CustomUserAttributes.

For a usage example, download the sample hot deployable portlet
WAR named test.war. Look for the class
com.liferay.portlet.teststruts.TestStrutsUserAttributes

Liferay Specific Descriptors

8

to see how it associates the custom user attribute "user.name.test" with
the value "Test Name". This class could be modified to read custom
user attributes from another datasource that may be a database, a
LDAP server, or a web service.

2. Organizing Portlets in Categories
The interface provided to a user to select a portlet to be added to a page shows the portlets organized in
categories to make it easier to find them. The file liferay-display.xml is available to portlet developers to
specify how they want their portlets to be categorized. Following is an example of what this file may
look like:

<display>
<category name="category.admin">

<portlet id="9" />
<portlet id="40" />
<portlet id="79" />
<portlet id="80" />

</category>
<category name="category.cms">

<category name="category.alfresco">
<portlet id="91" />

</category>
</category>

...
<display>

The name of the category must be a key defined in the resource bundle of the portlet. The value of the id
attribute must be the portlet-name as defined in the portlet.xml file. Categories can be nested and
default portal categories can be used to add the portlet along with the bundled portlets.

Liferay Specific Descriptors

9

Chapter 3. Liferay Portlet Frameworks
In the next sections, you will learn how to develop a JSR 168 portlet leveraging two frameworks offered
by Liferay to make deployment easier. First you will also learn how to create a simple JSPPortlet before
moving on to the more complicated StrutsPortlet.

Both of these frameworks are available through the extension environment, so the rest of this section
will assume that you already have it installed in a directory called ext. If you need more information
about the extension environment, please read the Liferay Portal 4 - Development in the Extension
Environment guide.

Note that by using these portlet frameworks your portlets will only work in Liferay Portal but not in
other JSR-168 compliant portlets. Use them also if you need to speed your development and do not plan
to deploy your portlets in other portal in the near term.

1. Writing a Simple JSPPortlet
Although a JSPPortlet does little more than display content, there is still some work that needs to be
done. Let’s start by creating a new directory called myjspportlet within
ext\ext-web\docroot\html\portlet\ext Next, open portlet-ext.xml within
ext\ext-web\docroot\WEB-INF\.

Note

If you are using Eclipse, you may need to associate .xml files to Eclipse if your .xml files are being opened
in a separate editor. You can do this by selecting Window from the menu bar and then Preferences.
Expand the Workbench navigation, and click on File Associations. From there you can add *.xml as a
new File type and associate it to open in Eclipse.

Notice how the portlets are uniquely identified by their portlet-name (also referred within Liferay Portal
as the portlet id). As such, you will want to create a new portlet that is an increment of the portlet name,
such as EXT_2. Since we are creating a JSPPortlet, you will want the portlet-class to reference the full
class name: com.liferay.portlet.JSPPortlet. For this tutorial, add the following to your portlet-ext.xml
(you may find it easier to copy and paste EXT_1 and just make the necessary changes):

<portlet>
<portlet-name>EXT_2</portlet-name>
<display-name>My JSPPortlet</display-name>
<portlet-class>com.liferay.portlet.JSPPortlet</portlet-class>
<init-param>
<name>view-jsp</name>
<value>/portlet/ext/myjspportlet/view.jsp</value>

</init-param>
<expiration-cache>300</expiration-cache>
<supports>
<mime-type>text/html</mime-type>

</supports>
<portlet-info>
<title>My JSP Portlet</title>

</portlet-info>
<security-role-ref>
<role-name>Power User</role-name>

</security-role-ref>
<security-role-ref>
<role-name>User</role-name>

</security-role-ref>
</portlet>

10

Here is a basic summary of what each of the elements represents:

portlet-name The portlet-name element contains the canonical name of
the portlet. Each portlet name is unique within the portlet
application.

display-name The display-name type contains a short name that is
intended to be displayed by tools. It is used by
display-name elements. The display name need not be
unique.

portlet-class The portlet-class element contains the fully qualified
class name of the portlet.

init-param The init-param element contains a name/value pair as an
initialization param of the portlet.

expiration-cache Expiration-cache defines expiration-based caching for
this portlet. The parameter indicates the time in seconds
after which the portlet output expires. -1 indicates that
the output never expires.

supports The supports element contains the supported mime-type.
Supports also indicates the portlet modes a portlet
supports for a specific content type. All portlets must
support the view mode.

portlet-info Portlet-info defines portlet information.

security-role-ref The security-role-ref element contains the declaration of
a security role reference in the code of the web
application. Specifically in Liferay, the role-name
references which role’s can access the portlet. (A Power
User can personalize the portal, whereas a User cannot.)

Now that you have configured your portlet-ext.xml, the next step is to create the jsp pages. Within your
/myjspportlet directory, add a file called init.jsp. Within this file, add the following two
lines of code:

<%@ include file="/html/common/init.jsp" %>
<portlet:defineObjects />

These two lines import all the common class files and also set common variables used by each portlet. If
you need to import portlet specific classes or initialize portlet specific variables, be sure to add them to
their directory specific init.jsp, as opposed to the common/init.jsp.

These two lines import all the common class files and also set common variables used by each portlet. If
you need to import portlet specific classes or initialize portlet specific variables, be sure to add them to
their directory specific init.jsp, as opposed to the common/init.jsp.

Now, add a view.jsp. This jsp file will hold the content of your JSPPortlet. Write “Hello [your name
here]# within the jsp. So the question is then, how does the portal know how to load these particular
files? If you look back at the portlet element that was added within portlet-ext.xml, you will notice that
you initialized a view-jsp parameter as having the value /ext/myjspportlet/view.jsp. By
specifying this init-param, you are giving the portlet a default jsp to load.

Finally, in order to be able to add your portlet to the portal, you need to define the name within
Language-ext.properties by adding the following line:

javax.portlet.title.EXT_2=My JSP Portlet

Liferay Portlet Frameworks

11

Since you have setup the Extension Environment, you need to deploy the changes you have made to
your application server by running ant deploy from the ext directory.

Note

Eclipse users may use the Ant view to run ant commands. In this case just double click the deploy
[default].

Start Tomcat again as soon as the deployment finishes. Browse to the Home tab of the portal, and in the
Add Portlet to Wide Column dropdown add “My JSP Portlet# to your portal.

2. StrutsPortlet Tutorial
This section will take you through an example-driven tutorial on how to develop a StrutsPortlet. It is
assumed that you have an extension environment installed in a directory called ext. It is also assumed
that you will be using Tomcat as the application server.

2.1. Writting a Very Simple Struts Portlet
The goal of this section is to create a Struts Portlet within Liferay.

1. Define the portlet

• portlet-ext.xml

• liferay-portlet-ext.xml

2. Define the page flow and layout

• struts-config.xml

• tiles-defs.xml

3. Create the JSP

• view.jsp

Key Concepts

What are the main differences between a JSP Portlet and a Struts Portlet?

• struts-config.xml

• tiles-defs.xml

Instead of forwarding directly to a JSP

• struts-config.xml – define the page flow

• tiles-defs.xml – define the page layout

Liferay Portlet Frameworks

12

Why Use Struts?

• Struts implements MVC. Although there are other frameworks that implement MVC, Struts is the
most widely used and mature technology.

• What is MVC? MVC separates the presentation code from the business logic code.

• Struts provides centralized page-flow management in the form of struts-config.xml. This makes it
highly scalable and allows you to modularize the coding process.

• By using Struts, you will be using a number of best practices that have been built into the framework.

Why Use Tiles?

A page layout is typically designed using include statements. If there are 100 JSPs and the header and
footer need to be swapped, all 100 JSPs need to be changed. With Tiles, a single template can be used to
determine the page layout. Only the template needs to be changed, and all the pages will be updated
accordingly.

Liferay Portlet Frameworks

13

High Level Overview

• A URL or URI is passed to the Controller.

• The Controller determines what page should be displayed.

Liferay Portlet Frameworks

14

Example:

How does Liferay determine which JSP is displayed first?

• Our starting point is portlet-ext.xml view-action

• Controller MainServlet.java

Liferay Portlet Frameworks

15

Detailed View:

Directory Structure

Configuration files are located in this directory: …\ext\ext-web\docroot\WEB-INF

JSPs will be placed in this directory: …\ext\ext-web\docroot\html\portlet\ext

Liferay Portlet Frameworks

16

Portlet Definition

Add the following portlet definition to the portlet-ext.xml file:

<portlet>
<portlet-name>EXT_4</portlet-name>
<display-name>Library Portlet</display-name>

<portlet-class>com.liferay.portlet.StrutsPortlet</portlet-class>
<init-param>

<name>view-action</name>
<value>/ext/library/view</value>

</init-param>
<expiration-cache>0</expiration-cache>

<supports>
<mime-type>text/html</mime-type>

</supports>
<resource-bundle>com.liferay.portlet.StrutsResourceBundle</resource-bundle>

<security-role-ref>
<role-name>power-user</role-name>

</security-role-ref>
<security-role-ref>

<role-name>user</role-name>
</security-role-ref>

</portlet>

Next add the following Liferay specific info to liferay-portlet-ext.xml:

<portlet>
<portlet-name>EXT_4</portlet-name>
<struts-path>ext/library</struts-path>
<use-default-template>false</use-default-template>

</portlet>

• The struts-path is used to implement security.

• http://localhost:8080/c/portal/layout?p_l_id=PRI.15.1&p_p_id=EXT_4&p_p_action=1&p_p_state=maximized&p_p_mode=view&p_p_col_id=column-1&p_p_col_pos=5&p_p_col_count=6&_EXT_4_struts_action=%2Fext%2Flibrary%2Fview

• struts_action=“/ext/library/view”

struts-config.xml

struts-config.xml defines the page flow

<action path="/ext/library/view" forward="portlet.ext.library.view" />

What is /ext/library/view?

portlet-ext.xml:

<init-param>
<name>view-action</name>
<value>/ext/library/view</value>

</init-param>

What is portlet.ext.library.view?

Liferay Portlet Frameworks

17

It is the forward that is used to look up the tiles definition.

tiles-defs.xml

tiles-defs.xml defines the page layout

<definition name="portlet.ext.library" extends="portlet" />

<definition name="portlet.ext.library.view"
extends="portlet.ext.library">

<put name="portlet_content"
value="/portlet/ext/library/view.jsp" />
</definition>

What is portlet.ext.library.view?

• From struts-config.xml

<action path="/ext/library/view" forward="portlet.ext.library.view"
/>
<definition name="portlet.ext.library" extends="portlet" />

<definition name="portlet.ext.library.view"
extends="portlet.ext.library">

<put name="portlet_content"
value="/portlet/ext/library/view.jsp" />
</definition>

What is /portlet/ext/library/view.jsp?

For reference: portlet-ext.xml from JSP Portlet Training

<init-param>
<name>view-jsp</name>
<value>/portlet/ext/jsp_portlet/view.jsp</value>

</init-param>

For the JSP Portlet, the JSP was pointed directly from portlet-ext.xml. For Struts portlets, this is done
through tiles-defs.xml

<definition name="portlet.ext.library" extends="portlet" />

<definition name="portlet.ext.library.view"
extends="portlet.ext.library">

<put name="portlet_content"
value="/portlet/ext/library/view.jsp" />
</definition>

What is portlet?

Portlet is the template that will be used (portlet.jsp). See
…\portal\portal-web\docroot\WEB-INF\tiles-defs.xml for more information.

What is portlet.ext.library?

Liferay Portlet Frameworks

18

• portlet.ext.library extends portlet. This means that portlet.ext.library will use the portlet.jsp as its
template.

• portlet.ext.library.view extends portlet.ext.library. This means that portlet.ext.library.view will also
use portlet.jsp for its template.

Create the JSP

The next step is to create the JSP.

• Create a directory called library here: …\ext\ext-web\docroot\html\portlet\ext

• Your directory structure should now look like this:
…\ext\ext-web\docroot\html\portlet\ext\library

• Create view.jsp in the library directory:
…\ext\ext-web\docroot\html\portlet\ext\library\view.jsp

• Enter “Simple Struts Portlet!” in view.jsp

Deploy the Files to Tomcat

Once you have finished modifying all of the files, deploy them to Tomcat.

1. Open up a cmd prompt.

2. Click Start, Run, and then type cmd.

3. Navigate to your ext directory and then type ant deploy.

• …\ext>ant deploy

Check the Tomcat Directory

Verify that the files were deployed to Tomcat.

1. Go to …\tomcat\webapps\ROOT\WEB-INF and open portlet-ext.xml,
liferay-portlet-ext.xml, struts-config-ext.xml, and tiles-defs-ext.xml
to check that the files were deployed correctly.

2. Go to …\tomcat\webapps\ROOT\html\portlet\ext\library and open up view.jsp
to see that it was deployed correctly.

Final Steps

1. Restart Tomcat.

2. Open up a new browser and type:

• http://localhost:8080

Liferay Portlet Frameworks

19

• LOGIN: test@liferay.com

• PASSWORD: test

3. Click Add Content>Undefined.

4. Click javax.portlet.title.EXT_4.

Key Concepts

Liferay Portlet Frameworks

20

Now that we’ve finished building the framework for our portlet, let’s move on to the next exercise. In
this exercise, we will:

• Create a new file called init.jsp where we will add commonly used variables and declarations.

• Set the portlet title.

• Add the portlet to a category.

init.jsp

Create init.jsp in the library directory:
…\ext\ext-web\docroot\html\portlet\ext\library\init.jsp

Enter the following in init.jsp:

<%@ include file="/html/common/init.jsp" %>

Liferay Portlet Frameworks

21

<p>Add commonly used variables and declarations here!</p>

What file are we including with this line?

<%@ include file="/html/common/init.jsp" %>
…\portal\portal-web\docroot\html\common\init.jsp

This will gives us access to the Liferay tag libraries.

view.jsp

• Add this line above “Simple Struts Portlet!” in view.jsp:

<%@ include file="/html/portlet/ext/library/init.jsp" %>
Simple Struts Portlet!

• This will give us access to the init.jsp located here:

…\ext\ext-web\docroot\html\portlet\ext\library\init.jsp

• Ant deploy. You do not have to restart Tomcat.

• The following should now be displayed: Add commonly used variables and declarations here!
Simple Struts Portlet

Set the Portlet Title

• Go to Language-ext.properties and add the following line:

…\ext\ext-ejb\classes\content\Language-ext.properties

javax.portlet.title.EXT_4=Library

• Ant deploy and Restart Tomcat.

• The portlet title will now be “Library.”

Add the Portlet to a Category

1. Go to liferay-display.xml and add the following line:

…\ext\ext-web\docroot\WEB-INF\liferay-display.xml

<category name="category.test">
<portlet id=“EXT_3" />
<portlet id="EXT_4" />
...

</category>

2. You will now be able to select your portlet from the “Test” category.

Liferay Portlet Frameworks

22

Review of <struts-path>

<portlet>
<portlet-name>EXT_4</portlet-name>
<struts-path>ext/library</struts-path>
<use-default-template>false</use-default-template>

</portlet>

Liferay will check the struts-path to check whether a user has the required roles to access the portlet.

Note: When you see the error message: You do not have the required roles to access this portlet.

1. Check to see that you have defined the roles correctly in portlet-ext.xml.

2. Check the <struts-path> to see if you have defined it correctly.

2.2. Adding an action
The goal of this section is to add an Action Class to the Struts Portlet and to display an success page.

1. Define the Action.

• struts-config.xml

• tiles-defs.xml

2. Update existing JSP files.

• view.jsp

• init.jsp

3. Create success and error JSP files.

• error.jsp

• Success.jsp

4. Create Action Class to process submit.

• AddBookAction.java

Review Key Concepts

What are the main differences between a JSP Portlet and a Struts Portlet?

• JSP Portlet goes directly to a JSP

• Struts Portlet has an page flow

Where does the page flow get defined?

Liferay Portlet Frameworks

23

• struts-config.xml – define the page flow

• tiles-defs.xml – define the page layout

struts-config.xml

struts-config.xml defines the page flow

<action path="/ext/library/view" forward="portlet.ext.library.view" />

Lets add another path to the page flow

<action path="/ext/library/add_book"
type="com.ext.portlet.library.action.AddBookAction">

<forward name="portlet.ext.library.error"
path="portlet.ext.library.error" />

<forward name="portlet.ext.library.success"
path="portlet.ext.library.success" />
</action>

What is type?

• Type is a Struts defined way of passing control to the AddBookAction class.

Lets look at the forward nodes:

<forward name="portlet.ext.library.error"
path="portlet.ext.library.error" />
<forward name="portlet.ext.library.success"
path="portlet.ext.library.success" />

What is name?

• It the unique identifier for that forward node.

What is path?

• This is your link to the tiles-def.xml.

tiles-defs.xml

tiles-defs.xml defines the page layout

<definition name="portlet.ext.library" extends="portlet" />

<definition name="portlet.ext.library.view"
extends="portlet.ext.library">

<put name="portlet_content"
value="/portlet/ext/library/view.jsp" />
</definition>

Liferay Portlet Frameworks

24

Lets add the error and success paths

<definition name="portlet.ext.library.error"
extends="portlet.ext.library">

<put name="portlet_content"
value="/portlet/ext/library/error.jsp" />
</definition>

<definition name="portlet.ext.library.success"
extends="portlet.ext.library">

<put name="portlet_content"
value="/portlet/ext/library/success.jsp" />
</definition>

init.jsp

Update init.jsp in the library directory

…\ext\ext-web\docroot\html\portlet\ext\library\init.jsp

Remove the following:

<p>Add commonly used variables and declarations here!</p>

init.jsp should only contain this line:

<%@ include file="/html/common/init.jsp" %>

Review: What does including this file give us?

<%@ include file="/html/common/init.jsp" %>
…\portal\portal-web\docroot\html\common\init.jsp

This will give access to the Liferay tag libraries.

view.jsp

<%@ include file="/html/portlet/ext/library/init.jsp" %>

Add a book entry to the Library:

<form action="<portlet:actionURL windowState="<%=
WindowState.MAXIMIZED.toString() %>"><portlet:param
name="struts_action" value="/ext/library/add_book"
/></portlet:actionURL>" method="post" name="<portlet:namespace />fm">

Book Title:

<input name="<portlet:namespace />book_title" size="20"
type="text" value="">

<input type="button" value="Submit"
onClick="submitForm(document.<portlet:namespace />fm);">
</form>

Liferay Portlet Frameworks

25

What does “struts_action” do?

• Struts_action is the ActionMapping to the struts-config.xml path.

<action path="/ext/library/add_book"
type="com.ext.portlet.library.action.AddBookAction">

• value="/ext/library/add_book“

• This is the link to the ActionPath.

• Review

What does “struts_action” connect us to?

It connects us to the struts-config.xml

error.jsp

• error.jspPath:

ext-web/docroot/html/portlet/ext/library/error.jsp

• error.jsp Contents:

ERROR!

success.jsp

• success.jsp Path:

ext-web/docroot/html/portlet/ext/library/success.jsp

• success.jsp Contents:

SUCCESS!

AddBookAction.java

• AddBookAction Class Path:

ext/ext-ejb/src/com/ext/portlet/library/action/AddBookAction.java

• AddBookAction Class Contents:

package com.ext.portlet.library.action;

import javax.portlet.ActionRequest;
import javax.portlet.ActionResponse;
import javax.portlet.PortletConfig;

Liferay Portlet Frameworks

26

import javax.portlet.RenderRequest;
import javax.portlet.RenderResponse;

import org.apache.struts.action.ActionForm;
import org.apache.struts.action.ActionForward;
import org.apache.struts.action.ActionMapping;
public class AddBookAction extends PortletAction {
public void processAction(

ActionMapping mapping, ActionForm form,
PortletConfig config,

ActionRequest req, ActionResponse res)

throws Exception {

String bookTitle = req.getParameter("book_title");

if (null == bookTitle || "".equals(bookTitle)) {
setForward(req,

"portlet.ext.library.error");
} else {

setForward(req,
"portlet.ext.library.success");

}
}

public ActionForward render(ActionMapping mapping,
ActionForm form,

PortletConfig config, RenderRequest req,
RenderResponse res)

throws Exception {
if (getForward(req) != null &&

!getForward(req).equals("")) {
return mapping.findForward(getForward(req));

} else {
return

mapping.findForward("portlet.ext.library.view");
}

}
}

• Main code:

String bookTitle = req.getParameter("book_title");

if (null == bookTitle || "".equals(bookTitle)) {
setForward(req, "portlet.ext.library.error");

} else {
setForward(req, "portlet.ext.library.success");

}

• Where does “book_title” come from?

It comes from to the view.jsp form.

• What is the if/else statement doing?

• It is detecting if the book title was submitted.

• According to the detected state, it sets the forward path.

Liferay Portlet Frameworks

27

• Error forward path:

if (null == bookTitle || "".equals(bookTitle)) {
setForward(req, "portlet.ext.library.error");

} else {
setForward(req, "portlet.ext.library.success");

}

• Success forward path:

if (null == bookTitle || "".equals(bookTitle)) {
setForward(req, "portlet.ext.library.error");

} else {
setForward(req, "portlet.ext.library.success");

}

• Error and Success forward path is linked to the the path in struts-config.xml:

<forward name="portlet.ext.library.error"
path="portlet.ext.library.error" />
<forward name="portlet.ext.library.success"
path="portlet.ext.library.success" />

Struts Action Mapping

Deploy the Files to Tomcat

Once you have finished modifying all of the files, deploy them to Tomcat.

1. Open up a cmd prompt.

• Click Start>Run and then type cmd.

Liferay Portlet Frameworks

28

2. Navigate to your ext directory and then type ant deploy.

• …\ext>ant deploy

Check the Tomcat Directory

Verify that the files were deployed to Tomcat

• Go to …\tomcat\webapps\ROOT\WEB-INF and open portlet-ext.xml,
liferay-portlet-ext.xml, struts-config-ext.xml, and tiles-defs-ext.xml
and check to see that the files were deployed correctly.

• Next, go to …\tomcat\webapps\ROOT\html\portlet\ext\library and open up
view.jsp to see that it was deployed correctly.

Final Steps

1. Restart Tomcat

2. Open up a new browser and type:

http://localhost:8080

LOGIN: test@liferay.com

PASSWORD: test

Key Concepts

Liferay Portlet Frameworks

29

Liferay Portlet Frameworks

30

Objectives

Now that we’ve finished redirecting with an action. Lets make the success page display the submitted
value.

• Update success.jsp to display the submitted value.

success.jsp

success.jsp Path:

• ext-web/docroot/html/portlet/ext/library/success.jsp

success.jsp Contents:

<%@ include file="/html/portlet/ext/library/init.jsp" %>
<%

Liferay Portlet Frameworks

31

String bookTitle = request.getParameter("book_title");
%>
<table align="center" cellspacing="10" cellpadding="3">
<tr>

<td style="font-weight:bold">Book Title:</td>
<td><%= bookTitle %></td>

</tr>
</table>

• Add init.jsp

<%@ include file="/html/portlet/ext/library/init.jsp" %>

• This will give us access to the init.jsp located here:

…\ext\ext-web\docroot\html\portlet\ext\library\init.jsp

• Get the submitted value

String bookTitle = request.getParameter("book_title");

• Display the submitted value in success.jsp

<%= bookTitle %>

Deploy the Files to Tomcat

Once you have finished modifying success.jsp, deploy it to Tomcat

1. Open up a cmd prompt.

• Click Start>Run and then type cmd.

2. Navigate to your ext directory and then type ant deploy.

• …\ext>ant deploy

2.3. Conclusion
You've learned how to create a StrutsPortlet using some of the patterns used to create the portlets
bundled with Liferay. The next recommended steps are to read the code of those portlets and to look for
more information about Struts itself.

Liferay Portlet Frameworks

32

Chapter 4. Portlet deployment
Portlets may be hot deployed through a Liferay specific mechanism or deployed manually using the
regular mechanism of the application server. The next sections explain both options.

1. Liferay Hot Deploy
Liferay allows you to easily hot deploy layout templates, JSR 168 portlets, and themes. Layout
templates allow portlets to be arranged inside the constraints of custom layouts. JSR 168 portlets add
functional abilities to the portal. Themes modify the look and feel of the portal. Layout templates,
portlets and themes can be deployed at runtime by utilizing the hot deploy features of Liferay.

1.1. Layout Templates, Portlets and Themes

1. Go to the drive where you installed your server. Check to see that /home/liferay/deploy exists. If it
does not, create it. You can also customize the location of this directory from the Admin portlet:

2. Start the server. The server will now automatically scan for *.war files.

3. Download one of the layout templates, sample portlets or themes to /home/liferay/deploy. Click here
[http://www.liferay.com/web/guest/downloads/samples] for a list of sample portlets, themes and
layouts. (Any JSR 168 compliant portlet WAR will work as well.)

4. Install either JBoss+Jetty, JBoss+Tomcat, Jetty, Resin, Tomcat or WebSphere.

5. If you have already set up the extension environment, you can hot deploy portlets, layouts or themes
by dropping them into ext/portlets, ext/layouttpl or ext/themes respectively. Then run ant deploy
from that directory.

Notes: If the hot deploy feature does not work, make sure that your *.war file is a JSR 168 compliant
portlet WAR, theme or layout. (You cannot use themes and layouts designed for Liferay Portal v3.6.1
or layouts and themes that were designed for other portals).

2. Manual Deployment
It is also possible to deploy the web application using the mechanisms provided by the application server
being used. But before deploying it is necessary to do some massaging to the WAR file that will allow
Liferay Portal to notice that a new portlet application has been deployed. The
com.liferay.portal.tools.PortletDeployer should be used to do this. It is
recommended that you use this tool within an ant build script. Following is an example target that might
be used to invoke it. It has been taken from the portlets directory of the Liferay extension environment.
Adapt the paths as needed.

33

http://www.liferay.com/web/guest/downloads/samples
http://www.liferay.com/web/guest/downloads/samples

<target name="deploy">
<java

classname="com.liferay.portal.tools.PortletDeployer"
classpathref="project.classpath"
fork="true"
newenvironment="true">

<!-- Required Arguments -->

<jvmarg value="-Ddeployer.base.dir=./"
/>

<jvmarg
value="-Ddeployer.dest.dir=${app.server.deploy.dir}" />

<jvmarg
value="-Ddeployer.app.server.type=${app.server.type}" />

<jvmarg
value="-Ddeployer.portlet.taglib.dtd=${project.dir}/web-sites/liferay.com-web/docroot/WEB-INF/tld/liferay-portlet.tld"
/>

<jvmarg
value="-Ddeployer.unpack.war=true" />

<!-- Optional Arguments -->

<jvmarg
value="-Ddeployer.tomcat.lib.dir=${app.server.tomcat.lib.global.dir}"
/>

<!-- Dependent Libraries -->

<arg
value="${project.dir}/lib/util-bridges.jar" />

<arg
value="${project.dir}/lib/util-java.jar" />

<arg
value="${project.dir}/web-sites/liferay.com-web/docroot/WEB-INF/lib/util-taglib.jar"
/>

<!-- Specific WARs -->

<arg line="${deploy.specific.wars}" />
</java>

</target>

Portlet deployment

34

Chapter 5. Liferay Services
Portlet applications may invoke the services provided by Liferay Portal by using the portal-client.jar
client library.

It is also possible to use Liferay Service Builder to develop your portlets using the same service oriented
architecture that Liferay Portal is based on.

The following sections describe the most important services that can be used. Refer the documentation
in the public Liferay wiki for more information

1. Security and Permissions Service
The Permissions service is provided by Liferay Portal to developers to write security related
functionality in their own portlets. Currently this functionality is only provided for portlets developed
within the Liferay sources or through the extension environment.

1.1. Introduction
Fine grain permissioning is one of the main new features of Liferay Portal 4. Developers can now
implement access security into their custom portlets, giving administrators and users a lot more control
over their portlets and contents. This document will provide a reference for implementing this new
security feature into their custom portlets. Developers should first read the Security and Permissions
section of the Liferay User Guide before continuing with this document.

1.2. Overview
Adding fine grain permissioning to custom portlets consists of four main steps (also known as DRAC):

1. Define all resources and their permissions.

2. For all the resources defined in step 1, register them into the permission system. This is also known
simply as “adding resources.”

3. Associate the necessary permissions to these resources.

4. Check permission before returning resources.

1.3. Implementing Permissions
In this section, each of the four main steps in adding Liferay’s security feature into custom portlets (built
on top of the Liferay portal) will be explained. The following are two definitions that are important to
remember.

Resouce A generic term for any object represented in the portal. Example of resources includes
portlets (e.g., Message Boards, Calendar, etc.), Java classes (e.g., Message Board
Topics, Calendar Events, etc.), and files (e.g., documents, images, etc.)

Permission An action acting on a resource. For example, the view in “viewing the calendar portlet”
is defined as a permission in Liferay.

35

Keep in mind that the permission for a portlet resource is implemented a little differently from the other
resources such as Java classes and files. In each of the subsections below, the permission
implementation for the portlet resource is explained first, then the model (and file) resource.

Defining Resources and Actions

For your custom portlet, Liferay portal needs to know whether there are resources that require
permission and whether there are custom permissions. The default configuration is encapsulated in an
XML file found in the portal/portal-ejb/classes/resource-actions directory, you
might use it as a reference to create a similar file for your portlet. If your portlet only needs the view and
the configuration permission, and that the portlet doesn’t use any models with permission, then you do
not need to create this XML file. The reason is that all portlets in Liferay automatically inherit these
permissions. However, if your portlet does have custom permission and/or uses models that have custom
permissions, then you will need to create an XML file defining the resources and actions. Let’s take a
look at blogs.xml in portal/portal-ejb/classes/resource-actions and see how the
blogs portlet defined these resources and actions:

<?xml version="1.0"?>

<resource-action-mapping>
<portlet-resource>

<portlet-name>33</portlet-name>
<supports>

<action-key>ADD_ENTRY</action-key>
<action-key>CONFIGURATION</action-key>
<action-key>VIEW</action-key>

</supports>
<community-defaults>

<action-key>VIEW</action-key>
</community-defaults>
<guest-defaults>

<action-key>VIEW</action-key>
</guest-defaults>
<guest-unsupported>

<action-key>ADD_ENTRY</action-key>
</guest-unsupported>

</portlet-resource>
<model-resource>

<model-name>com.liferay.portlet.blogs.model.BlogsCategory</model-name>
<portlet-ref>

<portlet-name>33</portlet-name>
</portlet-ref>
<supports>

<action-key>DELETE</action-key>
<action-key>PERMISSIONS</action-key>
<action-key>UPDATE</action-key>
<action-key>VIEW</action-key>

</supports>
<community-defaults>

<action-key>VIEW</action-key>
</community-defaults>
<guest-defaults>

<action-key>VIEW</action-key>
</guest-defaults>
<guest-unsupported>

<action-key>UPDATE</action-key>
</guest-unsupported>

</model-resource>
<model-resource>

<model-name>com.liferay.portlet.blogs.model.BlogsEntry</model-name>
<portlet-ref>

<portlet-name>33</portlet-name>

Liferay Services

36

</portlet-ref>
<supports>

<action-key>ADD_COMMENT</action-key>
<action-key>DELETE</action-key>
<action-key>PERMISSIONS</action-key>
<action-key>UPDATE</action-key>
<action-key>VIEW</action-key>

</supports>
<community-defaults>

<action-key>VIEW</action-key>
</community-defaults>
<guest-defaults>

<action-key>VIEW</action-key>
</guest-defaults>
<guest-unsupported>

<action-key>UPDATE</action-key>
</guest-unsupported>

</model-resource>
</resource-action-mapping>

Portlet Resource

In the XML, the first thing defined is the portlet itself. Right under the root element
<resource-action-mapping>, we have a child element called <portlet-resource>. In this
element, we define the portlet name, which is 33 in our case. Next, we list all the actions this portlet
supports under the <supports> tag. Keep in mind that this is at the portlet level. To understand what
should be listed here, developers should ask themselves what actions belong to the portlet itself or what
actions are performed on the portlet that may require a security check. In our case, users need
permission to add an entry (ADD_ENTRY), configure blogs portlet settings (CONFIGURATION), and
view the blogs itself (VIEW). Each of these supported permissions is within its own <action-key>
tag. After we’ve defined all the actions that require a check, we move on to define some of the default
permission settings. The community-defaults tag defines what actions are permitted by default for
this portlet on the community (group) page the portlet resides. Put it another way, what should a user
that has access to the community this portlet resides be able to do minimally? For the blogs portlet, a
user with access to the community containing the blogs portlet should be able to view it. Likewise, the
guest-defaults tag defines what actions are permitted by default to guests visiting a layout
containing this portlet. So if a guest has access to the community page that contains a blogs portlet, the
guest should, at the very least, be able to view the portlet according to blogs.xml (not necessarily the
content of the portlet). Otherwise, the guest will see an error message within the portlet. Depending on
your custom portlet, you may add more actions here that make sense. The guest-unsupported tag
contains actions that a visiting guest should never be able to do. For example, the guest visiting the blogs
portlet should never be able to add a blog entry since the blog belongs to either a user or a group of
users. So even if a user wants to grant guests the ability to add a blog entry to her blog, there is no way
for her to grant that permission because the blogs.xml doesn’t permit such an action for guests.

Model Resource

After defining the portlet as a resource, we move on to define models within the portlet that also require
access check. The model resource is surrounded by the <model-resource> tag. Within this tag, we
first define the model name. This must be the fully qualified Java class name of the model. Next we
define the portlet name that this model belongs to under the portlet-ref tag. Though unlikely, a
model can belong to multiple portlets, which you may use multiple <portlet-name> tags to define.
Similar to the portlet resource element, the model resource element also allows you to define a
supported list of actions that require permission to perform. You must list out all the performable actions
that require a permission check. As you can see for a blog entry, a user must have permission in order to
add comments to an entry, delete an entry, change the permission setting of an entry, update an entry, or
simply to view an entry. The <community-defaults> tag, the <guest-defaults> tag, and the
<guest-unsupported> tag are all similar in meaning to what’s explained for portlet resource in

Liferay Services

37

section 3.1.1.

Default.xml

After defining your permission scheme for your custom portlet, you then need to tell Liferay the location
of this file. For Liferay core, the XML file would normally reside in
portal/portal-ejb/classes/resource-actions and a reference to the file would appear
in the default.xml file. For the extension environment, the recommended setup is to put your XML
file in ext/ext-ejb/classes/resource-actions. Create a file called default-ext.xml
and model it after the default.xml file. Add all your custom resource-action XML files in the
default-ext.xml file. Then copy the property resource.actions.configs found in
portal.properties and paste it into portal-ext.properties. Lastly, add a comma to the
end of the property value and then add the path to your default-ext.xml file. (i.e.
resource.actions.configs=resource-actions/default.xml,resource-actions/default-ext.xml)
Below is an example of the default.xml file.

<?xml version="1.0"?>

<resource-action-mapping>
<resource file="resource-actions/portal.xml" />
<resource file="resource-actions/blogs.xml" />
<resource file="resource-actions/bookmarks.xml" />
<resource file="resource-actions/calendar.xml" />
<resource file="resource-actions/communities.xml" />
<resource file="resource-actions/documentlibrary.xml" />
<resource file="resource-actions/imagegallery.xml" />
<resource file="resource-actions/journal.xml" />
<resource file="resource-actions/messageboards.xml" />
<resource file="resource-actions/polls.xml" />
<resource file="resource-actions/shopping.xml" />
<resource file="resource-actions/wiki.xml" />

</resource-action-mapping>

Adding Resources

After defining resources and actions, the next task is to write code that adds resources into the
permissioning system. A lot of the logic to add resources is encapsulated in the
ResourceLocalServiceImpl class. So adding resources is as easy as calling the add resource
method in ResourceLocalServiceUtil class.

public void addResources(
String companyId, String groupId, String userId, String name,
String primKey, boolean portletActions,
boolean addCommunityPermissions, boolean addGuestPermissions);

For all the Java objects that require access permission, you need to make sure that they are added as
resources every time a new one is created. For example, every time a user adds a new entry to her blog,
the addResources(…) method is called to add the new entry to the resource system. Here’s an
example of the call from the BlogsEntryLocalServiceImpl class.

ResourceLocalServiceUtil.addResources(
entry.getCompanyId(), entry.getGroupId(), entry.getUserId(),
BlogsEntry.class.getName(), entry.getPrimaryKey().toString(),
false, addCommunityPermissions, addGuestPermissions);

The parameters companyId, groupId, and userId should be self explanatory. The name
parameter is the fully qualified Java class name for the resource object being added. The primKey
parameter is the primary key of the resource object. As for the portletActions parameter, set this

Liferay Services

38

to true if you’re adding portlet action permissions. In our example, we set it to false because we’re
adding a model resource, which should be associated with permissions related to the model action
defined in blogs.xml. The addCommunityPermissions and the addGuestPermissions
parameters are inputs from the user. If set to true, ResourceLocalService will then add the default
permissions to the current community group and the guest group for this resource respectively.

UI Interface

If you would like to provide your user the ability to choose whether to add the default community
permission and the guest permission for the resources within your custom portlet, Liferay has a custom
JSP tag you may use to quickly add that functionality. Simply insert the
<liferay-ui:input-permissions /> tag into the appropriate JSP and the checkboxes will
show up on your JSP. Of course, make sure the tag is within the appropriate <form> tags.

Deleting Resources

To prevent having a lot of dead resources taking up space in the Resource_ database table, you must
remember to remove them from the Resource_ table when the resource is no longer applicable.
Simply call the deleteResource(…) method in ResourceLocalServiceUtil. Here’s an
example of a blogs entry being removed:

ResourceLocalServiceUtil.deleteResource(
entry.getCompanyId(), BlogsEntry.class.getName(),
Resource.TYPE_CLASS, Resource.SCOPE_INDIVIDUAL,
entry.getPrimaryKey().toString());

Adding Permission

Portlet Permission

On the portlet level, no code needs to be written in order to have the permission system work for your
custom portlet. Your custom portlet will automatically have all the permission features. If you’ve
defined any custom permissions (supported actions) in your portlet-resource tag in section 3.1, those are
automatically added to a list of permissions and users can readily choose them. Of course, for your
custom permissions to have any value, you’ll need to show or hide certain functionality in your portlet.
You can do that by checking the permission first before performing the intended functionality. This will
be covered in section 3.4.

Model Permission

In order to allow a user to set permissions on the model resources, you will need to expose the
permission interface to the user. This can be done by adding two Liferay UI tag to your JSP. The first
one is the <liferay-security:permissionsURL> tag which returns a URL that takes the user
to the page to configure the permission settings. The second tag is the <liferay-ui:icon> tag that
shows a permission icon to the user. Below is an example found in the file
view_entry_content.jsp.

<liferay-security:permissionsURL
modelResource="<%= BlogsEntry.class.getName() %>"
modelResourceDescription="<%= entry.getTitle() %>"
resourcePrimKey="<%= entry.getPrimaryKey().toString() %>"
var="entryURL"

/>

<liferay-ui:icon image="permissions" url="<%= entryURL %>" />

The attributes you need to provide to the first tag are modelResource,
modelResourceDescription, resourcePrimKey, and var. The modelResource attribute is

Liferay Services

39

the fully qualified Java object class name. It then gets translated in Language.properties to a
more readable name (underlined in red in figure 3.3.2.1).

model.resource.com.liferay.portlet.blogs.model.BlogsEntry=Entry

As for the modelResourceDescription attribute, you can pass in anything that best describes this
model instance. In the example, the blogs title was passed in, which is reflected in figure 3.3.2.1 with the
blue underline. The resourcePrimKey attribute is simply the primary key of your model instance.
The var attribute is the variable name this URL String will get assigned to. This variable is then
passed to the <liferay-ui:icon> tag so the permission icon will have the proper URL link.
There’s also an optional attribute redirect that’s available if you want to override the default
behavior of the upper right arrow link shown in figure 3.3.2.1. That is all you need to do to enable users
to configure the permission settings for model resources!!

Checking Permissions

The last major step to implementing permission to your custom portlet is to check permission. This may
be done in a couple of places. For example, your business layer should check for permission before
deleting a resource, or your user interface should hide a button that adds a model (e.g., a calendar event)
if the user does not have permission to do so.

Checking Portlet Resource Permission

Similar to the other steps, the default permissions for the portlet resources are automatically checked for
you. You do not need to implement anything for your portlet to discriminate whether a user is allowed to
view or to configure the portlet itself. However, you do need to implement any custom permission you
have defined in your resource-actions XML file. In the blogs portlet example, one custom supported
action is ADD_ENTRY. There are two places in the source code that check for this permission. The first
one is in the file view_entries.jsp. The presence of the add entry button is contingent on whether
the user has permission to add entry (and also whether the user is in tab one).

<%
boolean showAddEntryButton = tabs1.equals("entries") &&
PortletPermission.contains(permissionChecker, plid, PortletKeys.BLOGS,
ActionKeys.ADD_ENTRY);
%>

The second place that checks for the add entry permission is in the file BlogsEntryServiceImpl.
(Notice the difference between this file and the BlogsEntryLocalServiceImpl.) In the

Liferay Services

40

addEntry(…) method, a call is made to check whether the incoming request has permission to add
entry.

PortletPermission.check(
getPermissionChecker(), plid, PortletKeys.BLOGS,
ActionKeys.ADD_ENTRY);

If the check fails, it throws a PrincipalException and the add entry request aborts. You’re
probably wondering what the PortletPermission class and the PermissionChecker class do. Let’s take a
look at these two classes.

PermissionChecker

The PermissionChecker class has a method called hasPermission(…) that checks whether a user
making a resource request has the necessary access permission. If the user is not signed in (guest user), it
checks for guest permissions. Otherwise, it checks for user permissions. This class is available to you in
two places. First in your business logic layer, you can obtain an instance of the PermissionChecker by
calling the getPermissionChecker() method inside your ServiceImpl class. This method is
available because all ServiceImpl (not LocalServiceImpl) extends the PrincipalBean
class, which implements the getPermissionChecker() method. The other place where you can
obtain an instance of the PermissionChecker class is in your JSP files. If your JSP file contains the
portlet tag <portlet:defineObjects /> or includes another JSP file that does, you’ll have an
instance of the PermissionChecker class available to you via the permissionChecker variable. Now
that you know what the PermissionChecker does and how to obtain an instance of it, let’s take a
look at Liferay’s convention in using it.

PortletPermission

PortletPermission is a helper class that makes it easy for you to check permission on portlet
resources (as oppose to model resources, covered later in section 3.4.2). It has two static methods called
check(…) and another two called contains(…). They are all essentially the same. The two
differences between them are:

1. Only one check(…) method and one contains(…) method take in the portlet layout ID variable
(plid).

2. The check(…) methods throw a new PrincipalException if user does not have permission,
and the contains(…) methods return a boolean indicating whether user has permission.

The contains(…) methods are meant to be used in your JSP files since they return a boolean instead
of throwing an exception. The check(…) methods are meant to be called in your business layer
(ServiceImpl). Let’s revisit the blogs portlet example below. (The addEntry(…) method is found in
BlogsEntryServiceImpl.)

public BlogsEntry addEntry(
String plid, String categoryId, String[] tags, String

title,
String content, int displayDateMonth, int

displayDateDay,
int displayDateYear, int displayDateHour, int

displayDateMinute,
boolean addCommunityPermissions, boolean

addGuestPermissions)
throws PortalException, SystemException {

PortletPermission.check(
getPermissionChecker(), plid, PortletKeys.BLOGS,
ActionKeys.ADD_ENTRY);

Liferay Services

41

return BlogsEntryLocalServiceUtil.addEntry(
getUserId(), plid, categoryId, tags, title, content,
displayDateMonth, displayDateDay, displayDateYear,

displayDateHour,
displayDateMinute, addCommunityPermissions,

addGuestPermissions);
}

Before the addEntry(…) method calls BlogsEntryLocalServiceUtil.addEntry(…) to
add a blogs entry, it calls PortletPermission.check(…) to validate user permission. If the
check fails, a PrincipalException is thrown and an entry will not be added. Note the parameters
passed into the method. Again, the getPermissionChecker() method is readily available in all
ServiceImpl classes. The plid variable is passed into the method by its caller (most likely from a
PortletAction class). PortletKeys.BLOGS is just a static String indicating that the
permission check is against the blogs portlet. ActionKeys.ADD_ENTRY is also a static String to
indicate the action requiring the permission check. You’re encouraged to do likewise with your custom
portlet names and custom action keys.

Whether you need to pass in a portlet layout ID (plid) depends on whether your custom portlet supports
multiple instances. Let’s take a look at the message board portlet for example. A community may need
three separate page layouts, each having a separate instance of the message board portlet. Only by using
the portlet layout ID will the permission system be able to distinguish the three separate instances of the
message board portlet. This way, permission can be assigned separately in all three instances. Though in
general, most portlets won’t need to use the portlet layout ID in relation to the permission system.

Service vs. LocalService

Since the ServiceImpl class extends the PrincipalBean class, it has access to information of the
current user making the service request. Therefore, the ServiceImpl class is the ideal place in your
business layer to check user permission. Liferay’s convention is to implement the actual business logic
inside the LocalServiceImpl methods, and then the ServiceImpl calls these methods via the
LocalServiceUtil class after the permission check completes successfully. Your
PortletAction classes should make calls to ServiceUtil (wrapper to ServiceImpl)
guaranteeing that permission is first checked before the request is fulfilled.

Checking Model Resource Permission

Checking model resource permission is very similar to checking portlet resource permission. The only
major difference is that instead of calling methods found in the PortletPermission class mention
previously, you need to create your own helper class to assist you in checking permission. The next
section will detail how this is done.

Custom Permission Class

It is advisable to have a helper class to help check permission on your custom models. This custom
permission class is similar to the PortletPermission class but is tailored to work with your custom
models. While you can implement this class however you like, we encourage you to model after the
PortletPermission class, which contains four static methods. Let’s take a look at the
BlogsEntryPermission class.

public class BlogsEntryPermission {

public static void check(
PermissionChecker permissionChecker, String

entryId,
String actionId)

throws PortalException, SystemException {

Liferay Services

42

if (!contains(permissionChecker, entryId, actionId)) {
throw new PrincipalException();

}
}

public static void check(
PermissionChecker permissionChecker,

BlogsEntry entry,
String actionId)

throws PortalException, SystemException {

if (!contains(permissionChecker, entry, actionId)) {
throw new PrincipalException();

}
}

public static boolean contains(
PermissionChecker permissionChecker, String

entryId,
String actionId)

throws PortalException, SystemException {

BlogsEntry entry =
BlogsEntryLocalServiceUtil.getEntry(entryId);

return contains(permissionChecker, entry, actionId);
}

public static boolean contains(
PermissionChecker permissionChecker,

BlogsEntry entry,
String actionId)

throws PortalException, SystemException {

return permissionChecker.hasPermission(
entry.getGroupId(),

BlogsEntry.class.getName(),
entry.getPrimaryKey().toString(), actionId);

}
}

Again, the two check(…) methods are meant to be called in your business layer, while the two
contains(…) methods can be used in your JSP files. As you can see, it’s very similar to the
PortletPermission class. The two notable differences are:

1. Instead of having the portletId as one of the parameters, the methods in this custom class take in
either an entryId or a BlogsEntry object.

2. None of the methods need to receive the portlet layout ID (plid) as a parameter. (Your custom
portlet may choose to use the portlet layout ID if need be.)

Let’s see how this class is used in the blogs portlet code.

public BlogsEntry getEntry(String entryId) throws PortalException,
SystemException {

BlogsEntryPermission.check(
getPermissionChecker(), entryId, ActionKeys.VIEW);

return BlogsEntryLocalServiceUtil.getEntry(entryId);

Liferay Services

43

}

In the BlogsEntryServiceImpl class is a method called getEntry(…). Before this method
returns the blogs entry object, it calls the custom permission helper class to check permission. If this call
doesn’t throw an exception, the entry is retrieved and returned to its caller.

<c:if test="<%= BlogsEntryPermission.contains(permissionChecker,
entry, ActionKeys.UPDATE) %>">

<portlet:renderURL windowState="<%=
WindowState.MAXIMIZED.toString() %>" var="entryURL">

<portlet:param name="struts_action"
value="/blogs/edit_entry" />

<portlet:param name="redirect" value="<%= currentURL
%>" />

<portlet:param name="entryId" value="<%=
entry.getEntryId() %>" />

</portlet:renderURL>

<liferay-ui:icon image="edit" url="<%= entryURL %>" />
</c:if>

In the view_entry_content.jsp file, the BlogsEntryPermission.contains(…)
method is called to check whether or not to show the edit button. That’s all there is to it!

1.4. Summary
Let’s review what we’ve just covered. Implementing permission into your custom portlet consists of
four main steps. First step is to define any custom resources and actions. Next step is to implement code
to register (or add) any newly created resources such as a BlogsEntry object. The third step is to
provide an interface for the user to configure permission. Lastly, implement code to check permission
before returning resources or showing custom features. Two major resources are portlets and Java
objects. There is not a lot that needs to be done for the portlet resource to implement the permission
system since Liferay Portal has a lot of that work done for you. You mainly focus your efforts on any
custom Java objects you’ve built. You’re now well on your way to implement security to your custom
Liferay portlets! For other user guides, please visit the Liferay documentation page
[http://www.liferay.com/web/guest/products/documentation]

1.5. Information

Roles

If you’re wondering how the Liferay user roles, community roles, and organization / location roles
should be implemented in your custom portlet, this brief section will address that. The short answer is,
nothing needs to be developed specifically for user, community, and organization / location roles to
work with your custom portlets. Liferay’s permission system has all that provided for you. When the
hasUserPermission(…) method is called within the PermissionChecker class, Liferay
checks all the roles the current user has, whether they’re organization / location roles, community roles,
or user roles.

Using Your Own Security System in Liferay

Here’s a brief outline of how you can use your own security system in Liferay.

• Create your own PermissionChecker class that extends Liferay’s PermissionChecker
class.

Liferay Services

44

http://www.liferay.com/web/guest/products/documentation
http://www.liferay.com/web/guest/products/documentation

• Register this new class in portal.properties (or portal-ext.properties for the EXT
environment) under the permissions.checker property.

• Override the hasUserPermission(…) method and the hasGuestPermission(…) method
with your own calls to your permission system.

• You can call the setValues(…) method to pull in parameters from the request object that your
permission checker might need (e.g., userId, projected, etc).

• You can call the resetValues(…) method to wipe out old parameters.

• Override the isAdmin(…) method.

Database Schema View

Reviewing how Liferay stores all the permission information in the database may help you gain a better
understanding to the entire permission system.

• The resource_ table contains all the registered resources outlined in section 3.2.

• Every possible secure action that can be done to a resource will result in a row in the permission_
table. For example, a BlogsEntry resource may have a row in permission_ for the view action,
and another for the update action.

• Whether a user has permission to a resource depends on the roles the user has, or the community
(groups) and organization the user is in (green tables). If those roles or groups contain the needed
permissionId in the permissions table (in blue), then the user has access to the resource.

Liferay Services

45

2. User service
The User service allows the management of the portal user and it's communities (aka Groups), Roles and
UserGroups. It can be accessed through the static methods of UserServiceUtil. Following is a
description of it's most important methods:

public static com.liferay.portal.model.User addUser(
java.lang.String companyId, boolean autoUserId,
java.lang.String userId, boolean autoPassword,
java.lang.String password1, java.lang.String

password2,
boolean passwordReset, java.lang.String emailAddress,
java.util.Locale locale, java.lang.String firstName,
java.lang.String middleName, java.lang.String

lastName,
java.lang.String nickName, java.lang.String prefixId,
java.lang.String suffixId, boolean male, int

birthdayMonth,
int birthdayDay, int birthdayYear, java.lang.String

jobTitle,
java.lang.String organizationId, java.lang.String

locationId,
boolean sendEmail)
throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException,
java.rmi.RemoteException;

Add a new user inserting in its profile the provided information

public static com.liferay.portal.model.User updateUser(
java.lang.String userId, java.lang.String password,
java.lang.String emailAddress, java.lang.String

languageId,

Liferay Services

46

java.lang.String timeZoneId, java.lang.String
greeting,

java.lang.String resolution, java.lang.String
comments,

java.lang.String firstName, java.lang.String
middleName,

java.lang.String lastName, java.lang.String nickName,
java.lang.String prefixId, java.lang.String suffixId,

boolean male,
int birthdayMonth, int birthdayDay, int birthdayYear,
java.lang.String smsSn, java.lang.String aimSn,

java.lang.String icqSn,
java.lang.String jabberSn, java.lang.String msnSn,
java.lang.String skypeSn, java.lang.String ymSn,
java.lang.String jobTitle, java.lang.String

organizationId,
java.lang.String locationId)
throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException,
java.rmi.RemoteException;

Update a user's profile with the provided information.

public static void addGroupUsers(java.lang.String groupId,
java.lang.String[] userIds)
throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException,
java.rmi.RemoteException;

Add a set of users to a give community (aka Group) identified by the groupId.

public static void addRoleUsers(java.lang.String roleId,
java.lang.String[] userIds)
throws com.liferay.portal.PortalException,

com.liferay.portal.SystemException,
java.rmi.RemoteException;

Add a set of users to a give Role identified by the roleId.

For more information check the Portal Javadocs.

Liferay Services

47

Chapter 6. Conclusions
After reading this document you should have a clear idea of what you need to develop and deploy a
portlet in Liferay. It has also covered the most important resources and services that Liferay provides to
portlet developers.

After reading this document we recommend reading more articles and information about portlet
development and/or attend one of the available training sessions.

48

