Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

Advertisement: Support JavaWorld, click here!

How Many People Play Family Feud?

Millions and Counting 1

[——_
Fosilng fipsddian Join the Fun Play Now!
r
July 2004 4 HOME FEATURED TUTORIALS COLUMNS NEWS & REVIEWS FORUM JW RESOURCES ABOUT JW -

Put JSF to work

Build a real-world Web application with JavaServer Faces, the Spring Framework, and
Hibernate

Summary

Building a real-world Web application using JavaServer Faces is not a trivial task. This article shows you how to integrate
JSF, the Spring Framework, and Hibernate, and describes best practices and design guidelines for building a real-world
Web application using these technologies. (4,800 words; July 19, 2004)

By Derek Yang Shen

avaServer Faces (JSF) technology is a new user interface framework for J2EE applications. It is particularly suited, by design, for

use with applications based on the MVC (Model-View-Controller) architecture. Numerous articles have introduced JSF. However,

most take a highly theoretical approach that doesn't meet the challenges of real-world enterprise development. Many issues remain
unsolved. For example, how does JSF fit into the overall MVC architecture? How does JSF integrate with other Java frameworks?
Should business logic exist in the JSF backing beans? How do you handle security in JSF? And most importantly, how d.u build a
real-world Web application using JSF?

This article addresses all those issues. It shows you how to integrate JSF with other Java frameworks—specifically, the Spring
Framework and Hibernate. It demonstrates how to create the JCatalog Web application, an online product catalog system. Using the
JCatalog example, this article covers each phase of Web application design, including business-requirement gathering, analysis,
technology selection, high-level architecture, and implementation-level design. The article discusses the advantages and
disadvantages of the technologies used in JCatalog and demonstrates approaches for designing some of the application's key aspects.

This article is written for Java architects, developers already working with J2EE-based Web applications. It is not an introduction to
JSF, the Spring Framework, and Hibernate. Please see Resources if you are unfamiliar with these areas.

Functional requirements of the sample application

This article's sample application, JCatalog, is a real-world Web application, realistic enough to provide the basis for a meaningful
discussion of a Web application's architectural decisions. I begin by presenting JCatalog's requirements. I refer back to this section
throughout the article to address the technical decisions and architecture design.

The first phase in designing a Web application is to gather the system's functional requirements. The sample application is a typical
e-business application system. Users can browse a product catalog and view product details, and administrators can manage the
product catalog. Enhancements—e.g., inventory management and order processing—can be added to make the application a
full-blown e-business system.

Use cases
Use-case analysis is used to access the sample application's functional requirements. Figure 1 is the application's use-case diagram.

. e SR
Browscl dakg

ol
e -

~,
i
-

B T =, iz odue!
]

M L

Lojin e~

B -

PSR i
T~
R st

Figure 1. Use case diagram. Click on thumbnail to view full-size image.

A use-case diagram identifies the actors in a system and the operations they may perform. Seven use cases must be implemented in

lof 11 26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

the sample application. Actor User can browse the product catalog and view product details. Once User logs in the system, she
becomes actor Administrator, who can create new products, edit existing products, and delete old products.

Business rules
JCatalog must meet the following business rules:

e Each product has a unique product ID
® Each product belongs to at least one category
® The product ID cannot change once created

Assumptions
We make the following assumptions for the application's design and implementation:

e English is the default language; no internationalization is required
® No more than 500 products exist in the catalog
® The catalog is not updated frequently

Page flow
Figure 2 shows all of JCatalog's pages and the transitions among them.

Figure 2. Page-flow diagram. Click on thumbnail to view full-size image.

The application has two groups of pages: public Internet and administration intranet. The intranet is accessible only to the users who
log in the system successfully. ProductSummary is not presented to the users as a separate page. It displays in an HTML frame within
the Catalog page. ProductList is a special catalog viewable only by the administrators. It contains links for creating, editing, and
deleting products.

Figure 3 is a mock-up of the Catalog page. Ideally, for each page, a mock-up that details information for all the controls and the
content required on the page should be included in the requirements documentation.

Pradazid

B i 4
4

Figure 3. Mock-up of the Catalog page. Click on thumbnail to view full-size image.

High-level architecture design

The next phase in designing a Web application is the high-level architecture design. It involves subdividing the application into
functional components and partitioning these components into tiers. The high-level architecture design is neutral to the technologies
used.

Multitiered architecture

A multitiered architecture partitions the whole system into distinct functional units—client, presentation, business-logic, integration,
and enterprise information system (EIS). This ensures a clean division of responsibility and makes the system more maintainable and
extensible. Systems with three or more tiers prove more scalable and flexible than a client-server system, in which no business-logic
middle tier exists.

The client tier is where the data model is consumed and presented. For a Web application, the client tier is normally the Web browser.

20f 11 26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

3of11

The browser-based thin client does not contain presentation logic; it relies on the presentation tier.

The presentation tier exposes the business-logic tier services to the users. It knows how to process a client request, how to interact
with the business-logic tier, and how to select the next view to display.

The business-logic tier contains an application's business objects and business services. It receives requests from the presentation
tier, processes the business logic based on the requests, and mediates access to the EIS tier's resources. Business-logic tier
components benefit most from system-level services such as security management, transaction management, and resource
management.

The integration tier is the bridge between the business-logic tier and the EIS tier. It encapsulates the logic to interact with the EIS
tier. Sometimes, the combination of the integration tier and the business-logic tier is referred to as the middle tier.

Application data persists in the EIS tier. It contains relational databases, object-oriented databases, and legacy systems.

JCatalog's architecture design
Figure 4 shows JCatalog's high-level architecture design and how it fits into the multitiered architecture.

I T e e)

FPeosnrishon
Taa

Rihwer
Ly
T

Freziin
ha

ER s

Figure 4. High-level architecture diagram. Click on thumbnail to view full-size image.

The application uses a multitiered nondistributed architecture. Figure 4 shows us the partitioning of the application tiers and the
technologies chosen for each tier. It also serves as the sample application's deployment diagram. For a collocated architecture, the
presentation, business-logic, and integration tiers are physically located in the same Web container. Well-defined interfaces isolate
each tier's responsibility. The collocated architecture makes the application simple and scalable.

For the presentation tier, experience shows that the best practice is to choose an existing, proven Web application framework rather
than designing and building a custom framework. We have several Web application frameworks to choose from, e.g., Struts,
WebWork, and JSF. We use JSF for JCatalog.

Either EJB (Enterprise JavaBeans) or POJO (plain old Java objects) can be used to build the business-logic tier. EJB with remote
interfaces is a better choice if the application is distributed. Since JCatalog is a typical Web application with no remote access
required, POJO, with the help of the Spring Framework, is used to implement the business-logic tier.

The integration tier handles the data persistence with the relational database. Different approaches can be used to implement the
integration tier:

e Pure JDBC (Java Database Connectivity): This is the most flexible approach; however, low-level JDBC is cumbersome to
work with, and bad JDBC code does not perform well.

e Entity beans: An entity bean with container-managed persistence (CMP) is an expensive way to isolate data-access code and
handle O/R (object-relational) mapping data persistence. It is an application-server-centric approach. An entity bean does not
tie the application to a particular type of database, but does tie the application to the EJB container.

* O/R mapping framework: An O/R mapping framework takes an object-centric approach to implementing data persistence. An
object-centric application is easy to develop and highly portable. Several frameworks exist under this domain—JDO (Java Data
Objects), Hibernate, TopLink, and CocoBase are a few examples. We use Hibernate in the sample application.

Now let's discuss the design issues associated with each application tier. Since JSF is a relatively new technology, I emphasize its use.

Presentation tier and JavaServer Faces

The presentation tier collects user input, presents data, controls page navigation, and delegates user input to the business-logic tier.
The presentation tier can also validate user input and maintain the application's session state. In the following sections, I discuss the
presentation tier's design considerations and patterns, and the reason I chose JSF to implement JCatalog's presentation tier.

Model-View-Controller

MVC is the Java-BluePrints-recommended architectural design pattern for interactive applications. MVC separates design concerns,
thereby decreasing code duplication, centralizing control, and making the application more extensible. MVC also helps developers with
different skill sets focus on their core skills and collaborate through clearly defined interfaces. MVC is the architectural design pattern
for the presentation tier.

JavaServer Faces
JSF is a server-side user interface component framework for Java-based Web applications. JSF contains an API for representing UL

26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

components and managing their state; handling events, server-side validation, and data conversion; defining page navigation;
supporting internationalization and accessibility; and providing extensibility for all these features. It also contains two JSP (JavaServer
Pages) custom tag libraries for expressing UI components within a JSP page and for wiring components to server-side objects.

JSF and MVC
JSF fits well with the MVC-based presentation-tier architecture. It offers a clean separation between behavior and presentation. It
leverages familiar UI-component and Web-tier concepts without limiting you to a particular scripting technology or markup language.

JSF backing beans are the model layer (more about backing beans in a later section). They also contain actions, which are an
extension of the controller layer and delegate the user request to the business-logic tier. Please note, from the perspective of the
overall application architecture, the business-logic tier can also be referred to as the model layer. JSP pages with JSF custom tags are
the view layer. The Faces Servlet provides the controller's functionality.

Why JSF?
JSF is not just another Web framework. The following features differentiate JSF from other Web frameworks:

e Swing-like object-oriented Web application development: The server-side stateful Ul component model with event
listeners and handlers initiates object-oriented Web application development.

e Backing-bean management: Backing beans are JavaBeans components associated with Ul components used in a page.
Backing-bean management separates the definition of UI component objects from objects that perform application-specific
processing and hold data. JSF implementation stores and manages these backing-bean instances in the proper scope.

o Extensible UI component model: JSF Ul components are configurable, reusable elements that compose the user interfaces of
JSF applications. You can extend the standard UI component and develop a more complex component, e.g., menu bar and tree
component.

* Flexible rendering model: A renderer separates a Ul component's functionality and view. Multiple renderers can be created
and used to define different appearances of the same component for the same client or for different clients.

o Extensible conversion and validation model: Based on the standard converters and validators, you can develop customized
converters and validators, which provide better model protection. .

Despite its strength, JSF is not mature at its current stage. The components, converters, and validators that ship with JSF are basic.
And the per-component validation model cannot handle many-to-many validation between components and validators. In addition,
JSF custom tags cannot integrate with JSTL (JSP Standard Tag Library) seamlessly.

In the following sections, I discuss several key aspects and design decisions I made when implementing JCatalog with JSF. I start with
a discussion of the definition and use of managed beans and backing beans in JSF. Then, I present how to handle security,
pagination, caching, file upload, validation, and error-message customization in JSF.

Managed bean, backing bean, view object, and domain object model

JSF introduces two new terms: managed bean and backing bean. JSF provides a strong managed-bean facility. JavaBean objects
managed by a JSF implementation are called managed beans. A managed bean describes how a bean is created and managed. It has
nothing to do with the bean's functionalities.

The backing bean defines properties and handling-logics associated with the UI components used on the page. Each backing-bean
property is bound to either a component instance or its value. A backing bean also defines a set of methods that perform functions for
the component, such as validating the component's data, handling events that the component fires, and performing processing
associated with navigation when the component activates.

A typical JSF application couples a backing bean with each page in the application. However, sometimes in the real world, forcing a
one-to-one relationship between a backing bean and a page is not the ideal solution. It can cause problems like code duplication. In a
real-world scenario, several pages may need to share the same backing bean behind the scenes. For example, in JCatalog, the
CreateProduct and EditProduct page share the same producteean definition.

A view object is a model object used specifically in the presentation tier. It contains the data that must display in the view layer and
the logic to validate user input, handle events, and interact with the business-logic tier. The backing bean is the view object in a
JSF-based application. Backing bean and view object are interchangeable terms in this article.

Compared to the actionForm @and action approach in Struts, development with backing beans in JSF follows better object-oriented
design practices. A backing bean not only contains view data, but also behavior related to that data. In Struts, action and actionForm
contain data and logic separately.

We've all heard about the domain object model. So, what's the difference between the domain object model and a view object? In a
simple Web application, a domain object model can be used across all tiers, however, in a more complex Web application, a separate
view object model needs to be used. Domain object model is about the business object and should belong in the business-logic tier. It
contains the business data and business logic associated with the specific business object. A view object contains presentation-specific
data and behavior. JCatalog's productListBean Offers a good example. It contains data and logic specific to the presentation tier, e.g.,
pagination-related data and logic. The drawback to separating the view objects from the domain object model is that data mapping
must occur between the two object models. In JCatalog, productBeanBuilder and userBeanBuilder US€ the reflection-based Commons
BeanUtils to implement the data mapping.

Security

Currently, JSF has no built-in security feature. The security requirement for the sample application is basic: only username and
password-based authentication is needed for the user to log in to the administration intranet, and no authorization is required.
Several approaches have been proposed for handling user authentication in JSF:

e Use a base backing bean: This solution is simple. However, it ties the backing beans to a specific inheritance hierarchy.

e Use a JSF viewnandler decorator: This way, the security logic is tightly coupled with a specific Web tier technology.

4of 11 26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

e Use a servlet filter: A JSF application is no different from other Java-based Web applications. It makes a filter the best place
to handle authentication checking. This way, the authentication logic is decoupled from the Web application.

In the sample application, the securityriiter class handles user authentication. Currently, the protected resource contains only three
pages, and their locations are hard-coded inside the riiter class for simplicity's sake. Enhancements can be made to externalize the
security rules and protected resource to a configuration file.

Pagination

The application's Catalog page requires pagination. The presentation tier can handle pagination, which means all data must be
retrieved and stored in that tier. Pagination can also be handled in the business-logic tier, integration tier, or even the EIS tier. One of
JCatalog's assumptions is that no more than 500 products are in the catalog. All product information can fit into the user session. The
pagination logic exists in the productristean class. The pagination-related parameter "product per page" is configurable through the
JSF managed-bean facility.

Caching

Caching is one of the most important techniques for improving performance in Web applications. Caching can be achieved in many
tiers within the application architecture. It is most beneficial when one architectural tier can avoid calls to the tier beneath it. The JSF
managed-bean facility makes caching in the presentation tier much easier. By changing a managed bean's scope, data contained by
the managed bean can be cached within different scopes.

The sample application uses two-level caching. The first caching level exists inside the business-logic tier. The cachedcatalogserviceImpl
class maintains a read/write cache for all products and categories. Spring manages the class as a singleton service bean. So, the
first-level cache is an application-scope read/write cache.

To simplify the pagination logic and further speed up the application, products are also cached inside the presentation tier in the
session scope. Each user maintains his own eroductListBean inside the session. The penalties of this approach are system memory and
stale data. Within the duration of a user session, the user may see stale catalog data if administrator users update the catalog.
However, based on the assumptions, since no more than 500 products exist in the catalog and the catalog is not updated frequently,
we should be able to live with these penalties.

File upload

The current JSF Sun reference implementation does not support file upload. Struts has good file upload capabilities, ho r the
Struts-Faces integration library is needed to use the feature. In JCatalog, an image is associated with each product. Aft user
creates a new product, she must upload the image associated with it. The image is stored inside the application server's filesystem.
The product ID is the image name.

The sample application uses <input type="tile">, Servlet and Jakarta Commons' file-upload API, to implement a simple file upload
utility. The utility takes two parameters: the product image directory and the image upload result page. They are configurable
through the appiicationsean. Please refer to the rileuploadserviet class for details.

Validation

The standard validators shipped with JSF are basic and may not meet many real-world requirements. Developing your own JSF
validator is easy. I developed the seilectedrtemsrange validator with a custom tag in the sample application. It validates the number of
items selected by the urselectmany UI component:

<h:selectManyListbox value="#{productBean.selectedCategorylds}" id="selectedCategorylds">
<catalog:validateSelectedltemsRange minNum="1"/>
<f:selectltems value="#{applicationBean.categorySelectltems}" id="categories"/>
</h:selectManyListbox>

Please refer to the sample application for more details.

Error-message customization

In JSF, you can set up resource bundles and customize the error messages for converters and validators. A resource bundle is set up
inside faces-config.xml:

<message-bundle>catalog.view.bundle.Messages</message-bundle>

The error message's key-value pairs are added to the vessage.properties file:

#conversion error messages
javax.faces.component.UIInput. CONVERSION=Input data is not in the correct type.

#validation error messages
javax.faces.component.UIInput.REQUIRED=Required value is missing.

Business-logic tier and the Spring Framework
Business objects and business services exist in the business-logic tier. A business object contains not only the data, but also the logic
associated with that specific object. Three business objects have been identified in the sample application: product, category, and user.

Business services interact with business objects and provide higher-level business logic. A formal business interface layer should be
defined, which contains the service interfaces that the client uses directly. POJO, with the help of the Spring Framework, implements
the business-logic tier in JCatalog. There are two business services: catalogservice contains the catalog management-related business
logic, and userservice contains the user management logic.

Spring is based on the concept of inversion of control (IOC). Spring features used in the sample application include:
e Bean management with application contexts: Spring can effectively organize our middle tier objects and handles plumbing
for us. Spring can eliminate the proliferation of singletons and facilitates good object-oriented programming practices, e.g.,

programming to interfaces.

e Declarative transaction management: Spring uses AOP (aspect-oriented programming) to deliver declarative transaction
management without using an EJB container. This way, transaction management can be applied to any POJO. Spring transaction

50f 11 26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

6of 11

management is not tied to JTA (Java Transaction API) and can work with different transaction strategies. Declarative transaction
management with Hibernate transaction is used in the sample application.

e Data-access exception hierarchy: Spring provides a meaningful exception hierarchy in place of sorexception. To use the
Spring data-access exception hierarchy, the Spring data-access exception translator must be defined within the Spring
configuration file:

<bean id="jdbcExceptionTranslator" class= "org.springframework.jdbc.support.SQLErrorCodeSQLExceptionTranslator">
<property nhame="dataSource">
<ref bean="dataSource"/>
</property>
</bean>

In the sample application, if a new product with a duplicate ID is inserted, @ pataIntegrityviolationException iS thrown. The
exception is caught and rethrown as a puplicateProductidException. This way, the puplicateproductidexception can be handled
differently from other data-access exceptions.

e Hibernate integration: Spring does not force us to use its strong JDBC abstraction feature. It integrates well with O/R
mapping frameworks, especially Hibernate. Spring offers efficient and safe handling of Hibernate sessions, handles the
configuration of Hibernate sessionractories and JDBC data sources in application contexts, and makes the application easier to
test.

Integration tier and Hibernate

Hibernate is an open source O/R mapping framework that relieves the need to use the JDBC API. Hibernate supports all major SQL
database management systems. The Hibernate Query Language, designed as a minimal object-oriented extension to SQL, provides an
elegant bridge between the object and relational worlds. Hibernate offers facilities for data retrieval and update, transaction
management, database connection pooling, programmatic and declarative queries, and declarative entity relationship management.

Hibernate is less invasive than other O/R mapping frameworks. Reflection and runtime bytecode generation are used, and SQL
generation occurs at system startup. It allows us to develop persistent objects following common Java idiom—including association,
inheritance, polymorphism, composition, and the Java Collections Framework. The business objects in the sample application are
POJO and do not need to implement any Hibernate-specific interfaces.

Data Access Object (DAO)

The DAO pattern is used in JCatalog. This pattern abstracts and encapsulates all access to the data source. The application has two
DAO interfaces: CatalogDao and userbao. Their implementation classes, HibernateCatalogbDaoImpl and HibernateUserDaoImpl cOntain
Hibernate-specific logic to manage and persist data.

Implementation design
Now let's see how to wire everything together and implement JCatalog. You can download the application's full source code from
Resources.

Database design
We create a schema named Catalog for the sample application, which consists of four tables, as shown in Figure 5:

Product Category

PK |id PK |id
—>

name name

price description

width

height

degeription

product_category Lo

PK |product id PK |username

PK | category id

password

FKZ |id

Figure 5. Database schema diagram

Class Design
Figure 6 illustrates JCatalog's class diagram.

26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

Figure 6. Class diagram. Click on thumbnail to view full-size image.

Programming against interfaces is used throughout the design. In the presentation tier, four backing beans are used: productBsean,
ProductListBean, UserBean, aNd MessageBean. The business-logic tier contains two business services (catalogservice and userservice) and
three business objects (product, category, and user). The integration tier contains two DAO interfaces and their Hibernate
implementations. The Spring application contexts wire and manage most of the object beans inside the business-logic and integration
tiers. serviceLocator integrates JSF with the business-logic tier.

Wire everything up

Because of this article's space limitation, we examine only one use case. The sample use case CreateProduct demonstr. how to
wire everything up and build the application. Before we dive into the details, let's use a sequence diagram (Figure 7) to demonstrate
the end-to-end integration of all the tiers:

Figure 7. Sequence diagram of the CreateProduct use case. Click on thumbnail to view full-size image.

Now let's walk through each tier and discuss more details about how to implement CreateProduct.

Presentation tier
The presentation tier implementation involves creating the JSP pages, defining the page navigations, creating and configuring the
backing beans, and integrating JSF with the business-logic tier.

e JSP page: createProduct.jsp is the page for creating a new product. It contains UI components and wires the components to
the productBean. The validatertemsrange custom tag validates the number of categories the user selected. At least one category
should be selected for each new product.

e Page navigation: Navigation for the application is defined in the application configuration file, faces-navigation.xm1. The
navigation rules defined for CreateProduct are:

<navigation-rule>
<from-view-id>*</from-view-id>
<navigation-case>
<from-outcome>createProduct</from-outcome>
<to-view-id>/createProduct.jsp</to-view-id>
</navigation-case>
</navigation-rule>
<navigation-rule>
<from-view-id>/createProduct.jsp</from-view-id>
<navigation-case>
<from-outcome>success</from-outcome>
<to-view-id>/uploadImage.jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>retry</from-outcome>

7of 11 26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

8of 11

<to-view-id>/createProduct.jsp</to-view-id>
</navigation-case>
<navigation-case>
<from-outcome>cancel</from-outcome>
<to-view-id>/productList.jsp</to-view-id>
</navigation-case>
</navigation-rule>

Backing bean: The rroductsean contains not only the properties maps to the data for the UI components on the page, but also
three actions: createAction, editAction, and deleteaction. Here's the code for the createAction () method:

public String createAction() {

try {
Product product = ProductBeanBuilder.createProduct(this);

//Save the product.
this.servicelLocator.getCatalogService().saveProduct(product);

//Store the current product id inside the session bean.
//For the use of image uploader.
FacesUtils.getSessionBean().setCurrentProductId(this.id);

//Remove the productList inside the cache.

this.logger.debug("remove ProductListBean from cache");

FacesUtils.resetManagedBean(BeanNames.PRODUCT_LIST_BEAN);
} catch (DuplicateProductIdException de) {

String msg = "Product id already exists";

this.logger.info(msg);

FacesUtils.addErrorMessage(msg);

return NavigationResults.RETRY;
} catch (Exception e) { .
String msg = "Could not save product”;
this.logger.error(msg, e);
FacesUtils.addErrorMessage(msg + ": Internal Error");

return NavigationResults.FAILURE;
}
String msg = "Product with id of " + this.id + " was created successfully.";
this.logger.debug(msg);
FacesUtils.addInfoMessage(msg);

return NavigationResults.SUCCESS;
b

Inside the action, a product business object is built based on rproductsean's properties. serviceLocator |00ks up the catalogservice.
Finally, the createrroduct request is delegated to the catalogservice, Which is in the business-logic tier.

Managed-bean declaration: The productsean must be configured in the JSF configuration resource file faces-managed-bean.xmi:

<managed-bean>
<description>
Backing bean that contains product information.
</description>
<managed-bean-name>productBean</managed-bean-name>
<managed-bean-class>catalog.view.bean.ProductBean</managed-bean-class>
<managed-bean-scope>request</managed-bean-scope>
<managed-property>
<property-name>id</property-name>
<value>#{param.productld}</value>
</managed-property >
<managed-property>
<property-name>serviceLocator</property-name>
<value>#{serviceLocatorBean}</value>
</managed-property>
</managed-bean>

The producteean is set to have a scope of request, which means the JSF implementation creates a new productsean instance for
each request if productsean is referenced inside the JSP page. The ID-managed property is populated by the request parameter
product1d. The JSF implementation gets the parameter from the request and sets the managed property.

Integration between presentation and business-logic tiers: servicerocator abstracts the logic to look for services. In the
sample application, serviceLocator is defined as an interface. The interface is implemented as a JSF managed bean,
ServiceLocatorBean, Which looks up the services from the Spring application context:

ServletContext context = FacesUtils.getServletContext();

this.appContext = WebApplicationContextUtils.getRequiredWebApplicationContext(context);
this.catalogService = (CatalogService)this.lookupService(CATALOG_SERVICE_BEAN_NAME);
this.userService = (UserService)this.lookupService(USER_SERVICE_BEAN_NAME);

The serviceLocator is defined as a property inside the saserean. The JSF managed bean facility wires the servicerocator
implementation with those managed beans that must access serviceLocator. Inversion of control is used.

26/06/2005 2:18 AM

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

9of11

Business-logic tier
The tasks in this tier consist of defining the business objects, creating the service interfaces with their implementations, and wiring
the objects with Spring.

e Business objects: Since Hibernate provides persistence, the product and category business objects need to provide getter and

setter methods for all fields that they contain.
Business services: The catalogservice interface defines all of the catalog management-related services:

public interface CatalogService {
public Product saveProduct(Product product) throws CatalogException;
public void updateProduct(Product product) throws CatalogException;
public void deleteProduct(Product product) throws CatalogException;
public Product getProduct(String productld) throws CatalogException;
public Category getCategory(String categoryld) throws CatalogException;
public List getAllProducts() throws CatalogException;
public List getAllCategories() throws CatalogException;

¥

The cachedcatalogserviceImpl iS the service interface implementation, which contains a setter for a catalogpao Object. Spring wires
the cachedcatalogservicermpl With the catalogpao Object. Because we are coding to interfaces, we do not tightly couple the
implementations.

Spring configuration: Here's the catalogservice's Spring configuration:

<I-- Hibernate Transaction Manager Definition -->

<bean id="transactionManager" class="org.springframework.orm.hibernate.HibernateTransactionManager">
<property name="sessionFactory"><ref local="sessionFactory"/></property >

</bean>

<I-- Cached Catalog Service Definition -->

<bean id="catalogServiceTarget" class="catalog.model.service.impl.CachedCatalogServiceImpl" init-method="ini.
<property name="catalogDao"> <ref local="catalogDao"/> </property>

</bean>

<I-- Transactional proxy for the Catalog Service -->
<bean id="catalogService" class="org.springframework.transaction.interceptor.TransactionProxyFactoryBean">
<property name="transactionManager"> <ref local="transactionManager"/></property>
<property name="target"> <ref local="catalogServiceTarget"/></property>
<property name="transactionAttributes">
<props>
<prop key="get*">PROPAGATION_REQUIRED,readOnly</prop>
<prop key="save*">PROPAGATION_REQUIRED</prop>
<prop key="update*">PROPAGATION_REQUIRED</prop>
<prop key="delete*">PROPAGATION_REQUIRED</prop>
</props>
</property>
</bean>

Spring declarative transaction management is set up for the catalogservice. catalogservice can be wired with a different catalogpao
implementation. Spring creates and manages a catalogservice Singleton object, and no factory is needed.

Now that the business-logic tier is ready, let's wire it to the integration tier.
Integration between Spring and Hibernate: Here's the nibernatesessionractory's configuration:

<I-- Hibernate SessionFactory Definition -->
<bean id="sessionFactory" class="org.springframework.orm.hibernate.LocalSessionFactoryBean">
<property nhame="mappingResources">
<list>
<value>catalog/model/businessobject/Product.hbm.xml</value>
<value>catalog/model/businessobject/Category.hbm.xml</value>
<value>catalog/model/businessobject/User.hbm.xml</value>
</list>
</property>
<property name="hibernateProperties">
<props>
<prop key="hibernate.dialect">net.sf.hibernate.dialect.MySQLDialect</prop>
<prop key="hibernate.show_sql">true</prop>
<prop key="hibernate.cglib.use_reflection_optimizer">true</prop>
<prop key="hibernate.cache.provider_class">net.sf.hibernate.cache.HashtableCacheProvider</prop>
</props>
</property>
<property name="dataSource">
<ref bean="dataSource"/>
</property>
</bean>

CatalogDao USES HibernateTemplate tO integrate between Hibernate and Spring. Here's the configuration for sivernateTempiate:

<!-- Hibernate Template Defintion -->
<bean id="hibernateTemplate" class="org.springframework.orm.hibernate.HibernateTemplate">

26/06/2005 2:18 AM

Put JSF to work

100f 11

<property name="sessionFactory"><ref bean="sessionFactory"/></property>
<property name="jdbcExceptionTranslator"> <ref bean="jdbcExceptionTranslator"/></property>
</bean>

Integration Tier

Hibernate maps business objects to the relational database using an XML configuration file. In JCatalog, product.hbm.xml e€xpresses the
mapping for the product business object. category.nbm.xm1 is used for the category business object. The configuration files are in the
same directory as the corresponding business objects. Here's the product.hom.xm1:

<?xml version="1.0"?>
<IDOCTYPE hibernate-mapping PUBLIC
"-//Hibernate/Hibernate Mapping DTD 2.0//EN"
"http://hibernate.sourceforge.net/hibernate-mapping-2.0.dtd">
<hibernate-mapping package="catalog.model.businessobject">
<class name="Product" table="product">
<id name="id" column="ID" unsaved-value="null">
<generator class="assigned"/>
</id>
<property name="name" column="NAME" unique="true" not-null="true"/>
<property name="price" column="PRICE"/>
<property name="width" column="WIDTH"/>
<property name="height" column="height"/>
<property name="description" column="description"/>
<set name="categorylds" table="product_category" cascade="all">
<key column="PRODUCT_ID"/>
<element column="CATEGORY_ID" type="string"/>
</set>
</class>
</hibernate-mapping>

CatalogDao is wired with sibernateremplate by Spring:

<I-- Catalog DAO Definition: Hibernate implementation --> .
<bean id="catalogDao" class="catalog.model.dao.hibernate.CatalogDaoHibernateImpl">

<property name="hibernateTemplate"> <ref bean="hibernateTemplate"/></property>
</bean>

Conclusion

This article shows you how to integrate JSF with the Spring Framework and Hibernate and build a real-world Web application. The
combination of these three technologies provides a solid Web application development framework. A multitiered architecture should
be used as the high-level architecture for Web applications. JSF fits into the MVC design pattern very well and can be used to
implement the presentation tier. The Spring Framework can be used in the business-logic tier to manage business objects, and
provide declarative transaction management and resource management. Spring integrates with Hibernate very well. Hibernate is a
powerful O/R mapping framework and can provide the best services inside the integration tier.

By partitioning the whole Web application into tiers and programming against interfaces, the technology used for each application tier
can be replaced. For example, Struts can take the place of JSF for the presentation tier, and JDO can replace Hibernate in the
integration tier. Integration between the application tiers is not trivial. The use of inversion of control and the Service Locator design
pattern can make it easier. JSF provides functionalities other Web frameworks like Struts lack. However, that does not mean you
should dump Struts and start using JSF right away. Whether or not JSF should be used as the Web framework for your project
depends on your project's status and functional requirements, and your team's expertise.

About the author

Derek Yang Shen has been working with J2EE exclusively for the past five years, with expertise in the development of multitiered
Web applications and complex B2B systems. He is a Sun Certified Enterprise Architect. Shen holds a master's degree in computer
science from the University of California at Los Angeles. He currently works with a large Internet company as a J2EE architect.

Resources

® Download the JCatalog project sample application:
http://www.javaworld.com/javaworld/jw-07-2004/isf/jw-0719-jsf.zip

e Official JavaServer Faces site:
http://java.sun.com/j2ee/javaserverfaces/index.ijsp

® A good JSF tutorial can be found in The J2EE 1.4 Tutorial (Chapters 17 to 21):
http://java.sun.com/j2ee/1.4/docs/tutorial/doc/index.html

® More articles and books on JSF:
http://isfcentral.com/reading/index.html

® Official Spring Framework site:
http://www.springframework.org

® Good introduction to the Spring Framework by Rod Johnson:
http://www.theserverside.com/articles/article.tss?|=SpringFramework

® Rod Johnson's book Expert One-on-One J2EE Design and Development (Wrox, October 2002; ISBN: 0764543857) is the corner
stone of the Spring Framework:
http://www.wrox.com/WileyCDA/WroxTitle/productCd-0764543857.html

e Official Hibernate site:
http://www.hibernate.org

® Online documentation of Hibernate:
http://www.hibernate.org/hib_docs/reference/en/html/

® Introduction to the integration between the Spring Framework and Hibernate:
http://hibernate.bluemars.net/110.html

® "Designing Enterprise Applications with the J2EE Platform, Second Edition" is a good introduction to the multitiered architecture

26/06/2005 2:18 AM

http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

Put JSF to work http://www.javaworld.com/javaworld/jw-07-2004/jw-0719-jsf_p.html

and MVC design pattern:
http://java.sun.com/blueprints/quidelines/designing_enterprise_applications_2e/index.html
® Commons BeanUtils:
http://jakarta.apache.org/commons/beanutils/
® Commons FileUpload:
http://jakarta.apache.org/commons/fileupload/
® For more on JavaServer Faces, read the following JavaWorld articles by David Geary:
o "A First Look at JavaServer Faces, Part 1" (November 2002)
o "A First Look at JavaServer Faces, Part 2" (December 2002)
© "JavaServer Faces, Redux" (November 2003)
® Browse the JavaServer Pages section of JavaWorld's Topical Index:
http://www.javaworld.com/channel_content/jw-jsp-index.shtml
® Browse the Enterprise Java section of JavaWorld's Topical Index:
http://www.javaworld.com/channel_content/jw-enterprise-index.shtml

ey Tnsddiian o

Advertisement: Support JavaWorld, click here!

Features scratch-resistant mineral
glass crystal...

HOME | FEATURED TUTORIALS | COLUMNS | NEWS & REVIEWS | FORUM | JW RESOURCES | ABOUT JW | FEEDBACK

Copyright © 2005 JavaWorld.com, an IDG company

11 of 11 26/06/2005 2:18 AM

