

Preface
Not Your Ordinary JavaScript

You picked the perfect time to learn Node.

The technology evolving around Node is still young and vibrant, with interesting new variations and twists
popping up on a regular basis. At the same time, the technology has reached a level of maturity that assures
you your time learning Node will be well spent: installation has never been easier, even on Windows; the
"best of breed" modules are beginning to surface from the seeming hundreds available for use; the
infrastructure is becoming robust enough for production use.

Two important things to keep in mind when you work with Node. The first is that it is based in JavaScript,
more or less the same JavaScript you're used to working with in client-side development. True, you can use
another language variation, such as CoffeeScript, but JavaScript is the lingua franca of the technology.

The second important thing to remember is that Node isn't your ordinary JavaScript. This is server-side
technology, which means some of the functionality—and safeguards—you've come to expect in your
browser environment just won't be there, and all sorts of new and potentially very unfamiliar capabilities,
will.

Of course, if Node was like JavaScript in the browser, what fun would that be?

Why Node?
If you explore the source code for Node, you'll find the source code for Google's V8, the JavaScript
(technically, ECMAScript) engine that's also at the core of Google's Chrome browser. One advantage to
Node.js, then, is that you can develop Node applications for just one implementation of JavaScript—not
half a dozen different browsers and browser versions.

Yes, no more worrying about having to code JavaScript for IE6. Well, at least not for Node.

Node is designed to be used for applications that are heavy on input/output, but light on computation. More
importantly, it provides this functionality directly out of the box. You don't have to worry about blocking
while waiting for a file to finish loading, or a database to finish updating, because most of the functionality
is asynchronous by default. And you don't have to worry about working with threads, because Node is
implemented on a single thread.

Most importantly, Node is written in a language that many traditional web developers are familiar with:
JavaScript. You may be learning how to use new technologies, such as working with web sockets or
developing to a framework like Express, but at least you won't have to learn a new language along with the
concepts. This language familiarity makes it a lot easier to just focus on the new material.

Also consider that Node has been around long enough to generate a healthy community of generally
supportive folks and a wealth of modules, libraries, and applications that can make it simpler to create
Node applications.

This Book's Intended Audience
One of the challenges associated with working with Node is there is an assumption that most people
coming into Node development have come from a Ruby or Python environment, or have worked with
Rails. I don't have this assumption, so I won't explain a Node component by saying it's "just like Sinatra".

This book's only assumption is that you, the reader, have worked with JavaScript and are comfortable with
it. You don't have to be expert, but you should know what I'm talking about when I mention closures, and
have worked with Ajax and are familiar with event handling in the client environment. In addition, you'll
get more from this book if you have done some traditional web development, and are familiar with
concepts such as HTTP methods (GET and POST), web sessions, cookies, and so on. You'll also need to be
familiar with working either with the Console in Windows, or the Unix command line in the Mac OS X or
Linux.

You'll also enjoy the book more if you're interested in some of the new technologies such as web sockets,
or working with frameworks to create applications. I cover these as a way of introducing you to how Node
can be used in real world applications.

Most importantly as you progress through the book, keep an open mind. Be prepared to hit an occasional
alpha/beta wall and to respond, if not gracefully, at least not painfully. Above all, meet the prospect of
learning Node with anticipation, because it really can be a lot of fun.

If you're not sure you're familiar enough with JavaScript, you might want to check out
my introductory text on JavaScript, "Learning JavaScript, 2nd Edition".

How Best to Use this Book
You don't have to read the book chapters in order, but there are paths through the book that are dependent
on what you're after, and how much experience with Node you have.

If you've never worked with Node, then you're going to want to start with Chapter 1, and read through at
least Chapter 5. These chapters cover how to get both Node, and the package manager, npm installed, how
to use them, creating your first applications, and utilizing modules. Chapter 5 also covers some of the style
issues associated with Node, including how to deal with Node's unique approach to asynchronous
development.

If you have had some exposure to Node, and have worked with both the built-in Node modules, as well as a
few external ones, and REPL, the interactive console, you could comfortably skip Chapters 1 through 4, but
I still recommend starting no later than Chapter 5.

I incorporate the use of the Express framework, which is also utilizes the Connect Middleware, throughout
the book. If you've not worked with Express, you're going to want to go through Chapters 6 through 8,
which cover the concepts of routing, the use of proxies, web servers, middleware, and introduces Express.
In particular, if you're curious about using Express in a Model-View-Controller framework, definitely read
Chapters 7 and 8.

After these foundation chapters, you can skip about a bit. For instance, if you're only going to work with a
relational database, you can skip the Redis and MongolDB chapters, though do check them out sometime—
they might provide a new viewpoint to working with data. Of course, if you're primarily working with key-
value pairs, access the Redis chapter; if you're nterested in document-centric data, check out Chapter 10,
which introduces how to use MongoDB with Node.

After the three data chapters, we get into specialized application use. For instance, Chapter 12 focuses
purely on graphics and media access, including how to provide media for the new HTML5 video element.

Chapter 13 covers the very popular Sockets.io module, especially for working with the new web socket
functionality.

After the split into two different specialized uses of Node, we come back together again in the end of the
book. After you've had a time to work with the examples in the other chapters, then you're going to want to
spend some in Chapter 14, learning in-depth practices for Node debugging and testing.

Chapter 15 is probably one of the tougher chapters, and also one of the more important. It covers issues of
security and authority. I don't recommend it be one of the first chapters you access, but it is essential you
spend time in this chapter before you roll a Node application out for general use.

Chapter 16 is the final chapter and you can safely leave that for last, regardless of your interest and
experience. It focuses on how to prepare your application for production use, including how to deploy your
Node application, not only on your own system, but in one of the cloud servers that are popping up to host
Node applications. I'll also cover how to deploy a Node application to your server, including how to ensure
it plays well with another web server such as Apache, and how to ensure your application survives a crash
and restarts when the system is re-booted.

Node is heavily connected with the Git source control technique, and most (if not all) Node modules are
hosted on Github. Appendix A provides a Git/Github survival guide for those who haven't worked with
either.

I mentioned earlier that you don't have to follow the chapters in order, but I recommend that you do. Many
of the chapters work off effort in previous chapters, and you may miss out on important points if you skip
about. In addition, though there are numerous stand alone examples all throughout the book, I do use one
one relatively simple Express application called Widgets that begins life in Chapter 7 and is touched on,
here and there, in most of the rest of the chapters. I believe you'll have a better time with the book if you
start at the beginning, and then lightly skim the sections that you know, rather than skip the chapter
altogether.

As the King says in Alice in Wonderland, "Begin at the beginning and go on till you come to the end; and
then stop".

Insert the O'Reilly front matter here

Acknowledgments
Thanks, as always, to friends and family who help keep me sane when I worked on a book. Special thanks
to my editor, Simon St. Laurent, who listened to me vent more than once.

Thanks also to the editors (list editors and tech reviewer) both technical and copy, who help refine the
writing, as well as catch the gotchas. Having said this, any typos or bugs missed are solely the
responsibility of yours truly.

My thanks also to the production crew who helped take this book from an idea to the work you're now
holding (list the production crew).

When you work with Node, you're the recipient of a great deal of generosity, starting with the creator of
Node.JS, Ryan Dahl, and including the creator of npm, Isaac Schlueter, who is also now the Node.js
gatekeeper.

Others who provided extremely useful code and modules are Bert Belder, TJ Holowaychuk, Jeremy
Ashkenas, Mikeal Rogers, Guillermo Rauch, Jared Hanson, Felix Geisendörfer, Steve Sanderson, Matt
Ranney, Caolan McMahon, Remy Sharp, and Gianni Chiappetta,

And what would Node be without the good people who provide tutorials, how-tos, and helpful guides,
including Tim Caswell, Mikato Takada, Peter Krumins, Ben Nadel, and the entire crew of Nodejitsu and
Joyent.

There are so many good people involved with Node that I can't list all of them, so for the others not listed:
my deepest thanks!

1
Node.js, Up and Running

Node.js is a server-side technology that's based on Google's V8 JavaScript engine. It's a highly scalable
system that uses asynchronous event-driven I/O (input/output), rather than threads or separate processes.
It's ideal for web applications that are frequently accessed, but computationally simple.

If you're using a traditional web server, such as Apache, each time a web resource is requested, Apache
creates a separate thread or invokes a new process in order to process the request. Even though Apache
responds quickly to requests, and cleans up after the request has been satisfied, this approach can still tie up
a lot of resources. A popular web application is going to have serious performance issues.

Node, on the other hand, doesn't create a new thread or process for every request. Instead, it listens for
specific events, and when the event happens, responds accordingly. Node doesn't block any other request
while waiting for the event functionality to complete, and events are processed, first come, first served, in a
relatively uncomplicated event loop.

Node applications are created with JavaScript (or alternative language that compiles to JavaScript). The
JavaScript is the same as you'd use in your client-side applications. However, unlike JavaScript in a
browser, you have to set up a development environment for Node.

Node can be installed in a Unix/Linux, Mac OS, or Windows environment This chapter is going to walk
you through setting up a development environment for Node in Windows 7 and Linux (Ubuntu).
Installation on a Mac should be similar to installation on Linux. I'm also covering any requirements or
preparation you need to take before installing the application.

Once your development environment is operational, I'm going to demonstrate a basic Node application and
walk you through the important bits, the event loop I mentioned earlier, so you can try Node yourself.

Setting up a Node Development Environment
There is more than one way to install Node in most environments. Which approach you use is dependent on
your existing development environment, your comfort level working with source code, or how you plan on
using Node in your existing applications.

Package installers are provided for both Windows and Mac OS, but you can install Node by grabbing a
copy of the source and compiling the application. You can also use Git to clone (check out) the Node
repo (repository) in all three environments.

As noted in this last paragraph, working with Node also means expanding your
vocabulary, including adding new words such as repo and clone.

In this section I'm going to demonstrate how to get Node working in a Linux system (an Ubuntu 10.04
VPS, or virtual private server), by retrieving and compiling the source directly. I'm also going to
demonstrate how to install Node so that you can use it with Microsoft's WebMatrix on a Windows 7 PC.

Download source and basic package installers for Node from
http://nodejs.org/#download. A wiki page providing some basic instruction for installing
Node in various environments is at https://github.com/joyent/node/wiki/Installing-Node-
via-package-manager. I also encourage you to search for the newest tutorials for
installing Node in your environment, as Node is a very dynamic environment.

Installing Node on Linux (Ubuntu)
Before installing Node in Linux, you're going to need to prepare your environment. According to the
documentation provided in the Node wiki, make sure Python is installed first, and you'll also need to install
libssl-dev if you plan on using SSL/TLS (Secure Sockets Layer/Transport Layer Security). Depending on
your Linux installation, Python may already be installed. If not, you can use your systems package installer
to install the most stable version of Python available for your system, as long as it's version 2.6 or 2.7
(required for the most recent version of Node).

The book assumes the reader only has previous experience with JavaScript and traditional
web development. As such, I'm erring on the side of caution and being verbose in
descriptions of what needs to be done to install Node.

For both Ubuntu and Debian, you'll also need to install other libraries. Using the Advanced Packaging Tool
(APT) available in most Debian GNU/Linux systems, you can ensure the libraries you need are installed
with the following commands:

sudo apt-get update
sudo apt-get upgrade
sudo apt-get install build-essential openssl libssl-dev pkg-config

The update command just ensures the package index on your system is up-to-date, and the upgrade
command upgrades any existing outdated packages. The third command line is the one that installs all of
the necessary packages. Any existing package dependencies are pulled in by the package manager.

Once your system is prepared, download the Node tarball (compressed, archived file of the source) to your
system. I use wget to access tarballs, though you can also use curl. At the time I'm writing this, the most
recent source for Node is version 0.6.18:

wget http://nodejs.org/dist/v0.6.18/node-v0.6.18.tar.gz

Once downloaded, unzip and untar the file:
tar -zxf node-v0.6.18.tar.gz

You now have a directory labeled node-v0.6.18. Change into the directory and issue the following
commands to compile and install Node:

./configure
make
sudo make install

If you've not used the make utility in Unix before, these three commands set up the makefile based on your
system environment and installation, run a preliminary make to check for dependencies, and then perform a
final make with installation. After processing these commands, Node should now be installed, and
accessible globally, via the command line.

The fun challenge of programming is that no two systems are alike. These sequence of
actions should be successful in most Linux environments. Operative word here is
"should".

http://nodejs.org/#download
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager
https://github.com/joyent/node/wiki/Installing-Node.js-via-package-manager

Notice in the last command that you had to use sudo to install Node. You typically need root privileges to
install Node. There is a way of installing Node locally, using the following which installs Node in a given
local subdirectory:

mkdir ~/working
./configure --prefix=~/working
make
make install
echo 'export PATH=~/working/bin:${PATH}' >> ~/.bashrc
. ~/.bashrc

Setting the prefix configuration option to a given path in your home directory installs Node locally.
You'll need to remember to update your PATH environmental variable accordingly.

To use sudo, you have to be granted root, or superuser, privileges, and your user name
must be listed in a special file located at /etc/sudoers.

You can install Node locally, but if you're thinking of using this approach to use Node in your shared
hosting environment, think again. Installing Node is just one part of using Node in an environment. You
also need privileges to compile an application, as well as run applications off of certain ports (such as port
80). Most shared hosting environments are not going to allow you to install your own version of Node.

Unless there's compelling reason, I recommend installing Node using sudo for the installation.

At one time there was concern about running the Node Package Manager (npm), covered
in Chapter ,4 with root privilege. However, the security issues associated with running
npm with root privilege have since been addressed.

Partnering Node with WebMatrix on Windows 7
You can install Node in Windows using a very basic installation sequence as outlined in the wiki
installation page, provided earlier. However, chances are if you're going to use Node in a Windows
environment, you're going to use it as part of a Windows web development infrastructure.

There are two different Windows infrastructures you can use Node with at this time. One is the new
Windows Azure cloud platforms that allows developers to host applications in a remote service, called a
cloud. Installing the Windows Azure SDK for Node is outlined by Microsoft, and I won't be covering the
process in this chapter (though I will examine and demonstrate the SDK later in the book).

The Windows Azure SDK for Node and installation instructions can be found at
https://www.windowsazure.com/en-us/develop/nodejs/.

The other approach to using Node on Windows, in this case, Windows 7, is by integrating Node into
Microsoft's WebMatrix: a tool for web developers integrating open source technologies. The following are
the steps we'll need to take to get Node up and running with WebMatrix in Windows 7:

1. Install WebMatrix
2. Install Node using the latest Windows installation package
3. Install iisnode for IIS Express 7.x--enables Node applications with IIS on Windows
4. Lastly, install Node templates for WebMatrix. These simplify Node development.

WebMatrix is installed using the Microsoft Web Platform Installer, as shown in Figure 1-1. The tool also
installs IIS Express, a developer version of Microsoft's web server. WebMatrix can be downloaded from
http://www.microsoft.com/web/webmatrix/.

https://www.windowsazure.com/en-us/develop/nodejs/
http://www.microsoft.com/web/webmatrix/

Figure 1-1. Installing WebMatrix in Windows 7

Once the installation of WebMatrix is finished, install the latest version of Node, using the installer
provided at the primary Node site, at http://nodejs.org/#download. Installation is one-click, and once you're
finished you can open a Command window and type node, and see that the application is operational, as
shown in Figure 1-2.

Figure 1-2. Testing in Command window to ensure Node properly installed

http://nodejs.org/#download

For Node to work with IIS in Windows, install iisnode, a native IIS 7.x module created and maintained by
Tomasz Janczuk. As with Node, installation is a snap using the pre-built installation package, available at
https://github.com/tjanczuk/iisnode. There are x86 and x64 installations, but for x64, you'll need to install
both.

During the iisnode installation, a window may pop up telling you that you're missing the Microsoft Visual
C++ 2010 Redistributable Package, as shown in Figure 1-3. If so, you'll need to install this package,
making sure you get the one that matches the version of iisnode you're installing—either the (x86) package
(available at http://www.microsoft.com/download/en/details.aspx?id=5555) or the (x64) package (available
at http://www.microsoft.com/download/en/details.aspx?id=14632), or both. Once you've installed the
requisite package, run the iisnode installation again.

Figure 1-3. Message warning us that we need to install the C++ redistributable package

If you want to install the iisnode samples, from a Command window, opened with administrator privileges,
go to the directory where iisnode is installed (either Program Files for 64-bit, or Program Files (x86)), and
run the setupsamples.bat file.

To complete the WebMatrix/Node set up, download and install the Node templates for WebMatrix, created
by Steve Sanderson and found at https://github.com/SteveSanderson/Node-Site-Templates-for-WebMatrix.

You can test that everything worked by running WebMatrix, and in the opening pages, select the Site
from Template option. In the page that opens, shown in Figure 1-4, you'll see two Node template
options: one for Express (introduced in Chapter 5) and one for creating a basic, empty site configured for
Node. Choose the latter option, giving the site a name of First Node Site. Or whatever you want to
use, it doesn't matter.

https://github.com/tjanczuk/iisnode#readme
http://www.microsoft.com/download/en/details.aspx?id=5555
http://www.microsoft.com/download/en/details.aspx?id=14632
https://github.com/SteveSanderson/Node.js-Site-Templates-for-WebMatrix

Figure 1-4. Creating a new Node site using a template in WebMatrix

Figure 1-5 shows WebMatrix once the site has been generated. Click the Run button, located in the top left
of the page and a browser page should open with the ubiquitous "Hello, world!" message displayed.

Figure 1-5. Newly generated Node site in WebMatrix

If you're running the Windows Firewall, the first time you run a Node application, you may get a warning
like that shown in Figure 1-6. Don't be alarmed if you do. You just need to let the Firewall know this

application is cool by checking the Private networks option, and then the Allow access button.
You want to restrict communication to just your private network on your development machine.

Figure 1-6. Warning that the Windows Firewall blocked Node application, and option to
bypass

If you look at the generated files for your new WebMatrix Node project, you'll see one named app.js. This
is the Node file, and contains the following code:

var http = require('http');

http.createServer(function (req, res) {

 res.writeHead(200, { 'Content‐Type': 'text/html' });
 res.end('Hello, world!');

}).listen(process.env.PORT || 8080);

What this all means I'll get into in the second part of this chapter. The important item to take away from
this code right now is that we can run this same application in any operating system where Node is installed
and get the exact same functionality: a service that returns a simple message to the user.

To access the issnode examples from WebMatrix, select the WebMatrix option Site from
Folder, and then input the following into the dialog that opens:
%localappdata%\iisnode\www.

Updating Node
Node is under active development and new releases are issued from time to time. I recommend sticking
with stable releases only—at least until you have some experience with Node

Updating your Node installation isn't complicated. If you used a package installer, using the package
installer for the new version should just override the old installation. If you're working directly with the
source, you can always uninstall the old source and install the new if you're concerned about potential
clutter, or file corruption. In the Node source directory, just issue the uninstall make option:

make uninstall

Download the new source, compile it, and install it, and you're ready to go again.

The challenge with updating Node is whether a specific environment, module, or other application works
with the new version.

In most cases, you shouldn't have version troubles. However, if you do, there is an application you can use
to "switch" Node versions. The application is the Node Version Manager, abbreviated as Nvm.

Nvm can be downloaded from github, at https://github.com/creationix/nvm . Like Node, Nvm must be
compiled and installed on your system.

To install a specific version of Node, install it with Nvm:
nvm install v0.4.1

To switch to a specific version, use the following:
nvm run v0.4.1

To see what versions are available, use:
nvm ls

Node: Jumping In
Now that you have Node installed, it's time to jump into your first application.

Hello, World in Node
As is typical for testing out any new development environment, language, or tool, the first application we'll
create is "Hello, World"—a simple application that prints out a greeting to whomever accesses it.

Example 1-1 shows all the text needed to create "Hello, World" in Node.

Example 1-1. Hello, World in Node
// load http module
var http = require('http');

// create http server
http.createServer(function (req, res) {

 // content header
 res.writeHead(200, {'content-type': 'text/plain'});

 // write message and signal communication is complete
 res.end("Hello, World!\n");
}).listen(8124);

console.log('Server running on 8124/');

The code is saved in a file named helloworld.js. As server-side functionality goes, this Node application is
neither too verbose, nor too cryptic; one can intuit what's happening, even without knowing Node. Best of
all, it's familiar since it's written in a language we know well: JavaScript.

To run the application, from the command line in Linux, the Terminal window in Mac OS, or via the
Command window in Windows, type the following:

https://github.com/creationix/nvm

node helloworld.js

The following line is printed to the command line once the program has successfully started:
Server running at 8124

Now, access the site using any browser. If the application is running on your local machine, you'll use
localhost:8124. If it's running remotely, use the URL of the remote site, with the 8124 port. A web
page with the words "Hello, World!", is displayed.

You've now created your first complete and working Node application.

Since we didn't use an ampersand (&) following the node command—telling the application to run in the
background—the application starts and doesn't return you back to the command line. You can continue
accessing the application, and the same words get displayed. The application continues until you type
CTRL-C to cancel it, or otherwise kill the process.

If you want to run the application in the background within a Linux system, use the following:
node helloworld.js &

However, you'll then have to find the process identifier using ps -ef, and manually kill the right process
using kill:

ps -ef | grep node
kill 3747

(Assuming 3747 is the process identifier.)

You can also add helloworld.js as a new file to the existing WebMatrix web site you created earlier, if
you're using WebMatrix. Just open the site, choose the New File... option from the menu bar, and add
the text shown in Example 1-1 to the file. Then click the Run button.

WebMatrix overrides the port in the application. When you run the application, you'll
access the application from the port defined for the project, not specified in the
http.Server.listen method.

Hello World, From the Top
I'll get more in depth on the anatomy of Node applications in the next couple of chapters, but for now, let's
take a closer look at the Hello World application.

Returning to the text in Example 1-1, the first line of code is:
var http = require('http');

This JavaScript loads the http module, assigning it to a local variable. The http module provides basic
http protocol functionality, enabling network access of the application.

The next line of code is:
http.createServer(function (req, res) { ...

In this line of code, a new server is created using createServer, and an anonymous function is passed
as the parameter to the function call. This anonymous function is the requestListener function, and has two
parameters: a server request (http.ServerRequest) and a server response
(http.ServerResponse).

Within the anonymous function, we have the following line:
res.writeHead(200, {'content-Type': 'text/plain'});

The http.ServerResponse object has a method, writeHead, that sends a response header with the
response status code (200), as well as providing the content-type of the response. You can also

include other response header information within the headers object, such as content-length or
connection:

{ 'content-length': '123',
 'content-type': 'text/plain',
 'connection': 'keep-alive',
 'accept': '*/*' }

A second, optional parameter to writeHead is a reasonPhrase, which is a textual description of the status
code.

Following the code to create the header is the command to write the Hello World message:
res.end("Hello, World!\n");

The http.ServerResponse.end method signals that the communication is finished; all headers and
the response body have been sent. It must be used with every http.ServerResponse object.

The end method has two parameters:

• a chunk of data, which can be either a string or a buffer
• if the chunk of data is a string, the second parameter specifies the encoding

Both parameters are optional, and the second parameter is only required if the encoding of the string is
anything other than utf8, which is the default.

Instead of passing the text in the end function, I could have used another method, write:

res.write("Hello, World!\n");

And then:
res.end();

The anonymous function and the createServer function are both finished on the next line in the code:

}).listen(8124);

The http.Server.listen method chained at the end of the createServer method listens for
incoming connections on a given port, in this case, port 8124. Optional parameters are a host name and a
callback function. If a host name isn't provided, the server accepts connections to any IPv4 addresses, such
as oreilly.com or examples.burningbird.net.

More on the callback function later in the chapter.

The listen method is asynchronous, which means the application doesn't block waiting for the
connection to be established. Whatever code following the listen call is processed and the listen
callback function is invoked when the listening event is fired—when the port connection is
established.

The last line of code is:
console.log('Server running on 8124/');

The console object is one of the objects from the browser world that is incorporated into Node. It's a
familiar construct for most JavaScript developers, and provides a way to output text to the command line
(or development environment), rather than to the client.

Asynchronous Functions and the Node Event Loop
The fundamental design behind Node is that an application is executed on a single thread (or process), and
all events are handled asynchronously.

Consider how the typical web server works, such as Apache. Apache has two different approaches to how it
handles incoming requests. The first is to assign each request to a separate process until the request is
satisfied; the second is to spawn a separate thread for each request.

The first approach (known as the prefork Multi-Processing Model, or MPM) can create as many child
processes as specified in an Apache configuration file. The advantage to creating a separate process is that
applications accessed via the request, such as a PHP application, don't have to be thread safe. The
disadvantage is that each process is memory intensive, and doesn't scale very well.

The second approach (known as the worker MPM), implements a hybrid process-thread approach. Each
incoming request is handled via a new thread. It's more efficient from a memory perspective, but also
requires that all applications be thread safe. Though the popular web language PHP is now thread safe,
there's no guarantee all the many different libraries used with PHP are thread safe.

Regardless of approach used, both types respond to requests in parallel. If five people access a web
application at the exact same time, and the server is set up accordingly, the web server handles all five
requests simultaneously.

Node does things differently. What happens is that when you start a Node application, it's created on a
single thread of execution. It sits there, content, waiting for someone to come along and make a request.
When it gets a request, no other request can be processed until it's finished processing the code for the
current request.

You might be thinking that this doesn't sound very efficient, and it wouldn't be except for one thing: Node
operates asynchronously, via an event loop and callback functions. An event loop is nothing more than
functionality that basically polls for specific events and invokes event handlers at the proper time. In Node,
a callback function is this event handler.

Unlike other single threaded applications, when you make a request to a Node application and it must, in
turn, make some request of resources (such as a database request or file access), Node processes the
request, but doesn't wait around until the request receives a response. Instead, it attaches a callback function
to the request. When whatever has been requested is ready (or finished), an event is emitted to that effect,
triggering the associated callback function to do something with either the results of the requested action, or
the resources requested.

If five people access an application at the exact same time, and the application needs to access a resource
from a file, Node attaches a callback function to a response event for each request. As the resource
becomes available for each, in turn, the callback function is called, and each person's request is satisfied. In
the meantime, the Node application can be processing other requests, either for the same people, or
different people.

Though it doesn't process the requests in parallel, depending on how busy the application is, and how it's
designed, most people usually won't perceive any delay in the response. Best of all, the application is very
frugal with memory and other limited resources.

Reading a File Asynchronously
To demonstrate the asynchronous nature of Node, Example 1-2 is a modification of the Hello World
application from earlier in the chapter. Instead of just typing out "Hello, World!", it actually opens up the
previously created helloworld.js, and outputs the contents to the client.

Example 1-2. Asynchronously opening and writing out contents of a file
// load http module
var http = require('http');
var fs = require('fs');

// create http server
http.createServer(function (req, res) {

 // open and read in helloworld.js
 fs.readFile('helloworld.js', 'utf8', function(err, data) {

 res.writeHead(200, {'Content-Type': 'text/plain'});
 if (err)
 res.write('Could not find or open file for reading\n');
 else

 // if no error, write JS file to client
 res.write(data);
 res.end();
 });
}).listen(8124, function() { console.log('bound to port 8124');});

console.log('Server running on 8124/');

A new module, File System (fs), is used in this example. The File System module wraps standard POSIX
file functionality, including opening up and accessing the contents from a file. The method used is
readFile. In the example, it's passed the name of the file to open, the encoding, and an anonymous
function.

The two instances of asynchronous behavior I want to point out in Example 1-2 are the callback function
that's attached to the readFile method, and the callback function attached to the listen method.

As discussed earlier, the listen method tells the HTTP server object to begin listening for connections
on the given port. Node doesn't block, waiting for the connection to be established, so if we need to do
something once the connection is established, we provide a callback function, as shown in Example 1-2.

When the connection is established, a listening event is emitted, which then invokes the callback
function—outputting a message to the console.

The second, more important callback instance is the one attached to readFile. Accessing a file is a time
consuming operation, relatively speaking, and a single threaded application accessed by multiple clients
that blocked on file access would soon bog down and be unusable.

Instead, the file is opened and the contents read asynchronously. Only when the contents have been read
into the data buffer—or an error occurs during the process—is the callback function passed to the
readFile method called. It's passed the error, if any, and the data if no error occurs.

In the callback function, the error is checked, and if there is no error, the data is then written out to the
response back to the client.

A Closer Look at Asynchronous Program Flow
Most people who have developed with JavaScript have done so in client applications, meant to be run by
one person at a time in a browser. Using JavaScript in the server may seem odd. Creating a JavaScript
application accessed by multiple people at the same time may seem even odder.

Our job is made easier because of the Node event loop, and being able to put our trust in asynchronous
function calls. However, we're no longer in Kansas, Dorothy—we are developing for a different
environment.

To demonstrate the differences in this new environment, I created two new applications: one as a service,
and one to test the new service. Example 1-3 shows the code for the service application.

In the code, a function is called, synchronously, to write out numbers from 1 to 100. Then a file is opened,
similar to what happened in Example 1-2, but this time the name of the file is passed in as a query string
parameter. In addition. the file is opened only after a timer event.

Example 1-3. New service that prints out a sequence of numbers, and then the contents of a file

var http = require('http');
var fs = require('fs');

// write out numbers
function writeNumbers(res) {

 var counter = 0;

 // increment global, write to client
 for (var i = 0; i<100; i++) {
 counter++;
 res.write(counter.toString() + '\n');
 }
}

// create http server
http.createServer(function (req, res) {

 var query = require('url').parse(req.url).query;
 var app = require('querystring').parse(query).file + ".txt";

 // content header
 res.writeHead(200, {'Content-Type': 'text/plain'});

 // write out numbers
 writeNumbers(res);

 // timer to open file and read contents
 setTimeout(function() {

 console.log('opening ' + app);
 // open and read in file contents
 fs.readFile(app, 'utf8', function(err, data) {
 if (err)
 res.write('Could not find or open file for reading\n');
 else {
 res.write(data);
 }
 // reponse is done
 res.end();
 });
 },2000);
}).listen(8124);

console.log('Server running at 8124/');

The loop to print out the numbers is used to delay the application, similar to what could happen if you
performed a computationally intensive process and then blocked until the process was finished. The
setTimeout function is another asynchronous function, which in turn evokes a second asynchronous
function: readFile. The application combines both asynchronous and synchronous function calls.

Create a text file named main.txt, containing any text you want. Running the application and accessing the
page from Chrome with a query string of file=main generates the following console output:

Server running at 8124/
opening main.txt
opening undefined.txt

The first two lines are expected. The first is the result of running console.log at the end of the
application, and the next line is a print out of the file being opened...but undefined.txt?

When processing a web request from a browser, be aware that browsers may send more than one request.
For instance, a browser may also send a second request, looking for a favicon.ico. Because of this, when
you're processing the query string, you must check for to see if the data you need is being provided, and
ignore requests without the data.

That the browser sends multiple requests can impact on your application if you're
expecting values via a query string. You must adjust your application, accordingly. And
yes, you'll still need to test your application with several different browsers.

So far, all we've done is test our Node applications from a browser. This isn't really putting much stress into
the "asynchronous" nature of the Node application.

Example 1-4 contains the code for a very simple test application. All it does is use the http module to
request the example server several times in a loop. The requests aren't asynchronous. However, we'll also
be accessing the service using the browser as we run the test program. Both, combined, asynchronously test
the application.

I'll cover creating asynchronous testing applications in Chapter 14, "Testing and
Debugging Node Applications"

Example 1-4. Simple application to call the new Node application 2000 times
var http = require('http');

//The url we want, plus the path and options we need
var options = {
 host: 'localhost',
 port: 8124,
 path: '/?file=secondary',
 method: 'GET'
};

var processPublicTimeline = function(response) {
 // finished? ok, write the data to a file
 console.log('finished request');
};

for (var i = 0; i < 2000; i++) {
 // make the request, and then end it, to close the connection
 http.request(options, processPublicTimeline).end();
}

Create the second text file, named secondary.txt. Put whatever you wish in it, but make the contents
obviously different from main.txt.

After making sure the Node application is running, start the test application:
node test.js

As the test application is running, access the application using your browser. If you look at the console
messages being output by the application, you'll see it process both your manual and the test application's
automated requests. Yet the results are consistently what we would expect, a web page with:

• the numbers 1 through 100 printed out
• the contents of the text file, in this case main.txt.

Now, let's mix things up a bit. In Example 1-3 make the counter global rather than local to the loop
function, and start the application again. Then run the test program and access the page in the browser.

The results have definitely changed. Rather than the numbers starting at 1 and going to 100, they start at
numbers like 2601 and 26301. They still print out the next sequential 99 numbers, but the starting value is
different.

The reason why is, of course, the use of the global counter. Since you're accessing the same application
in the browser, as the test program is doing automatically, you're both updating counter. Both the
manual and automated application requests are processed, in turn, so there's no contention for the shared
data (a major problem with thread safety in a multi-threaded environment), but if you're expecting a
consistent beginning value, you might be surprised.

Now change the application again, but this time remove the var keyword in front of the app variable—
'accidentally' making it a global variable. We all have, from time to time, forgotten the var keyword with
our client-side JavaScript applications. The only time we get bit by this mistake is if any libraries we're
using are using the same variable name.

Run the test application and access the Node service in your browser a couple of times. As you'll
immediately see, Node is not your ordinary JavaScript.

When coding for Node, var is your friend.

Benefits of Node
By now you have a working Node installation—possibly even a couple.

You've also had a chance to create a couple of Node applications, and test out the differences between
synchronous and asynchronous code (and what happens if you accidentally forget the var keyword).

Node isn't all asynchronous function calls. Some objects may provide both synchronous and asynchronous
versions of the same function. However, Node works best when you use asynchronous coding, as much as
possible.

The Node event loop and callback functions have two major benefits.

First, the application can easily scale, since a single thread of execution doesn't have an enormous amount
of overhead. If we were to create a PHP application similar to the Node application in Example 1-3, the
user would see the same page—but your system would definitely notice the difference. If you ran the PHP
application in Apache with the default prefork MPM, each time the application was requested, it would
have to be handled in a separate child process. Chances are, unless you have a significantly loaded system,
you'll only be able to run—at most—a couple of hundred child processes in parallel. More than that number
of requests means that a client needs to wait for a response.

A second benefit to Node is that you minimize resource usage, but without having to resort to multi-
threaded development. In other words: you don't have to create a thread-safe application. If you've ever
developed a thread-safe application previously, you're probably feeling profoundly glad at this statement.

However, as was demonstrated in the last example application, you also aren't developing JavaScript
applications for single users to run in the browser, either. When you work with asynchronous applications,
you need to make sure that you don't build in dependencies on one asynchronous function call finishing
ahead of another, because there are no guarantees—not unless you call the second function call within the
code of the first. In addition, global variables are extremely hazardous in Node, as is forgetting the var
keyword.

Still, these are issues we can work with—especially considering the benefits of Node's low resource
requirements and not having to worry about threads.

A final reason for liking Node? You can code in JavaScript without having to worry
about IE6.

});

// set database to 1
client.select(1);

var scoreServer = http.createServer();

// listen for incoming request
scoreServer.on('request', function (req, res) {

 console.time('test');

 req.addListener("end", function() {

 var obj = {
 member : 2366,
 game : 'debiggame',
 first_name : 'Sally',
 last_name : 'Smith',
 email : 'sally@smith.com',
 score : 50000 };

 // add or overwrite score
 client.hset(obj.member, "game", obj.game, redis.print);
 client.hset(obj.member, "first_name", obj.first_name, redis.print);
 client.hset(obj.member, "last_name", obj.last_name, redis.print);
 client.hset(obj.member, "email", obj.email, redis.print);
 client.hset(obj.member, "score", obj.score, redis.print);

 client.hvals(obj.member, function (err, replies) {
 if (err) {
 return console.error("error response - " + err);
 }

 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 });

 res.end(obj.member + ' set score of ' + obj.score);
 console.timeEnd('test');
 });
});

scoreServer.listen(8124);

// HTTP server closes, close client connection
scoreServer.on('close', function() {
 client.quit();
});

console.log('listening on 8124');

I was curious about performance if I changed one parameter in the application: from maintaining a
persistent connection to Redis, to grabbing a connection when the web service was accessed, and releasing
it as soon as the request was finished. That led to the second version of the application, shown in Example
14-6. The changes from the first are in bold text.

Example 14-6. Modified application with non-persistent Redis connections
var redis = require("redis"),
 http = require('http');

var scoreServer = http.createServer();

// listen for incoming request
scoreServer.on('request', function (req, res) {

 console.time('test');

 // create Redis client
 var client = redis.createClient();

 client.on('error', function (err) {
 console.log('Error ' + err);
 });

 // set database to 1
 client.select(1);

 req.addListener("end", function() {

 var obj = {
 member : 2366,
 game : 'debiggame',
 first_name : 'Sally',
 last_name : 'Smith',
 email : 'sally@smith.com',
 score : 50000 };

 // add or overwrite score
 client.hset(obj.member, "game", obj.game, redis.print);
 client.hset(obj.member, "first_name", obj.first_name, redis.print);
 client.hset(obj.member, "last_name", obj.last_name, redis.print);
 client.hset(obj.member, "email", obj.email, redis.print);
 client.hset(obj.member, "score", obj.score, redis.print);

 client.hvals(obj.member, function (err, replies) {
 if (err) {
 return console.error("error response - " + err);
 }

 console.log(replies.length + " replies:");
 replies.forEach(function (reply, i) {
 console.log(" " + i + ": " + reply);
 });
 });

 res.end(obj.member + ' set score of ' + obj.score);
 client.quit();
 console.timeEnd('test');
 });
});

scoreServer.listen(8124);

console.log('listening on 8124');

I ran the ab test against this second application, and the relevant tests results are below:
Requests per second: 515.40 [#/sec] (mean)
Time per request: 19.402 [ms] (mean)
...
Percentage of the requests served within a certain time (ms)
 50% 18
 66% 20
 75% 21

 80% 22
 90% 24
 95% 27
 98% 33
 99% 40
 100% 341 (longest request)

The tests give us a fairly good idea that maintaining a persistent connection enhances performance. This is
further born out, in rather dramatic fashion, with a second test.

When I ran the test 100,000 times, with 1000 concurrent users, the Node application that maintained a
persistent connection to Redis finished the test, while the other option actually failed—too many concurrent
users backed up at Redis and it started rejecting connections. Exactly 67,985 tests completed before the
application went toes up.

Load Testing with Nodeload
Nodeload provides both a command line tool that performs the same type of testing as ab, except providing
some nice graphics of the results. It also provides a module you can use to develop your own performance
testing applications.

Another application also goes by Nodeload, and is responsible for building and delivering
Git repositories as zip files. However, installing Nodeload with the following ensures
you're accessing the correct Nodeload:
npm install nodeload -g

When Nodeload is installed globally you can access the command line version (nl.js) of the module
application anywhere. The command line arguments it takes are similar to what we've used with ab:

nl.js -c 10 -n 10000 -i 2 http://examples.burningbird.net:8124

The application accesses the web site 10000 times, emulating ten concurrent users. The -i flag alters how
frequently the statistics are reported (every two seconds rather than the default ten seconds). The complete
set of flags is given in the following list:

• -n --number: number of requests to make
• -c --concurrency: number of concurrent users
• -t --time-limit: time limit for the test
• -m --method: HTTP method to use
• -d --data: data to send with PUT or POST request
• -r --request-generator: path to module for getRequest function (if custom one provided)
• -q --quiet: suppress display of progress
• -h --help: help

What's fun about Nodeload is the live graphics that are displayed while the test is running. If you access
port 8000 of the test server (http://localhost:8000 or via domain), you can see a graphic display of the
results, as they are happening. Figure 14-2 shows a snapshot of the display during one test.

Figure 14-2. Live graphics of ongoing Nodeload test

The graphics file is also persisted for later access, as is a log file of the test results. At the end of the test,
summary results are given that are very close to ab in nature. An example of one output is the following:

Server: examples.burningbird.net:8124
HTTP Method: GET
Document Path: /
Concurrency Level: 100
Number of requests: 10000
Body bytes transferred: 969977
Elapsed time (s): 19.59
Requests per second: 510.41
Mean time per request (ms): 192.74
Time per request standard deviation: 47.75

Percentages of requests served within a certain time (ms)
 Min: 23
 Avg: 192.7
 50%: 191
 95%: 261
 99%: 372
 Max: 452

If you want to provide your own custom test, you can use the Nodeload module to develop a testing
application. The module provides live monitoring, graphics capability, statistics, as well as distributed
testing capability.

I could not test any example code because of a major bug in the Nodeload module at the
time this was written. Hopefully it will be fixed by the time you read this.

Refreshing Code with Nodemon
I wanted to introduce one more module before leaving this chapter: Nodemon. Though not technically
related to either testing or debugging, it is a handy development tool.

First, install it with npm:
npm install nodemon

Nodemon wraps your application. Instead of using Node to start the application, use Nodemon:
nodemon app.js

Nodemon sits quietly monitoring the directory (and any contained directories) where you ran the
application, checking for file changes. If it finds a change, it restarts the application so that it picks up the
recent changes.

You can pass parameters to the application:
nodemon app.js param1 param2

You can also use the module with CoffeeScript:
nodemon someapp.coffee

If you want Nodemon to monitor some directory other than the current one, use the --watch flag:
nodemon --watch dir1 --watch libs app.js

There are other flags, documented with the module.

Chapter 16 demonstrates how to use Nodemon with Forever, which restarts your
application if for some reason, it shuts down.

15
Guards at the Gate

Security in Node applications goes beyond ensuring that people don't have access to the application server.
Security can be complex, and even a little intimidating. Luckily, when it comes to Node applications, most
of the components we need for security have already been created. We just need to plug them in, in the
right place, and at the right time.

In this chapter I break down security into four major components: encryption, authentication and
authorization, attack prevention, and sandboxing:

• Encryption ensures that data that's transmitted over the internet is safe, even if it is intercepted mid-
route. The only receiver that can actually decrypt the data is the system that has the proper credentials
(typically a key). Encryption is also used for data that must be stored confidentially.

• Authentication and authorization consists of the logins we get whenever we need to access protected
areas of an application. Not only do these logins ensure that a person has access to a section of an
application (authorization), they also ensure the person is who they say they are (authentication).

• Attack prevention involves ensuring that someone who is submitting data via a form isn't trying to tack
on text that can attack the server, or the database you're using.

• Sandboxing is a way of barricading script so it doesn't have access to the system resources—it operates
only within a limited context.

Encrypting Data
We send a lot of data over the internet. Most of it isn't anything essential: Twitter messages, web page
accesses, comments to a weblog post. Much of the data, though, is private, including sending credit card
data, confidential email, or login information to our servers. The only way to ensure these types of data
transmissions are kept private, and aren't hacked in any way during transition, is to use encryption with the
communication.

TSL/SSL Setup
Secure, tamper resistant communication between a client and a server occurs over SSL (Secure Sockets
Layer), and its upgrade, TLS (Transport Layer Security). It provides the underlying encryption for HTTPS,
which I cover in the next section. Before we can develop for HTTPS, we have to do some environment
setup.

A TSL/SSL connection requires a handshake between client and server. During the handshake, the client
(typically a browser) lets the server know what kind of security functions it supports. The server picks a

function, and then sends through an SSL certificate, which includes a public key. The client confirms the
certificate and generates a random number using the server's key, sending it back to the server. The server
than uses it's private key to decrypt the number. This number is used to enable the secure communication.

For all this to work, you'll need to generate both the public and private key, as well as the certificate. For a
production system, the certificate would be signed by a trusted authority, but for development purposes you
can make use of a self-signed certificate. It generates a rather significant warning in the browser, but since
the site isn't being accessed by users, this isn't going to be an issue.

The tool used to generate the necessary files is OpenSSL. If you're using Linux, it should already be
installed. There's a binary installation for Windows, and Apple is pursuing it's own Crypto library. In this
section, I'm just covering setting up a Linux environment.

To start, type the following at the command line. The command generates the private key, encrypted with
Triple-DES and stored in PEM format making it ASCII readable:

openssl genrsa -des3 -out site.key 1024

You'll be prompted for a password, and you'll need it for the next task, creating a Certificate Signing
Request (CSR).

When generating the CSR, you'll be prompted for the password you just created. You'll also be asked a lot
of questions, including the country designation (such as US for United States), your state or province, city
name, company name and organization, and email address. The question of most importance is the one
asking for the Common Name. This is asking for the host name of the site: burningbird.net, or
yourcompany.com. Provide the hostname where the application is being served. In my example code, I
created a certificate for examples.burningbird.net.

openssl req -new -key site.key -out site.csr

The private key wants a passphrase. The problem is, every time you start up the server, you'll have to
provide this passphrase, and this becomes a problem. In the next step, you'll remove the passphrase from
the key. First, rename the key:

mv site.key site.key.org

Then type:
openssl rsa -in site.key.org -out site.key

If you do remove the passphrase, make sure your server is secure by ensuring the file is only readable by
root.

The next task is to generate the self-signing certificate. The following command creates one that's only
good for 365 days:

openssl x509 -req -days 365 -in site.csr -signkey site.key -out final.crt

Now you have all the components you need in order to use TLS/SSL, and HTTPS.

HTTPS
Web pages that ask for user login or credit card information had better be served as HTTPS, or we should
give the site a pass. HTTPS is a variation of the HTTP protocol, except that it's also combined with SSL to
ensure that the web site is who we think it is, that the data is encrypted during transit, and the data arrives
intact and without any tampering.

Adding support for HTTPS is similar to adding support for HTTP, with the addition of an options object
that provides the public encryption key, and the signed certificate. The default port for an HTTPS server
differs, too: HTTP is served via port 80, by default, while HTTPS is served via port 443.

Example 13-1 demonstrates a very basic HTTPS server. It does little beyond sending a variation of our
traditional Hello, World message to the browser.

Example 13-1. Creating a very simple HTTPS server

var fs = require("fs"),
 https = require("https");

var privateKey = fs.readFileSync('site.key').toString();
var certificate = fs.readFileSync('final.crt').toString();

var options = {
 key: privateKey,
 cert: certificate
};

https.createServer(options, function(req,res) {
 res.writeHead(200);
 res.end("Hello Secure World\n");
}).listen(443);

The public key and certificate are opened and their contents read synchronously. The data is attached to the
options object, passed as the first parameter in the https.createSever method. The callback function
for the same method is the one we're used to, with the server request and response object passed as
parameters.

Accessing the page demonstrates what happens when we use a self-signed certificate, as shown in Figure
15-1. It's easy to see why a self-signed certificate should only be used during testing.

insert lrnnode_fig27.png

Figure 15-1. What happens when you use Chrome to access a web site using HTTPS
using a self-signed server

The browser address bar demonstrates another way that the browser signals that the site's certificate can't be
trusted, as shown in Figure 15-2. Rather than display a lock, demonstrating the site is being accessed via
HTTPS, it displays a lock with a red 'x' showing that the certificate can't be trusted. Clicking the icon
displays an information with window with more details about the certificate.

insert lrnnode_fig28.png

Figure 15-2. More information about the certificate displayed when clicking the "lock"
icon

Encrypting communication isn't the only time we use encryption in a web application. We also use it to
store user passwords and other sensitive data.

Safely Storing Passwords
Node provides a module used for encryption: Crypto. According to the module's documentation:

The crypto module requires OpenSSL to be available on the underlying platform. It offers a way of
encapsulating secure credentials to be used as part of a secure HTTPS net or http connection.

It also offers a set of wrappers for OpenSSL's hash, hmac, cipher, decipher, sign and verify methods.

The functionality we're interested in, is the module's OpenSSL hash support.

One of the most common tasks a web application has to support is also one of the most vulnerable: storing
a user's login information, including their password. It probably only took five minutes after the first user
name and password were stored in plain text in a web application database before someone came along,
cracked the site, got the login information, and had their merry way.

You do not store passwords in plain text. Luckily, you don't need to store passwords in plain text with
Node's Crypto module.

You can use the Crypto module's createHash method to encrypt the password. An example is the
following, which creates the hash using the sha1 algorithm, uses it to encode a password, and then extract
the digest of the encyrpted data, to store in the database:

var hashpassword = crypto.createHash('sha1')
 .update(password)
 .digest('hex');

The digest encoding is set to hexadecimal. By default, encoding is binary, and base64 can also be used.

Many applications do use a hash for this purpose. However, there's a problem with storing plain hashed
passwords in a database, and the problem goes by the innocuous name of rainbow table.

Without getting into too many details, a rainbow table is basically a table of precomputed hash values for
every possible combination of characters. So, even if you have a password that you're sure can't be
cracked—and let's be honest, most of us rarely do—chances are the sequence of characters has a place
somewhere in a rainbow table, which makes it much simpler to determine what your password is.

The way around the rainbow table is with salt. No, not the crystalline variety: a unique generated value that
is concatenated to the password before encryption. It can be a single value that is used with all the
passwords, and stored securely on the server. A better option, though, is to generate a unique salt for each
user password, and then store the salt with the password. True, it can also be stolen at the same time as the
password, but it would still require that the person attempting to crack the password generate a rainbow
table specifically for the one and only password—adding immensely to the complexity of cracking any
individual password.

Example 13-2 is a simple application that takes a user name and a passport passed as command line
arguments, encrypts the password, and then stores both as a new user in a MySQL database table. The table
is created using the following SQL:

CREATE TABLE user (userid INT NOT NULL AUTO_INCREMENT, PRIMARY KEY(userid), username VARCHAR(400)
NOT NULL, password VARCHAR(400) NOT NULL);

The salt consists of a date value multiplied by a random number, rounded. It's concatenated to the password
before the resulting string is encrypted. All the user data is then inserted into the MySQL user table.

Example 13-2. Using Crypto's createHash method and a salt to encrypt a password
var mysql = require('mysql'),
 crypto = require('crypto');

var client = mysql.createClient({
 user: 'username',
 password: 'password'
 });

client.query('USE databasenm');

var username = process.argv[2];
var password = process.argv[3];

var salt = Math.round((new Date().valueOf() * Math.random())) + '';

var hashpassword = crypto.createHash('sha512')
 .update(salt + password)
 .digest('hex');
// create user record
client.query('INSERT INTO user ' +
 'SET username = ?, password = ?, salt = ?',
 [username, hashpassword, salt], function(err, result) {
 if (err) console.log(err);
 client.end();
});

The application to test a user name and password, in Example 13-3, queries the database for the password
and salt based on the user name. It uses the salt to, again, encrypt the password. Once the password has
been encrypted, it's compared to the password stored in the database. If the two don't match, the user isn't
validated. If they match, then the user's in.

Example 13-3. Checking a user name and password that has been encrypted
var mysql = require('mysql'),
 crypto = require('crypto');

var client = mysql.createClient({
 user: 'username',
 password: 'password'
 });

client.query('USE databasenm');

var username = process.argv[2];
var password = process.argv[3];

client.query('SELECT password, salt FROM user WHERE username = ?',
 [username], function(err, result, fields) {
 if (err) return console.log(err);

 var newhash = crypto.createHash('sha512')
 .update(result[0].salt + password)
 .digest('hex');

 if (result[0].password === newhash) {
 console.log("OK, you're cool");
 } else {
 console.log("Your password is wrong. Try again.");
 }
 client.end();
});

Trying out the applications, I first pass in a user name of Michael, with a password of applef*rk13*:
node password.js Michael apple*frk13*

I then check the same user name and password:
node check.js Michael apple*frk13*

I get back the expected result:
OK, you're cool

Trying it again, but with a different password:
node check.js Michael badstuff

And I, again, get back the expected result:
Your password is wrong. Try again

Of course. we don't expect our users to log in via the command line. Neither do we always use a local
password system to authenticate people.

Authentication/Authorization with Passport
Are you the person you say you are? Do you have the authority to do this action? Can this action cause
harm? Answering these questions is the work of two different technical components: authentication and
authorization.

Authentication is concerned with ensuring you are who you say you are. When Twitter attaches a
verification flag to an account, it's saying that the person so flagged is the genuine article. Authorization,
on the other hand, is related to ensuring you have access to only what you need to access. Of a dozen users
at a Drupal site, half may only have the ability to post comments, five others can post articles and
comments, but only one has control over everything. The site may not care who user Big Daddy is, only
that the user Big Daddy can post comments and not delete posts.

It's not unusual for both authorization and authentication to be combined into the same function. Typically,
when attempting to do some action, you're challenged to provide some means of authenticating who you

are. You're probably going to be asked to provide a user name and a password. Then, once you've proved
who you are, your actions are further limited by the application: the person identified by your user name
can only access certain pages, or perform certain operations.

Sometimes the authentication is done through a third party. An example of third party authentication is the
use of OpenID. Rather than have your users create a user name and password at your site, you authenticate
them with OpenID, and then give them application access.

Other times, both authentication and authorization occurs at a third party site. For instance, if an application
wants to access a Twitter or Facebook account, either to post messages or to get information, the users have
to authenticate with these sites, and then your application has to be authorized for the access. This
authorization occurs via another strategy, OAuth.

The functionality for all of these scenarios can be met with the Passport module, and one or more Passport
strategies.

Passport isn't the only module that provides authentication and authorization, but I found
it to be the easiest to use.

Authorization/Authentication Strategies: OAuth, OpenID,
Username/Password Verification

When you're accessing the administrative section of a Content Management System such as Drupal or an
online site such as Amazon, you're using basic credential verification. You're supplying a user name and a
password, both of which are verified by the site before you're given access. This is still the most widely
implemented authorization/authentication strategy. And for the most part, it's an effective strategy.

Earlier in the chapter, I demonstrated how user passwords can be protected in the database. Even if the user
system is compromised, the data thieves won't have access to your password in plain text. Of course, they
could crack your password, but if you used a combination of letters, symbols, and numbers, in a relatively
meaningless way, it would take a lot of time and CPU to crack the password.

You still need to have this authentication/authorization strategy in Node applications, and it's the most
widely utilized option online, especially with store fronts. Now, though, you have two other strategies:
OAuth and OpenID.

OAuth is a way of accessing data, such as a person's Twitter account data, without the person having to
give direct access to the account password. It's a way of authorizing data access without the person's
credentials having to be stored in various locations—increasing the likelihood of the person's credentials
eventually being compromised. It also gives the user greater control, because they can usually rescind the
authorization from their primary account at any time.

OAuth is involved almost exclusively with authorization: authorization of data access. OpenID is different,
in that it's primary focus is on authentication, though authorization does come along for the ride.

OpenID is not as widely used as OAuth, and is primarily used in comment systems and in user registration
at various media sites. One of the problems with comment systems is that people may way they're a person,
but there's no way to verify they are who they say they are. With OpenID, a person can sign into a comment
system, or register as a user, using OpenID, and the OpenID system ensures that the person authenticates, at
least within the OpenID system.

OpenID is also a way of registering at different locations without having to create a different username and
password with each. You just provide your OpenID, it's verified, the information the system needs is pulled
from the OpenID provider, and you're done.

None of these three strategies preclude the use of the other two. Many applications incorporate support for
all three: local credential verification for administrative tasks, OAuth to share data or post to sites such as
Facebook and Twitter, and OpenID to allow user registration and comments.

There are several modules that can provide all forms of authentication and authorization, but I'm going to
focus on one: Passport. Passport is middleware that works with both Connect and Express to provide both
authentication and authorization. You can install it with npm:

npm install passport

Passport utilizes strategies that are installed independently from the framework. All Passport strategies
require the same basic steps:

• The strategy must be installed
• The strategy must be configured in the application
• As part of the configuration, the strategy incorporates a callback function, used to verify the user's

credentials
• All strategies require additional work depending on the authority vetting the credentials: Facebook and

Twitter require an account and account key, while the local strategy requires a database with user
names and passwords.

• All strategies require a local data store that maps the authority's user name with an application user
name.

• Persist the user login session using Passport provided functionality

In this chapter I'm looking at two Passport strategies: local authentication/authorization and authentication
through Twitter using OAuth.

Working with the Local Passport Strategy
The Local Passport strategy module can be installed with npm:

npm install passport-local

Passport is middleware, and must be instantiated like Middleware within the Express application. After
including both the Passport and Passport-local modules:

var express = require('express');
var passport = require('passport');
var localStrategy = require('passport-local').Strategy;

Configure the Passport middleware:
var app = express();

app.configure(function(){
 ...
 app.use(passport.initialize());
 app.use(passport.session());
 ...
});

Then configure the local strategy. The format for configuring the local strategy is the same as that
configuring all other strategies: a new instance of the strategy is passed to Passport via the use method,
similar to the approach utilized by Express:

passport.use(new localStrategy(function (user, password, done) { ... }

The passport-local module expects that the user name and password are passed to the web application via a
posted form, and that the values are contained in fields named username and password. If you want to
use two other field names, pass them as an option when creating the new strategy instance:

var options =
 { usernameField : 'appuser',
 passwordField : 'userpass'
 };
passport.use(new localStrategy(options, function(user, password, done) { ... }

The callback function passed to the strategy construction is called after the user name and password have
been extracted from the request body. The function performs the actual authentication, returning an error, if
an error occurs, a message that the user doesn't authenticate if they fail authentication, or the user object, if
the user does authenticate.

Whenever a user tried to access a protected site, Passport is queried to see if the person is authorized. In the
following code, when the person tries to access the restricted Admin page, a function named
ensureAuthenticated is called to determine if the person is authorized:

app.get('/admin', ensureAuthenticated, function(req, res){
 res.render('admin', { title: 'authenticate', user: req.user });
});

The ensureAuthenticated function checks the result of the req.isAuthenticated method that
Passport has added as an extension to the request object. If the response is false, the user is redirected
back to the login page:

function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) { return next(); }
 res.redirect('/login')
}

To persist the login for the session, Passport provides two methods, serializeUser and
deserializeUser. We have to provide the functionality in the callback function that is passed to these
two methods. Basically, passport.serializeUser serializes the user's identifier, while
passport.deserializeUser uses this identifier to find the user in whatever data store we're using,
and return an object with all the user information:

passport.serializeUser(function(user, done) {
 done(null, user.id);
});

passport.deserializeUser(function(id, done) {
 ...
});

Serialization to the session isn't a requirement for Passport. If you don't want to serialize the user, don't
include the passport.session middleware:

app.use(passport.session());

If you do decide to serialize the user to the session (and you should, otherwise you'll have a very annoyed
user), you must ensure that the passport middleware is included after the Express session middleware:

 app.use(express.cookieParser('keyboard cat'));
 app.use(express.session());
 app.use(passport.initialize());
 app.use(passport.session());

If you don't maintain the proper order, the user never authenticates.

The last chunk of functionality is handling what happens when the person doesn't validate. During the
authentication, if a user's user name isn't found in the data store, an error message is generated. If the user
name is found, but the password doesn't match what's stored, an error is generated. We need to
communicate these error messages back to the user.

Passport uses the Express 2.x req.flash method to queue error messages for display back to the user. I
didn't cover req.flash in earlier chapters because the functionality was deprecated in Express 3.x.
However, to ensure that Passport works with Express 2.x and 3.x, the Passport developer created a new
module, connect-flash, that adds this functionality back in.

The connect-flash module can be installed with npm:
npm install connect-flash

Used in the application:
var flash = require('connect-flash');

And then integrated as middleware with Express:
app.use(flash());

Now, in the POST login route, if the user doesn't authenticate, they're redirected back to the login form,
along with notification that an error occured:

app.post('/login',
 passport.authenticate('local', { failureRedirect: '/login', failureFlash: true }),
 function(req, res) {
 res.redirect('/admin');
});

The error message(s)s generated via the authentication process can be passed on to the views engine using
req.flash when the login form is rendered:

app.get('/login', function(req, res){
 var username = req.user ? req.user.username : '';
 res.render('login', { title: 'authenticate', username: username,
 message: req.flash('error') });
});

The views engine can then display the error message in addition to the login form elements, as this Jade
template demonstrates:

extends layout

block content
 h1 Login
 if message
 p= message
 form(method="POST"
 action="/login"
 enctype="application/x-www-form-urlencoded")
 p Username:
 input(type="text"
 name="username"
 id="username"
 size="25"
 value="#{username}"
 required)
 p Password:
 input(type="password"
 name="password"
 id="password"
 size="25"
 required)
 input(type="submit"
 name="submit"
 id="submit"
 value="Submit")
 input(type="reset"
 name="reset"
 id="reset"
 value="reset")

To demonstrate all of these pieces, I incorporated the command line authentication application from
Example 13-3 into an Express application, shown in Example 13-4, with authentication provided by
Passport. The only routes the application supports are the login route for login form display and
authentication, access to a restricted admin page, and the top-level index page.

The MySQL code from Example 13-3 is incorporated directly into the authentication routine (though
normally this would be split out in a more formal application). Additional MySQL access code is used to
find the user information given an identifier, when the user is deserialized.

Example 13-4. Combining password hash, MySQL user table, and Passport authentication into one
Express application

// modules
var express = require('express')
 , flash = require('connect-flash')
 , passport = require('passport')
 , LocalStrategy = require('passport-local').Strategy
 , http = require('http');

var mysql = require('mysql')
 , crypto = require('crypto');

// check user authentication

function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) { return next(); }
 res.redirect('/login')
}

// serialize user to session
passport.serializeUser(function(user, done) {
 done(null, user.id);
});

// find user in MySQL database
passport.deserializeUser(function(id, done) {

 var client = mysql.createClient({
 user : 'username',
 password: 'password'
 });

 client.query('USE databasenm');

 client.query('SELECT username, password FROM user WHERE userid = ?',
 [id], function(err, result, fields) {
 var user = {
 id : id,
 username : result[0].username,
 password : result[0].password};
 done(err, user);
 client.end();
 });
});

// configure local strategy
// authenticate user against MySQL user entry
passport.use(new LocalStrategy(
 function(username, password, done) {

 var client = mysql.createClient({
 user : 'username',
 password: 'password'
 });

 client.query('USE nodetest2');

 client.query('SELECT userid, password, salt FROM user WHERE username = ?',

 [username], function(err, result, fields) {

 // database error
 if (err) {
 return done(err);

 // username not found
 } else if (result.length == 0) {
 return done(null, false, {message: 'Unknown user ' + username});

 // check password
 } else {
 var newhash = crypto.createHash('sha512')
 .update(result[0].salt + password)
 .digest('hex');

 // if passwords match
 if (result[0].password === newhash) {
 var user = {id : result[0].userid,
 username : username,
 password : newhash };
 return done(null, user);

 // else if passwords don't match
 } else {
 return done(null, false, {message: 'Invalid password'});
 }
 }
 client.end();
 });
}));

var app = express();

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(express.cookieParser('keyboard cat'));
 app.use(express.session());
 app.use(passport.initialize());
 app.use(passport.session());
 app.use(flash());
 app.use(app.router);
 app.use(express.static(__dirname + '/public'));
});

app.get('/', function(req, res){
 res.render('index', { title: 'authenticate', user: req.user });
});

app.get('/admin', ensureAuthenticated, function(req, res){
 res.render('admin', { title: 'authenticate', user: req.user });
});

app.get('/login', function(req, res){
 var username = req.user ? req.user.username : '';
 res.render('login', { title: 'authenticate', username: username,
 message: req.flash('error') });
});

app.post('/login',
 passport.authenticate('local', { failureRedirect: '/login', failureFlash: true }),
 function(req, res) {
 res.redirect('/admin');
});

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

Example 13-4 is a longer example than I normally like to include in a book, but in my opinion, stubbing in
the data source portions of the example wouldn't give you a real feel for how the Passport component
works with the password hashing component, discussed earlier.

Taking a closer look at the authentication method, once the application has queried for the user record
given the user name, it invokes the callback function with the database error, if an error occurs. If not, but
the user name isn't found, it invokes the callback function with the user name set to false, to signal that the
user name wasn't found, and also provides an appropriate message. If the user is found, but the passwords
don't match, the same thing happens: a value of false is returned for the user and a message generated.

Only when no database error occurred, the user exists in the user table, and the passwords are generated, is
a user object created and returned via the callback function:

 // database error
 if (err) {
 return done(err);

 // username not found
 } else if (result.length == 0) {
 return done(null, false, {message: 'Unknown user ' + username});

 // check password
 } else {
 var newhash = crypto.createHash('sha512')
 .update(result[0].salt + password)
 .digest('hex');

 // if passwords match
 if (result[0].password === newhash) {
 var user = {id : result[0].userid,
 username : username,
 password : newhash };
 return done(null, user);

 // else if passwords don't match
 } else {
 return done(null, false, {message: 'Invalid password'});
 }
 }

This user object is then serialized to the session, and the user is given access to the Admin page. They'll
continue to have access without challenge to the Admin page as long as the session is alive.

The Twitter Passport Strategy (OAuth)
Rather than store user names and passwords locally, and perform our own authentication, we can use
another service, such as Twitter. This is also a way to integrate a site more closely with Twitter (or
Facebook or Google+ or other third part site).

Support for Passport authentication using Twitter comes about through the Passport-Twitter module. It can
be installed with npm:

npm install passport-twitter

To use OAuth to authenticate a user through Twitter, you need to set up a developer's account at Twitter,
and get a Consumer Key and a Consumer Secret. These are used in the application to form part of the
OAuth request.

Once you have your Consumer Key and Secret, use these, in addition to the callback URL, in creating the
Twitter strategy:

passport.use(new TwitterStrategy(
 { consumerKey: TWITTER_CONSUMER_KEY,
 consumerSecret: TWITTER_CONSUMER_SECRET,
 callbackURL: "http://examples.burningbird.net:3000/auth/twitter/callback"},
 function(token, tokenSecret,profile,done) {
 findUser(profile.id, function(err,user) {
 console.log(user);
 if (err) return done(err);
 if (user) return done(null, user);
 createUser(profile, token, tokenSecret, function(err, user) {
 return done(err,user);
 });
 })
 })
);

Though Twitter provides authentication, you're still most likely going to need a way to store information
about the user. In the Twitter strategy code block, notice that the callback function passed lists several
parameters: token, tokenSecret, profile, and then the last callback function. The token and tokenSecret
parameters are provided by Twitter when it responds to the request for authentication. The token and
tokenSecret can then be used to interact with the individual's Twitter account: to re-publish recent tweets,
or to tweet to their account, discover information about the person's lists and followers—the Twitter API
exposes all the information the person themselves sees when they interact with Twitter directly.

The profile object, though, is the object we're interested in, in this chapter. It contains a wealth of
information about the person: their Twitter screen name, full name, a description, location, their avatar
image, how many followers they have, how many people they follow, number of tweets, and so on. It's this
data that we're going to mine in order to store some relevant information about them in our local database.
We're not storing a password: OAuth doesn't expose the individual's authentication information. No, we're
just storing information we may want to use in our web applications to personalize the individual's
experience at our sites.

When the person first authenticates, the application does a look up on their Twitter identifier in the local
database. If found, an object is returned with the information stored about the person locally. If not found, a
new database record is created for the person. Two functions are created for this functional: findUser and
createUser. The findUser is also used when Passport deserializes the user from the session:

passport.deserializeUser(function(id, done) {
 findUser(id, function(err, user) {
 done(err,user);
 });
});

There is no longer a login page, because Twitter provides the login form. In the application, the only login
provided is a link to authenticate via Twitter:

extends layout

block content
 h1= title
 p
 a(href='/auth/twitter') Login with Twitter

If the person isn't logged into Twitter, they're presented a login page, like the one shown in Figure 15-3.

insert lrnnode_fig29.png

Figure 15-3. Twitter login and authorization page for Node application

Once logged in, the web page is then redirected back to the application, which then displays the
administrative page for the user. Except that now, the page is personalized with data directly drawn from
Twitter, including the person's display name and avatar:

extends layout

block content
 h1 #{title} Administration
 p Welcome to #{user.name}
 p
 img(src='#{user.img}',alt='avatar')

This data is some of the data that's stored when the person first authenticates. If you look into your Twitter
account settings page, and then click through to the Apps, you'll see the application among those listed, as
shown in Figure 15-4.

insert
lrnnode_fig30.png here

Figure 15-4. Twitter Apps Settings displaying entry for Node application

Example 13-5 has the complete application code for authenticating the user via Twitter and storing their
data in a MySQL database. You can, of course, also store the data in MongoDB, or even Redis, if you
persist your Redis data. The Crypto module is no longer needed, because we're no long storing
passwords—a distinct advantage to authenticating via a third party service.

Example 13-5. Complete application authenticating user via Twitter
var mysql = require('mysql');

var TWITTER_CONSUMER_KEY = "yourkey";
var TWITTER_CONSUMER_SECRET = "yoursecret";

var client = mysql.createClient({
 user : 'username',
 password : 'password'
});

client.query('USE nodetest2');

function findUser(id, callback) {
 var user;

 client.query('SELECT * FROM twitteruser WHERE id = ?',
 [id], function(err, result, fields) {
 if (err) return callback(err);
 user = result[0];
 console.log(user);
 return callback(null,user);
 });
};

function createUser(profile, token, tokenSecret, callback) {

 var qryString = 'INSERT INTO twitteruser ' +
 '(id, name, screenname, location, description,' +
 'url, img, token, tokensecret)' +
 ' values (?,?,?,?,?,?,?,?,?)';
 client.query(qryString, [
 profile.id,
 profile.displayName,
 profile.username,
 profile._json.location,
 profile._json.description,

 profile._json.url,
 profile._json.profile_image_url,
 token,
 tokenSecret], function(err, result) {
 if (err) return callback(err);
 var user = {
 id : profile.id,
 name : profile.displayName,
 screenname : profile.screen_name,
 location : profile._json.location,
 description: profile._json.description,
 url : profile._json.url,
 img : profile._json.profile_image_url,
 token : token,
 tokensecret : tokenSecret};
 console.log(user);
 return callback(null,user);
 });
};

function ensureAuthenticated(req, res, next) {
 if (req.isAuthenticated()) { return next(); }
 res.redirect('/auth/twitter')
}

passport.serializeUser(function(user, done) {
 done(null, user.id);
});

passport.deserializeUser(function(id, done) {
 findUser(id, function(err, user) {
 done(err,user);
 });
});

passport.use(new TwitterStrategy(
 { consumerKey: TWITTER_CONSUMER_KEY,
 consumerSecret: TWITTER_CONSUMER_SECRET,
 callbackURL: "http://examples.burningbird.net:3000/auth/twitter/callback"},
 function(token, tokenSecret,profile,done) {
 findUser(profile.id, function(err,user) {
 console.log(user);
 if (err) return done(err);
 if (user) return done(null, user);
 createUser(profile, token, tokenSecret, function(err, user) {
 return done(err,user);
 });
 })
 })
);

var app = express();

app.configure(function(){
 app.set('views', __dirname + '/views');
 app.set('view engine', 'jade');
 app.use(express.favicon());
 app.use(express.logger('dev'));
 app.use(express.bodyParser());
 app.use(express.methodOverride());
 app.use(express.cookieParser('keyboard cat'));
 app.use(express.session());

 app.use(passport.initialize());
 app.use(passport.session());
 app.use(flash());
 app.use(app.router);
 app.use(express.static(__dirname + '/public'));
});

app.get('/', function(req, res){
 res.render('index', { title: 'authenticate', user: req.user });
});

app.get('/admin', ensureAuthenticated, function(req, res){
 res.render('admin', { title: 'authenticate', user: req.user });
});

app.get('/auth', function(req,res) {
 res.render('auth', { title: 'authenticate' });
});

app.get('/auth/twitter',
 passport.authenticate('twitter'),
 function(req, res){
 });

app.get('/auth/twitter/callback',
 passport.authenticate('twitter', { failureRedirect: '/login' }),
 function(req, res) {
 res.redirect('/admin');
 });

http.createServer(app).listen(3000);

console.log("Express server listening on port 3000");

The same steps you took with the Twitter Passport strategy can be used with other OAuth services. As an
example, you can use the exact same code to authenticate the user with Facebook that you used with the
Twitter application. The only difference is that you have to supply a Facebook key and secret, rather than
the one Twitter provides. Because of the similarity in code and processing, many applications today let you
authenticate with a variety of OAuth services.

Passport does its best to reformat the data returned by the different services so that the functionality to
process the profile has to change very little. However, you'll need to investigate the profile returned by each
service in order to determine what's consistently provided before deciding what you do, and don't, want to
store.

Then there's the issue of the person revoking application access in the service. Of course, the only time this
impacts on the web application is if the person decides to authenticate with another service. In which case,
their new information is stored, and the application continues on its merry way. The only negative
consequence is a now defunct database record containing the previous authentication information for the
person, and it wouldn't be that much extra work to modify the application to generate an application
specific identifier for the person, and update the record if they change authentication servers. I'll leave this
for an off-book exercise. Now it's time to look at another aspect of application security: cleaning form data.

Protecting Applications/Preventing Attacks
As a JavaScript developer, you quickly learned about the hazards of accepting input from the user and
passing it directly to an eval statement call. As a web developer, you also learned about the hazards of
taking text from users and appending it directly as a where clause in a SQL statement.

Node applications have all the vulnerability of client-side JavaScript applications, as well as the additional
vulnerabilities associated with server-side applications that use database systems, especially relational
database systems.

To ensure your applications are safe, you need to provide good authorization and authentication systems,
described in the last section. But you also need to prevent against injection attacks and other attempts to use
openings in your system to gain access to your important, and confidential data.

Earlier, the login form accepted text directly from the user and pasted it directly into a SQL query. This
isn't the wisest thing to do, because the person could attach text that can cause harm in a SQL database. For
instance if the text is forming the data in a WHERE clause, and is appended directly to a WHERE clause
string:

var whereString = "WHERE name = " + name;

And the name string contains the following:
'johnsmith; drop table users'

You could have a problem.

The same occurs when processing text or JSON from the user or source in a JavaScript eval statement—the
incoming string could be more harmful than helpful.

Both types of vulnerabilities demand that we scrub input before using it in circumstances that can cause
harm. Both also require that we make use of tools and techniques to ensure the safest possible applications.

Don't use eval
One simple rule can make a difference in your JavaScript applications, regardless of whether they're Node
or not: don't use eval. The eval function is the least restrictive most permissive component of
JavaScript and we should view its use with fear and trepidation.

In most cases, we don't need to use eval. The one instance where we might be tempted to use it is when
we're converting a JSON string into an object. However, a simple approach to protect against a JavaScript
injection attack when converting a string into an object is to use JSON.parse, rather than eval to
process incoming JSON. An eval statement isn't discriminatory about what's included in the text, while
JSON.parse validates that the JSON is only JSON:

var someObj = JSON.parse(jsonString);

Since Node is using the V8 engine, we know that we have access to the JSON object, so we don't have to
worry about cross-browser workarounds.

Do Use Checkboxes, Radio Buttons, and Dropdown Selections
A second simple rule when developing web applications is to minimize the opportunities for writing free
text in a web form. Provide dropdown selections and checkboxes or radio buttons over open text fields. Not
only will you ensure safer data, you'll most likely ensure more consistent and reliable data, too.

Years ago I was cleaning up a database table where all the data came from a form that the client
(aeronautical engineers) used. All the inputs in the form were text input type. One field required part
identifiers, if this data was applicable. The "if applicable" part was the downfall to the application.

The engineers decided to use the field for "Notes and Whatever", because the form didn't have a "Notes or
Whatever" field. I ended up finding data ranging from part identifiers to a reminder from one engineer
about a lunch reservation with a vendor. It was entertaining reading, but not particularly helpful to the
company. And extremely difficult to clean because part numbers from different vendors didn't share
enough similarity so we could use regular expressions to clean the data up.

This is an example of unintentional harm. An example of intentional harm was described in the last section,
where a SQL statement to drop a database table was attached to the user's login name.

If you must require free text from a user for fields, such as their user name when logging into a system,
then you're going to want to scrub the data before using it in a data update or query.

Scrub Your Data and Introducing node-validator
If you must support text input fields, scrub the data before you use it. The node-mysql module provides a
method, client.escape, that escapes the incoming text and protects against potential SQL injection
attacks. You can also disable potential potentially destructive functionality. In Chapter 10 covering
MongoDB, I mentioned how you can flag that a JavaScript function should be serialized when stored.

You can also use a validation tool that not only ensures incoming data is safe, but also consistent. One
validation tool that stands out is node-validator.

Install node-validator using npm:
npm install node-validator

The module exports two objects, check and sanitize:
var check = require('validator').check,
 sanitize = require('validator').sanitize;

You can check that the incoming data is of a consistent format for the use, such as checking to ensure
incoming text is an email:

try {
 check(email).isEmail();
} catch (err) {
 console.log(err.message); // Invalid email
}

The node-validator application throws an error whenever the data doesn't check out. If you want a better
error message, you can provide it in as an optional second parameter in the check method:

try {
 check(email, "Please enter a proper email").isEmail();
} catch (err) {
 console.log(err.message); // Please enter a proper email
}

The sanitize filter ensures that the string is sanitized according to whatever method you use:
var newstr = sanitize(str).xss(); // prevent XSS attack

Example 13-6 uses both objects to check and sanitize three different strings.

Example 13-6. Checking out node-validator's methods
var check = require('validator').check,
 sanitize = require('validator').sanitize;

var email = 'shelleyp@burningbird.net';
var email2 = 'this is a test';

var str = '<SCRIPT SRC=http://ha.ckers.org/xss.js></SCRIPT>';
try {
 check(email).isEmail();
 check(email2).isEmail();
} catch (err) {
 console.log(err.message);
}

var newstr = sanitize(str).xss();
console.log(newstr);

The result of running this application is:

Invalid email
[removed][removed]

There's also Express middleware support for node-validator: express-validator. When you include this in
your Express application:

var expressValidator = require('express-validator');
...
app.use(expressValidator);

You can access the check, sanitize, and other provided methods directly on the request object:

app.get('/somepage', function (req, rest) {
 ...
 req.check('zip', 'Please enter zip code').isInt(6);
 req.sanitize('newdata').xss();
 ...
});

You can also bind node-validator to the HTTP request object outside of Express following a gist (code
pasted into Github and given a permalink) with the code linked in the node-validator documentation.

Sandboxed Code
The vm Node module provides a way to safely sandbox JavaScript. It provides access to a new V8 virtual
machine in which you can run JavaScript passed as a parameter.

Sandboxing typically means isolating code from anything it can use to do harm.

There are a couple of approaches to using the vm. The first using vm.createScript with the script
passed as parameter to the method. The vm compiles it and returns a script object representing the script:

var vm = require('vm');
var script_obj = vm.createScript(js_text);

You can then run the script in a separate context, passing in any data the script might need as an optional
object:

script_obj.runInNewContext(sandbox);

Example 13-7 has a small but complete example of using vm to compile a JavaScript statement, utilizing
two sandbox object properties, and creating a third.

Example 13-7. Simple example of using Node's vm to sandbox a script
var vm = require('vm');
var util = require('util');

var obj = { name: 'Shelley', domain: 'burningbird.net'};

// compile script
var script_obj = vm.createScript("var str = 'My name is ' + name + ' at ' + domain",
 'test.vm');

// run in new context
script_obj.runInNewContext(obj);

// inspect sandbox object
console.log(util.inspect(obj));

Running the application returns the following output:
{ name: 'Shelley',
 domain: 'burningbird.net',
 str: 'My name is Shelley at burningbird.net' }

The object passed to the new context is the point of connection between the calling application and the
sandboxed script. The script has no other access to the parent context. If you tried to use a global object,
such as console, in your sandboxed JavaScript, you'd get an error.

To demonstrate, Example 13-8 modifies the earlier example to load a script in from a file, and run it. The
script being loaded is nothing but a variation of what we had, with the addition of a console.log
request:

 var str = 'My name is ' + name + ' from ' + domain;
 console.log(str):

The vm.createScript can't read in the file directly. The second (optional) parameter isn't an actual
file, but a name used as a label in a stack trace—it's for debugging purposes only. We'll need to use the file
system's readFile to read in the script file contents.

Example 13-8. Modification of code to use vm to sandbox script read in from a file
var vm = require('vm');
var util = require('util');
var fs = require('fs');

fs.readFile('suspicious.js', 'utf8', function(err, data) {
 if (err) return console.log(err);

 try {

 console.log(data);
 var obj = { name: 'Shelley', domain: 'burningbird.net'};

 // compile script
 var script_obj = vm.createScript(data, 'test.vm');

 // run in new context
 script_obj.runInNewContext(obj);

 // inspect sandbox object
 console.log(util.inspect(obj));
 } catch(e) {
 console.log(e);
 }
});

Running the application returns the following:
[SyntaxError: Unexpected token :]

The error occurs because there is no console object within the virtual machine—it's a V8 virtual machine,
not a Node virtual machine. And rightfully so, too. We've seen how we can implement any process with
child processes in a Node application. We certainly don't want to expose that kind of power to sandboxed
code.

We can run the script within a V8 context, which means it has access to the global object. Example 13-9
recreates the application from Example 13-8, except this time the runInContext method is used, with a
context object passed to the method. The context object is seeded with the object that has the parameters
the script is expecting. Printing out the inspection results on the object after the script execution, though,
shows that the newly defined property, str, is no longer present. We need to inspect the context to see
both the object as it exists in the current context and the sandbox context.

Example 13-9. Running the code in context, with context object passed to vm
var vm = require('vm');
var util = require('util');
var fs = require('fs');

fs.readFile('suspicious.js', 'utf8', function(err, data) {

 if (err) return console.log(err);

 try {

 var obj = { name: 'Shelley', domain: 'burningbird.net' };

 // compile script
 var script_obj = vm.createScript(data, 'test.vm');

 // create context
 var ctx = vm.createContext(obj);

 // run in new context
 script_obj.runInContext(ctx);

 // inspect object
 console.log(util.inspect(obj));

 // inspect context
 console.log(util.inspect(ctx));

 } catch(e) {
 console.log(e);
 }
});

The examples used a pre-compiled script block, which is handy if you're going to run the script multiple
times. If you want to run it just once, though, you can access both the runInContext and
runInThisContext method directly off the virtual machine. The difference is you have to pass in the
script as the first parameter:

 var obj = { name: 'Shelley', domain: 'burningbird.net' };

 // create context
 var ctx = vm.createContext(obj);

 // run in new context
 vm.runInContext(data,ctx,'test.vm');

 // inspect context
 console.log(util.inspect(ctx));

Again, when using a supplied context, the sandbox script does have access to a global object defined using
createContext, seeded with any data the sandboxed code needs. And any resulting data can be pulled
from this context after the script is run.

16
Scaling and Deploying Node Applications

At some point in time you're going to want to take your Node application from development and test to
production. Depending on what your application does, and what services it provides (or needs) the process
can either require a minimum of effort, or can be complex enough to require a rollout strategy.

In this chapter, I'm going to many of the possible combinations and issues related to production deployment
of a Node application. Some require only minimal effort on your part, such as installing Forever to ensure
your Node application runs, well, forever. Others, though, such as deploying your application to a cloud
server, can take considerable time and advance planning.

Most of the concepts/technologies I cover in this chapter require a great deal more documentation in order
to fully understand how to use the underlying technology (or service). Instead, I'm providing more of a
review of what's available, and why you would be interested.

Deploying Your Node Application to Your Server
Taking your application from development to production isn't overly complicated, but you do need to
prepare for the move, and make sure that your application is staged in such a way as to maximize its
performance, while minimizing any potential down times.

Deploying a Node application encompasses several steps:

• Your application needs to be well tested, by users as well as developers
• You need to be able to deploy your application safely, and ensure well coordinated changes and fixes
• Your application needs to be secure
• You need to ensure your application restarts if something wrong happens
• You may need to integrate your Node applications with other servers, such as Apache
• It's important to monitor your application's performance, and be ready to adjust application parameters

if the performance begins to degrade
• It's also important to take the fullest advantage of your server's resources

Chapter 14 covered unit, acceptance, and performance testing, and Chapter 15 covered security. In this
section, we'll look at implementing the other necessary components of deploying a Node application to
production on your own server.

Write that package.json File
Each Node module has a package.json file that contains information about the module, as well as code
dependencies the module might have. I briefly touched on the package.json file with modules in Chapter 4.
Now I want to take a closer look at this file, especially as it can be used to deploy your application.

As the name implies, package.json must be proper JSON. You can jump start the package.json process by
running npm init, and answering the questions. When I ran npm init in Chapter 4, I didn't provide any
dependencies, but most Node applications will have dependencies.

As a case in point, the Widget application that was built over several chapters in the book is an example of
an application, albeit a small one, that we might consider deploying. What would its package.json look
like?

I'm not covering all the possible data values in package.json, only those meaningful for a
Node application.

To start, the application's basic information needs to be provided, including its name, version, and the
primary author:

{
 "name": "WidgetFactory",
 "preferGlobal": "false",
 "version": "1.0.0",
 "author": "Shelley Powers <shelley.just@gmail.com> (http://burningbird.net)",
 "description": "World's best Widget Factory",

Note that the name property value cannot have any white space.

The author values could also be split out, as follows:
 "author": { "name": "Shelley Powers",
 "email": "shelley.just@gmail.com",
 "url": "http://burningbird.net"},

Though it is simpler to use the single value format. If there are other contributors to the application, they
can be listed out in an array with the "contributors" keyword, with each person identified in the same
manner as the author.

If Widgets had a binary application, it could be listed with the bin property. An example of the use of bin is
in the Nodeload (covered in Chapter 14) package.json:

 "bin": {
 "nodeload.js": "./nodeload.js",
 "nl.js": "./nl.js"
 },

What this setting tells me is that when the module is installed globally, I can run the Nodeload application
just by typing nl.js.

Widgets doesn't have a command line tool. It also doesn't have any scripts, either. The scripts keyword
identifies any scripts that are run during the package lifecycle. There are several events that can happen
during the lifecycle, including preinstall, install, publish, start, test, update, and so on.
If a person issues the following npm command in a Node application or module directory:

npm test

The script test.js is run:
 "scripts": {
 "test": "node ./test.js"
 },

Any unit test script for Widgets should be included in scripts, in addition to any other script necessary
for installation (such as scripts to set up the environment for the application). Though the Widget Factory
doesn't have a start script, as yet, your application should, especially if it is going to be hosted in a cloud
service (discussed later in the chapter).

If you don't provide a script for some values, npm provides defaults. For the start script, the default is to run
the application with Node:

node server.js

If the application has a server.js file in the root of the package.

The repository provides information about the tool used to manage the source code control for the
application, and the url property provides the location of the source, if the source is published online:

"repository": {
 "type": "git",
 "url": "https://github.com/yourname/yourapp.git"
 },

This property isn't essential unless you're publishing your application source (though you can restrict source
access to a specific group of people). One of the advantages of providing this information is that users can
access your documentation with npm docs:

npm docs packagename

On my Ubuntu system, I first set the browser configuration option to Lynx:
npm config set browser lynx

Then opened the docs for Passport, the authentication module covered in Chapter 15:
npm docs passport

The repository setting helps npm find the documentation.

One of the more important designations in the package.json file is what version of Node can your
application run in. This is designated with the engine property. In the case of Widgets, it's only been
tested in 0.6 of Node, so that's the only allowed engine:

 "engines": {
 "node": ">= 0.6.0 < 0.7.0"
 },

The Widgets application has several different dependencies, both from a development perspective, and a
production and development perspective. These are listed individually—the former in devDependencies,
the latter in dependencies. Each module dependency is listed, as property, and the version needed is the
value:

 "dependencies": {
 "express": "3.0",
 "jade": "*",
 "stylus": "*",
 "redis": "*",
 "mongoose": "*"
 },
 "devDependencies": {
 "nodeunit": "*"
 }

If there are any operating system or CPU dependencies, these can also be listed:
"cpu" : ["x64", "ia32"],
"os": ["darwin","linux"]

There are some publishing values, including the use of private, to ensure the application isn't
accidentally published:

"private": true,

And publishConfig, for setting npm configuration values.

By the time I'm done, the Widget Factory package.json file looks like that in Example 16-1.

Example 16-1. The package.json file for the Widget Factory
{
 "dependencies": {
 "express": "3.0",
 "jade": "*",
 "stylus": "*",
 "redis": "*",
 "mongoose": "*"
 },
 "devDependencies": {
 "nodeunit": "*"
 }

I can test the package.json file by copying the Widget Factory's code to a new location, and then type npm
install -d and see if all the dependencies are installed, and the application runs.

Keeping Your Application Alive with Forever
You do the best you can with your application. You test it, thoroughly, and you add error handling so that
errors are managed gracefully. Still, there can be the gotchas that come along you don't plan for, and which
can take your application down. If this happens, you need to have a way of ensuring that your application
can start again, even if you're not around to restart the application.

Forever is a tool that ensures your application restarts if it crashes. It's also a way of starting your
application as a daemon that persists beyond the current terminal session. It can be used from the command
line, or incorporated as part of the application. If you use it from the command line, you'll want to install
Forever globally:

npm install forever -g

Rather than start an application with Node, directly, start it with Forever:
 forever start -a -l forever.log -o out.log -e err.log httpserver.js

The above command starts a script, httpserver.js, and specifies the names for the Forever log, the output
log, and the error log. It also instructs the application to append the log entries if the log files already exist.

If something happens to the script to cause it to crash, Forever restarts it. Forever is also a way of ensuring
that a Node application continues running, even if you terminate the terminal window used to start the
application.

Forever has both options and actions. The start value in the command line just shown is an example of
an action. All available actions are:

• start: start a script
• stop: stop a script
• stopall: stop all scripts
• restart: restart the script
• restartall: restart all running Forever scripts
• cleanlogs: deletes all log entries
• logs: list all log files for all Forever processes
• list: lists all running scripts
• config: lists user configurations

• set <key> <val>: sets configuration key value
• clear <key>: clears configuration key value
• logs <script|index>: tails the logs for <script|index>
• columns add <col>: adds a column to the Forever list output
• columns rm <col>: removes a column from the Forever list output
• columns set <cols>: Set all columns for Forever list output

An example of the list output is the following, after starting httpserver.js as a Forever daemon:

info: Forever processes running
data: uid command script forever pid logfile uptime
data: [0] ZRYB node httpserver.js 2854 2855 /home/examples/.forever/forever.log
0:0:9:38.72

There are also a significant number of options, including the log file settings just demonstrated, as well as
having the script run silently (-s or --silent), turning on Forever's verbosity (-v or --verbose), setting the
script's source directory (--sourceDir), and others, all of which can be found just by typing:

forever --help

You can incorporate the use of Forever directly in your code, as demonstrated in the documentation for the
application:

var forever = require('forever');

 var child = new (forever.Monitor)('your-filename.js', {
 max: 3,
 silent: true,
 options: []
 });

 child.on('exit', this.callback);
 child.start();

Additionally, you can use Forever with Nodemon—not only to restart the application if it unexpectedly
fails, but also to ensure the application is refreshed if the source is updated. What you need to do is wrap
Nodemon within Forever, and specify the --exitcrash option, to ensure that if the application crashes,
Nodemon exits cleanly, passing control to Forever:

forever nodemon --exitcrash httpserver.js

If the application does crash, Forever starts Nodemon, which in turn starts the Node script, ensuring that
not only is the running script refreshed if the source is changed, but also ensuring that an unexpected failure
doesn't take your application offline.

I introduced Nodemon in Chapter 14.

Among the examples for Forever is one labeled initd-example. This provides the basis of a script that starts
your application with Forever when the system is re-booted. You'll need to modify the script to suit your
environment, and also move it to /etc/init.d, but once you've done so, even if the system is restarted, your
application restarts without your intervention.

Using Node and Apache Together
All the examples in the book start as a port other than 80, the default web service port. Some start at port
3000, others at port 8124. In my system, I have to use another port because Apache processes web requests
on port 80. People are not going to want to have to specify a port, though, when they access a web site.
What we need is a way for Node applications to co-exist with another web service, be it Apache, Nginx, or
other web server.

Figure A-2. Click the Pull Request button at GitHub to initiate a pull request

Clicking the Pull Request link opens up a Pull Request preview pane, where you can enter your name and a
description of the change, as well as preview exactly what's going to be committed. You can change the
commit range and destination repository at this time.

Once satisfied, send the request. This puts the item in the Pull Request queue for the Repository owner to
merge. The Repository owner can review the change, have a discussion about the change, and if he or she
decides to merge the request they can do so by either doing a fetch and merge of the change, a patch and
apply, or auto merge.

GitHub has documentation on how to merge in changes, as well as other aspects of using
Git with the hosting site.

If you create your own Node module and want to share it with people, that's when you're going to want to
create a repository. You can do this through GitHub, too, by clicking the New Repository button from your
main GitHub web page, and providing information about the module, including whether it is private or
public.

Initialize an empty repository using the git init command:

mkdir ~/mybeautiful-module
cd ~/mybeautiful-module
git init

Provide a README for the repository, using your favorite text editor. This is the file that is displayed to
people when they click "Read More" in a module page at GitHub. Once the file is created, add it, and
commit it:

git add README
git commit -m 'readme commit'

To connect your repository to GitHub, you'll need to establish a remote repository for the module and push
the commits to it:

git remote add origin git@github.com:username/MyBeautiful-Module.git
git push -u origin master

Once you've pushed your new module to Github, now you can have the fun of promoting it by ensuring it
gets listed in the Node module listings, as well as the npm Registry.

This is a quick run through of documentation that you can find at the GitHub web site, under the Help link.
And you can read more about Git commands at the Git source site. Links for both are listed in Appendix B.

	Preface
	Why Node?
	This Book's Intended Audience
	How Best to Use this Book
	Acknowledgments

	Chapter 1. Node.js, Up and Running
	Setting up a Node Development Environment
	Installing Node on Linux (Ubuntu)
	Partnering Node with WebMatrix on Windows 7
	Updating Node

	Node: Jumping In
	Hello, World in Node
	Hello World, From the Top

	Asynchronous Functions and the Node Event Loop
	Reading a File Asynchronously
	A Closer Look at Asynchronous Program Flow

	Benefits of Node

	Chapter 2. Interactive Node with REPL
	REPL: First Looks and Undefined Expressions
	REPL's Own Unique Hello World
	Multiline and More Complex JavaScript
	REPL Commands
	REPL and rlwrap
	Creating Your Own REPL

	Stuff Happens. Save Often.

	Chapter 3. The Node Core
	Globals: Global, Process, and Buffer
	Global
	Process
	Buffer

	The Timers: setTimeout, clearTimeout, setInterval, clearInterval
	Servers, Streams, and Sockets
	TCP Sockets and Servers
	HTTP
	UDP/Datagram Socket
	Streams, Pipes, and Readline

	Child Processes
	child_process.spawn
	child_process.exec and child_process.execFile
	child_process.fork
	Running a Child Process Application in Windows

	Domain Resolution and URL Processing
	Utilities and a JavaScript OO Refresher
	Events and EventEmitter

	Chapter 4. The Node Module System
	Loading a Module with Require and Default Paths
	External Modules and the Node Package Manager
	Finding Modules
	The Colors Module: Simple is Best
	Optimist: Another Short and Simple
	Exploring JSDOM
	Underscore

	Creating Your Own Custom Module
	Packaging an Entire Directory
	Preparing your Module for Publication
	Publishing the Module

	Chapter 5. Control Flow, Asynchronous Patterns, and Exception Handling
	Promises, No Promises, Callback Instead
	Sequential Functionality, Nested Callbacks, and Exception Handling
	Asynchronous Patterns and Control Flow Modules
	Step
	Async

	Speaking of Node Style

	Chapter 6. Routing Traffic, Serving Files, and Middleware
	Building a Simple Static File Server from Scratch
	Middleware
	Connect Basics
	The Connect Middleware
	connect.static
	connect.logger
	connect.parseCookie and connect.cookieSession

	Creating a Connect Middleware

	Routers
	Proxies

	Chapter 7. The Express Framework
	Express: Up and Running
	The app.js File in More Detail
	Error Handling
	A Closer Look at the Express/Connect Partnership
	Routing
	Routing Path
	Routing and HTTP Verbs

	Cue the MVC
	Testing the Express Application with curl

	Chapter 8. Express, Template Systems, and CSS
	The Embedded JavaScript (EJS) Template System
	The Basic Syntax
	Using EJS with Node
	Using the EJS for Node Filters

	Using a Template System (EJS) with Express
	Restructuring for a Multiple Object Environment
	Routing to Static Files
	Processing a New Object Post
	Widgets Index and Generating a Picklist
	Showing an Individual Object and Confirming an Object Deletion
	Providing an Update Form and Processing a PUT Request

	The Jade Template System
	The Quick Nickel Tour of the Jade Syntax
	The Use of Block and Extend to Modularize the View Templates
	Converting the Widget Views into Jade Templates

	Incorporating Stylus for Simplified CSS

	Chapter 9. Structured Data with Node + Redis
	Getting Started with Node + Redis
	Building a Game Leaderboard
	Creating a Message Queue
	Adding a Stats Middleware to an Express Application

	Chapter 10. Node and MongoDB: Document Centric Data
	The MongoDB Native Node.js Driver
	Getting Started with mongodb
	Defining, Creating, and Dropping a MongoDB Collection
	Adding Data to a Collection
	Querying the Data
	Updates, Upserts, and Find and Remove

	Challenges of Asynchronous Data Access
	Implementing a Widget Model with Mongoose
	Refactoring the Widget Factory
	Adding the MongoDB Backend

	Chapter 11. The Node Relational Database Bindings
	Getting Started with db-mysql
	Two Query Techniques: Query String or Chained Methods
	Updating the Database with Direct Queries
	Updating the Database with Chained Methods

	Native JavaScript MySQL Access with node-mysql
	Basic CRUD with node-mysql
	MySQL Transactions with mysql-queues

	ORM Support with Sequelize
	Defining a Model
	CRUD, ORM Style
	Adding Several Objects Easily
	Issues Related to Going from Relational To ORM

	Chapter 12. Graphics and HTML5 Video
	Creating and Working with PDFs
	Accessing PDF Tools with Child Processes
	Page snapshots with wkhtmltopdf
	Accessing data about a PDF file with PDF Toolkit
	Creating a PDF Uploader and Dealing with Graphics Lag Time

	Creating PDFs with pdfkit

	Accessing ImageMagick from a Child Process
	Properly Serving HTML5 Video with HTTP
	Creating and Streaming Canvas Content

	Chapter 13. WebSockets and Socket.IO
	WebSockets
	An Introduction to Socket.IO
	A Simple Communication Example
	WebSockets in an Asynchronous World
	About that Client Code

	Configuring Socket.IO
	Chat: The WebSockets Hello World
	Using Socket.IO with Express

	Chapter 14. Testing and Debugging Node Applications
	Debugging
	The Node.js Debugger
	Client Side Debugging with Node Inspector

	Unit Testing
	Unit Testing with Assert
	Unit Testing with Nodeunit
	Other Testing Frameworks
	Mocha
	Jasmine
	Vows

	Acceptance Testing
	Selenium Testing with Soda
	Tobi and Zombie: Emulating a Browser

	Performance Testing: Benchmarks and Load Tests
	Using ApacheBench for Benchmark Testing
	Load Testing with Nodeload

	Refreshing Code with Nodemon

	Chapter 15. Guards at the Gate
	Encrypting Data
	TSL/SSL Setup
	HTTPS
	Safely Storing Passwords

	Authentication/Authorization with Passport
	Authorization/Authentication Strategies: OAuth, OpenID, Username/Password Verification
	Working with the Local Passport Strategy
	The Twitter Passport Strategy (OAuth)

	Protecting Applications/Preventing Attacks
	Don't use eval
	Do Use Checkboxes, Radio Buttons, and Dropdown Selections
	Scrub Your Data and Introducing node-validator

	Sandboxed Code

	Chapter 16. Scaling and Deploying Node Applications
	Deploying Your Node Application to Your Server
	Write that package.json File
	Keeping Your Application Alive with Forever
	Using Node and Apache Together
	Performance Improvements

	Deployment to a Cloud Service
	Deploying to Windows Azure via Cloud9 IDE
	Joyent Development Smartmachine
	Heroku
	Amazon EC2
	Nodejitsu

	Appendix A. Node, Git, and Github

