
ptg8274339

Designer-Developers are hot commodities today.
But how do you build your development chops fast enough to join their ranks?

With Peachpit’s Develop and Design series for visual learners.

US $��.�� CANADA $��.��PEACHPIT PRESS
WWW.PEACHPIT.COM

 facebook.com/PeachpitCreativeLearning

 @peachpit

jQuery Mobile
DEVELOP AND DESIGN

“Author Kris Hadlock covers the details of
the framework with a practical, enjoyable
narrative that will quickly get you up to speed
and ready to create something great!”

Scott Jehl
Lead Developer of jQuery Mobile and Web Designer
and Developer with Filament Group

THIS BOOK INCLUDES:

� Easy step-by-step instruction, ample
illustrations, and clear examples

� Real-world techniques to build your
skills

� Insight into best practices from a
veteran Web expert

� Emphasis on strategies for creating
reliable code that will work on all of
today�s devices

THE jQUERY MOBILE FRAMEWORK CHANGES THE WAY
mobile applications are accessed and distributed on mobile
and tablet devices. This game-changing JavaScript library takes
existing webpages and converts them into touch-friendly web-
sites and applications, eliminating the need for web developers
to create native applications for multiple mobile platforms.
Long-time developer and author Kris Hadlock applies his real-
world, practical experience in this complete introduction to
creating working mobile sites using the jQuery Mobile frame-
work. Kris teaches you step by step how to write the code to cre-
ate mobile websites. Covering the latest version of the jQuery
Mobile framework, this hands-on book is full of code examples,
which are also available for download from the book�s
companion website at http://peachpit.com/jquerymobile.

ISBN-13:
ISBN-10:

978-0-321-82041-9
0-321-82041-X

9 7 8 0 3 2 1 8 2 0 4 1 9

5 4 4 9 9

US $��.�� CANADA $��.��

COMPANION WEBSITE:
http://peachpit.com/jquerymobile

BOOK LEVEL BEGINNER TO INTERMEDIATE
CATEGORY WEB DEVELOPMENT
COVERS jQUERY MOBILE FRAMEWORK
COVER DESIGN AREN HOWELL STRAIGER

KRIS HADLOCK is the founder and lead developer-designer of Phoenix-based
web design and application development �rm Studio Sedition (www.studio-
sedition.com), and has worked with companies such as SPIN Magazine, IKEA,
United Airlines, and JP Morgan Chase. His other books include The ActionScript
Migration Guide and Ajax for Web Application Developers, and he has written for
Peachpit.com, InformIT.com, IBM developerWorks, and .net magazine.

������������

jQuery Mobile
DEVELOP AND DESIGN

D
EVELO

P AN
D

 D
ESIG

N
H

adlock
jQ

uery M
obile

ptg8274339

jQuery Mobile
DEVELOP AND DESIGN

Kris Hadlock

jQuery Mobile: Develop and Design
Kris Hadlock

Peachpit Press
1249 Eighth Street
Berkeley, CA 94710
510/524-2178
510/524-2221 (fax)

Find us on the Web at: www.peachpit.com
To report errors, please send a note to: errata@peachpit.com
Peachpit Press is a division of Pearson Education.
Copyright © 2012 by Kris Hadlock

Acquisitions Editor: Michael Nolan
Project Editor: Rebecca Gulick
Development Editor: Robyn G. Thomas
Contributing Writer: Jay Blanchard
Technical Reviewer: Jay Blanchard
Production Coordinator: Myrna Vladic
Compositor: David Van Ness
Copyeditor: Gretchen Dykstra
Proofreader: Patricia Pane
Indexer: Valerie Haynes-Perry
Cover Design: Aren Howell Straiger
Interior Design: Mimi Heft

Notice of Rights
All rights reserved. No part of this book may be reproduced or transmitted in any form by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the pub-
lisher. For information on getting permission for reprints and excerpts, contact permissions@peachpit.com.

Notice of Liability
The information in this book is distributed on an “As Is” basis, without warranty. While every precaution has
been taken in the preparation of the book, neither the author nor Peachpit Press shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by the
instructions contained in this book or by the computer software and hardware products described in it.

Trademarks
Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and Peachpit was aware of a trademark claim, the
designations appear as requested by the owner of the trademark. All other product names and services identi-
fied throughout this book are used in editorial fashion only and for the benefit of such companies with no
intention of infringement of the trademark. No such use, or the use of any trade name, is intended to convey
endorsement or other affiliation with this book.

ISBN-13: 978-0-321-82041-9
ISBN-10: 0-321-82041-X

9 8 7 6 5 4 3 2 1

Printed and bound in the United States of America

To my wife, Lisa, who carried our first child while I wrote this book.
Only true love can withstand the amount of time that it

takes to write a book while having a new baby.
And to my son, Lucas, words cannot

express the love I feel for you.

iv jQuery Mobile

Acknowledgments

There are many people I would like to thank for the opportunity and help they gave
before, during, and after this book was being written: Neil Salkind, for helping me
navigate the world of publishing and for his support while I was writing. Robyn
Thomas for her patience. Jay Blanchard for stepping in when needed and provid-
ing excellent technical reviews. Rebecca Gulick for helping to move things along.
Michael Nolan for working out the details. All my customers, for understanding
how busy I’ve been. And, of course, Peachpit for giving me the opportunity to
write for you.

About the Author

Kris Hadlock has been a web developer and designer since 1996, working on
projects for companies such as SPIN Magazine, IKEA, United Airlines, JP Morgan
Chase, Canon, and Phoenix Children’s Hospital, to name a few. Kris is a featured
columnist and writer for numerous websites and design magazines, including
Peachpit.com, InformIT.com, IBM developerWorks (www.ibm.com/developerworks),
and Practical Web Design magazine. His other books include Ajax for Web Applica-
tion Developers and The ActionScript 3.0 Migration Guide. He is the founder and
lead developer-designer of Studio Sedition (www.studiosedition.com), specializing
in the fusion of form and function.

Contents v

contents

Introducing the Future of Web Development . x

Supported jQuery Mobile Platforms . xvi

Part i the Foundation oF jQuery Mobile

chapter 1 UNDeRsTaNDiNg jQUeRy . 4
Getting Started . 6

jQuery Fundamentals . 7
Selecting HTML elements . 7

Managing events and functions . 8

Waiting for documents to be ready . 11

Applying special effects . 12

Using Ajax . 14

Wrapping Up . 17

chapter 2 THe RoLe of HTML5 . 18
Semantic HTML5 . 20
Creating an HTML5 template . 20

The viewport Meta Tag . 21

Understanding data- Attributes . 24

Wrapping Up . 27

chapter 3 geTTiNg sTaRTeD wiTH jQUeRy MobiLe . 28
How jQuery Mobile Works . 30
Adding the jQuery Mobile framework to your website 30

Page and toolbar components . 32

Structuring mobile webpages . 34

Wrapping Up . 37

vi jQuery Mobile

Part ii ui CoMPonents

chapter 4 CReaTiNg MULTiPage websiTes . 40
Multipage Template . 42

Single-Page Template . 45
Hashtags and history . 45

Link Types . 47

Preloading and Caching Pages . 52

Working with Page Transitions . 55

Customizing Loading Messages . 58

Wrapping Up . 59

chapter 5 DiaLog wiNDows aND bUTToNs . 60
Creating a Basic Dialog Window . 62

Working with Buttons . 69

Wrapping Up . 73

chapter 6 woRKiNg wiTH TooLbaRs . 74
Toolbars . 76
Header toolbars . 76

Adding buttons . 78

Footer toolbars . 82

Positioning toolbars . 83

Creating Navigation Bars . 85

Wrapping Up . 87

chapter 7 LayoUT oPTioNs . 88
Grids . 90
Grid columns . 90

Grid rows . 97

Collapsible Content . 99
Creating accordions . 101

Wrapping Up . 103

chapter 8 woRKiNg wiTH LisTs . 104
Basic Linked Lists . 106
Numbered lists . 109

Contents vii

Nested lists . 109

Inset lists . 111

Customizing Lists . 112
Split button lists . 112

List dividers . 114

Count bubbles, thumbnails, and icons . 115

Wrapping Up . 119

chapter 9 seaRCH fiLTeRiNg . 120
Creating a Search Filter Bar . 122

Creating Custom Search Filters . 126

Wrapping Up . 131

chapter 10 foRM eLeMeNTs . 132
Text Inputs . 134
Options . 137

Methods . 139

Events . 140

Checkboxes and Radio Buttons . 141

Select Menus . 146
Options . 150

Methods . 151

Sliders . 152
Options . 153

Methods and events . 154

Flip Toggle Switches . 154

Wrapping Up . 155

chapter 11 THeMiNg jQUeRy MobiLe . 156
Core Color Swatches . 158

The ThemeRoller . 160

Theming Components . 161
Page, toolbar, and button theming . 161

Content theming . 163

Form and form element theming . 165

List . 166

Wrapping Up . 171

VIII JQUERY MOBILE

PART III THE MOBILE�API

������� 12 GLOBAL OPTIONS . ���

Extending the ���������� Event . 176

Creating Custom Namespaces . 178

Delaying Page Initialization . 180

Customizing the ������������ . 183

Using Active Page and Button Classes . 184

Enabling and Disabling Ajax Navigation . 187

Altering the Default Page and Dialog Transitions 188

Wrapping Up . 189

������� 13 HOOKING INTO EVENTS .. ���

Touch Events . 192

Orientation Events . 195

Scroll Events . 197

Page Transition Events . 200

Page Initialization and Custom Widget Creation 204

Wrapping Up . 207

������� 14 WORKING WITH EXPOSED METHODS .. ���

Changing Pages Programmatically . 210

Loading Pages Silently . 217

Working with Utility Methods . 220

Wrapping Up . 222

PART IV JQUERY MOBILE CMS

������� 15 INSTALLING A MOBILE WORDPRESS THEME ���

Getting Started . 228
Installing WordPress . 228

Creating the jQuery Mobile Theme . 231

Adding Blog Posts and Pages . 233

Wrapping Up . 235

CONTENTS IX

������� 16 INSTALLING A MOBILE DRUPAL THEME .. ���

Getting Started . 238
Installing Drupal . 238

Theming Drupal with jQuery Mobile . 242
Installing the jQuery Mobile module . 242
Installing the jQuery Mobile theme . 246
Custom settings . 247

Adding Content . 248

Wrapping Up . 249

PART V BEYOND JQUERY�MOBILE

������� 17 DETECTING MOBILE DEVICES . ���

Using PHP . 254
Identifying the browser . 255
Calling the PHP function . 256

Using JavaScript to Detect Speci�c Devices . 257
Detecting mobile devices with JavaScript . 257
Detecting mobile browser features with jQuery . 259

Wrapping Up . 261

������� 18 TESTING WITH SIMULATORS .. ���

Exploring Your Testing Options . 264

Finding Online Simulators . 265

Using Simulators for Testing . 268
Testing with online emulators . 268
Using remote labs . 269
Testing with desktop simulators . 270
Crowd testing . 271

Wrapping Up . 271

Index . 272

ptg8274339

IntroducIng
the Future of
web development

ptg8274339

xi

Smartphone, tablet, and e-reader

statistics are showing an unprec-

edented adoption rate, making the

mobile web a very hot topic and requiring a new set of skills from

web developers and designers. Mobile device usage is skyrocketing;

according to Nielsen’s third-quarter 2011 Mobile Media Report, “44

percent of U.S. mobile subscribers now own a smartphone device,

compared to 18 percent just two years ago.” That’s more than double

in two years, and “the number of smartphone subscribers using the

mobile Internet has grown 45 percent since 2010.” As for tablets, in

June 2011 AMI-Partners (Access Markets International) forecasted

that “tablet adoption among businesses with between 1 and 1,000

employees will grow by 1,000 percent by 2015.”

xii jQuery Mobile

Let’s not forget e-readers, which are becoming very affordable and are more
advanced then ever, increasing in shipment volume, as “year-over-year growth was
167%” according to International Data Corporation (IDC). With the introduction
of the latest Kindle, mobile Internet access is now becoming a normal experience.

With these increases in adoption rate, there will no doubt be high demand for
web developers who can create rich mobile web experiences. The jQuery Mobile
framework gives web developers a quick and easy way to create mobile web experi-
ences, making the mobile web space hard to ignore.

Why jQuery mobIle?

As a web developer, you don’t have to use the jQuery Mobile framework to create
a mobile web experience. So why use it? For starters, the framework is built on
the highly respected and widely used jQuery core and jQuery user interface (UI)
foundation. It’s currently sponsored by companies such as Mozilla, Palm, Adobe,
Nokia, BlackBerry, and more. Plus, it works seamlessly across all popular mobile
device platforms. The jQuery Mobile team is actively and regularly offering new
releases, blogging about new features, and keeping their comprehensive online
documentation up to date.

Most web developers and designers agree that browser and cross-platform
testing is something they would rather not spend their time on. Imagine all of
the devices that could potentially be accessing your mobile website. Then imag-
ine having to test all of those platforms each and every time you build a mobile
website—this would be painstaking and incredibly time-consuming. jQuery Mobile
gives you this support from the start, as the team prides the framework on its
approach to supporting a wide variety of mobile platforms. The framework is
built on clean, semantic HTML, which ensures compatibility with a majority of
web-enabled devices.

The framework also includes accessibility features, such as WAI-ARIA (Web
Accessibility Initiative-Accessible Rich Internet Applications), a technical speci-
fication published by the World Wide Web Consortium regarding the increase of
accessibility of webpages, which are integrated into the framework to support
screen readers, such as VoiceOver on Apple iOS and other assistive technologies.
Simply including the jQuery Mobile framework in your website unobtrusively

ptg8274339

IntroduCtIon xiii

transforms your code from semantic HTML into a rich, interactive, and accessible
mobile experience using jQuery and CSS. As you’ll see throughout this book, the
jQuery Mobile approach makes mobile web development incredibly easy, quick, and
efficient, leaving the platform and browser testing up to the jQuery Mobile team.

jQuery Mobile isn’t exclusively for web developers; web designers have access
to the jQuery UI, which provides complete design control over mobile web applica-
tions. Built-in UI widgets, such as list views, dialogs, toolbars, search mechanisms,
and a full set of form elements, are all customizable via the theme framework.
Later in the book, you’ll also learn about ThemeRoller, which lets you create up
to 26 theme swatches using a simple, web-based interface. User experience (UX)
designers also get some love, with access to stencils for OmniGraffle and Visio.
And, of course, if you want to get geeky with it, the application programming
interface (API) is available to web developers. As a web developer, you can configure
defaults, handle many different events, and work with several exposed methods
and properties.

An emerging community is helping to support the framework with a number
of third-party apps and frameworks that you can use to build jQuery Mobile apps.
In addition, jQuery Mobile compatible plug-ins and extensions are popping up to
help web developers integrate custom widgets and add capabilities to the existing
core functionality.

One very important third-party framework is blurring the line between native
and mobile web-based development. As an HTML5 app platform, PhoneGap allows
you to author native applications using web technologies. With PhoneGap, your web
applications can easily be ported into native apps that can do things like retrieve
contact information, access cameras, use geolocation, store data, and much more.
To learn more about PhoneGap, visit phonegap.com. There’s even a section in the
jQuery Mobile online documentation about it. With these sorts of possibilities, you
no longer need to program multiple versions of a native application. This makes
native application development less desirable, because the same application you
develop for an iPhone would need to be completely redeveloped for Android, Black-
Berry, Windows Mobile, and others. Oh, and don’t forget that every new release
will need to be updated for every one of these different platforms. The jQuery
Mobile framework provides mobile web experiences that rival native application
development by giving you instant access to web applications and websites via the
web browser, eliminating the need to download and install mobile applications.

ptg8274339

xiv jQuery Mobile

Who thIs Book Is For
This book is for people who have basic HTML experience and are interested in
creating mobile websites using the jQuery Mobile framework.

Who thIs Book Is not For
This book is not for people who have never created a webpage.

hoW You WIll learn
In this book, you’ll learn by doing. Each chapter includes sample code and descrip-
tions to give you a deep understanding of how things work. You can also find the
code samples on the book’s website (www.peachpit.com/jquerymobile).

What You WIll learn
This book will teach you everything from the basics of how to create pages to
custom-theming them and developing your own jQuery Mobile content-manage-
ment system with WordPress and Drupal. By the time you finish this book, you’ll
be a jQuery Mobile expert.

WraPPing up

The jQuery Mobile framework is a powerful framework that is supported by mobile
industry leaders. It can easily be added to an existing website to create a mobile
web experience that is not only touch-friendly, but also supported on a majority of
the leading mobile platforms as well as handicap accessible. Design control, page
transitions, widget integration, scripting, API access, and much more are all at your
fingertips through this framework’s easy-to-use features and built-in progressive
enhancement techniques.

ptg8274339

This page intentionally left blank

ptg8274339

Supported
jQuery mobIle
platformS

ptg8274339

xvii

The jQuery Mobile framework

supports the majority of modern

desktop, smartphone, tablet, and

e-reader platforms. Rather than spending your time testing mul-

tiple devices, you can rest assured that you’re offering support for

many platforms from the start. This is because the jQuery Mobile

platform takes a progressive enhancement approach, which not

only brings rich interactive experiences to devices, but also pro-

vides support for older browsers and phones. When a browser fails

to recognize certain HTML5-specific code, the webpage renders

as a simple, yet functional webpage. Users on older phones or

browsers are familiar with a limited web experience, therefore

this approach still renders an acceptable basic HTML webpage

in these cases.

ptg8274339

xviii

Currently, Android and Apple iOS are the leading mobile operating systems. Android

has the largest operating system market share (44.2 percent), while Apple has

the largest smartphone market share in the United States (28.6 percent). The

Windows, BlackBerry, SymbianOS, and Palm/HP webOS operating systems com-

prise the remaining majority of smartphone market share (Figure 1). All of these

platforms/operating systems are supported by the jQuery Mobile framework.

Ios

ioS is apple’s mobile oper-
ating system. originally
developed for the iphone,
it has been extended
to support other apple
devices such as the ipod
touch, ipad, and apple tV.
ioS uses Safari as its web
browser.

androId

android is an open-source
software project and
operating system led by
Google. It has been used
in a plethora of phones,
tablets, and other devices
since its release under the
apache license. android
uses Google Chrome as its
web browser.

WIndoWs Phone

Windows phone is micro-
soft’s mobile operating
system. the system is
integrated with third-
party and other microsoft
services. Windows phone
uses Internet explorer
mobile as its web browser.

Major PlatForMs

The following list provides a bit more information on the major platforms that are
fully supported by the jQuery Mobile framework.

ptg8274339

graded suPPort

jQuery Mobile uses a three-tier, graded list of the
platforms that are supported by the framework. The
tiers are A, B, and C. A includes a full experience with
the option of Ajax-based page transitions, B includes
the same experience minus the Ajax-based page
transitions, and C is a basic, yet functional, HTML
experience.

A-grade support includes all the major mobile oper-
ating systems that were mentioned previously and
more, including Apple iOS, Android, Windows Phone,
BlackBerry, Palm/HP webOS, Kindle 3, Kindle Fire, and
more. B-grade support includes BlackBerry 5, Opera
Mini, and Nokia SymbianOS. C-grade support includes
BlackBerry 4, Windows Mobile, and all older smart-
phones and feature phones. This list is always evolving;
to see an up-to-date list, visit jquerymobile.com and
check out the supported platforms.

BlaCkBerrY

BlackBerry is powered
by a proprietary mobile
operating system, offered
on its own set of smart-
phones and tablets.

WeBos

weboS is the open-source
operating system used by
palm devices. weboS uses
the WebKit layout engine
in its web browser, simply
named Web.

figURe 1 Operating
system market share as
of 2011.

htC
15.8%

android o
S 44.2%

apple ip
hone o

S 28.6%

rIm
 Black

Berry
 17

.0%

W
indows m

obile
 5.3

%

Symbian o
S 1.6

%

palm
 / h

p W
eboS 2.0%

W
indows p

hone 7
1.3

%

Samsung
10.4% rIm BlackBerry

17.0%

htC
4.2%

Samsung
<1%

other
<1%

motorola
<1%

motorola
10.7%

other
7.3%

apple
28.6%

Nokia
1.6%

htC
<1%

Samsung
<1%

other
<1%

other
<1%

hp
1.9%

ptg8274339

This page intentionally left blank

ptg8274339

PART I

the
FoundAtIon of
jQuery mobIle

ptg8274339

1

uNderStaNdING
jQuery

ptg8274339

5

The jQuery framework is the

backbone of the jQuery Mobile

framework, so it’s helpful to know some

of the fundamentals of the jQuery framework before developing

jQuery Mobile websites. Although it’s not required, understanding

jQuery will make using jQuery Mobile even easier than it already

is, especially if you’re interested in writing any sort of custom

functionality.

jQuery is a robust yet lightweight JavaScript library that simplifies

JavaScript coding and extends the capabilities of Cascading Style

Sheets (CSS). In addition, it eliminates cross-browser compatibility

issues and is CSS3 compliant. This means quicker scripting, less

testing, and less coding for the different ways that browsers handle

certain functionality. The jQuery framework is truly an example

of how web development should be: You get what you expect the

first time, every time.

ptg8274339

6 ChaPter 1 understandIng jQuerY

getting stArted

To get started with jQuery, you first need to download the framework from
jquery.com and include it in your webpage, or you can simply reference it via the
Google, Microsoft, or jQuery content delivery network (CDN). I recommend and
most often reference the library via a CDN because it’s faster. A CDN will distrib-
ute your content across multiple, geographically dispersed servers, so the user
receives the closest available file. Plus, Google and Microsoft both offer versions
that support secure socket layers (SSL) via HTTPS, must-haves if you’re doing any
sort of development under SSL. To include the library via a CDN (we’ll use Google
as an example), use the script element to include it within the <head> elements or
at the end of your webpage.

<script type=”text/javascript”

 src=”��
�	���	��
� ����
�������”>

</script>

Including JavaScript files within the <head> elements is the traditional approach.
However, according to Yahoo!, “80 percent of the end-user response time is on the
front-end.” Most of that time is spent downloading assets, such as style sheets,
images, scripts, and so on. It’s obviously important to reduce the number of assets,
but it’s also becoming more common to include JavaScript at the end of an HTML
file. This is because scripts block parallel downloads, meaning that other assets
will not download until each script is downloaded individually. To ensure that
you’re placing your scripts in the correct place, simply include them before the
closing </html> tag.

It’s also best to use the minified version in production environments, because it’s
smaller than the source version. In addition, although the packed version is smaller
than the minified version, it requires client-side processing time to decompress
the file and it’s not available in the most recent versions. According to Yahoo!, “In
a survey of ten top U.S. websites, minification achieved a 21 percent size reduction.”

ptg8274339

jQuerY Fundamentals 7

If you’re familiar with writing JavaScript and CSS, then writing your first jQuery
script will feel very familiar, yet maybe slightly odd. The jQuery framework is a
JavaScript library, meaning that it’s built with JavaScript. The fundamentals are the
same, as you’re essentially still writing JavaScript, it just so happens that you’ll be
writing in a way that uses the jQuery framework. In other words, while there may
be added enhancements to certain fundamentals, the core of JavaScript—variables,
functions, conditional statements, and so on—has not changed. So, you’ll still be
using the var keyword, if and switch statements, and functions, but you’ll surely
notice a lot of additional enhancements and different ways of writing things, namely
accessing HTML elements.

jQuery offers many enhancements to the JavaScript language and, as mentioned,
the best part is that it’s cross-browser compatible, so you don’t have to worry about
writing multiple versions of the same script to handle different browsers anymore,
which is quite a relief. This is especially useful when working with events, Ajax
(discussed later in this chapter), and other functionality that traditionally requires
some conditional statements to determine how the browser will interpret the code.

seleCting htMl eleMents

Rather than continually using document.getElementById() to access HTML ele-
ments within your webpage, you can simply use a jQuery selector jquery() or
the $() function, which is the shorthand version and the one that I will be using
throughout this book. Using the jQuery selector not only gives you fewer charac-
ters to type, but also lets you do far more than access elements by id. With jQuery
selectors, you can also access an array of HTML elements or access an element or
object by name. The jQuery selector wraps an element or set of elements into a
jQuery object, allowing you to apply jQuery methods to the object itself. And that’s
not all: You can even access elements by class name or use CSS selectors such as
:first-child, :nth-child, among many others. Here are a few examples:

� To access an element by ID using the jQuery selector, use the #id selector,
just as you would with CSS when attaching a class to an element by ID:

$(‘����’);

jQuery FundAmentAls

ptg8274339

8 ChaPter 1 understandIng jQuerY

� To access an element by class name, use the .class selector, just as you
would when creating a CSS class. If you have multiple elements with the
same class name, they will all be selected.

$(‘����’);

� To target a specific element with a class name, add the element name before
the class name:

$(‘�������’);

� You can even target a specific element or set of elements using an element
selector:

$(‘���’);

If you’re familiar with CSS, you’re probably starting to see the pattern unfold and
the endless possibilities. The options available for structuring a CSS class are the
same ones you can use to access an HTML element with the jQuery selector. This is
how jQuery enhances JavaScript and CSS, taking the two and merging their syntax
into a new language that enhances the overall user experience, when properly
used, of course.

Managing eVents and FunCtions

Events are used by jQuery to react to user interactions on your webpage, such as
mouse clicks. Events are very easy to manage in jQuery, and they’re reliable across
all the major browsers, which is a big deal, because this isn’t always the case with
traditional JavaScript. jQuery gives you the ability to intercept many different
events from any existing HTML element. Typically, events are used to perform
some sort of function. In the following example, a click event is bound to a div

element with foo as the class name:

$(‘�������’).click(function(e) {

 // Your custom code here

});

ptg8274339

jQuerY Fundamentals 9

By binding the click event to the div, a function is associated with clicking the
mouse on that particular div. Therefore, anytime div.foo is clicked, your custom
code in the handler function will be executed.

If you’re familiar with traditional JavaScript, this syntax probably looks strange.
Don’t worry—it did to me as well when I first started using it, but once I caught on, I
liked it. Once you’re familiar with it, you’ll see that this code syntax is well contained,
easy to understand, and easy to write. Let’s break down the previous example:

1. The jQuery selector is used to select div.foo, which then becomes a jQuery
object.

2. The div.foo jQuery object then uses the click method to fire a handler
function when div.foo is clicked.

3. The handler function is used to execute the custom code. The handler also
has access to the eventObject, which is passed as an argument. In this
example, it is the e argument in the handler function.

If you use the jQuery selector to select a class name that’s being used by mul-
tiple HTML elements and assign a mouse event, that mouse event will be bound
to all of those elements automatically. Therefore, in the example above, if you had
multiple div elements with foo as the class name, the click event would be bound
to all of them. When working with events that are bound to multiple elements, it’s
important to consider scope to ensure that any custom code you’re executing is
applied to the desired element.

$(‘div.foo’).click(function(e) {

 alert($(����).html());

});

In this example, $(this) is used to access the current element in scope.

note: scope is the enclosing context that values are associated with. in
this case, the function is the enclosing context and $(this) is the value.

ptg8274339

10 ChaPter 1 understandIng jQuerY

$(this) is the same as using the this keyword in JavaScript; in this case, it
applies to the element that is currently firing the click event. When considering
scope, this always refers to the object associated with the enclosing context. In the
example, div.foo is the object and the handler function for the click event is the
enclosing context. jQuery will automatically assign the element that is clicked as
$(this) inside your anonymous handler function. This lets you access the element
that executed the event, even when the same code is applied to multiple elements.
Functions are used to execute a script or a set of scripts as the result of an event
or a simple and direct call to the function.

As you’ll learn later in this book, the bind method is often used by the jQuery
Mobile framework to handle custom events.

The custom events provided by jQuery Mobile create useful hooks for devel-
opment beyond the native functionality of the framework, meaning that you can
intercept certain existing events and add your own custom code. Such events
include touch, mouse, and window events, all of which you’ll learn how to extend
later in this book. The syntax for the bind method in jQuery is very similar to the
previous code example.

$(‘div.foo’).����(‘�����’, function(e) {

 // Your custom code here

});

The difference is that you can react to multiple events with the same handler:

$(‘div.foo’).����(‘���������� ����������’, function(e) {

 // Your custom code here

});

note: the difference between a function and a method is that a
function is stand-alone and a method is associated with an object. in

this case, the bind method is associated with the jQuery object.

ptg8274339

jQuerY Fundamentals 11

Or you can handle custom events, such as those implemented by the jQuery
Mobile framework:

$(‘div.foo’).����(‘������
�
����’, function(e, �
����) {

 alert(‘My name is: ‘+ myName);

});

$(‘button’).click(function () {

 ����������� ����������������
�
�����›��������������� �

});

Binding events will be covered in greater depth when we discuss how to bind
jQuery Mobile events with custom handler functions.

Waiting For doCuMents to be ready

A common practice among developers is to wait for a webpage to load before
executing any JavaScript. The reason for doing this is to ensure that the webpage
elements are available before trying to access or manipulate them. Attempting
to access unavailable document elements can lead to unexpected behavior and
potentially break all your subsequent JavaScript. With traditional JavaScript, the
most common way to wait for the page to load is to use the window.onload event.
However, this approach happens after the document loads, because it actually
waits for all images and banners to load within a webpage, which can delay your
scripts tremendously. Luckily, jQuery provides a ready event that lets your code
respond immediately when the document becomes available.

$(document).ready(function() {

 // Your custom code here

});

First, you need to select the document object itself and then apply the ready

event. When the ready event fires, it will execute a function that will contain your
custom code. Continuing with the previous examples, you need to add the custom
code to the ready event to ensure that the document is ready before trying to apply
the click event:

ptg8274339

12 ChaPter 1 understandIng jQuerY

���������� �����
���������� ��

 $(‘div.foo’).click(function() {

 alert($(this).html());

 });

� �

Or you can use a shortcut version, which eliminates the need to access the
document and set the ready event.

����������� ��

 $(‘div.foo’).click(function() {

 alert($(this).html());

 });

� �

Using the ready event is the de facto standard with any jQuery development.
Not only does this approach ensure that your code will fire at the appropriate
time, it also lends itself to creating completely unobtrusive code, meaning that
you can write all your jQuery in a separate, external file that is simply referenced
from your HTML webpage.

aPPlying sPeCial eFFeCts

jQuery is well-known for the special effects it lets you create without using third-
party plug-ins, such as Flash. The library provides many techniques for incorporat-
ing animation into a webpage. Animations can create a more visually appealing
webpage, or they can serve other, more practical purposes, such as providing visual
feedback to user interactions. Many prebuilt animation methods are included in
the jQuery framework, such as fadeIn, fadeOut, fadeTo, show, toggle, slideUp,

and slideDown, among others.

$(document).ready(function() {

 $(‘div.foo’).������();

});

ptg8274339

jQuerY Fundamentals 13

Although these prebuilt animation methods appear to be independent, many
of them are powered internally by the animate method. The animate method can
be used to animate any numerical CSS property for an HTML element, such as
height, opacity, left, and right.

$(document).ready(function() {

 $(‘div.foo’).click(function() {

 ������ ������������������ �

 ��������������

 �›�	���›���������� ��

 �������������������›�������������������������������

 � �

 });

});

In this example, when div.foo is clicked, its height property is increased by 50
pixels over a time period of 1 second (1000 milliseconds), and when the animation
is complete, a callback function will execute your custom code. A callback func-
tion is used to delay the execution of code until something else happens. This is
pretty powerful stuff; not only can you animate when an event is fired, you can
fire a function or even another event when the animation is complete, and so on.

These examples covered only the animation methods themselves. jQuery
includes methods for creating queues to provide additional animation-related
functionality. Table 1.1 lists the queue methods available in jQuery.

TabLe 1 .1 Queue methods

Method desCriPtion

queue Queues a string of sequential effects

dequeue executes the next function in the queue for specified elements

clearQueue removes not-yet-executed items from the queue

delay delays the execution of subsequent items in the queue

ptg8274339

14 ChaPter 1 understandIng jQuerY

The queue method provides a way to queue a string of sequential effects, mean-
ing that you can run multiple effects in a queue infinitely or you can stop the
queue by using the clearQueue method. The queue method is used primarily by
the FX (“effects”) queue, which is the default queue, but is also made available via
the jQuery API. This lets you queue any functionality that you need to happen
sequentially, not solely animations.

The queue and dequeue methods are meant to be associated with a particular
element or object. To use the queue method, you need to assign a queueName as
the argument, such as an anonymous function:

$(document).ready(function() {

 ����������� ��������� ��������������� �

 ����������� �������� �

 ����� �

 � �

});

This sort of functionality lets you produce timeline-based animations without
using JavaScript functions such as setTimeout or setInterval.

As mentioned, although queues are often used for effects and are listed under
effects in the jQuery documentation, they can also be used to queue other sorts
of functionality, such as a series of asynchronous method calls, which leads us to
Ajax using jQuery.

using ajax

Ajax is an acronym for asynchronous JavaScript and XML. Asynchronous means
that you can make a request to a server via Hypertext Transfer Protocol (HTTP) and
continue to process other data while waiting for the response. For example, you
can make calls to a server-side script to retrieve data from a database as XML, send
data to a server-side script to be stored in a database, or simply load an XML file to
populate pages of your website without refreshing the webpage. The functionality
available through the jQuery framework makes Ajax development much easier
than traditional JavaScript, by requiring less code and offering additional methods
and event handlers to cover any situation. The amount of jQuery code needed to
handle Ajax is minimal compared to traditional JavaScript, even when developing
complex functionality, which ultimately makes development much faster.

ptg8274339

jQuerY Fundamentals 15

With traditional JavaScript, Ajax requires a lot of redundant code to form a
request and handle the response because of all the variations that are necessary
for the different browsers. To make a request and handle the response, you need
to write code similar to the following:

if(window.XMLHttpRequest) {

 request = new XMLHttpRequest();

}

else if(window.ActiveXObject) {

 request = new ActiveXObject(‘MSXML2.XMLHTTP’);

}

request.onreadystatechange = onResponse;

request.open(‘GET’, ‘url for request’, true);

request.send(null);

function checkReadyState(obj) {

 if(obj.readyState == 0) { // Sending Request }

 if(obj.readyState == 1) { // Loading Response }

 if(obj.readyState == 2) { // Response Loaded }

 if(obj.readyState == 3) { // Response Ready }

 if(obj.readyState == 4) {

 if(obj.status == 200) {

 return true;

 }

 else if(obj.status == 404) {

 // File not found

 }

 else {

 // There was a problem retrieving the XML

 }

 }

ptg8274339

16 ChaPter 1 understandIng jQuerY

}

function onResponse() {

 if(checkReadyState(request)) {

 // Handle the response with one of the following properties

 //alert(request.responseXML);

 //alert(request.responseText);

 }

}

jQuery is accomplishing the same functionality as traditional JavaScript, but you
don’t have to worry about writing most of it. It’s not that traditional JavaScript is
hard to write; it’s just that there’s a lot to write and it tends to get messy, especially
when you compare it to how easy it is to write a request and response with jQuery.
The following is a sample Ajax request using jQuery, which is very similar to the
previous JavaScript example:

jQuery.ajax({

 url: ‘url for request’,

 success: function(xml) {

 // Parse the response

 }

});

This code uses the jQuery object’s ajax method, includes a url property for
the request, and handles a success callback with an anonymous function. Many
more properties can be used within the jQuery object’s ajax method, such as the
type of request, either POST or GET (the default), a username and password, and
crossDomain. However, this example shows the ajax method in its most basic form
to illustrate the simplicity of jQuery Ajax calls.

Ajax is used in the jQuery Mobile framework to handle page changes and to
load or preload a page. The framework provides access through the application
programming interface (API) to handle this functionality, and we’ll cover it in-
depth later in this book.

ptg8274339

WraPPIng uP 17

jQuery has made user-interface enhancements far easier by simplifying JavaScript
and combining it with the syntax of CSS. The framework provides a way to write
less, spend less time testing, and achieve more complex results in less time. jQuery
lets you enhance webpages by easily adding custom interactions, as well as cus-
tom effects to provide visual feedback to users, ultimately creating a better user
experience.

This book is not intended to teach the jQuery framework, but this chapter
reviewed concepts that are necessary to understand and work with the jQuery
Mobile framework. To learn more about the jQuery framework, visit jquery.com.
The online documentation is very comprehensive and includes code samples,
developer comments, and in-depth descriptions of the available objects, methods,
events, and so on. You can also visit the jQuery forums at forum.jquery.com, where
other developers are available to help with any coding questions you may have.

WraPPing up

ptg8274339

2

the role of html5

ptg8274339

19

As the starting point for all jQuery

Mobile development, HTML5

plays a key role in the jQuery Mobile

framework. HTML5 provides the gateway for everything from

defining how your webpage renders in mobile, tablet, or desktop

browsers to custom attributes that define widgets and themes and

much more. This chapter provides an overview of how HTML5

is used and what features are utilized most by the jQuery Mobile

framework.

ptg8274339

20 ChaPter 2 the role oF html5

semAntIc htMl5

Accessibility is a major focus and priority of the jQuery Mobile framework. This is
one reason why the framework is built on semantic HTML and why it’s available
to the widest possible range of devices. The techniques that the framework uses to
support A-grade browsers even provide access for users with screen readers such
as VoiceOver for Apple iPhone.

jQuery Mobile uses three levels to grade the support of the framework: A, B,
and C. A is full; B is full, minus Ajax; and C is basic support.

Standard, semantic HTML gives you the security of providing a mobile website
that is accessible to the greatest range of users without having to do the testing
yourself. This is the power of the jQuery Mobile framework.

Creating an htMl5 teMPlate

Creating a basic page template using HTML5 is incredibly easy. All you need to do
is add the <!DOCTYPE> declaration followed by standard HTML, such as opening
and closing html, head, title, and body elements. The declaration must be the
first thing in your HTML5 document because it instructs the browser about what
version of HTML is being used so it can interpret your markup.

<!DOCTYPE html>

<html>

 <head>

 <title>Page Title</title>

 </head>

<body>

</body>

</html>

The <!DOCTYPE> declaration is supported by all major browsers. It’s also much
simpler to use than previous versions of HTML. HTML 4, for example, includes
three different versions of the <!DOCTYPE> declaration and requires the docu-
ment type definition (DTD) because it’s based on Standard Generalized Markup
Language (SGML).

ptg8274339

the vIeWPort meta tag 21

The viewport meta tag was introduced by mobile Safari to let web developers
control the size and scale of the viewport. Many other major mobile browsers now
support this tag. It is used to set the browser’s layout viewport to improve the
presentation of webpages. Mobile web browsers obviously have a much smaller
screen size than desktop browsers and because of this they have a different layout
viewport association. If you’ve ever viewed a desktop website on a mobile phone
that isn’t using a viewport association that accommodates mobile devices, you’ve
most likely noticed that the site looks similar to Figure 2.1. Without the viewport

tag, your webpage can appear small, or zoomed out, as any other webpage not built
for mobile would display. The webpage can be very hard to read without
zooming in.

figURe 2 .1 A website without
the viewport association that
best accommodates mobile
devices.

note: the iPhone screenshot used for Figure 2.1
was captured in Mobilizer, a mobile preview tool from
springbox (http://www.springbox.com/mobilizer/).

the vIewport Meta tAg

ptg8274339

22 ChaPter 2 the role oF html5

You can include the viewport meta tag in a separate mobile website that accom-
modates the smaller browser display, but this is often beyond many companies’
capabilities, because it adds time and cost. Plus, the management of two separate
websites is often too much to handle. Currently, the standard option for rendering
your website properly is to use the viewport meta tag. This tag tells the browser to
optimize your website based on the best width for viewing it in that browser. To use
the viewport meta tag to set the display, set the name of the meta tag to viewport,
then use the content attribute to set properties and values that meet your needs.
Within the content attribute, you can define the properties and values you want
to set for the layout. To add multiple properties to a viewport meta tag, you need
to create a comma-delimited list of property and value sets. Here’s the most com-
mon setup for the viewport meta tag in mobile development:

<meta name=”viewport” content=”width=device-width, initial-scale=1”>

To include this tag in your HTML5 template, add it within the head element:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 ���›�
� ��������������	��

 <title>Page Title</title>

 </head>

<body>

</body>

</html>

The most important property to set is the width, which should be set to
device-width for mobile websites. The second property is initial-scale, which
defines the state of the website when it first loads, after which users can zoom in
or out. For example, if you were to set the initial-scale to 2, rather than 1, by

ptg8274339

the vIeWPort meta tag 23

default the website would be scaled by 2 (that is, 2 would be used as the multi-
plier for scaling). Table 2.1 describes these and other meta viewport properties
in more detail.

TabLe 2 .1 Meta viewport properties

ProPerty desCriPtion

width Sets the width of the viewport in pixels. the value can be a specific
number in pixels; the default is 980. You can also use a dynamic
value, such as the width of the device (device-width). the device-

width value is commonly used in mobile development, because
it dynamically sets the width of the viewport to the width of the
device, and therefore accommodates all scenarios.

height Sets the height of the viewport in pixels. the value can be a specific
number in pixels.

initial-scale defines the scale of the website when it initially loads. the value
should be a number or decimal. the value is the multiplier by which
the initial scale is set.

minimum-scale defines the minimum scale of the website. the default is .25, and
the range is >0 to 10.

maximum-scale defines the maximum scale of the website. the default is 1.6, and
the range is >0 to 10.

user-scalable determines whether or not the user can zoom in and out to change
the scale of the viewport. a value of yes allows scaling, while a value
of no restricts scaling. a value of no also prevents a webpage from
scrolling when entering text into a form field.

When designing or developing for mobile websites, it’s important to understand
how your content will display on different devices. Remember that handheld devices
come in many shapes and sizes and that there are both portrait and landscape
modes to contend with. I always consider using CSS and/or viewport properties
to create scalable layouts. However, by using the viewport meta tag code from
the code example along with the jQuery Mobile framework, you can be assured
that your website will render as accurately as possible on a wide range of devices.

ptg8274339

24 ChaPter 2 the role oF html5

HTML5 data- attributes let you store custom data that’s unseen by the user. In
other words, the data is not rendered or even used by the browser. With previous
versions of HTML, custom data is often stored in title, rel, class, or id attri-
butes, or in hidden HTML elements. The data stored in these attributes is acces-
sible to JavaScript. There are many reasons why access to custom data is useful
via JavaScript; it can be used behind the scenes to create custom functionality or
displayed to the user when a specific interaction occurs. A good example of using
custom data in a webpage is in an image gallery: A title and a description can be
added to an image and then used by JavaScript to display information about the
image that the user is viewing. The bottom line is that this is a misuse of these
HTML attributes, but until now it has been the only way to handle certain func-
tionality that is otherwise unsupported. Luckily, developers can start using HTML
attributes appropriately with the support of data- attributes.

Rather than having to use attributes with other predetermined uses, you can
now create custom data- attributes that are more relevant to your data and still
render valid HTML. The HTML5 specification supports any attribute that begins
with data- as a data storage area. Any name you want to append to the data- prefix
will be supported. For example, if you add custom data- attributes to an image
tag that belongs to an image gallery, you can add custom data-title and data-

description attributes and give them any custom value.

<img src=”image-path/img.jpg” ����������=”�
������������”
� ����������������=”�
������������������”>

The attribute value can be any string, and as always, you need to escape any
double quotes within your strings.

Keep in mind the possibility of potential name clashing. As data- attributes
become more widespread, it’s likely that JavaScript libraries will be looking for
attributes with similar names, especially if generic attribute names are used, such
as data-description. A good solution to this problem is to use a custom namespace
within the name of the data- attribute. For example, if you’re developing a website

note: the only restrictions on creating custom data- attributes are
that the custom portion of the attribute must be at least one character

long and cannot contain uppercase letters.

understanding
dAtA- AttrIbutes

ptg8274339

understandIng data- attrIButes 25

for jquerymobile.tv, you could use jquerymobiletv as your namespace in the
data- attribute:

data-����
��������-foo

Not only does this prevent potential name clashing, it also personalizes the
code and makes it specific to your website or application.

The jQuery Mobile framework uses a number of custom data- attributes for
widgets and theming. These attributes are used during initialization and configura-
tion. Two common data- attributes are listed in Table 2.2.

TabLe 2 .2 Common data- attributes in jQuery Mobile

data- attribute desCriPtion

data-role used to define any of the widgets in the jQuery mobile frame-
work. Setting this attribute within an html element lets you
add a widget to your webpage automatically.

data-theme used by the jQuery mobile framework to define how your
widgets should look. this attribute sets the theme for a widget
using jQuery mobile.

Later in this book we’ll take an in-depth look at theming and using data-theme

attributes with jQuery Mobile. We’ll also cover more data- attributes associated
with the various widgets provided by the framework.

The framework itself allows you to define a custom namespace using a global
option in the configuration called �� (namespace). The ns option can be set to any
custom value, such as jquerymobiletv-. If you do use a custom namespace, it’s
best to use a dash at the end:

data-����
���������foo

Otherwise, the result won’t include a dash between your namespace and the
custom data- value, so your data- attributes will be hard to read, and jQuery Mobile
will look for an attribute that looks like the following example:

data-����
��������foo

ptg8274339

26 ChaPter 2 the role oF html5

Be aware that choosing a custom namespace requires you to commit to that
namespace during coding. For example, when defining a jQuery Mobile header
you would normally use:

data-role=”header”

To add this attribute to your HTML5 template you could simply add a div that
includes the attribute:

<!DOCTYPE html>

<html>

 <head>

 <title>Page Title</title>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 </head>

<body>

 ������������������������

 ��	����������	�

 ������

</body>

</html>

However, if you define a custom namespace in the configuration, you’ll need
to define your header as:

data-����
���������role=”header”

We’ll talk about configuration options, including the ns option, in more detail
later in the book.

With the introduction of data- attributes, developers have much more control
over the data that is added to a webpage. Custom attributes provide a means to
support semantic HTML while enhancing the webpage with front-end scripting
languages, such as JavaScript.

ptg8274339

WraPPIng uP 27

It may be daunting to think that you need to understand HTML5 and jQuery to
use the jQuery Mobile framework. Thankfully, the framework is built in a way
that supports developers with different skill levels. You don’t necessarily have to
know HTML5 and jQuery, because the framework provides a template for HTML5
that you can download directly from jquerymobile.com, and jQuery is available to
those developers who want to use it. The only thing that’s absolutely necessary is
to understand how to use data- attributes, because this is the way to add widgets
to a webpage without using jQuery.

WraPPing up

ptg8274339

3

gettIng stArted
WIth jQuery
mobIle

ptg8274339

29

In the previous chapters, we

covered basic jQuery, how to

create an HTML5 template, how

to add a viewport meta tag for mobile browsing, and how to use

data- attributes. Now you’re ready to dive into jQuery Mobile

and see how these languages, elements, and attributes are lever-

aged and enhanced using the framework. One of the great things

about the jQuery Mobile framework is that at its core it’s basic

HTML5 markup and JavaScript, which is supported by all major

browsers. For basic jQuery Mobile development, there honestly

isn’t that much to learn. This chapter covers the few steps and

provides a little background as to what’s happening behind the

scenes. In later chapters, you’ll see how you can expand on these

basic concepts to create more advanced jQuery Mobile websites

and even mobile web applications.

ptg8274339

30 ChaPter 3 gettIng started WIth jQuerY moBIle

how jQuery Mobile works

There are many ways to build a jQuery Mobile website. However, in its simplest form,
the framework functions on top of HTML5 and the jQuery library to transform
elements with data- attributes into components, making it very easy to incorpo-
rate into your existing web development practices. The most basic components
of the framework are pages and toolbars, which will be explained in more detail
later in this chapter. But first, let’s look at how to incorporate the jQuery Mobile
framework into an HTML5 webpage.

adding the jQuery Mobile FraMeWork to your Website

For starters, the jQuery Mobile framework is available at jquerymobile.com. There
are two ways to add the jQuery Mobile framework to your webpages.

The first way is to download individual packages, which include both full and
minified versions of the JavaScript library and CSS file. You will also need to down-
load the jQuery library from jquery.com.

The second (and recommended) option is to include a direct reference to the
CDN-hosted files as seen here:

<link rel=”stylesheet” href=”http://code.jquery.com/mobile/1.0/
� jquery.mobile-1.0.min.css” />

<script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
� jquery.min.js”></script>

<script src=”http://code.jquery.com/mobile/1.0/jquery.
� mobile-1.0.min.js”></script>

note: keep in mind that at the time this book was written the latest
version of the jQuery Mobile framework was final version 1. to get the

latest code for including these files, visit jquerymobile.com, where you
can simply copy and paste it into your webpages.

ptg8274339

hoW jQuerY moBIle Works 31

To add the framework to the HTML5 template you created in Chapter 2, “The
Role of HTML5,” add it within the head element:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Page Title</title>

 �������������
�������������������������������
�����
� �������	�������
��������	��������������

 ��
� ����
�	���	�����
������������������

 �����������������������������
������������	���
� ����
��������	��������������������

 </head>

<body>

</body>

</html>

The primary reason that content delivery network (CDN)-hosted files are rec-
ommended is because the load time is faster. A CDN will distribute your content
across multiple, geographically dispersed servers, so the user who is accessing
your webpage receives the closest available web files.

If you’re developing Microsoft .net applications, you can use the Microsoft
CDN-hosted jQuery Mobile files, which are currently available at http://www.asp.
net/ajaxLibrary/CDNjQueryMobile10.ashx.

With the jQuery Mobile framework in place, you can begin to transform your
HTML5 markup into rich mobile components. Let’s take a look at the most com-
mon components: pages and toolbars.

ptg8274339

32 ChaPter 3 gettIng started WIth jQuerY moBIle

Page and toolbar CoMPonents

In jQuery Mobile, a page is literally defined by an HTML element with a data-role

attribute set to a value of page:

<div ���������=”page”></div>

Voilà. I’m not sure if it can get any easier than this. jQuery Mobile will convert
this <div> element (most commonly used) into a page component. All you need
to do is use this markup and embed the framework in the <head> of your webpage.

Within the data-role=”page” element, you can use whatever HTML markup
you prefer. The most common elements to see within a data-role=”page” element
are <div> elements with data-role attribute values of header, content, and footer.
The header and footer data-role attributes are both considered toolbar compo-
nents in jQuery Mobile, while the content data-role is simply used to define the
content area of your website in which you can add any HTML markup. The follow-
ing example shows a typical HTML structure for a basic jQuery Mobile webpage
using these data-roles:

<!DOCTYPE HTML>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Basic template - jQuery Mobile: Design and Develop
� </title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0/jquery.mobile-1.0.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/
� jquery/1.7.1/jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0/
� jquery.mobile-1.0.min.js”></script>

 </head>

ptg8274339

hoW jQuerY moBIle Works 33

<body>

 ����������������������

 ������������������������

 ��	��������������	�

 ������

 �������������������������

 ���
����

 ������

 ������������������������

 ���
�����

 ������

 ������

</body>

</html>

The code looks very similar to our previous examples, with the addition of the
page, header, content, and footer elements. The visual transformation of this
markup by jQuery Mobile can be seen in Figure 3.1.

The header, content, and footer are all transformed into a basic layout that
visually separates each of the sections. This is the default jQuery Mobile theme;
later in this book you’ll learn how to create custom themes. In this example, the
page title is displayed prominently at the top within the header, while the body
copy is formatted using the content data- attribute and the copyright is displayed
in a defined footer area.

figURe 3 .1 jQuery Mobile
visually transforms markup
with speci�c data- attributes.

ptg8274339

34 ChaPter 3 gettIng started WIth jQuerY moBIle

struCturing Mobile WebPages

There are two ways to structure webpages for jQuery Mobile. The first is to incor-
porate all the pages within the same file; the second is to create separate files, like
a typical website. To create multiple pages within a single HTML file, you can
delineate multiple page data-roles, which allows each page data-role to contain
its own header, content, footer, and so on. The following example gives you a basic
idea of how to create a multipage jQuery Mobile website in a single HTML file:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Page Title</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0/jquery.mobile-1.0.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/
� jquery/1.7.1/jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0/
� jquery.mobile-1.0.min.js”></script>

 </head>

<body>

 ������������������������������������

 <div data-role=”header”>

 <h1>Page 1</h1>

 </div>

ptg8274339

hoW jQuerY moBIle Works 35

 <div data-role=”content”>Body copy for page 1</div>

 <div data-role=”footer”>Copyright</div>

 ������

 ������������������������������������

 <div data-role=”header”>

 <h1>Page 2</h1>

 </div>

 <div data-role=”content”>Body copy for page 2</div>

 <div data-role=”footer”>Copyright</div>

 ������

</body>

</html>

This approach is not recommended, because files structured this way usu-
ally become harder to manage and are much larger in file size, so they ultimately
will take longer to load. For demos or prototypes, this may be an option, but it is
strongly recommended that you build your mobile websites or applications as
separate HTML files.

When using separate HTML files for your webpages, the page data-role is used
as a container that the framework loads other webpages into. For example, let’s say
you have two separate HTML files, page-1.html and page-2.html. Then you add the
page data-role attribute to both files and hyperlink page-1.html to page-2.html:

<!DOCTYPE HTML>

<html>

<head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

ptg8274339

36 ChaPter 3 gettIng started WIth jQuerY moBIle

 <title>Page 1 - jQuery Mobile: Design and Develop</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/mobile/1.0/
� jquery.mobile-1.0.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
� jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0/
� jquery.mobile-1.0.min.js”></script>

</head>

<body>

 <div data-role=”page”>

 <div data-role=”header”>

 <h1>Page 1 Title</h1>

 </div>

 <div data-role=”content”>

 ��

 </div>

 <div data-role=”footer”>

 Copyright

 </div>

 </div>

</body>

</html>

With the jQuery Mobile framework included, the page data-role of page-1.html

will automatically become the container to load the markup within the page

data-role of page-2.html using an XMLHttpRequest. The XMLHttpRequest is
what Ajax uses to exchange data with the server without refreshing the webpage;

ptg8274339

WraPPIng uP 37

it’s sort of like a portal to the backend. Figure 3.2 shows an example of the
XMLHttpRequest that is made when page-1.html links to page-2.html. The request
was logged using Chrome Developer Tools. Chrome Developer Tools were used in
this case to see that the XMLHttpRequest was made by jQuery Mobile when the
link to page-2.html was clicked. Chrome Developer Tools provide a great way to
test and debug code.

The HTML page itself is requested and jQuery Mobile uses its contents to display
the new page. There’s a lot to learn about this simple request, and we’ll cover it in
more detail in the coming chapters.

WraPPing up

Creating pages and including the jQuery Mobile framework is incredibly easy; the
depth of the framework shines through when we uncover the details that make
this framework so robust. As you’ve learned, data- attributes provide a way to
store custom data that is unseen by the user, but the data remains accessible to
JavaScript and, ultimately, to jQuery. This is why data- attributes play a large role
in jQuery Mobile. The framework uses these attributes to transform basic HTML
elements that use them as stylized widgets. We’ve only scratched the surface of
pages and toolbars, and there are still many other components to discuss. With
this basic information under your belt, it’s time to jump in and see what jQuery
Mobile has to offer.

figURe 3 .2 jQuery Mobile
uses an XMLHttpRequest to
load subsequent pages.

note: Chrome developer tools are an integrated web
development environment built in to the Chrome browser.

ptg8274339

This page intentionally left blank

ptg8274339

PART II

uI
components

ptg8274339

4

creAtIng
multIpaGe
websItes

ptg8274339

41

Now that we’ve covered the basics

of structuring mobile webpages,

we’ll take a deeper look and get a better

understanding of the functionality behind them. As mentioned

in Chapter 3, “Getting Started with jQuery Mobile,” there are two

ways to structure webpages for jQuery Mobile: incorporate all

the pages in the same file, or create separate files for each page

like a typical website. Understanding the different page template

types is the foundation for customizing a number of different

page-related functionalities. In addition to learning about the

page template types, you’ll also see how to preload and cache

pages, work with different page transitions, and customize load-

ing messages. You’ll learn to create custom functionality to take

your pages to the next level.

ptg8274339

42 ChaPter 4 CreatIng multIPage WeBsItes

multIpAge teMPlate

Internal linking occurs automatically when you have multiple jQuery Mobile pages
in the same HTML file. As you’ve learned, jQuery Mobile pages are defined by add-
ing a data-role with a value of page to an HTML element and anything within that
page becomes relative to that page. In jQuery Mobile, typical separate webpages
are considered single-page templates, while webpages that contain multiple pages
are considered multipage templates. Let’s refer back to our multipage template
example from the previous chapter (with a few small additions):

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Multipage template - jQuery Mobile: Design and
� Develop</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0.1/jquery.mobile-1.0.1.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/
� jquery/1.7.1/jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

</script>

 <script type=”text/javascript” src=”assets/js/ui.js”>

</script>

 </head>

<body �����������������>

 <div data-role=”page” id=”page-one” �����������������	�>

 <div data-role=”header”>

 <h1>Page 1</h1>

 </div>

ptg8274339

multIPage temPlate 43

 <div data-role=”content”>

 <p>Body copy for page 1</p>

 ���

 </div>

 <div data-role=”footer”>

 Copyright

 </div>

 </div>

 <div data-role=”page” id=”page-two” �������������������>

 <div data-role=”header”>

 <h1>Page 2</h1>

 </div>

 <div data-role=”content”>

 <p>Body copy for page 2</p>

 ���������������������������������	����

 </div>

 <div data-role=”footer”>

 Copyright

 </div>

 </div>

</body>

</html>

Within this multipage template are two pages defined by div elements with
custom ids. The jQuery Mobile framework shows only one of these pages at a
time, and it uses the data-title attribute to change the page title dynamically.
The page that is shown by default is determined by the order of the source code.
In this example, the first page has an id of page-one, but if the pages in this file were
switched, so that the element with an id of page-two came first, then that would
be the default page to load. In other words, the value of the id attribute doesn’t

ptg8274339

44 ChaPter 4 CreatIng multIPage WeBsItes

determine what page is shown by default; the default page is determined only by
the source code order. However, the id is used for other important purposes, such
as linking pages to one another.

This is where jQuery Mobile pages begin to act like separate webpages. Note
that hyperlinks have been added to the original template to link from one page to
another. This is somewhat like the toggle functionality that’s common in JavaScript
development, where id values are used to hide and reveal certain HTML elements.
The difference here is that jQuery Mobile handles the functionality for you. To link
from one page to another you simply need to:

1. Create a hyperlink.
2. Type the pound sign (#).
3. Specify the id value of the page you want to link to.

The end result looks like this:

Link to page 2

It’s similar to creating a page anchor; the difference is that you’re referencing
the id value of another page. Remember that each page needs a unique id value.
In this case, I’ve used page-one and page-two, but you can use something more
descriptive and relative to the content of your jQuery Mobile page. The cool thing
about the jQuery Mobile framework is that it transitions dynamically from one
page to another without requiring you to write an ounce of code. Figure 4.1 shows
an example of this code in both page views and the transition from one to another.

figURe 4 .1 A multipage
template with two pages and
the transition in between.

ptg8274339

sIngle-Page temPlate 45

Single-page templates are separate HTML files that act as independent webpages,
just like any standard webpage. The main difference is in how jQuery Mobile con-
nects webpages using Ajax. As with multipage templates, the Ajax-based navigation
in single-page templates uses hashtags to create a page history. The Ajax-based
navigation used by jQuery Mobile is the default, but it can be turned off by setting
the ajaxEnabled setting to false in the configuration. You’ll learn more about the
configuration settings later in this book.

Ajah is an abbreviation that is sometimes used for Asynchronous JavaScript
and HTML. Ajah is essentially Ajax without the XML; the XMLHttpRequest is
still used, but HTML is exchanged with the server rather than XML. This is what
jQuery Mobile uses as the user browses independent webpages. We briefly covered
how the jQuery Mobile framework uses the XMLHttpRequest to load subsequent
pages in the previous chapter, but there’s a lot to learn and understand about this
simple request.

One great thing about the jQuery Mobile framework is how it tracks history:
it supports the back and forward buttons! Also, while subsequent pages load, the
framework provides a default loading message and transitions between pages. The
default page transition is to slide between two pages, and the default loading mes-
sage is a spinning icon with a “loading...” message. Both options are configurable,
as you’ll learn in the next chapter. For now, let’s see how hashtags and history
work in jQuery Mobile.

hashtags and history

jQuery Mobile uses hashtags to manage history in single- and multipage templates.
The window object’s location.hash is used to make changes and updates to the
history, so the back and forward buttons function as usual, which is uncommon
in other Ajax-based systems. Essentially, jQuery Mobile prevents the default func-
tionality of all hyperlinks and uses the hashtag functionality to handle history. Not
only is the history updated, the hashtag system also creates a valid URL that can
be bookmarked for later reference.

sIngle-pAge teMPlate

ptg8274339

46 ChaPter 4 CreatIng multIPage WeBsItes

The only issue with jQuery Mobile’s hashtag-based navigation is that it doesn’t
support deep linking. However, there are some workarounds you can use to sup-
port this functionality. With a little help from jQuery, you can add a script, like the
following, to your webpage and your deep links will function as usual:

$(document).ready(function() {

 $(‘a[href^=”#”]’).bind(‘click vclick’, function () {

 location.hash = $(this).attr(‘href’);

 return false;

 });

});

In HTML, all hyperlinks that include a pound sign (#) as their first character
are identified as anchors. This script uses a regular expression that includes the
caret symbol to identify all anchor elements that have an href attribute with a
value that begins with the pound sign. Once these elements have been selected,
you can use the bind method to bind a click and vclick event to the anchor tags
and assign an anonymous function handler as the callback.

The callback function sets the window object’s location.hash to the value of
the anchor and returns false to prevent the browser from performing the default
action associated with clicking the hyperlink.

notes: the caret (^) symbol is often used in regular expressions to designate
the beginning of a string.

the vclick event is an option used in jQuery Mobile by devices that support
touch events. the event supports faster page changes and during page transi-
tions it keeps the address bar hidden.

hyperlinking from single-page to multipage templates with ajax enabled
will load only the first page in the source code of the multipage tem-

plate. to link to a multipage template from a single-page template, you
must use an external hyperlink by using rel=”external” or data-ajax=”false”.

ptg8274339

lInk tYPes 47

jQuery Mobile supports standard HTML link types as well as a number of custom
link types related to the mobile experience. The following tables offer a list of
the supported link types available through the jQuery Mobile framework. Each
table shows options categorized based on their end result and/or support of Ajax.
Table�4.1 describes links that support Ajax.

TabLe 4 .1 Link types that support Ajax

hyPerlink MarkuP desCriPtion

� Hyperlink within same domain

a standard html link that is transformed by the jQuery mobile framework
to use ajax, include page transitions, and support page history.

<a href=”http://www.jquerymobile.tv”
� data-rel=”dialog”> Open a dialog

an option used for dialog windows that is not tracked in page history.

<a href=”http://www.jquerymobile.tv”
� data-rel=”back”>Back button

this option can be used to navigate back in page history; it’s a great option
for providing a back button from a page or dialog. the href is ignored in
a- and B-grade browsers, but is necessary for C-grade browsers.

graded support

as mentioned in the book’s introduction, jQuery mobile uses a three-tier
graded list of platforms that are supported by the framework: a, B, and C.
a includes a full experience with the option of ajax-based page transitions;
B includes the same experience minus the ajax-based page transitions;
and C is a basic yet functional html experience.

a-grade support includes all the major mobile operating systems men-
tioned previously and others, including apple ioS, android, Windows phone,
BlackBerry, palm WeboS, Kindle 3, and Kindle fire. B-grade support includes
BlackBerry 5, opera mini, and Nokia Symbian. C-grade support includes Black-
Berry 4, Windows mobile, and all older smartphones and feature phones. Visit
jquerymobile.com to see an up-to-date list of supported platforms.

lInk tyPes

ptg8274339

48 ChaPter 4 CreatIng multIPage WeBsItes

Table 4.2 describes a list of hyperlinks that disable the Ajax page-transition
functionality. These hyperlinks are great for pages on an external domain, pages
that open in a new window, linking from single to multipage templates, or linking
to pages where you don’t want to use Ajax.

Table 4.3 includes link types that stem from a basic HTML hyperlink with the
addition of specific attributes.

TabLe 4 .2 Link types that disable Ajax

hyPerlink MarkuP desCriPtion

External
� hyperlink

linking to a page on an external domain automatically disables
the ajax functionality.

� External hyperlink

By default this attribute defines a hyperlink as external, which not
only disables ajax, but also removes it from the page hashtag his-
tory and refreshes the webpage. this option can be transformed
using jQuery to open new windows in a standards-compliant way.

<a href=”http://www.jquery.com”
� data-ajax=”false”>Hyperlink disables Ajax

this option provides a way to define a hyperlink as external,
which not only disables ajax, but also removes it from the page
hashtag history and refreshes the webpage.

TabLe 4 .3 Miscellaneous link types

hyPerlink MarkuP desCriPtion

Phone Number this hyperlink initiates a phone call when clicked on some phones.

� Email link

this hyperlink initiates a new email that’s prefilled with the
specified email address.

Hyperlink this hyperlink returns false. It’s useful when creating a back
button as in table 4.1.

The jQuery Mobile framework uses many hyperlink attributes to create
enhancements to otherwise normal HTML webpages. This is just another reason
why jQuery Mobile is more appealing than creating a mobile website from scratch.
It lets you focus on what matters, eliminating the need to write core functionality
every time you create a new mobile website.

The following examples show a few of the link types covered in the tables.

ptg8274339

lInk tYPes 49

This webpage offers three examples of the link types that can be used in jQuery
Mobile: an internal link, an external link, and a link that disables Ajax:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Single-page template - Page 1 - jQuery Mobile: Design
� and Develop</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0.1/jquery.mobile-1.0.1.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/
� jquery/1.7.1/jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

 </script>

 </head>

<body class=”container”>

 <div data-role=”page”>

 <div data-role=”header”>

 <h1>Page 1</h1>

 </div>

 <div data-role=”content”>

 ��

 ���
� �������������������������������

 ��
� ������������������������������������

ptg8274339

50 ChaPter 4 CreatIng multIPage WeBsItes

 </div>

 <div data-role=”footer”>

 Copyright

 </div>

 </div>

</body>

</html>

An internal link requires no special markup and is where the framework will
interject and create a page transition between the current page and the page that’s
being linked to. An external link is one that requires the rel attribute, which must
be set to a value of external. Setting a hyperlink as external disables Ajax, removes
it from the page hashtag history, and refreshes the webpage when the link is clicked.
The link that disables Ajax requires a data-ajax attribute with a value of false.
This disables Ajax, removes it from the page hashtag history, and refreshes the
webpage, just like the previous example, with the main difference being that the
rel=”external” attribute can be used as a standards-compliant way to create
hyperlinks that target new windows with a little help from jQuery.

In this next example, there’s an internal link and a hyperlink that acts as a
back button:

<!DOCTYPE html>

<html>

 <head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Single-page template - Page 2 - jQuery Mobile: Design
� and Develop</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0.1/jquery.mobile-1.0.1.min.css” />

ptg8274339

lInk tYPes 51

 <script src=”http://ajax.googleapis.com/ajax/libs/
� jquery/1.7.1/jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

 </head>

<body class=”container”>

 <div data-role=”page”>

 <div data-role=”header”>

 <h1>Page 2</h1>

 </div>

 <div data-role=”content”>

 ��	��������

 ��

 </div>

 <div data-role=”footer”>

 Copyright

 </div>

 </div>

</body>

</html>

Setting the data-rel attribute to back creates a hyperlink that acts like a back
button. When this link is clicked, the jQuery Mobile framework automatically links
to the previous page in history.

ptg8274339

52 ChaPter 4 CreatIng multIPage WeBsItes

Page caching is very important when working with anything web-based. Cache
refers to hidden storage where files are collected. By default, browsers handle
webpage caching by putting the associated files in a local directory on the user’s
computer so the webpage and its associated assets will load more quickly during
subsequent visits. jQuery Mobile takes this concept a step further: the framework
allows pages to be cached even before they’re linked to or displayed in the browser.
Taking advantage of this functionality is as easy as using an HTML attribute named
data-prefetch. Simply add it to any hyperlink in your webpage, and once the
webpage has loaded, the URLs that these hyperlinks point to will be preloaded and
cached. The following line of code shows how to add this attribute to a hyperlink
to preload and cache the page it’s pointing to:

Link to page 2

When running this example in a web browser, the request is made immediately
upon page load. Figure 4.2 shows an example of the XMLHttpRequest being made
from Chrome when the page loads.

The framework also provides a way to handle page preloading via the applica-
tion programming interface (API). We’ll talk more specifically about the API later
in the book, but it’s important to know how to access it.

figURe 4 .2 A page being
preloaded by jQuery Mobile
using the prefetch attribute.

note: the application programming interface (aPi) allows for
communication among multiple pieces of software.

preloAdIng and
cAchIng Pages

ptg8274339

PreloadIng and CaChIng Pages 53

To preload pages programmatically, you first need to access the jQuery Mobile
object:

$.mobile

Once the document object is ready, use the loadPage method to pass the URL
you want to preload and define a number of properties for the request:

$(document).ready(function() {

 �������������������¡�����������›��

 �
���������›

 �����������������›

 �
���������

 � �

});

There are quite a few arguments you can pass as options in the loadPage method.
Table 4.4 lists those optional arguments.

TabLe 4 .4 loadPage optional arguments

arguMent desCriPtion

data holds an object or string that can be sent with an ajax page
request.

loadMsgDelay Sets the number of milliseconds to delay before showing the load
message. the default is 50 milliseconds.

pageContainer holds the loaded page. the default is the jQuery mobile page
container, but this is customizable.

reloadPage defines whether or not to reload the page being requested. the
default value is false.

role When the page is loaded, this defines the data-role value that will
be applied.

type Specifies whether the request is a get or a post.

ptg8274339

54 ChaPter 4 CreatIng multIPage WeBsItes

In addition to providing control for preloading files, the jQuery Mobile frame-
work provides control for caching pages in the document object model (DOM).
Just like the preload option, you can define whether a page should be cached in
the DOM via an HTML attribute or the jQuery Mobile API. The following example
shows how the attribute can be used in a page tag to cache a webpage:

<div data-role=”page” ���������������������>

To cache a webpage using the API, you can set all pages to cache by default:

$.mobile.page.prototype.options.domCache = true;

Or, you can cache a page independently. You would cache a page with an id

of my-page like so:

$(‘#my-page’).page(true);

When working with the single-page template, jQuery Mobile also manages
the pages it preloads so the DOM doesn’t get too large. If many pages are kept in
the DOM, the browser’s memory usage can get out of control and the browser will
likely slow down or crash. To manage the memory size, the framework removes
pages that are loaded via Ajax from the DOM automatically via the pagehide event
when the visitor navigates away from them. You’ll learn more about this and other
events later in the book.

There are a number of benefits to preloading and caching pages. They load
quicker and prevent the Ajax loading message from appearing when a visitor tries
to access the preloaded page. However, it’s important to keep in mind that each
preloaded page creates an additional HTTP request, which uses more bandwidth.
Therefore, it’s important to preload pages only when you think visitors are likely
to view a subsequent webpage.

ptg8274339

WorkIng WIth Page transItIons 55

A number of page transitions can be used with the jQuery Mobile framework. All
the page transitions are CSS-based effects. When using Ajax navigation, the page
transitions work between linked pages or form submissions. Table 4.5 lists the
available page transitions in the framework.

TabLe 4 .5 Page transitions

Method desCriPtion

slide Slides the hyperlinked page in from the right to replace the current page. Slide is the default
page transition.

slideup Slides the hyperlinked page up to replace the current page.

slidedown Slides the hyperlinked page down from the top to replace the current page.

pop Zooms the hyperlinked page in from the center of the current page and replaces it.

fade fades in the hyperlinked page over the current page and replaces it.

flip Creates a 3d effect where the hyperlinked page appears to be on the backside of the current
page as it flips and the hyperlinked page comes into view.

Each of these page transitions is easy to set up globally as a default using the
defaultPageTransition property. To set it up properly, it’s necessary to bind to the
mobileinit event, which is accessible through the API via the jQuery Mobile object:

$(document).bind(“����������”, function() {

 ��������������������¢�������������������

});

The binding of the event handler needs to be executed before the jQuery Mobile
library loads. Therefore, in your HTML file, arrange your JavaScript files in a spe-
cific order:

<script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
� jquery.min.js”></script>

��

note: use the flip transition with caution, because it is supported
only by browsers that support 3d Css transform rendering.

workIng With Page
trAnsItIons

ptg8274339

56 ChaPter 4 CreatIng multIPage WeBsItes

<script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

They can also be set on a per-link basis to override the default page transition.
This option is useful for a number of situations, such as creating pop-up windows
that use the pop transition:

Pop-up

Or, form submissions that use the flip transition:

<form action=”” method=”get”������������������������

 <input type=”text” name=”name”>

 <input type=”submit” value=”Submit”>

</form>

It’s even possible to set the page transition to none to disable the page transi-
tion for a particular hyperlink or form submission:

<form action=”” method=”get”�����������������������>

 <input type=”text” name=”name”>

 <input type=”submit” value=”Submit”>

</form>

jQuery also creates a reverse transition by automatically applying the same
page transition when the back button is pressed.

The complete example code for the global and individual page transitions
looks like the following:

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

ptg8274339

WorkIng WIth Page transItIons 57

 <title>Page Transitions - jQuery Mobile: Design and Develop
� </title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0.1/jquery.mobile-1.0.1.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
� jquery.min.js”></script>

 ��

 <script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

</head>

<body class=”container”>

 <div data-role=”page”>

 <div data-role=”header”><h1>Page Name</h1></div>

 <div data-role=”content”>

 <p>Pop-up
� </p>

 <form action=”” method=”get”�����������������������>

 <input type=”text” name=”name”>

 <input type=”submit” value=”Submit”>

 </form>

 </div>

 <div data-role=”footer”>Copyright</div>

 </div>

</body>

</html>

Beginning with the head of the document, you can see that the jQuery library
is loaded first, then the custom JavaScript where the mobileinit event from our
previous example is bound and the default page transition is set. Last, but not least,
the jQuery Mobile library is loaded. Within the page there’s a hyperlink that has a
pop transition applied and a form that has a flip transition applied.

ptg8274339

58 ChaPter 4 CreatIng multIPage WeBsItes

When pages are loading, a default message appears if there’s a delay or if the page
is not yet preloaded. The jQuery Mobile framework allows you to customize this
message and a page-error loading message.

You can customize the loading message through the loadingMessage property.
Set loadingMessage to any custom string by binding to the mobileinit event, which
jQuery Mobile fires as soon as the document loads.

$(document).bind(“����������”, function() {

 ��

});

This code will display a loading message that says “Please wait.” The default
message used for page loading is “Loading.” The property can also be set to false

to display no message at all:

$(document).bind(“����������”, function() {

 ��������������������������������

});

When there is an error loading a page, jQuery Mobile displays a message that
can also be customized through the API. The default message for page-load errors
is “Error Loading Page.” You can set the pageLoadErrorMessage property to any
custom string as the error message:

$(document).bind(“����������”, function() {

 ���������������������������������¢�����������������›����������
�
� ��������

});

customIzIng loading
messAges

ptg8274339

WraPPIng uP 59

Working with pages is easy with jQuery Mobile: all you really need to know is basic
HTML and a few mobile-related attributes. With most of the heavy lifting being
done by the framework, it’s easy to focus on the results of the website you’re build-
ing. Understanding the internal functionality behind how pages work in jQuery
Mobile is what begins to set you up for writing custom functionality. Customizing
specific functionality in the messaging and behind the scenes helps to personal-
ize your website. The level of customization that jQuery Mobile provides can be
very useful in making a website more user-friendly. Visual indicators, like custom
loading messages and page transitions, set expectations for visitors and provide
them with a frame of reference, so they know when certain things are happening.
Preloading and caching improves usability by speeding up page loads and giving
visitors what they want when they want it. jQuery Mobile provides fine-grained
control to enhance mobile websites in a custom way.

WraPPing up

ptg8274339

5

dIAlog wIndows
aNd buttons

ptg8274339

61

No mobile website or application is

complete without dialog windows,

pop-ups, and buttons to provide feed-

back and options to users. The jQuery Mobile framework lets you

create all of these with the addition of a simple data-rel attribute.

ptg8274339

62 ChaPter 5 dIalog WIndoWs and Buttons

creAtIng a basiC
dIAlog wIndow

Creating a basic dialog window is easy with jQuery Mobile. Just use the data-rel

attribute on any anchor tag and set its value to dialog:

data-rel=”dialog”

Dialog windows can be included with a page or pages in a single HTML file
just like a multipage template, or they can be external webpages like a single-
page template. To create a multipage template that includes a dialog window, you
simply add another jQuery Mobile page—the difference is in how you link to it. In
other words, any page can be a dialog window; what makes it a dialog is the way
it’s opened. The following example shows a hyperlink with a data-rel attribute,
which opens a page in a dialog window:

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Dialog - jQuery Mobile: Design and Develop</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0.1/jquery.mobile-1.0.1.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
� jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

</head>

<body>

 <div data-role=”page”>

 <div data-role=”header”><h1>Dialog Test</h1></div>

 <div data-role=”content”>

 <p>�������������������������������������
� �������������������������£���������</p>

ptg8274339

CreatIng a BasIC dIalog WIndoW 63

 </div>

 <div data-role=”footer”>Copyright</div>

 </div>

 ��

 ��������������������������	�������������������������
� ���	�������

 �������������������������

 ��⁄��������

 ������

 ������

</body>

</html>

In this example, there are two pages: the first page is displayed by default. Within
this default page there’s a hyperlink that has a data-rel=”dialog” and a link to an
anchor. The anchor that’s being linked to is the ID of the second page. The second
page is set up like any jQuery Mobile page: it’s opened as a dialog because of the
way it’s linked to. Figure 5.1 shows the result of this code.

figURe 5 .1 A multipage dialog
window.

ptg8274339

64 ChaPter 5 dIalog WIndoWs and Buttons

As mentioned, dialog windows can also be external webpages that are linked
to via a hyperlink with a data-rel=”dialog” attribute and value. The following
example is very similar to the previous one, with the main difference being that
the hyperlink is now pointing to an external HTML file called dialog-window.html:

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv=”Content-Type” content=”text/html;
� charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Dialog - jQuery Mobile: Design and Develop</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0.1/jquery.mobile-1.0.1.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
� jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

</head>

<body>

 <div data-role=”page”>

 <div data-role=”header”><h1>Dialog Test</h1></div>

 <div data-role=”content”>

 <p>���
� ��������������£���������</p>

 </div>

 <div data-role=”footer”>Copyright</div>

 </div>

</body>

</html>

ptg8274339

CreatIng a BasIC dIalog WIndoW 65

The HTML file that’s being linked to can be set up like any jQuery Mobile
webpage:

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

 <title>Dialog - jQuery Mobile: Design and Develop</title>

</head>

<body>

 <div data-role=”page”>

 <div data-role=”header”><h1>Single-page dialog window
� </h1></div>

 <div data-role=”content”>

 <p>�����������������������������⁄����</p>

 </div>

 </div>

</body>

</html>

The result of this code looks like Figure 5.2.

figURe 5 .2 A single-page
dialog window.

ptg8274339

66 ChaPter 5 dIalog WIndoWs and Buttons

jQuery Mobile dialogs can also be used as pop-up windows. Rather than load-
ing a dialog that typically provides or asks for feedback, the dialog can be another
webpage that includes copy, media, and so on. In the following example, the dialog
is used to open a YouTube video in a pop-up window:

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

 <meta name=”viewport” content=”width=device-width,
� initial-scale=1”>

 <title>Pop-up - jQuery Mobile: Design and Develop</title>

 <link rel=”stylesheet” href=”http://code.jquery.com/
� mobile/1.0.1/jquery.mobile-1.0.1.min.css” />

 <script src=”http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/
� jquery.min.js”></script>

 <script src=”http://code.jquery.com/mobile/1.0.1/
� jquery.mobile-1.0.1.min.js”></script>

 ���
����
��������������

 ���������������������›

 ����������������������›

 �����������������������

 �����������¥ƒ����

 �

 ����
���

</head>

<body>

 <div data-role=”page”>

 <div data-role=”header”><h1>Pop-up Test</h1></div>

 <div data-role=”content”>

 <p>President Barack Obama’s Inaugural Address</p>

 <p>��
� ���
�����§�������</p>

ptg8274339

CreatIng a BasIC dIalog WIndoW 67

 </div>

 <div data-role=”footer”>Copyright</div>

 </div>

</body>

</html>

Dialog windows have a predefined width, but these can be overwritten via the
.ui-dialog classes. The HTML file in this example that’s being loaded as a pop-up
window includes a YouTube video of President Obama’s inaugural address. Since
the video is 640 x 360 pixels, the max-width has been set to 640. However, since
the width of a mobile device can be much smaller than 640 pixels, the width for the
video iFrame in the pop-up window has been set to 100%. This allows the video
to fill the width of the pop-up window regardless of the size, with a max-width of
640 pixels:

<!DOCTYPE html>

<html>

<head>

 <meta http-equiv=”Content-Type” content=”text/html; charset=UTF-8”>

 <title>Pop-up - jQuery Mobile: Design and Develop</title>

</head>

<body>

 <div data-role=”page”>

 <div data-role=”header”><h1>President Barack Obama’s
� Inaugural Address</h1></div>

 <div data-role=”content”>

 ���������������	��¤����������'¥���������������
� ����
�����������������'���“⁄�����������������������
� �������������������������

 </div>

 </div>

</body>

</html>

ptg8274339

68 ChaPter 5 dIalog WIndoWs and Buttons

By default, the dialog (or pop-up) window includes a Close button, so you don’t
need to add any other hyperlinks or functionality to the dialog window. Figure 5.3
shows an example of the video pop-up window with President Obama’s inaugural
address.

Dialog windows also include transitions. The default transition is pop, but this
transition can be changed to flip or slidedown. To change the transition, add the
data-transition attribute to the hyperlink that includes the data-rel=”dialog”

setting. If we were to add a slidedown data-transition to the previous example,
the code would look like this:

 <a href=”popup-window.html” data-rel=”dialog” data-transition=
� ”slidedown”>Play now >

figURe 5 .3 A custom pop-up
window with video.

ptg8274339

272 Index

Index

$() function, using with HTML
elements, 7

^ (caret), using in regular
expressions, 46

- (dash)
using at end of namespaces, 178
using with custom namespaces, 25

(pound sign), including in
hyperlinks, 46

a
<a href> markup, 48–49
accordions, creating, 101–102
activeBtnClass property, 186
activePageClass property, modifying,

184–186
a-e swatches

examples, 162–163, 167
explained, 158
list divider theme, 168

Ajah (Asynchronous JavaScript and
HTML), 45

Ajax
disabling, 48–50
link types, 47
overview, 14
requests and responses, 15–16
use of, 16

ajax method, using, 16
Ajax navigation, 45

ajaxEnabled property, 187
disabling, 187
enabling, 187

alphabetical keyboard, 135–136
anchors, identifying in HTML, 46
Android SDK, 270
animation methods, availability of, 12–13
API (application programming

interface), 52
asynchronous, defined, 14
Asynchronous JavaScript and HTML

(Ajah), 45
attributes. See data- attributes

b
back button, hyperlink as, 50–51
background gradient, adding, 92–93
bind method

syntax for, 10
using with click events, 46

BlackBerry SDK, 270
blog posts

adding to WordPress, 233–235
creating in Drupal, 248
“Hello world!”, 232
listing in WordPress, 234–235
saving in WordPress, 233
viewing in WordPress, 233

box model feature, adhering to, 259–260
browser support, determining, 259–260
button classes, using, 184–186
button control groups, separating, 97
buttons. See also Save button; split

button lists
activeBtnClass property, 186
aligning, 81
checkmark data-icon, 72–73
converting hyperlinks to, 69
corners data- attribute, 70
customizing icons, 72
data attributes, 70
data-inline, 69
data-role, 69
defining themes for, 158
float left CSS, 81
float right CSS, 81
grouping, 80
home data-icon, 71–72
icon data- attribute, 70–71
iconpos data- attribute, 70, 72
iconshadow data- attribute, 70
inline data- attribute, 70
input elements, 70
positioning icons, 72
separating groups, 81
shadow data- attribute, 70
theme data- attribute, 70

buttons theming component, 161–162

	Contents
	Introducing the Future of Web Development
	Supported jQuery Mobile Platforms

