

Learning Ext JS

Build dynamic, desktop-style user interfaces for your

data-driven web applications

Shea Frederick

Colin Ramsay

Steve 'Cutter' Blades

 BIRMINGHAM - MUMBAI

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Learning Ext JS

Copyright © 2008 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of
the information presented. However, the information contained in this book is sold
without warranty, either express or implied. Neither the authors, Packt Publishing,
nor its dealers or distributors will be held liable for any damages caused or alleged to
be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: November 2008

Production Reference: 1201108

Published by Packt Publishing Ltd.
32 Lincoln Road
Olton
Birmingham, B27 6PA, UK.

ISBN 978-1-847195-14-2-14-214-2

www.packtpub.com

Cover Image by Michelle O'Kane (michelle@kofe.ie)

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Credits

Authors

Shea Frederick

Colin Ramsay

Steve 'Cutter' Blades

Reviewer

James Kennard

Senior Acquisition Editor

David Barnes

Development Editor

Swapna V. Verlekar

Technical Editor

Gagandeep Singh

Copy Editor

Sumathi Sridhar

Editorial Team Leader

Akshara Aware

Project Manager

Abhijeet Deobhakta

Project Coordinator

Neelkanth Mehta

Indexer

Monica Ajmera

Proofreader

Dirk Manuel

Production Coordinator

Rajni R. Thorat

Cover Work

Rajni R. Thorat

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

About the Authors

Shea Frederick began his career in web development before the term 'Web
Application' became commonplace. By the late 1990s, he was developing web
applications for Tower Records that combined a call center interface with inventory
and fulfillment. Since then, Shea has worked as a developer for several companies,
building and implementing various commerce solutions, content management
systems, and lead tracking programs.

Integrating new technologies to make a better application has been a driving
point for Shea's work. He strives to use open-source libraries, as they are often the
launching pad for the most creative technological advances. After stumbling upon a
young user interface library called yui-ext several years ago, Shea contributed to its
growth by writing documentation, tutorials, and example code. He has remained an
active community member for the modern yui-ext library—Ext JS. Shea's expertise
is drawn from community forum participation, work with the core development
team, and his own experience as the architect of several large Ext JS-based web
applications. He currently lives in Baltimore, Maryland, with his wife and two dogs,
and spends time skiing, biking, and watching the Steelers.

A big loving thanks goes out to my wife Becky for looking over my
shoulder to correct the many grammatical errors my fingers produce,
and for always being there to support me.

Colin Ramsay began his career building ASP websites as a part-time developer
at university. Since then, he's been involved with a range of web technologies
and employers in the North East of England, working on everything from flash-
in-the-pan web frameworks to legacy applications. Most recently, he has used
this experience to provide a springboard for the formation of his UK-based web
development company, Plastiscenic Limited. From writing articles and blog posts
across the web, Colin has made the leap to book authoring with the patience and
kind assistance of his friends and family.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Steve Blades (who goes by the name of 'Cutter'), a Virginia native, raised ina Virginia native, raised in
Georgia, began his computing career when he started learning BASIC at age
12, hammering out small programs on a Timex Sinclair 1000. As a linguist and
Intelligence Analyst for the US Army, Cutter began learning HTML while stationed
at the National Security Agency. On leaving the service, Cutter became part-owner
of a growing Advertising Specialty company, developing business automation
processes for the company by writing MS Office-based applications. From there,
Cutter went on to become a Customer Support Technician with a local Internet
Service Provider. Upon showing programming aptitude, he was later moved
into their Corporate Support department, providing maintenance and rewrites to
existing websites and applications. It was here that Cutter began to really dive into
web application programming, teaching himself JavaScript, CSS, and ColdFusion
programming. Cutter then took the position of IT Director for Seacrets, a large resort
destination in Ocean City, Maryland, while also holding the same position for one
of its owner's other companies, Irie Radio. Now, Cutter is the Senior Web Developer
for Dealerskins, a company that develops and hosts websites for the automobile
dealership industry. He lives and works in Nashville, Tennessee with his wife Teresa
and daughter Savannah.

Apart from work, side projects, and maintaining his blog (http://blog.
cutterscrossing.com), Cutter also enjoys spending time with his family, is an avid
reader and a videophile, and likes to relive his band days with a mic in hand.

I would like to thank a few people for their support while I have
been working on this project. First, thanks to Jack Slocum and
the entire Ext JS team for giving us such a great library to write
about. Thanks to the Dev Team at Dealerskins for helping proof
my chapters. Thanks to my Mom, for buying me my first book on
programming. But, most of all, thanks to my wife, Teresa, and my
daughter, Savannah, for giving me the time, space, love, and
support needed to work on this project. I could never have done
it without them.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

 About the Reviewer

James Kennard is an all-round computer specialist with a particular interest in
web-based technologies. He authored the Joomla! CMS book Mastering Joomla! 1.5
Extension and Framework Development. He holds a B.Sc. in Computer Science and has
worked for organisations such as LogicaCMG. James has recently taken an interest
in user interfaces and overall UX—it is this which led him to the truly superb
Ext JS project.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 1

[21]

A language other than English
The second option requires that we include one of the language files from the
build/locale folder. This option works by overwriting the English text strings, so it
should be included after all of the other library files, as shown below:

<link rel="stylesheet" type="text/css"
 href="lib/extjs/resources/css/ext-all.css" />
<script src="lib/extjs/adapter/ext/ext-base.js"></script>
<script src="lib/extjs/ext-all-debug.js"></script>
<script src="lib/extjs/build/locale/ext-lang-es.js"></script>

I have included the Spanish translations for this example. Let's see what our test
page looks like now:

Elements that are part of the UI have been localized—these generally include
calendar text, error messages, tool tip info messages, paging info, and loading
indicators. Messages that are specific to your application, such as the Hi title,
and Hello World Example text will need to be translated and added to the
ext-lang-XX.js file (where 'XX' is your two letter language code) or added to a
new language file of your own. The preferred method is to create a language file of
our own with just the additions and changes we need, this leaves us prepared for
upgrades and fixes in the primary language file.

Multiple languages
The third method of switching between different languages is basically the same
as the second. We would just need to add some server-side scripting to our page
to enable the switching between language files. Unfortunately, switching between
languages cannot be done entirely dynamically. In other words, we can't do it in real
time and watch it happen on the screen.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Getting Started

[22]

Ext JS online community
The online community for Ext is full of quite a few very knowledgeable people, and
often, the Ext core developers are answering questions on the forum.

http://www.extjs.com/forum/

If you run into problems, or run up against a wall, a search of the forum is likely to
yield what you are looking for. I would suggest getting the Google forum search tool
that is available in the Learn section of the Ext web site.

http://www.extjs.com/learn/

When asking questions in the forum, be sure to include as much detail
about the error(s) as possible. Posting the exact text of an error message
and only the relevant portions of your code is the best way to get a
response from the community.

Summary
In this chapter, we have covered the basics of what you need to do to get Ext up and
running, and what a simple script looks like. It's easy to miss a minor detail and get
stuck with an error message that makes no sense. But now, you should be prepared
to conquer any initial errors that you might come across.

The example we created showcases what Ext excels at: providing the user interface.
We only used dialogs, but, as you now know, a few lines of code are all that are
needed to display an Ext widget. The main goal of this chapter was to get Ext
installed and working, so we can start creating some really sweet widgets.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext
In this chapter, we will start to use and interact with Ext widgets for the first time, by
creating a series of dialogs that interact with each other, the user, and the web page.
We will be using the onReady, MessageBox, and get functions to learn how to create
different types of dialogs and modify HTML and styles on our page. Furthermore, in
this chapter, we will be:

Finding out how to configure Ext widgets easily

Waiting for the DOM (Document Object Model) to be made available
for interaction

Using dialogs to figure out what the user wants to do

Dynamically changing the HTML and CSS on our page in response to the
user's inputs

We will start by covering some of the core functions of Ext. We will take a look at
how the example given in the first chapter worked, and will expand upon it. The
following core functions of Ext will be used on every project that we work on during
the course of this book:

Ext.onReady: This function makes sure that our document is ready to be
thrashed out

Ext.Msg: This function creates application-style message boxes for us

configuration objects: This function defines how Ext widgets will act

Ext.get: This function accesses and manipulates elements in the DOM

Ready, set, go!
In this section, we'll look at the onReady event—the first thing that you need to deal
with when you are working with Ext. We will also see how to display some different
types of dialogs, and how to respond to the users' interaction with those dialogs.
Before we get to that, we need to cover some ground rules about working with Ext.

•

•

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[24]

Spacer image
Before we proceed any further, we should provide Ext with something it needs—a
spacer image. Ext needs a 1 pixel by 1 pixel, transparent, GIF image to stretch in
different ways, giving a fixed width to its widgets. We need to set the location of this
spacer image using the following line:

Ext.onReady(function(){
 Ext.BLANK_IMAGE_URL = 'images/s.gif';
});

You're probably wondering why we need a spacer image at all. The user interface of
Ext is created using CSS, but the CSS needs underlying HTML elements to style so
that it can create the look and feel of Ext components. The one HTML element that
is an exact, predictable size across all browsers is an image. So an image is used
to define how an Ext component is drawn. This is a part of how Ext maintains its
cross-browser compatibility.

Widget
Ext has many "widgets". These include components such as a message box, grid,
window, and pretty much everything else that serves a particular user interface
function. I prefer to view components like onReady more as core functions, and only
refer to components that provide a specific user interface role as a "widget"—like the
grid that is used to present tabular data to the user.

Time for action
Let's create a new page (or just modify the 'getting started' example page) and add
the code to display a dialog when the page is ready:

Ext.onReady(function(){
 Ext.BLANK_IMAGE_URL = 'images/s.gif';
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
});

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[25]

As we did in the previous chapter, we have placed our code inside an onReady
function. We can then start to code our dialog and configure it using a config object.
The config object used for this dialog has three elements, the last of which is a
nested object for the three buttons.

Here is how our code now looks in a browser:

This displays what appears to be a very minimal dialog, but if we start clicking on
things, the built-in functionality of Ext becomes apparent. The dialog can be dragged
around the screen by grabbing the title bar, just like the dialog in a typical desktop
application. There is a close button built–in, and pressing the Escape key when the
dialog has focus, or clicking on the Cancel button will close the dialog.

What just happened?
Let's take a closer look at the two core Ext functions we have just used:

Ext.onReady: This function provides a way to make our code wait until the
DOM is available, before doing anything. This is needed because JavaScript
starts executing as soon as it is encountered in the document, at which point,
our DOM elements might not exist.

Ext.Msg.show: This is the core function used for the creation of a dialog. It
takes care of everything needed to have a working dialog. There are some
shortcuts that can be used for common dialog types, which will help you
save time. We will cover these in just a minute.

Using onReady
It's time to examine the code we just used to display our dialog.

 Ext.onReady(function(){
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[26]

 no: true,
 cancel: true
 }
 });
 });

The onReady function is what we use to make our code wait until the document is
ready. The argument passed toThe argument passed to onReady is a function, which can be passed in as a
function name, or created in-line, as we have done in the example code. This method
of creating a function in-line is referred to as an anonymous function, which is used
when you plan on calling a particular function only once.

If we were executing a function that will be used again, then we could define and call
it like this:

 Function stapler(){
 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 }
 });
 }

 Ext.onReady(stapler());

When we start to make our application bigger, we are not likely to use many
anonymous functions, and will probably opt for creating re-usable functions.

The buttons record can also specify the text to display on the button.
Instead of passing a boolean value, just pass it the text you want, for
example, {yes: 'Maybe'}.

More widget wonders
Let's get back to making our little application as annoying as possible by adding an
icon and buttons! This can be done by adding a style for the icon, and modifying the
config to have an icon record along with a buttons record.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[27]

First, let's discuss the CSS we need. Add the following code into the head of the
document, within a style tag:

 .milton-icon {
 background: url(milton-head-icon.png) no-repeat;
 }

Also, we will make some changes to our widgets configuration. The icon record
just needs our style name as the value, milton-icon. We have also included a
function to be executed when a user clicks on any of the buttons in the dialog. This
function is created as an anonymous function, and in this case, it is merely used to
pass variables:

 Ext.Msg.show({
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 },
 icon: 'milton-icon',
 fn: function(btn) {
 Ext.Msg.alert('You Clicked', btn);
 }
 });

In our case, the function has only one argument, which is the name of the button
that was clicked. So if our user was to click the Yes button, the btn variable would
contain a value of yes. Using the example code, we are taking the name of the button
clicked, and passing it to alert, as the message.

The built-in functionality takes care of making sure the Cancel button, the
close icon in the upper right corner, and the Esc key are all tied together
to perform the cancel action. This is one of the many ways in which Ext
makes the coding of web applications easier for us.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[28]

Meet JSON and the config object
In our example, we are utilizing what's called a config object, which is the primary
way to get Ext to do what you want. This is what provides the configuration of the
different options that are available for the function that is being used.

The old way
We used to call functions with a pre-determined set of arguments. This means that
we had to remember the order of the arguments every time the function was used.

var test = new TestFuntion(
 'three',
 'fixed',
 'arguments'
);

This old way of using functions can create many problems:

It requires us to remember the order of the arguments

It does not describe about what the arguments represent

It provides less flexibility in dealing with optional arguments

The new way—config objects
Using a config object, we are able to have a larger level of flexibility, and can tell
what our variables are in descriptive plain text. The order of our arguments no
longer matters—firstWord could be the last item, and thirdWord could be the first,
or they could be in any random order. With the config object method of passing
arguments to your functions, the arguments no longer needs to be tied down to a
specific place.

var test = new TestFunction({
 firstWord: 'three',
 secondWord: 'fixed',
 thirdWord: 'arguments'
});

This method also allows for unlimited expansion of our function's arguments. Using
fewer arguments or adding new arguments is simple. Another great result that
comes by using a config object is that the prior usage of your functions will not be
harmed by the addition or subtraction of arguments at a later point.

var test = new TestFunction({
 secondWord: 'three'
});

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[29]

var test = new TestFunction({
 secondWord: 'three',
 fourthWord: 'wow'
});

What is a config object?
If you are familiar with CSS or JSON, you'll notice that a config object looks similar
to these, mostly because they are all the same. Config objects are just ways of
structuring data so that it can easily be read by programming languages—in our
case, JavaScript.

For an example, let's take a look at the config portion of our example code:

{
 title: 'Milton',
 msg: 'Have you seen my stapler?',
 buttons: {
 yes: true,
 no: true,
 cancel: true
 },
 icon: 'milton-icon',
 fn: function(btn) {
 Ext.Msg.alert('You Clicked', btn);
 }
}

The particular config that we are using here may appear complex at first, but once
we get to know it, it becomes an extremely fast way of configuring widgets. Just
about every Ext widget uses a configuration object, so this is something that we
will want to become very familiar with. The config object will become our new
best friend.

Here are some key things to remember when working with a config object:

Curly brackets wrap around your whole record set, which symbolizes the
records inside the brackets as being part of an object—{records}.

Each record consists of a set of name/value pair, with the name and value
separated by a colon, and pairs separated by commas—{name0: value0,
name1: value1}.

The records' values can contain any type of data, including boolean, array,
function, or even another object—{ name0: true, name1:
{ name2: value2 } }.

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[30]

Square brackets identify an array—{name: ['one', 'two', 'three'] }.
An array can also contain objects with records, values, or any number of
other things.

The best thing about using JSON to configure our widgets is that if we want more
options, we just start typing them out. Presto! Unlike a typical function call, the order
of your config options has become irrelevant, and there can be as few or as many
as necessary.

How does JSON work?
Sometimes, you will hear people talk about eval, which generally refers to JSON.
The eval function is what JavaScript uses to interpret a JSON string, converting it
into the objects, arrays, and functions that we are using.

Time for action
Ok! So now we've seen how to get our Ext JS party started and ask the user a
question. Now let's see what we can do with their answers. Let's add to our dialog's
function so that we can decide what to do in response to each of the button-clicks. A
switch statement can take care of deciding what to do in each case:

fn: function(btn) {
 switch(btn){
 case 'yes':
 Ext.Msg.prompt('Milton', 'Where is it?');
 break;
 case 'no':
 Ext.Msg.alert('Milton',
 'Im going to burn the building down!');
 break;
 case 'cancel':
 Ext.Msg.wait('Saving tables to disk...','File Copy');
 break;
 }
}

Remember those built in dialog types I mentioned earlier? Well we just used some of
them. They let us accomplish some common tasks without spending time writing the
config needed for each standard scenario.

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[31]

Click OK and you get a prompt. A prompt is the common name for a small window
that allows you to enter a single value, and is a standard element in almost every
user interface.

Click No and you get an alert. I'm sure you are familiar with the standard alert
dialog in JavaScript. I remember the first time I used an alert dialog in JavaScript. I
was so excited to have an alert message on my home page that I made it pop up and
say "Click OK if you are a moron".

Click the Cancel button(or click the close button or press thebutton(or click the close button or press the(or click the close button or press the Escape key) and you will
get a wait message that's using a progress dialog.

The progress dialog we are using can be controlled by Ext and be notified when
it should disappear. But for the sake of simplicity, in this example, we are letting it
run forever.

Button focus and tab orders are built into Ext. Typically the OK or Yes
button will be the default action. So pressing Enter on your keyboard will
trigger that button, and pressing Tab will move you through the buttons
and other items in the dialog.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[32]

Lighting the fire
Now, we can start causing some reactions in our page, based on the users' responses
to the dialogs. We are going to add to our switch statement, which takes care of
a Yes button click. The prompt function can handle a third argument, which is the
function to be executed after the Yes button has been clicked. We are defining this so
that the function will check to see if the value entered into our prompt dialog is equal
to the office and then write this text to a DIV in our page if it is, and a default text
of Dull Work if it does not. The code also applies a style to the same DIV, which uses
a "Swingline" stapler background image.

case 'yes':
 Ext.Msg.prompt('Milton', 'Where is it?', function(btn,txt)
{
 if (txt.toLowerCase() == 'the office') {
 Ext.get('my_id').dom.innerHTML = 'Dull Work';
 }else{
 Ext.get('my_id').dom.innerHTML = txt;
 }
 Ext.DomHelper.applyStyles('my_id',{
 background: 'transparent
 url(images/stapler.png) 50% 50% no-repeat'
 });
 });
break;

The no case will display an alert message, which also styles the document when the
No button is clicked.

case 'no':
 Ext.Msg.alert('Milton',
 'Im going to burn the building down!',
 function() {
 Ext.DomHelper.applyStyles('my_id',{
 'background': 'transparent
 url(images/fire.png) 0 100% repeat-x'
 });

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[33]

 Ext.DomHelper.applyStyles(Ext.getBody(),{
 'background-color': '#FF0000'
 });
 Ext.getBody().highlight('FFCC00',{
 endColor:'FF0000',
 duration: 6
 });
 });
break;

The workhorse—Ext.get
Ext is able to work so well, because it has a foundation that provides access to
the DOM, and to many functions that allow manipulation of the DOM. Of these
functions, get is one of the most used.

 Ext.get('my_id');

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

The Staples of Ext

[34]

This gives us access to an element in the document with the ID, my_id. If we take a
look at the first example, it is using getBody , which retrieves the body element and
applies our effect to that. Let's switch that around to use my_id instead. But first, we
will need to create a my_id element in our document:

 <div id='my_id'
 style='width:200px;height:200px;'>test</div>

If we add this to the body section of our document, and change our effect to
reference this instead of the body, then our effect will happen only to the my_id
div we created:

 Ext.get('my_id').highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

If we now looked at our document in a browser, we would see a 200-pixel square box
changing color, instead of the entire body of the document changing color.

Bear in mind that IDs are unique. So once we have used my_id, we cannot use this
ID again in our document. If duplicate IDs exist in your document, then the last one
found will be used. But this should be considered as a bug, and not a design practice.
For the most part, Ext creates and tracks its own IDs, and most of the time, we will
default to Ext's tracking of the document elements and not create them on our own.

Having duplicate IDs in your document can lead to strange behavior,
such as a widgets always showing up in the upper left corner of the
browser, and is therefore best avoided.

Speed tip
This isn't exactly a speed tip, but is more about conserving memory by using
something called a "flyweight" to perform simple tasks, which results in higher speed
by not clogging up the browser's memory.

The same highlight effect we just used, could be written using a flyweight instead:

 Ext.fly('my_id').highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

This is used when we want to perform an action on an element in a single line of
code, and we do not need to reference that element again. The flyweight re-uses the
same memory over and over each time it is called.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 2

[35]

Here is an example of using a flyweight incorrectly:

 var my_id = Ext.fly('my_id');
 Ext.fly('another_id');
 my_id.highlight('FF0000',{
 endColor:'0000FF', duration: 3
 });

Because the flyweight re-uses the same memory each time it is called, by the time
we run the highlight function on our my_id reference, the memory has changed to
actually contain a reference to another_id.

Summary
Using only a few lines of code, we have created a fun program that will keep you
entertained for hours! Well, maybe not for hours, but for at least a few minutes.
Nonetheless, we have the beginnings of the basic functionality and user interface
of a typical desktop application.

We have learned the basics of using configuration objects, and I'm sure this will
make even more sense after we have had the chance to play with some more Ext
widgets. But the real point here is that the configuration object is something that is
very fundamental when using Ext. So the quicker you can wrap your head around it,
the better off you will be.

Don't worry if you are not entirely comfortable with the configuration object yet.
We have plenty of time to figure it out. For now, let's move on to one of my favorite
things—forms.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms
In this chapter, we will learn how to create Ext forms, which are similar to the HTML
forms that we use, without the usability restrictions and boring user interface.

We use some different form field types to create a form that validates and submits
asynchronously. Then we will create a database-driven, drop-down menu
(ComboBox), and add some more complex field validation and masking. We will
then finish it off with a few advanced topics that will give our forms some serious
'wow' factor.

The goals of this chapter include:

Creating a form that uses AJAX submission

Validating field data and creating custom validation

Loading form data from a database

The core components of a form
The possibilities are endless with Ext forms. Key listeners, validation, error messages,
and value restrictions are all built in with simple config options. Extending a form
option for your own specific needs can be done easily, which is something we will
cover later on in this chapter. Here are some of the core form components that you
should become familiar with:

Ext.form.FormPanel: Groups fields together in a panel, much as the FORM
tag does for a standard HTML form

Ext.form.Field: As the primary handler of form field creation and
interaction, it can be compared to the INPUT tag in HTML

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[38]

Our first form
To start with, let's create a form with multiple field types, a date picker, validation,
error messages, and AJAX submission—just a simple one for our first try.

For this example, our fields will be created using a config object instead of an
instantiated Ext.form.Field component. This method will work just fine, will take
less time to code, and will help our code run faster. A basic HTML page like the one
we used in the previous example will be used as a starting point. The standard Ext
library files need to be included and, as with everything we create in Ext, our code
will need to be wrapped in the onReady function.

 Ext.onReady(function(){
 var movie_form = new Ext.FormPanel({
 url: 'movie-form-submit.php',
 renderTo: document.body,
 frame: true,
 title: 'Movie Information Form',
 width: 250,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title'
 },{
 xtype: 'textfield',
 fieldLabel: 'Director',
 name: 'director'
 },{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released'
 }]
 });
 });

When we run this code in a browser, we end up with a form panel that looks
like this:

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[39]

Nice form—how does it work?
The FormPanel is very similar to an HTML form. It acts as the container for our
form fields. Our form has a url config so the form knows where to send the data
when it is submitted. It also has a renderTo config, which defines where the form is
displayed on the page.

The items config element is the important one as it contains all of our form fields.
The items config element is an array of fields. Each field element has an xtype that
defines which type of Ext component will be used: text, date, or number. This could
even be a grid or some other type of Ext component.

Form fields
Now we know that each type of field is defined by its xtype. But where do xtypes
come from, and how many of them are there? An xtype is just a reference to a
particular Ext component, so a 'textfield' xtype is the same as its Ext.form.TextField
counterpart. Here are examples of some of the xtypes that are available to us:

textfield

timefield

numberfield

datefield

combo

textarea

Because these are all just Ext components, we could easily be using a grid, toolbar,
or button—pretty much anything! A recurring theme in Ext components is that
everything is interchangeable, and everything shares the same core functions. This
ensures that just about any scenario can be handled with the Ext library.

Our basic field config is set up like this:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title'
}

Of course, we have the xtype that defines what type of a field it is—in our case it is a
textfield. The fieldLabel is the text label that is displayed to the left of the field,
although this can also be configured to be displayed on the top or the right side of
the field. The name config is just the same as its HTML counterpart and will be used
as the variable name when sending the form data to the server.

•

•

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[40]

The names of most of the config options for Ext components match
their counterparts in HTML. This is because Ext was created by web
developers, for web developers.

Making our date field isn't much different from making the text field. Change the
xtype to a datefield, and we're done.

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released'
}

Validation
A few of our sample fields could have validations that present the users with errors
if the user does something wrong. Let's add some validation to our first form. One of
the most commonly-used types of validation is checking to see if the user has entered
any value at all. We will use this for our movie title field. In other words, let's
make this field a required one:

{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
}

Setting up an allowBlank config option and setting it to false (the default is true)
is easy enough. Most forms we build will have a bunch of required fields just
like this.

Each type of Ext field also has its own set of specialized validations that are specific
to the data type of that field. For instance, a date field has ways to disable certain
days of the week, or to use a regular expression to disable specific dates. The
following code disables every day except Saturday and Sunday:

{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
}

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[41]

In this example, everyday except Saturday and Sunday is disabled. Keep in mind
that the week starts on 0 for Sunday, and ends on 6 for Saturday.

When we use other types of fields, we have different validations, like number fields
that can restrict the size of a number or how many decimal places the number can
have. The standard validation options for each field type can be found in the
API reference.

Built-in validation—vtypes
Another more complex type of validation is the vtype. This can be used to validate
and restrict user input, and report back error messages. It will work in just about any
scenario you can imagine because it uses regular expressions to do the grunt work.

Here are some built-in vTypes that can come in handy:

email

url

alpha

alphanum

•

•

•

•

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Forms

[42]

These built-in vtypes are intended to be simplistic, and mostly used as a starting
point for creating your own vtypes.

Here is an alpha vtype being used with a QuickTips balloon error message:

 Ext.onReady(function(){
 var movie_form = new Ext.FormPanel({
 url: 'movie-form-submit.php',
 renderTo: document.body,
 frame: true,
 title: 'Movie Information Form',
 width: 250,
 items: [{
 xtype: 'textfield',
 fieldLabel: 'Title',
 name: 'title',
 allowBlank: false
 },{
 xtype: 'textfield',
 fieldLabel: 'Director',
 name: 'director',
 vtype: 'alpha'
 },{
 xtype: 'datefield',
 fieldLabel: 'Released',
 name: 'released',
 disabledDays: [1,2,3,4,5]
 }]
 });
 });

All we did was add a vtype to the director field. This will validate that the value
entered is composed of only alphabetic characters.only alphabetic characters.alphabetic characters.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

Chapter 3

[43]

Now we're starting to see that the built-in vtypes are very basic. The built-in alpha
vtype restricts our fields to alphabet characters only. In our case, we want the user
to enter a director's name, which would usually contain only alphabet characters,
with just one space or a hyphen. Capitalizing the first characters in the names could
possibly make them look pretty.

A search of the Ext forum is likely to come back with a vType that
someone else has created that is either exactly what you need, or close
enough to use as a starting point for your own requirements.

Styles for displaying errors
Forms are set up by default with a very bland error display which shows any type
of error with a squiggly red line under the form field. This error display closely
mimics the errors shown in programs like Microsoft Word when you spell a word
incorrectly. We do have other options for displaying our error messages, but we will
need to tell Ext JS to use it.

The preferred option is to display the error message in a balloon. This utilizes the
standard squiggly line, but also adds a balloon message that pops up when you
mouse over the field.

We just need to add a line of code before our form is created that will initialize the
balloon messages. Typically this is the first line within the OnReady function.

For example:

 Ext.onReady(function(){
 Ext.QuickTips.init();
 // our form here

 });

This is all that needs to happen for your form fields to start displaying error
messages in a fancy balloon.

This material is copyright and is licensed for the sole use by Roman Heinrich on 25th December 2008
Am Hilligenbusch 47, , Paderborn, NRW, 33098

