
Performance

Rocks
by Thomas Fuchs & Amy Hoy

JavaScript Rocks! presents...

find more awesome JavaScript stuff at http://www.jsrocks.com

JavaScript

Contents
JavaScript Performance Rocks!	 1

How this book works	 1

This Book is a Beta Book	 1

Why This Book Costs Money & Why You Should Pay	 2

Sections	 3

You, Performance. Performance, You.	 4

The Inverted Pyramid	 5

If an app is on the network but there’s no one there to use it, is it slow? 	 6

Is Your App Behaving Badly?	 10

The 3 levels of measurement	 11

Your Toolbox	 12

Strata in the Problemosphere	 13

Custom Benchmarking	 14

Getting accurate results	 17

Welcome to Loadtime	 18

That page just takes forever!	 18

Two types of loadtime laments	 19

How we’ll fix it	 20

Making the right choices for your app	 21

Moving Forward	 21

Loadtime: Script Load Order	 22

Loadtime: The Cachét of Caching	 24

Expiration Headers	 24

Caching Strategies	 26

Configuring Apache 1.x and 2.x	 29

Configuring nginx	 31

Configuring Lighttpd	 32

Caching Gotchas: JSON & Generated JavaScript	 33

Loadtime: Con-ca-te-nation	 34

Loadtime: Inlining & Precaching	 37

Inlining Isn’t Evil	 37

Pre-caching: A Beautiful, Sneaky Trick	 39

Loadtime: Under Compressure	 42

The Problems with Packing	 42

Good Minification	 44

Gee! Gzipping is the Answer	 48

Google gzips So You Don’t Have To	 49

Loadtime: Cover Your Assets	 54

Using Multiple Asset Hosts	 55

Loadtime: You Need an Upgrade	 58

Out of Sight, Not Out of Mind	 58

Catching Back-end Issues	 59

Profiling Back-end Issues	 59

Loadtime: Reduce Complexity	 61

General Complexity	 62

Watch out for Ajax	 62

Browser-specific Complexity	 63

Loadtime: JavaScript, On-Demand!	 65

Inserting JavaScript on Demand	 65

Welcome to Runtime	 67

On Premature Optimization	 67

JavaScript Parsing Speed	 68

Execution Speed vs Code Size	 70

Runtime: DOM, DOM DOM DOMMM	 71

Cue Dramatic Mozart Music, for the Document Object Model	 71

Looking for Elements in All the Wrong Places	 71

Event Bubbling	 74

The InnerHTML Accessor	 77

DOM Complexity	 78

Checking an Element’s Contents	 78

Setting Element’s Styles	 79

Keep it Simple	 80

Runtime: Pure, Clear JavaScript	 81

The with() Statement	 81

Loops: Best Practices	 82

Method Calls	 83

Variable Caches	 83

If() vs Switch()	 85

String Concatenation	 86

Reduce Namespaced Calls	 89

Write Simpler Code	 90

Accessing Object Properties	 91

Testing if a Property Exists	 92

Impact of Try/Catch	 93

Low-Hanging Fruit Grab Bag	 93

Concise Code Techniques	 96

Improve perceived performance with long-running calculations	 97

Operator Tricks and Hacks	 99

iPhone Tips & Tricks	 101

Separate Versions Required	 101

Shrinky Dink, Under 25K	 101

Exploit Webkit	 102

Simplify, Simplify, Simplify	 102

Make a special case for the iPhone	 102

Advice Grab Bag	 103

Welcome to our beta book. Thanks for purchasing!

How this book works
Short, sweet, funny—that’s our goal.

This Book is a Beta Book
This book is in BETA. That means it’s not done. There are some holes in
our narrative, and we’re adding new content all the time.

Right now, for example, only a couple of our sweet infographics are
placed in the book at all... but believe us, we’re working on more. And
some of the writing’s pretty rough, too. (But the code’s all been checked.
However, we’re only human.)

As a purchaser of the beta book, you’re entitled to free updates, until the
book’s complete.

We’ll put you on our mailing list, with the purchasing email address used
when you paid with PayPal. (If you don’t hear from us regarding this,
drop us a line at amy@slash7.com.)

JavaScript Performance Rocks!
Everybody’s Favorite Beta Book

introduction

BETA ALERT!

Introduction

2

And we’d like your feedback!

Licensing & Cost
This ebook is not open source. We reserve all commercial and moral
rights to the book, materials, and supplied code (where not under an
existing license).

However, we have no interest in limiting or taking away your fair use
rights to excerpt, review, criticize, and parody. Go right ahead!

This ebook costs $24 a seat for individuals during the beta period, $29
afterwards, and also comes with a subscription to the private email list
and forum.

For site licenses of up to 100 individuals employed by the same
corporate entity, the price is $199.

To put this into perspective, each one of us charges more for an hour of
our consulting time than the 100-seat license.

Why This Book Costs Money & Why You
Should Pay
We want to share our hard-won expertise with the world for a reasonable
price so we can keep on creating free and cheap content, code, and art

Introduction

3

for everyone to enjoy.

That “cheap and free content, code, and art” includes Scriptaculous itself,
the hundreds of helpful and entertaining blog posts, and other such
goodies that everyone benefits from.

Please buy a copy if you’ve received this copy without paying.

It costs the equivalent of two movie tickets or two trips to McDonald’s.
We know it’ll be worth more than that to your projects and your
business.

Now that we’ve dispensed with the preaching....

Sections
This book is divided into four major sections:

Intro1.	 (you are here)
Loadtime2.	 — loadtime performance problems & solutions
Runtime3.	 — issues that involve code actually running, & their solutions
iPhone4.	 — tips & tricks specially for the iPhone

With no further ado, let’s get started!

Double éntendres or otherwise, “performance” has become a loaded
word. It can be used to mean just about anything. But this isn’t spam
pimping le weekender, this is a book on one very specific thing:
JavaScript performance in highly interactive web applications.

And when it comes to rich, JavaScript-heavy, highly interactive web
applications, performance is a many-headed beast. It is a combination of
objective metrics and perceptual ones.

In terms of real things you can measure, your web application’s
performance depends on this hodgepodge of technical factors:

user’s environment (hardware, software)•	
network connection & bandwidth•	
browser engine•	
current DOM•	
libraries•	
your JS•	

You, Performance. Performance, You.
In our outline for this report, this section was originally
penciled in as “introduction to performance.” So, dear
reader, say hello to performance. You may not have met it
yet, but you’re about to.

Chapter 1

You, Performance. Performance, You.

5

The Inverted Pyramid
This pyramid describes the factors that determine your application’s
performance, in the order of the affect that they have. You must have
noticed two things right away about this pyramid: 1) it’s a
rainbow (how cheesy), and 2) it’s upside down.

While the rainbow was purely an aesthetic choice which we
shall not bother to defend, the upsidedownness is another story.
Simply put, we drew the sucker upside down to reflect reality.

The 3 biggest and baddest slices—your user’s hardware & OS,
their (& your) internet connection, and their browser—are
typically outside of your control.

This is a performance fact you must not forget:

If you can’t control it, you have to compensate for it.

Tattoo it on the back of your hand, sharpie it on the front of your
forehead, or if you’re normal, put it on a sticky note in blue ballpoint
and slap it on your monitor. It’s the number one rule of web app
performance. Don’t forget it.

And it will be a theme throughout this book.

You, Performance. Performance, You.

6

If an app is on the network but there’s no one
there to use it, is it slow?
However, most genuine reasons (speaking seriously) fall into two major
categories:

critical to the application’s function•	
extremely important for the pleasure and/or sanity of users•	

The difference is in the observing: is the app’s performance being judged
by cold, falsifiable logic (necessary business function), or a soft, mushy
human (is it affecting user happiness and that alone)?

Take, for example, the concept of perceived performance. You can tweak
the HTML bones of a web app in a few ways such that it takes the same
amount of time to download (true measurable performance) but 3-4x as
long to render (a difference only in perceived performance).

Business Function

There are any number of applications where speed is, in fact, mission
critical to the purpose of the application: game communication, business
transactions that are time-sensitive, anything where it matters who was
first or where there’s another kind of deadline.

business

function
user happiness

It’s not exactly a Venn diagram because
when something is critical to business
function, it’s simply critical. You can’t get
around it. The rest of the time, it’s just
about user happiness.

You, Performance. Performance, You.

7

In these cases, you can measure the performance very objectively. You
know the failure case:

Is the app performant? Well, did it respond such that the function isn’t
compromised due to delay? Did the game coordinates, buy order, or bid
come in at the right time and in the right order?

While these types of performance problems can be very sticky wickets
indeed, they are the performance problems you know about.

User Happiness

The majority of performance needs, however, fall under the headline of
what we’ll broadly call “user happiness.”

Waiting for an important application to load—or worse, waiting for the
application to respond—has been known to cause hair-tearing, keyboard-
smashing frustration in human subjects.

The more important the application is to people, the more frustrating it is
to wait. It doesn’t matter whether “importance” is an official designation
(e.g. for business), or just something they have incorporated into their
daily lives (e.g. Twitter).

You, Performance. Performance, You.

8

This—like happiness of any sort—is harder to test. It’s hardly objective at
all:

Is the app performant? Well, Joe keeps using it, but Mary Sue switched
to an open source alternative. And Bob and Alice don’t log in half as
much as they used to. Chris and Sandy use it all the time (but what you
don’t see is the teeth-gritting and nasty talk around the watercooler and
on their blogs).

Here you must rely on the inexact science of knowing how much crap
people will take before they leave.

Your users often won’t complain about your application’s speed (at least
not to your face). They may slowly disappear, or they may use it less, or
they may grin and bear it—and strangle kittens when you’re not looking.

Unless you have psychic kittenvision, these are often the performance
problems you don’t know about. They’re the scary ones.

Sins of premature optimization aside, user happiness—and the silence of
user unhappiness—remains the number one reason to be proactive about
your application’s speed.

You, Performance. Performance, You.

9

Beautiful cascade of failure

Go ahead and enter javascript:while(true){} in a browser near you.
Notice how the complete browser window freezes, and you can’t do a
single thing until a dialog pops up.

Meet your worst case scenario:

Don’t forget that JavaScript is single-threaded and one apple can spoil the
whole bushel.

So. We care about performance, and we’ve begun to understand that,
paradoxically, a lot of what constitutes performance is out of our control.

Time to get started.

You can’t really say you know what position your app’s in unless you
measure, measure, and measure again.

Traditional web sites are fairly easy to handle, when it comes to
performance: you look at page weight, you look at server generation
time, and you do the math.

And if the server time is way too long, you dig into the code and the
database. This is less simple, but we’ve had a lot of years to come up
with a good process.

Highly interactive apps are a whole ‘nother level of complicated.

Adjust your toolbelt, Batman, because it’s about to get a lot heavier.

Is Your App Behaving Badly?
Or... Where Does It Hurt? Because It Must Hurt Somewhere

In the next two sections, we’ll talk about how to kill all
sorts of problems, and the interaction bandages you can
use if you really, really can’t work around them. But first, a
holistic look at your app is in order.

Chapter 2

Is Your App Behaving Badly?

11

The 3 levels of measurement
Measuring tools & approaches fall into roughly three categories, with
increasing levels of detail. To get a complete picture of your app’s
performance health, you’ll need to use all three.

Assessing.
These tools measure the big picture: page size, download speed, DOM
complexity, render time, memory usage, whether your caching is good,
that sort of thing.

Profiling.
When you profile, you are specifically timing parts of your code’s
execution time. Profiling tools look at all your code, as it runs, and time
each bit of it.

Because of the way profiling tools work, these numbers are not wholly
reliable, but they pretty much get the job done.

Benchmarking.
When profiling doesn’t go far enough, you benchmark. Benchmarking
tools don’t really exist, because to get truly accurate numbers, you’ve
got to write customer timers inside your own JavaScript. When each
millisecond counts, you don’t want to be using a browser plugin, because
that will skew the results.

Is Your App Behaving Badly?

12

WebKit Nightlies
For both Windows and OS X. These “future
Safari” builds offer profiling tools not available in
the regular, final Safari.
http://nightly.webkit.org/

￼
DOMMonster
Our utility—a bookmarklet that inspects web
application health. Works in Safari & Firefox,
also WebKit nightlies.
Packaged with this ebook!

Your Toolbox
For success in profiling, you need the following
tools:

Firefox 2
The venerable older version of the web developer’s
best browser buddy. Make sure to get the right
version of Firefox and Firebug, or Firebug won’t
work properly for you.
http://www.mozilla.com/en-US/firefox/all-older.html

Firebug 1.05
The venerable older version (that is, the version that
works) of the number one web developer Firefox
extension.
https://addons.mozilla.org/en-US/firefox/addons/versions/1843

￼
YSlow
This plugin for Firebug gives you the skinny on page
weight and caching
https://addons.mozilla.org/en-US/firefox/addon/5369

Why are we using an old Firefox? Firebug doesn’t work

properly in Firefox 3 (and most of the other tools don’t

seem to, either). When all the tools work in Firefox 3,

feel free to upgrade. Although keeping an older browser

doesn’t hurt.

Is Your App Behaving Badly?

13

Strata in the Problemosphere
Where (solvable) problems chiefly occur:

loadtime

Page weight•	
Number of files•	
Caching•	
DOM complexity•	
<script /> practices•	
serving set-up•	

runtime

code complexity•	
DOM complexity•	
slow access methods / libraries / wrapping functions / data parsing•	
excessive memory use / leaks•	
runaway event handlers•	
unoptimized code•	

Is Your App Behaving Badly?

14

Custom Benchmarking
Do you want to know if you’ve thoroughly optimized to the millisecond
every if(), and() or but()?

You want to write your own benchmarks.

Regular Profiling is Nice, Benchmarking is Hardcore

Regular profiling tools—like the ones included in Webkit and Firebug—will
give you general idea for what sucks, and why.

For most apps, that’s enough. In most situations, your performance issues
will be big, noticeable ones: lots of nested elements, poor choices for
DOM selectors, giant unoptimized loops, that sort of thing.

But maybe you’ve already knocked out those issues. And maybe your
project is a project where every single little CPU cycle counts.

Then you want to get hardcore. You want to optimize to the fullest
extent.

We respect that. And we’ll teach you how.

Pssst, the secret is… volume

The bottom line is, if you want to achieve meaningful numbers, you have
to write your own code to do it, and you’ve got to run that code a lot.

Is Your App Behaving Badly?

15

You have to roll your own because the general profiling tools distort
results. They have to—that’s just the way that they work. You can’t
monitor every method called without changing the performance. It’s the
Heisenbug Uncertainty Principle.

Measurements taken within JavaScript itself are better and more reliable.

Creating Meaningful Benchmarks

Here’s how you do meaningful benchmarks:

You need a way to time method calls. That’s what the time method •	
does, surprise!

You need to log it somewhere. For Webkit browsers and Firebug, •	
we log into the console (in Webkit nightlies, alt-apple-C or peruse the
Develop menu, or the console window in Firebug). On others, we just
do alerts.

Call the test script form an onclick event on the page (this makes •	
sure the page is properly loaded before any tests begin!)

Have a warm-up section in your profiling code -- do something •	
that eats some cycles before the real tests begin, to make sure the
JavaScript runtime is in a non-initializing state (this prevents distorted
results)

Run the tests multiple times. Compare across browsers. It might •	
be necessary to use a different amount of iterations, depending on
the browser. For example, for certain operations IE is 100 times or so
slower than recent Webkit JavaScript engines.

Is Your App Behaving Badly?

16

This code will set up our test. We’re using Firebug’s
custom console logging features, so you should run
this in Firefox with Firebug enabled.

<script type=”text/javascript”>
 if(typeof window[‘console’] == ‘undefined’)
 var console = { log: alert };

 function time(scope){
 time.scope = time.scope || {};
 if(time.scope[scope]) {
 var duration = (new Date()).getTime()-time.scope[scope];
 time.scope[scope] = null;
 console.log(scope+’: ‘+(duration/1000).toFixed(3)+’s’);
 } else {
 time.scope[scope] = (new Date()).getTime();
 }
 }

 // functions we want to compare
 function method1(n){
 n |= 1;
 }

 function method2(n){
 n = n || 1;
 }
</script>

Now that we’ve set up the things we’re testing, it’s
time to set up the iterations and run them.

 var ITERATIONS = 100000;
 function test(){
 // first do a warm up phase, so there are
 // no sudden initializations. this helps
 // normalize the results
 i=ITERATIONS;
 while(i--) m2 = method2(1);

 // next run the timings
 var i = ITERATIONS;
 time(‘method1’);
 while(i--) m1 = method1(1);
 time(‘method1’);

 i=ITERATIONS;
 time(‘method2’);
 while(i--) m2 = method2(1);
 time(‘method2’);
 }
</script>

run test

17

Getting accurate results
Unfortunately, your web app doesn’t run in a vacuum. Not for your
users, and not for you, either. Not even when you’re profiling.

Anything that’s going on will affect your results: normal, everyday stuff
like your browser cleaning up its JavaScript object cache, or a backup
running in the background, or your virtual memory swapping.

If you want accurate results, you’re going to have to eliminate these
variables.

Here are some Rules of Thumbs for sane measurements with pure
JavaScript:

Close other applications. Axe background processes. Do not run 1.	
while your computer is backing up. Stop those torrents, you piratey
pirate you.
Disable all browser plugins (including Firebug!)2.	
Run thousands or millions of iterations, and repeat the test several 3.	
times
Don’t just test in one browser, but all browsers you target, on all 4.	
platforms
Run your test. Run it again. And again. And again. See how the 5.	
numbers compare.

Don’t forget, your computer is not the
same as your users’ computers. You
can do some ninja tactics to see how
things perform in the real world. Do
your profiling thing—not too intensive,
please—and quietly post the results
back to your server with Ajax.

If you’re going to optimize, you should always start here. There’s tasty
low-hanging fruit, just waiting to be picked.

This is where the majority of performance issues occur.

Feel free to implement any or all of the suggestions here without the fear
of premature optimization. (Except for excessive minifying. You heard it
here first.)

That page just takes forever!
You know you’ve got a loadtime problem when it takes a long time for
your page to “finish.”

That means from the time your user clicks on a link or bookmark to the
point where he can interact with everything without getting the spinning
pizza (or tilting hourglass) of death.

Welcome to Loadtime
you’re going to spending a lot of time here. a whooole lot.
Welcome to loadtime, the magical in-between place
between your user’s browser’s HTTP request and the fully
downloaded, fully rendered page.

Chapter 3

The worst offender in my book? eBay.

They have millions of people literally

fighting to give them money, but the

page takes 2-3 minutes to download

and stop churning. Although

GoDaddy’s pretty high up there, too.

Welcome to Loadtime

19

Phases of loadtime include:

connecting to your server•	
transferring all related files (including remote •	

scripts)
parsing and display the DOM•	
rendering images•	
executing any JavaScript that needs to get run•	

Your users hate loadtime problems, because they want
to interact with your app already. That’s why they’re
your users, after all.

They don’t care where the problems occur or why,
they just want to click stuff.

Two types of loadtime laments
Loadtime slow-downs fall into two camps:

download speed issues:
pure “page weight”•	
too many files•	
bad or no caching•	
slow servers (both software/hardware & •	

bandwidth)
unresponsive remote script hosts•	

browser churning issues:
complex DOM•	
bad script load order•	
slow computer•	
old browser•	

Welcome to Loadtime

20

How we’ll fix it
These are the types of remedies at your disposal for loadtime issues:

Non-invasive techniques (mostly):

loading JS at the proper points•	
appropriate caching•	
reducing the number of files•	
in-lining and precaching•	
reducing file size•	
increasing the number of possible simultaneous browser streams•	

And, more invasive but very effective techniques:

reducing page / DOM complexity (cuts down churning and file •	
size)

on-demand JavaScript•	

And one final technique, easy to say but not always fun to
implement:

hosting on a faster server (and/or with better bandwidth)•	

Welcome to Loadtime

21

Making the right choices for your app
You want to do the least amount of work for the most pay-off, right?

Perfect. That’s the right attitude for tuning your JavaScript-heavy web
app.

The biggest gains can often be had in the “non-invasive” realm: especially
good caching and file compression. And they don’t involve tweaking your
code, not even a little bit—it’s a win/win situation.

We recommend you try the non-invasive techniques first, followed by
checking your DOM complexity.

You can also use our DOM Monster tool and YSlow to identify loadtime
trouble areas & beat them into submission.

Moving Forward
Several chapters follow this one, each featuring one of the techniques
we’ll be using to tune your loadtime experience. These chapters all begin
with ‘Loadtime.’

For the fastest, simplest, and easiest performance increase you can get...
put your <script /> tags at the very bottom of your <body /> tag.

Biggest Bang for Your Buck

Placing your script tags at the end won’t improve your objective,
measurable page load speed (bandwidth determines that).

But it does mean that the browser won’t stop rendering the page while
it waits for the JavaScript files to transfer and do their thing—drastically
improving the perceptual experience for your users.

Implementing this fix can take a first-load experience involving several
seconds of blank browser window churnage, and turn it into a page that
loads progressively. Sweet!

Especially for Remote Services

This is especially beneficial for external JavaScript sources like Google

Loadtime: Script Load Order
the easiest & most effective fix, EVER.
Fun browser fact: the browser won’t begin to render the
very HTML and CSS of your web app unless all JavaScript
files are fully loaded (or just about).

Chapter 4

Loadtime: Script Load Order

23

Analytics and other such third-party stuff.

When the server behind this external stuff (or the network between you
& them) is slow or unresponsive—which seems to happen regularly to
various stats services—your app will seemingly take forever to load. With
the script tags at the end, at least, your user won’t be stuck with a blank
screen.

Caveat: Progressive Functionality

The only real caveat with this trick is that the JavaScript functionality
of DOM elements won’t be available until the JavaScript files are fully
transferred and executed.

Makes sense, right? This is a rare side effect but it can occur.

Possible example: that autocomplete text field you have will appear
almost immediately, but not necessarily function right away. The strength
(or even presence) of this effect is completely determined by bandwidth
and browser speed. When everything’s snappy, it probably won’t be an
issue at all.

Browsers have cached files automatically since the days of dial-up, but
they’re not the smartest cookies in the cookiejar.

Browsers don’t keep caches very long or necessarily use them in an
intelligent manner.

Luckily, they do respond to commands—you can easily configure your
web server or server-side scriting language to order the browsers around,
and tell them to keep the right files for longer.

Expiration Headers
Specifically, you want to set the expiration headers on your content files
that don’t change often—CSS and, of course, JavaScript files.

The goal is to have the browser keep those copies of these files until
they change, so that the latest version is always right there on the user’s
computer.

This single change can save tens of time-wasting requests per page view.

Loadtime: The Cachét of Caching
So Good, It’s like Christmas for your Software

Caching should be the second tool you reach for, the
moment your application goes live.

Chapter 5

These techniques require you to

have access to your web server

configuration. So get to it!

Or order your hosting company to do

it for you.

Loadtime: The Cachét of Caching

25

The Final Result

You want your finished headers to look something like this:

Date: Tue, 22 Jul 2008 19:08:42 GMT
Expires: Wed, 23 Jul 2008 19:08:42 GMT
Cache-Control: max-age=86400

In this case, the file was downloaded on July 22nd and will be held until
July 23rd—24 hours in the future—at the minimum.

The browser will then check to see if the file has changed and, if so,
download the new version. If no changes have occurred, it’ll keep happily
humming along with the cached copy.

The last line is what makes it happen:

Cache-Control: max-age=86400

The Cache-Control header takes an argument of max-age in seconds;
86,400 seconds is 24 hours.

Loadtime: The Cachét of Caching

26

Caching Strategies
There are two major strategies for caching JavaScript and CSS assets:

very long cache periods (e.g. months or years; “far future cache”)•	
short or medium cache periods (days) (“short cache”)•	

They’ve both got their pros and cons, and, unfortunately, both require a
different support system to work right.

For sake of argument, let’s pretend we’ve got this interesting little file
that we want to cache and it’s called our_app.js.

Here’s how it’d work with both strategies.

Far future cache periods

With a far-future caching setup, you set the expiration date far in the
future (bug surprise)—months or years. That’s a long time.

This seems ideal, because then your user’s caches will be safe and their
experience will be snappy until many happy months go by.

But meanwhile, back at the data center, you want to roll out your spiffy
new psychic autocompleter—but nobody will know because you originally
set a far-future cache expiration date to 2010.

Loadtime: The Cachét of Caching

27

If you’re going to do far-future caching periods, there’s just one way to
distribute new code & content: change the filename.

The browser will say “Hey, I’ve got ourapp.js but not ourappv2.js in my
cache, it must be new” and slurp it down fresh.

Yahoo! does this by including a version in their JavaScript filenames:

ourapp_2.3.4.js

Ruby on Rails does this automatically by adding a query string to the end
of the base filename, that reflects the last modification date of the file:

ourapp.js?20080822

You can take whichever approach you like, or think up your own.

As long as you change the filename when you need to push changes to
your users, far-future caching will work for you.

Short cache periods

With short caching periods, the “expiration date” on your cached files
comes up much sooner.

When that happens, your user’s browser will ping the server for the

Loadtime: The Cachét of Caching

28

Last-Modified header on the file.

If the date’s different than the copy it’s already got saved, the browser
will download it fresh.

The browser will always check for the same file name. If you cache
ourapp.js with a 24-hour maximum age, the browser will ask for the
headers for ourapp.js every 24 hours. Rinse and repeat.

You should stick to far-future caching unless you don’t have control of
your app’s filenames.

If you can’t change the filename, try the short-cache approach.

Loadtime: The Cachét of Caching

29

Configuring Apache 1.x and 2.x
It’s easy to configure Apache to send the correct caching headers using
the built-in ExpiresActive extension.

Add the following (version appropriate) code to your conf file if it’s not
already there.

First, you need to load and activate the module:

Loading the Module in Apache 1.3
LoadModule expires_module libexec/mod_expires.so
AddModule mod_expires.c

Loading the Module in Apache 2.0
LoadModule expires_module modules/mod_expires.so

Be sure to place the above snippet inside the correct block for the
domain name / application you’re configuring.

Loadtime: The Cachét of Caching

30

Far future caching (5 years)
ExpiresActive on
ExpiresByType text/css “access plus 5 years”
ExpiresByType application/x-javascript “access plus 5 years”
ExpiresByType text/javascript “access plus 5 years”
FileETag none

This sets all items to 5 years.

Short cache horizon (24 hours for JS, 5 days for CSS):
ExpiresActive on
ExpiresByType text/css “access plus 5 days”
ExpiresByType application/x-javascript “access plus 24 hours”
ExpiresByType text/javascript “access plus 24 hours”
FileETag none

Loadtime: The Cachét of Caching

31

Configuring nginx
If you’re using nginx, it’s simply a matter of putting this nice concise
snippet inside your server{} configuration block:

Far future caching (5 years for all CSS & JavaScript)
location ~* \.(js|css)$ {
 if (-f $request_filename) {
 expires 5y;
 break;
 }
}

Short cache horizon (24 hours for JS, 5 days for CSS):
location ~* \.css$ {
 if (-f $request_filename) {
 expires 5d;
 break;
 }
}

location ~* \.js$ {
 if (-f $request_filename) {
 expires 24h;
 break;
 }
}

Loadtime: The Cachét of Caching

32

Configuring Lighttpd
And, to complete the web server triumvirate, we come to Lighttpd.

First, enable mod_expire in the server.modules directive:

code sample missing

You’ll want to place the following snippets into the configuration file for
the application you want to affect.

Far future caching (5 years for all CSS & JavaScript):
$HTTP[“url”] =~ “\.(css|js)$” {
 expire.url = (“” => “access 5 years”)
}

Short cache horizon (24 hours for JS, 5 days for CSS):

$HTTP[“url”] =~ “\.css$” {
 expire.url = (“” => “access 5 days”)
}
$HTTP[“url”] =~ “\.js$” {
 expire.url = (“” => “access 24 hours”)
}

Loadtime: The Cachét of Caching

33

Caching Gotchas: JSON & Generated
JavaScript
Be careful not to cache things you don’t want to cache—namely data and
generated JavaScript that’s customized to your users.

The easiest way to avoid this problem is to give your JSON and
generated JavaScript code a different file extension.

We call our data files ourdata.json, for example.

You might use a custom extension for generated code, too.

Here’s another tasty low-hanging fruit: Reduce the number of files you
pump to the browser.

Your web app, like so many others, is undoubtedly composed of a million
little files.

Unfortunately, browsers (by default) only open 2 to 4 simultaneous
connections to the server, regardless of how many stylesheets, images,
and JavaScript files are coming down the pipe.

The browser won’t start fetching the next batch of files until the current
batch of 2 to 4 are done.

Even worse, browsers can’t load JavaScript files in parallel: doing so
would potentially create procedural issues with interdependent code.

So, reduce the number of files the browser has to load and you can

Loadtime: Con-ca-te-nation
Fewer Files is Better.
Most web apps are composed of scores of little files. It’s
just convenient to write them that way, and it makes
it easy to find the code you’re looking for when you’re
developing.

Chapter 6

The worst offender in my book? eBay.

They have millions of people literally

fighting to give them money, but the

page takes 2-3 minutes to download

and stop churning. Although

GoDaddy’s pretty high up there, too.

Loadtime: Con-ca-te-nation

35

improve load performance. You probably already do this for images and
CSS (and if you don’t, you should); doing it for JavaScript can only help.

The trick is to structure your files effectively for both development and
production environments: when you’re writing code, break out the files
however makes sense to you; when you push to the server, smush the
files together, preferrably into one file. Be mindful of the order of the
code in the file(s) is sane.

What to Concatenate

Your project probably has some combination of library files, original
code, and data in JSON or other JavaScript format.

This goes for all the files for any JavaScript libraries you may be using—
Prototype, jquery, mootools, YUI, ext.js, & so on—as well as your custom
code.

Concatenation Counter-indicators

Concatenation isn’t always the answer. If the code is both A) weighty
and B) used only on a select few areas of your app, it may not be a good
candidate to roll into your monolithic JavaScript file.

For example, a date-picker might be a few hundred lines and yet only
used on one or two screens. In this case, you may choose not to have
it in the main file for the entire app; it may make more sense to include

Loadtime: Con-ca-te-nation

36

it on those areas only, or load it dynamically in the case of a more
interactive application.

Concatenating on Deployment

Common wisdom in web development circles says: separate content
(HTML) from presentation (CSS), and to keep both of those faaaaar
away from dirty old function (e.g. JavaScript code).

And just like every other kind of common wisdom, there are exceptions.

Brace yourself, because we’re about to tell you that sometimes it makes
sense to smush your CSS and JavaScript into the very same file with your
HTML.

Inlining Isn’t Evil
Sometimes smushing your CSS and JavaScript into one file with your
HTML—called inlining—is not merely okay, but actually really beneficial.

It’s natural for this to feel wrong. Just know that it’s right.

Proof: Google inlines. And their whole motto is “Don’t Be Evil.” So it

Loadtime: Inlining & Precaching
Like Inline Skating, but without the scabbing

Mama always told you to separate your concerns. Or was it
that there’d be days like this?

Anyway.

Chapter 6

We don’t mean squishing your CSS

into attributes inside your HTML tags

(or JavaScript, either).

We mean inlining the whole contents

of files. In the appropriate places.

Loadtime: Inlining & Precaching

38

can’t be evil. Ipso facto!

Why Inline

The point of inlining is three-fold:

it reduces the network load (one file stream instead of several)•	
your page will download more quickly, because the browser doesn’t •	

have to handle multiple file streams
when cached, the cache’s just one file, potentially improving •	

performane

When to Inline

Based on these benefits, there are a couple scenarios where inlining
makes great and perfect sense:

A simple page that absolutely must have top performance all the time
Example: Google’s search page, which is, in fact, inlined out the wazoo.
Or in the wazoo. Whatever.

A page that is visited only once in a session, like a portal homepage
Example: Any special page/area that has code/CSS that is not shared
with any other part of your app (making caching the code or CSS
separate a net zero benefit), like a login or thank-you-for-signing-up page.

Loadtime: Inlining & Precaching

39

How to Inline

Inlining can be tougher than it sounds. There are three major steps. Are
you with me?

Good.

First, open your CSS and JavaScript files for the page you plan to inline.
Second, open up the HTML source for that page.

Paste the CSS and JavaScript in (in their appropriate locations).

Save.

But seriously, if your to-be-inlined area is a big complex beast and you’re
more comfortable working with the files separated, you may want to
consider a deploy hook that will compile them for you.

Pre-caching: A Beautiful, Sneaky Trick
You know what caching is.

How about pre-caching?

I hear you: Is that like reading the user’s mind and giving them the
cached files before they even ask for them?

Remember that your JavaScript still

needs to be positioned in the right

locations in your HTML file; still,

ideally, at the end.

Loadtime: Inlining & Precaching

40

In a word… yes.

What’s Pre-caching?
Pre-caching’s a sneaky little low-tech trick that can definitely make your
user’s experience seem faster.

Here’s the basic idea:

your customer loads up a page that they have to get through, like a 1.	
sign-in or country selection page (reserving judgment on the wisdom
of country selection pages)
while he’s busy fiddling with the thing he needs to do, you’re loading 2.	
JavaScript and CSS files in the background—files that aren’t even
needed on this page!
once your customer’s done with that page, the external stuff 3.	
necessary for the next page will already be loaded in his cache

Why Pre-cache

According to Yahoo!’s research, at any given time, 20% of users will have
a “no-cache” experience when visiting your web app.

Now, we tend to think this number might be a little skewed because of
the Yahoo! web properties, but it’s hard to tell.

If you assume those numbers are globally accurate, that means that 20%

Loadtime: Inlining & Precaching

41

of your visitors won’t have any of your carefully configured-to-cache files
cached.

It’s like they’re starting fresh. Every damn time!

So if you have to put a road block in their way anyway (like a sign-
in page), why not take that opportunity to speed up their subsequent
experience?

How to Pre-cache

The simplest way to pre-cache is to simply include the JavaScript or CSS
files at the bottom of the roadblock page, just like you would on any
other page.

Just be sure they’re not going to conflict with anything!

There are essentially three ways to squish down your JavaScript code
files, divided into two camps: the types that modify your code, and the
types that do not.

MODIFYING THE CODE:
 Packing.1.	 The most popular, and most horrid; obfuscates code and
requires eval() to unpack.
 Minifying.2.	 Like packing, but without the horrid: instead of
obfuscation, minifying is relatively sane, involving the removal of
comments, white space & and the shortening of variable names, etc.

NON-MODIFYING THE CODE:
 Deflating.3.	 This is a fancy word for “gzipping.” This method doesn’t
change your code in any way, just gzips it right up, to be quickly
decoded by the web browser.

The Problems with Packing
One of the most common questions the Prototype team receives is

How can I minify Prototype?

Loadtime: Under Compressure
JavaScript Compression, Not a David Bowie cover band

This section will be fun and confusing because of the
terminology. Let’s have a word definition war!

Chapter 8

NOTE! Lots of tools that call

themselves minifiers actually pack,

too. Watch out. Don’t obfuscate

your code.

Loadtime: Under Compressure

43

The answer is:

For the love of god, don’t!

While packing and minifying are technically different approaches—packing
goes just a step too far—when people say “minify,” they usually mean the
kind that compresses the code (obfuscation).

Packing has caught on in the JavaScript community, but it’s an actively
destructive method of reducing JavaScript file size.

You shouldn’t “minify” your JavaScript with any of the tools that add
obfuscation, because the client has to decompress it with JavaScript. This
can be slow.

Let’s try that again: This can be very, very slow.

And it can break your code!

Some of these suckers are not 100%-capable of following the JavaScript
specification. That means they can introduce bugs. Bugs, caused by your
performance tweaks! Not a good thing, people.

As an added bonus, debugging packed files is hellish.

Loadtime: Under Compressure

44

If you really want to reduce the size of the content of your JavaScript
files, we strongly recommend you stick to the well-behaved white-space
removal, variable renaming type.

But, except in extreme circumstances, you may as well just stick to
gzipping.

BIG HONKIN’ EXCEPTION: the iPhone is hardcore about
caching—for obvious reasons, it being a little handheld device and
all. To persuade iPhones to cache your stuff, you need to keep
each file under 25k. This is where minifying can come in handy.
See http://yuiblog.com/blog/2008/02/06/iphone-cacheability/ for more
info on this.

Good Minification
I’ll assume we’ve suitably scared you about minification vs packing, and
all the fallout that may ensue if you confuse one for the other. But just in
case… good minification does not obfuscate your code!

Now we’re set on what good minification isn’t, but how about what it is?

Definition: Good minification involves the removal of whitespace (tabs,
spaces, linebreak) and comments, plus the shortening of variable names
(inside functions only, so it’ll still play nice with other code).

Minifying and packing are last-

ditch efforts. You should try the

other stuff (cleaning up your code,

caching, getting a faster server,

gzipping, etc.) before trying to

minify the heck outta your files.

That’d be premature optimization.

And we all know what that means.

Loadtime: Under Compressure

45

Good minification would take this function:

function upcase(string){
 // this is a pretty useless comment as
 // it is obvious what is going on
 return string.toUpperCase();
}

And transform it into:

function upcase(s){return s.toUpperCase()}

How to Minify (Properly)
We’d recommend the YUI Compressor, a Java-based command line
tool from Yahoo!’s JavaScript gurus.

You can invoke it as follows:

java -jar path/to/yuicompressor-2.4.1.jar -v source.js -o source.
mini.js

Given our longer example above, this is the actual result that the YUI
compressor worked out:

function upcase(a){return a.toUpperCase()};

Loadtime: Under Compressure

46

Looks familiar, huh?

Download the YUI Compressor & check out the docs at
http://developer.yahoo.com/yui/compressor/.

Hint: Use Verbose Mode

The -v option sets the Compressor to verbose mode. And in verbose
mode, it’ll chew you out if it finds other things in your code that can be
optimized for compressing.

For example, the Compressor doesn’t like multiple var statments inside
one method, & it will tell you so. It’ll also identify dangling variables that
are declared but never used, and other such good-to-know things.

If we add some useless, badly written code to our example:

function upcase(string){
 var a = 1;
 var b = 2;
 return string.toUpperCase();
}

The Compressor will not let it pass without comment:

[WARNING] Try to use a single ‘var’ statement per scope.

Loadtime: Under Compressure

47

(string){var a=1; ---> var <--- b=2;returnstring.toUpperCase()

[WARNING] The symbol a is declared but is apparently never used.
This code can probably be written in a more compact way.
functionupcase(string){var ---> a <--- =1;var b=2;returnstring

[WARNING] The symbol b is declared but is apparently never used.
This code can probably be written in a more compact way.
string){var a=1;var ---> b <--- =2;returnstring.toUpperCase();

It’s just like having a smart, well-meaning, but slightly passive aggressive
friend looking over your shoulder, all the time!

But seriously, the Compressor gives good hints. It’d do you good to listen
to it.

Even if it could use an adjustment in its bedside manner.

Loadtime: Under Compressure

48

Gee! Gzipping is the Answer
Gzipping is the best solution for JavaScript file size, bar none:

You can get a 1:4 reduction in size with gzip. That’s from 4K to 1K, •	
or 40K to 10K.

Gzipping doesn’t remove white space, or alter your variable or •	
function names, making it easier to debug

Gzipping is done by your web server on the way out, meaning you •	
can configure it & forget it (after testing, of course)

Gzipping offers a low performance hit compared to script •	
obfuscation

Don’t forget that gzip is the same compression method used for GIFs and
PNGs (and zip files, too, of course). Web browsers are already all over
that. It’s not some crazy new hippie web 2.0 thing.

Configuring Apache 2.x

It’s easy to configure Apache 2.x to send the correct caching headers
using the built-in AddOutputFilterByType extension (phew!).

Combine this with proper caching settings, and users will download your
gzipped JavaScript, it’ll get unzipped by the browser, and that unzipped
source will get cached for as long as you need.

Want the technical dirt on the gzip

algorithm? Be careful what you ask

for: http://tools.ietf.org/html/rfc1951

Loadtime: Under Compressure

49

Here’s our setup for freckle time tracking:

AddOutputFilterByType DEFLATE text/html text/plain text/xml
application/xml application/xhtml+xml text/javascript text/
css application/x-javascript

ExpiresActive On
ExpiresByType image/gif “access plus 5 years”
ExpiresByType image/png “access plus 5 years”
ExpiresByType image/jpeg “access plus 5 years”
ExpiresByType text/javascript “access plus 5 years”
ExpiresByType application/x-javascript “access plus 5 years”
ExpiresByType text/css “access plus 5 years”

Header unset ETag
FileETag None

Header add Cache-Control “public”

Google gzips So You Don’t Have To
So you don’t have access to your Apache’s config files. What to do?

Weell… If you’ve got a lot of custom JavaScript to gzip up, you shoulder
consider switching up your hosting situation.

NOTE: If you’re copying & pasting

this into your config file, make

sure you’re not doubling up on the

ExpiresByType stuff that we covered

earlier! (And don’t forget these code

samples are all available in the ebook

directory, as real text files.)

Loadtime: Under Compressure

50

There’s only so much magic we can work for ya, you know.

But, I hear you saying, I don’t have a lot of custom JavaScript. Just this
honkin’ big JavaScript framework! It’s not even mine!

Well, good news, then! Google to the rescue!

Google offers a bunch of the most popular JavaScript libraries, hosted up
gzipped and with good cache settings for your convenience.

Aside from not having to do the work yourself, this centralized hosting
means a potentially download-free experience for your users.

For example, Joe visits Web App A, and it uses Google’s hosted
Prototype 1.6.0.3. Then Joe visits your Web App B, which also uses
Google’s hosted Prototype 1.6.0.3.

Joe’s browser only downloads the library once, the first time. Whoopee!

Loadtime: Under Compressure

51

Offered Libraries

As of time of writing, the libraries included are:

	 •	 jQuery
	 •	 jQuery UI
	 •	 Prototype
	 •	 script.aculo.us
	 •	 MooTools
	 •	 Dojo
	 •	 SWFObjectNew!
	 •	 Yahoo! User Interface Library (YUI)New!

Nice!

Go to this URL for a full list & detailed instructions:
http://code.google.com/apis/ajaxlibs/.

Loadtime: Under Compressure

52

How it Works

To use Google’s hosted libraries, include their JSON API and use the
google.load() function:

<script src=”http://www.google.com/jsapi”></script>
<script>
 // Load Prototype
 google.load(“prototype”, “1.6.0.3”);
 // Load jQuery
 google.load(“jquery”, “1”);
</script>

And so on.

But Not All is Perfect in Googleland

There are some reasons you shouldn’t use Google’s hosted code:

It may incur an additional DNS lookup (boohoo! Not typically a big •	
deal).

It’s remote. There are times when Google may not be reachable by •	
your user, or the Google servers with the libraries may be slow. This
sounds unlikely, but we’ve experienced this.

You can’t have edge libraries. Google only hosts stable versions, not •	
experimental releases or the most current from the source repository.

You can’t hack the source (obviously).•	

Loadtime: Under Compressure

53

Generally speaking, it makes sense to use your own libraries if you can
get the server properly configured for caching, and if you are deploying
an app on a long-term basis.

Translation: if you’re charging money for your app’s performance (or your
reputation’s riding on it), we recommend you suck it up and get better
hosting.

But Google’s hosted libraries are perfect for quick projects, and non-
mission-critical apps when you’ve got inexpensive hosting without access
to web server configs.

Browsers will only open so many connections with one host (e.g. www.
jsrocks.com) at once. We call these simultaneous streams.

This built-in limit is usually pretty low, about 2 - 5 at once. An
unfortunate throwback to the days of bleeps and bloops.

If you’ve got 20 files to download, it can take a while. And 20’s not a
very high number when it comes to designing beautiful, dynamic web
applications.

The first line of defense against this particular problem is to religiously
reduce the number of files you have to download for the page to render:
squeeze ‘em together, and optimize, to get that number as you can
manage (as we’ve talked about earlier).

The second line of defense, of course, is cheating.

Loadtime: Cover Your Assets
an EASY way to increase Zippiness

Streams, as in data flowing and burbling over picturesque
little rocks, and simultaneous, as in more than one at a
time.

Chapter 9

In content distribution terms, an

asset is any file or resource your

HTML document includes, such as

CSS files, JavaScript files, images,

movies, Flash files, you name it.

Loadtime: Cover Your Assets

55

Using Multiple Asset Hosts
Allow us to repeat: these limits are per host. Like we said, a host is a
domain name like www.jsrocks.com. To underscore: www1.jsrocks.com
and www2.jsrocks.com are not the same host.

You can get around the simultaneous stream limit by using this multiple
asset hosts technique.

Instead of:

Theoretically speaking, if you took this approach instead, your pages
could download up to 3x faster (bandwidth allowing):

Now, you don’t actually need 3 different servers to do this. You can
configure simple DNS pointers to the same old server, and then you can
configure your server software to respond to those hostnames.

Loadtime: Cover Your Assets

56

Bonus: Some web development frameworks come with support for
multiple asset servers out-of-the-box (e.g., our friend Ruby on Rails).

Don’t Randomize!
Watch out that you don’t just randomly assign hostnames. If you
reference the same asset with different hostnames, the browser will not
know the assets are identical.

In this case, for example, your user will have to download the image
twice, rather than pulling it from cache the second time:

If your web development framework doesn’t internally manage multiple
asset servers, then you’re going to have to ensure consistency yourself.

The best way is to build a checksum from the filename of the asset and
calculate the modulo for the number of asset server hostnames you use.
Keep it around to verify.

If that sounded like greek to you, that’s probably a good thing.

This technique is really best for small, hand-optimized landing pages, or
for bigger web apps that use a framework that has solid support for this.

Loadtime: Cover Your Assets

57

For Best Results, 4’s the Magic Number

You’ll get the best results with about 4 asset servers.

Use more than that, and you may start going backwards.

There are three reasons why:

the extra DNS lookups will defray the benefits of the faster loading •	
cycle

you’ll also have to spawn network connections than necessary•	
and almost all servers are already configured to use the HTTP 1.1 •	

keep-alive directive, which means your server will keep sending files
down the pipe as long as the connection’s open

Of course, if you follow the rest of our advice, this doesn’t matter for
your JavaScript files. You should only have one of those!

There comes a point in every app’s life when it simply outgrows its
humble shared hosting origins.

It’s not just page weight and open streams and DOM churning that can
slow your app down.

Out of Sight, Not Out of Mind
What’s happening on your back-end comes before all those things, and
could potentially also be a source of slowness. So too with the pipe
between your back-end and your customer’s front-end.

You know what I mean.

Before doing anything drastic with your JavaScript code or reworking
your app in any way, be sure that you’re getting good performance out
of your server to begin with.

Loadtime: You Need an Upgrade
C’mon, don’t you watch MTV Racks?
If you’ve already got a high-octane hosting environment
with a slew of slices and performance monitoring up to
here, you can skip this section. Carry on!

Chapter 10

Loadtime: You Need an Upgrade

59

If your web app views are taking a really long time to compose because
of complicated queries, slow libraries, or simply very high server load (or
very low bandwidth), there’s no amount of JavaScript tuning you can do
to offset that.

Catching Back-end Issues
Here’s how to spot a back-end issue:

the longest wait is from the browser request to when files start •	
downloading

pages get to the “mostly complete” phase but the browser keeps •	
waiting on

the final bits (watch out for remote JavaScript)•	
pages render fast once they’re downloaded (bandwidth problem)•	
the Net tab of Firebug doesn’t indicate that download speed is •	

the issue (in the case of a back-end performance problem, not a
bandwidth problem)

Profiling Back-end Issues
For Rails apps, there are two great services that can help you identify
where the slowdowns occur in your app:

Rails

FiveRuns http://www.fiveruns.com/

New Relic RPM http://newrelic.com/

Loadtime: You Need an Upgrade

60

And some how-to guides on other methods:

How to Profile Your Rails Application
http://cfis.savagexi.com/2007/07/10/how-to-profile-your-rails-application

Profiling Rails end-to-end
http://www.underpantsgnome.com/2006/9/9/profiling-rails-end-to-end

Benchmarking and Profiling Rails
http://guides.rubyonrails.org/benchmarking_and_profiling.html

Django

Profiling Django Applications
http://perro.si/profiling-django-applications

Quick profiling your Django web site with debug_toolbar
http://www.davidcramer.net/code/312/quick-profiling-your-django-website-with-debug_toolbar.html

PHP
Improving Performance by Profiling PHP Applications
 http://www.onlamp.com/pub/a/php/2002/02/28/profilingphp.html

PHP Performance Profiling
http://www.linuxjournal.com/article/7213

XDebug
http://xdebug.org/

When it comes to the DOM—that is, the structure of a document’s HTML
and the API that browsers supply for manipulating it—simpler is better.
Unlike that foregoing sentence.

Simpler means fewer DOM nodes in the DOM tree, which means faster
sites.

Simplifying your DOM can really affect the runtime performance of your
app, too, but it also affects your loadtime performance. More complex
DOMs take up more bytes, and unnecessary nodes (especially nested
divs) can add a lot of rendering time to your user’s experience.

There are two basic areas where you can optimize:

General complexity. •	
Browser-specific complexity.•	

Loadtime: Reduce Complexity
Tis a gift to be simple, especially for Page Rendering

A complicated DOM is an unfortunate beast. Hard to read,
hard to parse, slow to render... and it’ll slow your JavaScript
down, too.

Chapter 11

Loadtime: You Need an Upgrade

62

General Complexity
Here’s an obvious (and simplified) example of an unnecessarily complex
set of nodes:

<p>This is bold</p>

This example has two elements (p and b) and three text nodes
(whitespace and the text in the b tag).

It could be simplified as:

<p class=”important”>This is bold</p>

Yep, that’s right kids—with that one stroke, you’ve axed half the elements
and 2/3rds of the text nodes. But, as we said, that is a simplified
example.

In reality, sure, you’ve got unnecessary b and em tags in your app’s
HTML structure. But what you really need to be watchful for is nested
divs and spans.

Watch out for Ajax
Another area to step carefully: Ajax that dynamically updates visible
nodes.

Reduce CSS complexity. Simplifying

your CSS can make your rendering

zippier, and significantly improve your

animation speed. Get yourself down

to as few rules as possible, and avoid

having many rules that overwrite

other rules (for example, through

excessive use of !important). It’s a

good practice all around!

Loadtime: You Need an Upgrade

63

Yeah, we love Ajax, too, but browsers vary wildly in the amount of nodes
they’ll re-render when you insert or update content. That means that
if you insert into node A, other nodes around node A may also get re-
rendered. Which can be sloooow if you’ve got a lot of nodes.

This isn’t normally an issue. But it depends!

If your page structure is complex, if you do a lot of Ajax updates, and
especially if your users aren’t visiting on top-notch hardware, things can
go south very quickly.

Or slowly. Depends on how you look at it.

Browser-specific Complexity
Lots of people—purists—will tell you that sniffing browsers is a terrible
idea. But in certain situations, terrible ideas can actually become very
good ideas, indeed.

There are times when only one type of browser (coughIEcough) requires
additional complexity, when the others are chugging along just fine.

Case in point: rounded corners.

With a number of modern browsers, you can do rounded corners with
the border-radius CSS property and just leave it at that. For the others,

Loadtime: You Need an Upgrade

64

well, you’ve got to nest some divs or apply other hacks.

Why not send those hacks—and that extra complexity—just to the
browsers that need ‘em? You can keep your pretty non-stabby round
corners, and also reduce complexity for every other browser.

In modern web development environments (like view helpers in Ruby
on Rails), it’s easy to customize the actual HTML output based on your
visitor’s user agent.

It’s not such a bad idea after all.

When one really needs to skin a cat, one can only be so squeamish about
the tools one uses to do the skinning. ‘

Sometimes you only rarely have need of certain sets of code. But these
bits of code might cause your initial page loading time to creep up
towards the unacceptable zone.

Why not load JavaScript on demand in this case?

That feedback form that’s just used once every 1000 pageviews -- spare
your users the cruft and load it on demand.

Inserting JavaScript on Demand
It works by dynamically inserting a script tag into the DOM.

// create a script element
var script = document.createElement(‘script’);
script.type = ‘text/javascript’;
script.src = ‘http://www.yoursite.com/path/to/ondemand.js’;

Once you’ve prepared that, you simply insert it into the DOM (in the

Loadtime: JavaScript, On-Demand!
Right where you want it, when you want it.
If you’ve tried everything else, on-demand JavaScript may be
an option for you.

Chapter 12

Loadtime: JavaScript, On-Demand!

66

proper place):
// insert into the dom (at the end of the body element)
document.getElementsByTagName(‘body’)[0].appendChild(script);

That’s all. Your JavaScript will be loaded. Keep in mind that there won’t
be any events called (the DOM is already loaded), so just initialize things
directly at the end of your JavaScript file.

Caveat: mind that the protocol used to load in the JavaScript file should
be the same as for the containing page, so if you’re on a secure site and
use SSL, use https:// to load in the file.

If you’re using Google Analytics, you might have seen the following line,
that you might want to ‘borrow’ and use for your own evil purposes:

var gaJsHost = ((“https:” == document.location.protocol) ?
“https://ssl.” : “http://www.”);

That said, most JavaScript code offers a lot of room for optimization.
And there are tons of good habits you can learn to use naturally, without
compromising your code’s future readability.

Just be moderate, okay?

Also: the runtime sections are still heavily under construction.

On Premature Optimization
The most important thing to always remember is DO NOT OPTIMIZE
PREMATURELY.

Optimizing comes after you’ve implemented the functionality.

This doesn’t mean there aren’t certain ‘elegant’ ways of writing code that
will likely lead to code that is both optimized for speed and size—but the
techniques for ‘hardcore’ optimizing we describe here should only be

Welcome to Runtime
Enter at Your Own Risk! Watch out for Falling Cows!
Tuning your JavaScript code should only come after you’ve
done the other kinds of optimizations we recommend.
Don’t be overhasty. It’s fun, we get it, but you can get
yourself into trouble if you optimize too much.

Chapter 13

The worst offender in my book? eBay.

They have millions of people literally

fighting to give them money, but the

page takes 2-3 minutes to download

and stop churning. Although

GoDaddy’s pretty high up there, too.

Welcome to Loadtime

68

used when necessary.

The best code is code you’re comfortable with.

This means, you’ve a thorough understanding of what it does, even when
you come back to it after three months. And it means that you can look
at it without getting a headache, because it looks ugly.

For the most part the advanced optimization techniques apply to loops
or nested constructs -- when code is executed repeatedly. This is where
performance can bite you most. We’ll show you how to make things run
smoother.

JavaScript Parsing Speed
JavaScript parsing and interpretation is pretty quick in modern browsers.

Tests reveal that function/object definitions with little execution of actual
code (as in case with JavaScript frameworks, like Prototype or jQuery)
are quickly parsed, with a performance of a million lines of code per
second or better.

Given that anything above 50,000 lines of JavaScript in a REALLY BIG
web application is total overkill, the parsing speed isn’t an issue.

Welcome to Loadtime

69

It gets more interesting with execution speed, with average JavaScript
expressions (think one line of code) are executed with a speed of
50kLOCs to 250kLOCs. Not too shabby.

So use your energy on those pesky loops with lots of expressions
executed, and don’t worry if the library you’re using is 2k LOC or 5k LOC
(as long as you observe the rules for serving it quickly!)

This also means that there is not much to be gained from JavaScript
minifying in terms of optimizing the pure JavaScript parsing time.

Our tests show that your scripts might be parsed 10% to 20% or so
faster, but at as stated above this will not be noticeable, unless you’ve
hundreds of thousands of lines of code to parse.

You might still want to consider using minification though, as it can
save quite a lot of bandwidth/transmission time. If your want to try out
one, the YUI Compressor (http://developer.yahoo.com/yui/compressor/) has
proven to produce the best optimized output (with little possibility of
breaking your code), plus it can optimize the size of your CSS, too.

DO avoid JavaScript obfuscators though
(e.g. http://dean.edwards.name/packer/ with Base62 encode ON). These
rely on eval() statements that might considerably slow down the loading
performance of your JavaScripts.

Welcome to Loadtime

70

Execution Speed vs Code Size
A dilemma a old as programming is the struggle of code size versus
execution speed -- you can’t have both things optimal at the same time.

For our purposes we can gladly make up a set of simple rules to achieve
a good compromise:

 Avoid performance problems. Apply the rules for better percepted 1.	
load time, optimize the serving environment and don’t even start out
with unnecessary DOM cruft and superflous JavaScript code.
 Only optimize for execution speed where it actually makes sense. 2.	
‘Sense’ includes: ‘feelable’ slow-downs, jerky animations, laggy
response to keystrokes, non-immediate onset of responses to clicks,
hourglasses, beachballs of death. That sort of thing. In most cases,
identifying the perpetrators should be easy enough (sadly, the
solutions won’t be that obvious most of the time).
 Optimize for code size elsewhere (but don’t to it prematurely). 3.	
If you’re doing applications, most of your JavaScripts will gladly
reside in browser caches and needs not to be concerned about
code size too much. For landing pages, public web sites and mobile
applications the importance is higher.

We love making highly interactive web apps, but there’s little love lost
between us & the Document Object Model.

Also, it’s slow. Which is how we come back on point.

Interacting with the DOM is one of the slowest things you can do with
JavaScript. (Same thing goes for other XML-type data structures, like,
well, XML.)

But there’s a nice bag of tricks you can learn to speed things up.

Looking for Elements in All the Wrong Places
We’re all little web monkeys, constantly trying to plucking the juiciest
DOM element—or elements—out of the tree.

Making a poor choice with your node selection is super easy, and can
cost you a lot, performance wise. Gladly, these mistakes are also super
easy to fix.

Runtime: DOM, DOM DOM DOMMM
Cue Dramatic Mozart Music, for the Document Object Model

The JavaScript we write is sullied by the DOM, that
ungangliest of interfaces between the HTML document tree
and JavaScript.

Chapter 14

Runtime: DOM, DOM DOM DOMMM

72

BETA ALERT! We’re testing the

various libraries and browsers. Expect

hard data soon.

In order of zippiness, here are the ways you can pick up the right node or
nodes:

selecting by ID is the fastest•	
selecting by tagName is still quite fast—but chain it off the correct •	

parent container (not the whole document object)
selecting with CSS selectors is slow, regardless of which library you •	

use

Regarding CSS selectors specifically, there is a specification but most
browsers don’t follow it. Yay, specifications! And the big libraries vary
wildly in their performance on this one.

Other techniques to add to your toolbox:

Find yourself searching repetitively for the same criteria? Create a •	
cache instead, & keep it up-to-date

Now, for those of you who’d like more detail:

By ID: The Absolute Fastest Way

Select a DOM node by ID is the bar-none fastest way to grab it:

var node = document.getElementById(‘banana’)

Runtime: DOM, DOM DOM DOMMM

73

By the childNodes Collection: Fast but Sometimes
Unreliable

When you’re looking for a particular node or nodes inside a parent node
(phew), you can use the parent node’s childNodes collection just like an
array. You can grab all of it or cycle through it:

var children = node.childNodes;
for(var i=0; i < children.length; i++) {
 // do stuff with all child nodes
}

You can select specific elements from the childNodes using array
accessors, and even chain them infinitely:

node.childNodes[0].childNodes[1].childNodes[2]

Be aware, though, that a node isn’t just the stuff in an HTML tag. If you
write your code this way, your results may be unexpected, because some
browsers treat whitespace as nodes—and they differ, too.

So the element you get as node.childNodes[0] in IE may not be the
same as what you get in Firefox.

By Tag Type: Fast and Reliable

You can work around the whitespace / text node issues across browsers

Runtime: DOM, DOM DOM DOMMM

74

by using the getElementsByTagName() approach instead. But, always start
from the narrowest possible starting point: if you know the div elements
you want are in a certain parent element, go for that sucker first.

var nested_nodes = node.getElementsByTagName(‘div’)

Starting from the right point, narrowing it down as much as possible first,
is a good way to speed things up.

CSS Selectors: Slowest Possible Choice

You like using CSS selectors. I like using CSS selectors.

But the plain fact of the matter is, if you’ve got performance problems,
using a framework’s CSS selection engine is a terrible idea.

Event Bubbling
When you’re working with DOM node events, you don’t need to assign
an event—like a mouseover—to every single possible DOM element that
might be under the mouse to trigger it.

Instead, you assign the event to a container element, and nodes inside it
do or do not “participate” in the event as it travels up the chain.

This is called event bubbling.

Runtime: DOM, DOM DOM DOMMM

75

Event bubbling has many advantages, such as not having to deal with
sudden memory leaks because of the sheer amount of event handlers.

To best use this feature, be sure to use a JavaScript framework or toolkit
that provides a cross-browser API for events (otherwise it’s pretty messy).

Say you want to check for clicks on list items. Instead of registering an
onclick event on each list item, just do one event on the UL element,
and use the magic of event bubbling:

<ul id=”list”>
 hello
 there

<script>
var list = document.getElementById(‘list’);
list.onclick = function(event){
 event = event || window.event;
 alert(‘You clicked on: ‘+(event.target||event.srcElement).
innerHTML);
}
</script>

As you can see, it’s getting pretty complicated because of the different
event models in IE and the rest of the browser world, and this example

Runtime: DOM, DOM DOM DOMMM

76

even makes some shortcuts that you should avoid (like using the onclick
property directly).

This technique has a couple of advantages with Ajax applications, too-- as
you update element contents, for example add new elements to the list,
these elements will automatically inherit the ability to deal with events,
without the need to call on extra initializing through JavaScript:

<script>
 list.innerHTML += ‘JavaScript rocks!’;
</script>

Magically, clicking does the right thing! Rejoice!

So where should such catch-all event handlers go?

We say use common sense and don’t try to make just one page-wide
onclick handler-—instead opt for logical, functional groups.

And look into those frameworks, which can handle a lot of the nasty
background idiosyncrasies for you.

All in all using event bubbling extensively gives you leaner HTML, less
traffic and a lot less of a mess.

Runtime: DOM, DOM DOM DOMMM

77

The InnerHTML Accessor
Using innerHTML to update elements contents is almost always faster
than using the DOM API. If you don’t need to deal with events, try to
use innerHTML where possible:

var element = document.getElementById(‘blurb’);
benchmark(function(){
 element.innerHTML = ‘hello world: <i>here i am</i>’;
}, 10000, ‘innerHTML’);

benchmark(function(){
 var node1 = document.createElement(‘b’);
 node1.appendChild(document.createTextNode(‘world’));
 var node2 = document.createElement(‘i’);
 node2.appendChild(document.createTextNode(‘here i am’));
 while(element.childNodes.length) element.removeChild(element.
childNodes[0]);
 element.appendChild(document.createTextNode(‘hello ‘));
 element.appendChild(node1);
 element.appendChild(document.createTextNode(‘: ‘));
 element.appendChild(node2);
}, 10000, ‘DOM API’);

All browsers are about 2.5x faster with the innerHTML method than with
appendChild and removeChild.

Runtime: DOM, DOM DOM DOMMM

78

DOM Complexity
Reduce DOM complexity as much as possible. The fewer elements/nodes
there are on your page, the faster everything will be. (We covered this in
loadtime, too!)

Checking an Element’s Contents
When you want to check if an element’s empty in your code, you
probably write something that looks like this:

Slow Code Example
if (element.innerHTML == ‘’) { // do stuff }

This is familiar, natural, and totally slow!

While we said that the innerHTML accessor is faster for replacing DOM
node contents, it is much slower than other methods when it comes to
comparing them.

In this case, the innerHTML must be generated from current DOM tree on
demand, to be compared to the string.

Faster Option

if (element.childNodes.length == 0) { // do stuff }

With this example, you’re checking an array length, with no string
comparison. It’s significantly faster.

Runtime: DOM, DOM DOM DOMMM

79

Setting Element’s Styles
Use the cssText property instead of setting individual styles in multiple
statements to avoid multiple reflowing cycles for your page.

When using the cssText property, the browser only performs one layout
reflow (you set all the properties at once).

If you change the individual style properties, the browser might be forced
to do more than one reflow.

This is especially important if you have a large & complex DOM
structure.

Here’s a benchmarking example we used to test (try it yourself!):

benchmark(function(){
 element.style.cssText = ‘font-size:’+Math.
random()*50+’px;text-indent:’+Math.random()*50+’px’;
}, 10000, ‘cssText’);

benchmark(function(){
 element.style.fontSize = Math.random()*50+’px’;
 element.style.textIndent = Math.random()*50+’px’;
}, 10000, ‘direct styles’);

Even with the simplest DOM possible, just one div node, the cssText
approach is 25% faster in Safari 3, and 50% faster in Firefox 3.

Runtime: DOM, DOM DOM DOMMM

80

Keep it Simple
Let’s say you’re doing a splash page where you need to run some
JavaScript if there’s some big area clicked.

You could go ahead and include a JavaScript framework, and use its
support for events to do some event handling in a method that you put
in an external JavaScript file that you call when the DOM is completely
loaded.

OR... you could keep it simple and just add a simple onclick=”some();ja
vascript();stuff()” attribute on the div you want clickable.

Does that idea make you feel dirty?

Well, get used to it, because performance tuning can be a dirty job.
Think about those pit crew mechanics crawling around on the asphalt
and rolling in motor oil. It just comes with the job description.

One of the most important skills you can develop for performance
optimization: seeing the big picture. Try to step back sometimes and look
at it!

And, by the way, there’s absolutely no reason not to use an onclick
attribute, even if the web standards zealots tell you otherwise. Again, NO
REASON. That is, NO REASON*.

There, we said it.

* Please don’t try lecturing us on

this by mentioning ‘accessibility’.

The a-word has been used time

and again to make perfectly simple

things complex and sluggish. There’s

not silver bullet to accessibility on

the web, except designing and

engineering for multiple target

audiences. Which means building

multiple versions of the front-end,

tailored to each group.

This will get filled out with lots of helpful background text, but for the
time being, we’re just gonna hit you up with examples.

The with() Statement
Rarely used, but it can kill performance if used in loops.

benchmark(function(){
 var obj = { x: true }, i = 10000;
 with(obj){ while(i--){ !!x; } }
}, 100, ‘with’);

benchmark(function(){
 var obj = { x: true }, i = 10000;
 while(i--){ !!obj.x; }
}, 100, ‘without with’);

On most browsers, the version without the with() statement is 4 to 10
times faster.

Runtime: Pure, Clear JavaScript
Time for the Nerdiest Optimizations of All

A word to the wise: there are tricks in here for optimizing
that should only be used when you really need ‘em. When
in doubt, benchmark.

Chapter 15

BETA ALERT!

We’re adding a ton more content

here. If you don’t understand the

context of everything, you will with

the next few versions.

Let us know if you find anything

confusing!

Runtime: Pure, Clear JavaScript

82

Loops: Best Practices
For accessing (nested) properties of objects save a reference in a local
variable and use a while loop with the decrement operator for optimal
performance and code size.

You’ll see the while-loop technique used quite often in the code samples
in this book.

Not Good

 for(var i=0;i<100;i++) {
 something(my.complicated.object.reference, i);
 }

Better

 var x = my.complicated.object.reference;

 for(var i=0;i<100;i++) {
 // do something with x
 }

 Best

 var i = 100, x = my.complicated.object.reference;
 while(i--){ // do something with x }

Runtime: Pure, Clear JavaScript

83

Method Calls
Method calls are expensive. Inline methods to loops.

Consider:

function square(n){ return n*n };
var i=10000, sum = 0;
while(i--) sum += square(i);

vs.

var i=10000, sum = 0;
while(i--) sum += i*i;
// inline the code from the function into the loop

The latter is 2-4 times faster.

Variable Caches
For often-called methods, cache aggressively. Here’s one way to do it:

var function = (function(){
	 var x = someExpensiveOperation();

	 return function(){
 		 return x;
	 }
})();

All this boils down to: ‘someExpensiveOperation’ is called only once, and

Runtime: Pure, Clear JavaScript

84

on all calls to f() the cached result will be returned. This is a great way
to introduce caching without having to change the rest of your code:

function takesALongTimeAndDoesNothing(){
 var i = 100000; while(i--) i*i; return 1;
}

Versus the alternative:

// cached implementation, mind the __ on the beginning of the
function
function __takesALongTimeAndDoesNothing(){
 var i = 100000; while(i--) i*i; return 1;
}

// and here the caching happens
var takesALongTimeAndDoesNothing = (function(){
 var result;
 return function(){
 result = result || __takesALongTimeAndDoesNothing();
 return result;
 }
 })();

In both cases the result of takesALongTimeAndDoesNothing() is 1, but if
takesALongTimeAndDoesNothing() is called multiple times, in the latter
implementation the calculation has to be done only once (on the first
call).

Runtime: Pure, Clear JavaScript

85

For this example, the cached implementation
is a tiny, tiny, tiny bit slower when first called,
but 10,000x faster starting from the second
invocation.

If() vs Switch()
benchmark(function(){
 var a = 5;
 switch(a){
 case 0: {} break;
 case 1: {} break;
 case 2: {} break;
 case 3: {} break;
 case 4: {} break;
 }
}, 100000, ‘switch statement’);

Tested against:

benchmark(function(){
 var a = 5;
 if(a==0){};
 if(a==1){};
 if(a==2){};
 if(a==3){};
 if(a==4){};
}, 100000, ‘if statement’);

Results

Firefox 3: switch() wins: .015s vs. .027s for if().
Safari 3: if() wins: .035s vs. .039s for switch()
IE 7: if() wins: .375s vs. .453s for switch()

Runtime: Pure, Clear JavaScript

86

String Concatenation
Can vary depending on the browser and might require
branches. For example, if you do a lot of concatenation
it might be advisable to have one version for Safari 3
and Firefox 3 that uses an array and joins it, and the
other version for Firefox 2 and IE, that uses plain string
concatenation.

BE AWARE: JAVASCRIPT INTERPRETERS VARY
WILDLY.

You can always redefine functions in JavaScript, make
use of it!

String concatenation benchmark 1:

benchmark(function(){
 var x = ‘a’+’b’+’c’+’d’;
}, 100000, ‘direct concatenation’);
benchmark(function(){
 var x = ‘a’; x += ‘b’; x += ‘c’; x += ‘d’;
}, 100000, ‘individual statements’);
benchmark(function(){
 var x = [‘a’,’b’,’c’,’d’].join(‘’);
}, 100000, ‘array join’);

String concatenation benchmark 1:

benchmark(function(){
 var x = ‘’, i = 1000;
 while(i--){ x += ‘blech’; };
}, 1000, ‘individual statements (1000 loop)’);
benchmark(function(){
 var x = [], i = 1000;
 while(i--){ x.push(‘blech’); };
 x = x.join(‘’);
}, 1000, ‘array join (1000 loop)’);

Runtime: Pure, Clear JavaScript

87

String Concatenation Results

Firefox 2:
direct concatenation: 0.176s
individual statements: 0.438s
array join: 1.850s

individual statements (1000 loop): 2.179s
array join (1000 loop): 4.193s

Firefox 3:
direct concatenation: 0.011s
individual statements: 0.080s
array join: 0.446s
individual statements (1000 loop): 0.679s
array join (1000 loop): 0.503s

Safari 3:
direct concatenation: 0.229s
individual statements: 0.232s
array join: 0.244s

individual statements (1000 loop): 0.838s
array join (1000 loop): 0.719s

IE 7:
direct concatenation: 0.656s
individual statements: 0.609s
array join: 1.078s

individual statements (1000 loop): 3.047s
array join (1000 loop): 4.187s

Runtime: Pure, Clear JavaScript

88

Regular Expressions

Here’s a code example that tries to match various regular expressions in
a huge string (the initialization for the string is a nice way to generate
some test data, initialize an array of a certain size, and use join to
generate the filling):

var hugeString = (new Array(1024*1024)).join(‘X’); // 1 MiB
benchmark(function(){
 hugeString.match(/ABC/);
 hugeString.match(/ABC$/);
 hugeString.match(/[1-3]$/);
}, 100, ‘regexp matching’);

The various JavaScript engines vary widely on speed—we have a surprise
winner here!

Seems that IE’s regular expression library is superfast: IE7 1.188s, Safari
3: 2.755s, Firefox 3: 3.2s. Firefox 2 around 7 seconds for this.

Regular expressions can be very fast, and you can do pretty advanced
things with them. On the negative side, they tend to make your code
unreadable (to the untrained eye-- and for more complex regular
expressions to all eyes).

Proceed with caution!

Runtime: Pure, Clear JavaScript

89

Reduce Namespaced Calls
Reducing “namespaced” function calls can speed things up.

Not Good

var x = {
 a: function(){ x.b() },
 b: function(){ }
};

x.a();

Better

(function (){
 function a(){ b() }
 function b() { }
 a();
})();

This has two benefits: 1) the code likely runs faster (not by a lot, though)
and more importantly, 2) code size is reduced.

By refactoring large JavaScript programs you can save quite a lot by this
style of programming.

Note that if you want to do OOP-style programming, you might want to
avoid this style of closures, because you can’t overwrite or copy methods
later, so YMMV with this technique.

Runtime: Pure, Clear JavaScript

90

Write Simpler Code
It may be tempting to write “well-architected” code like this example:

 function Rock(){ this.weight = ‘a lot’; }
 Rock.prototype.getWeight = function(){ return this.weight; }

 var stone = new Rock();
 stone.getWeight();

But it’s much more efficient to use stone.weight directly instead:

 stone.weight;

As this benchmark proves:

>>> benchmark(function(){ stone.getWeight() }, 100000)
benchmark: 0.372s

>>> benchmark(function(){ stone.weight }, 100000)
benchmark: 0.294s

Runtime: Pure, Clear JavaScript

91

Accessing Object Properties
There are two ways of accessing the properties of an object:

object.property
This method is faster than the second method (up to 25% or so,
depending on the browser) -- but this only matters if you do lots and lots
of accesses to the same property.

object[propertyNameString]
Slower (but of course you can use dynamic strings!).

Use if necessary, preferring object.property.

Note that it doesn’t make much of a difference if you use string literal
(object[‘propertyName’]) or a pre-assigned string variable (var
propertyName = ‘propertyName’; object[propertyName]).

The latter can actually be worse because of the extra lookup.

Runtime: Pure, Clear JavaScript

92

Testing if a Property Exists
if(‘propertyName’ in object){ ... }

vs.

if(object.propertyName){ ... }

The latter is faster, but it doesn’t check if a property exists or not, it
checks if the property evaluates to true:

>>> object = { p: 1 }
Object p=1
>>> !!object.p
true
>>> ‘p’ in object
true
>>> object.p = false
false
>>> !!object.p
false
>>> ‘p’ in object
true
>>> object.p = undefined
>>> !!object.p
false
>>> ‘p’ in object
true

So, mind the differences. A ’propertyName’ in object expression
normally performs pretty well.

Runtime: Pure, Clear JavaScript

93

Impact of Try/Catch
Especially with the most modern browsers, like Google Chrome and pre-
releases of Safari, that have just-in-time compilers for JavaScript, try/
catch blocks can be in the way of great performance.

Make sure to use try/catch only where absolutely necessary (that is,
where you actually expect exceptions to happen).

Low-Hanging Fruit Grab Bag
Some low-hanging performance fruit

Precompiled regular expressions

 var REGEXP = /abc/;
 function method1(string){
 return string.match(REGEXP);
 }

 function method2(string){
 return string.match(/abc/);
 }

 method1(), using the ‘pre-compiled’ variable, is around 20% or so faster.

Runtime: Pure, Clear JavaScript

94

Use object and array literals

 function method1(string){
 var a = [], o = {};
 }

 function method2(string){
 var a = new Array(), o = new Object();
 }

method1(), using the array and object literals, is faster (and shorter to
boot with).

Global variables vs. closures

 var testVar = 100;
 function method1(n){
 return n * testVar;
 }

 var method2 = (function(){
 var testInt = 100;
 return function(n){
 return n * testInt;
 }
 })();

There’s no winner here, both implementations perform more or less
exactly the same. This means closures should be preferred over global
variables, especially in larger scripts (to prevent cluttering the global

Runtime: Pure, Clear JavaScript

95

‘namespace’).

Reuse functions if possible

 var emptyFunction = function(){};
 function method1(){
 return emptyFunction();
 }

 function method2(){
 return (function(){})();
 }

 The former implementation, that ‘caches’ the function, is much
faster than the latter (up to 50 times or so, depending on how much
optimization the JavaScript runtime does).

Runtime: Pure, Clear JavaScript

96

Concise Code Techniques
Space-saver techniques.

Multiple var declarations

var a=1, b=2, c=3;

Function parameters as placeholders

function f(a,b,c){
 a=1; b=2; c=3;
}

f();

(tends to make code a bit unreadble)

Ternary conditional expressions

Instead of:

if(a==1) b=1; else b=2;

use:

b = a==1 ? 1 : 2;

Use return instead of an if

function f(a){
 if(a==1){
 // do something
 }
}

becomes

function f(a){
 if(a!=1) return;
 // do something
}

Runtime: Pure, Clear JavaScript

97

Improve perceived performance with long-
running calculations
Sometimes you just can’t help it and have to process lots of data on the
client—which can mean visible temporay ‘lock-ups’ of your web app: short
periods of time where the browser doesn’t act or react.

This is because JavaScript is blocking and the main browser event loop
(the one that handles mouse clicks, the browser menu bar, etc) won’t do
anything until after the JavaScript is executed.

This behaviour is by design. It could be argued that this design isn’t
a good one, but this design decision was made a decade ago in an
comittee far, far away. It’s just the way things are for now (several new
JavaScript engines try to change that by introducing stuff like threads).

What you can do—that works on all browsers—is break up long
operations into chunks and defer the executing of each chunk, so the
browser can keep up with user input and at least appear as if everything
is allright.

This is rather like multi-tasking on old-school operating systems, think
Windows 3.0 or Mac OS 9. No preemptive multitasking here, move
along.

Runtime: Pure, Clear JavaScript

98

You can do this with the setTimeout() function.

Here’s an example where processing a long array of
data is slow and how you can make the perceived
performace better with execution chunking (it will still
take the same processing time, mind you, but it will
seem faster!).

(Note that normally, if you’ve this situation more than
once, it’s probably a good idea to make a reusable
function out of this, plus it would also be much
more trivial to implement if you’re using a JavaScript
framework that has solid support for array/enumerable
handling.)

// what we want to do with each array item
function doSomethingSlowWithItem(item){
 // do stuffs
 console.log(item); // just for the demo
}

// original function
function process(data){
 var i = data.length;
 while(i--) doSomethingSlowWithItem(data[i]);
}

// chunked execution
function processChunked(data){
 var index = data.length,
 CHUNK_SIZE = 5;

 function processNextPart(){
 var i = index,
 target = index-CHUNK_SIZE < 0 ? 0 : index-CHUNK_SIZE;
 while(i--,i>=target) doSomethingSlowWithItem(data[i]);
 index = target;
 if(index>0) setTimeout(processNextPart, 10);
 }

 processNextPart();
}

var data = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16];
process(data);
processChunked(data);

Runtime: Pure, Clear JavaScript

99

Operator Tricks and Hacks
(Did we tell you this was a grab bag at the moment? We weren’t
kidding.)

To == or to ===, that is the question

The strict equality operator (===) has a slight edge for most cases, so use
it when you can.

Shorthand operators: use them

Using shorthand operators like += and /= can help fight code cruft, add
a tiny bit of performance and make you feel like a JavaScript god when
the other programmers are starting to congratulate you on your mad
JavaScript skills.

 a += 5; // increase a by 5

Of course, where applicable, use the shortcuts for increment and
decrement:

 if(++a){ ... }
// increase a by one and enter the block if the new value
evaluates to true

Runtime: Pure, Clear JavaScript

100

There’s also the comma ‘,’ operator (the comma operator evaluates both
of its operands and returns the value of the second operand) with which
you do further tricks:

 if(a++,b==5){ ... }
// always increments a, but only goes into the block if b equals
5

The forgotten |= shorthand operator

This can be used to apply default values to function parameters:

 function someFunction(n){
 n |= 1; // same as n = n || 1;
 }

This method is the fastest and shortest way to provide default values.

JavaScript on the iPhone is slow.

Our tests show that you should think about 40x slower than a current
desktop computer. That’s forty times. A lot that seems swift and agile on
your shiny new iMac is really going to hurt people on the run.

To make it worse, DOM rendering is also slow. Of course it is, this is
hardware optimized for miuscule size and power consumption. Far from
the super-fast ‘like on a real computer’ experience the ads suggest.

Here’s some rules you can apply to iPhone JavaScript development:

Separate Versions Required
If possible, make a special iPhone version of your app or site.

Shrinky Dink, Under 25K
Keep the size (before gzip) of external JavaScript files under 25k, to
enable proper caching*. You can split bigger files up in chunks to enable
this. Also do this for CSS.

iPhone Tips & Tricks
Is that a web browser in your pocket, or are you just... No? OK.
Wish I had a witty intro here for ya, but we’re too busy
working on the real content to get funny. So sorry!

Chapter 16

* The iPhone doesn’t cache any

individual page component over

25k.

http://yuiblog.com/

blog/2008/02/06/iphone-

cacheability/

Loadtime: Con-ca-te-nation

102

Exploit Webkit
Take advantage of Webkit: use canvas and SVG to replace image files.

Simplify, Simplify, Simplify
Keep the JavaScript small and simple, doing any ‘heavy lifting’ of data or
computationally intensive operations on the backend.

For example, spare the iPhone from having to convert data from one
form to an another, and use your backend to process the data in a form
JavaScript can understand easily (use JSON).

This is not a bad idea for non-iPhone JavaScript development, either.

Make a special case for the iPhone
var isPhone = !!navigator.userAgent.match(/
Apple.*Mobile.*Safari/)

... and branch accordingly. For example, if you do form validation,
validate the form on submit only, not on every change in any field as you
might do on the desktop.

Loadtime: Con-ca-te-nation

103

Advice Grab Bag
Do not use large images ever (in resolution and/or file size). This applies
to img tags and to background images.

Do not use more than a handful of images files on one page.

Use the viewport command and disable zooming*

Make use of CSS3 and WebKit-specific CSS extensions, e.g. -webkit-
border-radius, RGBA colors and shadows.

With animations (JavaScript-based or by using Apple’s CSS animation
system), avoid complex DOM structure for better framerates.

	JavaScript Performance Rocks!
	How this book works
	This Book is a Beta Book
	Why This Book Costs Money & Why You Should Pay
	Sections

	You, Performance. Performance, You.
	The Inverted Pyramid
	If an app is on the network but there’s no one there to use it, is it slow?

	Is Your App Behaving Badly?
	The 3 levels of measurement
	Your Toolbox
	Strata in the Problemosphere
	Custom Benchmarking
	Getting accurate results

	Welcome to Loadtime
	That page just takes forever!
	Two types of loadtime laments
	How we’ll fix it
	Making the right choices for your app
	Moving Forward

	Loadtime: Script Load Order
	Loadtime: The Cachét of Caching
	Expiration Headers
	Caching Strategies
	Configuring Apache 1.x and 2.x
	Configuring nginx
	Configuring Lighttpd
	Caching Gotchas: JSON & Generated JavaScript

	Loadtime: Con-ca-te-nation
	Loadtime: Inlining & Precaching
	Inlining Isn’t Evil
	Pre-caching: A Beautiful, Sneaky Trick

	Loadtime: Under Compressure
	The Problems with Packing
	Good Minification
	Gee! Gzipping is the Answer
	Google gzips So You Don’t Have To

	Loadtime: Cover Your Assets
	Using Multiple Asset Hosts

	Loadtime: You Need an Upgrade
	Out of Sight, Not Out of Mind
	Catching Back-end Issues
	Profiling Back-end Issues

	Loadtime: Reduce Complexity
	General Complexity
	Watch out for Ajax
	Browser-specific Complexity

	Loadtime: JavaScript, On-Demand!
	Inserting JavaScript on Demand

	Welcome to Runtime
	On Premature Optimization
	JavaScript Parsing Speed
	Execution Speed vs Code Size

	Runtime: DOM, DOM DOM DOMMM
	Cue Dramatic Mozart Music, for the Document Object Model
	Looking for Elements in All the Wrong Places
	Event Bubbling
	The InnerHTML Accessor
	DOM Complexity
	Checking an Element’s Contents
	Setting Element’s Styles
	Keep it Simple

	Runtime: Pure, Clear JavaScript
	The with() Statement
	Loops: Best Practices
	Method Calls
	Variable Caches
	If() vs Switch()
	String Concatenation
	Reduce Namespaced Calls
	Write Simpler Code
	Accessing Object Properties
	Testing if a Property Exists
	Impact of Try/Catch
	Low-Hanging Fruit Grab Bag
	Concise Code Techniques
	Improve perceived performance with long-running calculations
	Operator Tricks and Hacks

	iPhone Tips & Tricks
	Separate Versions Required
	Shrinky Dink, Under 25K
	Exploit Webkit
	Simplify, Simplify, Simplify
	Make a special case for the iPhone
	Advice Grab Bag

