% TEXAS Application Report
INSTRUMENTS SPRA820 — May 2003

Online Stack Overflow Detection on the TMS320C28x DSP

David M. Alter DSP Applications — Semiconductor Group

ABSTRACT

A stack overflow in an embedded DSP application generally produces a catastrophic
software crash due to data corruption, lost return addresses, or both. Traditional off-line
approaches to sizing a stack during development, such as filling with a know value, or
estimating based on code content, are not 100% reliable. Therefore, programmers often
feel compelled to reserve larger stack sizes than are actually needed. This wastes
valuable memory resources. Facilities exist on the TMS320C28x™ DSP that, when
properly configured, allow for runtime detection of a stack overflow before it occurs.
Detection of an impending stack overflow triggers a maskable interrupt, and software can
then take whatever corrective action is desired before a software crash occurs. This
application report presents the methodology for online stack overflow detection on the
TMS320C28x DSP. C-source code is provided that contains functions for implementing
the overflow detection on both DSP/BIOS™ and non-DSP/BIOS applications.

TMS320C28x and DSP/BIOS are trademarks of Texas Instruments.
Trademarks are the property of their respective owners.

*53 TeExAs

SPRA820 INSTRUMENTS
Contents
N 1 1 o Yo 10 Yo o o PSP 3
2 The C28x Emulation Analysis BIOCK..........iiiiiiiiiiiie e aeeeans 4
2.1 Analysis Block WatChpoint REQISIEIS.cooiieeiiiiei e e e e e e e e e e e eeeeees 5
2.2 Watchpoint Register Configuration ProCeaUIe...........ooooiiiiiiiiiiiie e 8
3 Configuring a Watchpoint for Stack Overflow Detectioncooeiiiiiiiiiiiiii e 9
3.1 Determining the Watchpoint Location and Range in MEMOIYccccoveeeeiiiiiiiiiiiii e, 9
3.2 Watchpoint REGISLEIS VAIUES.......cooi e e e e e e s 11
O N o] o] Lot Ao] T F=T =T L= 12
4.1 NON-DSP/BIOS APPHCALIONS ..o 13
4.2 DSP/BIOS APPICALIONS ... 14
LS S @7 ¥ o] 10 =3 1o] o 16
B R I CES e 16
APPENiX A. C FUNCLION APIS .o e e e e e et e e e e e e e e e eetan e e e e e eeeeeeennes 17
AppendiX B. C Code FUNCLIONS ... e e e e e e e e e e e e e et s e e e e e e eeareenes 22
B.1 STKOV_SYSIEMSTACK.C .oeeeeiiiiii ettt e e e e et e e et e e e e e e e e eeeann e e e eeeeeenae 22
Y 1 0}V = 1]] = U o 25
B3 STKOV.N e 29
Appendix C. Troubleshooting Analysis Block Resource Conflicts.........ccccoeeeiiiiiiiiiiiiiii e, 31
C.1 Hardware BreaKpPOiNTSccii it e e e e e e e e et e e e e e e e e e eeatra e e e e aeaeenennes 31
C.2 Real-time ANAIYSIS TOOISo e e et e e e e e e e e eenenanns 33
(O I 0o To [N] o 11T TR 35
C.4 ReSetting the EMUIALONcoo e e e e e e e e e e e e ettt a e e e e eeeeenenes 35
Figures
Figure 1. Stack OVerflow MONITOTINGoiiiiiii e e e e e s 4
Figure 2. Watchpoint Range in Relation to the Stack in Memoryccccviiiiii e, 11
Figure 3. Specifying the Task Hook Functions in Code Composer Studio v2.20..................... 15
Tables
Table 1. C28x Analysis Block WatCchpoint REQISIEISuuiiiiiiiiiieicce e 5

2 Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

1

Introduction

A stack overflow in an embedded DSP application generally produces a catastrophic software
crash due to data corruption, lost return addresses, or both. The traditional approach to
avoiding stack overflow is to perform offline testing during software development. Typically, a
stack will be comfortably oversized, and the entire stack memory filled with some known data
value using a code debugger. The application software will then be run over some period of
time (e.g. hours, days, or sometimes even weeks). At the end of the run period, the stack
memory is examined using the code debugger. The unused portion of the stack will still contain
the pre-filled data value, and thus the amount of stack used by the application is readily
apparent. A factor of safety can then be applied, and a final stack size determined. While this
offline method of stack sizing is invaluable as a first pass approach, it does not eliminate the
possibility of a stack overflow occurring at runtime. Programmers may therefore use a larger
stack than they might actually need, which can waste valuable on-chip RAM resources.

Facilities exist on the TMS320C28x DSP (hereafter referred to as the C28x™) that, when
properly configured, allow runtime detection of a stack overflow before it occurs. When the
(incrementing) stack pointer exceeds a specified address before the end of the stack, a
maskable interrupt is triggered (the RTOSINT interrupt). Software can then take corrective
action to prevent an application crash. The choice of action taken is solely up to the user, and
should be suitable for the particular application at hand. For example, one might choose to
simply perform a controlled shutdown, or perhaps restart the code by performing a DSP reset.
Alternately, certain applications might allow one to throttle back the number of duties being
performed until the stack usage reduces to a safer level. One should remember that a stack
overflow is not caused by a bug in the code, but rather is due to a stack that has been sized too
small for the worst-case demands of the application.

The on-chip resource that enables stack overflow detection on the C28x DSP is known as the
emulation analysis block. Although primarily intended for use by the Code Composer Studio™
debugger, the analysis block registers are accessible to software and therefore can also be
utilized by application code. The analysis block monitors the internal address and data buses,
and triggers the RTOSINT interrupt when a specified bus and mask matches a specified value.
Hence, the basic approach for detecting stack overflow will be to configure the analysis block to
trigger an interrupt when the data write address bus falls within some range prior to the end of a
stack. This is illustrated in Figure 1. Since this memory is reserved for stack usage only, a data
write within the specified address range indicates that the stack usage is approaching its
allocated size limit.

The stack overflow detection technique described in this report applies applications using the
DSP/BIOS real-time operating system, as well as non-DSP/BIOS applications. In the case of a
non-DSP/BIOS application, there is generally only a single stack (e.g., the stack used by the
C/C++ compiler). A single watchpoint monitoring the stack is therefore sufficient. In the case of
a DSP/BIOS application, there are multiple stacks: a single system stack (analogous to the
single stack used by non-DSP/BIOS applications), and a stack for each DSP/BIOS task object.
Here, a single watchpoint will be configured to monitor the system stack, and a second
watchpoint will be configured to monitor the task stacks. This second watchpoint will be
dynamically reconfigured each time a task switch occurs such that it is always monitoring the
stack of the currently active task.

C28x and Code Composer Studio are trademarks of Texas Instruments.

Online Stack Overflow Detection on the TMS320C28x DSP 3

*53 TeExAs

SPRA820 INSTRUMENTS
(
Stack grows
Region of towards higher
memory < memory
occupied by addresses
the stack
Monitor for data writes

\ near the end of the stack

Data Memory

Figure 1. Stack Overflow Monitoring

2 The C28x Emulation Analysis Block

The emulation analysis block in the C28x DSP core has extensive capabilities, most of which
are intended for use by the Code Composer Studio debugger. Documenting the entire analysis
block is beyond the scope of this application report, and therefore only the resources needed to
perform stack overflow detection will be covered. Additional information can be found in
reference [1].

Performing stack overflow detection requires use of one or both of the analysis units in the
analysis block. The analysis units are utilized as hardware watchpoints (denoted as WPO for
watchpoint 0, and WP1 for watchpoint 1). A watchpoint triggers when either an address bus, or
both an address bus and a data bus match what they are being compared against. The address
portion is compared against a reference address and bit mask, and the data portion is compared
against a reference data value and a different bit mask. If only addresses are to be compared,
two watchpoints can be set; if both address and data are to be compared, only one watchpoint
can be set. When an emulator is connected to the DSP and Code Composer Studio is active, a
triggered watchpoint can cause the debugger to take certain action (e.g. halt the DSP).
However, a triggered watchpoint also causes a RTOSINT interrupt, and this interrupt can be
utilized by software even if no emulator is connected. Note that the RTOSINT is a maskable
interrupt. It must be enabled in the interrupt enable register (IER), and the global interrupt mask
bit must be cleared in status register 1 (INTM bit in ST1), or the interrupt will not be serviced.

4 Online Stack Overflow Detection on the TMS320C28x DSP

*5‘ TeExAS
INSTRUMENTS

SPRA820

2.1

Analysis Block Watchpoint Registers

The analysis block registers are data memory mapped, and may be accessed from code in the

same way as any other data variable. A description of the various registers and their bits

follows.

CAUTION:

Read the register bit descriptions very carefully. Some of the bit settings are
not intuitive. Also, whereas the bit fields for the MASKxx and REFxx registers of
WPO and WP1 are the same, subtle differences exist in the bit fields for the
EVTO_CNTL and EVT1_CNTL registers (such as the buses selected by bits 4-2),
and also for the EVTO_ID and EVTL_ID registers.

Table 1. C28x Analysis Block Watchpoint Registers
Address Register Description
0x0828 MASK1L Lower 16-bits of WP1 address mask
0x0829 MASK1H Upper 16-bits of WP1 address mask
0x082A REF1L Lower 16-bits of WP1 base address
0x082B REF1H Upper 16-bits of WP1 base address
0x082E EVT1_CNTL WHP1 event control register
0x082F EVTL ID WP1 event ID register
0x0848 MASKOL Lower 16-bits of WPO address mask
0x0849 MASKOH Upper 16-bits of WPO address mask
0x084A REFOL Lower 16-bits of WPO base address
0x084B REFOH Upper 16-bits of WPO base address
0x084E EVTO_CNTL WPO event control register
0x084F EVTO_ID WPO event ID register

Note: All of the above registers are EALLOW protected.

MASKOL and MASK1L Registers

Bits 15-0: Contain the lower 16-bits of the corresponding watchpoint address mask. Set
address bits to be masked (i.e., ignored) to 1, all non-masked (i.e., used) bits to O.

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TexASs
SPRAS820 INSTRUMENTS

MASKOH and MASK1H Registers

Bits 15-0: Contain the upper 16-bits of the corresponding watchpoint address mask. Set
address bits to be masked (i.e., ignored) to 1, all non-masked (i.e., used) bits to O.

REFOL and REF1L Registers

Bits 15-0: Contain the lower 16-bits of the corresponding watchpoint address. Set address bits
being masked (i.e., ignored) to 1, all other bits to the desired address value.

REFOH and REF1H Registers

Bits 15-0: Contain the upper 16-bits of the corresponding watchpoint address. Set address
bits being masked (i.e., ignored) to 1, all other bits to the desired address value.

EVTO_CNTL Register
Bits 15-13: Write as 000b
Bits 12-11: 00b - Reserved
01b - Write watchpoint
10b - Read watchpoint
11b - Reserved
Bit 10: Write as O

Bit 9: Set to 1 to require the external event qualifier, DEXTQ, to be active. Else setto 0.

Bit 8: Write as O

Bit 7: Set to 1 to automatically re-arm the watchpoint after triggering. Set to 0 for single-
shot operation.

Bit 6: Write as 1

Bit 5: Write as 0

Bits 4-2: 000b - Monitor program reads and writes on the program address bus (PAB)
001b - Monitor data reads on the data read address bus (DRAB)
010b - Monitor data writes on the data write address bus (DWAB)
All other bit settings are reserved.

Bits 1-0: 00b - Release an owned watchpoint
01b - Claim ownership of the watchpoint (or disable an owned watchpoint)
10b - Enable an owned watchpoint

11b - Reserved

6 Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

EVT1 CNTL Register
Bits 15-13: Write as 000b
Bits 12-11: 00b - Reserved
01b - Write watchpoint
10b - Read watchpoint
11b - Reserved
Bit 10: Write as 0

Bit 9: Set to 1 to require the external event qualifier, AEXTQ, to be active. Else setto O.

Bit 8: Write as 0

Bit 7: Set to 1 to automatically re-arm the watchpoint after triggering. Set to 0 for single-
shot operation.

Bit 6: Write as 1

Bit 5: Write as 0

Bits 4-2: 010b - Monitor program reads and writes on the program address bus (PAB)
100b - Monitor data reads on the data read address bus (DRAB)
110b - Monitor data writes on the data write address bus (DWAB)
All other bit settings are reserved.

Bits 1-0: 00b - Release an owned watchpoint
01b - Claim ownership of the watchpoint (or disable an owned watchpoint)
10b - Enable an owned watchpoint

11b - Reserved

EVTO_ID Register (read-only)
Bits 15-14: 00b - Watchpoint is unclaimed
01b - The application software owns the watchpoint
10b - The debugger owns the watchpoint
11b - Reserved
Bits 13-0: These bits will always read as 0x1002 (01 0000 0000 0010b)

Online Stack Overflow Detection on the TMS320C28x DSP 7

*53 TeExAs

SPRAS820 INSTRUMENTS

EVTL1 _ID Register (read-only)

2.2

Bits 15-14: 00b - Watchpoint is unclaimed

01b - The application software owns the watchpoint
10b - The debugger owns the watchpoint
11b - Reserved

Bits 13-0: These bits will always read as 0x1001 (01 0000 0000 0001b)

Watchpoint Register Configuration Procedure

Analysis block resources may be used by both the application and the Code Composer Studio
debugger. To avoid resource contention, the following protocol must be followed by application
software when making use of the watchpoints in the analysis block.

1.

Execute an EALLOW assembly instruction to enable writes to the analysis block registers.
With C code, one should use inline assembly:

asm(" EALLOW);
Set EVTx_CNTL[1:0] to 01b to attempt to claim ownership of the watchpoint.

Wait at least three cycles for the write to EVTx_CNTL][1:0] to occur in the CPU pipeline.
During this time, instructions that don’t involve accessing the analysis block registers can
be executed, or more simply just execute three NOP instructions. The most compact C
code to do this uses inline assembly:

asm(" RPT #1 || NOP"); /* 3 cycles, 2 words */

Read the EVTx_ID register and verify that the application is the owner of the watchpoint
by checking bits 15-14. The application must be the owner before proceeding. If the
application is not the owner, software must either retry from step #2, or abort the attempt
to setup the watchpoint (depends on how the user would like to handle this in software).
When the emulator is not being used (i.e. the final product, after code development), there
is no reason why the application should not achieve ownership. When the emulator is
being used (e.g. during code development) the application could fail to achieve ownership
if the Code Composer Studio debugger is already using the emulation analysis unit that
corresponds to the requested watchpoint. Appendix C provides some troubleshooting
assistance in the event that a Code Composer Studio conflict does arise.

Once the application owns the watchpoint, the registers for that watchpoint can be
programmed. Specifically, REFxL, REFxH, MASKxL, MASKxH, and EVTx_CNTL must be
configured. The last register one should configure is the EVTx_CNTL register, where bits
1-0 should be set to 10b to enable the watchpoint. Note that if the application does not
own the watchpoint, software writes to all the watchpoint registers are ignored.

Execute an EDIS assembly instruction to disable writes to the analysis block registers.
With C code, one should use inline assembly:

asm(" EDIS");

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

3

3.1

Configuring a Watchpoint for Stack Overflow Detection

The C28x emulation analysis block provides for the monitoring of the data read address bus or
the data write address bus. Since the stack pointer (SP) uses these two buses when making
data accesses to the stack, stack overflow detection can be performed by configuring a
watchpoint to monitor for data write activity occurring near the end of stack memory. Watching
data write activity as opposed to data read activity is justified since it is reasonable to assume
that properly functioning code would perform a push onto the stack (i.e., a write operation)
before attempting to pop that data off the stack (i.e., a read operation). Erroneously reading
data from locations past the end of the stack when no previous write has occurred, although
certainly a problem, is more indicative of a code bug rather than a stack overflow.

Determining the Watchpoint Location and Range in Memory

Ideally, one would want the watchpoint to trigger whenever a write occurred to the stack memory
at an address greater than some reference address (as opposed to exactly matching the
reference address). The reference address would be set some number of words before the
actual end of the stack in order to provide the application with sufficient time to take corrective
action. In this way, any stack activity in the memory range between the reference address and
the actual stack end would trigger the watchpoint. However, the C28x watchpoints do not allow
the specification of an arbitrary address range. Rather, they allow only a reference address
(REFXL and REFxH registers) and a bit mask (MASKxL and MASKXxH registers) to be applied to
this address. Therefore, one must utilize the bit mask to implement a suitable address range.

A bit mask provides the ability to specify a range of size 2”*N, aligned on a N-bit boundary in
memory (where N =0, 1, 2, ...). With this in mind, let's examine the two quantities needed in
order to locate the watchpoint range in memory: the starting address of the range prior to the
stack end, and the size of the range. Let's first consider the starting address of the range. Once
the watchpoint triggers, there must be enough space left on the stack for any stack pushes that
might occur before the RTOSINT is serviced (at which point the software takes corrective
action). The C28x DSP automatically saves 14 registers (16-bit words) onto the stack when an
interrupt occurs. The worst-case situation then is when an interrupt occurs, and the first of the
automatically saved words causes the watchpoint to trigger. The stack must have sufficient
space for the following:

— The 14 automatically saved words for the triggering interrupt
— The 14 automatically saved words for the RTOSINT caused by the watchpoint

— Up to 6 32-bit stack writes (pushes) that could already be in the CPU pipeline when the
triggered interrupt occurs. This equates to 12 words of space. Although the likelihood
of having 6 consecutive 32-bit pushes in source code is small, it is a worse-case
situation none the less.

— Any stack space needed by the RTOSINT interrupt service routine (ISR)

Online Stack Overflow Detection on the TMS320C28x DSP 9

*53 TeExAs

SPRAS820 INSTRUMENTS

10

Adding together these requirements, one sees that the watchpoint should trigger a minimum of
40 words prior to the end of a stack (neglecting the requirements of the RTOSINT ISR, which is
software specific). Keep in mind that the aim of stack overflow detection is to provide a last line
of defense against unforeseen stack overflow. The needed stack sizes for an application should
have previously been determined during code development using, for example, the offline
approach previously discussed in this report. The stack overflow detection discussed here is not
intended to be part of the normal software flow. In general, the actions taken by the stack
overflow routine will be relatively drastic (e.g. safe shutdown). Hence, one will not want the
watchpoint to trigger too much earlier than is needed to safely take corrective action before
stack overflow occurs. Setting the watchpoint too far before the end of the stack simply wastes
memory, as the memory occurring at addresses after the watchpoint cannot be utilized by the
application.

The size of the watchpoint range must be large enough to ensure that accesses into the stack
don't accidentally skip over the monitored addresses (e.g., because of manual stack pointer
manipulation that skips some number of stack locations, or 32-bit stack pushes where only the
even address goes out on the address bus). The downside of using too large a range is that the
start of the range must be aligned on an N-bit boundary, and therefore larger ranges may need
to have their starting address shifted significantly from the specified reference address in order
to achieve alignment. This can further waste memory by reducing the amount of available stack
space before the watchpoint triggers. In general, stack growth on the C28x DSP is sequential,
with no skipped spaces, so a fairly small range size may be used. Itis recommended that a
range size of 8 or 16 be used (recall that the range size is specified as a bit mask, and therefore
must be of size 2*N). This is small enough to avoid significant alignment shifting, and large
enough to handle unforeseen stack pointer manipulation issues.

Let's look at a configuration example:
stack start address = 0x00008123
stack end address = 0x00008523 (i.e., stack length is 0x400 words)
specified overflow range = 8 (i.e., the range mask is 0x0007)

specified range starting distance from end of stack = 45 words

The calculation to determine the aligned starting address of the watchpoint range is the stack
end address minus the specified range starting distance, and then AND'd with the Boolean 1's
compliment of the range mask. In other words:

(stack end - specified range starting distance) AND (~mask)

aligned address

(0x00008523 - 45) & (~0x0007)
(0X000084F6) & (OXFFF8)

0x000084F0

Hence, the watchpoint will monitor addresses in the range 0x000084F0 to 0x000084F7,
inclusive. Figure 2 shows the relationship between the various addresses and the watchpoint
range in memory. Notice that the starting address of the range is actually 51 words before the
end of the stack. This is 6 words more than the specified distance of 45 words. The additional 6
words were needed to keep the monitored range aligned on an N-bit boundary.

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

/\

«— stack starting address (0x00008123)

unmonitored

<«— aligned starting address of range (0x000084F0)

monitored

range <«— specified starting address of range (0x000084F6)

«— first address after aligned range (0x000084F8)

<— oo—>

Stack grows toward higher
data memory addresses

unmonitored

(&)
—_—
<~ &> |e o>

<«— stack ending address (0x00008523)

//—

Figure 2. Watchpoint Range in Relation to the Stack in Memory
(numerical values refer to specific example given in the text)

3.2 Watchpoint Registers Values

Given a desired aligned starting address and range mask, the following section presents the
needed bit settings in the relevant watchpoint registers.

MASKXxL and MASKxH Registers

The range mask is simply written to the MASKxL and MASKXxH registers as is. Since these
registers occupy consecutive addresses in the memory map, a single 32-bit write can be used to
write the range mask.

REFxH and REFxL Registers

The aligned reference address should be OR'd with the mask range, and then written to the
REFxH and REFxL registers. This is because of how the reference registers are designed: all
address bits that will be masked by the contents of the mask registers should be written as 1's.
Since these registers occupy consecutive addresses in the memory map, a single 32-bit write
can be used to write the range mask.

Online Stack Overflow Detection on the TMS320C28x DSP 11

*53 TeExAs

SPRAS820 INSTRUMENTS

EVTx_CNTL Register

12

EVTx_CNTL[15:13]: These bits should always be written as zeros.
EVTx_CNTL[12:11]: These bits should be configured for "Write watchpoint" (01b).
EVTx_CNTL[10]: This bit should always be written as zero.

EVTx_CNTLJ[9]: Setting this bit to 1 gates the watchpoint trigger with an additional external event
gualifier signal: DEXTQ for EXTO_CNTL, and AEXTQ signal for EVT1_CNTL. The intent of this
is to allow an external device to control the watchpoint activity (e.g., to keep some time critical
code from getting interrupted). However, these signals are internally tied off on in an inactive
state on the TMS320F2812 and TMS320F2810 DSP devices. Therefore, this bit should be set
to O (or the watchpoint trigger will never occur). If using a different C28x device, consult the
device datasheet to see if DEXTQ and AEXTQ signals are pinned out in the (unusual) event that
this capability is needed.

EVTx_CNTL[8]: This bit should always be written as zero.

EVTx_CNTLJ[7]: In general, this bit should be set to a 1 for single-shot operation of the
watchpoint. The application can re-arm the watchpoint, if desired, after it takes corrective action.

EVTx_CNTL[6]: This bit should always be written as one.
EVTx_CNTLJ[5]: This bit should always be written as zero.

EVTx_CNTL[4:2]: Since writes to the stack are of interest here, and since these writes are
always performed as data memory writes (as opposed to program memory writes using the
PWRITE assembly code instruction), one should set these bits to monitor the data write address
bus (DWAB). The binary value for this settings is different between WPO (use 010b for data
write) and WP1 (use 110b for data write). Be sure to carefully check the required setting in
Section 2.1.

EVTx_CNTL[1:0]: The description for these bits is self-explanatory. Set to 01b to attempt to
claim ownership of the watchpoint (or to disable an already owned watchpoint). Set to 10b to
enable an owned watchpoint. There is generally little need for an application to release an
owned watchpoint (the 00b setting).

Application Issues

Instructions have so far been provided on how to configure the watchpoint for stack overflow
detection given the stack end address. What remains to be shown is how user code can
determine the stack end address at run time, and in the case of DSP/BIOS applications, how to
configure the watchpoints to handle the multiple stacks used by the software.

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

4.1

Non-DSP/BIOS Applications

The C28x C/C++ compiler employs a single stack. During the C-environment setup performed
by the compiler runtime support library (e.qg., rts2800.lib or rts2800_ml.lib), the SP is initialized to
the beginning of the allocated stack memory, and remains pointed to somewhere in the stack
memory throughout execution of the code. Barring any manual relocation of the SP by the user
at the assembly code level, it is sufficient to statically configure a single watchpoint to monitor
the end of the C/C++ stack.

The C/C++ compiler allocates the stack in a section called .stack. Since the link address of the
.Sstack section is specified in the linker command file of the code project, and since the stack
length is specified by the user as a Code Composer Studio project option, one could compute
the end address of the stack and hard-code the address at which to set the watchpoint into their
application. However, this is not a particularly elegant nor easily maintainable solution. A better
method is to have the linker generate a symbol for the ending address of the .stack section, and
then have software utilize this symbol. It may also be useful to have a symbol for the starting
address of the stack section for error correction purposes (e.g., to determine if any portion of the
watchpoint range lies outside the stack memory). The C28x linker has the capability to
automatically generate such global symbols as follows. Suppose one wants to link the .stack
section to some memory called "RAM" that has already been defined on PAGE 1 in the
MEMORY section of the linker command file. The following SECTIONS entry in the linker
command file will achieve this:

SECTI ONS

. stack: RUN = RAM
RUN_START(_HW _STKBOTTOM) ,
RUN_END(_HW _STKTOP) ,
PAGE = 1

The above defines symbols _HWI_STKBOTTOM and _HWI_STKTOP representing the start and
end addresses in memory of the .stack section (these symbol names are just examples, and the
reader is free to change them). Note that the end address is actually the first address after the
last word of the stack. Three items of importance:

1. Notice the use of the leading underscore in the symbol names. This allows the symbols to
be accessed from C code using just HWI_STKBOTTOM and HWI_STKTOP, as C
automatically appends a leading underscore to all symbol names.

2. These symbols actually represent the 16-bit values that exist on the stack at its starting
and ending addresses. It is the addresses of these symbols that represent the start and
end address of the stack. Therefore, an ampersand should be used in C code to denote
the symbol address, e.g. &HWI_STKBOTTOM.

3. To access these symbols from C source code, they must be declared as external global
symbols for unsigned integer (16 bit) values in any source file that uses them.

A simple example of how to incorporate these symbols in C source code is as follows.

Online Stack Overflow Detection on the TMS320C28x DSP 13

*53 TeExAs

SPRAS820 INSTRUMENTS

4.2

14

[* C28x DSP C Code exanple to access the stack symbols */

extern unsi gned int HW _STKBOTTOM
extern unsigned int HW _STKTOP;

voi d MyFunc(voi d)
unsi gned | ong Xx,Y;

X
y

(unsi gned | ong) &HW _STKBOTTOM /* assign x the address of the stack start */
(unsi gned | ong) &HW _STKTOP; /* assign x the address of the stack end */

Note that when the address (32 bits) of HWI_STKTOP is assigned to the variable x, one must
typecast the address to an unsigned long since &HWI_STKTOP is of the type unsigned 16-bit
integer pointer, but x is of type unsigned long.

The C function STKOV_initSystemStack() described in Appendix A and found in Appendix B.1
will configure and enable a watchpoint to monitor for overflow of the C/C++ stack. This function
can be directly incorporated into user code.

DSP/BIOS Applications

DSP/BIOS employs multiple stacks. Hardware interrupts (HWIs) and software interrupts (SWIs)
use the system stack, which is analogous to the single stack employed by non-DSP/BIOS
C/C++ applications. A single watchpoint statically configured will effectively handle overflow
detection for the system stack. The DSP/BIOS configuration tool generates a linker command
file that defines global variables for the stack start and end addresses: HWI_STKBOTTOM and
HWI_STKTOP, respectively (accurate as of Code Composer Studio v2.20). These symbols can
be used with the C function STKOV _initSystemStack() as described in Section 4.1.

DSP/BIOS tasks (TSKs) each have their own stack. When the DSP/BIOS scheduler prepares to
run a task, it changes the SP to point to the stack of that task. Therefore, a static configuration
of a watchpoint will not suffice here. Instead, the remaining C28x watchpoint must be
dynamically reconfigured to monitor the stack of whichever task is active at the moment (recall
that there are two available watchpoints on the C28x, and one is already in use to monitor the
system stack).

DSP/BIOS provides support for this dynamic reconfiguration in the form of the task switch hook
function. The task switch hook function is specified by the user and is run each time a task
switch occurs. DSP/BIOS passes to this function a handle (i.e., a pointer) for the task being
switched to. Using this handle, the switch hook function can access information about the stack
starting address and length for the task, and then dynamically change the watchpoint to monitor
this stack.

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

Some static computations are also useful for task stack monitoring in order to avoid repeatedly
calculating unchanging values in the task switch hook function (which would impact the cycle
efficiency of the switch function). Specifically, the address at which the watchpoint should be set
for each task needs to be calculated only once. The address information must then be stored in
the environment of the task’. DSP/BIOS provides support for the static computations in the form
of the task create hook function. Performing the watchpoint address calculation once at task
creation time provides for a more cycle efficient task switch hook function.

Figure 3 shows how to specify the task switch hook and task create hook functions in the
DSP/BIOS configuration tool. More information on DSP/BIOS hook functions can be found in
the online help within Code Composer Studio.

TSK - Task Manager Properties E |
General Function Hooks | Enter create function name
/ here, e.g.,
Create function: I_STKDU_createTaskSta STKOV createTaskStack
Check Delete function: I_FXN_F_HDF' Note the use of the leading
this box underscore.
Exit furictiomn: I_FXN_F_FIDF'
¥ Call switch function
Switch function: I_STKDV_switchTaskSta \
Enter switch function name
™ Call ready function here, e.g.,
Feady functar: I_FXN_F_n::up _STKOV _switchTaskStack
Note the use of the leading
] 4 I Cancel | Apply Help underscore.

Figure 3. Specifying the Task Hook Functions in Code Composer Studio v2.20

T All DSP/BIOS task objects contain a pointer to the environment of that task. The task environment is a user defined global
data structure. To implement the task stack overflow detection scheme herein described, it could be required that the
environment of each task contain the watchpoint address as one of the elements. However, since only a single environment
element is needed for each task (i.e., the watchpoint address), it is most efficient to use the environment pointer itself as the
actual value. In other words, the environment pointer of each task object is assigned a value equal to the watchpoint address
for the task. Additional environment space is therefore not needed, and the task switch function is also more efficient since
the watchpoint address is easily accessed as the environment pointer of the task object. This is the approach used by the
code provided in this application report. If the reader's application requires use of the task environment, the code presented
in this report is easily modified to allow for this.

Online Stack Overflow Detection on the TMS320C28x DSP 15

*53 TeExAs

SPRAS820 INSTRUMENTS

16

The C functions STKOV_createTaskStack(), STKOV _initTaskStack(), and
STKOV_switchTaskStack() described in Appendix A and found in Appendix B.2 will configure
and enable a watchpoint to monitor for overflow of DSP/BIOS task stacks. These functions can
be directly incorporated into user code. STKOV_createTaskStack() is the task create hook
function, STKOV_switchTaskStack() is the task switch hook function, and

STKOV _initTaskStack() performs some required static initialization before either of the other two
functions can be run.

If the RTOSINT is triggered by stack overflow, and both the system stack and task stacks are
being monitored, the user might want to determine which stack overflowed in the RTOSINT ISR
order to take appropriate corrective action. Unfortunately, there is no hardware flag available
that differentiates between WP0O and WPL1. Instead, one approach would be to read the SP in
the ISR, and then compare against the settings in the REFH and REFL registers for the two
watchpoints.

Conclusion

A method for online stack overflow detection on the TMS320C28x DSP has been presented.
The approach entails configuring an emulation analysis block watchpoint to monitor bus activity
in an address range near the end of a stack. For non-DSP/BIOS application code, a single,
statically configured watchpoint monitoring the C stack is sufficient. For DSP/BIOS application
code, two watchpoints are needed: a static watchpoint for the system static, and a dynamically
re-configured watchpoint to monitor task stacks. The task stack watchpoint is reconfigured
using the task switch hook function of DSP/BIOS. C-source code has been provided that
contains functions for implementing the overflow detection.

References

1. TMS320C28x DSP CPU and Instruction Set Reference Guide (SPRU430)

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAs

INSTRUMENTS SPRA820
Appendix A. C Function APIs
STKOV initSystemStack Initialization function for monitoring the system (C/C++) stack
Source File stkov_systemstack.c
Include Files stkov.h

Function Prototype

Arguments

Return Value

Description

unsigned int error STKOV_initSystemStack(
unsigned long stackStartAddr,
unsigned long stackEndAddr,
unsigned int margin);

stackStartAddr: Address of first word in stack.

stackEndAddr: Address of first word after the last word in the stack.
For example, if the stack starts at 0x100, and is of
length 0x80, then stackEndAddr = 0x180.

margin: The minimum number of words before StackEndAddr
to set the watchpoint at.

error: 0 = no error
1 = software failed to gain control of the watchpoint
2 = watchpoint range falls outside the stack

This function configures and enable a watchpoint to monitor the system
stack (for DSP/BIOS applications) or the C/C++ stack (for non-DSP/BIOS
applications). It also enables the RTOSINT interrupt. The function
should be called once during system initialization, generally in main().

The source file contains two #define constants that affect this function.
These constants may be changed if desired. The constants are:

WP: The watchpoint to use (valid values are 0 or 1).
Default value is 0. If only one watchpoint is in use for
stack monitoring (e.g., task stack monitoring is not
being used), it is recommended to use WP = 0 since
the Code Composer Studio debugger uses watchpoint
1 for numerous debug features. Note that the
watchpoints used for system and task stack monitoring
must be different.

STKOV_RANGEMASK:
Mask specifying the range covered by the watchpoint.
Default is 0x0007 (range is 8 words). Note that
the value must be (2~N -1) in form, e.g., 0x0001,
0x0003, 0x0007, O0xO00F, 0x001F, etc.

If any value other than 0 is returned, it means that the watchpoint was not
enabled.

Online Stack Overflow Detection on the TMS320C28x DSP 17

18

{'? TexASs
SPRAS820 INSTRUMENTS

Example #define margin 45

extern unsigned int HW_STKBOTTOM HW _STKTOP;
unsigned int error;

error = STKOV_initSystenttack((U nt32)&HW _STKBOTTOM
(Ui nt 32) &HW _STKTOP,
mar gi n);

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

STKOV createTaskStack DSP/BIOS task create hook function for task stack monitoring

Source File stkov_taskstack.c
Include Files stkov.h

Function Prototype void STKOV_createTaskStack(TSK_Handle task);

Arguments task: Handle for the task being created.
Return Value none
Description This function computes the address that the watchpoint should be set to

for monitoring the stack of a task. It should be setup to serve as the
DSP/BIOS task create hook function using the DSP/BIOS Configuration
tool. DSP/BIOS will then execute this function each time a task is
created.

The source file contains two #define constants that affect this function.
These constants may be changed if desired. The constants are:

STKOV_MARGIN:
The minimum number of words before the end of the
task stack to set the watchpoint at. Default is 45.

STKOV_RANGEMASK:
Mask specifying the range covered by the watchpoint.
Default value is 0x0007 (range is 8 words). Note that
the value must be (2”N -1) in form, e.g., 0x0001,
0x0003, 0x0007, OxO00F, 0x001F, etc.

Example Not applicable. This function should be specified as the DSP/BIOS task
create hook function inside Code Composer Studio.

Online Stack Overflow Detection on the TMS320C28x DSP 19

SPRA820

*5‘ TexASs
INSTRUMENTS

20

STKOV initTaskStack Initialization function for monitoring the DSP/BIOS task stacks

Source File
Include Files
Function Prototype
Arguments

Return Value

Description

Example

stkov_taskstack.c

stkov.h

unsigned int error STKOV_InitTaskStack(void);
none

error: 0 = no error
1 = software failed to gain control of the watchpoint

This function reserves a watchpoint to monitor the DSP/BIOS task
stacks. It also configures the static portion of the watchpoint, and enables
the RTOSINT. This function should be called once during system
initialization (before any DSP/BIOS tasks are executed), generally in
main().

The source file contains two #define constants that affect this function.
These constants may be changed if desired. The constants are:

WP: The watchpoint to use (valid values are 0 or 1).
Default value is 0. If only one watchpoint is in use for
stack monitoring (e.g., system stack monitoring is not
being used), it is recommended to use WP = 0 since
the Code Composer Studio debugger uses watchpoint
1 for numerous debug features. Note that the
watchpoints used for system and task stack monitoring
must be different.

STKOV_RANGEMASK:
Mask specifying the range covered by the watchpoint.
Default value is 0x0007 (range is 8 words). Note that
the value must be (2”N -1) in form, e.g., 0x0001,
0x0003, 0x0007, 0XxO00F, Ox001F, etc.

unsigned int error;
error = STKOV_i nitTaskStack();

Online Stack Overflow Detection on the TMS320C28x DSP

*5‘ TeExAS
INSTRUMENTS

SPRA820

STKOV_ switchTaskStack DSP/BIOS task switch hook function for task stack monitoring

Source File

Include Files

Function Prototype

Arguments

Return Value

Description

Example

stkov_taskstack.c

stkov.h
std.h (part of the TI C compiler runtime support library)
tsk.h (part of the TI DSP/BIOS software)

void STKOV_switchTaskStack(TSK_Handle oldtask,
TSK_Handle newtask);

oldtask: Handle to old task (task being switched from)
newtask: Handle to new task (task being switched to)
none

This function switches a watchpoint to monitor the stack of the new task.
It should be setup to serve as the DSP/BIOS task switch hook function
using the DSP/BIOS Configuration tool. DSP/BIOS will then execute this
function each time a task switch occurs.

The source file contains one #define constant that affects this function.
This constant may be changed if desired. The constant is:

WP: The watchpoint to use (valid values are 0 or 1).
Default value is 0. If only one watchpoint is in use for
stack monitoring (e.g., system stack monitoring is not
being used), it is recommended to use WP = 0 since
the Code Composer Studio debugger uses watchpoint
1 for numerous debug features. Note that the
watchpoints used for system and task stack monitoring
must be different.

Note that this function has been carefully written to use as little stack
space as possible (by using few local variables and by using immediate
valued pointers). This is motivated by that fact that this function will use
the stack from the old task. Therefore, every task stack will need to be of
sufficient size to handle needs of this switch function, in addition to
everything else that goes on the task stack (e.g., the tasks local context,
hardware interrupt context switching, etc.). This function has also been
written to be as cycle efficient as possible (since it is run each time a task
is switched). The cycle count of this function, including the function call
and return, is approximately 60 cycles (with or without compiler
optimization). Some additional overhead (e.g. maybe 10 to 20 cycles) in
the DSP/BIOS scheduler is also incurred since it passes two parameters
to this function.

Not applicable. This function should be specified as the DSP/BIOS task
switch hook function inside Code Composer Studio.

Online Stack Overflow Detection on the TMS320C28x DSP 21

SPRA820

*5‘ TexASs
INSTRUMENTS

Appendix B. C Code Functions

B.1 stkov_systemstack.c

/***

File: stkov_systenstack.c
Devi ce: TMS320C28x
Author: David M Alter, Texas Instrunents Inc.
Hi story:
May 1, 2003 - Original (D. Ater)

Rk I S S O S O I

Rk S b I S R R R T S S R O bk S R R S kS S R R R S S S S S R R o

TH'S PROGRAM | S PROVIDED "AS IS". TI MAKES NO WARRANTI ES OR
REPRESENTATI ONS, EI THER EXPRESS, | MPLI ED OR STATUTCRY, | NCLUDI NG
ANY | MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FI TNESS FOR A

PARTI CULAR PURPOSE, LACK OF VI RUSES, ACCURACY OR COVPLETENESS OF
RESPONSES, RESULTS AND LACK OF NEGLI GENCE. Tl DI SCLAI M5 ANY
WARRANTY OF TI TLE, QUI ET ENJOYMENT, QUI ET POSSESSI ON, AND

NON- | NFRI NGEMENT OF ANY THI RD PARTY | NTELLECTUAL PROPERTY RI GHTS
W TH REGARD TO THE PROGRAM OR YOUR USE OF THE PROGRAM

IN NO EVENT SHALL TI BE LI ABLE FOR ANY SPECI AL, | NCI DENTAL,
CONSEQUENT!I AL OR | NDI RECT DAMAGES, HOWEVER CAUSED, ON ANY THEORY
OF LIABILITY AND WVHETHER OR NOT TI HAS BEEN ADVI SED OF THE

POSSI BI LI TY OF SUCH DAMAGES, ARI SING I N ANY WAY OQUT OF TH S
AGREEMENT, THE PROGRAM COR YOUR USE OF THE PROGRAM EXCLUDED
DAMAGES | NCLUDE, BUT ARE NOT LIMTED TO, COST OF REMOVAL OR

REI NSTALLATI ON, COWPUTER TI ME, LABOR CCSTS, LOSS OF GOODW LL, LGOSS
OF PROFITS, LOSS COF SAVINGS, OR LOSS OF USE OR | NTERRUPTI ON OF
BUSI NESS. IN NO EVENT WLL TI'S AGGREGATE LI ABI LI TY UNDER THI S
AGREEMENT OR ARI SING QUT OF YOUR USE OF THE PROGRAM EXCEED FI VE
HUNDRED DCLLARS U. S. $500).

Unl ess otherw se stated, the Programwitten and copyri ghted by
Texas Instrunents is distributed as "freeware". You nmay, only
under TI's copyright in the Program use and nodify the Program
wi thout any charge or restriction. You may distribute to third
parties, provided that you transfer a copy of this license to the
third party and the third party agrees to these terns by its first
use of the Program You nust reproduce the copyright notice and
any ot her |egend of ownership on each copy or partial copy, of the
Pr ogram

You acknowl edge and agree that the Program contains copyrighted
material, trade secrets and other TI proprietary information and
is protected by copyright laws, international copyright treaties,
and trade secret laws, as well as other intellectual property
laws. To protect Tl's rights in the Program you agree not to
deconpi l e, reverse engi neer, disassenble or otherw se translate
any object code versions of the Programto a human-readabl e form
You agree that in no event will you alter, renove or destroy any
copyright notice included in the Program Tl reserves all rights
not specifically granted under this |icense. Except as
specifically provided herein, nothing in this agreement shall be
construed as conferring by inplication, estoppel, or otherw se,
upon you, any license or other right under any Tl patents,
copyrights or trade secrets.

You may not use the Programin non-Tl devices.

*
*
*
*
*
*
/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
R O S S S O

T T D R R R N N T N N S N R R I T R R T R e T I R

22 Online Stack Overflow Detection on the TMS320C28x DSP

*Z‘ TeExAS
INSTRUMENTS SPRAS820

/1 Choose whi ch watchpoint to use (User configurable)

#define WP O /1 Valid values are 0 or 1 (Default is 0)

/1 Address and val ue definitions for Emul ati on WAt chpoi nt Regi sters

#if W == 0
#defi ne WP_MASK (vol atile unsigned | ong *)0x00000848 // WPO MASK register addr
#defi ne WP_REF (vol atil e unsigned | ong *)0x0000084A // WPO REF regi ster addr
#define WP_EVT_CNTL (volatile unsigned int *)0Ox0000084E // WPO EVT_CNTL regi ster addr
#define WP_EVT_ID (vol atile unsigned int *)0x0000084F // WPO EVT_ID register addr
#defi ne EVT_CNTL 0x080A /1 EVT_CNTL val ue for WPO

#el se
#defi ne WP_MASK (vol atile unsigned | ong *)0x00000828 // WPl MASK register addr
#def i ne WP_REF (vol atil e unsigned | ong *)0x0000082A // WPl REF regi ster addr
#define WP_EVT_CNTL (volatile unsigned int *)0Ox0000082E // WPl EVT_CNTL regi ster addr
#define WP_EVT_ID (vol atile unsigned int *)0x0000082F // WPl EVT_ID register addr
#defi ne EVT_CNTL 0x081A /1 EVT_CNTL value for WPl

#endi f

#def i ne STKOV_RANGEMASK 0x0007 /1 0x0007 = trigger range is 8 words

/1 Other Definitions
extern cregister volatile unsigned int |IER;

/***

* Function: STKOV_init SystenStack()

* Description: Configures a hardware watchpoint to trigger an

* RTOSINT on wite access in a specified range at the end of the
* system (or C/ C++) stack.

* DSP: TMS320C28x

* Include files: none

* Function Prototype:

* unsi gned int STKOV_i nit Syst entSt ack(

* unsi gned | ong, unsigned |ong, unsigned int);
* Usage: error = STKOV_init Systenttack(

* stackStart Addr, stackEndAddr, margin);

* | nput Paraneters:

* unsi gned | ong stackStart Addr = Address of first word in stack.
* unsi gned | ong stackEndAddr = Address of first word after |ast
* word in stack. For exanmple, if the stack starts at 0x100, and
* is of length 0x80, then StackEndAddr = 0x180.

* unsi gned int margin = The m ni rum nunber of words before

* st ackEndAddr that the watchpoint is to be set at.

* Return Val ue:

* unsigned int error:

* 0

* 1

* 2

* Not es:

* 1) If any value other than 0 is returned, it means that the

* overfl ow detecti on was not enabl ed.

*

EE R O S S S

no error
software failed to gain control of the W
the wat chpoint range falls outside the stack

T R A T R I T N N N . I I I R T

unsi gned int STKOV_i nit Syst entSt ack(unsi gned | ong stackStart Addr,
unsi gned | ong stackEndAddr,
unsi gned i nt nargin)

{

unsi gned | ong addr; /1 Address to set the WP at

/1 Compute starting address of watchpoint range
addr = (stackEndAddr - margin) & (unsigned | ong) (~STKOV_RANGEMASK) ;

Online Stack Overflow Detection on the TMS320C28x DSP 23

SPRA820

{'? TexASs
INSTRUMENTS

/1 Check to be sure the watchpoint range falls

wi thin the stack.

i f(addr < stackStart Addr) /1 Check if range underruns the stack start
return(2); /1l Return error code
i f(addr > stackEndAddr) [/ Catch arithnetic underflow
return(2); /1 Return error code
/1 Enabl e EALLOW protected register access
asnm(" EALLOW);
/] Attenpt to gain control of the watchpoint
*WP_EVT_CNTL = 0x0001; /1 Wite 0x0001 to EVI_CNTL to cl ai m ownership
/1 of the watchpoi nt
asnm(" RPT #1 || NOP"); /1l Wait at least 3 cycles for the wite to occur
/1 Confirmthat the application owns the watchpoint
i f((*WP_EVT_ID & 0xC000) != 0x4000) /1 Software failed to gain control of watchpoint
{
asn(" EDIS"); /1 Disable EALLOW protected regi ster access
return(l); /1 Return error code
/1 Proceed to configure the watchpoint
*WP_MASK = (unsigned | ong) STKOV_RANGEMASK; /1 Wt chpoi nt reference address mask
*WP_REF = addr | (unsigned |ong) STKOV_RANGEMASK; // Watchpoint reference address
/1 (wite all masked bits as 1's)
*WP_EVT_CNTL = EVT_CNTL; /'l Enabl e the wat chpoi nt
I ER | = 0x8000; /1 Enabl e RTCSI NT
/1 Successful Return
asnm(" EDIS"); /1 Disable EALLOW protected regi ster access
return(0); /1l Return with no error

} //end of STKOV_initSystenttack()

/1 end of file stkov_systenstack.c

24

Online Stack Overflow Detection on the TMS320C28x DSP

*5‘ TeExAS
INSTRUMENTS

SPRA820

B.2 stkov_taskstack.c

/***

File: stkov_taskstack.c
Devi ce: TMs320C28x
Author: David M Alter, Texas Instrunents Inc.
Hi story:
May 1, 2003 - Original (D. Ater)

**/

E T

EE R O S S R S O

THI'S PROGRAM | S PROVIDED "AS | S". Tl MAKES NO WARRANTI ES OR
REPRESENTATI ONS, EI THER EXPRESS, | MPLI ED OR STATUTORY, | NCLUDI NG
ANY | MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FITNESS FOR A

PARTI CULAR PURPOSE, LACK OF VI RUSES, ACCURACY OR COVPLETENESS OF
RESPONSES, RESULTS AND LACK OF NEGLI GENCE. TI DI SCLAI M5 ANY
WARRANTY OF TI TLE, QUI ET ENJOYMENT, QUI ET POSSESSI ON, AND

NON- | NFRI NGEMENT OF ANY THI RD PARTY | NTELLECTUAL PROPERTY RI GHTS
W TH REGARD TO THE PROGRAM CR YOUR USE OF THE PROGRAM

*

I'N NO EVENT SHALL TI BE LI ABLE FOR ANY SPECI AL, | NCl DENTAL,
CONSEQUENTI AL OR | NDI RECT DANMAGES, HOWEVER CAUSED, ON ANY THECRY
OF LIABILITY AND WHETHER OR NOT TI HAS BEEN ADVI SED OF THE

PCSSI BI LI TY OF SUCH DAVAGES, ARISING I N ANY WAY QUT OF THI S
AGREEMENT, THE PROGRAM OR YOUR USE OF THE PROGRAM EXCLUDED
DAMAGES | NCLUDE, BUT ARE NOT LIM TED TO, COST OF REMOVAL COR

REI NSTALLATI ON, COVPUTER Tl ME, LABOR COSTS, LOSS OF GOODW LL, LGSS
OF PROFITS, LOSS OF SAVINGS, OR LOSS OF USE OR | NTERRUPTI ON OF
BUSI NESS. I N NO EVENT WLL TI'S AGGREGATE LI ABI LI TY UNDER THI S
AGREEMENT OR ARI SI NG QUT OF YOUR USE OF THE PROGRAM EXCEED FI VE
HUNDRED DOLLARS U. S. $500) .

Unl ess otherw se stated, the Programwitten and copyrighted by
Texas Instrunents is distributed as "freeware". You may, only
under Tl's copyright in the Program use and nodify the Program
wi t hout any charge or restriction. You may distribute to third
parties, provided that you transfer a copy of this license to the
third party and the third party agrees to these terns by its first
use of the Program You nust reproduce the copyright notice and
any other | egend of ownership on each copy or partial copy, of the
Program

*
*
*
*
*
*
/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
* You acknow edge and agree that the Program contains copyrighted

* material, trade secrets and other Tl proprietary information and
* is protected by copyright |laws, international copyright treaties,
* and trade secret |laws, as well as other intellectual property

* |laws. To protect Tl's rights in the Program you agree not to

* deconpil e, reverse engineer, disassenble or otherw se translate

* any object code versions of the Programto a human-readable form
* You agree that in no event will you alter, renove or destroy any
* copyright notice included in the Program Tl reserves all rights
* not specifically granted under this license. Except as

* specifically provided herein, nothing in this agreenent shall be
* construed as conferring by inplication, estoppel, or otherw se,

* upon you, any license or other right under any Tl patents,

* copyrights or trade secrets.

*
*
*

You may not use the Programin non-Tl devices.

REE R b S R IR R S bk S S S R R Rk R S S R S o R R R o Ok R SRR o S

T . T T T B I I S R T S T I T T I N N I I N A A . T T I R

Online Stack Overflow Detection on the TMS320C28x DSP

25

*53 TexASs
SPRAS820 INSTRUMENTS

/[*** | nclude Files ***/
#i ncl ude <std. h>
#i ncl ude <tsk. h>

/1 Choose which watchpoint to use (User configurable)

#define WP 1 /1 Valid values are 0 or 1 (Default is 1)

/1 Address and value definitions for Emul ati on WAt chpoi nt Registers

#f W ==
#defi ne WP_MASK (vol atil e unsigned | ong *)0x00000848 // W0 MASK register addr
#defi ne WP_REF (vol atil e unsigned | ong *)0x0000084A // WPO REF register addr

#define WP_EVT_CNTL (volatile unsigned int *)Ox0000084E // WPO EVT_CNTL register addr
#define WP_EVT_ID (vol atile unsigned int *)0x0000084F // WPO EVT_ID regi ster addr
#defi ne EVT_CNTL 0x080A /1 EVT_CNTL val ue for WPO

#el se
#defi ne WP_MASK (vol atil e unsigned | ong *)0x00000828 // W1l MASK register addr
#defi ne WP_REF (vol atil e unsigned | ong *)0x0000082A // WPl REF register addr
#define WP_EVT_CNTL (volatile unsigned int *)Ox0000082E // WPl EVT_CNTL register addr
#define WP_EVT_ID (vol atile unsigned int *)0x0000082F // WPl EVT_ID register addr
#defi ne EVT_CNTL 0x081A /1 EVT_CNTL val ue for We1

#endi f

#defi ne STKOV_MARG N 45 /1l Trigger nargin is 45 words

#defi ne STKOV_RANGEMASK 0x0007 /1 0x0007 = trigger range is 8 words

[*** OQther Definitions ***/
extern cregister volatile unsigned int |IER,

/***

* Function: STKOV_createTaskStack()

* Description: Retrieves a tasks stack start address and |length, and
* pl aces these into the tasks environnent. This function is

* desi gned to be the task create hook function in DSP/BI CS.

* DSP: TMS320C28x

* Include files: std.h, tsk.h

* Function Prototype:

* voi d STKOV_cr eat eTaskSt ack(TSK_Handl e) ;

* Usage: STKOV_swi tchTaskStack(task);

* | nput Paraneters:

* TSK _Handl e task = handle to task.

* Return Val ue: none

* Not es:

*

Rk S b T S R R R S S R b R R S o Sk R R S o Sk S R S S S o

T R T I R R

voi d STKOV_creat eTaskSt ack(TSK_Handl e t ask)

static TSK Stat status;
unsi gned | ong addr; /1 Address to set the WP at

/1 Get the task attributes
TSK stat (task, &status);

/1 Conmpute the watchpoint start address
addr = ((unsigned |long)status.attrs. stack
+ (unsigned long)status.attrs. stacksi ze - STKOV_MARG N)
& (~STKOV_RANGEMASK) ;

/1 Assign 'addr' as the value of the task environment pointer
/1 Note: the environnment pointer is not pointing to "addr'. Rather,
/1 the value of the environment pointer is set equal to 'addr'.

TSK setenv(task, (unsigned int *)addr);

26 Online Stack Overflow Detection on the TMS320C28x DSP

*Z‘ TeExAS
INSTRUMENTS SPRAS820

/1 Successful Return

} //end of STKOV_createTaskStack()

/***

* Function: STKOV_init TaskStack() *
* Description: Initialization for the DSP/BIOS task sw tch hook *
* function "STKOV_swi tchTaskSt ackOvDetect()". Run this function *
* once in main(). *
* DSP: TMS320C28x *
* Include files: none *
* Function Prototype: unsigned int STKOV_initTaskStackOvDetect(void);*
* Usage: error = STKOV_initTaskStackQvDetect(); *
* | nput Paraneters: none *
* Return Val ue: *
* unsigned int error: *
* 0 = no error *
* 1 = software failed to gain control of the W *
* Not es: *
* /

EE R O S S S I O

unsi gned int STKOV_i ni t TaskSt ack(voi d)

{
/1 Enabl e EALLOW protected regi ster access
asn(" EALLOW);

/1l Attenpt to gain control of the watchpoint

*WP_EVT_CNTL = 0x0001; /1 Wite 0x0001 to EVI_CNTL to cl ai m ownership
/1 of the wat chpoi nt
asm(" RPT #1 || NOP"); /1 Wit at least 3 cycles for the wite to occur
/1 Confirmthat the application owns the watchpoint

if((*WP_EVT_ID & 0xC000) != 0x4000) /1 Software failed to gain control of watchpoint
asm(" EDI S"); /1 Disable EALLOW protected regi ster access
return(l); /1 Return error code

}

/1 Proceed to configure the static portion of the watchpoint
*WP_MASK = (unsigned | ong) STKOV_RANGEMASK; // Watchpoint reference address mask

I ER | = 0x8000; /'l Enabl e RTOSI NT

/'l Successful Return
asm(" EDI S"); /1 Disable EALLON protected regi ster access
return(0); /1 Return with no error

} //end of STKOV_initTaskStack()

/***

Function: STKOV_switchTaskSt ack()

Description: Configures a hardware watchpoint to trigger an
RTOSINT on wite access at the end of a TSK stack. This
function is designed to be the task switch hook function in
DSP/ Bl CS.

DSP: TMS320C28x

Include files: std.h, tsk.h

Functi on Prototype:
voi d STKOV_swi t chTaskSt ack(TSK_Handl e, TSK_ Handl e) ;

Usage: STKOV_swi tchTaskSt ack(ol dt ask, newt ask);

*
*
*
*
*
*
*
*
*
*

EE R R A . N I

Online Stack Overflow Detection on the TMS320C28x DSP 27

{'? TexASs
SPRAS820 INSTRUMENTS

I nput Paraneters:
TSK_Handl e ol dt ask
TSK_Handl e newt ask

Return Val ue: none

Not es:

*
handl e to old task. *
*
*
*
1) The function STKOV_init TaskStack() nust be run once *
*
*
*
/

handl e to new t ask.

before this function can be run.
2) The function STKOV_createTaskStack() must have been used as
the task create hook function.

*
*
*
*
*
*
*
*
*
EE R O O S S

voi d STKOV_swi t chTaskSt ack(TSK_Handl e ol dt ask, TSK Handl e new ask)

{
unsi gned | ong addr; /1 Address to set the WP at

/1l Retrieve "addr' fromthe task environnent pointer
addr = (unsigned | ong) TSK _get env(new ask) ;

/1 Enabl e EALLOW protected register access
asnm(" EALLOW);

/1 Disable the already owned wat chpoi nt
*WP_EVT_CNTL = 0x0001;

/'l Proceed to configure the dynamic portion of the watchpoint
*WP_REF = addr | (unsigned |ong) STKOV_RANGEMASK; // Watchpoint reference address
/1 (wite all masked bits as 1's)

/1 Enabl e the wat chpoi nt
*WP_EVT_CNTL = EVT_CNTL;

/'l Successful Return
asn(" EDIS"); /1 Disable EALLOW protected regi ster access

} //end of STKOV_switchTaskSt ack()

/1 end of file stkov_taskstack.c

28 Online Stack Overflow Detection on the TMS320C28x DSP

*5‘ TeExAS
INSTRUMENTS

SPRA820

B.3 stkov.h

/

*
*
*
*
*
*
*
/
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

R R I b S Rk S b e ok S S R I Rk o R S R R R R o S R R R S R S b o S O

File: stkov.h
Devi ce: TMS320C28x
Author: David M Alter, Texas Instruments Inc.
Description: Include file for StackOverflow. c
Hi story:

May 1, 2003 - Original (D. Ater)

**/

E

R O O

THI'S PROGRAM | S PROVIDED "AS | S". Tl MAKES NO WARRANTI ES OR
REPRESENTATI ONS, EI THER EXPRESS, | MPLI ED OR STATUTORY, | NCLUDI NG
ANY | MPLI ED WARRANTI ES OF MERCHANTABI LI TY, FITNESS FOR A

PARTI CULAR PURPOSE, LACK OF VI RUSES, ACCURACY OR COVPLETENESS OF
RESPONSES, RESULTS AND LACK OF NEGLI GENCE. Tl DI SCLAI M5 ANY
WARRANTY OF TI TLE, QUI ET ENJOYMENT, QUI ET POSSESSI ON, AND

NON- | NFRI NGEMENT OF ANY THI RD PARTY | NTELLECTUAL PROPERTY RI GHTS
W TH REGARD TO THE PROGRAM CR YOUR USE OF THE PROGRAM

*

I'N NO EVENT SHALL TI BE LI ABLE FOR ANY SPECI AL, | NCI DENTAL,
CONSEQUENTI AL OR | NDI RECT DANMAGES, HOWEVER CAUSED, ON ANY THEORY
OF LIABILITY AND WHETHER CR NOT TI HAS BEEN ADVI SED OF THE

POSSI BI LI TY OF SUCH DAMAGES, ARISING I N ANY WVAY QUT OF THI S
AGREEMENT, THE PROGRAM OR YOUR USE OF THE PROGRAM EXCLUDED
DAMAGES | NCLUDE, BUT ARE NOT LIMTED TO, COST OF REMOVAL OR

REI NSTALLATI ON, COVPUTER TI ME, LABCR COSTS, LOSS OF GOODW LL, LGSS
OF PROFITS, LOSS OF SAVINGS, OR LOCSS OF USE OR | NTERRUPTI ON OF
BUSI NESS. | N NO EVENT WLL TI'S AGGREGATE LI ABI LI TY UNDER THI S
AGREEMENT OR ARI SI NG QUT OF YOUR USE OF THE PROGRAM EXCEED FI VE
HUNDRED DOLLARS U. S. $500) .

Unl ess otherwi se stated, the Programwitten and copyrighted by
Texas Instrunents is distributed as "freeware". You may, only
under Tl's copyright in the Program use and nodify the Program
wi t hout any charge or restriction. You may distribute to third
parties, provided that you transfer a copy of this license to the
third party and the third party agrees to these terns by its first
use of the Program You nust reproduce the copyright notice and
any other |egend of ownership on each copy or partial copy, of the
Pr ogram

You acknow edge and agree that the Program contains copyrighted
material, trade secrets and other Tl proprietary information and
is protected by copyright laws, international copyright treaties,
and trade secret laws, as well as other intellectual property
laws. To protect Tl's rights in the Program you agree not to
deconpi l e, reverse engi neer, disassenble or otherw se translate
any object code versions of the Programto a human-readable form
You agree that in no event will you alter, renpve or destroy any
copyright notice included in the Program Tl reserves all rights
not specifically granted under this |license. Except as
specifically provided herein, nothing in this agreenent shall be
construed as conferring by inplication, estoppel, or otherw se,
upon you, any license or other right under any Tl patents,
copyrights or trade secrets.

You may not use the Programin non-Tl devices.

RE R R b S R R R S b ek S S I R R S S S R R R S R o R R Sk o S

T S T T T I T . T T R I T S B T I R I I T T R R T T . A

Online Stack Overflow Detection on the TMS320C28x DSP

29

{'? TexASs
SPRAS820 INSTRUMENTS

#i f ndef STKOV_
#defi ne STKOV_

#i ncl ude <tsk. h>

/1 C++ Support

#i fdef __cplusplus
extern "C' {

#endi f

/1 dobal Function Prototypes

extern unsigned int STKOV_initSystenttack(unsigned |ong, unsigned |ong, unsigned int);
extern void STKOV_creat eTaskSt ack(TSK_Handl e) ;

extern unsigned int STKOV_initTaskStack(void);

extern void STKOV_switchTaskSt ack(TSK_Handl e, TSK_ Handl e);
/1 dobal synbols defined in the linker command file
extern unsi gned int HW _STKBOTTOM

extern unsigned int HW _STKTOP;

#i fdef __cplusplus

#endi f

#endif // end of STKOV_ #if ndef

/1 end of file stkov.h

30 Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

Appendix C. Troubleshooting Analysis Block Resource Conflicts

Code Composer Studio (including DSP/BIOS) makes use of the emulation analysis block
resources for various debugging features. Conflicts can therefore arise when software attempts
to gain ownership of a watchpoint for stack overflow monitoring. This section presents the most
likely reasons for a resource conflict with Code Composer Studio, and indicates what action is
needed to eliminate the conflict.

It is important to understand that each analysis unit resource can be used either by Code
Composer Studio or by the stack overflow detection software, but not by both. Therefore, some
debugging capabilities will need to be sacrificed if the stack overflow detection software is made
operational during debug. The obvious solution to this problem is to enable the stack overflow
detection near the end of the software development cycle (after the major debug and
development work is completed). One simply needs to comment out the function calls to
STKOV_initSystemStack() and STKOV_initTaskStack() from their code. The task switch hook
function STKOV_switchTaskStack() and the task create hook function
STKOV_createTaskStack() can be left designated as the task hook functions in DSP/BIOS. The
application will consume the same execution cycles as before (which is important for application
benchmarking and real-time requirements debug), but will have no effect on the watchpoint
configuration registers since ownership of the task stack monitoring watchpoint was not secured
in the STKOV_initTaskStack() function.

C.1 Hardware Breakpoints

A hardware breakpoint monitors the program address bus and causes a CPU halt when the
address bus matches a configured value. This can be differentiated from a software breakpoint,
where a special emulation halt instruction is actually inserted into the code by the debugger in
place of the instruction previously located at the specified address. Therefore, hardware
breakpoints are used when debugging in non-volatile memory (such as ROM or Flash), since a
software breakpoint cannot be used in read-only memory. On the C28x DSP, hardware
breakpoints utilize the same two emulation analysis units that watchpoints use.

If memory has been defined as read-only in the Code Composer Studio memory map, and a
breakpoint is set on code in that memory, Code Composer Studio will automatically use a
hardware breakpoint instead of a software breakpoint. This could cause the stack overflow
detection code to fail to gain control of the watchpoint resources. User configured breakpoints
can be examined within Code Composer Studio on the Debug->Breakpoints menu, Breakpoints
tab. Figure C-1 shows an example. The breakpoint at address 0x2000 is a software breakpoint,
whereas the breakpoint at address 0x1000 is a hardware breakpoint, and is clearly denoted by
"H/W Break." If a resource conflict arises, one should disable any hardware breakpoints.

Online Stack Overflow Detection on the TMS320C28x DSP 31

{'? TeExAs

SPRAS820 INSTRUMENTS

32

Break/Probe Points

Breakpaints | Probe Paints |

Breakpoint type: I Break. at Location j Add

Lozation: I Feplace

Expressiar I

Breakpoint:

[w] Ce220000 Delete

H/ % Break at Ox1000 _—
Enable Al
Dizable Al
Delete Al

k. Cancel Lpply Help

Figure C-1. Hardware Breakpoints in Code Composer Studio v2.20

Code Composer Studio automatically sets two breakpoints at program load for a C/C++ program
that will not appear on the breakpoint menu: a ClO breakpoint, and an end of program
breakpoint. If these locations fall into flash memory, Code Composer Studio will use hardware
breakpoints. This could cause the stack overflow detection code to fail to gain control of the
watchpoint resources. You can instruct Code Composer Studio to not set these breakpoints by
deselecting the appropriate boxes on the Option->Customize menu, Program Load Options tab,
as shown in Figure C-2. More information on these two breakpoints may be found by clicking
the Help button on that tab from within Code Composer Studio.

Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

Customize Ed

Debug F'r-:upertiesl Direu:tu:uriesl Color I Editor F'ru:upertiesl Keyboard Program Load Options |* I ’I

¥ Peiform verification during Program Load

v Load Program After Build

v Open Dependent Projects When Loading Projects
[~ Do Mot Scan Dependencies ‘When Loading Projects

Uncheck __» [DioMot Set CI0 Breakpoint &t Load

thes_e boxes [™& v Do Mot Set End OF Program Breakpoint 2t Load
to disable the
setting of the ¥ Clear &l Breakpoints When Loading New Programs
automatic

breakpoints

k. I Cancel Spply Help

Figure C-2. Automatic Breakpoint Setting Options in Code Composer Studio v2.20

C.2 Real-time Analysis Tools

The real-time analysis (RTA) features of DSP/BIOS use analysis unit #1, which will cause a
conflict with stack overflow detection code attempting to use watchpoint #1. To disable the RTA
tools and also remove all RTA code from your project, open your project configuration file (i.e.,
the *.cdb file) inside Code Composer Studio, open the Input/Output properties tree, then right-
click the RTDX - Real-time Data Exchange Settings and select properties. Uncheck the

Enable Real-time Data Exchange (RTDX) box, as shown in Figure C-3.

Online Stack Overflow Detection on the TMS320C28x DSP 33

*’? TexASs
SPRAS820 INSTRUMENTS

WEHample_ram.cdh o =]

Estimated Data Size: 867 Est. Min. Stack Size [MAUz): 341 [RTDX - Real-Time Data Exchange Settings properties

- System Property | walue |
"[-_, Instrumentakion Enable Real-Time Data Exchange (RTDE) True

38 scheduling RTC Mode ITAG

- #& Synchronization E;gi EEIEFE SEQF“‘EI:'EHJTX—E'EH} EISSBARAM

: uffer Size =

-8 InputiOutput RTDX Interrupt Mask 00000000

@ RTD¥ - Real-Time Data Exchange Settings

[#-B HST - Host Channel Manager

iZfy PIP - BuFfered Pipe Manager
:::_': SIC - Stream Input and Cubpuk Manager
53y Device Drivers

..... {ﬁ Chip Support Library

RTDX - Real-Time Data Exchange Settings Properties

1. Right-
click and General |
select
Properties ¥ Enable Real-Time Data Exchange [RTDH)]
RTDE Mode IJT;’-‘«G "I
RTD Data Segment (itds_datal | L1S4RAM =l
2. Uncheck
this box to RTD Buffer Size [MALUs): |259
disable
RTDX and RTDE Interupt b azk: ID:-:EIEIEIEIEIEIEIEI
remove all
RTA code
from the

project. ITI Caneel | Apply | Help

Figure C-3. DSP/BIOS RTDX Control Window in Code Composer Studio v2.20

Alternately, one can disable the RTA tools at runtime (but leave the RTDX/RTA code in the
project). To do this, open the DSP/BIOS->RTA_Control_Panel menu in Code Composer Studio,
as shown in Figure C-4, and uncheck the Global host enable box.

34 Online Stack Overflow Detection on the TMS320C28x DSP

*53 TeExAS
INSTRUMENTS SPRAS820

¥ Enable 5wl logging
¥ Enable PRD logging
¥ Enable CLK logging
Enable TSK logging
Enable S\ accumulators

EUNEY K

Enable PRD accunulators
Enable PIF accumulatars
Uncheck
this box to Enable TSK accurnulators
disable Enable USERD trace
DSP/BIOS W Enable USERT trace

RTA tools.
¥ | Global target enable
¥ Global host enable

Figure C-4. RTA Control Panel in Code Composer Studio v2.20

Enable Hw| accumulators

RO IC I I Y

L

£

L

C.3 Code Profiler

The Code Composer Studio code profiler uses analysis unit #1, which will cause a conflict with
stack overflow detection code attempting to use watchpoint #1. You can disable the profiler
clock on the Profiler menu within Code Composer Studio.

C.4 Resetting the Emulator

In some cases, it may be necessary to reset the emulation link after disabling the Code
Composer Studio feature causing the resource conflict. This is because Code Composer Studio
does not necessarily relinquish control of the analysis unit resource when the offending feature
is disabled. To reset the emulation link, select Debug->Reset_Emulator from within Code
Composer Studio.

CAUTION:

The Code Composer Studio debugger will generally take control of any emulation
analysis resource it wants regardless of whether the application currently owns the
resource or not. The user should be aware of this when performing debug. The
stack overflow code may be working just fine one minute, but then, for example, if
the user sets a hardware breakpoint or enables the profiler, Code Composer Studio
will take control of the analysis units and not provide any warning.

Online Stack Overflow Detection on the TMS320C28x DSP 35

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (Tl) reserve the right to make corrections, modifications,
enhancements, improvements, and other changes to its products and services at any time and to discontinue
any product or service without notice. Customers should obtain the latest relevant information before placing
orders and should verify that such information is current and complete. All products are sold subject to TI's terms
and conditions of sale supplied at the time of order acknowledgment.

Tl warrants performance of its hardware products to the specifications applicable at the time of sale in
accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent Tl
deems necessary to support this warranty. Except where mandated by government requirements, testing of all
parameters of each product is not necessarily performed.

Tl assumes no liability for applications assistance or customer product design. Customers are responsible for
their products and applications using Tl components. To minimize the risks associated with customer products
and applications, customers should provide adequate design and operating safeguards.

Tl does not warrant or represent that any license, either express or implied, is granted under any Tl patent right,
copyright, mask work right, or other Tl intellectual property right relating to any combination, machine, or process
in which TI products or services are used. Information published by Tl regarding third—party products or services
does not constitute a license from Tl to use such products or services or a warranty or endorsement thereof. Use
of such information may require a license from a third party under the patents or other intellectual property of the
third party, or a license from Tl under the patents or other intellectual property of TI.

Reproduction of information in Tl data books or data sheets is permissible only if reproduction is without
alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of
this information with alteration is an unfair and deceptive business practice. Tl is not responsible or liable for
such altered documentation.

Resale of Tl products or services with statements different from or beyond the parameters stated by Tl for that

product or service voids all express and any implied warranties for the associated TI product or service and is an
unfair and deceptive business practice. Tl is not responsible or liable for any such statements.

Mailing Address:
Texas Instruments

Post Office Box 655303
Dallas, Texas 75265

Copyright © 2003, Texas Instruments Incorporated

