
JM
PEBP

SU
B

12
L I B R A R Y R E C O G N I T I O N U S I N G

F L I R T S I G N A T U R E S

At this point it is time to start moving
beyond IDA’s more obvious capabilities

and begin our exploration of what to do after
“The initial autoanalysis has been finished.”1 In

this chapter we discuss techniques for recognizing
standard code sequences such as the library code con-
tained in statically linked binaries or standard initializa-
tion and helper functions inserted by compilers.

When you set out to reverse engineer any binary, the last thing that
you want to do is waste time reverse engineering library functions whose
behavior you could learn much more easily simply by reading a man page,
reading some source code, or doing a little Internet research. The challenge
presented by statically linked binaries is that they blur the distinction between
application code and library code. In a statically linked binary, entire libraries

1 IDA generates this message in the message window when it has finished its automated
processing of a newly loaded binary.

The IDA Pro Book
(C) 2008 by Chris Eagle

212 Chap te r 12

are combined with application code to form a single monolithic executable
file. Fortunately for us, tools are available that enable IDA to recognize and
mark library code, allowing us to focus our attention on the unique code
within the application.

Fast Library Identification and Recognition Technology

Fast Library Identification and Recognition Technology, better known as
FLIRT,2 encompasses the set of techniques employed by IDA to identify
sequences of code as library code. At the heart of FLIRT are pattern-matching
algorithms that enable IDA to quickly determine whether a disassembled
function matches one of the many signatures known to IDA. The <IDADIR>/sig
directory contains the signature files that ship with IDA. For the most part,
these are libraries that ship with common Windows compilers, though a few
non-Windows signatures are also included.

Signature files utilize a custom format in which the bulk of the signature
data is compressed and wrapped in an IDA-specific header. In most cases,
signature filenames fail to give a clear indication of which library the associ-
ated signatures were generated from. Depending on how they were created,
signature files may contain a library name comment that describes their
contents. If we view the first few lines of extracted ASCII content from
a signature file, this comment is often revealed. The following Unix-style
command3 generally reveals the comment in the second or third line of
output:

strings sigfile | head -n 3

Within IDA, there are two ways to view comments associated with signature
files. First, you can access the list of signatures that have been applied to a
binary via View�Open Subviews�Signatures. Second, the list of all signature
files is displayed as part of the manual signature application process, which is
initiated via File�Load File�FLIRT Signature File.

Applying FLIRT Signatures

When a binary is first opened, IDA attempts to apply special signature files,
designated as startup signatures, to the entry point of the binary. It turns
out that the entry point code generated by various compilers is sufficiently
different that matching entry point signatures is a useful technique for iden-
tifying the compiler that may have been used to generate a given binary.

2 Please see http://www.hex-rays.com/idapro/flirt.htm.
3 The strings command was discussed in Chapter 2, while the head command is used to view only
the first few lines (three in the example) of its input source.

L ib rary Recognit ion Usi ng F L IRT Signatures 213

If IDA identifies the compiler used to create a particular binary, then the
signature file for the corresponding compiler libraries is loaded and applied
to the remainder of the binary. The signatures that ship with IDA tend to
be related to proprietary compilers such as Microsoft Visual C++ or Borland
Delphi. The reason behind this is that a finite number of binary libraries ship
with these compilers. For open source compilers, such as GNU gcc, the binary
variations of the associated libraries are as numerous as the operating systems
the compilers ship with. For example, each version of FreeBSD ships with a
unique version of the C standard library. For optimal pattern matching, sig-
nature files would need to be generated for each different version of the
library. Consider the difficulty in collecting every variation of libc.a4 that has
shipped with every version of every Linux distribution. It simply is not practi-
cal. In part, these differences are due to changes in the library source code
that result in different compiled code, but huge differences also result from
the use of different compilation options, such as optimization settings and the
use of different compiler versions to build the library. The net result is that
IDA ships with very few signature files for open source compiler libraries. The
good news, as you shall soon see, is that Hex-Rays makes tools available that
allow you to generate your own signature files from static libraries.

So, under what circumstances might you be required to manually apply
signatures to one of your databases? Occasionally IDA properly identifies
the compiler used to build the binary but has no signatures for the related
compiler libraries. In such cases, either you will need to live without signatures,
or you will need to obtain copies of the static libraries used in the binary and
generate your own signatures. Other times, IDA may simply fail to identify
a compiler, making it impossible to determine which signatures should be

4 libc.a is the version of the C standard library used in statically linked binaries on Unix-style
systems.

M A I N V S . _ S T A R T

Recall that a program’s entry point is the address of the first instruction that will be
executed. Many longtime C programmers incorrectly believe that this is the address
of the function named main, when in fact it is not. The file type of the program, not
the language used to create the program, dictates the manner in which command-
line arguments are provided to a program. In order to reconcile any differences
between the way the loader presents command-line arguments and the way the pro-
gram expects to receive them (via parameters to main, for example), some initializa-
tion code must execute prior to transferring control to main. It is this initialization that
IDA designates as the entry point of the program and labels _start.

This initialization code is also responsible for any initialization tasks that must take
place before main is allowed to run. In a C++ program, this code is responsible for
ensuring that constructors for globally declared objects are called prior to execution
of main. Similarly, cleanup code is inserted that executes after main completes in
order to invoke destructors for all global objects prior to the actual termination of the
program.

The IDA Pro Book
(C) 2008 by Chris Eagle

214 Chap te r 12

applied to a database. This is common when analyzing obfuscated code in
which the startup routines have been sufficiently mangled to preclude com-
piler identification. The first thing to do, then, would be to de-obfuscate the
binary sufficiently before you could have any hope of matching any library
signatures. We will discuss techniques for dealing with obfuscated code in
Chapter 21.

Regardless of the reason, if you wish to manually apply signatures to a
database, you do so via File�Load File�FLIRT Signature File, which opens
the signature selection dialog shown in Figure 12-1.

Figure 12-1: FLIRT signature selection

The File column reflects the name of each .sig file in IDA’s <IDADIR>/sig
directory. Note that there is no means to specify an alternate location for .sig
files. If you ever generate your own signatures, they need to be placed into
<IDADIR>/sig along with every other .sig file. The Library name column
displays the library name comment that is embedded within each file. Keep
in mind that these comments are only as descriptive as the creator of the
signatures (which could be you!) chooses to make them.

When a library module is selected, the signatures contained in the
corresponding .sig file are loaded and compared against every function
within the database. Only one set of signatures may be applied at a time,
so you will need to repeat the process if you wish to apply several different
signature files to a database. When a function is found to match a signature,
the function is marked as a library function, and the function is automatically
renamed according to the signature that has been matched.

WARNING Only functions named with an IDA dummy name can be automatically renamed. In
other words, if you have renamed a function, and that function is later matched by a
signature, then the function will not be renamed as a result of the match. Therefore, it
is to your benefit to apply signatures as early in your analysis process as possible.

Recall that statically linked binaries blur the distinction between applica-
tion code and library code. If you are fortunate enough to have a statically
linked binary that has not had its symbols stripped, you will at least have
useful function names (as useful as the trustworthy programmer has chosen

L ib rary Recognit ion Usi ng F L IRT Signatures 215

to create) to help you sort your way through the code. However, if the binary
has been stripped, you will have perhaps hundreds of functions, all with
IDA-generated names that fail to indicate what the function does. In both
cases, IDA will be able to identify library functions only if signatures are
available (function names in an unstripped binary do not provide IDA with
enough information to definitively identify a function as a library function).
Figure 12-2 shows the Overview Navigator for a statically linked binary.

Figure 12-2: Statically linked with no signatures

In this display, no functions have been identified as library functions, so
you may find yourself analyzing far more code than you really need to. After
application of an appropriate set of signatures, the Overview Navigator is
transformed as shown in Figure 12-3.

Figure 12-3: Statically linked binary with signatures applied

As you can see, the Overview Navigator provides the best indication of
the effectiveness of a particular set of signatures. With a large percentage of
matched signatures, substantial portions of code will be marked as library
code and renamed accordingly. In the example in Figure 12-3, it is highly
likely that the actual application-specific code is concentrated in the far-left
portion of the navigator display.

There are two points worth remembering when applying signatures.
First, signatures are useful even when working with a binary that has not
been stripped, in which case you are using signatures more to help IDA
identify library functions than to rename those functions. Second, statically
linked binaries may be composed of several separate libraries, requiring the
application of several sets of signatures in order to completely identify all
library functions. With each additional signature application, additional
portions of the Overview Navigator will be transformed to reflect the discovery
of library code. Figure 12-4 shows one such example. In this figure, you see
a binary that was statically linked with both the C standard library and the
OpenSSL5 cryptographic library.

Figure 12-4: Static binary with first of several signatures applied

5 Please see http://openssl.org/.

The IDA Pro Book
(C) 2008 by Chris Eagle

216 Chap te r 12

Specifically, you see that following application of the appropriate
signatures for the version of OpenSSL in use in this application, IDA has
marked a small band (the lighter band toward the left edge of the address
range) as library code. Statically linked binaries are often created by taking
the application code first and then appending required libraries to create the
resulting executable. Given this picture, we can conclude that the memory
space to the right of the OpenSSL library is likely occupied by additional
library code, while the application code is most likely in the very narrow band
to the left of the OpenSSL library. If we continue to apply signatures to the
binary shown in Figure 12-4, we eventually arrive at the display of Figure 12-5.

Figure 12-5: Static binary following application of several signatures

In this example, we have applied signatures for libc, libcrypto, libkrb5,
libresolv, and others. In some cases we selected signatures based on strings
located within the binary; in other cases we chose signatures based on their
close relationship to other libraries already located within the binary. The
resulting display continues to show a dark band in the right half of the naviga-
tion band and a smaller dark band at the extreme left edge of the navigation
band. Further analysis is required to determine the nature of these remaining
nonlibrary portions of the binary. In this case we would learn that the wider
dark band on the right side is part of an unidentified library, while the dark
band on the left is the application code.

Creating FLIRT Signature Files

As we discussed previously, it is simply impractical for IDA to ship with
signature files for every static library in existence. In order to provide IDA
users with the tools and information necessary to create their own signatures,
Hex-Rays distributes the Fast Library Acquisition for Identification and
Recognition (FLAIR) tool set. The FLAIR tools are made available on
your IDA distribution CD or via download from the Hex-Rays website6 for
authorized customers. Like several other IDA add-ons, the FLAIR tools are
distributed in a Zip file. For IDA version 5.2, the associated FLAIR tools are
contained in flair52.zip. Hex-Rays does not necessarily release a new version
of the FLAIR tools with each version of IDA, so you should use the most
recent version of FLAIR that does not exceed your version of IDA.

Installation of the FLAIR utilities is a simple matter of extracting the
contents of the associated Zip file, though we highly recommend that you
create a dedicated flair directory as the destination because the Zip file is not

6 The current version is flair52.zip and is available here: http://www.hex-rays.com/idapro/ida/
flair52.zip. A username and password supplied by Hex-Rays are required to access the download.

L ib rary Recognit ion Usi ng F L IRT Signatures 217

organized with a top-level directory. Inside the FLAIR distribution you will
find several text files that constitute the documentation for the FLAIR tools.
Files of particular interest include these:

readme.txt
This is a top-level overview of the signature-creation process.

plb.txt
This file describes the use of the static library parser, plb.exe. Library pars-
ers are discussed in more detail in “Creating Pattern Files” on page 219.

pat.txt
This file details the format of pattern files, which represent the first
step in the signature-creation process. Pattern files are also described
in “Creating Pattern Files” on page 219.

sigmake.txt
This file describes the use of sigmake.exe for generating .sig files from
pattern files. Please refer to “Creating Signature Files” on page 221 for
more details.

Additional top-level content of interest includes the bin directory, which
contains all of the FLAIR tools executable files, and the startup directory,
which contains pattern files for common startup sequences associated with
various compilers and their associated output file types (PE, ELF, and so on).
An important point to understand regarding the FLAIR tools is that while
all of the tools run only from the Windows command prompt, the resulting
signature files may be used with all IDA variants (Windows, Linux, and OS X).

Signature-Creation Overview
The basic process for creating signatures files does not sound complicated, as
it boils down to four simple-sounding steps.

1. Obtain a copy of the static library for which you wish to create a
signature file.

2. Utilize one of the FLAIR parsers to create a pattern file for the library.

3. Run sigmake.exe to process the resulting pattern file and generate a
signature file.

4. Install the new signature file in IDA by copying it to <IDADIR>/sig.

Unfortunately, in practice, only the last step is as easy as it sounds. In the
following sections, we discuss the first three steps in more detail.

Identifying and Acquiring Static Libraries
The first step in the signature-generation process is to locate a copy of the
static library for which you wish to generate signatures. This can pose a bit of
a challenge for a variety of reasons. The first obstacle is to determine which
library you actually need. If the binary you are analyzing has not been stripped,

The IDA Pro Book
(C) 2008 by Chris Eagle

218 Chap te r 12

you might be lucky enough to have actual function names available in your
disassembly, in which case Google will probably provide several pointers to
likely candidates.

Stripped binaries are not quite as forthcoming regarding their origins.
Lacking function names, you may find that a good strings search may yield
sufficiently unique strings to allow for library identification, such as the follow-
ing, which is a dead giveaway:

OpenSSL 0.9.8a 11 Oct 2005

Copyright notices and error strings are often sufficiently unique that once
again you can use Google to narrow your search. If you choose to run strings
from the command line, remember to use the -a option to force strings to
scan the entire binary; otherwise you may miss some potentially useful string
data.

In the case of open source libraries, you are likely to find source code
readily available. Unfortunately, while the source code may be useful in help-
ing you understand the behavior of the binary, you cannot use it to generate
your signatures. It might be possible to use the source to build your own ver-
sion of the static library and then use that version in the signature-generation
process. However, in all likelihood, variations in the build process will result
in enough differences between the resulting library and the library you are
analyzing that any signatures you generate will not be terribly accurate.

The best option is to attempt to determine the exact origin of the binary
in question. By this we mean the exact operating system, operating system
version, and distribution (if applicable). Given this information, the best
option for creating signatures is to copy the libraries in question from an
identically configured system. Naturally, this leads to the next challenge:
Given an arbitrary binary, on what system was it created? A good first step
is to use the file utility to obtain some preliminary information about the
binary in question. In Chapter 2 we saw some sample output from file.
In several cases, this output was sufficient to provide likely candidate systems.
The following is just one example of very specific output from file:

$ file sample_file_1
sample_file_1: ELF 32-bit LSB executable, Intel 80386, version 1 (FreeBSD),
for FreeBSD 5.4, statically linked, FreeBSD-style, stripped

In this case we might head straight to a FreeBSD 5.4 system and track
down libc.a for starters. The following example is somewhat more ambiguous,
however:

$ file sample_file_2
sample_file_2: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
for GNU/Linux 2.6.9, statically linked, stripped

L ib rary Recognit ion Usi ng F L IRT Signatures 219

We appear to have narrowed the source of the file to a Linux system,
which, given the abundance of available Linux distributions, is not saying
much. Turning to strings we find the following:

GCC: (GNU) 4.1.1 20060525 (Red Hat 4.1.1-1)

Here the search has been narrowed to Red Hat distributions (or deriv-
atives) that shipped with gcc version 4.1.1. GCC tags such as this are not
uncommon in binaries compiled using gcc, and fortunately for us, they
survive the stripping process and remain visible to strings.

Keep in mind that the file utility is not the be all and end all in file
identification. The following output demonstrates a simple case in which
file seems to know the type of the file being examined but for which the
output is rather nonspecific.

$ file sample_file_3
sample_file_3: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV),
dynamically linked (uses shared libs), stripped

This example was taken from a Solaris 10 x86 system. Here again, the
strings utility might be useful in pinpointing this fact.

Creating Pattern Files
At this point you should have one or more libraries for which you wish to
create signatures. The next step is to create a pattern file for each library.
Pattern files are created using an appropriate FLAIR parser utility. Like
executable files, library files are built to various file format specifications.
FLAIR provides parsers for several popular library file formats. As detailed
in FLAIR’s readme.txt file, the following parsers can be found in FLAIR’s bin
directory:

plb.exe
Parser for OMF libraries (commonly used by Borland compilers)

pcf.exe
Parser for COFF libraries (commonly used by Microsoft compilers)

pelf.exe
Parser for ELF libraries (found on many Unix systems)

ppsx.exe
Parser for Sony PlayStation PSX libraries

ptmobj.exe
Parser for TriMedia libraries

pomf166.exe
Parser for Kiel OMF 166 object files

The IDA Pro Book
(C) 2008 by Chris Eagle

220 Chap te r 12

To create a pattern file for a given library, specify the parser that
corresponds to the library’s format, the name of the library you wish to
parse, and the name of the resulting pattern file that should be generated.
For a copy of libc.a from a FreeBSD 6.1 system, you might use the following:

$./pelf libc.a libc_FreeBSD61.pat
libc.a: skipped 0, total 986

Here, the parser reports the file that was parsed (libc.a), the number of
functions that were skipped (0),7 and the number of signature patterns that
were generated (986). Each parser accepts a slightly different set of command-
line options documented only through the parser’s usage statement. Execut-
ing a parser with no arguments displays the list of command-line options
accepted by that parser. The plb.txt file contains more detailed information
on the options accepted by the plb.exe parser. This file is a good basic source
of information, since other parsers accept many of the options it describes as
well. In many cases, simply naming the library to be parsed and the pattern
file to be generated is sufficient.

A pattern file is a text file that contains, one per line, the extracted
patterns that represent functions within a parsed library. A few lines from
the pattern file created previously are shown here:

5589E58B55108B450C8B4D0885D2EB06890183C1044A75F88B4508C9C3...... 00 0000 001D :0000 _wmemset
5589E58B4D1057C1E102568B7D088B750CFCC1E902F3A55E8B45085FC9C3.... 00 0000 001E :0000 _wmemcpy
5589E556538B751031DB39F38B4D088B550C73118B023901751183C10483C204 19 A9BE 0039 :0000 _wmemcmp

The format of an individual pattern is described in FLAIR’s pat.txt file. In
a nutshell, the first portion of a pattern lists the initial byte sequence of the
function to a maximum of 32 bytes. Allowance is made for bytes that may vary
as a result of relocation entries. Such bytes are displayed using two dots. Dots
are also used to fill the pattern out to 648 characters when a function is shorter
than 32 bytes (as _wmemset is in the previous code). Beyond the initial 32 bytes,
additional information is recorded to provide more precision in the signature-
matching process. Additional information encoded into each pattern line
includes a CRC169 value computed over a portion of the function, the length
of the function in bytes, and a list of symbol names referenced by the function.
In general, the longer functions that reference many other symbols yield more
complex pattern lines. In the file libc_FreeBSD61.pat generated previously,
some pattern lines exceed 20,000 characters in length.

7 The plb and pcf parsers may skip some functions depending on the command-line options
supplied to the parsers and the structure of the library being parsed.
8 At two characters per byte, 64 hexadecimal characters are required to display the contents of
32 bytes.
9 This is a 16-bit cyclic redundancy check value. The CRC16 implementation utilized for pattern
generation is included with the FLAIR tool distribution in the file crc16.cpp.

L ib rary Recognit ion Usi ng F L IRT Signatures 221

Several third-party programmers have created utilities designed to gen-
erate patterns from existing IDA databases. One such utility is IDB_2_PAT,10

an IDA plug-in written by J.C. Roberts that is capable of generating patterns
for one or more functions in an existing database. Utilities such as these are
useful if you expect to encounter similar code in additional databases and
have no access to the original library files used to create the binary being
analyzed.

Creating Signature Files
Once you have created a pattern file for a given library, the next step in the
signature-creation process is to generate a .sig file suitable for use with IDA.
The format of an IDA signature file is substantially different from a pattern
file. Signature files utilize a proprietary binary format designed both to
minimize the amount of space required to represent all of the information
present in a pattern file and to allow for efficient matching of signatures
against actual database content. A high-level description of the structure of a
signature file is available on the Hex-Rays website.11

FLAIR’s sigmake.exe utility is used to create signature files from pattern
files. By splitting pattern generation and signature generation into two distinct
phases, the signature-generation process is completely independent of the
pattern-generation process, which allows for the use of third-party pattern
generators. In its simplest form, signature generation takes place by using
sigmake.exe to parse a .pat file and create a .sig file, as shown here:

$./sigmake libssl.pat libssl.sig

If all goes well, a .sig file is generated and ready to install into <IDADIR>/
sig. However, the process seldom runs that smoothly.

NOTE The sigmake documentation file, sigmake.txt, recommends that signature filenames
follow the MS-DOS 8.3 name-length convention. This is not a hard-and-fast require-
ment, however. When longer filenames are used, only the first eight characters of the
base filename are displayed in the signature-selection dialog.

Signature generation is often an iterative process, as it is during this phase
when collisions must be handled. A collision occurs any time two functions
have identical patterns. If collisions are not resolved in some manner, it is
not possible to determine which function is actually being matched during
the signature-application process. Therefore, sigmake must be able to resolve
each generated signature to exactly one function name. When this is not
possible, based on the presence of identical patterns for one or more func-
tions, sigmake refuses to generate a .sig file and instead generates an exclusions

10 Please see http://www.openrce.org/downloads/details/26/IDB_2_PAT.
11 Please see http://www.hex-rays.com/idapro/flirt.htm.

The IDA Pro Book
(C) 2008 by Chris Eagle

222 Chap te r 12

file (.exc). A more typical first pass using sigmake and a new .pat file (or set of
.pat files) might yield the following.

$./sigmake libc_FreeBSD61.pat libc_FreeBSD61.sig
See the documentation to learn how to resolve collisions.
: modules/leaves: 13443631/970, COLLISIONS: 911

The documentation being referred to is sigmake.txt, which describes the
use of sigmake and the collision-resolution process. In reality, each time sigmake
is executed, it searches for a corresponding exclusions file that might contain
information on how to resolve any collisions that sigmake may encounter while
processing the named pattern file. In the absence of such an exclusions file,
and when collisions occur, sigmake generates such an exclusions file rather
than a signature file. In the previous example, we would find a newly created
file named libc_FreeBSD61.exc. When first created, exclusions files are text files
that detail the conflicts that sigmake encountered while processing the pattern
file. The exclusions file must be edited to provide sigmake with guidance as to
how it should resolve any conflicting patterns. The general process for editing
an exclusions file follows.

When generated by sigmake, all exclusions files begin with the following
lines:

;--------- (delete these lines to allow sigmake to read this file)
; add '+' at the start of a line to select a module
; add '-' if you are not sure about the selection
; do nothing if you want to exclude all modules

The intent of these lines it to remind you what to do to resolve collisions
before you can successfully generate signatures. The most important thing to
do is delete the four lines that begin with semicolons, or sigmake will fail to
parse the exclusions file during subsequent execution. The next step is to
inform sigmake of your desire for collision resolution. A few lines extracted
from libc_FreeBSD61.exc appear here:

___ntohs 00 0000 0FB744240486C4C3..
___htons 00 0000 0FB744240486C4C3..

_index 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3..............
_strchr 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3..............

_rindex 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........
_strrchr 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........

These lines detail three separate collisions. In this case, we are being told
that the function ntohs is indistinguishable from htons, index has the same
signature as strchr, and rindex collides with strrchr. If you are familiar with
any of these functions, this result may not surprise you, as the colliding func-
tions are essentially identical (for example, index and strchr perform the
same action).

L ib rary Recognit ion Usi ng F L IRT Signatures 223

In order to leave you in control of your own destiny, sigmake expects you
to designate no more than one function in each group as the proper function
for the associated signature. You select a function by prefixing the name with
a plus character (+) if you want the name applied anytime the corresponding
signature is matched in a database or a minus character (-) if you simply want
a comment added to the database whenever the corresponding signature is
matched. If you do not want any names applied when the corresponding
signature is matched in a database, then you do not add any characters. The
following listing represents one possible way to provide a valid resolution for
the three collisions noted previously:

+___ntohs 00 0000 0FB744240486C4C3..
___htons 00 0000 0FB744240486C4C3..

_index 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3..............
_strchr 00 0000 538B4424088A4C240C908A1838D974074084DB75F531C05BC3..............

_rindex 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........
-_strrchr 00 0000 538B5424088A4C240C31C0908A1A38D9750289D04284DB75F35BC3..........

In this case we elect to use the name ntohs whenever the first signature is
matched, do nothing at all when the second signature is matched, and have
a comment about strrchr added when the third signature is matched. The
following points are useful when attempting to resolve collisions:

1. To perform minimal collision resolution, simply delete the four
commented lines at the beginning of the exclusions file.

2. Never add a +/- to more than one function in a collision group.

3. If a collision group contains only a single function, do not add a +/- in
front of that function; simply leave it alone.

4. Subsequent failures of sigmake cause data, including comment lines, to
be appended to any existing exclusions file. This extra data should be
removed and the original data corrected (if the data was correct, sigmake
would not have failed a second time) before rerunning sigmake.

Once you have made appropriate changes to your exclusions file, you
must save the file and rerun sigmake using the same command-line arguments
that you used initially. The second time through, sigmake should locate, and
abide by, your exclusions file, resulting in the successful generation of a .sig
file. Successful operation of sigmake is noted by the lack of error messages and
the presence of a .sig file, as shown here:

$./sigmake libc_FreeBSD61.pat libc_FreeBSD61.sig

After a signature file has been successfully generated, you make it available
to IDA by copying it to your <IDADIR>/sig directory. Then your new signatures
are available using File�Load File�FLIRT Signature File.

The IDA Pro Book
(C) 2008 by Chris Eagle

224 Chap te r 12

Note that we have purposefully glossed over all of the options that can be
supplied to both the pattern generators and sigmake. A rundown of available
options is provided in plb.txt and sigmake.txt. The only option we will make
note of is the -n option used with sigmake. This option allows you to embed a
descriptive name inside a generated signature file. This name is displayed
during the signature-selection process (see Figure 12-1), and it can be very
helpful when sorting through the list of available signatures. The following
command line embeds the name string “FreeBSD 6.1 C standard library”
within the generated signature file:

$./sigmake -n"FreeBSD 6.1 C standard library" libc_FreeBSD61.pat libc_FreeBSD61.sig

As an alternative, library names can be specified using directives within
exclusion files. However, since exclusion files may not be required in all
signature-generation cases, the command-line option is generally more
useful. For further details, please refer to sigmake.txt.

Startup Signatures
IDA also recognizes a specialized form of signatures, called startup signatures.
Startup signatures are applied when a binary is first loaded into a database in
an attempt to identify the compiler that was used to create the binary. If IDA
can identify the compiler used to build a binary, then additional signature
files, associated with the identified compiler, are automatically loaded during
the initial analysis of the binary.

Given that the compiler type is initially unknown when a file is first loaded,
startup signatures are grouped by and selected according to the file type of
the binary being loaded. For example, if a Windows PE binary is being loaded,
then startup signatures specific to PE binaries are loaded in an effort to
determine the compiler used to build the PE binary in question.

In order to generate startup signatures, sigmake processes patterns that
describe the startup routine12 generated by various compilers and groups
the resulting signatures into a single type-specific signature file. The startup
directory in the FLAIR distribution contains the startup patterns used by
IDA, along with the script, startup.bat, used to create the corresponding
startup signatures from those patterns. Refer to startup.bat for examples of
using sigmake to create startup signatures for a specific file format.

In the case of PE files, you would notice several pe_*.pat files in the startup
directory that describe startup patterns used by several popular Windows
compilers, including pe_vc.pat for Visual Studio patterns and pe_gcc.pat for
Cygwin/gcc patterns. If you wish to add additional startup patterns for PE
files, you would need to add them to one of the existing PE pattern files or
create a new pattern file with a pe_ prefix in order for the startup signature-
generation script to properly find your patterns and incorporate them into
the newly generated PE signatures.

12 The startup routine is generally designated as the program’s entry point. In a C/C++ program,
the purpose of the startup routine is to initialize the program’s environment prior to passing
control to the main function.

L ib rary Recognit ion Usi ng F L IRT Signatures 225

One last note about startup patterns concerns their format, which unfortu-
nately is slightly different from patterns generated for library functions. The
difference lies in the fact that a startup pattern line is capable of relating the
pattern to additional sets of signatures that should also be applied if a match
against the pattern is made. Other than the example startup patterns included
in the startup directory, the format of a startup pattern is not documented in
any of the text files included with FLAIR.

Summary

Automated library code identification is an essential capability that sig-
nificantly reduces the amount of time required to analyze statically linked
binaries. With its FLIRT and FLAIR capabilities, IDA makes such automated
code recognition not only possible but extensible by allowing users to create
their own library signatures from existing static libraries. Familiarity with the
signature-generation process is an essential skill for anyone who expects to
encounter statically linked binaries.

The IDA Pro Book
(C) 2008 by Chris Eagle

