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PREFACE

Tsls book is intended essentially as an ('Introductionr" and
does not aim at giving an exhaustive discussion of the problems
with which it deals. It seemed desirable to ser forth certain
results, hitherto only available to those who have mastered
logical symbolism, in a form offering the minimum of difficulty
to the beginner. The utmost endeavour has been made to
avoid dogmatism on such questions as are still open to serious
doubt, and this endeavour has to some extent dominated the
choice of topics considered. The beginnings of mathematical
logic are less definitely known than its later portions, but are of
at least equal philosophical interest. Much of what is set forth
in the following chapters is not properly to be called " philosophy,"
though the matters concerned were included in philosophy so
long as no satisfactory science of them existed. The nature of
infinity and continuity, for example, belonged in former days
to philosophl, but belongs now to mathematics. Mathematical
philosoplt!, in the strict sense, cannot, perhaps, be held to include
such definite scientific results as have been obtained in this
region; the philosophy of mathematics will naturally be ex-
pected to deal with questions on the frontier of knowledge, as
to which comparative certainty is not yet attained. But
speculation on such questions is hardly likely to be fruitful
unless the more scientific parts of the principles of mathematics
are known. A book dealing with tfiose parts fray, therefore,
claim to be an introduction to mathematical philosophy, though
it can hardly claim, except where it steps outside its province,
to be actually dealing with a paft of philosophy. It does deal,
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vi Introduction to Mathematical Philosoplt'y

however, dtr a body of knowledge which, to those who accept

it, appears to invalidate much traditional philosoPhT, and even

a good deal of what is current in the Present d^y. In this waY,

as well as by its bearing on still unsolved problems, mathematical

logic is relevant to philosophy. For this reason' as well as on

account of the intrinsic importance of the subject, some PurPose
may be served by a succinct account of the main results of

mathematical logic in a form requiring neither a knowledge of

mathematics nor an aptitude for mathematical symbolism.

Here, however, as elsewhere, the method is more important than

the results, from the point of view of further research; and the

method cannot well be explained within the framework of such

a book as the following. It is to be hoped that some readers

may be suficiently interested to advance to a study of the

method by which mathematical logic can be made helpful in

investigating the traditional problems of philosophy. But that

is a topic with which the following Pages have not attempted

to deal.
BERTRAND RUSSELL.



EDITOR'S NOTE

Tuosn who, relying on the distinction between Mathematical
Philosophy and the Philosophy of Mathematics, tlink that this
book is out of place in the present Library, may be referred to
what the author himself says on this head in the Preface. It is
not necessary to agree with what he there suggests as to the
readjustment of the field of philosophy by the transference from
it to rnathematics of such problems as those of class, continuity,
infinity, in order to perceive the bearing of the definitions and
discussions that follow on the work of 3'traditional philosophy."
If philosophers cannot consent to relegate the criticism of these
categories to any of the special sciences, it is essential, at any
rate, that they should know the precise meaning that the science
of mathematics, in which these concepts play so large a part,
assigns to them. If, on the other hand, there be mathematicians
to whom these definitions and discussion$ seem to be an elabora-
tion and complication of the simple, it may be well to remind
them from the side of philosophy that here, as elsewhere, apparent
simplicity may conceal a complexity which it is the business of
somebody, whether philosopher or mathematician, ot, like the
author of this volume, both in one, to unravel.

vli
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Introduction to
Mathematical Philosophy

CHAPTBR I

TIIE SERIEg OF NATURAL NUMBERS

MenrruATrcs is a study which, when we start from its most
familiar portions, may be pursued in either of two opposite
directions. The more familiar direction is constructive, towards
gradually increasing complexity : from integers to fractions,
real numbers, complex numbers; from addition and multi-
plication to differentiation and integration, and on to higher
mathematics. The other direction, which is less familiar,
proceeds, by analysing, to greater and greater abstractness
and logical simplicity I instead of asking what can be defined
and deduced from whai is assumed to begin with, we ask instead

what more general ideas and principles can be found, in terms
of which what was our starting-point can be defined or deduced.

It is the fact of pursuing this opposite direction that characterises
mathematical philosophy as opposed to ordinary mathematics.
But it should be understood that the distinction is one, not in
the subject matter, but in the state of mind of the investigator.

Early Greek geometers, passing from the empirical rules of

Egyptian land-surveying to the general propositions by which
those rules were found to be justifiable, and thence to Euclid's
axioms and postulates, were engaged in mathematical philos-
oph/, according to the above definition; but when once the
axioms and postulates had been reached, their deductive employ-
ment, as we find it in Euclid, belonged to mathematics in the
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ordinary sense. The distinction between mathematics and

mathematical philosophy is one which depends upon the interest
inspiring the research, and upon the stage which the research
has reached; not upon the propositions with which the research

is concerned.
We may stater the same distinction in another way. The

most obvious and easy things in mathematics are not those that

come logically at the beginning; they are things that, from
the point of view of logical deduction, come somewhere in the
middle. Just as the easiest bodies to see are those that are

neither very near nor very far, neither very small nor very
great, so the easiest conceptions to grasp are those that are
neither very complex nor very simple (using " simple " in a

logical sense). And as we need two sorts of instruments, the
telescope and the microscope, for the enlargement of our visual
powers, so we need two sorts of instruments for the enlargement
of our logical powers, one to take us forward to the higher
mathematics, the other to take us backward to the logical
foundations of the things that we are inclined to take for granted
in mathematics. We shall frnd that by analysing our ordinary
mathematical notions we acquire fresh insight, new powers,
and the means of reaching whole new mathematical subjects
by adopting fresh lines of advance after our backward journey.

It is the purpose of this book to explain mathematical philos-
ophy simply and untechnically, without enlarging upon those
portions which are so doubtful or difficult that an elementary
treatment is scarcely possible. A full treatment will be found
in Principia Mathematica ;L the treatment in the present volume
is intended merely as an introduction.

To the average educated person of the present d^y, the

obvious starting-point of mathematics would be the series of

whole numbers, 
,, ,, 3, 4, etc.

r Cambridge University Press, vol. i., rgto ; vol. ii., rgr r ; vol. iii., r9r3.

By Whitehead and Russell.



The Series of Natural Nunbers 3

Probably only a person with some mathematical knowledge

would think of beginning with o instead of with r, but we will

presume this degree of knowledge; we will take as our starting-

point the series :

o, r, z, 3, . . . lt, rtf r, " . .

and it is this series that we shall mean when we speak of the
tt geries of natural numbers."

It is only at a high stage of civilisation that we could take

this series as our starting-point. It must have required many
ages to discover that a brace of pheasants and a couple of days
were both instances of the number z : the degree of abstraction
involved is far from easy. And the discovery that r is a number
must have been difficult. As for o, it is a very recent addition;
the Greeks and Romans had no such digit. If we had been

embarking upon mathematical philosophy in earlier days, we
should have had to start with something less abstract than the
series of natural numbers, which we should reach as a stage on
our backward journey. When the logical foundations of mathe-
matics have grown more familiar, we shall be able to start further
back, at what is now a late stage in our analysis. But for the

moment the natural numbers seem to represent what is easiest
and most familiar in mathematics.

But though familiar, they are not understood. Very few
people are prepared with a definition of what is meant by
tt numberr" or " or" or tt r.t' It is not very difficult to see that,

starting from o, any other of the natural numbers can be reached

by repeated additions of r, but we shall have to define what

we mean by tt adding rr" and what we mean by " repeated."
These questions are by no means easy. It was believed until
recently that some, at least, of these first notions of arithmetic
must be accepted as too simple and primitive to be defined.

Since all terms that are defined are defined by means of other
terms, it is clear that human knowledge must always be content
to accept some terms as intelligible without definition, in order
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to have a starting-point for its definitions. It is not clear that

there must be terms which arc incapablc of. definition: it is

possible that, however far back we go in defining, we always

might go further still. On the other hand, it is also possible

that, when analysis has been pushed far enough, we can reach

terms that really are simple, and therefore logically incapable
of the sort of definition that consists in analysing. This is a

question which it is not necessary for us to decide; for our

purposes it is sufficient to observe that, since human Powers
are finite, the definitions known to u$ must always begin some-

where, with terms undefined for the moment, though perhaps
not permanently.

All traditional pure mathematics, including analytical geom-

etry, may be regarded as consisting wholly of propositions

about the natural numbers. That is to say, the terms which

occur can be defined by means of the natural numbers, and

the propositions can be deduced from the ProPerties of the

natural numbers-with the addition, in each case' of the ideas
and propositions of pure logic.

That all traditional pure mathematics can be derived from

the natural numbers is a f.airly recent discovery, though it had

long been suspected. Pythagoras, who believed that not only

mathematics, but everything else could be deduced from

numbers, was the discoverer of the most serious obstacle in

the way of what is called the '( arithmetising " of mathematics.

It was Pythagoras who discovered the existence of incom-

mensurables, and, in particular, the incommensurability of the

side of a square and the diagonal. If the length of the side is

r inch, the number of inches in the diagonal is the square root

oL z, which appeared not to be a number at all. The problem

thus raised was solved only in our own day, and was only solved

completely by the help of the reduction of arithmetic to logic,

which will be explained in following chapters. For the Present,
we shall take for granted the arithmetisation of mathematics,

though this was a f.eat of the very greatest importance.
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Having reduced all traditional pure mathematics to the
theory of the natural numbers, the next step in logical analysis
was to reduce this theory itself to the smallest set of premisses
and undefined terms from which it could be derived. This work
was accomplished by Peano. He showed t"hat the entire theory

of the natural numbers could be derived from three primitive

ideas and five primitive propositions in addition to those of

pure logic. These three ideas and five propositions thus became,

as it were, hostages for the whole of traditional pure mathe-
matics. If they could be defined and proved in terms of others,
so could all pure mathematics. Their logical " weight," if one
may use such an expression, is equal to that of the whole series
of sciences that have been deduced from the theory of the natural
numbers; the truth of this whole series is assured if the truth
of the five primitive propositions is guaranteed, provided, of
course, that there is nothing erroneous in the purely logical

apparatus which is also involved. The work of analysing mathe-

matics is extraordinarily facilitated by this work of Peano's.
The three primitive ideas in Peano's arithmetic are :

o, number, successor.

By " Euccessor tt he means the next number in the natural

order. That is to say, the successor of o is r, the successor of

t is z, and so on. By tt number tt he means, in this connection,

the class of the natural numbers.r He is not assuming that

we know all the members of this class, but only that we know

what we mean when we say that this or that is a number, just

as we know what we mean when we say tt 
Jones is a manrtt

though we do not know all men individually.

The five primitive propositions which Peano assumes are:

( l )  o i sanumber .
(z) The successor of any number is a number.

G) No two numbers have the same successor.

1 We shall use " number " in this sense in the present ehaptor. .A.Iton
wards the word will be used in a more general sense.
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o is not the successor of any number.
Ary property which belongs to o, and also to the successor

of every number which has the property, belongs to all

numbers.

The last of these is the principle of mathematical induction.

We shall have much to say concerning mathematical induction

in the sequel; for the present, we are concerned with it only

as it occurs in Peano's analysis of arithmetic.
Let us consider briefly the kind of way in which the theory

of the natural numbers results from these three ideas and five

propositions. To begin with, we define r as tt the successor of or"

z as tt the successor of rr" and so on. We can obviously go

Dn as long as we like with these definitions, since, in virtue of

(z), every number that we reach will have a successor, and, in

virtue of b), this cannot be any of the numbers already defined,

because, if it were, two difierent numbers would have the same

successor; and in virtue of (+) none of the numbers we reach

in the series of successors can be o. Thus the series of successors

gives us an endless series of continually new numbers. In virtue

of (S) all numbers come in this series, which begins with o and

travels on through successive successors : for (a) o belongs to

this series, and (b) if. a number a belongs to it, so does its successor,

whence, by mathematical induction, every number belongs to

the series.
Suppose we wish to define the sum of two numbers. Taking

any number m, we define n+o as tn, and m*(n*t) as the

successor of. m*n In virtue of (S) this gives a definition of

the sum of. m and n, whatever number z may be. Similarly

we can define the product of any two numbers. The reader can

easily convince himself that any ordinary elementary ProPosition
of arithmetic can be proved by means of our five premisses,

and if he has any difficulty he can find the proof in Peano.

It is time now to turn to the considerations which malce it

necessary to advance beyond the standpoint of Peano, who

(+)
G)
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represents the last perfection of the " arithmetisation " of

mathematics, to that of Frege, who first succeeded in " logicising 'n

mathematics, e.e. in reducing to logic the arithmetical notions

which his predecessors had shown to be sufficient for mathematics.

We shall not, in this chapter, actually give Frege's definition of

number and of particular numbers, but we shall give some of the

reasons why Peano's treatment is less final than it appears to be'

In the first place, Peano's three primitive ideas-namely, " or"
tt numberrt' and tt successsl tt-21g capable of an infinite number

of difierent interpretations, all of which will satisfy the five

primitive propositions. We will give some examples.
(r) Let $ o" be taken to mean too, and let t6 number tt be

taken to mean the numbers from roo onward in the series of

natural numbers. Then all our primitive propositions are

satisfied, even the fourth, for, though roo is the successor of

gg, gg is not a tt number " in the sense which we are now giving

to the word " number." It is obvious that any number may be

substituted for roo in this example.
(z) Let $ o" have its usual meaning, but let tt number "

mean what we usually call tt even numbersrtt and let the

" successor " of a number be what results from adding two to

it. Then 3( ! " will stand for the number two, 3c 2 " will stand

for the number four, and so on; the series of tt numbers tt now

will be
o, two, four, six, eight . . .

All Peano's five premisses are satisfied still.
(3) Let c( o " mean the number one, let " number tt mean

the set
r r t ,  l r t ,  1 t 6 r . . .

and let t6 successor tt mean tt half.tt Then all Peanots five

axioms will be true of this set.
It is clear that such examples might be multiplied indefinitely.

In fact, given any series

tCO, fr1,t ?CZ, frV . . . tCne . . .
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which is endless, contains no repetitions, has a beginning, and
has no terms that cannot be reached from the beginning in a
finite number of steps, we have a set of terms verifying Peano's
axioms. This is easily seen, though the formal proof is some-
what long. Let t( o " mean ro, let tt number tt mean the whole.
cet of terms, and let the t' successor ?' of ftn mean fin+t, Then

(t) ('o is a numberr" i,e, ro is a member of the set.
(r) t'The successor of any number is a numberrtt i.e. taking

any term xn in the set, *r,*, is also in the set,
(l) tt No two numbers have the same successorrt' i,c, iI x^

and xn are two difierent members of the set, r,r+1 and xn*, are
different ; this results from the fact that (by hypothesis) there
are no repetitions in the set.

(+) " o is not the successor of any numberrt' i.e. no term in
the set comes before *0.

fi) This becomes : Any property which belongs to r0, and
belongs to xtt+r provided it belongs to #n, belongs to all the x's.

This follows from the corresponding property for numberg.
A series of the form

t(g1 lC1; 1C22 nn,

in which there is a first term, a successor to each term (so that
there is no last term), no repetitions, and every term can be
reached from the start in a finite number of steps, is called a
progression. Progressions are of great importance in the princi-
ples of mathematics. As we have just seen, every progression
verifies Peano's five axioms. It can be proved, conversely,
that every series which verifies Peano's five axioms is a pro-
gression. Hence these five axioms may be used to define the
class of progressions : tt progressions " ate tt those series which
verify these five axioms." Ary progression may be taken as
the basis of pure mathematics : we may give the name 6( o t'

to its first term, the name t' number tt to the whole set of its
terms, and the name tt successor " to the next in the progression.
The progression need not be composed of numbers : it may be
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composed of points in space, or moments of time, or any cither

terms of which there is an infinite supply. Each difierent

progression will give rise to a difierent interpretation of all the

propositions of traditional pure mathematics ; all these possible

interpretations will be equally true.
In Peano's system there is nothing to enable us to distinguish

between these difierent interpretations of his primitive ideas.

It is assumed that we know what is meant by " ortt and that

we shall not suppose that this symbol means roo or Cleopatra's

Needle or any of the other things that it might mean.

This point, that t( o" and t' number tt and ttsuccessor "
cannot be defined by means of Peano's five axioms, but must

be independently understood, is important. We want our

numbers not merely to verify mathematical formula, but to

apply in the right way to common objects. We want to have

ten fingers and two eyes and one nose. A system in which '3 r "
meant loo, and K 2" meant tot, and so on, might be all right

for pure mathematics, but would not suit daily life. We want
K o" and tt number " and tt successor " to have meanings which

will give us the right allowance of fingers and eyes and noses.

We have already some knowledge (though not sufficiently

articulate or analytic) of what we mean by tt r tt and " 2" ar,.d

so on, and our use of numbers in arithmetic must conform to

this knowledge. We cannot secure that this shall be the case

by Peano's method; all that we can do, if we adopt his method,

is to say tt we know what we mean by t o t and t number t and
t successorrt though we cannot explain what we mean in terms

of other simpler concepts." It is quite legitimate to say this

when we must, and at sorne point we all must; but it is the

object of mathematical philosophy to put off saying it as long

as possible. By the logical theory of arithmetic we are able to

put it off for a very long time.
It might be suggested that, instead of setting oP " o " and

tt number tt and tt successor " as terms of which we know the

meaning although we cannot define them, we might let them
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stand for any three terms that verify Peano's five axioms. They

will then no longer be terms which have a meaning that is definite

though undefined: they will be t'variablesr" terms concerning

which we make certain hypotheses, namely, those stated in the

five axioms, but which are otherwise undetermined. If we adopt

this plan, our theorems will not be proved concerning an ascer-

tained set of terms called tt the natural numbersr" but concerning
all sets of terms having certain properties. Such a procedure

is not fallacious ; indeed for certain purposes it rePresents a

valuable generalisation. But from two points of view it fails

to give an adequate basis for arithmetic. In the first place, it

does not enable us to know whether there are any sets of terms

verifying Peano's axioms; it does not even give the faintest

suggestion of any way of discovering whether there are such sets.

In the second place, as already observed, we want our numbers

to be such as can be used for counting common objects, and this

requires that our numbers should have a definite meaning, not

merely that they should have certain formal properties. This

definite meaning is defined by the logical theory of arithmetic.



CHAPTER II

DEFINITION OF NUMBER

Tun question '3 What is a number ? " is one which has been
often asked, but has only been correctly answered in our own
time. The answer was given by Frege in 1884, in his Grundlagcn
der Aritbmetih.L Although this book is quite short, not difficult,
and of the very highest importance, it attracted almost no
attention, and the definition of number which it contains re-
mained practically unknown until it was rediscovered by the
present author in r9or.

In seeking a definition of number, the first thing to be clear
about is what we may call the grammar of our inquiry. Many
philosophers, when attempting to define number, are really
setting to work to define plurality, which is quite a different
thing. Nuffiber is what is characteristic of numbers, as rnan
is what is characteristic of men. A plurality is not an instance
of number, but of some particular number. A trio of men,
for example, is an instance of the number 3, and the number

3 is an instance of number; but the trio is not an instance of
number. This point may seem elementary and scarcely worth
mentioning; yet it has proved too subtle for the philosophers,
with few exceptions.

A particular number is not identical with any collection of
terms having that number: the number 3 is not identical with

I The same answer is given more fully aad with more development in
lliis Grundgasctza du Arithmetih, vol. i., 1893.
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the trio consisting of Brown, Jones, and Robinson. The number

3 is something which all trios have in common, and which dis-

tinguishes them from other collections. A number is something

that characterises certain collections, namely, those that have

that number.
Instead of speaking of a tt collectionrtt we shall as a nrle rpeak

of a tt classrtt or sometimec a t'get.tt Other wordg used in

mathematics for the same thing are tt aggregate " and tt mani-

fold." We shall have much to say later on about classes. For

the present, we will say as little as possible. But there are

some remarks that must be made immediately.
A class or collection may be defined in two ways that at first

sight seem quite distinct. We may enumerate its members, as

when we sa/r " The collection I mean is Brown, Jones, and
Robinson." Or we may mention a defining property, as when

we speak of tt mankind " or 66 the inhabitants of London." The

definition which enumerates is called a definition by t'exten-

sion," and the one which mentions a defining property is called

a definition by " intension." Of these two kinds of definition,

the one by intension is logically more fundamental. This is

shown by two considerations t (l) that the extensional defini-

tion can always be reduced to an intensional one; (z) that the

intensional one often cannot even theoretically be reduced to

the extensional one. Each of these pointe needr a word of
erplanation.

(r) Brown, Jones, and Robinson all of them possess a certain

property which is possessed by nothing else in the whole universe,
namely, the property of being either Brown or Jones or Robinson.

This property can be used to give a definition by intension of
the class consisting of Brown and Jones and Robinson. Con-
sider such a formula as " x is Brown or * is Jones or r is Robinson."

This formula will be true for just three r's, namely, Brown and

Jones and Robinson. In this respect it resembles a cubic equa-

tion with its three roots. It may be taken as assigning a property
comrnon to the members of the dass consisting of these three
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men, and peculiar to them. A similar treatment can obvioualy
be applied to any other class given in extension.

(z) It is obvious that in practice we can often know a great
deal about a class without being able to enumerate its members.
No one man could actually enumerate all men, or even all the
inhabitants of London, yet a great deal is known about each of
these classes. This is enough to show that definition by extension
is not ntccssnry to knowledge about a class. But when we come
to consider infinite classes, we find that enumeration is not even
theoretically possible for beings who only live for a finite time.
We cannot enumerate all the natural numbers : th.y are o, t, z,

3, and so ot. At some point we must content ourselveg with
tt and so on.tt We cannot enumerate all fractions or all irrational
numbers, or all of any other infinite collection. Thus our know-
ledge in regard to all such collections can only be derived from a
definition by intension.

These remarks are relevant, when we are seeking the definition
of number, in three different ways. In the first place, numbers
themselves form an infinite collection, and cannot therefore
be defined by enumeration. In the second place, the collections
having a given number of terms themselves presumably form an
infinite collection : it is to be presumed, for example, that there
are an infinite collection of trios in the world, for if this were
not the case the total number of things in the world would be
finite, which, though possible, seems unlikely. In the third
place, we wish to define tt number " in such a way tiliat infinite
numbers may be possible; thus we must be able to speak of
the number of terms in an infinite collection, and such a collection
must be defined by intension, i.e. by ^ property common to all
its members and peculiar to them.

For many purposee, a class and a defining characteristic of
it are practically interchangeable. The vital difference between
the two consists in the fact that there is only one class having a
given set of members, whereas there are always many difierent
characteristics by which a given class may be defined. Men
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may be defined as featherless bipeds, or as rational animals,
or (more correctly) by the traits by which Swift delineates the
Yahoos. It is this fact that a defining characteristic is never
unique which makes classes useful; otherwise we could be
content with the properties common and peculiar to their
members.l Any one of these properties can be used in place
of the class whenever uniqueness is not important.

Returning now to the definition of number, it is clear t"hat
number is a way of bringing together certain collections, namely,
those that have a given number of terms. We can suppose
all couples in one bundle, all trios in another, and so on. In
this way we obtain various bundles of collections, each bundle
consisting of all the collections that have a certain number of
terms. Each bundle is a class whose members are collections,
i.e. classes ; thus each is a class of classes. The bundle con-
sisting of all couples, for example, is a class of classes : each
couple is a class with two members, and the whole bundle of
couples is a class with an infinite number of members, each of
which is a class of two members.

How shall we decide whether two collections are to belong
to the same bundle ? The answer that suggests itself is : " Find
out how many members each has, and put them in the same
bundle if they have the same number of members." But this
presupposes that we have defined numbers, and that we know
how to discover how many terms a collection has. We are so
used to the operation of counting that such a presupposition
might easily pass unnoticed. In fact, however, counting,
though familiar, is logically a very complex operation; more-
over it is only available, as a means of discovering how many
terms a collection has, when the collection is finite. Our defirti-
tion of number must not assume in advance that all numbers
are finite; and we cannot in any case, without a vicious circle,

1 As will be explained later, classes may be regarded as logical fictions,
manufactured out of defining characteristics. But for the present it will
simplify our exposition to treat classes as if they were real.
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use counting to define numbers, because numbers are used in
counting. We need, therefore, some other method of deciding
when two collections have the same number of terms.

In actual fact, it is simpler logically to find out whether two
collections have the same number of terms than it is to define
what that number is. An illustration $'ill make this clear.
If there were no polygamy or polyandry anywhere in the world,
it is clear that the number of husbands living at any moment
would be exactly the same as the number of wives. We do
not need a census to assure us of this, nor do we need to know
what is the actual number of husbands and of wives. We know
the number must be the same in both collections, because each
husband has one wife and each wife has one husband. The
relation of husband and wife is what is called " one-one."

A relation is said to be " one-one " when, if. x has the relation
in question to lr lo other term r' has the same relation to y,
and r does not have the same relation to any term y' other
than y. When only the first of these two conditions is fulfilled,

the relation is called " one-many t' ; when only the second is
fulfilled, it is called " many-one." It should be observed that

the number r is not used in these definitions.
ln Christian countries, the relation of husband to wife is

one-one; in Mahometan countries it is one-many; in Tibet
it is many-one. The relation of father to son is one-many;

that of son to father is many-one, but that of eldest son to father

is one-one. If. n is any number, the relation of. n to z{r is

one-one; so is the relation of n to zn or to 3n. When we are
considering only positive numbers, the relation of. n to n2 is
one-one; but when negative numbers are admitted, it becomes

two-one, since n and -nhave the same square. These instances
should suffice to make clear the notions of one-one, one-many,
and many-one relations, which pl^y a great part in the princi-
ples of mathematics, not only in relation to the definition of
numbers, but in many other connections.

Two classes are said to be tt similar'n when there is a one-one
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relation which correlates the terms of the one class each with

one term of the other class, in the same manner in which the

relation of marriage correlates husbands with wives. A few

preliminary definitions will help us to state this definition more

precisely. The class of those terms that have a given relation

to something or other is called the domain of' that relation:

thus fathers are the domain of the relation of father to child,

husbands are the domain of the relation of husband to wife,

wives are the domain of the relation of wife to husband, and

husbands and wives together are the domain of the relation of

marriage. The relation of wife to husband is called the conaerse

of the relation of husband to wife. Similarly less is the converse

of. greater, later is the converse of. eailier, and so on. Generally,

the converse of a given relation is that relation which holds

between y and x whenever the given relation holds between

x arid y. The conaerse domain of. a relation is the domain of

its conv€rse : thus the class of wives is the converse domain

of the relation of husband to wife. We may now state our

definition of similarity as follows :-

One class is said to be " sirnilar " to Anotber when tbere is a

one-one rcIation of wbicb thc one class is the domain, ubile the

atber is tbe conoerse domain.

It is easy to prove (r) that every class is similar to itself, (z)

that if a class o is similar to a class B, then B is similar to cb (3)

that if a is similar to p and B to lt then o is similar to y. A

relation is said to be ref.exive when it possesses the first of these

propertie s, syfnmetrical when it possesses the second, and transi-

tive when it possesses the third. It is obvious that a relation

which is symmetrical and transitive must be reflexive throughout

its domain. Relations which Possess these ProPerties are an

important kind, and it is worth while to note that similarity is

one of this kind of relations.

It is obvious to common sense that two finite classes have

the same number of terms if they are similar, but not otherwise.

The act of counting consists in establishing a one-one correlation
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between the set of objects counted and the natural numbers
(excluding o) that are used up in the process. Accordingly
common sense concludes that there are as many objects in the
set to be counted as there are numbers up to the last number
used in the counting. And we also know that, so long as we
confine ourselves to finite numbers, there are just a numbers
from r up to n. Hence it follows that the last number used in
counting a collection is the number of terms in the collection,
provided the collection is finite. But this result, besides being
only applicable to finite collections, depends upon and assumes
the fact that two classes which are similar have the same number
of terms ; for what we do when we count (r"y) ro objects is to
show that the set of these objects is similar to the set of numbers
r to ro. The notion of similarity is logically presupposed in
the operation of counting, and is logically simpler though less
familiar. In counting, it is necessary to take the objects counted
in a certain order, as first, second, third, etc., but order is not
of the essence of number: it is an irrelevant addition, an un-
necessary complication from the logical point of view. The
notion of similarity does not demand an order: for example,
we saw that the number of husbands is the same as the number
of wives, without having to establish an order of precedence
among them. The notion of similarity also does not require
that the classes which are similar should be finite. Take, for
example, the natural numbers (excluding o) on the one hand,
and the fractions which have r for their numerator on the other
hand: it is obvious that we can correlate z with f, 3 with $, and
so on, thus proving that the two classes are similar.

We may thus use the notion of " similarity " to decide when
two collections are to belong to the same bundle, in the sense
in which we were asking this question earlier in this chapter.
We want to make one bundle containing the class that has no
members : this will be for the number o. Then we want a bundle
of all the classes that have one member : this will be for the
number r. Then, for the number 2, we want a bundle consisting
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of all couples ; then one of all trios; and so on. Given any collec-

tion, we can define the bundle it is to belong to as being the class

of all those collections that are " similar " to it. It is very easy

to see that if (for example) a collection has three members, the

class of all those collections that are similar to it will be the

class of trios. And whatever number of terms a collection may

have, those collections that are " similar " to it will have the same

number of terms. We may take this as a def.nition of " having

the same number of terms." It is obvious that it gives results

conformable to usage so long as we confine ourselves to finite

collections.
So far we have not suggested anything in the slightest degree

paradoxical. But when we come to the actual definition of

numbers we cannot avoid what must at first sight seem a paradox,

though this impression will soon wear off. We naturally think

that the class of couples (for example) is something difierent

from the number z. But there is no doubt about the class of

couples: it is indubitable and not difficult to define, whereas

the number z, in any other sense, is a metaphysical entity about

which we can never feel sure that it exists or that we have tracked

it down. It is therefore more prudent to content ourselves with

the class of couples, which we are sure of, than to hunt for a

problematical number 2 which must always remain elusive.

Accordingly we set up the follo*itg definition :-

The number of a class is tbe class of all those classes that are

similar to it.
Thus the number of a couple will be the class of all couples.

In fact, the class of all couples vnll be the number z, according

to our definition. At the expense of a little oddity, this definition

secures definiteness and indubitableness; and it is not difficult

to prove that numbers so defined have all the ProPerties that we

expect numbers to have.
We may now go on to define numbers in general as any one of

the bundles into which similarity collects classes. A number

will be a set of classes such as that any two are similar to each
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other, and none outside the set are similar to any inside the set.
In other words, a number (in general) is any collection which is
the number of one of its members; or, more simply still :

A number is anything wltich is the number of so?ne class.
Such a definition has a verbal appearance of being circular,

but in fact it is not. We define " the number of a given class "
without using the notion of number in general ; therefore we may
define number in general in terms of " the number of a given
class " without committing any logical error.

Definitions of this sort are in fact very common. The class
of fathers, for example, would have to be defined by first defining
what it is to be the father of somebody ; then the class of fathers
will be all those who are somebody's father. Similarly if we want
to define square numbers (r"y), we must first define what we
mean by saying that one number is the square of another, and
then define square numbers as those that are the squares of
other numbers. This kind of procedure is very common, and
it is important to realise that it is legitimate and even often
necessary.

We have now given a definition of numbers which will serve
for finite collections. It remains to be seen how it will serve
for infinite collections. But first we must decide what we mean
by " finite " and " infinitert' which cannot be done within the
limits of the present chapter.



CHAPTER III

FINITUDE AND MATHEMATICAL INDUCTION

Tnn series of natural numbers, as we saw in Chapter I., can all

be defined if we know what we mean by the three terms " or"
., numberrt, and ,, successor.rt But we may go a steP farther :

we can define all the natural numbers if we know what we mean

by ,, o D and ,, successor.,t It will help us to understand the

difierence between finite and infinite to see how this can be done,

and why the method by which it is done cannot be extended

beyond the finite. We will not yet consider how (( o)) and " suc-

cessor " are to be defined : we will for the moment assume that

we know what these terms mean' and show how thence all other

natural numbers can be obtained.

It is easy to see that we can reach any assigned number, say

3O'OOO. we firSt define c( t,) as tt the successor of or" then we

define (c 2t' as tt the Successor of Ir" and so on. In the case of

an assigned number, such as 3O2ooO, the proof that we can reach

it by proceeding step by step in this fashion may be made, if we

have the patience, by actual experiment: we can go on until

we actually arrive at 3o,ooo. But although the method of

experiment is available for each particular natural number' it

is not available for proving the general proposition that all such

numbers can be reached in this waY, i.e. by proceeding from o

step by step from each number to its successor. Is there any

other way by which this can be proved ?

Let us consider the question the other way round. What are

the numbers that can be reached, given the terms (6 O tt and
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tt successor tt I Is there any way by which we can define the
whole class of such numbers ? We reach l, as the successor of o;
2, as the successor of r ; 3, as the successor of z I and so on. It
is this " and so on " that we wish to replace by something less
vague and indefinite. We might be tempted to say that " and
so on " means that the process of proceeding to the successor
may be repeated any f,nite number of times; but the problem
upon which we are engaged is the problem of defining .. finite
numberrt' and therefore we must not use this notion in our defini-
tion. Our definition must not assume that we know what a
finite number is.

The key to our problem lies in matltematical induction. It will
be remembered that, in Chapter I., this was the fifth of the five
primitive propositions which we laid down about the natural
numbers. It stated that any property which belongs to o, and
to the successor of any number which has the property, belongs
to all the natural numbers. This was then presented as a principle,
but we shall now adopt it as a definition. It is not difficult
to see that the terms obeying it are the same as the numbers
that can be reached from o by successive steps from n€xt to
next, but as the point is important we will set forth the matter
in some detail.

We shall do well to begin with some definitions, which will be
useful in other connections also.

A property is said to be " hereditary " ir the natural-number
series if, whenever it belongs to a number n, it also belongs to
n*r, the successor of a. Similarly a class is said to be " heredi-
tary )) if, whenevet n is a member of the class, so is n+r. It is
easy to see, though we are not yet supposed to know, that to say
a property is hereditary is equivalent to saying that it belongs
to all the natural numbers not less than some one of them, a.g.
it must belong to all that are not less than roo, or all that are
less than rooo, or it may be that it belongs to all that are not
less than o, i.e. to all without exception.

A property is said to be " induetive " when it is a hereditary
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property which belongs to o. Similarly a class is " inductive "
when it is a hereditary class of which o is a member.

Given a hereditary class of which o is a member, it follows
that r is a member of it, because a hereditary class contains the
tuccessors of its members, and r is the successor of o. Similarly,
given a hereditary class of which r is a member, it follows that
z is a member of it ; and so on. Thus we can prove by ^ step-
by-step procedure that any assigned natural number, say 3orooo,
is a member of every inductive class.

We will define the " posterity " of a given natural number
with respect to the relation " immediate predecessor " (which
is the converse of tt successor tt) 

"t 
all those terms that belong

to every hereditary class to which the given number belongs. It
is again easy to see that the posterity of a natural number con-
sists of itself and all greater natural numbers ; but this also we
do not yet officially know.

By the above definitions, the posterity of o will consist of those
terms which belong to every inductive class.

It is now not difficult to make it obvious that the posterity of
o is the same set as those terms that can be reached from o by
successive steps from next to next. For, in the first place, o
belongs to both these sets (in the sense in which we have defined
our terms) I in the second place, if a belongs to both sets, so does
n+r. It is to be observed that we are dealing here with the
kind of matter that does not admit of precise proof, namely, the
comparison of a relatively vague idea with a relatively precise
one. The notion of t'those terms that can be reached from o
by successive steps from next to next " is vague, though it seems
as if it conveyed a definite meaning; on the other hand, " the
posterity of o " is precise and explicit just where the other idea
is hazy, It may be taken as giving what we rnea.nl to mean
when we spoke of the terms that can be reached from o by
succesgive stePs.

We now lay down the follo*iog definition :-
the " natural numbers " arc the posterity of o witb respcct to tlte
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rclation " immediate predecessor " (which is the converse of
t ' successor  t t  

) .
We have thus arrived at a definition of one of Peano's three

primitive ideas in terms of the other two. As a result of this
definition, two of his primitive propositions-namely, rhe one
asserting that o is a number and the one asserting mathematical
induction-become unnecessary, since they result from the defini-
tion. The one asserting that the suciessor of a natural number
is a natural number is only needed in the weakened form t' every
natural number has a successor."

We can, of course, easily define (( o )' and ,, successor ,, by means
of the definition of number in general which we arrived at in
chapter II. The number o is the number of terms in a class
which has no members, i.e. in the class which is called the (G null-
class." By the general definition of number, the number of terms
in the null-class is the set of all classes similar to the null-class,
i.e. (as is easily proved) the set consisting of the null-class all
alone, i.e. the class whose only member is the null-class. (This
is not identical with the null-class: it has one member, namely,
the null-class, whereas the null-class itself has no members. A
class which has one member is never identical with that one
member, as we shall explain when we come to the theory of
classes.) Thus we have the following purely logical definition:-

o is tlte class whose only member is the null-class.
It remains to define tt successor." Given any number a, let

o be a class which has n members, and let r be a term which
is not a member of o. Then the class consisting of o with r
added on will have n+r members. Thus we have the following
definition :-

Tlte successor of tltc number oJ terms in tlte class s, is tlte number
of terms in the class consisting of a together with x, where x is any
terrn not belonging to tbe class.

Certain niceties are required to make this definition perfecr,
but they need not concern us.l It will be remembered that we

1 See Pfincipia Mathcnatica, vol. ii. r 11e,
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have already given (in Chapter II.) a logical definition of the

number of terms in a class, namely, we defined it as the set of all

classes that are similar to the given class.

We have thus reduced Peano's three primitive ideas to ideas

of logic: we have given definitions of them which make them

definite, no longer capable of an infinity of difierent meanings,

as they were when they were only determinate to the extent of

obeying Peano's five axioms. We have removed them from the

fundamental apparatus of terms that must be merely aPPre-

hended, and have thus increased the deductive articulation of

mathematics.
As regards the five primitive propositions, we have already

succeeded in making two of them demonstrable by our definition

of " natural number." How stands it with the remaining three ?

It is very easy to prove that o is not the successor of any number,

and that the successor of any number is a number' But there

is a difficulty about the remaining primitive proposition, namely,
t'no two numbers have the same successot." The difficulty

does not arise unless the total number of individuals in the

universe is finite ; for given two numbers m and a, neither of

which is the total number of individuals in the universe, it is

easy to prove that we cannot have rn+r-nf.r unless we have

rrr:n,. But let us suppose that the total number of individuals

in the universe were (say) ro ; then there would be no class of

rr individuals, and the number rr would be the null-class. So

would the number tz. Thus we should have tr:rz i therefore

the successor of ro would be the same as the successor of rr,

although ro would not be the same as rr. Thus we should have

two difierent numbers with the same successor. This failure of

the third axiom cannot arise, however, if the number of indi-

viduals in the world is not finite. We shall return to this topic

at a later stage.l
Assuming that the number of individuals in the universe is

not finite, we have now succeeded not only in defining Peano's
I $ge Chapter XIII
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three primitive ideas, but in seeing how to prove his five primitive
propositions, by means of primitive ideas and propositions belong-
ing to logic. It follows that all pure mathematics, in so far
as it is deducible from the theory of the natural numbers, is only
a prolongation of logic. The extension of this result to those
modern branches of mathematics which are not deducible from
the theory of the natural numbers offers no difficulty of principle,
as we have shown elsewhere.l

The process of mathematical induction, by means of which
we defined the natural numbers, is capable of generalisation.
We defined the natural numbers as the " posterity " of o with
respect to the relation of a number to its immediate successor.
If we call this relation N, any number m wtll have this relation
to rn+r. A property is " hereditary with respect to Nr" or
simply " N-hereditaryr" if, whenever the property belongs to a
number m, it also belongs to rn*r, i,e. to the number to which
m has the relation N. And a number n vnll be said to belong to
the " posterity " of m with respect to the relation N if n has
every N-hereditary property belonging to rn. These definitions
can all be applied to any other relation just as well as to N. Thus
if R is any relation whateverr w€ can lay down the following
definitions ' 2 -

A property is called " R-hereditary " when, if it belongs to
a term r, and r has the relation R to y, then it belongs to y.

A class is R-hereditary when its defining property is R-
hereditary.

A term r is said to be an " R-ancestor " of the term y if y has
every R-hereditary property that x has, provided r is a term
which has the relation R to something or to which something
has the relation R. (This is only to exclude trivial cases.)

1 For geometry, in so far as it is not purely analytical, see Principles of
Mathematics, part vi. ; for rational dynamics, ibid., part vii.

? These definitions, and the generalised theory of induction, are due to
Frege, and were published so long ago as r87g in tris Begrffischrift. In
spite of the great value of this work, I was, I believe, the first person who
ever read it-more than twenty years after its publication.
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The '6 R-posterity " of x is all the terms of which I is an R-

ancestor.
We have framed the above definitions so that if a term is the

ancestor of anything it is its own ancestor and belongs to its own

posterity. This is merely for convenience.
It will be observed that if we take for R the relation " parent,"

tt ancestor " and tt posterity tt will have the usual meanings,

except that a person will be included among his own ancestors

and posterity. It is, of course, obvious at once that t' ancestor "
must be capable of definition in terms of t'parentr" but until

Frege developed his generalised theory of induction, no one could

have defined tt ancestor t' precisely in terms of (' parent." A

brief consideration of this point will serve to show the importance

of the theory. A person confronted for the first time with the

problem of defining tt ancestor " in terms of tt parent tt would
naturally say that A is an ancestor of Z if., between A and Z,

there are a certain number of people, B, C, ., of whom
B is a child of A, each is a parent of the next, until the last, who
is a parent of. Z. But this definition is not adequate unless we

add that the number of intermediate terms is to be finite. Take,

for example, such a series as the following:-

-r, -t, -1, -*' t' l' *' r'

Here we have first a series of negative fractions with no end,

and then a series of positive fractions with no beginning. Shall

we say that, in this series, -l it an ance$tor of $ I It will be

so according to the beginner's definition suggested above, but

it will not be so according to any definition which will give the

kind of idea that we wish to define. For this purPose, it is

essential that the number of intermediaries should be finite.

But, as we saw, tt finite " is to be defined by means of mathe-

matical induction, and it is simpler to define the ancestral relation

generally at once than to define it first only for the case of the

relation of. n to n*r, and then extend it to other cases. Here,

as conetantly elsewhere, generality from the first, though it may
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require more thought at the start, will be found in the long run
to economise thought and increase logical power.

The use 'of mathematical induction in demonstrations was,
in the past, something of a mystery. There seemed no reason-
able doubt that it was a valid method of proof, but no one quite
knew why it was valid. Some believed it to be really a case
of induction, in the sense in which that word is used in logic.
Poincar6 r considered it to be a principle of the utmost import-
ance, by means of which an infinite number of syllogisms could be
condensed into one argument. We now know that all such views
are mistaken, and that mathematical induction is a definition,
not a principle. There are some numbers to which it can be
applied, and there are others (as we shall see in Chapter VIII.)
to which it cannot be applied. We def.ne the (' natural numbers "
as those to which proofs by mathematical induction can be
applied, i.e. as those that possess all inductive properties. It
follows that such proofs can be applied to the natural numbers,
not in virtue of any mysterious intuition or axiom or principle,
but as a purely verbal proposition. If " quadrupeds " are
defined as animals having four legs, it will follow that animals
that have four legs are quadrupeds; and the case of numbers
that obey mathematical induction is exactly similar.

We shall use the phrase " inductive numbers " to mean the
same set as we have hitherto spoken of as the 6t natural numbers."

The phrase " inductive numbers " is preferable as affording a
reminder that the defi.nition of this set of numbers is obtained
from mathematical induction.

Mathematical induction affords, more than anything else,
the essential characteristic by which the finite is distinguished

from the infinite. The principle of mathematical induction
might be stated popularly in some such form as '( what can be
inferred from next to next can be inferred from first to last.tt
This is true when the number of intermediate steps between
first and last ig finite, not otherwise. Anyone who has ever

t Saicnca and Mathod, chap. iv.



28 fntoduction to Mathematical Philosoplty

watched a goods train beginning to move will have noticed how

the impulse is communicated with a jerk from each truck to

the next, until at last even the hindmost truck is in motion.

When the train is very long, it is a very long time before the last

truck moves. If the train were infinitely long, there would be

an infinite succession of jerks, and the time would never come

when the whole train would be in motion. Nevertheless, if

there were a series of trucks no longer than the series of inductive

numbers (which, as we shall see, is an instance of the smallest

of infinites), every truck would begin to move sooner or later

if the 
'engine persevered, though there would always be other

trucks further back which had not yet begun to move. This

image will help to elucidate the argument from next to next,

and its connection with finitude. When we come to infinite

numbers, where argurnents from mathematical induction will

be no longer valid, the properties of such numbers will help to

make clear, by contrast, the almost unconscious use that is made

of mathematical induction where finite numbers are concerned.



CHAPTER IV

THE DEFINITION OF ORDER

Wr have now carried our analysis of the series of natural numbers
to the point where we have obtained logical definitions of the
members of this series, of the whole class of its members, and
of the relation of a number to its immediate successor. We
must now consider the serial character of the natural numbers
in the order o, r, 2, 3, We ordinarily think of the num-
bers as in this order, and it is an essential part of the work
of analysing our data to seek a definition of " order " or cc series "
in logical terms.

The notion of order is one which has enormous importance
in mathematics. Not only the integers, but also rational frac-
tions and all real numSers have an order of magnitude, and
this is essential to most of their mathematical properties. The
order of points on a line is essential to geometry; so is the
slightly more complicated order of lines through a point in a
plane, or of planes through a line. Dimensions, in geometryr
are a development of order. The conception of. a limal, which
underlies all higher mathematics, is a serial conception. There
are parts of mathematics which do not depend upon the notion
of order, but they are very few in comparison with the parts
in which this notion is involved.

In seeking a definition of order, the first thing to realise is
that no set of terms has just one order to the exclusion of others.
A set of terms has all the orders of which it is capable. Some-
times one order is so much more familiar and natural to our

29
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thoughts that we are inclined to regard it as tbe order of that
set of terms ; but this is a mistake. The nanrral numbers-
or the tt inductive " numbers, as we shall also call them-occur
to us most readily in order of magnitude; but they are capable
of an infinite number of other arrangements. We might, for
example, consider first all the odd numbers and then all the
even numbers ; or first t, then all the even numbers, then all
the odd multiples of 3, then all the multiples of 5 but not of
2 or 3, then all the multiples of 7 but not of z or 3 or 5, and so
on through the whole series of primes. When we say that we
tt arrange tt the numbers in these various orders, that is an
inaccurate expression : what we really do is to turn our attention
to certain relations between the natural numbers, which them-
selves generate such-and-such an arrangement. We can no
more tt arrange tt the natural numbers than we can the sta'rry
heavens ; but just as we may notice among the fixed stars
either their order of brightness or their distribution in the sky,
so there are various relations among numbers which may be
observed, and which give rise to various difierent orders among
numbers, all equally legitimate. And what is true of nurnbers
is equally true of points on a line or of the moments of time:
one order is more familiar, but others are equally valid. We
might, for example, take first, on a line, all the points that have
integral co-ordinates, then all those that have non-integral
rational co-ordinates, then all those that have algebraic non-
rational co-ordinates, and so on, through any set of complica-
tions we please. The resulting order will be one which the
points of the line certainly have, whether we choose to notice
it or not ; the only thing that is arbitrary about the various
orders of a set of terms is our attention, for the terms themselves
have always all the orders of which they are capable.

One important result of this consideration is that we must
not look for the definition of order in the nature of the set of
terms to be ordered, since one set of terms has many orders.
The order li,es, not in the class of terms, but in a relation among



Thc Defnition of Order 3 r

the members of the class, in respect of which some appear as
earlier and some as later. The fact that a class may have many
orders is due to the fact that there can be many relations holding
among the members of one single class. What properties must
a relation have in order to give rise to an order ?

The essential characteristics of a relation which is to give rise
to order may be discovered by considering that in respect of
such a relation we must be able to say, of any two terms in
the class which is to be ordered, that one " precedes " and the
other " follows." Now, in order that we may be able to use
these words in the way in which we should naturally understand
them, we require that the ordering relation should have three
properties .-

(t) If r preced.r y, y must not also precede *. This is an
obvious characteristic of the kind of relations that lead to series.
If * is less than !, ! is not also less than r. If r is earlier in
time than !, ! is not also earlier than r. If x is to the left of

!, ! is not to the left of, x. On the other hand, relations which
do not give rise to series often do not have this property. If
r is a brother or sister of y, y is a brother or sister of *. If * is
of the same height as lt y is of the same height as r. If r is of a
different height from !, ! is of a different height from r. In
all tlrese cases, when the relation holds between x and y, it also
holds between y and x. But with serial relations such a thing
cannot happen. A relation having this first property is called
asymmetrical.

(z) If r precedes y and y precedes z, # must precede z. This
may be illustrated by the same instances as before : Iess, eailier,
Itft of, But as instances of relations which do not have this
property only two of our previous three instances will serve.
If * is brother or sister of y, and y ot z, fr may not be brother
or sister of z, since r and z may be the same person. The same
applies to difference of height, but not to sameness of height,
which has our second property but not our first. The relation
53 fatherr" on the other hand, hae our first property but not
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our second. A relation having our second property is called

transitive.

(l) Given any two terms of the class which is to be ordered,

there must be one which precedes and the other which follows.

For example, of any two integers, or fractionsr or real numbers,

one is smaller and the other greater; but of any two complex

numbers this is not true. Of any two moments in time, one

must be earlier than the other; but of events, which may be

simultaneous, this cannot be said. Of two points on a line,

one must be to the left of the other. A relation having this

third property is called connected.

When a relation Possesses these three PloPerties, it is of the

sort to give rise to an order among the terms between which it

holds ; and wherever an order exists, some relation having these

three properties can be found generating it.

Before illustrating this thesis, we will introduce a few

definitions.

(I) A relation is said to be an aliorelative,l or to be contained

in or impty dirtersity, if no term has this relation to itself.

Thus, for exampl", tt greaterrt' tt difierent in sizert' tt brotherr"
t 'husbandrt' tt father tt are aliorelatives ; but " equalr" t '  born

of the same parentsr" tt dear friend " are not.

(z) The square of a relation is that relation which holds between

two terms r and z when there is an intermediate term y such

that the given relation holds between x and y and between

y and z. Thus 6( paternal grandfather " is the square of " fatherr"
(( greater by , tt is the square of tt greater by r," and so on.

$) The domain of a relation consists of all those terms that

have the relation to something or other, and the conaerse domain

consists of all those terms to which something or other has the

relation. These words have been already defined, but are

recalled here for the sake of the following definition :-

(4) The f,etd of a relation consists of its domain and converse

domain together.
I Th'is term is due to C. S. Peirce.
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(5) One relation is said to contain or be implied by another if

it holds whenever the other holds.

It will be seen that an asymmetrical rclation is the same thing

as a relation whose square is an aliorelative. It often happens

that a relation is an aliorelative without being asymmetrical,

though an asymmetrical relation is always an aliorelative. For

example, tt spouse tt is an aliorelative, but is symmetrical,

since if r is the spouse of !, ! is the spouse of #. But among

transitiae relations, all aliorelatives are asymmetrical as well

as oice oersa,
From the definitions it will be seen that a transitive relation

is one which is implied by its square, or, as we also say, " con-

tains " its square. Thus (s ancestor " is transitive, because

an ancestorts ancestor is an ancestor; but tt father t' is not

transitive, because a father's father is not a father. A transitive

aliorelative is one which contains its square and is contained

in diversity i orr what comes to the same thing, one whose

square implies both it and diversity-because, when a relation

is transitive, asymmetry is equivalent to being an aliorelative.

A relation is connected when, given any two different terms

of its field, the relation holds between the first and the second

or between the second and the first (not excluding the possibility

that both may happen, though both cannot happen if the relation

is asymmetrical).
It will be seen that the relation tt ancestorr" for example,

is an aliorelative and transitive, but not connected; it is because

it is not connected that it does not suffice to arrange the human

race in a series.
The relation tt less than or equal tor" among numbers, is

transitive and connected, but not asymmetrical or an aliorelative.

The relation t( greater or less " among numbers is an alio-

relative and is connected, but is not transitive, for if * is greater

or less than y, and y is greater or less than z, it may happen

that x and z are the same number.
Thus the three properties of being (t) an aliorelative, (z)
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transitive, and (3) connected, are mutually independent, since
a relation may have any two without having the third.

We now lay down the following definition :-
A relation is serial when it is an aliorelative, transitive, and

connected I or, what is equivalent, when it is asymmetrical,
transitive, and connected.

A series is the same thing as a serial relation.
It might have been thought that a series should be the field

of a serial relation, not the serial relation itself, But this would
be an error. For example,

I r 2 1 3 i  t r 3 1 2 i  2 1 3 r t i  2 r r r 3 i  3 r r r 2 i  3 1 2 r l

are six different series which all have the same field. If the
field were the series, there could only be one series with a given
field. What distinguishes the above six series is simply the
different ordering relations in the six cases. Given the ordering
relation, the field and the order are both determinate. Thus
the ordering relation may be taken to be the series, but the field
cannot be so taken.

Given any serial relation, say P, we shall say that, in respect
of this relation, * " precedes " y if. x has the relation P to y,
which we shall write " *Py " for short. The three characteristics
which P must have in order to be serial are:

(t) We must never have xPx, i.e. no term must precede
itself.

(z) P, must imply P, i.e. if * precedes y and y precedes z, # must
precede z.

6) If r and y are two difierent terms in the field of P, we shall
have rPy or lPli., i.e. one of the two must precede tlre
other.

The reader can easily convince himself that, where these three
properties are found in an ordering relation, the characteristics
we expect of series will also be found, and vice versa. We are
therefore justified in taking the above as a definition of order
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or series. And it will be observed that the definition is effected

in purely logical terms.
Although a transitive asymmetrical connected relation always

exists wherever there is a series, it is not always the relation

which would most naturally be regarded as generating the series.

The natural-number series may serve as an illustration. The
relation we assumed in considering the natural numbers was
the relation of immediate succession, d.e. the relation between

consecutive integers. This relation is asymmetrical, but not
transitive or connected. We can, however, derive from it,
by the method of mathematical induction, the 6s ancestral "
relation which we considered in the preceding chapter. This
relation will be the same as " less than or equal to t' among
inductive integers. For purposes of generating the series of
natural numbers, w€ want the relation t'less thanrtt excluding

" equal to.tt This is the relation of. m to a when m is an ancestor
of a but not identical with n, or (what comes to the same thing)
when the successor of m is an ancestor of. n in the sense in which
a number is its own ancestor. That is to say, we shall lay down
the following definition :-

An inductive number m is said to be less than another number
z when n possesses every hereditary property possessed by the
successor of. m.

It, is easy to see, and not difficult to prove, that the relation
t'less thanrt' so defined, is asymmetrical, transitive, and con-
nected, and has the inductive numbers for its field. Thus by

means of this relation the inductive numbers acquire an order
in the sense in which we defined the term tt orderr" and this order
is the so-called " natural t' order, or order of magnitude.

The generation of series by means of relations more or less

resembling that of z to n+r is very common. The series of the
Kings of England, for example, is generated by relations of each

to his successor. This is probably the easiest way, where it is

applicable, of conceiving the generation of a series. In this

method we pass on from each term to the next, as long as there
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is a next, or back to the one before, ae long as there is one before.
This method always requires the generalised form of mathe-
matical induction in order to enable us to define tt earlier " and
66 later t' in a series so generated. On the analogy of t'proper

fractionsr" let us give the name " proper posterity of x with respect
to R " to the class of those terms that belong to the R-posterity
of some term to which x has the relation R, in the sense which
we gave before to (( posterityr" which includes a term in its own
posterity. Reverting to the fundamental definitions, we find that
the (' proper posterity " ^^y be defined as follows .-

The t'proper posterity " of r with respect to R consists of
all terms that possess every R-hereditary property possessed by
every term to which r has the relation R.

It is to be observed that this definition has to be so framed
as to be applicable not only when there is only one term to which
x has the relation R, but also in cases (as e.g. that of father and
child) where there may be many terms to which x has the relation
R. We define further :

A term * is a " proper ancestor " of y with respect to R if y
belongs to the proper posterity of r with respect to R.

We shall speak for short of " R-posterity " and " R-ancestors "
when these terms seem more convenient.

Reverting now to the generation of series by the relation R
between consecutive terms, we see that, if this method is to be
possible, the relation " proper R-ancestor " must be an aliorela-
tive, transitive, and connected. Under what circumstances will
this occur I It will always be transitive : no matter what sort
of relation R may b", tt R-ancestor tt and tt proper R-ancestor "
are always both transitive. But it is only under certain circum-
stances that it will be an aliorelative or connected. Consider,
for example, the relation to one's left-hand neighbour at a round
dinner-table at which there are twelve people. If we call this
relation R, the proper R-posterity of a person consists of all who
can be reached by going round the table from right to left. This
includes everybody at the table, including the person himself, since
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twelve steps bring us back to our starting-point. Thus in such

a case, though the relation t'ProPer R-ancestor " is connected,

and though R itself is an aliorelative, we do not get a series

because tt proper R-ancestor tt is not an aliorelative. It is for

this reason that we cannot say that one Person comes before

another with respect to the relation " right of " or to its ancestral

derivative.
The above was an instance in which the ancestral relation was

connected but not contained in diversity. An instance where

it is contained in fiversity but not connected is derived from the

ordinary sense of the word t( ancestor." If r is a ProPer ancestor

of y, x and y cannot be the same person; but it is not true that

of any two persons one must be an ancestor of the other.

The question of the circumstances under which series can be

generated by ancestral relations derived from relations of con-

secutiveness is often important. Some of the most important

cases are the following: Let R be a many-one relation, and let

us confine our attention to the posterity of some term #. When

so confined, the relation tt proper R-ancestor tt must be connected;

therefore all that remains to ensure its being serial is that it shall

be contained in diversity. This is a generalisation of the instance

of the finner-table. Another generalisation consists in taking

R to be a one-one relation, and includiog the ancestry of r as

well as the posterity. Here again, the one condition required

to secure the generation of a series is that the relation " ProPer
R-ancestor " shall be contained in diversity.

The generation of order by means of relations of consecutive-

ness, though important in its own sphere, is less general than the

method which uses a transitive relation to define the order. It

often happens in a series that there are an infinite number of inter-

mediate terms between any two that may be selected, however

near together these may be. Take, for instance, fractions in order

of magnitude. Between any two fractions there are others-for

example, the arithmetic mean of the two. Consequently there is

no such thing as a pair of consecutive fractions. If we depended

37
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upon consecutiveness for defining order, we should not be able
to define the order of magnitude among fractions. But in fact
the relations of greater and less arnong fractions do not demand
generation from relations of consecutiveness, and the relations
of greater and less among fractions have the three characteristics
which we need for defining serial relations. In all such cases
the order must be defined by means of a transitioe relation, since
only such a relation is able to leap over an infinite number of
intermediate terms. The method of consecutiveness, like that
of counting for discovering the number of a collection, is appro-
priate to the finite ; it may even be extended to certain infinite
series, namely, those in which, though the total number of terms is
infinite, the number of terms between any two is always finite;
but it must not be regarded as general. Not only so, but care
must be taken to eradicate from the imagination all habits of
thought resulting from supposing it general. If this is not done,
series in which there are no consecutive terms will remain difficult
and puzzling. And such series are of vital importance for the
understanding of continuity, space, time, and motion.

There are many ways in which series may be generated, but
all depend upon the finding or construction of an asymmetrical
transitive connected relation. Some of these ways have con-
siderable importance. We may take as illustrative the genera-
tion of series by means of a three-term relation which we may
call " between." This method is very useful in geometry, and
may serve as an introduction to relations having more than two
terms ; it is best introduced in connection with elementary
geometry.

Given any three points on 4 straight line in ordinary space,
there must be one of them which is between the other two. This
will not be the case with the points on a circle or any other closed
curve, because, given any three points on a circle, we can travel
frgm any one to any other without passing through the third.
fn fact, the notion tt between tt is characteristic of open series-
or series in the strict sense-as opposed to what may be called
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tt cyclic t' series, where, as with people at the dinner-table, a

sufficient journey brings us back to our starting-point. This

notion of t'between " may be chosen as the fundamental notion

of ordinary geometty; but for the present we will only consider

its application to a single straight line and to the ordering of the

points on a straight line.l Taking any two points a, b, the line

(aD) consists of three parts (besides a and & themselves) :

(r) Points between a and b.
(z) Points r such that a is between x and b.
(3) Points y such that b is between y and a.

Thus the line (ob) can be defined in terms of the relation
t t  between.tt

In order that this relation 63 between " may arrange the points
of the line in an oider from left to right, we need certain assump-
tions, namely, the following:-

(r) If anything is between a and b, a and b are not identical.
(z) Anything between a and D is also between b and a.

ft) Anything between a and & is not identical with a (nor,

consequently, with brin virtue of (z)).
(+) If r is between A and b, anything between a and x is also

between a and b.

G) If * is betweerr a and b, and b is between r and y, then &

is between a and y.
(6) If x and y arc between a and D, then either r and y are

identical, or N is between a and lt or * is betrveen y and b.
(Z) If & is between a and * and also between a and y, then either

x and y arc identical, or tc is between b and lt or y is between

b and x.
These seven properties are obviouslyverifi.ed in the case of points

on a straight line in ordinary space. Aoy three-term relation

which verifies them gives rise to series, as may be seen from the

following definitions. For the sake of definiteness, let us assume

I Cl. Riadsta d,i Matematiaa, iv. pp. 55 ft'.; Pri'nciptres of Mathemat'ics, p.

3e4 ($ 375).
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that a is to the left of. b. Then the points of the line (ab) arc Q)
those between which and b, a lies-these we will call to the left
o f .a ;  ( r )o i t se l f  ;  (3 ) thosebe tween  aandb ;  (+ )b  i t se l f  ;  (5 )
those between which and a lies &-these we will call to the right
of. b. We may now define generally that of two points x, y, on
the line (ab), we shall say that ff is " to the left of " y in any
of the following cases '-

(r) When r and y arc both to the left of a, and y is between
x and a;

(z) When r is to the left of a, and y is a or D or between a and
D or to the right of. b ;

(3) When x is a, and y is between a and b or is D or is to the
right of. b ;

(4) When x and y arc both between a and b, and y is between
x  and  b ;

(5) When * is between a and b, and y is & or to the right ol b ;
(6) When x is b and y is to the right of. b;

f) When r and y arc both to the right of. b and r is between
b and y.

It will be found that, from the seven properties which we have
assigned to the relation 3'betweenr" it can be deduced that the
relation " to the left ofr" as above defined, is a serial relation as
we defined that term. It is important to notice that nothing
in the definitions or the argument depends upon our meaning
by " between tt the actual relation of that name which occurs in
empirical space : any three-term relation having the above seven
purely formal properties will serve the purpose of the argument
equally well.

Cyclic order, such as that of the points on a circle, cannot be
generated by means of three-term relations of tt between.t' We
need a relation of four terms, which may be called " separation
of couples." The point may be illustrated by considering a
journey round the world. One may go from England to New
Zealand by way of Suez or by way of San Francisco ; we cannot
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say definitely that either of these two places is " between "
England and New Zealand. But if a man chooses that route

to go round the world, whichever way round he goes, his times in

England and New Zealand are seParated from each other by his

times in Suez and San Francisco, and conversely. Generalising,

if we take any four points on a circle, we can separate them into

two couples, say a and b and r and 1lr such that, in order to get

from a to b one must pass through either # or !, and in order to

get from tc to y one must pass through either a or b. Under these

circumstances we say that the couple (o, b) are " seParated t' by

the couple (r, y). Out of this relation a cyclic order can be gen-

erated, in a way resembling that in which we generated an oPen

order from t'betweenr" but somewhat more complicated.l

The purpose of the latter half of this chapter has been to suggest

the subject which one may call " generation of serial relations."

When such relations have been defined, the generation of them

from other relations possessing only some of the ProPerties
required for series becomes very important, especially in the

philosophy of geometry and physics. But we cannot, within

the limits of the present volume, do more than make the reader

aware that such a subject exists.

t Cf. Pyinaiples of Mathematias, p. zo5 ($ r94), and references there given.



CHAPTER V

KINDS OF RELATIONS

A cnsar part of the philosophy of mathematics is concerned with
relations, and many difierent kinds of relations have difierenr
kinds of uses. It often happens that a property which belongs
to all relations is only important as regards relations of certain
sorts; in these cases the reader will not see the bearing of the
proposition asserting such a property unless he has in mind the
sorts of relations for which it is useful. For reasons of this
description, as well as from the intrinsic interest of the subject,
it is well to have in our minds a rough list of the more
mathematically serviceable varieties of relations.

we dealt in the preceding chapter with a supremely important
class, namely, serial relations. Each of the three properties which
we combined in defining series-namely, asymmetry, transitivencss,
and conncxity-has its own importance. We will begin by saying
something on each of these three.

Asymmetry, i.e. rhe property of being incompatible with the
converse, is a characteristic of the very greatest interest and
importance. In order to develop its functions, we will consid.er
various examples. The relation ltusband is asymmetrical, and
so is the relation wtfe ; i.e.if, a is husband of b, b cannot be husband
of a, and similarly in the case of wife. on the other hand, the
relation " spouse tt is symmetrical : if. a is spouse of. b, then 6 is
spouse of a. Suppose now we are given the relation spouse, and,
we wish to derive the relation husband. Husband is the same as
rnale spouse or spouse of afemale; thus the relation busband. can

4"
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be derived from spoase either by limiting the domain to males

or by limiting the converse to females. We see from this instance

that, when a symmetrical relation is given, it is sometimes possible,

without the help of any further relation, to seParate it into two

asymmetrical relations. But the cases where this is possible are

rare and exceptional : they are cases where there are two mutually

exclusive classes, say a and B, such that whenever the relation

holds between two terms, one of the terms is a member of a and

the other is a member of F-"t, in the case of spouse, one term

of the relation belongs to the class of males and one to the class

of females. In such a case, the relation with its domain confined

to o will be asymmetrical, and so will the relation with its domain

confined to B. But such cases are not of the sort that occur

when we are dealing with series of more than two terms; for in

a series, all terms, except the first and last (if these exist), belong

both to the domain and to the converse domain of the generating

relation, so that a relation like husband, where the domain and

converse domain do not overlap, is excluded.

The question how to clnstruct relations having some useful

property by means of operations uPon relations which only have

rudiments of the property is one of considerable importance.

Transitiveness and connexity are easily constructed in many cases

where the originally given relation doeg not possess them : for

example, if R is any relation whatever, the ancestral relation

derived from R by generalised induction is transitive; and if R

is a many-one relation, the ancestral relation will be connected

if confined to the posterity of a given term. But asymmetry is

a much more difficult property to secure by construction. The

method by which we derived husbandfrom spouse is, as we have

seen, nOt available in the most important cases, such as greater,

before, to the right of, wherc domain and converse domain overlap.

In all these cases, we can of course obtain a symmetrical relation

by adding together the given relation and its converse, but we

cannot pass back from this symmetrical relation to the original

asymmetrical relation excePt by the help of some asymmetrical
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relation. Take, for example, the relation greater: the relation

greatcr or less-,i,e. unequal-is symmetrical, but there is nothing

in this relation to show that it is the sum of two asymmetrical
relations. Take such a relation as " difiering in shape." This

is not the sum of an asymmetrical relation and its converse, since

shapes do not form a single series ; but there is nothing to show

that it difiers from " differing in magnitude " if we did not already

know that magnitudes have relations of greater and less. This

illustrates the fundamental character of asymmetry as a ProPerty
of relations.

From the point of view of the classification of relations, being

asymmetrical is a much more important characteristic than

implying diversity. fuy*metrical relations imply diversity,
but the converse is not the case. tt Lfnequalrtt for example,

implies fiversity, but is symmetrical. Broadly speaking, w€

may say that, if we wished as far as possible to dispense with

relational propositions and replace them by such as ascribed

predicates to subjects, we could succeed in this so long as we

confined ourselves to syrnn etrical relations : those that do not

imply diversity, if they are transitive, may be regarded as assert-

ing a common predicate, while those that do imply diversity

may be regarded as asserting incompatible predicates. For

example, consider the relation of similarity between classes,

by means of which we defined numbers. This relation is sym-

metrical and transitive and does not imply diversity. It would

be possible, though less simple than the procedure we adopted,

to regard the number of a collection as a predicate of the collec-

tion: then two similar classes will be two that have the same

numerical predicate, while two that are not similar will be two

that have difierent numerical predicates. Such a method of

replacing relations by predicates is formally possible (though

often very inconvenient) so long as the relations concerned are

symmetrical; but it is formally impossible when the relations

are asymmetrical, because both sameness and difference of predi-
cates are symmetrical. Asymmetrical relations arer we may
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say, the most characteristically relational of relations, and the
most important to the philosopher who wishes to study the
ultimate logical nature of relations.

Another class of relations that is of the greatest use is the
class of one-many relations, i.e, relations which at most one
term can have to a given term. Such are father, mother,
husband (except in Tibet), square of, sine of, and so on. But

parent, square root, and so on, are not one-many. It is possible,
formally, to replace all relations by one-many relations by means

of a device. Take (t^y) the relation less among the inductive
numbers. Given any number a greater than t, there will not
be only one number having the relation less to n, but we can

form the whole class of numbers that are less than z. This

is,one class, and its relation to a is not shared by any other class.

We may call the class of numbers that are less than n the " proper
ancestry " of n, in the sense in which we spoke of ancestry and

posterity in connection with mathematical induction. Then

" proper ancestry " is a one-many relation (one-many will always
be used so as to include one-one), since each number determines
a single class of numbers as constituting its proper ancestry.
Thus the relation less than can be replaced by being a member of
the proper ancestry of. In this way a one-many relation in which
the one is a class, together with membership of this class, can

always formally replace a relation which is not one-many. Peano,

who for some reason always instinctively conceives of a relation
as one-many, deals in this way with those that are naturally
not so. Reduction to one-many relations by this method,
however, though possible as a matter of form, does not represent
a technical simplification, and there is every reason to think
that it does not represent a philosophical analysis, if only because
classes m,ust be regarded as " logical fictions." We shall there-
fore continue to regard one-many relations as a special kind of
relations.

One-many relations are involved in all phrases of the form

" the so-and-so of such-and-such." " The King of England,"
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" the wife of Socratesr" t'the father of John Stuart Mill," and
so on, all describe some person by means of a one-many relation
to a given term. A person cannot have more than one father,
therefore " the father of John Stuart Mill " described some one
person, even if we did not know whom. There is much to
say on the subject of descriptions, but for the presenr it is
relations that we are concerned with, and descriptions are only
relevant as exemplifying the uses of one-many relations. It
should be observed that all mathematical functions result from
one-many relations : the logarithm of x, the cosine of r, etc.,
are, like the father of x, terms described by means of a one-many
relation (logarithm, cosine, etc.) to a given term (r). The
notion of. function need not be confined to numbers, or to the
uses to which mathematicians have accustomed us ; it can be
extended to all cases of one-many relations, and " the fathe r of x "
is just as legitimately a function of which r is the argument as
is " the logarithm of *." Functions in this sense are descriptiae
functions. As we shall see later, there are functions of a still
more general and more fundamental sort, namely, propositional
functions; but for the present we shall confine our attention
to descriptive functions, i.e. t' the term having the relation R
to trcr" or, for short, tt the R of frr" where R is any one-many
relation.

It will be observed that if " the R of r " is to describe a definite
term, # must be a term to which something has the relation R,
and there must not be more than one term having the relation
R to ,c, since tt thert' correctly used, must imply uniqueness.
Thus we may speak of " the father of x" if r is any human being
except Adam and Eve; but we cannot speak of t, the father
of. x " if x is a tabl e or a chair or anything else that does not
have a father. We shall say that the R of r " exists " when
there is just one term, and no more, having the relation R to #.
Thus if R is a one-many relation, the R of r exists whenever
,c belongs to the converse domain of R, and not otherwise.
Regarding " the R of r " as a function in the mathematical
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sense, we say that x is the tt argument tt of the function, and if

y is the term which has the relation R to x, i.e. if y is the R of x,

then y is the " value " of the function for the argument ff. If

R is a one-many relation, the range of possible arguments to

the function is the converse domain of R, and the range of values

is the domain. Thus the range of possible arguments to the
function "the father of *" is all who have fathers, i.t. the con-
verse domain of the relation fatber, while the range of possible

values for the function is all fathers, i,e. the domain of the relation.

Many of the most important notions in the logic of relations

are descriptive functions, for example i cont)erse, domain, con-

serse dornain, f.eld, Other examples will occur as we proceed.
Among one-many relations, one-one rclations are a specially

important class. We have already had occasion to speak of

one-one relations in connection with the definition of number,
but it is necess ary to be familiar with them, and not merely

to know their formal definition. Their formal definition may

be derived from that of one-many relations : they may be

defined as one-many relations which are also the converses of

one-many relations, i.e. as relations which are both one-many

and many-one. One-many relations may be defined as relations

such that, if r has the relation in question to y, there is no other

term r' which also has the relation to y. Or, again, they may

be defined as follows : Given two terms r and r', the terms to

which r has the given relation and those to which r' has it have

no member in common. Ot, again, they may be defined as

relations such that the relative product of one of them and

its converse implies identity, where the " relative product "
of two relations R and S is that relation which holds between

x and z when there is an intermediate term y, such that r has

the relation R to y and y has the relation S to z. Thus, for

example, if R is the relation of father to son, the relative product

of R and its converse will be the relation which holds between

r and a man z when there is a person y, such that r is the father

of y and y is the son of z. It is obvious that * and z must be
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the same person. If, on the other hand, we take the relation
of parent and child, which is not one-manb we can no longer
argue thatrif r is a parent of y and y is achild of z, x and zmust
be the same person, because one may be the father of y and the
other the mother. This illustrates that it is characteristic of
one-many relations when the relative product of a relation and
its converse implies identity. In the case of one-one relations
this happens, and also the relative product of the converse and
the relation implies identity. Given a relation R, it is convenient,
if r has the relation R to y, to think of y as being reached from
x by arL " R-step t' or an tt R-vector." In the same case * will
be reached from y by a " backward R-step." Thus we may
state the characteristic of one-many relations with which we
have been dealing by saying that an R-step followed by a back-
ward R-step must bring us back to our starting-point. With
other relations, this is by no means the case; for example, if
R is the relation of child to parent, the relative product of R and
its converse is the relation " self or brother or sisterr" and if R
is the relation of grandchild to grandparent, the relative product
of R and its converse is " self or brother or sister or first cousin."
It will be observed that the relative product of two relations
is not in general commutative, i.e. the relative product of R
and S is not in general the same relation as the relative product
of S and R, ^0.g. the relative product of parent and brother is
uncle, but the relative product of brother and parent is parent.

One-one relations give a correlation of two classes, term for
term, so that each term in either class has its correlate in the
other. Such correlations are simplest to grasp when the two
classes have no members in common, like the class of husbands
and the class of wives ; for in that case we know at once whether
a term is to be considered as one from which the correlating
relation R goes, or as one lo which it goes. It is convenient
to use the word referent for the term from which the relation
goes, and the term relatum for the term tu which it goes. Thus
if r and y arc husband and wife, then, with respect to the relation
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(t husban dr" * is referent and y relatum, but with respect to the
relatron " wifer" y is referent and r relatum. We say that a
relation and its converse have opposite tt senses " I thus the
tt sense " of a relation that goes from tc to y is the opposite of
that of the corresponding relation from y to tc. The fact that a
relation has a " sense " is fundamental, and is part of the reaso4
why order can be generated by suitable relations. It will be
observed that the class of all possible referents to a given relation
is its domain, and the class of all possible relata is its converse
domain.

But it very often happens that the domain and converse
domain of a one-one relation overlap. Take, for example,

the first ten integers (excluding o), and add r to each I thus
instead of the first ten integers we now have the integers

2, 3, 4, 5r 61 7r 8r g, ro, rr.

These are the same as those we had before, except that r has
been cut off at the beginning and r r has been joined on at the
end. There are still ten integers : they are correlated with
the previous ten by the relation of. n to nl r, which is a one-one
relation. Or, again, instead of adding r to each of our original
ten integers, we could have doubled each of them, thus obtaining

the integers
2, +r 61 8, ro, t2, t+, t6, t8, zo.

Here we still have five of our previous set of integers, namelR
22 12 6t 8, to. The correlating relation in this case is the relation
of a number to its double, which is again a one-one relation.
Or we might have replaced each number by its square, thus
obtaining the set

t,  *r 9, 16,25r 36, *9r 6+,8r, roo.

On this occasion only three of our original set are left, namely,

t, 1.r 9. Such processes of correlation may be varied endlessly.

The most interesting case of the above kind is the case where

our one-one relation has a converse domain which is part, but
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not the whole, of the domain. If, instead of confining the domain

to the first ten integers, we had considered the whole of the

inductive numbers, the above instances would have illustrated

this case. We may place the numbers concerned in two rows'

putting the correlate directly under the number whose correlate

it is. Thus when the correlator is the relation of n to n{r, we

have the two rows :

l r 2 1 3 r * r 5 r "  ' t t " '

2 r 3 1 4 r 5 1 6 r "  ' n { I  "

When the correlator is the relation of a number to its double,

we have the two rows:

l r 2 r 3 r 4 ,  5 t  '  '  ' n  '  ' ,

2 1 4 1 6 1 8 r r o r .  . 2 n , . .

When the correlator is the relation of a number to ita square,

the rows are:
l r  21 3,  4,  5,
l, 41 9, t6, 25,

In all these cases, all inductive numbers occur in the toP row,

and only some in the bottom row.

Cases of t{ris sort, where the converse domain is a " proper

part " of the domain (i.e. a part not the whole), will occuPy us

again when we come to deal with infinity. For the present, we

wish only to note that they exist and demand consideration.

Another class of correlations which are often important is

the class called (( permutationsrtt where the domain and converse

domain are identical. Consider, for example, the aix possible

arrangements of three letters :

n

n2

a, b, c

a r c r b

b r c r a

b r a r c

c r a r b

c r b r a



Kinds of Relations j r

Each of these can be obtained from any one of the others by
meanJ of. a correlation. Take, for example, the first and last,
(", b, c) and (c, b, a). Here a is correlated with c, b vmth itself,
and c with a. It is obvious that the combination of two permu-
tations is again a permutation, r'.a. the permutations of a given
class form what is called a t'group.tt

These various kinds of correlations have importance in various
connections, some for one purpose, some for another. The
general notion of one-one correlations has boundless importance
in the philosophy of mathematics, as we have partly seen alre ̂dy,
but shall see much more fully as we proceed, one of its uses
will occupy us in our next chapter.



CHAPTER VI

SIMILARITY OF RELATIONS

Wn saw in Chapter II. that two classes have the same number

of terms when they ate " similarrt' i.e, when there is a one-one

relation whose domain is the one class and whose converse

domain is the other. In such a case we say that there is a
(t one-one correlation tt between the two classes.

In the present chapter we have to define a relation between

relations, which will play the same part for them that similarity

of classes plays for classes. We will call this relation " similarity

of relationsr" or " likeness " when it seems desirable to use a

difierent word from that which we use for classes. How is

likeness to be defined I

We shall employ still the notion of correlation: we shall

assume that the domain of the one relation can be correlated

with the domain of the other, and the converse domain with the

converse domain; but that is not enough for the sort of resem-

blance which we desire to have between our two relations.

What we desire is that, whenever either relation holds between

two terms, the other relation shall hold between the correlates

of these two terms. The easiest example of the sort of thing

we desire is a maP. When one place is north of another, the

place on the map corresPonding to the one is above the place

on the map corresponding to the other; when one place is west

of another, the place on the maP corresPondi.s to the one is

to the left of the place on the maP corresPonding to the other I
and so on. The structure of the maP corresPonda with that of

52
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the country of which it is a map. The space-relations in the
map have " likeness " to the space-relations in the country
mapped. It is this kind of connection between relations that
we wish to define.

We *"y, in the first place, profitably introduce a certain
restriction. We will confine ourselves, in defining likeness, to
such relations as have tt fieldsr" i.e. to such as permit of the
formation of a single class out of the domain and the converse
domain. This is not always the case. Take, for example,
the relation " domainr" i.e. the relation which the domain of a
relation has to the relation. This relation has all classes for its
domain, since every class is the domain of some relation; and
it has all relations for its converse domain, since every relation
has a domain. But classes and relations cannot be added to-
gether to form a new single class, because they are of difierent
logical " types." We do not need to enter upon the difficult
doctrine of types, but it is well to know when we are abstaining
from entering upon it. We may say, without entering upon
the grounds for the assertion, that a relation only has a " field "
when it is what we call tt homogeneousr" f.e. when its domain
and converse domain are of the same logical type; and as a
rough-and-ready indication of what we mean by ^ " typ"r"
we may say that individuals, classes of individuals, relations
between individuals, relations between classes, relations of
classes to individuals, and so on, are different types. Now the
notion of likeness is not very useful as applied to relations that
are not homogeneous; we shall, therefore, in defining likeness,
simplify our problem by speaking of the " field " of one of the
relations concerned. This somewhat limits the generality of
our definition, but the limitation is not of any practical impor-
tance. And having been stated, it need no longer be remembered.
We may define two relations P and Q as " similarr" or as
having tt likenessr" when there is a one-one relation S whose
domain is the field of P and whose converse domain is the field
of Q. and which is such that, if one term has the relation P
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to another, the correlate of

correlate of the other, and
the one has the relation Q to the

oice versa. A figure will make this

clearer. Let x and Y be two

terms having the relation P.

Then there are to be two terms

^ t, u, such that r has the rela-
D 

tion S to z, y has the relation

S to w, and z has the relation

Q to w. If this happens with

every pair of terms such as r

and y, and if the converse happens with every pair of telms such

as z and w, it is clear that for every instance in which the relation

P holds there is a corresponding instance in which the relation

Q holds, and oice oersa; and this is what we desire to secure by

our definition. We can eliminate some red.undancies in the

above sketch of a definition, by observing that, when the above

conditions are realised, the relation P is the same as the relative

product of S and Q and the converse of S, i.e. the P-step from

,c to y may be replaced by the succession of the S-step from

r to z, the Qstep from t' to w, and the backward S-step from

w to y. Thus we may set up the following definitions:-

A relation S is said to be a tt correlator " or an tt ordinal

correlator " of two relations P and Q it S is one-one, has the

field of Q for its converse domain, and is such that P ig the

relative product of S and Q and the converse of S.

Two relations P and Q are said to be t'similarr" or to have
tt likenessr" when there is at least one correlator of P and Q.

These definitions will be found to yield what we above decided

to be necessary.
It will be found that, when two relations are similar, they

share all properties which do not depend uPon the actual terms

in their fields. For instance, if one implies diversity, so does
the other; if one is transitive, so is the other ; if one is con-

nected, so is the other. Hence if one is serial, so is the other.
Again, if one ie one-many or one-one, the other is one-many
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or one-one; and so on, through all the general properties of
relations. Even statements involving the actual terms of the
field of a relation, though they may not be true as they stand
when applied to a similar relation, will always be capable of
translation into statements that are analogous. We are led
by such considerations to a problem which has, in mathematical
philosophrr 2n importance by no means adequately recognised
hitherto. Our problem may be stated as follows .-

Given some statement in a language of which we know the
grammar and the syntax, but not the vocabulary, what are the
possible meanings of such a statement, and what are the mean-
ings of the unknown words that would make it true ?

The reason that this question is important is that it represents,
much more nearly than might be supposed, the state of our
knowledge of nature. We know that certain scientific pro-
positions-which, in the most advanced sciences, are expressed
in mathematical symbols-are more or less true of the world,
but we are very much at sea as to the interpretation to be put
upon the terms which occur in these propositions. We know
much more (to use, for a moment, an old-fashioned pair of
terms) about the iform of nature than about the matter.
Accordingly, what we really know when we enunciate a law
of nature is only that there is probably sotne interpretation of
our terms which will make the law approximately true. Thus
great importance attaches to the question : What are the
possible meanings of a law expressed in terms of which we do
not know the substantive meaning, but only the grammar and
syntax i And this question is the one suggested above.

For the present we will ignore the general question, which
will occupy us again at a later stage; t}re subject of likeness
itself must first be further investigated.

Owing to the fact that, when two relations are similar, their
properties are the same except when they depend upon the
fields being composed of just the terms of which they are com-
posed, it is desirable to have a nomenclature which collects
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together all the relations that are similar to a given relation.

Just as we called the set of those classes that are similar to a

lin.r, class the " number t' of that class, so we may call the set

of 
"U 

those relations that are similar to a given relation the
tt number " of that relation. But in order to avoid confusion with

the numbers appropriate to classes, we will speak, in this case, of

a " relation-number." Thus we have the following definitions:-

The " relation-number " of a given relation is the class of all

those relations that are similar to the given relation.
,, Relation-numbers t' are the set of all those classes of relations

that are relation-numbers of various relations I or, what comes to

the same thing, a relation number is a class of relations consisting

of all those relations that are similar to one member of the class.

When it is necessary to speak of the numbers of classes in

a way which makes it impossible to confuse them with relation-

numbers, we shall call them " cardinal numbers." Thus cardinal

numbers are the numbers appropriate to classes. These include

the ordinary integers of daily life, and also certain infinite

numbers, of which we shall speak later. When we speak of
tt numbers t' without qualification, we are to be understood as

meaning cardinal numbers. The definition of a cardinal number,

it will be remembered, is as follows:-

The " cardinal number " of a given class is the set of all

those classes that are similar to the given clSss'

The most obvious application of relation-numbers is to sedes'

Two series may be regarded as equally long when they have

the same relation-number. Two f'nite series will have the

same relation-number when their fields have the same cardinal

number of terms, and only then-i.a. a series of (say) I5 terms

will have the same relation-number as any other series of fifteen

terms, but will not have the same relation-number as a series

of I4 or 16 terms, nor, of courser the same relation-number

as a relation which is not serial. Thus, in the quite special case

of finite series, there is parallelism between cardinal and relation-

numbers. The relation-numbers applicable to $eries may be
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called tt serial numbers " (what are commonly called ,, ordinal
numbers t' are a sub-class of these) ; thus a finite serial number
is determinate when we know the cardinal number of terms
in the field of. a series having the serial number in question.
If z is a finite cardinal number, the relation-number of a series
which has n terms is called the '6 ordinal " number a. (There
are also infinite ordinal numbers, but of them we shall speak
in a later chapter.) When the cardinal number of terms in
the field of a series is infinite, the relation-number of the series
is not determined merely by the cardinal number, indeed an
infinite number of relation-numbers exist for one infinite cardinal
number, as we shall see when we come to consider infinite series.
when a series is infinite, what we may call its " lengthr,, i,e.
its relation-number, may vary without change in the cardinal
number; but when a series is finite, this cannot happen.

we can define addition and multiplication for relation-
numbers as well as for cardinal numbers, and a whole arithmetic
of relation-numbers can be developed. The manner in which
this is to be done is easily seen by considering the case of series.
suppose, for example, that we wish to define the sum of two
non-overlapping series in such a way that the relation-number
of the sum shall be capable of being defined as the sum of the
relation-numbers of the two series. In the first place, it is clear
that there is an order involved as between the two series : one
of them must be placed before the other. Thus if p and e
are the generating relations of the two series, in the series which
is their sum with P put before Q, every member of the field of
P will precede every member of the field of Q. Thus the serial
relation which is to be defined as the sum of p and e is not
" P or Q " simply, but " P or Q or the relation of any member
of the field of P to any member of the field of e.', Assuming
that P and Q do not overlap, this relation is serial, but ,, p or e "
is not serial, being not connected, since it does not hold between
a member of the field of P and a member of the field of e. Thus
the sum of P and Q, as above defined, is what we need in order
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to define the sum of two relation-numbers. Similar modifica-

tions are needed for products and powers. The resulting arith-

metic does not obey the commutative law: the sum or product

of two relation-numbers generally depends uPon the order in

which they are taken. But it obeys the associative law, one

form of the distributive law, and two of the formal laws for

powers, not only as applied to serial numbers, but as applied to

relation-numbers generally. Relation-arithmetic, in fact, though

recent, is a thoroughly respectable branch of mathematics.

It must not be supposed, merely because series afford the

most obvious application of the idea of likeness, that there are

no other applications that are important. We have already

mentioned maps, and we might extend our thoughts from this

illustration to geometry generally. If the system of relations

by which a geometry is applied to a certain set of terms can be

brought fully into relations of likeness with a system applying

to another set of terms, then the geometry of the two sets is

indistinguishable from the mathematical point of view, i'a' all

the propositions are the same, except for the fact that they are

applied in one case to one set of terms and in the other to another.

W" -"y illustrate this by the relations of the sort that may be

called " betweenr" which we considered in Chapter IV. We

there saw that, provided a three-term relation has certain formal

logical properties, it will give rise to eeries, and may be called

a tt between-relation.tt Given any two pointS, we can use the

between-relation to define the straight line determined by tJrose

two points I it consists of a and D together with all points r,

such that the between-relation holds between the three points

a, b, x in some order or othef. It has been shown by O. Veblen

that we may regard our whole sPace as the field of a three-term

between-relation, and define our geometry by the ProPerties we

assign to our between-relation.l Now likeness is just as easily

r Thie does not aPPly to elliptic sP:rce, but only to spaces in which

the straight line is an open series. Moilern Mathematics, edited by

J. W. A. Young, pp. 3-5r (monograph by o. veblen on " The Foundations of

Geonetry ").
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definable between three-term relations aE between two-term
relations. If B and B' are two between-relations, so that

" *B(y, z) " means " * is between y and z with respect to Br"
we shall call S a correlator of B and B' if it has the field of B'
for its converse domain, and is such that the relation B holds
between three terms when B' holds between their S-correlates,
and only then. And we shall say that B is like B'when there
is at least ooe correlator of B with B'. The reader can easily
convince himself that, if B is like B' in this sense, there can be
no difference between the geometry generated by B and that
generated by B'.

It follows from this that the mathematician need not concern
himself with the particular being or intrinsic nature of his points,
lines, and planes, even when he is speculating as an applied,
mathematician. We may say that there is empirical evidence
of the approximate truth of such parts of geometry as are not
matters of definition. But there is no empirical evidence as to
what a t'point " is to be. It has to be something that as nearly
as possible satisfies our axioms, but it does not have to be tt very
small " or " without parts.tt Whether or not it is those things
is a matter of indifference, so long as it satisfies the axioms. If
we can, out of empirical material, constmct a logical structure,
no matter how complicated, which will satisfy our geometrical
arioms, that structure may legitimately be called a " point."
We must not say that tlere is nothing else that could legitimately
be called a " point t' ; we must only say i 3'This object we have
constructed is sufficient for the geometer; it may be one of
many objects, any of which would be sufficient, but that is no
concern of ours, since this object is enough to vindicate the
empirical truth of geometry, in so far as geometry is not a
matter of definition." This is only an illustration of the general
principle that what matters in mathematics, and to a very great
ertent in physical science, is not the intrinsic nature of our
terms, but the logical nature of their interrelations.

We may aay, of two similar relations, that they have the rame
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t'structure." For mathematical purposes (though not for those

of pure philosophy) the only thing of importance about a relation

is the cases in which it holds, not its intrinsic nature. Just as a

class may be defined by various different but co-extensive concepte

-e.g,,, mant, and .. featherless bipedrt'-ro two relations which

are conceptually difierent may hold in the same set of instances.

An " instance " in which a relation holds is to be conceived as a

couple of terms, with an order, so that one of the terms comes

first and the other second; the couple is to b., of course,

such that its first term has the relation in question to its second.

Take (r"y) the relation t' father " : we can define what we may

call the " extension " of this relation as the class of all ordered

couples (*, y) which are such that * is the father of y. From

the mathematical point of view, the only thing of importance

about the relation " father " is that it defines this set of ordered

couples. Speaking generally' we say:

The tt extension " of a relation is the class of those ordered

couples (*, y) which are such that * has the relation in question

to y.
We can now go a step further in the Process of abstraction,

and consider what we mean by tt structure.tt Given any relation,

we can, if it is a sufficiently simple one, construct a maP of it.

For the sake of definiteness, let us take a relation of which the

extension is the following couples i 4b, ac, ad, bc, ce, dc, de, where

a, b, c, d, e are five termsr no matter what' We may make a

. - ! "ff';"::'*:':HITJJJ:f:T il::,H::
| \- | "t 

in the accomPanying figure. What is

| \- | ,.rr."led by the map is what we call the
'l' \'t tt structure" of the relation.
; \ 

-7 
' It is clear that the " structure " of the

\ {
; 

telation does not depend upon the particular

terms that make uP the field of the relation.

The field may be changed without changing the structure, and

the structule may be changed without changing the field-for
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example, if we were to add the couple ae in the above illustration
we should alter the structure but not the field. Two relations
have the same (( structurertt we shall say, when the same map
will do for both-or, what comes to the same thing, when either
can be a map for the other (since every relation can be its own
map). And that, as a moment's reflection shows, is the very
same thing as what we have called " likeness.tt That is to sayr
two relations have the same structure when they have likeness,
i.a. when they have the same relation-number. Thus what we
defined as the ('relation-number t' is the very same thing as is
obscurely intended by the word 66 structuls"-a word which,
important as it is, is never (so far as we ktrow) defined in precise
terms by those who use it.

There has been a great deal of speculation in traditional
philosophy which might have been avoided if the importance of
structure, and the fifficulty of getting behind it, had been realised,.
For example, it is often said that space and time are subjective,
but they have objective counterparts; or that phenomena are
subjective, but are caused by things in themselves, which must
have differences inter Je corresponding with the difierences in
the phenomena to which they give rise. Where such hypotheses
are made, it is generally supposed that we can know very little
about the objective counterparts. In actual fact, however, if
the hypotheses as stated were correct, the objective counterparts
would form a world having the same structure as the phenomenal
world, and allowing us to infer from phenomena the truth of all
propositions t}at can be stated in abstract terms and are known
to be true of phenomena. If the phenomenal world has three
dimensions, so must the world behind phenomena I if the pheno-
menal world is Euclidean, so must the other be; and so on.
In short, every proposition having a communicable significance
must be true of both worlds or of neither: the only difierence
must lie in just that essence of individuality which always eludes
words and baffies description, but which, for that very reason,
is irrelevant to science. Now the only purpose that philosophers
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have in view in condemning phenomena is in order to persuade

themselves and others that the real world is very difierent from

the world of appearance. we can all sympathise with their wish

to prove such a very desirable proposition, but we cannot con-

gr"iolate them on their success. It is true that many of them

do not asselt objective counterparts to phenomena, and tlese

escape from the above argument. Those who do assert counter-

parts are, as a rule, very reticent on the subject, probably because

they feel instinctively that, if pursued, it will bring about too

much of. a rapprocltemenl between the real and the phenomenal

world. If they were to pursue the topic, they could hardly avoid

the conclusions which we have been suggesting. In such ways,

as well as in many others, the notion of structure or relation-

number ic important.



CHAPTER VII

RATIONAL, REAL, AND COMPLEX XUMBERS

wn have now seen how to define cardinal numbers, and also
relation-numbers, of which what are commonly called ordinal
numbers are a particular species. It wilt be found that each
of these kinds of number may be infinite just as well as finite.
But neither is capable, as it stands, of the more familiar exten-
sions of the idea of number, namely, the extensione to negative,
fractional, irrational, and complex numbers. rn dre present
chapter we shall briefly supply logical definitions of these various
extensions.

one of the mistakes that have delayed the discovery of correct
definitions in this region is the common idea that each extension
of number included the previous sorts as special cases. It was
thought that, in dealing with positive and negative integers, the
positive integers might be identified with the original signless
integers. Again it was thought that a fraction whose denominator
is r may be identified with the natural number which is its
numerator. And the irrational numbers, euch as the square
root of 2, were supposed to find their place among rational frac-
tions, as being greater than some of them and less than the others,
so that rational and irrational numbers could be taken together
as one class, called " real numbers.,, And when the idea of
number was further extended so as to include tt complex',
numbers, i.c, numbers involving the square root of - r, it was
thought that real numbers could be regarded as those among
complex numberg in which the imaginaq/ part (i.t. the part

63
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which was a multiple of the square root of - r) was zero. All

these suppositions were erroneous, and must be discarded, as we

shall find, if correct definitions are to be given'

Let us begin with positivc and negative integers. It is obvious

on a moment's consideration that f r and - I must both be

relations, and in fact must be each other's converses' The

obvious and sufficient definition is that * r is the relation of

rr+r to fr, and -r is the relation of n to n+\. Generally, if m

is any inductive number, *m wtll be the relation of. n{nt' to n

(for any n), and -m will be the relation of n to n+rn. Accord-

it g to this definition, *m is a relation which is one-one so

long as n is a cardinal number (finite or infinite) and m is an

inductive cardinal number. But lm is under no circumstances

capable of being identified with za, which is not a relation, but

a class of classes. Indeed, *m is every bit as distinct ftom m

as -tL is.
Fractions are more interesting than positive or negative integers'

We need fractions for many PurPoses, but perhaps most obviously

for purposes of measurement' My friend and collaborator Dr

A. N. Whitehead has developed a theory of fractions specially

adapted for their application to measurement, which is set forth

in. Frinripia Mathciatica.L But if all that is needed is to define

objects having the required purely mathematical properties, this

porpor" ."o L" achieved by 
" 

simpler method, which we shall

ir"r. adopr. We shall define the fraction nln as being that

relation *tti.tt holds between two inductive numbers r, y when

ccn:yfl;. This definition enables us to Prove that rnfn is a one-

one relation, provided neither m or n is zeto. And of' course nf m

is the converse relation to nt'ln.

From the above definition it is clear that the fraction nlr is

that relation between two integers # and y which consists in the

fact that x:m!. This relation, like the relation *m, is by no

means capable of being identified with the inductive cardinal

number i, b"r^ose a relation and a class of classes are objects

r Vol. iii. * 3oo ff., especia[y 3o3.
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of utterly different kinds.l It will be seen that ofn is always the
same relation, whatever inductive number nmay be; it is, in short,
the relation of o to any other inductive cardinal. We may call
this the zero of rational numbers ; it is not, of course, identical
with the cardinal number o. Conversely, the relation mfo is
always the same, whatever inductive numb er rn may be. There
is not any inductive cardinal to correspond to mf o, We may call
it " the infinity of rationals." It is an instance of the sort of
infinite that is traditional in mathematics, and that is represented
by " *." This is a totally different sort from the true Cantorian
infinite, which we shall consider in our next chapter. The in-
finity of rationals does not demand, for its definition or use, any
infinite classes or infinite integers. It is not, in actual fact, a
very important notion, and we could dispense with it altogether
if there were any object in doing so. The Cantorian infinite, on
the other hand, is of the greatest and most fundamental impor-
tance ; the understanding of it opens the way to whole new realms
of mathematics and philosophy.

It will be observed that zero and infinity, alone among ratios,
are not one-one. Zerc is one-many, and infinity is many-one.

There is not any difficulty in defining greater and less among
ratios (or fractions). Given two ratios mfn and pf q, we shall say
that mfn is less than plq if zeg is less than pn. There is no
difficulty in proving that the relation " less than," so defined, is
serial, so that the ratios form a series in order of magnitude. In
this series, zero is the smallest term and infinity is the largest.
If we omit zero and infinity from our series, there is no longer
any smallest or largest ratio ; it is obvious that if mf n is any mtio
other than zero and infinity, mf zn is smaller and zmf n is larger,
though neither is zero or infinit/, so that mf nis neither the smallest

I Of course in practice we shall continue to speak of a fraction as (say)
greater or less than r, meaning greater or less than the ratio r/r. So
long as it is understood that the ratio r/r and the cardinal number r are
different, it is not necessary to be always pedantic in emphasising the
difference.
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nor the largest ratio, and therefore (when zero and infinity are

omitted) there is no smallest or largest, since mfn was chosen

arbitrarily. In like manner we can prove that however nearly

equal two fractions may be, there are always other fractions

between them. For, let mfn and plq b, two fractions, of which

plq i" the greater. Then it is easy to see (or to prove) that

@*il1(n*{) will be greater than mfn and less than p/9. Thus

the series of ratios is one in which no two terms are consecutive,

but there are always other terms between any two. Since there

are other terms between these others, and so on ad inf'nitum, it

is obvious that there are an infinite number of ratios between

any two, however nearly equal these two may be.r A series

having the property that there are always other terms between

any two, so that no two are consecutive, is called tt compact."

Thus the ratios in order of magnitude form a " compact" series.

Such series have many important properties, and it is important

to observe that ratios afford an instance of a comPact series

generated purely logically, without any appeal to space or time

or any other empirical datum.
Positive and negative ratios can be defined in a way analogous

to that in which we defined positive and negative integers.
Having first defined the sum of two ratios mln and plq as

(mq*pn)fng, we define +plq as the relation of. mfnlplq to *ln,

where rnfn is any ratio; and -plq is of course the converse of

*plq. This is not the only possible way of defining positive and
negative ratios, but it is a way which, for our purpose, has the
merit of being an obvious adaptation of the way we adopted in
the case of integers.

We come now to a more interesting extension of the idea of
number, i,e. the extension to what are called tt real tt numbers,
which are the kind that embrace irrationals. In Chapter I. we
had occasion to mention t'incommensurables " and their dis-

r Sirictly speaking, this statement, as well as those following to the end
of the paragraph, involves what is called the " axiom of infinity," whicb

will be discussed in a later chapter.
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covery by Pythagoras. It was through them, i.e. through
geometry, that irrational numbers were first thought of. A
square of which the side is one inch long will have a diagonal of
which the length is the square root of. z inches. But, as the
ancients discovered, there is no fraction of which the square is z.
This proposition is proved in the tenth book of Euclid, which is
one of those books that schoolboys supposed to be fortunately lost
in the days when Euclid was still used as a text-book. The proof
is extraordinarily simple. If possible, let mfn be the square root
of i,, so that mzfn,-z, i.e. m2-2n2. Thus mz is an even number,
and therefore rn m:ust be an even number, because the square of
an odd number is odd. Now if. rn is even, m2 must divide by +,
for if m.:2?t then rn2:4?2. Thus we shall have *?2:2n2, where
p is half of. m. Hence 2p2:n2, and therefore nlp will also be the
square root of z. But then we can repeat the argument : if
n:2{t plg will also be the square root oI z, and so on, through
an unending series of numbers that are each half of its predecessor.
But this is impossible; if we divide a numbet by z, and then
halve the half, and so on, we must reach an odd number after a
finite number of steps. Or we may put the argument even more
simply by assuming that the mfn we start with is in its lowest
terms ; in that case, m and n cannot both be even; yet we have
seen that, if. mzfnz:zt they must be. Thus there cannot be any
fraction nt.fn whose square is z.

Thus no fraction will express exactly the length of the diagonal
of a square whose side is one inch long. This seems like a
challenge thrown out by nature to arithmetic. However the
arithmetician may boast (as Pythagoras did) about the power
of numbers, nature seems able to baffie him by exhibiting lengths
which no numbers can estimate in terms of the unit. But the
problem did not remain in this geometrical form. As soon as
algebra was invented, the same problem arose as regards the
solution of equations, though here it took on a wider form,
since it also involved complex numbers.

It is clear that fractions can be found which approach nearer
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and nearer to having their square equal to z. We can form an
ascending series of fractions all of which have their squares
less than z, but difiering from z in their later members by
less than any assigned amount. That is to say, suppose I assign
some small amount in advance, say one-billionth, it will be
found that all the terms of our series after a certain one, say the
tenth, have squares that differ from z by less than this amount.
And if I had assigned a still smaller amount, it might have been
necessary to go further along the series, but we should have
reached sooner or later a term in the series, say the twentieth,
after which all terms would have had squares differing from z
by less than this still smaller amount. If we set to work to

extract the square root of. z by the usual arithmetical ruler w€

shall obtain an unending decimal which, taken to so-and-so

many places, exactly fulfils the above conditions. We can
equally well form a descending series of fractions whose squares

are all greater than z, but greater by continually smaller amounts

as we come to later terms of the series, and difiering, sooner or

later, by less than any assigned amount. In this way we seem

to be drawing a cordon round the squaie root of. z, and it may
seem difficult to believe that it can permanently escaPe us.

Nevertheless, it is not by this method that we shall actually

reach the square root of, z.
If we divide all ratios into two classes, according as their

squares are less than 2 or not, we find that, among those whose

squares are not less than z, all have their squares greater than z.

There is no maximum to the ratios whose square is less than z,

and no minimum to those whose square is greater than z, There

is no lower limit short of zero to the difference between the

numbers whose square is a little less than z and the numbers

whose square is a little greater than z, We can, in short, divide

all ratios into two classes such that all the terms in one class

are less than all in the other, there is no maximum to the one

class, and there is no minimum to the other. Between these

two classes, wher 
" 

{ z ought to be, there is nothing. -fhus our
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cordon, though we have drawn it as tight as possible, has been
drawn in the wrong place, and has not caught \/;.

The above method of dividing all the terms of a series into
two classes, of which the one wholly precedes the other, was
brought into prominence by Dedekindrl and is therefore called
a " Dedekind cut." With respect to what happens at the point
of section, there are four possibilities : (t) there may be a
maximum to the lower section and a minimum to the upper
section, (z) there may be a maximum to the one and no minimum
to the other, (3) there may be no maximum to the one, but a
minimum to the other, (4) there may be neither a maximum to
the one nor a minimum to the other. Of these four cases, the
first is illustrated by any series in which there are consecutive
terms : in the series of integerrs, for instance, a lower section
must end with some number a and the upper section must
then begin with n+r. The second case will be illustrated
in the series of ratios if we take as our lower section all ratios
up to and including t, and in our upper section all ratios greater
than r. The third case is illustrated if we take for our lower
section all ratios less than t, and for our upper section all ratios
from r upward (including r itselfl. The fourth case, as we have
seen, is illustrated if we put in our lower section all ratios whose
square is less than z, and in our upper section all ratios whose
square is greater than z.

We may neglect the first of our four cases, since it only arises
in series where there are consecutive terms. In the second of
our four cases, we say that the maximum of the lower section
is the louter limit of the upper section, or of any set of terms
chosen out of the upper section in such a way that no term of
the upper section is before all of them. In the third of our
four cases, we say that the minimum of the upper section is the
upper limit of the lower section, or of any set of terms chosen
out of the lower section in such a way that no term of the lower
section is after all of them. In the fourth case, we say that

I Stetigheit unil, irrationale Zahlen, znd edition, Brunswick, 1892.
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there is a " gap t' : neither the upper section nor the lower has

a limit or a last term. In this case, we may also say that we

have an " irrational sectionrt' since sections of the series of ratios

have " g"ps " when they corresPond to irrationals.

What delayed the true theory of irrationals was a mistaken

belief that there must be " limits " of series of ratios. The

notion of " limit " is of the utmost importance, and before

proceeding further it will be well to define it.

A term r is said to be an " upper limit t' of a class o with

respect to a relation P if (r) a has no maximum in P, (z) every

member of a which belongs to the field of P precedes #' (3) every

member of the field of P which precedes r precedes some member

of o. (By tt precedes " we mean " has the relation P to'")

This presupposes the following definition of a " maximum " '-

A term r is said to be a tt maximum t' of a class o with respect

to a relation P if r is a member of o and of the field of P and does

not have the relation P to any other member of o.

These definitions do not demand that the terms to which

they are applied should be quantitative. For example, given

a series of moments of time arranged by earlier and later, their

" maximum " (if any) will be the last of the moments ; but if

they are arranged by later and earlier, their " maximum t' (if

any) will be the first of the moments.

The " minimum " of a class with respect to P is its maximum

with respect to the converse of P ; and the t'lower limit " with

respect to P is the upper limit with respect to the converse of P.

The notions of limit and maximum do not essentially demand

that the relation in respect to which they are defined should

be serial, but they have few important applications except to

cases when the relation is serial or quasi-serial. A notion which

is often important is the notion " upper limit or maximuor"

to which we may give the name " upper boundary." Thus the
tt upper boundary " of a set of terms chosen out of a series is

their last member if they have one, but, if not, it is the first

term after all of them, if there is such a term. If there is neither
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a maximum nor a limit, there is no upper boundary. The

" lower boundary " is the lower limit or minimum.

Reverting to the four kinds of Dedekind section, we see that

in the case of the first three kinds each section has a boundary

(upper or lower as the case may be), while in the fourth kind
neither has a boundary. It is also clear that, whenever the

lower section has an upper boundary, the upper section has

a lower boundary. In the second and third cases, the two
boundaries are identical; in the first, they are consecutive
terms of the series.

A series is called " Dedekindian " when every section has a
boundary, upper or lower as the case may be.

We have seen that the series of ratios in order of magnitude

is not Dedekindian.
From the habit of being influenced by spatial imagination,

people have supposed that series must have limits in cases where

it seems odd if they do not. Thus, perceiving that there was

no rational limit to the ratios whose square is less than z, they

allowed themselves to " postulate " an irrational limit, which

was to fill the Dedekind gr'c. Dedekind, in the above-mentioned

work, set up the axiom that the gap must always be filled, i.a.

that every section must have a boundary. It is for this reason

that series where his axiom is verified are called " Dedekindian."

But there are an infinite number of series for which it is not

verified.
The method of " postulating "'what we want has many advan-

tages; they are the same as the advantages of theft over honest

toil. Let us leave them to others and proceed with our honest toil.

It is clear that an irrational Dedekind cut in some way'o rePre-

sents " aD. irrational. In order to make use of this, which to

begin with is no more than a vague feeling, we must find some

way of. eliciting from it a precise definition ; and in srder to do

this, we must disabuse our minds of the notion that an irrational

must be the limit oL a set of ratios. Just as ratios whose de-

nominator is r are not identical with integers, so th,,se rational
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numbers which can be greater or less than irrationa.ls, or can
have irrationals as their limits, must not be identified with ratios.
We have to define a new kind of numbers called " real numbersr"
of which some will be rational and some irrational. Those that
are rational " correspond " to ratios, in the same kind of way
in which the ratio nf t corcesponds to the integer z ; but they are
not the same as ratios. In order to decide what they are to be,
let us observe that an irrational is represented by an irrational
cut, and a cut is represented by its lower section. Let us confine
ourselves to cuts in which the lower section has no maximum;
in this case we will call the lower section a " segment." Then
those segments that correspond to ratios are those that consist
of all ratios less than the ratio they correspond to, which is
their boundary; while those tJrat represent irrationals are those
that have no boundary. Segments, both those that have
boundaries and those that do not, are such that, of any two
pertaining to one series, one must be part of the other I hence
they can all be arranged in a series by the relation of whole and
part. A series in which there are Dedekind Baps, i.e. in which
there are segments that have no boundary, will give rise to more
segments than it has terms, since each term will define a segment
having that term for boundary, and then the segments without
boundaries will be extra.

We are now in a position to define a real number and an
irrational number.

A tt real number tt is a segment of the series of ratios in order
of magnitude.

An tt irrational number t' is a segment of the series of ratios
which has no boundary.

A " rational real number tt is a segment of the series of ratios
which has a boundary.

Thus a rational real number consists of all ratios less than a
certain ratio, and it is the rational real number corresponding
to that ratio. The real number l, for instance, is the class of
proper fractions.
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In the cases in which we naturally supposed that an irrational

must be the limit of a set of ratios, the truth is that it is the limit

of the corresponding set of rational real numbers in the series

of segments ordered by whole and part. For example, t/i it

the upper limit of all those segments of the series of ratios that
correspond to ratios whose square is less than z. More simply

still, \/; is the segment consisting of all those ratios whose square

is less than z.
It is easy to prove that the eeries of segments of any series

is Dedekinfian. For, given any set of segments, their boundary

will be their logical sum, a.a. the class of all those terms that
belong to at least one segment of the set.l

The above definition of real numbers is an example of " con-

struction " as against t( postulationr" of which we had another
example in the definition of cardinal numbers. The great

advantage of this method is that it requires no new assumptions,
but enables us to proceed deductively from the original apparatus
of logic.

There is no difficulty in defining addition and multiplication
for real numbers as above defined. Given two real numbers

p, and v, each being a class of ratios, take any member of p and
any member of y and add them together according to the rule

for the addition of ratios. Form the class of all such sums
obtainable by varying the selected members of p, and v. This
gives a new class of ratios, and it is easy to prove that this new
class is a segment of the series of ratios. We define it as the

sum of p, and v. We may state the definition more shortly as

follows :-
The aritbmetical sum of tuto real numbers is the class of the

arithmetical sums of a member of the one and a member of the

other chosen in all possible ways.

1 For a fuiier treatment of the subject of segments and Dedekindian
relations, see Princi,pia Mathemati,aa, vol. ii. x 2ro-2r4. For a fuller
treatment of real numbers, see ibid., vol. iii. * 3ro ff., and Principles of
Mathematics, chaps. xxxiii. and xxxiv.
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We can define the arithmetical product of two real numbers
in exactly the same way, by multiplying a member of the one by
a member of the other in all possible ways. The class of ratios
thus generated is defined as the product of the two real numbers.
(In all such definitions, the series of ratios is to be defined as
excluding o and infinity.)

There is no difficulty in extending our definitions to positive
and negative real numbers and their addition and multiplication.

ft remains to give the definition of complex numbers.
Complex numbers, though capable of a geometrical interpreta-

tion, are not demanded by geometry in the same imperative way
in which irrationals are demanded. A tt complex " number means

a number involving the square root of a negative number, whether
integral, fractional, or real, Since the square of a negative
number is positive, a number whose square is to be negative has

to be a new sort of number. Using the letter r for the square
root of -r, any number involving the square root of a negative
number can be expressed in the form x*!i, where r and y arc
real. The part ye is called the " imaginary " part of this number,
r being the " real " part. (The reason for the phrase ('real

numberg " is that they are contrasted with such as are " ima-
ginary.") Complex numbers have been for a long time habitually

used by mathematicians, in spite of the absence of any precise
definition. It has been simply assumed that they would obey
the usual arithmetical rules, and on this assumption their employ-

ment has been found profitable. They are required less for
geometry than for algebra and analysis. We desire, for example,

to be able to say that every quadratic equation has two roots,

and every cubic equation has three, and so on. But if we are

confined to real numbers, such an equation as 12* r -o has no

roots, and such an equation as f-t:o has only one. Every

generalisation of number has first presented itself as needed for

some simple problem: negative numbers were needed in order

that subtraction might be always possible, since otherwise a-b

would be meaningless if a were less than b ; ftaction$ were needed
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in order that division might be always possible; and complex

numbers are needed in order that extraction of roots and solu-

tion of equations may be always possible. But extensions of

number are not created by the mere need for them : they are

created by the definition, and it is to the definition of complex

numbers that we must now turn our attention.

A complex number may be regarded and defined as simply an

ordered couple of real numbers. Here, as elsewherer many

definitions are possible. All that is necessary is that the defini-

tions adopted shall lead to certain properties. In the case of

complex numbers, if they are defined as ordered couples of real

numbers, we secure at once some of the ProPerties required,

namely, that two real numbers are required to determine a com-

plex number, and that among these we can distinguish a first

and a second, and that two complex numbers are only identical

when the first real number involved in the one is equal to the

first involved in the other, and the second to the second. What

is needed further can be secured by defining the rules of addition

and multiplication. We are to have

(x * yi) * (x' * y' i) : (tc I x') * 0 * y')i
(xtyi)(x' +y'i) -(xx' -!y')+(xy' *x'y)i.

Thus we shall define that, given two ordered couples of real

numbers, (*, y) and (x', y'), their sum is to be the couple (rf *',

y*!'), and their product is to be the couple (**'-yy', xy'{x'y).

By these definitions we shall secure that our ordered couples

shall have the properties we desire. For example, take the

product of the two couples (o, y) and (o, y'). This will' by the

above rule, be the couple (-yy', o). Thus the square of the

couple (o, r) will be the coupl. (- r, o). Now those couples in

which the second term is o are those which, according to the usual

nomenclature, have their imaginary part zero; in the notation

x*!i, they are x{oi, which it is natural to write simply r. Just
as it is natural (but erroneous) to identify ratios whose de-

nominator is unity with integers, so it is natural (but erroneous)
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to identify complex numbers whose imaginary part is zero with
real numbers. Although this is an error in theory, it is a con-
venience in practice; " x{oi" *^y be replaced simply by (' ,c"
and tt o*ti" by " yir" provided we remember that the " * t' is
not really a real number, but a special case of a complex number.
And when y is r, " yi" may of course be replaced by c( i." Thus
the couple (o, r) is represented by i, and the couple (- r, o) is
represented by -r. Now our rules of multiplication make the
square of (o, r) equal to (-r, o), i.e.the square of iis -r. This
is what we desired to secure. Thus our definitions serve all
necessary PurPoses.

It is easy to give a geometrical interpretation of complex
numbers in the geometry of the plane. This subject was agree-
ably expounded by W. K. Clifford in his Common Sense of tbe
Exact Sciences, a book of great merit, but written before the
importance of purely logical definitions had been realised.

Complex numbers of a higher order, though much less useful
and important than those what we have been defining, have
certain uses that are not without importance in geometry, as
may be seen, for example, in Dr Whitehead's Universal Algebra.
The definition of complex numbers of order a is obtained by an
obvious extension of the definition we have given. We define a
complex number of order n as a one-many relation whose domain
consists of certain real numbers and whose converse domain
consists of the integers from t to n.t This is what would ordi-
narily be indicated by the notation (*r, fr22 fis' . . . *n), where the
suffixes denote correlation with the integers used as suffixes, and
the correlation is one-m a\!t not necessarily one-one, because r,
and x, may be equal when r and .r are not equal. The above
definition, with a suitable rule of multiplication, will serve all
purposes for which complex numbers of higher orders are needed.

We have now completed our review of those extensions of
number which do not involve infinity. The application of number
to infinite collections must be our next topic.

t Ct. Principles of Mathematics, g 36o, p. 3Zg.



CHAPTBR VIII

INFINITE CARDINAL NUMBERS

THr definition of cardinal numbers which we gave in Chapter II.
was applied in Chapter III. to finite numbers, i.e. to the ordinary
natural numbers. To these we gave the name tt inductive
numbersr" because we found that they are to be defined as
numbers which obey mathematical induction starting from o.
But we have not yet considered collections which do not have an
inductive number of terms, nor have we inquired whether such
collections can be said to have a number at all. This is an
ancient problem, which has been solved in our own day, chiefly
by Georg Cantor. In the present chapter we shall attempt to
explain the theory of transfinite or infinite cardinal numbers as
it results from a combination of his discoveries with those of
Frege on the logical theory of numbers.

ft cannot be said to be certain that there are in fact any infinite
collections in the world. The assumption that there are is what
we call the " axiom of infinity." Although various ways suggest
themselves by which we might hope to prove this axiom, there
is reason to fear that they are all fallacious, and that there is no
conclusive logical reason for believing it to be true. At the same
time, there is certainly no logical reason against infinite collections,
and we are therefore justified, in logic, in investigating the hypo-
thesis that there are such collections. The practical form of this
hypothesis, for our present purposes, is the assumption that, if
n is any inductive number, z is not equal to n+r. Various
subtleties arise in identifying this form of our assumption with

77
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the form that asserts the existence of infinite collections ; but

we will leave these out of account until, in a later chapterr we

come to consider the axiom of infinity on its own account. For

the present we shall merely assume that, if n is an inductive

number, a is not equal to n{t. This is involved in Peano's

assumption that no two inductive numbers have the same suc-

cessor 1 for, if. n-n*r, then n-r and n have the same successor,

r,ramely n. Thus we are assuming nothing that was not involved

in Peano's primitive propositions.
Let us now consider the collection of the inductive numbers

themselves. This is a perfectly well-defined class. In the first

place, a cardinal number is a set of classes which are all similar

to each other and are not similar to anything except each other.

We then define as the tt inductive numbers " those among

cardinals which belong to the Posterity of o with resPect to the

relation of. n to n*t, i,e. those which Possess every ProPerty
possessed by o and by the successors of possessors, meaning by

the tt successor " of n the number n+r. Thus the class of

" inductive numbers " is perfectly definite. By our general

definition of cardinal numbers, the number of terms in the class

of inductive numbers is to be defined as (6 all those classes that

are similar to the class of inductive numbers "-i.a. this set of

classes zs the number of the inductive numbers according to our

definitions.
Now it is easy to see that this number is not one of the inductive

numbers. If z is any inductive number, the number o{ numbers

from o to n (both included) is n{r ; therefore the total number

of inductive numbers is greater than n, no matter which of the

inductive numbers n may be. If we arrange the inductive

numbers in a series in order of magnitude, this series has no last

term ; but il n is an inductive number, every series whose field

has nterms has a last term, as it is easy to Prove. Such differences

might be multiplied ad lib. Thus the number of inductive

numbers is a new number, difierent from all of them, not Possess-
ing all inductive properties. It may happen that o has a certain
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property, and that if nhas it so has af r, and yet that this new
number does not have it. The difficulties that so long delayed
the theory of infinite numbers were largely due to the fact t}at
some, at least, of the inductive properties were wrongly judged
to be such as must belong to all numbers ; indeed it was thought
that they could not be denied without contradiction. The first
step in understanding infinite numbers consists in realising the
mistakenness of this view.

The most noteworthy and astonishing difierence between an
inductive number and this new number is that this new number
is unchanged by adding r or subtracting r or doubling or halving
or any of a number of other operations which we think of as
necessarily making a number larger or smaller. The fact of being
not altered by the addition of r is used by Cantor for the defini-
tion of what he calls " transfinite " cardinal numbers ; but for
various reasons, some of which will appear as we proceed, it is
better to define an infinite cardinal number as one which does
not possess all inductive properties, i.e. simply as one which is
not an inductive number. Nevertheless, the property of being
unchanged by the addition of r is a very important one, and we
must dwell on it for a time.

To say that a class has a number which is not altered by the
addition of r is the same thing as to say that, if we take a term #
which does not belong to the class, we can find a one-one relation
whose domain is the class and whose converse domain is obtained
by adding # to the class. For in that case, the class is similar
to the sum of itself and the term x, i.e. to a class having one extra
term; so that it has the same number as a class with one extra
term, so that if z is this number, n:n{t. In this case, we shall
also have n:n-rt i.e. there will be one-one relations whose
domains consist of the whole class and whose converse domains
consist of just one term short of the whole class. It can be shown
that the cases in which this happens are the same as the apparently
more general cases in which sorrre part (short of the whole) can be
put into one-one relation witb. the whole. When this can be done,
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the correlator by which it is done may be said to " reflect " the

whole class into a part of itself ; for this reason, such classes will

be called " reflexive." Thus :

A t'reflexive " class is one which is similar to a ProPer Part
of itself. (A " proper part " is a part short of the whole.)

A " reflexive " cardinal number is the cardinal number of a

reflexive class.
We have now to consider this property of reflexiveness.

One of the most striking instances of a " reflexion " is Royce's

illustration of the map : he imagines it decided to make a maP

of England upon a part of the surface of England. A map, if

it is accurate, has a perfect one-one corresPondence with its

original ; thus our maP, which is part, is in one-one relation with

the whole, and must contain the same number of points as the

whole, which must therefore be a reflexive nurnber. Royce is

interested in the fact that the map, if it is correct, must contain

a map of the m"p, which must in turn contain a maP of the maP

of the rnapr and so on ad inf,nitum. This point is interesting,

but need not occupy us at this moment. In fact, we shall do

well to pass from Picturesque illustrations to such as are more

completely definite, and for this PurPose we cannot do better

than consider the number-series itself.

The relation of n to n*r, confined to inductive numbers, is

one-one, has the whole of the inductive numbers for its domain,

and all except o for its converse domain. Thus the whole class

of inductive numbers is similar to what the same class becomes

when we omit o. Consequently it is a t' reflexive " class according

to the definition, and the number of its terms is a t'reflexive "

number. Again, the relation of n to zn, confined to inductive

numbers, is one-one, has the whole of the inductive numbers for

its domain, and the even inductive numbers alone for its converse

domain. Hence the total number of inductive numbers is the

same as the number of even inductive numbers. This property

was used by Leibniz (and many others) as a Proof that infinite

numbers are impossible; it was thought self-contradictory that



Infnin Cardinal Numbers 8l

" the part should be equal to the whole." But this is one of those
phrases that depend for their plausibility upon an unperceived
vagueness : the word t'equal t' has many meanings, but if it is
taken to mean what we have called " similarrt' there is no contra-
diction, since an infinite collection can perfectly well have parts
similar to itself. Those who regard this as impossible have,
unconsciously as a rule, attributed to numbers in general pro-
perties which can only be proved by mathematical induction,
and which only their familiarity makes us regard, mistakenly,
as true beyond the region of the finite.

Whenever we can tt reflect " a class into a part of itself, the
same relation will necessarily reflect that part into a smaller
part, and so on ad inf.nitum. For example, we can reflect,
as we have just seen, all the inductive numbers into the even
numbers; we can, by the same relation (that of n to zn) reflect
the even numbers into the multiples of +, these into the multiples
of 8, and so on. This is an abstract analogue to Royce's problem
of the map. The even numbers ate a " *"p " of all the inductive
numbers ; the multiples of. 4 are a map of the map ; the multiples
of 8 are a map of the map of the map; and so on. If we had
applied the same process to the relation of n to n*r, our " map "
would have consisted of all the inductive numbers except o;
the map of the map would have consisted of all from 2 onward,
the map of the map of the map of all from 3 onward; and so on.
The chief use of such illustrations is in order to become familiar
with the idea of reflexive classes, so that apparently paradoxical
arithmetical propositions can be readily translated into the
language of reflexions and classes, in which the air of paradox
is much less.

It will be useful to give a definition of the number which is
that of the inductive cardinals. For this purpose we will
first define the kind of series exemplified by the inductive cardinals
in order of magnitude. The kind of series which is called a
" progression " has already been considered in Chapter I. It is a
series which can be generated by a relation of consecutiveness:
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every member of the series is to have a Successor, but there is

to be just one which has no predecessor, and every member of

the series is to be in the posterity of this term with respect to

the relation " immediate predecessor.tt These characteristics

may be summed up in the following definition :- I

A tt progession t' is a one-one relation such that there is just

one term belonging to the domain but not to the converse domain,

and the domain is identical with the posterity of this one term.

It is easy to see that a progression, so defined, satisfies Peano's

five axioms. The term belonging to the domain but not to the

converse domain will be what he calls '6 o " ; the term to which

a term has the one-one relation will be the " successor t' of the

term; and the domain of the one-one relation will be what

he calls " number." Taking his five axioms in turn, we have

the follo*irg translati
(t) t'o is a number " becomes : " The member of the domain

which is not a member of the converse domain is a member of

the domain." This is equivalent to the existence of such a

member, which is given in our definition. We will call this

member tt the first term.tt
(z) tt The successor of any number is a number tt becomes :

" The term to which a given member of the domain has the rela-

tion in question is again a member of the domain." This is

proved as follows : By the definition' every member of the

domain is a member of the posterity of the first term I hence

the successor of a member of the domain must be a member of

the posterity of the first term (because the posterity of a term

always contains its own successors, bI the general definition of

posterity), and therefore a member of the domain, because by

the definition the posterity of the first term is the same as the

domain.
(3) " No two numbers have the same successor." This is

only to say that the relation is one-many, which it is by definition

(being one-one).
t Ct. Princifia Mathematica', vol. ii. * rz3.
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(+) " o is not the successor of any number tt becomes : tt The
first term is not a member of the converse domainr" which is
again an immediate result of the definition.

$) This is mathematical induction, and becomes: " Every
member of the domain belongs to the posterity of the first termr"
which was part of our definition.

Thus progressions as we have defined them have the five
formal propgrties from which Peano deduces arithmetic., It is
easy to show that two progessions are tt similar t' in the sense
defined for similarity of relations in Chapter VI. We can, of
course, derive a relation which is serial from the one-one relation
by which we define a progression: the method used is that
explained in Chapter IV., and the relation is that of a term to
a member of its proper posterity with respect to the original
one-one relation.

Two transitive asymmetrical relations which generate pro-
gressions are similar, for the same reasons for which the cor-
responding one-one relations are similar. The class of all such
transitive generators of progressions is a tt serial number " in
the sense of Chapter VI.; it is in fact the smallest of infinite
serial numbers, the number to which Cantor has given the name
ttt, by which he has made it famous.

But we are concerned, for the moment, with cardinal numbers.

Since two progressions are similar relations, it follows that their
domains (or their fields, which are the same as their domains)
are similar classes. The domains of progressions form a cardinal

number, since every class which is similar to the domain of a

progression is easily shown to be itself the domain of a progression.
This cardinal number is the smallest of the infinite cardinal

numbers; it is the one to which Cantor has appropriated the

Hebrew Aleph with the suffix o, to distinguish it from larger
infinite cardinals, which have other suffixes. Thus the name of
the smallest of infinite cardinals is r*0.

To say that a class has no terms is the same thing as to say

that it is a member of No, and this is the same thing as to say
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that the members of the class can be arranged in a progression.

It is obvious that any progression remains a progression if we

omit a finite number of terms from it, or every other telm, or

all except every tenth term or every hundredth term. These

methods of thinning out a progression do not make it cease to

be a progression, and therefore do not diminish the number of

its terms, which remains N6. In fact, any selection from a pro-

gression is a progression if it has no last term, however sparsely

it may be distributed. Take (t"y) inductive numbers of the form

nn, or rln*, Such numbers grow very rare in the higher Parts
of the number series, and yet there are just as many of them as

there are inductive numbers altogether, namely, No.

Conversely, we can add terms to the inductive numbers without

increasing their number. Take, for example, ratios. One

might be inclined to think that there must be many more ratios

than integers, since ratios whose denominator is I correspond

to the integers, and seem to be only an infinitesimal ProPortion
of ratios. But in actual fact the number of ratios (or fractions)

is exactly the same as the number of inductive numbers, namely,

No. This is easily seen by arranging ratios in a series on the

following plan: If the sum of numerator and denominator in

one is less than in the other, put the one before the other; if

the sum is equal in the two, put first the one with the smaller

numerator. This gives us the series

r,  r f2,2, r l1,,3, t /+, zl3, i lz,4, r l5, .  .  .

This series is a progression, and all ratios occur in it sooner or

Iater. Hence we can arrange all ratios in a progression, and

their number is therefore No.
It is not the case, however, that aII infrnite collections have

N0 terms. The number of real numbers, for example, is greater

than *o I it is, in fact, 2No, and it is not hard to Prove that zn

is greater than n even when a is infinite. The. easiest way of

proving this is to prove, first, that if a class has n members, it

contains z" sub-classes-in other words, that there are zn ways
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of selecting some of its members (including the extreme cases
where we select all or none) ; and secondly, that the number of
sub-classes contained in a class is always greater than the number
of members of the class. Of these two propositions, the first
is familiar in the case of finite numbers, and is not hard to extend
to infinite numbers. The proof of the second is so simple and
so instructive that we shall give it:

In the first place, it is clear that the number of sub-classes
of a given class (say o) is at least as great as the number of
members, since each member constitutes a sub-class, and we thus
have a correlation of all the members with some of the sub-
classes. Hence it follows that, if the number of sub-classes is
not equa.l to the number of members, it must be greater. Now
it is easy to prove that the number is not equal, by showing that,
given any one-one relation whose domain is the members and
whose converse domain is contained among the set of sub-
classes, there must be at least one sub-class not belonging to
the converse domain. The proof is as follows : 1 When a one-
one correlation R is established between all the members of o
and some of the sub-classes, it may happen that a given member
r is correlated with a sub-class of which it is a member I or,
again, it may happen that x is correlated with a sub-class of
which it is not a member. Let us form the whole class, F t^y,
of those members r which are correlated with sub-classes of which
they are not members. This is a sub-class of o, and it is not
correlated with any member of o. For, taking first the members
of F, each of them is (by the definition of 0 correlated with
some sub-class of which it is not a member, and is therefore not
correlated with p. Taking next the terms which are not members
of P, each of them (by the definition of p) is correlated with
some sub-class of which it is a member, and therefore again
is not correlated with B. Thus no member of o is correlated
with B. Since R was any one-one correlation of all members

1 This proof is taken from Cantor, with some simplifications: see

Jahresbericht iler d,eutsahen Mathemati,her-Vereini6ung, i. (r892), p. 7I.
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with some sub-classes, it follows that there is no correlation

of all members with all sub-classes. It does not matter to the

proof if p has no members : all that happens in that case is that

the sub-class which is shown to be omitted is the null-class.

Hence in any case the number of sub-classes is not equal to the

number of members, and therefore, by what was said earlier,

it is greater. Combining this with the proposition that, if. n is

the number of members , zn is the number of sub-classesr we have

the theorem that zn is always greater than fL, eYen. when a is

infinite.
It follows from this proposition that there is no maximum

to the infinite cardinal numbers. However great an infinite

number n may be, zn will be still greater. The arithmetic of

infinite numbers is somewhat surprising until one becomes

accustomed to it. We have, for example,

No* r:  N0,

Nsfa:No, where n is any inductive number,

No8:No'

(This follows from the case of the ratios, for, since a ratio is

determined by a pair of inductive numbers, it is easy to see that

the number of ratios is the square of the number of inductive

numbers, i,e. it is nos ; but we saw that it is also no.)

Nsn:No, where n is any inductive number'

(This follows from No2:No by induction; for if No':No,

then Nor+1-Ns2:N..)

But 2No ) No'

fn fact, as we shall see later, 2No is a very important number,

namely, the number of terms in a series which has " continuity "

in the sense in which this word is used by Cantor. Assuming

space and time to be continuous in this sense (as we commonly

d; in analytical geometry and kinematics), this will be the

number of points in space or of instants in time; it will also be

the number of points in any ftnite portion of space, whether
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Iine, area, or volume. After No, 2No is the most important and
interesting of infinite cardinal numbers.

Although addition and multiplication are always possible
with infinite cardinals, subtraction and division no longer give
definite results, and cannot therefore be employed as they are
employed in elementary arithmetic. Take subtraction to begin
with: so long as the number subtracted is finite, all goes well ;
if the other number is reflexive, it remains unchanged. Thus
Ne-z:No, if z is finite; so far, subtraction gives a perfectly
definite result. But it is otherwise when we subtract N0 from
itself ; we may then get any result, from o up to N0. This is
easily seen by examples. From the inductive numbers, take
away the following collections of xo terms .-

(t) All the inductive numbers-remainder, zero.
(z) All the inductive numbers from fl. onwards-remainder,

the numbers from o to n-1, numbering n terms in all.
(g) AU the odd numbers-remainder, all the even numbers,

numbering No terms.
All these are different ways of subtracting no from No, and

all give different results.
As regards division, very similar results follow from the fact

that no is unchanged when multiplied by z or 3 or any finite
number z or by xo. It follows that no divided by N0 may have
any value from r up to No.

From the ambiguity of subtraction and division it results
that negative numbers and ratios cannot be extended to infinite
numbers. Addition, multiplication, and exponentiation proceed
quite satisfactorily, but the inverse operations-subtraction,
division, and extraction of roots-are ambiguous, and the notions
that depend upon them fail when infinite numbers are concerned.

The characteristic by which we defined finitude was mathe-
matical induction, i.e. we defined a number as finite when it
obeys mathematical induction starting from o, and a class as
finite when its number is finite. This definition yields the sorr
of result that a definition ought to yield, namely, that the finite
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numbers are those that occur in the ordinary number-series

e, !, 2, 3, But in the present chapter, the infinite num-

bers we have discussed have not merely been non-inductive:

they have also been ref.exiuc. Cantor used reflexiveness as the

dcf.nition of the infinite, and believes that it is equivalent to

non-inductiveness; that is to say, he believes that every class

and every cardinal is either inductive or reflexive, This may be

true, and may very possibly be capable of proof ; but the proofs

hitherto ofiered by Cantor and others (including the Present
author in former days) are fallacious, for reasons which will be

explained when we come to consider the tt multiplicative axiom.t'

At present, it is not known whether there are classes and cardinals

which are neither reflexive nor inductive. If. n were such a

cardinal, we should not have n:fl*r, but z would not be one

of the 66 natural numbersr" and would be lacking in some of the

inductive properties. All known infinite classes and cardinals

are reflexive; but for the present it is well to preserve an oPen

mind as to whether there are instances, hitherto unknown, of

classes and cardinals which are neither reflexive nor inductive.

Meanwhile, we adopt the following definitions:-

A f,nite class or cardinal is one which is inductive.

An inj.nite class or cardinal is one which is not inductive.

All ref.exive classes and cardinals are infinite ; but it is not known

at present whether all infinite classes and cardinals are reflexive.

We shall return to this subject in Chapter XII.



CHAPTER IX

INFINITE SERIES AND ORDINALS

AN " infinite series " *^y be defined as a series of which the field
is an infinite class. We have already had occasion to consider
one kind of infinite series, namely, progressions. In this chapter
we shall consider the subject more generally.

The most noteworthy characteristic of an infinite series is
that its serial number can be altered by merely re-afianging
its terms. In this respect there is a certain oppositeness between
cardinal and serial numbers. It is possible to keep the cardinal
number of a reflexive class unchanged in spite of adding terms
to it; on the other hand, it is possible to change the serial
number of a series without adding or taking away any terms,
by mere re-arrangement. At the same time, in the case of any
infinite series it is also possible, as with cardinals, to add terms
without altering the serial number: everything depends upon
the way in which they are added.

In order to make matters clear, it will be best to begin with
examples. Let us first consider various fifferent kinds of series
which can be made out of the inductive numbers arranged on
various plans. We start with the series

rr 21 31 4,

which, as we have already seen,
finite serial numbers, the sort
proceed to thin out this series

89

represents the smallest of in-
that Cantor calls er. Let us
by repeatedly performing the

n,
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operation of removing to the end the first even number that

occurs. We thus obtain in succession the various series:

l r 3 r 4 r 5 r " ' l L \  ' 2 ,

t r 3 r 5 r 6 ,  . n * r 1  . . .

l r 3 r 5 r 7 ,  " n * Z r  ' : !

and so on. If we imagine this process

possible, we finally reach the series

r, 3, 5, 7, . . , un+r, . 2, +, 61 8, ., 2n,

in which we have first all the odd numbers and then all the even

numbers.
The serial numbers of these various series are alf t, a{2,

at*3, . . . zcD. Each of these numbers is " greater tt than any

of its predecessors, in the following sense :-

One serial number is said to be " greater " than another if

any series having the first number contains a Part having the

second number, but no series having the second number contains

^ part having the first number.

If we compare the two series

l t 2 r 3 r 4 r  '  ' n ,

l r 3 1 4 r 5 ,  ' n * 1 , j '

we see that the first is similar to the part of the second which

omits the last term, namely, the number z, but the second is

not similar to any part of the first. (This is obvious, but is

easily demonstrated.) Thus the second series has a greater

serial number than the first, according to the definition-i.s,

@+r is greater than ar. But if we add a term at the beginning

of a progression instead of the end, we still have a Progression.
Thus r f ar,-o.r. Thus r *ar is not equal to ar+ r. This is

characteristic of relation-arithmetic generally ; if p, and v are

two relation-numbers, the general rule is that p*v is not equal

to rfp. The case of finite ordinals, in which there is equality,

is quite exceptional.
The series we finally reached just now consisted of first all the

odd numbers and then all the even numbers, and its serial

2, 4,
2, 4, 6,

carried on as long as
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number is zu. This number is greater than co or a*n, where
a is finite. It is to be observeo', that, in accordance with the
general definition of order, each of these arrangements of integers
is to be regarded as resulting from some definite relation. E.g.
the one which merely removes z to the end will be defined by
the follo*irg relation i " tc and y are finite integers, and either
y is z and r is not 2, ot neither is z and r is less than y." The
one which puts first all the odd numbers and then all the even
ones will be defined by : " x and y arc finite integers, and either
r is odd and y is even or r is less than y and both are odd or both
are even." We shall not trouble, as a rule, to give these formula
in future; but the fact that they could be given is essential.

The number which we have called za), namely, the number of
a series consisting of two progressions, is sometimes called @.2.
Multiplication, like addition, depends upon the order of the
factors : a progression of couples gives a series such as

fit, tu #2, tz, fru, tr, ' ' ' tc17 !n, ' ' ',

which is itself a progression; but a couple of progressions gives
a series which is twice as long as a progression. It is therefore
necessary to distinguish between z@ and a .2. Usage is variable ;
we shall use zar for a couple of progressions and ar . z for a pro-
gression of couples, and this decision of course governs our
general interpretation of " a.B" when o and B are relation-
numbers i " o..p" otil l have to stand for a suitably constructed
sum of o relations each having B terms.

We can proceed indefinitely with the process of thinning
out the inductive numbers. For example, we can place first
the odd numbers, then their doubles, then the doubles of these,
and so on. We thus obtain the series

r ,  3 ,  5 r 7 ,  .  .  . i  2 ,  6 ,  t O ,  t 4 ,  .  .  . i  4 ,  t z r z o r 2 g r .  . ;
8, 24, 40, 56, , . .,

of which the number is crrz, since it is a progression of progressions.
Ary one of the progressions in this new series can of course be
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out our original progression. We can

, anli so on I however far we have gonet
thinned out as we thinned

proceed to cr3, @4, . " . (D-

we can always go further.

The series of all the ordinals that can be obtained in this waY,

i.e. all that can be obtained by thinning out a progression, is

itself longer than any series that can be obtained by re-arranging

the terms of a progression. (This is not difficult to prove.)

The cardinal number of the class of such ordinals can be shown

to be greater than t*o I it is the number which Cantor calls

Nl. The ordinal number of the series of all ordinals that can

be made out of an !{0, taken in order of magnitude, is called c.r1.

Thus a series whose ordinal number is o\ has a field whose

cardinal number is nr.

We can proceed from ar1 and Nl to arg and Ns by a Process
exactly analogous to that by which we advanced from ar and Ns

to ar1 and ttr. And there is nothing to Prevent us from advancing

indefinitely in this way to new cardinals and new ordinals. It

is not known whether zNo is equal to any of the cardinals in the

series of Alephs. It is not even known whether it is comparable

with them in magnitude ; for aught we know, it may be neither

equal to nor greater nor less than any one of the Alephs- This

question is connected with the multiplicative axiom, of which

we shall treat later.
All the series we have been considering so far in this chapter

have been what is called " well-ordered." A well-ordered

series is one which has a beginning, and has consecutive terms'

and has a term next af.tet any selection of its terms, provided

there are any terms after the selection. This excludes, on the

one hand, compact series, in which there are terms between

any two, and on the other hand series which have no begindog,

or in which there are subordinate Parts having no beginoiog.

The series of negative integers in order of magnitude, having

no beginning, but ending with -1, is not well-ordered; but

taken in the reverse order, beginning with - I' it is well-ordered,

being in fact a Progression. The definition is :
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A " well-ordered tt series is one in which every sub-class
(except, of course, the null-class) has a first term.

An " ordinal " number means the relation-number of a well-
ordered series. It is thus a species of serial number.

Among well-ordered series, a generalised form of mathematical
induction applies. A property may be said to be " transfinitely
hereditary " if, when it belongs to a certain selection of the
terms in a series, it belongs to their immediate successor pro-
vided they have one. In a well-ordered series, a transfinitely
hereditary property belonging to the first term of the series
belongs to the whole series. This makes it possible to prove
many propositions concerning well-ordered series which are not
true of all series.

It is easy to arrange the inductive numbers in series which
are not well-ordered, and even to arrange them in compact
series. For example, we can adopt the following plan: consider
tHe decimals from 'r (inclusive) to r (exclusive), arranged in order
of magnitude. These form a compact series I between arry
two there are always an infinite number of others. Now omit
the dot at the beginning of each, and we have a compact series
consisting of all finite integers except such as divide by ro. If
we wish to include those that divide by to, there is no difficulty;
instead of starting with 'r, we will include all decimals less than
r, but when we remove the dot, we will transfer to the right any
o's that occur at the beginning of our decimal. Omitting these,
and returning to the ones that have no o's at the beginning,
we can state the rule for the arrangement of our integers as
follows: Of two integers that do not begin with the same digit,
the one that begins with the smaller digit comes first. Of two
that do begin with the same digit, but difier at the second digit,
the one with the smaller second digit comes first, but first of all
the one with no second digit; and so on. Generally, if two
integers agree as regards the first n digits, but not as regards
the (af r)tn, that one comes first which has either no (n*t)'h
digit or a smaller one than the other. This rule of arrangement,
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as the reader can easily convince himself, gives rise to a compact

series containing all the integers not divisible by ro; and,

as we saw, there is no difficulty about including those

that are divisible by Io. It follows from this example that

it is possible to construct compact series having N0 terms.

fn fact, we have already seen that there are N0 ratios, and

ratios in order of magnitude form a comPact series ; thus

we have here another example. We shall resume this topic

in the next chapter.
Of the usual formal laws of addition, multiplication, and ex-

ponentiation, all are obeyed by transfinite cardinals, but only

some are obeyed by transfinite ordinals, and those that are obeyed

by them are obeyed by all relation-numbers. By the " usual

formal laws " we mean the following:-

I. The commutative law :
o1_B:Bla and oxB-px o.

II. The associative law:
("*Of y:a+(F+y) and ("x0 xy:ax (px y).

III. The distributive law:
a(F*y):o,F*ay.

When the commutative law does not hold, the above form

of the distributive law must be distinguished from

(F*y)"- Fotyo.

As we shall see immediately, one form may be true and the

other false.

IV. The laws of exponentiation:

aF . ar:aF*t, a't . Fr_-(o|)r, (a)t-64t.

All these laws hold for cardinals, whether finite or infinite,
and for f,nite ordinals. But when we come to infinite ordinals,
or indeed to relation-numbers in general, some hold and some

do not. The commutative law does not hold; the associative

law does hold; the distributive law (adopting the convention
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we have adopted above as regards the order of the factors in a
product) holds in the form

but not in the form

the exponential laws

(F+y1o:Fo*yo,

a(B+y)-oF*o"y;

aF . q"r-qs+y and (oTr:afi

still hold, but not the law

ay . Fr-("pr,

which is obviously connected with the commutative law for
multiplication.

The definitions of multiplication and exponentiation that
are assumed in the above propositions are somewhat complicated.
The reader who wishes to know what they are and how the
above laws are proved must consult the second volume of
Principia Matltematica, * 172-176.

Ordinal transfinite arithmetic was developed by Cantor ar
an earlier stage than cardinal transfinite arithmetic, because it
has various technical mathematical uses which led him to it.
But from the point of view of the philosophy of marhematics
it is less important and less fundamental than the theory of
transfinite cardinals. Cardinals are essentially simpler than
ordinals, and it is a curious historical accident that tjrey first
appeared as an abstraction from the latter, and only gradually
came to be studied on their own account. This does not apply
to Frege's work, in which cardinals, finite and transfinite, were
treated in complete independence of ordinals ; but it was
Cantor's work that made the world aware of the subject, while
Frege's remained almost unknown, probably in the main on
account of the difficulty of his symbolism. And mathematicians,
like other people, have more difficulty in understanding and
using notions which are comparatively " simple " in the logical
sense than in manipulating more complex notions which are
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more akin to their ordinary practice. For these reasons, it was

only gradually that the true importance of cardinals in mathe-

matical philosophy was recognised. The importance of ordinals,

though by no means small, is distinctly less than that of cardinals,

and is very largely merged in that of the more general concePtion

of relation-numbers.



CHAPTER X

LIMITS AND CONTINUITY

Tnr conception of a " limit " is one of which the importance in
mathematics has been found continually greater than had been
thought. The whole of the differential and integral calculus,
indeed practically everything in higher mathematics, depends
upon limits. Formerly, it was supposed that infinitesimals were
involved in the foundations of these subjects, but Weierstrass
showed that this is an error : wherever infinitesimals were thought
to occur, what really occurs is a set of finite quantities having

zero for their lower limit. It used to be thought that " limit "
was an essentially quantitative notion, namely, the notion of a

quantity to which others approached nearer and nearer, so that
among those others there would be some differing by less than any

assigned quantity. But in fact the notion of " Iimit " is a purely
ordinal notion, not involving quantity at all (except by accident
when the series concerned happens to be quantitative). A given

point on a line may be the limit of a set of points on the line,
without its being necessary to bring in co-ordinates or measure-
ment or anything quantitative. The cardinal number Ho is the

limit (in the order of magnitude) of the cardinal numbers r, 2,

3, . , , n2 . . ., although the numerical difference betweeo N6
and a finite cardinal is constant and infinite : from a quantitative
point of view, finite numbers get no nearer to No as they grow
larger. What makes No the limit of the finite numbers is the
fact that, in the series, it comes immediately after them, which
is an ordinal fact, not a quantitative fact.

97
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There are various forms of the notion of " limitr" of in-

creasing complexity. The simplest and most fundamental form,

from which the rest are derived, has been already defined, but

we will here repeat the definitions which lead to it, in a general

form in which they do not demand that the relation concerned

shall be serial. The definitions are as follows :-
The " minima " of a class o with respect to a relation P are

those members of o and the field of P (if any) to which no member

of o has the relation P.
The " maxima " with respect to P are the minima with respect

to the converse of P.
The " sequents " of a class o with respect to a relation P are

the minima of the " successors " of o, and the tt successors tt of

d. are those members of the field of P to which every member of

the common part of o and the field of P has the relation P.
The t'precedents tt with respect to P are the sequents with

respect to the converse of P.
The " upper limits " of o with respect to P are the sequents

provided o has no maximum ; but if o has a maximum, it has no
upper limits.

The " lower limits " with respect to P are the upper limits with
respect to the converse of P.

Whenever P has connexity, a class can have at most one
maximum, one minimum, one sequent, etc. Thus, in the cases

we are concerned with in practice, we can speak of t' the limit "
(if any).

When P is a serial relation, we can greatly simplify the above
definition of a limit. We can, in that case, define first the
t' boundary " of a class a, i.e. its limits or maximum, and then
proceed to distinguish the case where the boundary is the limit

from the case where it is a maximum. For this purpose it is
best to use the notion of t'segment.t'

We will speak of the " segment of P defined by ^ class o " as
all those terms that have the relation P to some one or more of

the members of o. This will be a segment in the sense defined
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in Chapter VII. ; indeed, every segment in the sense there defined
is the segment defined by some class o. If P is serial, the
segment defined by o consists of all the terms that precede
some term or other of o. If o has a maximum, the segment will
be all the predecessors of the maximum. But if cL has no
maximum, every member of o precedes some other member of
o, and the whole of o is therefore included in the segment defined
by o, Take, for example, the class consisting of the fractions

t, t, *, +8' " ''

i.e. of. all fractions of the form r- r for difierent finite values
2n

of. n. This series of fractions has no maximum, and it is clear
that the segment which it defines (in the whole series of fractions
in order of magnitude) is the class of all proper fractions. Or,
again, consider the prime numbers, considered as a selection from
the cardinals (finite and infinite) in order of magnitude. In this
case the segment defined consists of all finite integers.

Assuming that P is serial, the " boundary " of a class o will be
the term # (if it exists) whose predecessors are the segment
defined by o.

A " maximum " of. a is a boundary which is a member of o.
An "upper limit" of o is a boundary which is not a member of ca
If a class has no boundarl, it has neither maximum nor limit.

This is the case of an " irrational " Dedekind cut, or of what is
cal led u"  g p."

Thus the (( upper limit " oI a set of terrns o with respect to a
series P is that term x (if. it exists) which comes after all the o's,
but is such that every earlier term comes before some of the ots.

We may define all the " upper limiting-points " of a set of
terms F "r 

all those that are the upper limits of sets of terms
chosen out of B. We shall, of course, have to distinguish upper
limiting-points from lower limiting-points. If we consider, for
example, the series of ordinal numbers :

l r 2 r 3 t  .  .  .  ( t ) r a l * I r  .  . ,  z ( t ) r z a { t ,  .
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the upper limiting-points of the field of this series are those that

have no immediate predecessors, i.e.

l r @ t 2 c D r J t D r .  ,  .  @ 2 r a 2 * @ ,  .  "  . 2 c r 2 ,  ,  .  .  a a  ,  .  .

Ihe upper limiting-points of the field of this new series will be

l, e)2, 2e)2, . , (!)97 -"*a'

On the other hand, the series of ordinals-and indeed every well-
ordered series-has no lower limiting-points, because there are
no terms except the last that have no immediate successors. But
if we consider such a series as the series of ratios, every member
of this series is both an upper and a lower limiting-point for
suitably chosen sets. If we consider the series of real numbers,
and select out of it the rational real numbers, this set (the

rationals) will have all the real numbers as upper and lower
limiting-points. The limiting-points of a set are called its " first
derivativer" and the limiting-points of the first derivative are
called the second derivative, and so on.

With regard to limits, w€ may distinguish various grades of
what may be called tt continuity " in a series. The word tt con-
tinuity " had been used for a long time, but had remained without
any precise definition until the time of Dedekind and Cantor.
Each of these two men gave a precise significance to the term,
but Cantor's definition is narrower than Dedekind's : a series
which has Cantorian continuity must have Dedekindian con-
trnuity, but the converse does not hold.

The first definition that would naturally occur to a man seeking
a precise meaning for the continuity of series would be to define
it as consisting in what we have called " compactnessr" i.e. in the
fact that between any two terms of the series there are others.
But this would be an inadequate definition, because of the
existence of t'gaps " in series such as the series of ratios. We
saw in Chapter VII. that there are innumerable ways in which
the series of ratios can be divided into two parts, of which one

wholly precedes the otler, and of which the first has no last term,
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while the second has no first term. Such a state of affairs seems

contrary to the vague feeling we have as to what should character-

ise tt continuityr" and, what is more, it shows that the series of

ratios is not the sort of series that is needed for many mathematical
purposes. Take geometry, for example: we wish to be able to

say that when two straight lines cross each other they have a

point in common, but if the series of points on a line were similar
to the series of ratios, the two lines might cross in a " gap " and
have no point in common. This is a crude example, but many

others might be given to show that compactness is inadequate as

a mathematical definition of continuity.
It was the needs of geometty, as much as anything, that led

to the definition of " Dedekindian " continuity. It will be re-

membered that we defined a series as Dedekindian when every

sub-class of the field has a boundary. (It is sufficient to assume

that there is always an upper boundarn or that there is always

a lower boundary. If one of these is assumed, the other can be

deduced.) That is to say, a series is Dedekindian when there

are no gaps. The absence of gaps may arise either through

terms having successors, or through the existence of limits in the

absence of maxima. Thus a finite series or a well-ordered series

is Dedekindian, and so is the series of real numberg. The former

sort of Dedekindian series is excluded by assuming that our

series is compact; in that case our series must have a ProPerty
which malt for many purposes, be fittingly called continuity.

Thus we are led to the definition:
A series has tt Dedekindian continuity " when it is Dedekindian

and compact.
But this definition is still too wide for many purposes. Suppose,

for example, that we desire to be able to assign such properties

to geometrical space as shall make it certain that every point

can be specified by means of co-ordinates rvhich are real numbers :

this is not insured by Dedekindian continuity alone. We want

to be sure that every point which cannot be specified by rutional

co-ordinates can be specified as the limit of. a progression of points
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whose co-ordinates are rational, and this is a further property
which our definition does not enable us to deduce.

We are thus led to a closer investigation of series with respect
to limits. This investigation was made by Cantor and formed
the basis of his definition of continuity, although, in its simplest
form, this definition somewhat conceals the considerations which
have given rise to it. We shall, therefore, first travel through
some of Cantor's conceptions in this subject before giving his
definition of continuity.

Cantor defines a series as t'perfect tt when all its points are
limiting-points and all its limiting-points belong to it. But this
definition does not express quite accurately what he means.
There is no correction required so far as concerns the property
that all its points are to be limiting-points ; this is a property
belonging to compact series, and to no others if all points are to
be upper limiting- or all lower limiting-points. But if it is only
assumed that they are limiting-points one .^y, without specify-
ing which, there will be other series that will have the property
in question-for example, the series of decimals in which a decimal
ending in a recurring 9 is distinguished from the corresponding
terminating decimal and placed immediately before it. Such a
series is very nearly compact, but has exceptional terms which
are consecutive, and of which the first has no immediate prede-
cessor, while the second has no immediate successor. Apart from
such series, the series in which every point is a limiting-point
are compact series; and this holds without qualification if it is
specified that every point is to be an upper limiting-point (or
that every point is to be a lower limiting-point).

Although Cantor does not explicitly consider the matter, we
must distinguish different kinds of limiting-points according to
the nature of the smallest sub-series by which they can be defined.
Cantor assumes that they are to be defined by progressionsz or
by regressions (which are the converses of progressions). When
every member of our series is the limit of a progression or regres-
sion, Cantor calls our series " condensed in itself " (insicbdicht).
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We come now to the second property by which perfection was

to be defined, namely, the property which Cantor calls that of

being " closed " (abgescblossen). This, as we saw, was first defined

as consisting in the fact that all the limiting-points of a series

belong to it. But this only has any effective significance if our

series is given as contained in some other larger series (as is the

case, e.g., :vrrrth a selection of real numbers), and limiting-points

are taken in relation to the larger series. Otherwise, if a series

is considered simply on its own account, it cannot fail to contain

its limiting-points. What Cantor tneans is not exactly what

he says ; indeed, on other occasions he says something rather

difierent, which zs what he means. What he really means is that

every subordinate series which is of the sort that might be ex-

pected to have a limit does have.a limit within the given series I
i.e. every subordinate series which has no maximum has a limit,

i.e. every subordinate series has a boundary. But Cantor does

not state this for et)ery subordinate series, but only for progres-

sions and regressions. (It is not clear how far he recognises that

this is a limitation.) Thus, finally, we find that the definition we

want is the following:-
A series is said to be " closed " (abgeschlossen) when every Pro-

gression or regression contained in the series has a limit in the

series.
We then have the further definition:-

A series is " perfect " when it is condensed in itself and closed,

f.a. when every term is the limit of a progression or regression,

and every progression or regression contained in the sedes has a

limit in the series.
In seeking a definition of continuity, what Cantor has in mind

is the search for a definition which shall aPPly to the series of

real numbers and to any series similar to that, but to no others.

For this purpose we have to add a further ProPerty. Among

the real numbers some are rational, some are irrational; although

the number of irrationals is greater than the number of rationals,

yet there are rationals between any two real numbers, however
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little the two may differ. The number of rationals, as we sa%
is llo. This gives a further property which suffices to characterise
continuity completely, namely, the property of containing a class
of N0 members in such a way that some of this class occur
between any two terms of our series, however near together.
This property, added to perfection, suffices to define a class of
series which are all similar and are in fact a serial number. This
class Cantor defines as that of continuous series.

We may slightly simplify his definition. To begin with,
we say :

A " median class " of a series is a sub-class of the field such
that members of it are to be found between any two terms of
the series.

Thus the rationals are a median class in the series of real
numbers. It is obvious that there cannot be median classes
except in compact series.

We then find that Cantor's definition is equivalent to tJle
following :-

A series is (( continuous " when (r) it is Dedekindian, (z) it
contains a median class having Nn terms.

To avoid confusion, we shall speak of this kind ag '6 Cantorian
continuity." It will be seen that it implies Dedekindian con-
tinuity, but the converse is not the case. All series having
Cantorian continuity are similar, but not all series having
Dedekindian continuity.

The notions of linit and continuity which we have been defining
must not be confounded with the notions of the limit of a function
for approaches to a given argument, or the continuity of a function
in the neighbourhood of a given argument. These are difierent
notions, very important, but derivative from the above and more
complicated. The continuity of motion (if motion is continuous)
is an instance of the continuity of a function; on the other hand,
the continuity of space and time (if they are continuous) is an
instance of the continuity of series, or (to speak more cautiously)
of. a kind of continuity which can, by sufficient marhemarical
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manipulation, be reduced to the continuity of series' In view

of the fundamental importance of motion in applied mathe-

matics, as well as for other reasons, it will be well to deal

briefly with the notions of limits and continuity as applied

to functions; but this subject will be best reserved for a

seParate chapter.
The definitions of continuity which we have been considering,

namely, those of Dedekind and Cantor, do not corresPond very

closely to the vague idea which is associated with the word in

the mind of the man in the street or the philosopher. They

conceive continuity rather as absence of seParatenessr the sort

of general obliteration of distinctions which characterises a thick

fog. A fog gives an impression of vastness without definite

multiplicity or division. It is this sort of thing that a meta-

physician means by " continuityr" declaring it, very truly,

to be characteristic of his mental life and of that of children

and animals.
The general idea vaguely indicated by the word " continuity "

when so employed, or by the word " flux," is one which is certainly

quite difierent from that which we have been defining. Take,

for example, the series of real numbers. Each is what it is,

quite definitely and uncompromisingly; it does not Pass over

by imperceptible degrees into another; it is a hard, seParate

unit, and its distance from every other unit is finite, though

it can be made less than any given finite amount assigned in

advance. The question of the relation between the kind of

continuity existing among the real numbers and the kind ex-

hibited, e.g. by what we see at a given time, is a difficult and

intricate one. It is not to be maintained that the two kinds

are simply identical, but it may, I think, be very well main-

tained that the mathematical concePtion which we have been

considering in this chapter gives the abstract logical scheme to

which it must be possible to bring empirical material by suitable

manipulation, if that material is to be called " continuous "

in any precisely definable sense. It would be quite impossible
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to justify this thesis within the limits of the present volume.
The reader who is interested may read an attempt to justify
it as regards time in particular by the present author in the
Monist for r9r4-5r as well as in parts of. our Knowledge oif tlte
External World. With these indications, we must leave this
problem, interesting as it is, in order to return to topics more
closely connected with mathematics.



CHAPTER XI

LIMITS AND CONTINUITY OF FUNCTIONS

h'r this chapter we shall be concerned with the definition of the
limit of a function (if any) as the argument approaches a given
value, and also with the definition of what is meant by 

" 
t'con-

tinuous function." Both of these ideas are somewhat technical,
and would hardly demand treatment in a mere introduction
to mathematical philosophy but for the fact that, especially
through the so-called infinitesimal calculus, wrong views upon
our present topics have become so firmly embedded in the minds
of professional philosophers that a prolonged and considerable
effort is required for their uprooting. It has been thought
ever since the time of Leibniz that the differential and integral
calculus required infinitesimal quantities. Mathematicians

(especially Weierstrass) proved that this is an error; but errors
incorporated, e.g. in what Hegel has to say about mathematics,
die hard, and philosophers have tended to ignore the work of
such men as Weierstrass.

Limits and continuity of functions, in works on orfinary
mathematics, are defined in terms involving number. This is
not essential, as Dr Whitehead has shown.l We will, however,
begin with the definitions in the text-books, and proceed after-

wards to show how these definitions can be generalised so as to
apply to series in general, and not only to such as are numerical

or numerically measurable.
Let us consider any ordinary mathematical function,fx, where

1 See Principia Mathematice, vo'I. ii. x z3u+,34.
L 0 7
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x andfx are both real numbers, and_fx is one-valued-i.e. when
r is given, there is only one valu e that fx can have. We call r
the t'argumentr" andifx the " value for the argument x.', When
a function is what we call " continuousr" the rough idea for which
we are seeking a precise definition is that small difierences in r
shall correspond to small difierences in fx, and if we make the
differences in r small enough, we can make the difierences in

fx fall below any assigned. amount. We do not want, if a function
is to be continuous, that there shall be sudden jumps, so that,
for some value of x, any chanee, however small, will make a
change in fx which exceeds some assigned finite amount. The
ordinary simple functions of mathematics have this property:
it belongs, for example, to x2, #, . . . log r, sin x, and so on.
But it is not at all difficult to define discontinuous functions.
Take, as a non-mathematical exampl., " the place of birth of
the youngest person living at time t." This is a function of t;
its value is constant from the time of one person's birth to the
time of the next birth, and then the value changes suddenly
from one birthplace to the other. An analogous mathematical
example would be tt the integer next below *rtt where r is a real
number. This function remains constant from one integer to
the next, and then gives a sudden jo*p. The actual fact is
that, though continuous functions are more familiar, they are
the exceptions : there are infinitely more discontinuous functions
than continuous ones.

Many functions are discontinuous for one or several values of
the variable, but continuous for all other values. Take as an
example sin r/r. The function sin 0 passes through all values
from -r to r every time that 0 passes from -filzto zrfz, or from
nfz to 3nlz, or generally from (zn-t)nlz to (znfr)rrfz, where
n is any integer. Now if we consider r/r when * is very small,
we see that as r diminishes t f x grows faster and faster, so that
it passes more and more quickly through the cycle of values from
one multiple of nfz to another as r becomes smaller and smaller.
Consequently sin r/r passes more and more quickly from - r
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to r and back again, as tc grows smaller. In fact, if we take

any interval containing o, say the interval from -e to *e where

e is some very small number, sin r/r will go through an infinite

number of oscillations in this interval, and we cannot diminish

the oscillations by making the interval smaller. Thus round.

about the argument o the function is discontinuous. It is easy

to manufacture functions which are fiscontinuous in several

places, or in tts places, or everywhere. Examples will be found

in any book on the theory of functions of a teal variable.

Proceeding now to seek a precise definition of what is meant

by saying that a function is continuous for a given argument,

when argument and value are both real numbers, let us first

define a tt neighbourhood " of a numberlc as all the numbers

from tc-e to *f e, where e is some number which, in important

cases, will be very small. It is clear that continuity at a given

point has to do with what happens in any neighbourhood of that

point, however small.

What we desire is tlris z If. a is the argument for which we wish

our function to be continuous, let us first define a neighbourhood

(o say) containing the value fa which the function has for the

argument a I we desire that, if we take a sufficiently small

neighbourhood containing a, all values for arguments throughout

this neighbourhood shall be contained in the neighbourhood o,

no matter how small we may have made o. That is to say, if

we decree that our function is not to differ ftomfa by more than

some very tiny amount, we can always find a stretch of real

numbers, having a in the middle of it, such that throughout

this stretch fx will not difier from fa by more than the pre-

scribed tiny amount. And this is to remain true whatever

tiny amount we may select. Hence we are led to the follo*itg

definition:-
The function fir) is said to be '6 continuous " for the argu-

ment a if., fot every positive number o, different from o, but as

small as we please, there exists a positive number e, difierent

from o, such that, for all values of E which are numerically
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lessl than e, the difierenc, -f(o*S)1@) is numerically less
than o.

In this definition, o first defines a neighbourhood of. f(a),
namely, the neighbourhood fromf(a)-o tof(a)*o. The defini-
tion then proceeds to say that we can (by means of e) define a
neighbourhood, namely, that from a-e to a{e, such that, for
all arguments within this neighbourhood, the value of the function
lies within the neighbourhood from -f(n)-o to f(a){o. If this
can be done, however o may be chosen, the function is tt con-
tinuous tt for the argument a.

So far we have not defined the t'limit 
" of a function for a

given argument. If we had done so, we could have defined the
continuity of a function differently: a function is continuous
at a point where its value is the same as the limit of its value for
approaches either from above or from below. But it is only
the exceptionally " tame " function that has a definite limit as
the argument approaches a given point. The general rule is
that a function oscillates, and that, given any neighbourhood
of a given argument, however small, a whole stretch of values
will occur for arguments within this neighbourhood. As this
is the general rule, let us consider it first.

Let us consider what may happen as the argument approaches
some value a from below. That is to say, we wish to consider
what happens for arguments contained in the interval from
A-e to a,, where e is some number which, in important cases,
will be very small.

The values of the function for arguments from A-e to a (a
excluded) will be a set of real numbers which will define a certain
section of the set of real numbers, namely, the section consisting
of those numbers that are not greater than all the values for
arguments from a-e to a.. Given any number in this section,
there are values at least as great as this number for arguments
between a-e and a, i.e. Ior arguments that fall very little short

r A number is said to be " numericallv less " than e when it lies between
-e and *s.
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of. a (if. e is very small). Let us take all possible e's and all

possible corresponding sections. The common part of all these

sections we will call the t' ultimate section tt as the argument
approach es a. To say that a number z belongs to the ultimate
section is to say that, however small we may make e, there are

arguments between a,-e and a for which the value of the function
is not less than z.

We may apply exactly the same process to upper sections,
i.e. to sections that go from some point up to the top, instead of
from the bottom up to some point. Here we take those numbers
that are not less than all the values for arguments from a-e
to a 1 this defines an upper section which will vary as e varies.
Taking the common part of all such sections for all possible e's,
we obtain the " ultimate upper section." To say that a number
z belongs to the ultimate upper section is to say that, however
small we make e, there are arguments between A-e and a for
which the value of the function is not greater than z.

If a term z belongs both to the ultimate section and to the
ultimate upper section, we shall say that it belongs to the

" ultimate oscillation." We may illustrate the matter by con-
sidering once more the function sin tfx as x approaches the
value o. We shall assume, in order to fit in with the above
definitions, that this value is approached from below.

Let us begin with the " ultimate section." Between -e

and o, whatever e may be, the function will assume the value
i for certain arguments, but will never assume any greater value.
Hence the ultimate section consists of all real numbers, positive
and negative, up to and including r ; i.e.it consists of all negative
numbers together with o, together with the positive numbers
up to and including r.

Similarly the " ultimate uppei section " consists of all positive
numbers together with o, together with the negative numbers
down to and including -r.

Thus the ('ultimate oscillation " consists of all real numbers
from - r to r, both included.
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We may say generally that the " ultimate oscillation " of
a function as the argument approaches a from below consists
of all those numbers .r which are such that, however near we
come to a, we shall still find values as great as r and values as
small as ,c.

The ultimate oecillation may contain no terms, or one term,
or many terms. In the first two cases the {unction has a definite
limit for approaches from below. If the ultimate oscillation
has one term, this is fairly obvious. It is equally true if it has
none ; for it is not difficult to prove that, if the ultimate oscilla-
tion is null, the bound"ry of the ultimate section is the same as
that of the ultimate uppdr section, and may be defined as the
limit of the function for approaches from below. But if the
ultimate oscillation has many terms, there is no definite limit to
the function for approaches from below. In this case we can
take the lower and upper boundaries of the ultimate oscillation
(i.e. the lower boundary of the ultimate upper section and the
upper boundary of the ultimate section) as the lower and upper
limits of its " ultimate " values for approaches from below.
Similarly we obtain lower and upper limits of the " ultimate "
values for approaches from above. Thus we have, in the generaf
caserifour limits to a function for approaches to a given argument.
Ihe limit for a given argument a only exists when all these four
are equal, and is then their common value. If it is also the
value for the argument a, the function is continuous for this
argument. This may be taken as defining continuity: it is
equivalent to our former definition.

We can define the limit of a function for a given argument
(if it exists) without passing through the ultimate oscillation
and the four limits of the general case. The definition proceeds,
in that case, just as the earlier definition of continuity proceeded.
Let us define the limit for approaches from below. If there is to
be a definite limit for approaches to a from below, it is necessary
and sufficient that, given any small number o, two values for
arguments sufficiently near to a (but both less than a) will difier



Limits and Continuity of Functions r r 3

by less than o I i.e. if. e is sufficiently small, and our arguments
both lie between A-c and a (a excluded), then the difference
between the values for these arguments will be less than o.

This is to hold for any o, however small; in that case the

function has ^ limit for approaches from below. Similarly
we define the case when there is a limit for approaches from
above. These two limits, even when both exist, need not be

identical ; and if they are identical, they still need not be identical

with the aalue for the argument a. It is only in this last case

that we call the function continulus for the argument z.

A function is called 66 continuous " (without qualification)
when it is continuous for every argument.

Another slightly different method of reaching the definition
of continuity is the following:-

Let us say that a function " ultimately converges into a
class a" if there is some real number such that, for this argument
and all arguments greater than this, the value of the function
is a member of the class o. Similarly we shall say that a function

" converges into o as the argument approaches n from below tt

if there is some argument y less than r such that throughout

the interval from y (included) to r (excluded) the function has

values which are members of c. 'We may now say that a

function is continuous for the argument a, for which it has the

valueifa, if it satisfies four conditions, namely :-
(r) Given any real number less than fa, the function con-

verges into the successors of this number as the argument

approaches a from below;
(z) Given any rcal number greater than .fa, the function con-

verges into the predecessors of this number as the argument

approaches a from below;
(3) and (4) Similar conditions for approaches to a from above.
The advantages of this form of definition is that it analyses

the conditions of continuity into four, derived from considering
arguments and values respectively greater or less than the

argument and value for which continuity is to be defined.
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We may now generalise our definitions so as to apply to series
which are not numerical or known to be numerically measurable.
The case of motion is a convenient one to bear in mind. There
is a story by H. G. Wells which will illustrate, from the case of
motion, the difference between the limit of a function for a given
argument and its value for the same argument. The hero of
the story, who possessed, without his knowledge, the power of
realising his wishes, was being attacked by 

" 
policeman, but on

ejaculating "Go to-" he found that the policeman disappeared.
If flt) was the policeman's position at time t, and /o the moment
of the ejaculation, the limit of the policeman's positions as I
approached to lo from below would be in contact with the hero,
whereas the value for the argument lo was -. But such occur-
rences are supposed to be rare in the real world, and it is assumed,
though without adequate evidence, that all motions are continu-
ous, i./. that, given any body, if f(t) is its position at time t, -f(t)
is a continuous function of t. It is the meaning of (( continuity tt

involved in such statements which we now wish to define as
simply as possible.

The definitions given for the case of functions where argument
and value are real numbers can readily be adapted for more
general use.

Let P and Q be two relations, which it is well to imagine
serial, though it is not necessary to our definitions that they
should be so. Let R be a one-many relation whose domain
is contained in the field of P, while its converse domain is con-
tained in the field of Q. Then R is (in a generalised sense) a
function, whose arguments belong to the field of Q, while its
values belong to the field of P. Suppose, for example, that we
are dealing with a particle moving on a line: let Q be the time-
series, P the series of points on our line from left to right, R the
relation of the position of our particle on the line at time a to
the time A, so that " the R of a" is its position at time a, This
illustration may be borne in mind throughout our definitions.

We shall say that the function R is continuous for the argument
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a it, given any interval cr on the P-series containing the value
of the function for the argument a, there is an interval on the

Q-series containin g a not as an end-point and such that, through-
out this interval, the function has values which are members
of o. (We mean by an " interval t' all the terms between any
two 1 i.e. tl * and y ate two members oI the field of P, and r has
the relation P to lt we shall mean by the " P-interval x to y "
all terms z such that r has the relation P to x and z has the rela-
tion P to ),-together, when so stated, with x or y themselves.)

We can easily define the " ultimate section " and the " ulti-
mate oscillation.t' To define the t'ultimate section " for
approaches to the argument a from below, take any argltment
y which precedes a (i.e. has the relation Q to a), take the values
of the function for all arguments up to and including y, and
form the section of P defined by these values, i.e. those members
of the P-series which are earlier than or identical with some of
these values. Form all such sections for all y's that precede a,
and take their common part; this will be the ultimate section.
The ultimate upper section and the ultimate oscillation are then
defined exactly as in the previous case.

The adaptation of the definition of convergence and the
resulting alternative definition of continuity ofiers no difficulty
of any kind.

We say that a function R is " ultimately Q-convergent into
a" iI there is a member y of the converse domain of R and the
field of Q such that the value of the function for the argument
y and for any argument to which y has the relation Q is a member
of a. We say that R tt Q-converges into cr as the argument
approaches a given argument a t' if there is a term y having
the relation Q to a and belonging to the converse domain of R
and such that the value of the function for any argument in the

Q-interval from y (inclusive) to a (exclusive) belongs to o.
Of the four conditions that a function must fulfil in order

to be continuous for the argument a, the first is, putting b f.ot
the value for the argument d:
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Given any term having the relation P to b, R Q-converges

into the successors of D (with respect to P) as the argument

approaches a from below,
The second condition is obtained by replacing P by its

converse; the third and fourth are obtained from the first and

second by replacing Q by its converse.

There is thus nothing, in the notions of the limit of a function

or the continuity oL a function, that essentially involves number,

Both can be defined generally, and many propositions about

them can be proved for any two series (one being the argument-

series and the other the value-series). It will be seen that the

definitions do not involve infinitesimals. They involve infinite

classes of intervals, growing smaller without any limit short of

zero, but they do not involve any intervals that are not finite.

This is analogous to the fact that if a line an inch long be halved,

then halved again, and so on indefinitely, we never reach infini-

tesimals in this way i after a bisections, the length of our bit is

I of an inch : and this is finite whatever finite number n may
2n

be. The process of successive bisection does not lead to

divisions whose ordinal number is infinite, since it is essentially

a one-by-one process. Thus infinitesimals are not to be reached

in this way. Confusions on such topics have had much to do

with the difficulties which have been found in the discussion of

infinity and continuity.



CHAPTER XII

SELECTIONS AND THE MULTIPLICATIVE AXIOM

In this chapter we have to consider an axiom which can be
enunciated, but not proved, in terms of logic, and which is con-
venient, though not indispensable, in certain portions of mathe-
matics. It is convenient, in the sense that many interesting
propositions, which it seems natural to suppose true, cannot
be proved without its help ; but it is not indispensable, because
even without those propositions the subjects in which th.y
occur still exist, though in a somewhat mutilated form.

Before enunciating the multiplicative axiom, we must first
explain the theory of selections, and the definition of multi-
plication when the number of factors may be infinite.

In defining the arithmetical operations, the only correct pro-
cedure is to construct an actual class (or relation, in the case
of relation-numbers) having the required number of terms.
This sometimes demands a certain amount of ingenuitR but
it is essential in order to prove the existence of the number
defined. Take, as the simplest example, the case of addition.
Suppose we are given a cardinal number p,, and a class o which
has p terms. How shall we defin e p+ p i For this purpose
we must have two classes having t, terms, and t]r.y must not
overlap. We can construct such classes from o in various ways,
of which the following is perhaps the simplest: Form first all
the ordered couples whose first term is a class consisting of a
single member of a, and whose second term is the null-class;
then, secondly, form all the ordered couples whose first term is

] 1 7
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the null-class and whose second term is a class consisting of a

single member of a. These two classes of couplm have no

member in common, and the logical sum of the two classes will

have p*p terms. Exactly analogously we can define y'*v,

given that p, is the number of some class o and y is the number

of some class p.

Such definitione, as a rule, are merely a question of a suitable

technical device. But in the case of multiplication, where the

number of factors may be infinite, important Problems arise out

of the definition.
Multiplication when the number of factors is finite ofiers no

difficulty. Given two classes o and p, of which the first has

p terms and the second z terms, we can define p4v as the number

of ordered couples that can be formed by choosing the first term

out of cr and the second out of p. It will be seen that this de-

finition does not require that a and p should not overl^P; it

even remains adequate when o and B are identical. For example,

let o be the class whose memberg ate tr,', fi2, frs. Then the class

which is used to define the product pr, X p is the class of couples :

(*r, *), (tcr, tc), (xr, xa) i (xz, ,c), (xz, x), (rz, xt); (xt, tc),

(tcs, x), (xa, xe).

This definition remains applicable when 6r, or v ot both are

infinite, and it can be extended step by steP to three or four or

any finite number of factors. No difficulty arises as regards

this definition, except that it cannot be extended to an, inf'niU

number of factors.
The problem of multiplication when the number of factors

may be infinite arises in this way I Suppose we have a class rc

consisting of classes ; suppose the number of terms in each of

these classes is given. How shall we define the product of all

theee numbers I If we can frame our definition generallyn it

will be applicable wheth er K is finite or infinite. It is to be

observed that the problem is to be able to deal with the case

when rc is infinite, not with the case when its members are. If
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r is not infinite, the method defined above is just as applicable
when its members are infinite as when they are finite. It is
the case when rc is infinite, even though its members may be
finite, that we have to find a way of dealing with.

The follo*irg method of defining multiplication generally is
due to Dr Whitehead. It is explained and treated ar length in
Principia Mathematicarvol. i. * 8o fi., and vol. ii. * rr+.

Let us suppose to begin with that rc is a class of classes no two
of which overlap-say the constituencies in a country where
there is no plural voting, each constituency being considered
as a class of voters. Let us now set to work to choose one term
out of each class to be its representative, as constituencies do
when they elect members of Parliament, assuming that by law
each constituency has to elect a man who is a voter in that
constituency. We thus arrive at a class of representatives, who
make up our Parliament, one being selected out of each con-
stituency. How many different possible ways of choosing a
Parliament are there ? Each constituency can select any one
of its voters, and therefore if there arc p voters in a constituency,
it can make;r, choices. The choices of the difierent constituencies
are independent; thus it is obvious that, when the total number
of constituencies is finite, the number of possible Parliaments
is obtained by multiplying together the numbers of voters in the
various constituencies. When we do not know whether the
number of constituencies is finite or infinite, we may take the
number of possible Parliaments as dcfining the product of the
numbers of the separate constituencies. This is the method
by which infinite products are defined. We must now drop our
illustration, and proceed to exact statements.

Let rc be a class of classes, and let us assume to begin with that
no two members of rc overlap, i.c. that if o and B are two difierent
members of r, then no member of the one is a member of the
other. We shall call a class a " selection " from rc when it con-
sists of just one term from each member of. rc; i,t. t" is a ., selec-
tion t' from r if every member of ;r, belongs to some member
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of r, and if o be any member of rc, y, and o have exactly one term

in common. The class of all " selections " from K we shall call

the 6'multiplicative class " of rc. The number of terms in the

multiplicative class of r, i.e. the number of possible selections

from r, is defined as the product of the numbers of the members

of r. This definition is equally applicable whether r is finite

or infinite.
Before we can be wholly satisfied with these definitions' we

must remove the restriction that no two members of tc are to

overlap. For this purposez instead of defining first a class

called a " selectionr" we will define first a relation which we will

call a " selector." A relation R will be called a " selector "

from r if, from every member of rc, it picks out one term as the

representative of that member, i.e. if., given any member a of rc,

there is just one term x which is a member of cu and has the

relation R to o; and this is to be all that R does. The formal

definition is :
A tt selector " from a class of classes r is a one-many relation,

having rc for its converse domain, and such that, if r has the

relation to o, then r is a member of cl.

If R is a selector from r, and o is a member of rc, and x is the

term which has the relation R to cr, we call r the " rePresentative "

of o in respect of the relation R.

A " selection " from rc will now be defined as the domain of a

selector; and the multiplicative class, as before, will be the class

of selections.
But when the members of rc overlap, there may be more selectors

than selections, since a term r which belongs to two classes o

and p may be selected once to rePresent o and once to rePresent p,

grving rise to difierent selectors in the two cases, but to the same

selection. For purposes of defining multiplication, it is the

selectors we require rather than the selections' Thus we define :
t'The product of the numbers of the members of a class of

classes rc tt ig the number of selectors from rc.

We can define exPonentiation by an adaptation pf the abovq
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plan. We might, of course, define p" as the number of selectors
from y classes, each of which has p, terms. But there are
objections to this definition, derived from the fact that the
multiplicative axiom (of which we shall speak shortly) is unneces-
sarily involved if it is adopted. We adopt instead the following
construction :-

Let o be a class having F, terms, and B a class having y terms.
Let y be a member of p, and form the class of all ordered

couples that have y for their second term and a member of o for
their first term. There will be 4r such couples for a given /2 since
any member of q, may be chosen for the first term, and o has pr,
members. If we now form all the classes of this sort that result
from varying lt we obtain altogether y classes, since y may be
any member of p, and p has y members. These y classes are each
of them a class of couples, namely, all the couples that can be
formed of a variable member of o and a fixed member of p. We
define p' as the number of selectors from the class consisting of
these z classes. Or we may equally well define p," as the number of
selections, for, since our classes of couples are mutually exclusive,
the number of selectors is the same as the number of selections.
A selection from our class of classes will be a set of ordered couples,
of which there will be exactly one having any given member of B
for its second term, and the first term may be any member oI q,.

Thus pu is defined by the selectors from a certain set of v classes
each having p terms, but the set is one having a certain structure
and a more manageable composition than is the case in general.
The relevance of this to the multiplicative axiom will appear
shortly.

What applies to exponentiation applies also to the product of
two cardinals. We might define " lrxr " as the sum of the
numbers of y classes each having Fc terms, but we prefer to define
it as the number of ordered couples to be formed consisting of a
member of o followed by a member of fl where o has ;r, terms
and B has v terms. This definition, also, is designed to evade the

necessity of assuming the multiplicative axiom.
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With our definitions, we can prove the usual formal laws of

multiplication and exponentiation. But there is one thing we

cannot prove : we cannot Prove that a product is only zero when

one of its factors is zero. We can prove this when the number

of factors is finite, but not when it is infinite. In other words,

we cannot prove that, given a class of classes none of which is

null, there must be selectors from them ; or that, given a class

of mutually exclusive classes, there must be at least one class

consisting of one term out of each of the given classes. These

things cannot be proved; and although, at first sight, they seem

obviously true, yet reflection brings gradually increasing doubt,

until at last we become content to register the assumPtion and

its consequences, as we register the axiom of parallels, without
assuming that we can know whether it is true or false. The

a$sumption, loosely worded, is that selectors and selections exist

when we should expect them. There are many equivalent ways

of stating it precisely. We may begin with the following:-

" Given any class of mutually exclusive classes, of which none

is null, there is at least one class which has exactly one term in

common with each of the given classes."

This proposition we will call the " multiplicative axiom." 1

We will first give varioug equivalent forms of the proposition,

and then consider certain ways in which its truth or falsehood

is of interest to mathematics.

The multiplicative axiom is equivalent to the proposition that

a product is only zero when at least one of its factors is zero;

i.e.thatrif any number of cardinal numbers be multiplied together,

the result cannot be o unless one of the numbers concerned is o.

The multiplicative axiom is equivalent to the proposition that,

if R be any relation, and rc any class contained in the converse

domain of R, then there is at least one one-many relation implying

R and having rc for its converse domain.

The multiplicative axiom is equivalent to the assumption that

if o be any class, and r all the sub-classes of o with the exception

r See Principio Mathematiaa, vol. i. I 88. Also vql. iii. c 257-258,
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of the null-class, then tlere is at least one selector from rc. This
is the form in which the axiom was first brought to the notice of
the learned world by Zermelo, in his " Beweis, dass jede Menge
wohlgeordnet werden kann.t' t Zetmelo regards the axiom as an
unquestionable truth. It must be confessed that, until he made
it explicit, mathematicians had used it without a qualm; but it
would seem that they had done so unconsciously. And the credit
due to Zermelo for having made it explicit is entirely independent
of tle guestion whetlrer it is true or false.

The multiplicative axiom has been shown by Zermelo, in the
above-mentioned proof, to be equivalent to the proposition that
every class can be well-ordered, i.e. can be arranged in a series in
which every sub-class has a first term (except, of course, the null-
class). The full proof of this proposition is difficult, but it is not
difficult to see the general principle upon which it proceeds. It
uses the form which we call " Zermelot$ axiom r" i.e. it assumes
that, given any class o, there is at least one one-many relation R
whose converse domain consists of all existent sub-classes of o
and which is such that, if r has the relation R to f, then r is a
member of f. Such a relation picks out a " representative "
from each sub-class; of course, it will often happen that two
sub-classes have the same representative. What Zermelo does,
in effect, is to count off the members of a, one by one, by means
of R and transfinite induction. We put first the representative
of o; call it rr. Then take the representative of the class consisting
of all of o except tcr; call it xr. It must be difierent from rr,
because every representative is a member of its class, and *, is
shut out from this class. Proceed similarly to take away xr, and
let *s be the representative of what is left. In this way we first
obtain a progression #r, rr, . xn, . . ., assuming that o is not
finite. We then take away the whole progression ; let ro, be the
representative of what is left of o. In this way we can go on
until nothing is left. The successive representatives will form a

I Mathematische Annalen, vol. lix. pp. 514-6. In this form we shall
speak of it as Zermelo's axiom.
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well-ordered series containing all the members of o. (Ih. above

is, of course, only a hint of the general lines of the proof.) This

proposition is called " Zermelo's theorem."

The multiplicative axiom is also equivalent to the assumption

that of any two cardinals which are not equal, one must be the

greater. If the axiom is false, there will be cardinals p, and v

such that p, is neither less than, equal to, nor greater than v. We

have seen that tt, and 2bl. possibly form an instance of such a pait.

Many other forms of the axiom might be given, but the above

are the most important of the forms known at Present. As to

the truth or falsehood of the axiom in any of its forms, nothing

is known at present.
The propositions that depend upon the axiom, without being

known to be equivalent to it, are numerous and important. Take

first the connection of addition and multiplication. We naturally

think that the sum of y mutually exclusive classes, each having

p terms, must have pxv terms. When v is finite, this can be

proved. But when z is infinite, it cannot be proved without the

multiplicative axiom, except where, owing to some special cir-

cumstance, the existence of certain selectors can be proved. The

way the multiplicative axiom enters in is as follows: Suppose

we have two sets of y mutually exclusive classes, each having g,

terms, and we wish to prove that the sum of one set has as many

terms as the sum of the other. In order to Prove this, we must

establish a one-one relation. Now, since there are in each case
y classes, there is some one-one relation between the two sets of

classes ; but what we want is a one-one relation between their

terms. Let us consider some one-one relation S between the

classes. Then if rc and I are the two sets of classes, and cr, is some

member of r, there will be a member p of )\ which will be the

correlate of o with respect to S. Now a and p each have p terms'

and are therefore similar. There are, accordingly, one-one cor-

relations of o and B. The trouble is that there are so many. In

order to obtain a one-one correlation of the sum of r with the

sum of l, we have to pick out one selection from a tet of clasges
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of correlators, one class of the set being all the one-one correlators
of o with B. If rc and I are infinite, we cannot in general know
that such a selection exists, unless we can know that the multi-
plicative axiom is true. Hence we cannot establish the usual
kind of connection between addition and multiplication.

This fact has various curious consequences. To begin with,
we know that N'2:N'X Nq:Ns. It is commonly inferred from
this that the sum of *o classes each having Ho members must
itself have No members, but this inference is fallacious, since we
do not know that the number of terms in such a sum is *o X No,
nor consequently that it is lso. This has a bearing upon the theory
of transfinite ordinals. It is easy to prove that an ordinal which
has Ho predecessors must be one of what Cantor calls the t6 second
class,'? i.r. such that a series having this ordinal number will have
N0 terms in its field. It is also easy to see that, if we take any
progression of ordinals of the second class, the predecessors of
their limit form at most the sum of no classes each having no
terms. It is inferred thence-fallaciously, unless the multi-
plicative axiom is true-that the predecessors of the limit are N0
in number, and therefore that the limit is a number of the t' second
class." That is to say, it is supposed to be proved that any pro-
gression of ordinals of the second class has a limit which is again
an ordinal of the second class. This proposition, with the corol-
lary that a.,, (the smallest ordinal of the third class) is not the
limit of any progression, is involved in most of the recognised
theory of ordinals of the second class. In view of the way in
which the multiplicative axiom is involved, the proposition and
its corollary cannot be regarded as proved. They may be true,
or they may not. All that can be.said at present is that we do
not know. Thus the greater part of the theory of ordinals of
the second class must be regarded as unproved.

Another illustration may help to make the point clearer. We
know that zX N0- N0. Hence we might suppose that the sum
of tto pairs must have No terms. But this, though we can prove
that it is sometimes the case, cannot be proved to happ en always
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unless we assume the multiplicative axiom. This is illustrated

by the millionaire who bought a pair of socks whenever he bought

a pair of boots, and nevet at any other time, and who had such

a passion for buying both that at last he had Ho pairs of boots

and Ho pairs of socks. The problem is : How many boots had

h., and how many socks ? One would naturally suPPose that

he had twice as many boots and twice as many socks as he had

pairs of each, and that therefore he had Ho of each, since that

number is not increased by doubling. But this is an instance of

the difficulty, already noted, of connecting the sum of v classes

each having p terms with pxv. Sometimes this can be done,

sometimes it cannot. In our case it can be done with the boots,

but not with the socks, excePt by some very artificial device.

The reason for the difierence is this : Among boots we can dis-

tinguish right and left, and therefore we can make a selection of

one out of each pair, namely, we can choose all the right boots or

all the left boots; but with socks no such principle of selection

Suggests itself, and we cannot be sure, unless we assume the

multiplicative axiom, that there is any class consisting of one

sock out of each pair. Hence the problem.

We may put the matter in another way. To prove that a

class has Ho terms, it is necessary and sufficient to find some way

of arranging its terms in a progression. There is no difficulty in

doing this with the boots. The pairs are given as forming an N0,

and therefore as the field of a Progression. Within each pair,

take the left boot first and the right second, keeping the order

of the, pair unchanged; in this way we obtain a Progression of

all the boots. But with the socks we shall have to choose arbi-

trarily, with each pair, which to Put first; and an infinite number

of arbitrary choices is an impossibility. Unless we can find a

rule f.or selecting , i.e, a relation which is a selector, we do not know

that a selection is even theoretically possible. Of course, in the

case of objects in space, like socks, we always can find some

principle of selection. For example, take the centres of mass

of the socks : there will be points p in space such that, with any
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pair, the centres of mass of the two socks are not both at exactly
the same distance from p; thus we can choose, from each pair,
that sock which has its centre of mass nearer to p. But there is
no theoretical reason why a method of selection such as this
should always be possible, and the case of the socks, with a little
goodwill on the part of the reader, may serve to show how a
selection might be impossible.

It is to be observed that, if. it were impossible to select one out
of each pair of socks, it would follow thar the socks could not be
arranged in a progression, and therefore that there were not No
of them. This case illustrates that, if p is an infinite number,
one set of p, pairs may not contain the same number of terms as
another set of p, pairs I for, given no pairs of boots, there are
certainly No boots, but we cannot be sure of this in the case of
the socks unless we assume the multiplicative axiom or fall back
upon some fortuitous geometrical method of selection such as
the above.

Another important problem involving the multiplicative
axiom is the relation of reflexiveness to non-inductiveness. It
will be remembered that in Chapter VIII. we pointed out that a
reflexive number must be non-inductive, but that the converse
(so far as is known at present) can only be proved if we assume
the multiplicative axiom. The way in which this comes about
is as follows :-

It is easy to prove that a reflexive class is one which contains
sub-classes having No terms. (The class may, of course, itself
have No terms.) Thus we have to prove, if we can, that, given
any non-inductive class, it is possible to choose a progression
out of its terms. Now there is no difficulty in showing thar
a non-inductive class must contain more terms than any inductive
class, or, what comes to the same thing, that if o is a non-induc-
tive class and z is any inductive number, there are sub-classes
of a that have y terms. Thus we can form sets of finite sub-
classes of o: First one class having no terms, then classes having
r term (as many as there are members of o), t}en classes having
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2 terms, and so on. We thus get a progression of sets of sub-

classes, each set consisting of all those that have a certain given

finite number of terms. So far we have not used the multiplica-

tive axiom, but we have only proved that the number of collec-

tions of sub-classes of o is a reflexive number, i.e. that, if p is

the number of members of. a, so that z* is the number of sub-

classes of a arrd zzp is the number of collections of sub-classes,

then, provided p is not inductive, zlu must be reflexive. But

this is a long way {rom what we set out to Prove.
In order to advance beyond this point, we must employ the

multiplicative axiom. From each set of sub-classes let us

choose out one, omitting the sub-class consisting of the null-

class alone. That is to say, we select one sub-class containing

one term, aL, say ; one containing two terms, o.b say ; one con-

taining three, os, say ; and so on. (\Me can do this if the multipli-

cative axiom is assumed I otherwise, we do not know whether

we can always do it or not.) We have now a progression

ott eb es, , . . of sub-classes of o, instead of a Progression of

collections of sub-classes ; thus we are one SteP nearer to our

goal. We now know that, assuming the multiplicative axiom,

if g, is a non-inductive number, 2t' must be a reflexive number.

The next step is to notice that, although we cannot be sure

that new members of q. come in at any one specified stage in the

progression 01, ez, @b . . . we can be sure that new memberg

keep on coming in from time to time. Let us illustrate.

The class o1r which consists of one term, is a new beginning;

let the one term be 11. The class or, consisting of two termst

may or may not cont ain xr; if it does, it introduces one new

term; and if it does not, it must introduce two new terms, say

xz, xg. In this case it is possible that o, consists of fry fr22 !ts,

and so introduces no new terms, but in that case cr4 must introduce

a new term. The first v classes eb @zt Qs, . . . o/ cont ain, at

the very most, t lz*3* .  .  .  {v terms, i .e, v(v4.r)/z terms;

thus it would be possible, if there were no rePetitions in the

first y classes, to go on with only repetitions from the (zf r)tn
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class to the v(v*r)lr'o class. But by that time the old terms

would no longer be sufficiently numerous to form a next class

with the right number of members, 7.e. v(v*t)lz+t, therefore

new terms must come in at this point if not sooner. It

follows that, if we omit from our progression ab clz> @s, . ., all

those classes that are composed entirely of members that have

occurred in previous classes, we shall still have a progression.

Let our new progression be called Fr, Fr, F . . . . (We shall

have at:Fr and ar:82, because ol and a2 nlust introduce new

terms. We may or may not have as:Fs, but, speaking generally,
pn will be o,, where v is some number greater than p; i.e. the

B's are sorle of the a's.) Now these B's are such that any one

of them, say F*, contains members which have not occurred in

any of the previous B's. Let y*be the Part of Fn which consists

of new members. Thus we get a new progressiot Tt, Tb Ts, . .

(Again y1 will be identical with B, and with o1 ; if. a2 does not

contain the one member of ar, we shall have fz:Fz:o2, but if

o2 does contain this one member, y2 will consist of the other

member of o2.) This new progression of y's consists of mutually

exclusive classes. Hence a selection from them will be a Pro-
gression ; i.e. if. x, is the member of !r, *, is a member oI yr, x,

is a member of yu, and so on; then xL, xz, xs, . . . is a progression,

and is a sub-class of a. Assuming the multiplicative axiom,

such a selection can be made. Thus by twice using this axiom

we can prove that, if the axiom is true, every non-inductive

cardinal must be reflexive. This could also be deduced from

Zermelo's theorem, that, if the axiom is true, every class can be

well ordered; for a well-ordered series must have either a finite

or a reflexive number of terms in its field.
There is one advantage in the above direct argurnent, as

against deduction from Zermelo's theorem, that the above

argument does not demand the universal truth of the multi-

plicative axiom, but only its truth as applied to a set of No classes.
It may happen that the axiom holds for Hq classes, though not
for larger numbers of classes. For this reason it is better, when
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it is possible, to content ourselves with the more restricted
assumption. The assumption made in the above direct argu-
ment is that a product of *o factors is never zero unless one of
the factors is zero. We may state this assumption in the form :
" No is a multipliable numberr" where a number y is defined as
tt multipliable " when a product. of. u factors is never zero unless
one of the factors is zero. We can ?rot)e that a f,nite number is
always multipliable, but we cannot prove that any infinite number
is so. The multiplicative axiom is equivalent to the assumption
that all cardinal numbers are multipliable. But in order to
identify the reflexive with the non-inductive, or to deal with the
problem of the boots and socks, or to show that any progression
of numbers of the second class is of the second class, we only
need the very much smaller assumption that no is multipliable.

It is not improbable that there is much to be discovered
in regard to the topics discussed in the present chapter. Cases
may be found where propositions which seem to involve the
multiplicative axiom can be proved without it. It is conceivable
that the multiplicative axiom in its general form may be shown
to be false. From this point of view, Zermelo's theorem ofiers
the best hope: the continuum or some still more dense series
might be proved to be incapable of having its terms well ordered,
which would prove the multiplicative axiom false, in virtue of
zermelo's theorem. But so far, no method of obtaining such
results has been discovered, and the subject remains wrapped in
obscurity.



CHAPTER XIII

THE AXIOM OF INFINITY AND LOGICAL TYPES

TsB axiom of infinity is an assumPtion which may be enunciated

as follows :-

" If n be any inductive cardinal number, there is at least one

class of individuals having n terms."

If this is true, it follows, of course, that there are many classes

of individuals having n terms, and that the total number of

individuals in the world is not an inductive number. For, by

the axiom, there is at least one class having n+r terms' from which

it follows that there are many classes of n terms and that n is

not the number of individuals in the world. Since n is any

inductive number, it follows that the number of individuals

in the world must (if our axiom be true) exceed any inductive

number. In view of what we found in the preceding chapter,

about the possibility of cardinals which are neither inductive

nor reflexive, we cannot infer from our axiom that there are at

least t*o individuals, unless we assume the multiplicative axiom.

But we do know that there are at least No classes of classes,

since the inductive cardinals are classes of classes, and form a

progression if our axiom is true. The way in which the need

for this axiom arises may be explained as follows:-One of

Peano's assumptions is that no two inductive cardinals have the

Same successor, i.e. that we shall not have m+l:nlt unless

ffi-fl, if. m arrd n are inductive cardinals. In Chapter VIII. we

had occasion to use what is virtually the same as the above

assumption of Peano's, namely, that, if a is an inductive cardinal,
r 3 t
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zr is not equal to n{r. It might be thought that this could be
proved. We can prove that, if o is an inductive class, and n
is the number of members of o, then a is not equal to n{t.
This proposition is easily proved by induction, and might be
thought to imply the other. But in fact it does not, since there
might be no such class as o. What it does imply is this : If
n is an inductive cardinal such that there is at least one class
having rz members, then a is not equal to n+r. The axiom of
infinity assures us (whether truly or falsely) that there are classes
having a members, and thus enables us to assert that n is not
equal to n{t. But without this axiom we should be left with
the possibility that n and nlr might both be the null-class.

Let us illustrate this possibility by an example: Suppose
there were exactly nine individuals in the world. (As to what
is meant by the word " individualr" I must ask the reader to
be patient.) Then the inductive cardinals from o up to 9 would
be such as we expect, but ro (defined as g*l) would be the
null-class. It will be remembered that n+r may be defined as
follows i n+r is the collection of all those classes which have a
terrn * such that, when r is taken away, there remains a class
of n terms. Now applying this definition, we see that, in the
case supposed, 9* r is a class consisting of no classes, f.a. it is
the null-class. The same will be true oI g*2, or generally of
g*n, unless n is zero. Thus ro and all subsequent inductive
cardinals r,vill all be identical, since they will all be the null-class.
In such a case the inductive cardinals will not form a progression,
nor will it be true that no two have the same successor, for 9
and ro will both be succeeded by the null-class (ro being itself
the null-class). It is in order to prevent such arithmetical
catastrophes that we require the axiom of infinity.

As a matter of fact, so long as we are content with the arith-
metic of finite integers, and do not introduce either infinite
integers or infinite classes or series of finite integers or ratios,
it is possible to obtain all desired results without the axiom of
infinity. That is to say, we can deal with the addirion, multi-
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plication, and exponentiation of finite integers and of ratios,

but we cannot deal with infinite integers or with irrationals.

Thus the theory of the transfinite and the theory of real numbers

fails us. How these various results come about must now be

explained.
Assuming that the number of individuals in the world is n,

the number of classes of individuals will be zn. This is in virtue

of the general proposition mentioned in Chapter VIII. that the

number of classes contained in a class which has n members

is zn. Now zn is always greater than n. Hence the number

of classes in the world is greater than the number of individuals.

If, now, we suppose the number of individuals to be 9t as we did

just no% the number of classes will be zs, i.e. 5rz. Thus if we

take our numbers as being applied to the counting of classes

instead of to the counting of individuals, our arithmetic will

be normal until we reach 5rz i the first number to be null will

be !rJ. And if we advance to classes of classes we shall do still

better : the number of them will be 2512, ^ number which is so

large as to stagger imagination, since it has about r53 digits.

And if we advance to classes of classes of classes, we shall obtain

a number represented by 
" 

raised to a Power which has about

rJ3 digits; the number of digits in this number will be about

three times 10162. In a time of paper shortage it is undesirable

to write out this number, and if we want larger ones we can

obtain them by travelling further along the logical hierarchy.

In this way arry assigned inductive cardinal can be made to

find its plaee among numbers which are not null, merely by

travelling along the hierarchy for a sufficient distance.l

As regards ratios, we have a very similar state of afiairs.

If a ratio y,lv is to have the expected properties, there must

be enough objects of whatever sort is being counted to insure

that the null-class does not suddenly obtrude itself. But this

can be insured, for any given ratio y'fv, without the axiom of

r On this subject see Pilncipia Mathematica, vol. ii. xrzo fr'. On the

corresponding problems as regards ratio, see ibid., vol. iii. * 3o3 ff.
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infinity, by merely travelling up the hierarchy a sufficient distance.
If we cannot succeed by counting individuals, we can try counting
classes of individuals ; if we still do not succeed, we can try
classes of classes, and so on. Ultimately, however few indi-

viduals there may be in the world, we shall reach a stage where
there are many more than p objects, whatever inductive number
p may be. Even if there were no individuals at all, this would
still be true, for there would then be one class, namely, the null-

class, z classes of classes (namely, the null-class of classes and the

class whose only member is the null-class of individuals),4 classes
of classes of classes, t6 at the next stage, 65rfi6 at the next
stage, and so on. Thus no such assumption as the axiom of
infinity is required in order to reach any given ratio or any given
inductive cardinal.

It is when we wish to deal with the whole class or series of
inductive cardinals or of ratios that the axiom is required. We
need the whole class of inductive cardinals in order to establish
the existence of No, and the whole series in order to establish
the existence of progressions : for these results, it is necessary
that we should be able to make a single class or series in which
no inductive cardinal is null. We need the whole series of ratios
in order of magnitude in order to define real numbers as segments :
this definition will not give the desired result unless the series
of ratios is compact, which it cannot be if the total number of
ratios, at the stage concerned, is finite.

It would be natural to suppose-as I supposed myself in former
days-that, by means of constructions such as we' have been
considering, the axiom of infinity could be proved. It may be
said: Let us assume that the number of individuals is z, where
n may be o without spoiling our argument ; then if we form the
complete set of individuals, classes, classes of classes, etc., all
taken together, the number of terms in our whole set will be

n { z n { z \ n  , . .  a d i n f . ,

which is lr0. Thus taking all kinds of objects together, and not
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confining ourselves to objects of any one tyPe, we shall certainly

obtain an infinite class, and shall therefore not need the axiom

of infinity. So it might be said.
Now, before going into this argument, the first thing to observe

is that there is an air of hocus-pocus about it : something reminds

one of the conjurer who brings things out of the hat. The man

who has lent his hat is quite sure there wasn't a live rabbit in it
before, but he is at a loss to say how the rabbit got there. So
the reader, if he has a robust sense of reality, will feel convinced

that it is impossible to manufacture an infinite collection out of

a finite collection of individuals, though he may be unable to
say where the flaw is in the above construction. It would be a

mistake to lay too much stress on such feelings of hocus-Pocus ;
like other emotions, they may easily lead us astray. But they

afiord a prirua facie ground for scrutinising very closely any

argument which arouses them. And when the above argument
is scrutinised it will, in my opinion, be found to be fallacious,

though the fallacy is a subtle one and by no means easy to avoid

consistently.
The fallacy involved is the fallacy which may be called " con-

fusion of types." To explain the subject of " types " fully would

require a whole volume; moreover, it is the purpose of this book

to avoid those parts of the subjects which are still obscure and

controversial, isolating, for the convenience of beginners, those

parts which can be accepted as embodying mathematically ascer-

tained truths. Now the theory of types emphatically does not

belong to the finished and certain part of our subject : much of

this theory is still inchoate, confused, and obscure. But the need

of some doctrine of types is less doubtful than the precise form

the doctrine should take; and in connection with the axiom of

infinity it is particulariy easy to see the necessity of some such

doctrine.
This necessity results, for example, from the " conffadiction of

the greatest cardinal." We saw in Chapter VIII. that the number

of classes contained in a given class is always greater than the
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number of members of the class, and we inferred that there is
no greatest cardinal number. But if we could, as we suggested
a moment ago, add together into one class the individuals, classes
of individuals, classes of classes of individuals, etc., we should
obtain a class of which its own sub-classes would be members.
The class consisting of all objects that can be counted, of whatever
sort, must, if there be such a class, have a cardinal number which
is the greatest possible. Since all its sub-classes will be members
of it, there cannot be more of them than there are members.
Hence we arrive at a contradiction.

When I first came upon this contradiction, in the year r9or,
I attempted to discover some flaw in Cantor's proof that there is
no greatest cardinal, which we gave in Chapter VIII. Apply-
ing this proof to the supposed class of all imaginable objects,
I was led to a new and simpler contradiction, namely, the
following :-

The comprehensive class we are considering, which is to embrace
everything, must embrace itself as one of its members. In other
words, if there is such a thing as tt everythingr" then tt every-
thing " is something, and is a member of the class " everythirg."
But norm ally a class is not a member of itself. Mankind, for
example, is not a man. Form now the assemblage of all classes
which are not members of themselves. This is a class : is it a
member of itself or not ? If it is, it is one of those classes that
are not members of themselves, i.e.it is not a member of itself.
If it is not, it is not one of those classes that are not members of
themselves, i.e. it is a member of itself. Thus of the two hypo-
theses-that it is, and that it is not, a member of itself-each
implies its contradictory. This is a contradiction.

There is no difficulty in manufacturing similar contradictions
ad lib. The solution of such contradictions by the theory of
types is set forth fully in Principia Mathematica,r and also, more
briefly, in articles by the present author in the American Journal

r Vol. i., Introduction, chap. ii., x rz and * 20 i vol ii., Prefatory
Statement.
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of Matltematics 1 and in the Revue de Metapbysique et de Morul.e.z

For the present an outline of the solution must suffi.ce.

The fallacy consists in the formation of what we may call

" impure t' classes, i.t. classes which are not Pure as to " tyPr-"

As we shall see in a later chapter, classes are logical fictions, and

a statement which appears to be about a class will only be signi-

ficant if it is capable of translation into a form in which no mention

is made of the class. This places a limitation upon the ways in

which what are nominally, though not really, names for classes

can occur significantly: a sentence or set of symbols in which

such pseudo-names occur in wrong ways is not false, but strictly

devoid of meaning. The supposition that a class is, or that it

is not, a member of itself is meaningless in just this way. And

more generally, to suppose that one class of individuals is a

member, or is not a member, of another class of individuals

will be to suppose nonsense; and to construct symbolically any

class whose rnembers are not all of the same grade in the logical

hierarchy is to use symbols in a way which makes them no

longer symbolise anything.
Thus if there are n individuals in the world, and zn classes of

individuals, we cannot form a new class, consisting of both

individuals and classes and having n{zn members. In this way

the attempt to escape from the need for the axiom of infinity

breaks down. I do not Pretend to have explained the doctrine

o{ types, or done more than indicate, in rough outline, why there

is need of such a doctrine. I have aimed only at saying just

so much as was required in order to show that we cannot prot)e

the existence of infinite numbers and classes by such conjurer's

methods as we have been examining. There remain, however,

certain other possible methods which must be considered.

Various arguments professing to Prove the existence of infinite

classes are given in the Principles of Mathematics, S f fg (p. lSil.

1 " Mathematical Logrc as based on the Theory of Types," vol. xxx.'

r9o8, pp. zzz-262.
2 " Les paradoxes de la logique," 19o6, pp,62745o.
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In so far as these arguments assume that, if. n is an inductive
cardinal, a is not equal to n{r, they have been already dealt
with. There is an argument, suggested by a passage in Plato's
Parmenides, to the effect that, if there is such a number as r,
then r has being; but r is not identical with being, and therefore
r and being are two, and therefore there is such a number as z,
and z together with r and being gives a class of three terms, and
so on. This argument is fallacious, partly because " being " is
not a term having any definite meaning, and still more because,
if a definite meaning were invented for it, it would be found that
numbers do not have being-they are, in fact, what are called
tt logical fictionsrtt as we shall see when we come to consider
the definition of classes.

The argument that the number of numbers from o to n (both
inclusive) is zf r depends upon the assumption that up to and
including n to number is equal to its successor, which, as we have
seen, will not be always true if the axiom of infinity is false. It
must be understood that the equation n:fl*r, which might be
true for a finite n if. n exceeded the total number of individuals
in the world, is quite difierent from the same equation as applied
to a reflexive number. As applied to a reflexive number, it
means that, given a class of a terms, this class is " similar t, to
that obtained by adding another term. But as applied ro a
number which is, too great for the actual world, it merely means
that there is no class of z individuals, and no class oI n{r indi-
viduals ; it does not mean that, if we mount the hierarchy of
types sufficiently far to secure the existence of a class of a terms,
we shall then find this class " similar " to one of. nfr terms, for
if a is inductive this will not be the case, quite independently of
the truth or falsehood of the axiom of infinity.

There is an argument employed by both Bolzano 1 and Dede-
kind 2 to prove the existence of reflexive classes. The argument,
in brief, is this : An object is not identical with the idea of the

r Bolzano, Paradoxien d,es Uncnillicken, t3.
r Dedekind, Was sinil und, was sotrlen ilie Zahlen I No. 66.
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object, but there is (at least in the realm of being) an idea of any

object. The relation of an object to the idea of it is one-one, and

ideas are only some among objects. Hence the relation " idea
of " constitutes a reflexion of the whole class of objects into a

part of itself, namely, into that part which consists of ideas.
Accordingly, the class of objects and the class of ideas are both
infinite. This argument is interesting, not only on its own
account, but because the mistakes in it (or what I judge to be

mistakes) are of a kind which it is instructive to note. The
main error consists in assuming that there is an idea of every
object. It is, of course, exceedingly difficult to decide what is
meant by an " idea tt I but let us assume that we know. We are
then to suppose that, starting G"y) with Socrates, there is the
idea of Socrates, and so on ad inf. Now it is plain that this is not
the case in the sense that all these ideas have actual empirical
existence in people's minds. Beyond the third or fourth stage
they become mythical. If the argument is to be upheld, the

" ideas " intended must be Platonic ideas laid up in heaven, for
certainly they are not oh earth. But then it at once becomes
doubtful whether there are such ideas. If we are to know that

there are, it must be on the basis of some logical theory, proving

that it is necessary to a thing that there should be an idea of it.
We certainly cannot obtain this result empirically, or apply it,

as Dedekind does, to " meine Gedankenwelt tt-1hg world of my

thoughts.
If we were concerned to examine fully the relation of idea and

object, we should have to enter upon a number of psychological

and logical inquiries, which are not relevant to our main purpose.

But a few further points should be noted. If " idea " is to be

understood logically, it may be identical vnth the object, or it

may stand for a desmiption (in the sense to be explained in a
subsequent chapter). In the former case the argument fails,
because it was essential to the proof of reflexiveness that object

and idea should be distinct. In the second case the argument

also fails, because the relation of object and description is not
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one-one : there are innumerable correct descriptions of any given
object. Socrates (t.5.) may be described as " the master of
Plator" or as " the philosopher who drank the hemlockr" or as

" the husband of Xantippe." If-to take up the remaining
hypothesis-(6 idea " is to be interpreted psychologically, it must
be maintained that there is not any one definite psychological
entity which could be called the idea of the object : there are in-
numerable beliefs and attitudes, each of which could be called an
idea of the object in the sense in which we might say " my idea
of Socrates is quite different from yours," but there is not any
central entity (except Socrates himself) to bind together various
tt ideas of Socratesrtt and thus there is not any such one-one rela-
tion of idea and object as the argument supposes. Nor, of course,
as we have already noted, is it true psychologically that there are
ideas (in however extended a sense) of more than a tiny proportion
of the things in the world. For all these reasons, the above
argument in favour of the logical existence of reflexive classes
must be rejected.

It might be thought that, whatever may be said of. logical
arguments, the ernpirical arguments derivable from space and
time, the diversity of colours, etc., are quite suficient to prove
the actual existence of an infinite number of particulars. I do
not believe this. We have no reason except prejudice for believ-
ing in the infinite extent of space and time, at any rate in the sense

in which space and time are physical facts, not mathematical
fictions. We naturally regard space and time as continuous, or,
at least, as compact; but this again is mainly prejudice. The
theory of t'quanta t' in physics, whether true or false, illustrates
the fact that physics can never afford proof of continuity, though
it might quite possibly afford disproof. The senses are not
sufficiently exact to distinguish between continuous motion and
rapid fiscrete succession, as anyone may discover in a cinema.

A world in which all motion consisted of a series of small finite
jerks would be empirically indistinguishable from one in which
motion was continuous. It would take up too much space to
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defend these theses adequately; for the present I am merely
suggesting them for the reader's consideration. If they are valid,
it follows that there is no empirical reason for believing the
number of particulars in the world to be infinite, and that there

never can be I also that there is at present no empirical reason
to believe the number to be finite, though it is theoretically
conceivable that some day there might be evidence poindog,
though not conclusively, in that direction.

From the fact that the infinite is not self-contrafictory, but is
also not demonstrable logically, we must conclude that nothing
can be known a priori as to whether the number of things
in the world is finite or infinite. The conclusion is, therefore,

to adopt a Leibnizian phraseology, that some of the possible
worlds are finite, some infinite, and we have no means of
knowing to which of these two kinds our actual world belongs.
The axiom of infinity will be true in some possible worlds
and false in others ; whether it is true or false in this world,
we cannot tell.

Throughout this chapter the synonyms " individual " and
(( particular" have been used without explanation. It would be
impossible to explain them adequately without a longer disquisi-

tion on the theory of types than would be appropriate to the

present work, but a few words before we leave this topic may
do something to diminish the obscurity which would otherwise
envelop the meaning oI these words.

In an ordinary statement we can distinguish a verb, expressing

an attribute or relation, from the substantives which express the

subject of the attribute or the terms of the relation. " Casar

lived " ascribes an attribute to Casar; '6 Brutus killed Casar "
expresses a relation between Brutus and Casar. Using the word
6'subject tt in a generalised sense, we may call both Brutus and

Casar subjects of this proposition: the fact that Brutus is gram-

matically subject and Casar object is logically irrelevant, since
the same occurrence may be expressed in the words tt Casar was
killed by Brutus," where Casar is the grammatical subject.
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Thus in the simpler sort of proposition we shall have an attribute
or relation holding of or between one, two or more " subjects tt

in the extended sense. (A relation may have more than two
terms i e.g. "Agives B to C" is arelation of.three terms.) Now
it often happens that, on a closer scrutiny, the apparent subjects
are found to be not really subjects, but to be capable of analysis ;
the only result of this, however, is that new subjects take their
places. It also happens that the verb may grammatically be
made subject i e.g. we may say, " Killing is a relation which
holds between Brutus and Casar." But in such cases the
grammar is misleading, and in a straightforward statement,
following the rules that should guide philosophical grammar,
Brutus and Casar will appear as the subjects and killing
as the verb.

We are thus led to the conception of terms which, when they
occur in propositions, can only occur as subjects, and never in
any other way. This is part of the old scholastic definition
oL substance ; but persistence through time, which belonged to
that notion, forms no part of the notion with which we are con-
cerned. We shall define tt proper names tt as those terms which
can only occur as subiects in propositions (using " subject "
in the extended sense just explained). We shall further define

" individuals " or 66 particulars " as the objects that can be
named by proper names. (It would be better to define them
directly, rather than by means of the kind of symbols by which
they are symbolised; but in order to do that we should have
to plunge deeper into metaphysics than is desirable here.) It
it, of course, possible that there is an endless regress : that
whatever appears as a particular is really, on closer scrutiny,
a class or some kind of complex. If this be the case, the axiom
of infinity must of course be true. But if it be not the case,
it must be theoretically possible for analysis to reach ultimate
subjects, and it is these that give the meaning of " particulars "
or " individuals." It is to the number of these that the axiom
of infinity is assumed to apply. If it is true of them, it is true
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of classes of them, and classes of classes of them, and so on;
similarly if it is false of them, it is false throughout this hierarchy.
Hence it is natural to enunciate the axiom concerning them rather
than concerning any other stage in the hierarchy. But whether
the axiom is true or false, there seems no known method of
discovering.



CHAPTER XIV

INCOMPATIBILITY AND THE THEORY OF DEDUCTION

Wu have now explored, somewhat hastily it is true, that Part
of the philosophy of mathematics which does not demand a

critical examination of the idea of class. In the preceding

chapter, however, w€ found ourselves confronted by problems

which make such an examination imperative. Before we can

undertake it, we must consider certain other parts of the philos-

ophy of mathematics, which we have hitherto ignored. In a

synthetic treatment, the parts which we shall now be concerned

with come first: they are more fundamental than anything

that we have discussed hitherto. Three topics will concern us

before we reach the theory of, classes, namely : (r) the theory

of deduction, (z) propositional functions, (l) descriptions. Of

these, the third is not logically presupposed in the theory of

classes, but it is a simpler example of the kind, of theory that

is needed in dealing with classes. It is the first topic, the theory

of deduction, that will concern us in the present chaPter.

Mathematics is a deductive science : starting from certain

premisses, it arrives, by a strict Process of deduction, at the

various theorems which constitute it. It is true that, in the Past,
mathematical deductions were often greatly lacking in rigour;

it is true also that perfect rigour is a scarcely attainable ideal.

Nevertheless, in so far as rigour is lacking in a mathematical

proof, the proof is defective ; it is no defence to urge that common

sense shows the result to be correct, for if we were to rely uPon

that, it would be better to dispense with argument altogether,
r++
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rather than bring fallacy to the rescue of common sense. No
appeal to common sense, or tt intuitionr" or anything except strict
deductive logic, ought to be needed in mathematics after the
premisses have been laid down.

Kant, having observed that the geometers of his day could
not prove their theorems by unaided argument, but required
an appeal to the figure, invented a theory of mathematical
reasoning according to which the inference is never strictly
logical, but always requires the support of what is called
" intuition." The whole trend of modern mathematics, with
its increased pursuit of rigour, has been against this Kantian
theory. The things in the mathematics of Kant's day which
cannot be proved, cannot be known-for example, the axiom of
parallels. What can be known, in mathematics and by mathe-
matical methods, is what can be deduced from pure logic. What
else is to belong to human knowledge must be ascertained other-
wise-empirically, through the senses or through experience in
some form, but not a priori. The positive grounds for this
thesis are to be found in Principia Mathematica, passirn 1 a
controversial defence of it is given in the Principles of Matbe-
matics. We cannot here do more than refer the reader to those
works, since the subject is too vast for hasty treatment. Mean-
while, we shall assume that all mathematics is deductive, and
proceed to inquire as to what is involved in deduction.

In deduction, we have one or more propositions calle d pre-
tnisses, from which we infer a proposition called the conclusion.
For our purposes, it will be convenient, when there are originally
several premisses, to amalgamate them into a single proposition,
so as to be able to speak of. the premiss as well as of the con-
clusion. Thus we may regard deduction as a process by which
we pass from knowledge of a certain proposition, the premiss,
to knowledge of a certain other proposition, the conclusion.
But we shall not regard such a process as logical deduction unless
it is correct, i.e. unless there is such a relation between premiss
and conclusion that we have a right to betrieve the conclusion
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if we know the premiss to be true. It is this relation that is

chiefly of interest in the logical theory of deduction.

In order to be able validly to infer the truth of a proposition,

we must know that some other proposition is uue, and that

there is between the two a relation of the sort called "implicationr"
i.e. that (as we say) the premiss " implies " the conclusion. (We

shall define this relation shortly.) Or we may know that a certain

other proposition is false, and that there is a relation between

the two of the sort called " disjunctionr" expressed by " p or qr" I

so that the knowledge that the one is false allows us to infer

that the other is true. Again, what we wish to infer may be

the falsehood. of some proposition, not its truth. This may be

inferred from the truth of another proposition, provided we know

that the two are" incompatibler" i.e, that if one is true, the other

is false. It may also be inferred from the falsehood of another
proposition, in just the same circumstances in which the truth

of the other might have been inferred from the truth of the one;
i.e. from the falsehood of p we may infer the falsehood of g, when

g implies p. All these four are cases of inference. When our
minds are fixed upon inference, it seems natural to take tt impli-
cation " as the primitive fundamental relation, since this is the
relation which must hold between p and g if we are to be able

to infer the truth of g from the trutb of P. But for technical
reasons this is not the best primitive idea to choose. Before

proceeding to primitive ideas and definitions, let us consider
further the various functions of propositions suggested by the

above-mentioned relations of propositions.
The simplest of such functions is the negative, "not1t."

This is that function of p which is true when 2 is false, and false

when p is true. It is convenient to speak of the truth of a pro-

position, or its falsehood, as its " truth-value " 2 ; i.e. trutlt is

the " truth-value " of a true proposition, andifalsebood of a false

one. Thus not? has the opposite truth-value to p.

1 We shall use the letters f , g, t, s, I to denote variable propositions.
a This term is due to Frege.
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We may take next disiunctionr " ? or {." This is a function
whose truth-value is truth when p is true and also when g is true,
but is falsehood when both p and q are false.

Next we may take coniunctiofl, " p and q." This has truth
for its truth-value when p and g arc both true; otherwise it
has falsehood for its truth-value.

Take next incompatibility, i.e. " p and q arc not both true."
This is the negation of conjunction ; it is also the disjunction
of the negations of p and g, i.e. it is (( not-p or not-q." fts truth-
value is truth when p is false and likewise when g is false; its
truth-value is falsehood when p and g are both true.

Last take implication, i.e. " p implies qr" ot cc if p, then g."
This is to be understood in the widest sense that will allow us
to infer the truth of g if we know the truth oI p. Thus we inter-
pret it as meaning : " Unless p is false, g is truert' or t' either
p is fals e or g is true." (The fact that " implies " is capable
of other meanings does not concern us ; this is the meaning which
is convenient for us.) That is to saf r 

'c p implies g " is to mean
(c not-p or q, " : its truth-value is to be truth if p is false, likewise
if g is true, and is to be falsehood if. p is true and. g is false.

We have thus five functions: negation, disjunction, conjunction,
incompatibility, and implication. We might have added others,
for example, joint falsehood, cc not-p and not-gr" but the above
five will suffice. Negation differs from the other four in being
a function of one proposition, whereas the others are functions
of. two. But all five agree in this, that their truth-value depends
only upon that of the propositions which are their arguments.
Given the truth or falsehood of pt or of. p and g (as the case may
be), we are given the truth or falsehood of the negation, disjunc-
tion, conjunction, incompatibility, or implication. A function of
propositions which has this property is called a " truth-function."

The whole meaning of a truth-function is exhausted by the
statement of the circumstances under which it is true or false.

" Not7r" for example, is simply that function of p which is true
when p is false, and false when p is true : there is no further
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meaning to be assigned to it. The same applies to " p or q

and the rest. It follows that two truth-functions which have

the same truth-value for all values of the argument are indis-

tinguishable. For example, " p and q " is the negation of
cc not-p or not-g tt and sice oersa.; thus either of these may be

dej.ned as the negation of the other. There is no further meaning

in a truth-function over and above the conditions under which

it is true or false.
It is clear that the above five truth-functions are not all inde-

pendent. We can define some of them in terms of others. There

is no great difficulty in reducing the number to two; the two

chosen in Principia Mathematica are negation and disjunction.

Implication is then defined as " not'p or q " ; incompatibility

as K not-p or not-g " I conjunction as the negation of incompati-

bility. But it has been shown by Shefier 1 that we can be content

with one pimitive idea for all five, and by Nicod 2 that this enables

us to reduce the primitive propositions required in the theor;'

of deduction to two non-formal principles and one formal one.

For this purpose, we may take as our one indefinable either

incompatibility or joint falsehood. We will choose the former.

Our primitive idea, now, is a certain truth-function called
'6 incompatibilityr" which we will denote by plq. Negation

can be at once defined as the incompatibility of a proposition

with itself, i.e. (3 not-p " is defined as " plpl' Disjunction is

the incompatibility of not-p and not-ll, i.e- it is (plillllil-

Implication is the incomPatibility of- p and not-{, i.e. pl(qld.

Conjunction is the negation of incompatibility, i.e. it it (plill

(plq). Thus all our four other functions are defined in terms

of incompatibility.
It is obvious that there is no limit to the manufacture of truth-

functions, either by introducing more arguments or by repeating

arguments. What we are concerned with is the connection of

this subject with inference.

t Trans. Am. Math. Soc., vol. xiv. pp. 48r-488.
8 Ptoc. Camb. Phil. Soa., vol. xix., i., January r9\?.
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If we know that p is uue and that p implies b we can proceed
to assert {. There is always unavoidably sornething psycho-
logical about inference : inference is a method by which we arrive
at new knowledge, and what is not psychological about it is the
relation which allows us to infer correctly ; but the actual passage
from the assertion of p to the assertion of g is a psychological
process, and rve must not seek to represent it in purely logical
terms.

In mathematical practice, when we infer, we have always
some expression containing variable propositions, say p and q,
which is known, in virtue of its form, to be true for all values
oI p and I i we have also some other expression, part of the former,
which is also known to be true for all values ol p and q; and in
virtue of the principles of inference, we are able to drop this part
of our original expression, and assert what is left. This somewhat
abstract account may be made clearer by ^ few examples.

Let us assume that we know the five formal principles of
deduction enumerated in Principia Mathematica. (M. Nicod has
reduced these to one, but as it is a complicated proposition,
we will begin with the five.) These five propositions are as
follows:-

(r) " p or p " impltes p-i.e. if either p is true or p is true,
then p is true.

(z) g implies "p o, q"-i.e. the disjunction " p ot g" is true
when one of its alternatives is true.

(3) " p ot g " implies " g or p." This would not be required
if we had a theoretically more perfect notation, since in the
conception of disjunction there is no order involved, so that

"p ot g" and " q or p" should be identical. But since our
symbols, in any convenient form, inevitably introduce an order,
we need suitable assumptions for showing that the order is
irrelevant.

(+) If either p is mue or " g or r" is true, then either g is true
or " p or r " is true. (The twist in this proposition serves to
increase its deductive power.)
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G) If g implies r, then " p o, g " implies " P or r."

These ate the formal principles of deduction employed in

Principia Mathematica. A formal principle of deduction has a

double use, and it is in order to make this clear that we have

cited the above five propositions. It has a use as the premiss

of an inference, and a use as establishing the fact that the pre-

miss implies the conclusion. In the schema of an inference

we have a proposition p, and a proPosition " p implies (lr" from

which we infer g. Now when we are concerned with the princi-

ples of deduction, our apparatus of primitive propositions has

to yield both the p and the " p implies g " of our inferences.

That is to say, our rules of deduction are to be used, not only as

rules, which is their use for establishitg " p implies gr" but also

as substantive premisses, i.e. as the 2 of our schema. Suppose,

for example, we wish to prove that if p implies g, then if g

implies r it follows that p implies r. We have here a relation of

three propositions which state implications. Put

pr:P implies I, ?z:I implies r, and ?s:P implies r.

Then we have to prove that p, implies that p, implies pr. Now

take the fifth of our above principles, substitute not? for p,

and remember that cc tot-p or g " is by definition the same as

" p implies g." Thus our fifth principle yields :

" If q implies r, then '2 implies g' implies '2 implies rr'"

i.e. " p, implies that fu implies pu." Call this ProPo-
sition A.

But the fourth of our principles, when we substitute not-p,

not-q, for p and g, and remember the definition of implication,

becomes:

" If p implies that g implies r, then g implies that p implies r."

Writing prin place of P, Prin place of q, and pr in place of r, this

becomes:

" If primplies that pr implies pr, then pl implies that p, implies

pr." Call this B.
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Now we proved by means of our fifth principle that

" primpties that p1 implies ?sr" which was what we called A.

Thus we have here an instance of the schema of inference,
since A represents the p of our scheme, and B represents the
tt p implirt Ot'r, Hence we arrive ^t g, namely,

'p, implies that p, implies ps,"

which was the proposition to be proved. In this proof, the
adaptation of our fifth principle, which yields A, occurs as a
substantive premiss ; while the adaptation of our fourth principle,
which yields B, is used to give the form of the inference. The
formal and material employments of premisses in the theory
of deduction are closely intertwined, and it is not very important
to keep them separated, provided we realise that they are in
theory distinct.

The earliest method of arriving at new results from a premiss
is one which is illustrated in the above deduction, but which
itself can hardly be called deduction. The primitive propositions,
whatever they may be, are to be regarded as asserted for all
possible values of the variable propositions p, g, r which occur
in them. We may therefore substitute for (r"y) p any expression
whose value is always a proposition, e.g. not-p, " s implies t,"
and so on. By means of such substitutions we really obtain
sets of special cases of our original proposition, but from a prac-
tical point of view we obtain what are virtually new propositions.
The legitimacy of substitutions of this kind has to be insured by
means of a non-formal principle of inference.l

We may now state the one formal principle of inference to
which M. Nicod has reduced the five given above. For this
purpose we will first show how certain truth-functions can be
defined in terms of incompatibility. We saw already that

plklg) means " p implies f."

r No such principle is
Nicod's article mentioned

enunciated in Principia Mathematica or in M.
above. But this would seem to be an omission,
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We now observe that

plklr) means " P imphes both g and r."

For this expression means " p i, incompatible with the incom-

patibility of. g and rr" i.e. " p implies that g and r ate not incom-

patibler" i.e. " 2 implies that q and r are both 11ug"-for' as

we saw, the conjunction of q and r is the negation of their

incompatibility.
Observe next that I l(tlt) means " I implies itself." This is a

particular case o!? | (q ld.
Let us write I to,r the negation of 2 ; thus p/s will mean the

negation of pf s, i.e. it will mean the conjunction of p and s. It

follows that

$lq)
expresses the incompatibility of slq with the conjunction of

p and s ; in other words, it states that if p and r are both true,

slq is false, i.e. s and q are both true; in still simpler words,

it states that p and s jointly imply s and g jointly.

Now, put P -p | (q lr),
T:t l  ( t  l t ) ,  _
e-('ldlp l'.

Then M. Nicod's sole formal principle of deduction is

pl.r le,
in other words, P implies both zr and Q.

He employs in addition one non-formal principle belonging

to the theory of types (which need not concern us), and one

corresponding to the principle that, given p, and given that

p implies % we can assert g. This principle is :

" If plQlg) is true, and p is true, then g is true." From

this apparatus the whole theory of deduction follows, excePt

in so far as we are concerned with deduction from or to the

existence or the universal truth of " propositional functionsr"

which we shall consider in the next chapter.

There is, if I arl not mistaken, a certain confusion in the

lp I '
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minds of some authors as to the relation, between propositions,
in virtue of which an inference is valid. In order that it may
be sali.d to infer g from p, it is only necessary that p should be
true and that the proposition (( not-p ot q " should be true.
Whenever this is the case, it is clear that g must be true. But
inference will only in fact take place when the proposition K notn
ot g" is known otherwise than through knowledge of not-p or
knowledge of. q. Whenever p is false, 'cnot-p or q,, is true,
but is useless for inference, which requires that p should be true.
Whenever g is already known to be true, K not-p or g " is of
course also known to be true, but is again useless for inference,
since g is already known, and therefore does not need to be
inferred. In fact, inference only arises when c' not-p or q,',
can be known without our knowing already which of the two
alternatives it is that makes the disjunction true. Now, the
circumstances under which this occurs are those in which certain
relations of form exist between p and q. For example, we know
that if r implies the negation of s, then s implies the negation
of. r. Between " r implies not-J " and tt s implies not-r tt there
is a formal relation which enables us to know that the first implies
the second, without having first to know that the first is false
or to know that the second is true. It is under such circum-
stances that the relation of implication is practically useful for
drawing inferences.

But this formal relation is only required in order that we may
be able to hnow that either the premiss is false or the conclusion
is true. It is the truth of " r.ot+ or g " that is required for
the validity of. the inference I what is reguired furtJrer is only
required for the practical feasibility of the inference. Professor
C. I. Lewis I has especially stufied the narrower, formal relation
which we may call " formal deducibilityl' He urges that the
wider relation, that expressed by " not-p or gr" should not be
called tt implication." That ir, however, a matter of words.

1 See Mdnil, vol. xxi., rgt2, pp. Szz-53 r ; and vol. xxiii., rgr4, pp.
240447.
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Provided our use of words is consistent, it matters little how we

define them. The essential point of difierence between the

theory which I advocate and the theory advocated by Professor

Lewis is this : He maintains that, when one ProPosition g is
,, formally deducible " from another p, the relation which we

perceive between them is one which he calls 6( strict implicatiodr"

which is not the relation expressed by " not-p or q," but a narrower

relation, holding only when there are certain formal connections

between p and q. I maintain that, whether or not there be

such a relation as he speaks of, it is in any case one that mathe-

matics does not need, and tlerefore one that, on general grounds

of economy, ought not to be admitted into our aPParatus of

fundamental notions; that, whenever the relation of " formal

deducibility " holds between two propositions, it is the case that

we can see lfiat either the first is false or the second true' and that

nothing beyond this fact is necess ary to be admitted into our

premisses; and t}at, finally, the reasons of detail which Professor

Lewis adduces against the view which I advocate can all be met

in detail, and depend for theit plausibility uPon a covert and

unconscious assumption of the point of view which I reject.

I conclude, therefore, that there is no need to admit as a funda-

mental notion any form of implication not expressible as a

truth-function.



CHAPTER XV

PROPOSITIONAL FUNCTIONS

Wnru, in the preceding chapter, we were discussing propositions,
we fid not attempt to give a definition of the word " proposition."
But although the word cannot be formally defined, it is necessary
to say something as to its meaning, in order to avoid the very
common confusion with " propositional functionsrt' which are to
be the topic of the present chapter.

We mean by ^ " proposition " primarily a form of words which
expresses what is either true or false. I say " primarilyr"
because I do not wish to exclude other than verbal symbols, or
even mere thoughts if they have a symbolic character. But I
think the word " proposition " should be limited to what fray,
in some sense, be called tt symbolsr" and further to such symbols
as give expression to truth and falsehood. Thus " two and two
are four " and tt two and two are five " will be propositions,
and so will tt Socrates is a man " and tt Socrates ie not a man.tt
The statement : " Whatever numbers d and b may be, (alb)z:
az{zab{bt" is a proposition; but the bare formula '3 (aql1z:
azlzab{bz " alone is not, since it asserts nothing definite unless
we are further told, or led to suppose, that a and b arc to have
all possible values, or are to have such-and-such values. The
former of these is tacitly assumed, as a rule, in the enunciation
of mathematical formula, which thus become propositions;
but if no such assumption were made, th.y would be ', proposi-
tional functions." A " propositional functionrtt in fact, is an
expression contaioing one or more undetermined constituents,

1 5 5
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such that, when values are assigned to these constituents, the

expression becomes a ProPosition. In other words, it is a function

whose values are ProPositions. But this latter definition must

be used with caution. A descriptive function, e.g. " the hardest

proposition in A's mathematical treatise," will not be a Pro-
positional function, although its values are ProPositions. But in

such a case the propositions are only described : in a proposi-

tional function, the values must actually enunciate propositions.

Examples of propositional functions are easy to give: " x

is human " is a proPositional function ; so long as fr remains

undetermined, it is neither true nor false, but when a value

is assigned to fr it becomes a true or false proposition. Aty

mathematical equation is a propositional function. So long as

the variables have no definite value, the equation is merely an

expression awaiting determination in order to become a true or

f"ise proposition. If it is an equation containing one variable,

it becomes true when the variable is made equal to a root

of the equation, otherwise it becomes false; but if it is an

" identity " it will be true when the variable is any number.

The equation to a curve in a plane or to a surface in space is a

propositional function, true for values of the co-ordinates belong-

iog to points on the curve or surface, false for other values'

Expressions of traditional logic such as " all A is B " are pro-

positional functions: A and B have to be determined as definite

.l"rr.r before such expressions become true or false.

The notion of t' cases " or tt instances tt depends uPon Pro-

positional {unctions. Consider, for example, the kind of process

suggested by what is called " generalisationr" and let us take

some very primitive example, saf , " lightning is followed by

thunder.t' We have a number of tt instances " of this, i.e. a

number of propositions such as : " this is a fash of lightning

and is followed by thunder." what are these occurrences

" instances " of ? They are instances of the propositional

function : " If * is a flash of lightning, x is followed by thunder'"

The process of generalisation (with whose validity we are fortun-



Propositional Functiont t 57

ately not concerned) consists in passing from a number of such
instances to the uni,uersal truth of the propositional function :
" If x is a flash of lightning, * is followed by thunder." It will
be found that, in an analogous way, propositional functions
are always involved whenever we talk of instances or cases or
examples.

We do not need to ask, or attempt to answer, the question :
" What ,J a propositional function i " A propositional function
standing all alone may be taken to be a mere schema, a mere
shell, an empty receptacle for meaning, not something already
significant. We ate concerned with propositional functions,
broadly speaking, in two ways : first, as involved in the notions
tt trne in all cases tt and tt true in some cases " I secondly, as
involved in the theory of classes and relations. The second of
these topics we will postpone to a later chapter; the first must
occuPy us now.

When we say that something is tt always true " or " true in
all casesrt' it is clear that the t' somethirg " involved cannot be
a proposition. A proposition is just true or false, and there
is an end of the matter. There are no instances or cases of
t' Socrates is a man )' or (( Napoleon died at St Helena." These
are propositions, and it would be meaningless to speak of their
being true " in all cases." This phrase is only applicable to
propositional functions. Take, for example, the sort of thing
that is often said when causation is being discussed. (We are
not concerned with the truth or falsehood of what is said, but
only with its logical analysis.) We are told that A is, in every
instance, followed by B. Now if there are " instances " of A,
A must be some general concept of which it is significant to say

" xris Ar" " x, is L" 
K r, is Ar" and so on, where frb Ji,zs tl,s ate

particulars which are not identical one with another. This
applies, a.g., to our previous case of lightning. We say that
lightning (A) is followed by thunder (B). But the separate
flashes are particulars, not identical, but sharing the common
property of being lightning. The only way of expressing a
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common property generally is to say that a common ProPerty
of a number of objects is a propositional function which becomes

true when any one of these objects is taken as the value of the

variable. In this case all the objects are " instances " of the

truth of the propositional function-for a propositional function,

though it cannot itself be true or false, is true in certain instances

and false in certain others, unless it is tt always true t' or t' always

false." When, to return to our example, we say that A is in

every instance followed by B, we mean that, whatever x may be,

if r is an A, it is followed by a B ; that is, we are asserting that

a certain propositional function is t' always true-"

Sentences involving such words as " allr" (( ever/rt' (( ar"
tt thert' " some " require propositional functions for their inter-

pretation. The way in which propositional functions occur

can be explained by means of two of the above words, namely,

" all " and tt some.t'

There are, in the last analysis, only two things that can be

done with a propositional function : one is to assert that it is

true in all cases, the other to assert that it is true in at least one

case, or in some cases (as we shall say, assuming that there is

to be no necessary implication of a plurality of cases). All the

other uses of propositional functions can be reduced to these two.

When we say that a propositional function is true t'in all casesr"

or " always " (as we shall also say, without any temporal sugges-

tion), we mean that all its values are true. If' " Sx " is the

function, and a is the right sort of object to be an argument to

" 6*r" then $a is to be true, however a' may have been chosen.

For example, " if a is human, a is mortal" is true whether a

is human or not; in fact, every proposition of this form is true.

Thus the propositional function '3 if x is human, r is mortal "
is tt always truer" or " true in all cases." Or, again, the state-

ment tt there are no unicorns " is the Same aS the statement

" the propositional function '* is not a unicorn t is true in all

cases." The assertions in the preceding chapter about Pro-
positions, e.g. K 6 

? or g' implies ' q, ot ?r'" are really assertions
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that certain propositional functions are true in all cases. We do
not assert the above principle, for example, as being true only
of this or that particular p or g, but as being true of any p or q
concerning which it can be made significantly. The condition
that a function is to be signif,cantfor a given argument is the same
as the condition that it shall have a value for that argument,
either true or false. The study of the conditions of significance
belongs to the doctrine of types, which we shall not pursue
beyond the sketch given in the preceding chapter.

Not only the principles of deduction, but all the primitive
propositions of logic, consist of assertions that certain proposi-
tional functions are always true. If this were not the case, they
would have to mention particular things or concepts-socrates,
or redness, or east and west, or what notr-and clearly it is not
the province of logic to make assertions which are true concerning
one such thing or concept but not concerning another. It is
part of the definition of logic (but nor the whole of its definition)
that all its propositions are completely general, i.e. they all
consist of the assertion that some propositional function con-
taining no constant terms is always true. We shall return in
our final chapter to the discussion of propositional functions
containing no constant terms. For the pr$ent we will proceed
to the other thing that is to be done with a propositional function,
namely, the assertion that it is ttsometimes truer" i.e. true in at
least one instance.

When we say t'there are menrtt that means that the pro-
positional function " N is a man " is sometimes true. When we
say tt some men are Greeksrtt that means that the propositional
function " xis a man and a Greek " is sometimes true. When we
say " cannibals still exist in Africa," that means that the pro-
positional function " tc is a cannibal now in Africa " is sometimes
true, i.e.is true for some values of ti., To say tt there are at least
z individuals in the world " is to say that the propositional
function " o is a class of individuals and a member of the cardinal
number n" is sometimeg true, or, as we may say, is true for certain



t 6o fnroduction to Mathematical Philosoplt1

values of .'. This form of expression is more convenient when it
is necess aty to indicate which is the variable constituent which
we are taking as the argument to our propositional function.
For example, the above propositional function, which we may
shorten to c' a is a class oI n individualsr" contains two variables,
s' and n. The axiom of infinity, in the language of propositional
functions, is : " The propositional function ' if. n is an inductive
number, it is true for some values of o that a is a class of a indi-
viduals' is true for all possible values of n." Here there is a
subordinate function, tt q. is a class of. n individuals," which is
said to be, in respect of o, sometime-r true; and the assertion
that this happens if a is an inductive number is said to be, in
respect of n, always true.

The statement that a function $x is always true is the negation
of the statement that not-|tc is sometimes true, and the state-
ment that $x is sometimes true is the negation of the state-
ment that not-{r is always true. Thus the statement ,, all
men are mortals tt is the negation of the statement that the
function tt r is an immortal man t' is sometimes true. And the
statement 6t there are unicorns " ig the negation of the state-
ment that the function " * is not a unicorn " is always true.l
We say that $x is " never true " or t' always false ,, if not- {x is
always true. We can, if we choose, take one of the pair ,, alwaysr,
t'sometimes " as a primitive idea, and define the other by means
of the one and negation. Thus if we choose (6 sometimes ,, as
our primitive idea, we can define . c( ( 

$x is always true' is to
mean 'it is false that not-$x is sometimes true.z', 2 But for
reasons connected with the theory of types it seems more correct
to take both " always " and tt sometimes t' as primitive ideas,
and define by their means the negation of propositions in which
they occur. That is to r"y, assuming that we have already

r rhe method of deduction is given in Pfinoipia Mathematica,
vol.  i .  * 9.

I For linguistic reasons, to avoid suggesting either the plural or the
singular, it is often convenient to say " gx is not always false " rather
than " gr sometimes " ot " gfr is sometimes true."
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defined (or adopted as a primitive idea) the negation of pro'

positions of the type to which r belongs, we define : " The

negation of.' $x always' is ' not-d# sometimes ' ; and the nega-

tion of t 
{r sometimes' is ' not-$x always.'" In like manner

we can re-define disjunction and the other truth-functions,
as applied to propositions containing apparent variables, in

terms of the definitions and primitive ideas for propositions
containing no apparent variables. Propositions containing no

apparent variables are called " elementary propositions." From

these we can mount up step by step, using such methods as have
just been indicated, to the theory of truth-functions as applied

to propositions containing one, two, thre€ . . . variables, or any

number up to n, where n is any assigned finite number.

The forms which are taken as simplest in traditional formal
logic are really far from being so, and all involve the assertion
of all values or some values of a compound propositional function.
Take, to begin with, " all S is P." We will take it that S is

defined by ^ propositional function {r, and P by ^ propositional
function ry'r. 8.g., if S is rnen, {r will be " r is human" ) if P is

mortals, r/r will be " there is a time at which r dies." Then

" al l  S is P" means '  $'  
f* implies:y' ,x ' is always true." I t  is

to be observed that '( all S is P " does not apply only to those

terms that actually are S's; it says something equally about

terms which are not S's. Suppose we come across arl tc of which

we do not know whether it is an S or not; still, our statement

" al| S is P " tells us somethitg about r, namelyrthat if xis an S,

then x is a P. And this is every bit as true when r is not an S as

when x is an S. If it were not equally true in both cases, the

reductio ad absurdunt. would not be a valid method; for the

essence of this method consists in using implications in cases

where (as it afterwards turns out) the hypothesis is false. We may

put the matter another way. In order to understand t' all S is Prtt

it is not necessary to be able to enumerate what terms are S's I
provided we know what is meant by being an S and what by

being a P, we can understand completely what is actually affirmed

t 6 t
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by " all S is I?," however little we may know of actual instances

of either. This shows that it is not merely the actual terms that

are S's that are relevant in the statement" all S is Prt' but all the

terms concerning which the supposition that they are S's is

significant, i.e. all the terms that are S's, together with all the

terms that are not S's-i.a. the whole of the appropriate logical

" typ"." What applies to statements about all applies also to

statements about some. tt There are menrtt e.g,, means that

" r is human t' is true for some values of x. Here all values of r
(i.e. all values for which " r is human " is significant, whether

true or false) are relevant, and not only those that in fact are

human. (This becomes obvious if we consider how we could

prove such a statement to be false.) Every assertion about

" all " or tt some t' thus involves not only the arguments that

make a certain function true, but all that make it significant,

i.e. all for which it has a value at all, whether true or false.

We may now proceed with our interpretation of the traditional
forms of the old-fashioned formal logic. We assume that S
is those terms x f.or which {r is true, and P is those for which ry'r

is true. (As we shall see in alater chapter, all classes are derived

in this way from propositional functions.) Then:

" All S is P " means " 
' 

6* implies $x' is always true."
tt Some S is P tt means " ' 

6* and tlx t is sometimes true.t'

" No S is P " means " ' 
6* implies rlot4ltx' is always true."

tt Some S is not P " means tt ' Sx and not-{x t is sometimes
true.tt

It will be observed that the propositional functions which are
here asserted for all or some values are not Sx and tlx them-

selves, but truth-functions of $x and r\x f.or the sarne argument

,c. The easiest way to conceive of the sort of thing that is
intended is to start not from t'r ancl tlx in general, but from

$a and t[a, where a is some constant. Suppose we are consider-

ing all " men are mortal " : we will begin with

tt If Socrates is human, Socrates is mortalrtt
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and then we will regard " Socrates " as replaced by ^ variable r
wherever (' Socrates t' occurs. The object to be secured is that,
although * remains a variable, without any definite value, yet
it is to have the same value in " $x " as in " {* 

tt when we are
asserting that (( 

t'r implies r/r " is always true. This requires
that we shall start with a function whose values are such as

" 6o implies {or" rather than with two separate functions {x
and $x; for if we start with two separate functions we can
never secure that the *, while remaining undetermined, shall
have the same value in both.

For brevity we say " S* always implies ** " when we
mean that " 6* implies **" is always true. Propositions
of the form " 6* always implies {* " are called " formal
implications " ; this name is given equally if there are several
variables.

The above definitions show how far removed from the simplest
forms are such propositions as " all S is P," with which tradi-
tional logic begins. It is typical of the lack of analysis involved
that traditional logic treats " all S is P " as a proposition of
the same form as " tc is P "-r.g., it treats tt all men are mortal "
as of the same form as tt Socrates is mortal.tt As we have just

seen, the first is of the form " #* always implies {*r" while the
second is of the form " {*." The emphatic $eparation of these
two forms, which was efiected by Peano and Frege, was a very
vital advance in symbolic logic.

It will be seen that " all S is P " and " no S is P " do not
really differ in form, except by the substitution of not-tpx for tltx,
and that the same applies to 6'some S is P " and t'some S is
not P." It should also be observed that the traditional rules
of conversion are faulty, if we adopt the view, which is the only
technically tolerable one, that such propositions as " all S is P "
do not involve the (t existence tt of S's, i.e. do not require that
there should be terms which are S's. The above definitions
lead to the result that, if. $x is always false, i.e. if. there are no
S's, then " all S is P " and " no S is P " will both be true, what-

r53
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ever P may be. For, according to the definition in the last
chapter, t' 

6* implies {* 
r, means ,, not-$x or **r, which is

always true if not-t'* is always true. At the first moment,
this result might lead the reader to desire difierent definitions,
but a little practical experience soon shows that any difierent
definitions would be inconvenient and would conceal the important
ideas. The proposition ,, 

6* always implies {*, and. $x
is sometimes true " is essentially composite, and it would be
very awkward to give this as the definition of ', all S is p,"
for then we should have no language left for ,, $x alvtays implies
{*r" which is needed a hundred times for once that the other is
needed. But, with our definitions, " a[ s is p " does not imply
t'some s is Prt' since the first allows the non-existence of s and
the second does not; thus conversion per accidens becomeg
invalid, and some moods of the syliogism ate fallaciou\ c.g.
Darapti : " A1l M is s, all M is P, therefore some s is pr" which
fails if there is no M.

The notion of tt exigtence " has several forms, one of which
will occupy us in the next chapter; but the fundamenral form
is that which is derived immediately from the notion of ,, some-
times true." we say that an argument a" satisfies tt a function
Sx if. $a is true; this is the same sense in which the roots of an
equation are said to satisfy the equation. Now if $x is sometimes
true, we may say there are tc's for which it is true, ot we may say
" arguments satisfying $x exist." This is the fundamental mean-
ing of the word ('existence." 

Other meanings are either derived
from this, or embody mere confusion of thought. we may
correctly say " men existrt' meaning that tt r is a man tt is some-
times true. But if we make a pseudo-syllogism: " Men exisr,
Socrates is a man, therefore Socrates existsrtt we are talking
nonsense, since tt Socrates t' is not, like ., menrtt merely an un-
determined argumenr to a given propositional function. The
fallacy is closely analogous to that of the argument : " Men are
numerous, Socrates is a man, therefore Socrates is numerous,tt
In this case it is obvious that the conclusion is nonsensical, but
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in the case of existence it is not obvious, for reasons which will

appear more fully in the next chapter. For the Present let us

merely note the fact that, though it is correct to say " men existr"

it is incorrect, or rather meaningless, to ascribe existence to a

given particular r who happens to be a man. Generally, " terms

satisfying ,f* exist " means " {* is sometimes true tt ; but '3 a

exists " (where a is a term satisfyin g #x) is a mere noige or shape,

devoid of significance. It will be found that by bearing in mind

this simple f.allacy we can solve many ancient philosophical

puzzles concerning the meaning of existence.

Another set of notions as to which philosophy has allowed

itself to fall into hopeless confusions through not sufficiently

separating propositions and propositional functions are the

notions of " modality " : necessary, possible, and impossible.

(Sometim es contingent or assertoric is used instead of. possible.)

The traditional view was that, among true Propositions, some

were necessary, while others were merely contingent or assertoric ;
while among false propositions some were impossible, namely,

those whose contradictories were necessary, while others merely

happened not to be true. In fact, however, there was never

any clear account of what was added to truth by the conception

of necessity. In the case of propositional functions, the three-

fold division is obvious. If. " Sx" is an undetermined value of a

certain propositional function, it will be necessary if the function

is always true, possible if it is sometimes true, and impossible if'

it is never true. This sort of situation arises in regard to prob-

ability, for example. Suppose a ball r is drawn from a bag

which contains a number of balls: if all the balls are white,
tt r is white " is necessary; if some are white, it is possible;

if none, it is impossible. Here all that is hnown about r is that

it satisfies a certain propositional function, namely, " cc was a

ball in the bag." This is a situation which is general in prob-

ability problems and not uncommon in practical liie-e.g. when

a person calls of whom we know nothing except that he brings

a letter of introduction from our friend so-and-so. In all such

r65
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cases, as in regard to modality in general, the propositional
function is relevant. For clear thinking, in many very diverse
directions, the habit of keeping propositional functions sharply
separated from propositions is of the utmost importance, and
the failure to do so in the past has been a disgrace to
philosophy,



CHAPTER XVI

DESCRIPTIONS

Wr dealt in the preceding chapter with the words all and sotfte i

in this chapter we shall consider the word tbe in the singular,

and in the next chapter we shall consider the word the in the

plural. It may be thought excessive to devote two chapters

to one word, but to the philosophical mathematician it is a

word of very great importance: like Browning's Grammarian

with the enclitic 8e, I would give the doctrine of this word if I

were tt dead from the waist down " and not merely in a prison.

We have already had occasion to mention 63 descriptive

functions r" i.r. such expressions as tt the father of. r" or tt the sine

of tc." These are to be defined by first defining t'descriptions.n'

A ,, description " ^^y be of two sorts, definite and indefinite

(or ambiguous). An indefinite description is a phrase of the

form tt a so-and-sor" and a definite description is a phrase of

the form " the so-and-so " (io the singular). Let us begin with

the former.
tt Who did you meet ? " 

tt I met a man.tt '3 That is a very

indefinite description." We are therefore not departing from

usage in our terminology. Our question is: What do I really

assert when I aSsert tt I met a man " ? Let us assume, for the

moment, that my assertion is true, and that in fact I met Jones.
It is clear that what I assert is not " I met Jones." I may say
.,I met a man, but it was not Jones " ; io that case, though I lie,

I do not contadict myself, as I should do if when I say I met a
r67
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man I really mean that I met Jones. It is clear also that the
person to whom I am speaking can understand what I say, even
if he is a foreigner and has never heard of Jones.

But we may go further: not only Jones, but no actual man,
enters into my statement. This becomes obvious when the state-
ment is false, since then there is no more reason why Jones
should be supposed to enter into the proposition than why any-
one else should. Indeed the statement would remain significant,
though it could not possibly be true, even if there were no man
at all. tt I met a unicorn " or t' I met a sea-serpent ,t is a
perfectly significant assertion, if we know what it would be to
be a unicorn or a sea-serpent, i.e. what is the definition of these
fabulous monsters. Thus it is only what we may call the conccpt
that enters into the proposition. In the case of ,'unicornr,'

for example, there is only the concept : there is not also, soms,
where among the shades, something unreal which may be called
" a unicorn." Therefore, since it is significant (though false)
to say " I met a unicornr" it is clear that this proposition, rightly
analysed, does not contain a constituent t'a unicornrrt though
it does contain the concept tt unicorn."

The question of " unrealityr" which confronts us at this
point, is a very important one. Misled by grammar, the great
majority of those logicians who have dealt wit} tJris question
have dealt with it on mistaken lines. They have regarded
grammatical form as a surer guide in analysis than, in fact,
it is. And they have not known what difierences in gram-
matical form are important. ', T met Jones 

,, and ., I met a
man " would count traditionally as propositions of the same form,
but in actual fact they are of quite difierent forms : the first
names an actual person, Jones; while the second involves a
propositional function, and becomes, when made explicit : " The
function t I met r and * is human t is sometimes true.t' (It
will be remembered that we adopted the convention of using
('sometimes 

" as not implying more than once.) This proposi-
tion is obviously not of the form " I met xr" which accounts
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for the existence of the proposition " I met a unicorn tt in spite

of the fact that there is no such thing as " a unicorn."

For want of the apparatus of propositional functions' many

logicians have been driven to the conclusion that there are

unreal objects. It is argued, e,g. by Meinong,r that we can

speak about t'the golden mountainrtt tt the round squarertt
and so on; we can make true propositions of which these are

the subjects; hence they must have some kind of logical being,

since otherwise the propositions in which they occur would be

meaningless. In such theories, it seems to me, there is a failure

of that feeling for reality which ought to be preserved even in

the most abstract studies. Logic, I should maintain, must no

more admit a unicorn than zoology can; for logic is concerned

with the real world just as truly as zoology, though with its

more abstract and general features. To say that unicorns have

an exigtence in heraldry, or in literature, or in imagination,

is a most pitiful and paltry evasion. What exists in heraldry

is not an animal, made of flesh and blood, moving and breathing

of its own initiative. What exists is a picture, or a description

in words. Similarly, to maintain that Hamlet, for example,

exists in his own world, namely, in the world of Shakespeare's

imagination, just as truly as G"y) Napoleon existed in the

ordinary world, is to say something deliberately confusing, dr

else confused to a degree which is scarcely credible. There is

only one world, the " realt' world: Shakespeare's imagination

is part of it, and the thoughts that he had in writing Hamlet

are real. So are the thoughts that we have in reading the Play.
But it is of the very essence of fiction that only the thoughts,

feelings, etc., in Shakespeare and his readers are real, and that

there is not, in addition to them, an objective Hamlet. When

you have taken account of all the feelings roused by Napoleon

in writers and readers of history, you have not touched the actual

man; but in the case of Hamlet you have come to the end of

him. If no one thought about Hamlet, there would be nothing
| (Jnteysuchungen zwr Gegenstandstheovie und Psychologie, rgo4.
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left of him; if no one had thought about Napoleon, he would
have soon seen to it that some one did. The sense of reality is
vital in logic, and whoever juggles with it by pretending that
Hamlet has another kind of reality is doing a disservice to
thought. A robust sense of reality is very necessary in framing
a correct analysis of propositions about unicorns, golden moun-
tains, round squares, and other such pseudo-objects.

In obedience to the feeling of realitl we shall insist that,
in the analysis of propositions, nothing " unreal " is to be
admitted. But, after all, if there ,.r nothing unreal, ho*, it
may be asked, could we admit anything unreal t The reply
is that, in dealing *ith propositions, we are dealing in the first
instance with symbols, and if we attribute significance to groups
of symbols which have no significance, we shall fall into the
error of admitting unrealities, in the only sense in which this is
possible, namely, as objects described. In the proposition
('I met a unicornrtt the whole four words together make a signi-
ficant proposition, and the word " unicorn " by itself is significant,
in just the same sense as the word tt man." But the two words
tt a unicorn tt do not form a subordinate group having a meaning
of its own. Thus if we falsely attribute meaning to these two
words, we find ourselves saddled with tt a unicornr" and with
the problem how there can be such a thing in a world where
there are no unicorns. " A unicorn tt is an indefinite descrip-
tion which describes nothing. It is not an indefinite description
which describes something unreal. Such a proposition as
tt r is unreal " only has meaning when (' ,c" is a description,
definite or indefinite; in that case the proposition will be true
if. " x " is a description which describes nothing. But whether
the description (( tc )' describes something or describes nothing,
it is in any case not a constituent of the proposition in which it
occurs ; like tt a unicorn t' just now, it is not a subordinate group
having a meaning of its own. All this results from the fact that,
when '( tc'' is a description, tt r is unreal " ot 3c r does not exist tt

is not nonsense, but is always significant and sometimes true.
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We may now proceed to define generally the meaning of

propositions which contain ambiguous descriptions. Suppose

we wish to make some statement about tt a so-and-sortt where

" so-and-sots tt are those objects that have a certain property

6, i.e, those objects r for which the propositional function fr is

true. (8.g, if we take tt a man " as our instance of 'o a so-and-sortt

fr will be" ris human.") Let us now wish to assert the property

* of " a so-and-sor" i.e. we wish to assert that tt a so-and-so tt has

that property which r has when $r is true. (8.g, in the case

of " I met a manr" r/r will be " I met r.t') Now the proposition

that 66 a so-and-so " has the prop erty tl is not a ProPosition of

the form " **." If it were, tt a so-and-so tt would have to be

identical with r for a suitable tc; and although (in a sense) this

may be true in some cases, it is certainly not true in such a case

as " a unicorn." It is just this fact, that the statement that a

so-and-so has the property ry' is not of the form r/4 which makes

it possible for " a so-and-so " to be, in a certain clearly definable

sense, " unreal." The definition is as follows :-

The statement that 56 an object having the property rf has

the prop e*y tl "

means :

" The joint assertion of. $cc and $x is not always false."

So far as logic goes, this is the same proposition as might

be expressed by " some S's arc {'""; but rhetorically there is

a difierence, because in the one case there is a suggestion of

singularity, and in the other case of plurality. This, however,

is not the important point. The important point is that, when

rightly analysed, propositions verbally about " a so-and-go "
are found to contain no constituent represented by this phrase.

And that is why such propositions can be significant even when

there is no such thing as a so-and-so.
The definition of. existence, as applied to ambiguous descrip-

tions, results from what was said at the end of the preceding

chapter. We say that '6 men exist " or tt a man exists tt if the
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propositional function " r is human " is sometimes true; and
generally tt a so-and-so " exists iI " x is so-and-so " is sometimes
true. We may put this in other language. The proposition
tt Socrates is a man tt is no doubt eguiaalent to tt Socrates is
humanr" but it is not the very same proposition. The is of
tt Socrates is human t' expresses the relation of subject and
predicate ; the as of. " Socrates is a man " expresses identity.
It is a disgrace to the human race that it has chosen to employ
the same word (c is " for these two entirely difierent ideas-a
disgrace which a symbolic logical language of course remedies.
The identity in " Socrates is a man " is identity between an
object named (accepting t' Socrates tt as a name, subject to
qualifications explained later) and an object ambiguously
described. An object ambiguously described will " exist " when
at least one such proposition is true, i.a. when there is at least
one true proposition of the form t' r is a so-and-sortt where 3c N "
is a name. It is characteristic of ambiguous (as opposed to
definite) descriptions that there may be any number of true
propositions of the above form-Socrates is a man, Plato is a
man, etc. Thus " a man exists t' follows from Socrates, or
Plato, or anyone else. With definite descriptions, on the other
hand, the corresponding form of proposition, namely, ,'r is the
so-and-so t' (where (e tc " is a name), can only be true for one
value oL tc at most. This brings us to the subject of definite
descriptions, which are to be defined in a way analogous to
that employed for ambiguous descriptions, but rather more
complicated.

We come now to the main subject of the present chapter,
namely, the definition of the word the (in the singular). One
very important point about the definition of ,' a so-and-so "
applies equally to (( the so-and-so " I the definition to be sought
is a definition of propositions in which this phrase occurs, not a
definition of the phrase itself in isolation. In the case of " a
so-and-sor" this is fairly obvious : no one could suppose that
" a man " was a definite object, which could be defined by itself.
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Socrates is a man, Plato is a man, Aristotle is a man, but we
cannot infer that " a man tt means the same as tt Socrates tt

means and also the same as tt Plato " means and also the same
as tt Aristotle t' means, since these three names have different
meanings. Nevertheless, when we have enumerated all the
men in the world, there is nothing left of which we can say,

" This is a man, and not only so, but itis the' a manr' the quintes-
sential entity that is just an indefinite man without being any-
body in particular." It is of course quite clear that whatever
there is in the world is definite: if it is a man it is one definite
man and not any other. Thus there cannot be such an entity
as " a man t' to be found in the world, as opposed to specific
man. And accordingly it is natural that we do not define " a
man " itself, but only the propositions in which it occurs.

In the case of " the so-and-so " this is equally true, though
at first sight less obvious. We may demonstrate that this must
be the case, by ^ consideration of the difference between a narre
and a def,nite description. Take the proposition, " Scott is the
author of. Waveiley." We have here a name, " Scottr" and a
description, tt the author of. Waverleyr" which are asserted to
apply to the same person. The distinction between a name and
all other symbols may be explained as follows :-

A name is a simple symbol whose meaning is something that
can only occur as subject, i.e. something of the kind that, in
Chapter XIII., we defined as an " individual " or a " particular."
And a " simple " symbol is one which has no parts that are
symbols. Thus (( Scott " is a simple symbol, because, though it
has parts (namely, separate letters), these parts are not symbols.
On the other hand, t' the author of. Waverlty " is not a simple
symbol, because the separate words that compose the phrase
are parts which are symbols. If, as may be the case, whatever
secn$ to be an " individual " is really capable of further analysis,
we shall have to content ourselves with what may be called
66 relative individualsr" which will be terms that, throughout
the context in question, are never analysed and never occur
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ottrerwise than as eubjects. And in that case we shall have
correspondingly to content ourselves with .. relative names."
From the standpoint of our present problem, namely, the defini-
tioq of descriptions, this problem, whether these are absolute
names or only relative names, may be ignored, since it con-
cerns different stages in the hierarchy of .. typesr" whereas we
have to compare such couples as tt Scott,t and .. the author of
waonlcy," which both apply to the same object, and do not
raise t}e problem of types. We man t}erefore, for tle momenr,
treat names as capable of being absolute; nothing that we shall
have to say will depend upon this assumption, but the wording
may be a little shortened by it.

we have, then, two t}ings to compare : (r) a flatnc, which
is a simple symbol, directly designating an individual which
is its meaning, and having this meaning in its own righr, in-
dependently of the meanings of all other words ; (z) a desniption,
which consists of several words, whose meanings are already
fixed, and from which result! whatever is to be taken as the
tt meaning tt of the description.

A proposition containing a description is not identical with
what that proposition becsmes when a name is substituted.,
even if the name names tte same object as the description
describes. '3 Scott is the author of waveilcy " is obvioorly a
different proposition from 33 Scott is Scott', : the first is 

" 
io.t

in literary history, the second a trivial truism. And if we put
anyone other than Scott in place of ', the author of. Waveileyr,
our proposition would become false, and would therefore certainly
no longer be the same proposition, But, it may be said, our
proposition is essentially of rhe same form as (say) ,. Scott is
sir Walterr" in which two names are said to apply to the same
person. The reply is that, if " scott is sir walter " really means
tt the person named t Scott t is the person named t Sir Walterrr rt
then the names are being used as descriptions z i.c. ttre individual,
instead of being named, is being described as the person having
that name. This is a way in which names are frequently used
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in practice, and there will, as a rule, be nothing in the phraseology
to ghow whether they are being used in t*ris way or zJ names.

When a name is used directly, merely to indicate what we are

speaking about, it is no part of thefact asserted, or of the falsehood

if our assertion happens to be false: it is merely part of the

symbolism by which we express our thought. What we want

to express is something which might (for example) be translated

into a foreign language; it is something for which the actual

words are a vehicle, but of which they are no Part. On the other

hand, when we make a proposition about " the person called
3 Scottrt tt the actual name " Scott tt enters into what we are

asserting, and not merely into the language used in making the

assertion. Our proposition will now be a difrerent one if we

substitute " the person called 'Sir Walter."' But so long as

we are using names zJ names, whether we say 66 Scott tt or whether

we say tt Sir Walter tt is as irrelevant to what we are asserting

as whether we speak English or French. Thus so long as namee

are used 4J names, " Scott is Sir Walter " is the same trivial

proposition as " Scott is Scott." This completes the proof that
3( Scott is the author of, Wavcrby" is not the same proposition

as results from substituting a name for " ttre author of Waoerlcyr"

no matter what name may be substituted.

When we u8e a variable, and speak of a propositional function,

$r say, the procesg of applying general statements about r to

particular cases will consist in substituting a name for the letter

" tcr" assuming that f is a function which has individuals for its

arguments. Suppose, for example, that f* is t'always true " I
let it be, say, the " law of identitn" 16:1s. Then we may sub-

stitute for " r" any name we choose, and we shall obtain a tnre

proposition. Assuming for the moment that 3t Socratesr"
tt Plator" and tt Aristotle t' are names (a very rash assumption),

we can infer from the law of identity that Socrates is Socrates,

Plato is Plato, and Aristotle is Aristotle. But we shall commit
a f.allacy if we attempt to infer, without furtler premisses, that

the author of Waocrhy is the author of. Waoerlry. This resultg
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from what we have just proved, that, if we substitute a name for

" the author of Waverley " in a proposition, the proposition
we obtain is a different one. That is to say, applying the result

t o o u r p r e s e n t c a s e :  I f  "  x "  i s a n a m e ,  ( g , : v " i s n o t t h e s a m e

proposition as " the author of. W aveiley is the author of. Waverleyr"
no matter what name c( ,c )' may be. Thus from the fact that

all propositions of the form " x--tc" are true we cannot infer,
without more ado, that the author of Waverley is the author of

Waacrley. In fact, propositions of the form " the so-and-so
is the so-and-so " are not always true : it is necessary that the
so-and-so should exist (a term which will be explained shortly).
It is false that the present King of France is the present King of
France, or that the round square is the round square. When we
substitute a description for a name, propositional functions
which are " always true " may become false, if the description
describes nothing" There is no mystery in this as soon as we
realise (what was proved in the preceding paragraph) that when
we substitute a description the result is not a value of the
propositional function in question.

We are now in a position to define propositions in which a
definite description occurs. The only thing that distinguishes
tt the so-and-so " from " a so-and-so " is the implication of
uniqueness. We cannot speak of " tbe inhabitant of Londonr"
because inhabiting London is an attribute which is not unique.
We cannot speak about tt the present King of Francer" because
there is none; but we can speak about " the present King of
England." Thus propositions about oo the so-and-so " always
imply the corresponding propositions about " a so-and-sor"
with the addendum that there is not more than one so-and-so.
Such a proposition as " Scott is the author of Waverley " could
not be true if W averley had never been written, or if several
people had written it; and no more could any other proposition
resulting from a propositional function ?r by the substitution

of " the author of. fVaveilty " for " x." We may say that " the

anthor of. Waverlty" means tt the value of r for which t# wtote
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Waveiley' is true." Thus the proposition t'the author of

Waverley was Scotchrt' for example, involves :

(r) " ,c wrote W/ averley " is not always f alse ;
(z) " if. x and y wrote Waveiley, x and y are identical " is

always true I
(3) " if x wrote Waaerley,

These three propositions,
state :

r was Scotch " is always true.

translated into ordinary language,

(r) at least one Person wrote Waoerley;
(z) at most one person wrote Waaeiley;

(3) whoever wrote ll/averley was Scgtch.

All these three are implied by " the author of Waverley was

Scotch." Conversely, the three together (but no two of them)

imply that the author of Waaerley was Scotch. Hence the

three together may be taken as defining what is meant by the

proposition " the author of. Waverley was Scotch."

We may somewhat simplify these three propositions. The

first and second together are equivalent to: " There is a term

r such that (# wrote Waverley ' is true when x is c and is false

when r is not c." In other words, t'There is a term c such that
'* wrote Waverley ' is always equivalent to '* is c."' (Two

propositions are " equivalent " when both are true or both are

false.) We have here, to begin with, two functions of x, 'c tc

wrote Waverley t'and ttr is cr" and we form a function of c by

considering the equivalence of these two functions of x for all

values of. x; we then proceed to assert that the resulting function

of e is t'sometimes truer" i.e. that it is true for at least one value

of r. (It obviously cannot be true for more than one value of r.)

These two conditions together are defined as giving the meaning

of " the author of. Waverlry exists.tt

We mav now define " the term satisfying the function $x
exists." This is the general form of which the above is a par-

ticular case. " The author of. W aveilty " is " the term satisfying

the function 6 r wrote Waverley."' And " the so-and-so " will
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always involve reference to some propositional function, namely,
that which defines the property that makes a thing a so-and-so.
Our definition is as follows :-

" The term satisfying the function fx exists " means :

" There is a term r such that $x is always equivalent to 6 # is tr.' "
In order to define " the author of fV aaeiley was Scotchr"

we have still to take account of the third of our three proposi-
tions, namely, " Whoever wrote Waveiley was Scotch.t' This
will be satisfied by merely adding that the e in question is to
be Scotch. Thus " the author of. Waveiley was Scotch " is:

" There is a term r such that (l) ( x wrote W averley ' is always
equivalent to ' x is cr' (z) c is Scotch."

And generally : " the term satisfying $x satisfies t* " is
defined as meaning:

" There is a term e such that (r) $x is always equivalent to
'r is cr' (2) tlc is true."

This is the definition of propositions in which descriptions occur.
It is possible to have much knowledge concerning a term

described, i.t. to know many propositions concerning " the so-
and-sor" without actually knowing what the so-and-so is, i.e.
without knowing any proposition of the form " r is the so-and*sor"
where 3' N" is a name. In a detective story propositions about
t' the man who did the deed " are accumulated, in the hope
that ultimately they will suffi.ce to demonstrate that it was
A who did the deed. We may even go so far as to say that,
in all such knowledge as can be expressed in words-with the
exception of " this tt and '3 that" and a few other words of
which the meaning varies on different occasions-no names,
in the strict sense, occur, but what seem like names are really
descriptions. We may inquire significantly whether Homer
existed, which we could not do if t'Homer " were a name. The
proposition " the so-and-so exists " is significant, whether
true or false; but if. a is the so-and-so (where " a" is a name),

the words " a. exists " are meaningless. It is only of descriptions
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-definite or indefinite-that existence can be significantly
asserted; for, if "att is a name, itmust name something: what
does not name anything is not a name, and therefore, if intended
to be a name, is a symbol devoid of meaning, whereas a descrip-

tion, like " the present King of Francer" does not become in-

capable of occurring significantly merely on the ground that it
describes nothing, the reason being that it is a complar symbol,
of which the meaning is derived from that of its constituent
symbols. And so, when we ask whether Homer existed, we are
using the word " Homer " as an abbreviated description : we
may replace it by (t"y) " the author of the lliad and the Odyssey."
The same considerations apply to almost all uses of what look
like proper names.

When descriptions occur in propositions, it is necessary to
distinguish what may be called "primary" and "secondary"
occurrences. The abstract distinction is as follows. A descrip-
tion has a t'primary " occurrence when the proposition in

which it occurs results from substituting the description for
'( N" in some propositional function fr; a description has a
tt secondary " occurrence when the result of substituting the
description for * in $x gives only part of, the proposition con-

cerned. An instance will make this clearer. Consider " the

present King of France is bald." Here " the present King of

France " has a primary occurrence, and the proposition is false.

Every proposition in which a description which <lescribes nothing

has a primary occurrence is false. But now consider tt the

present King of France is not bald." This is ambiguous. If

we are first to take tt r is baldr" then substitute tt the present

King of France " for " frr" and then deny the result, the occurrence

of " the present King of France " is secondary and our proposition

is true; but if we are to take " x is not bald " and substitute
tt the present King of France " for " ,cr" then tt the present
Kiog of France " has a primary occurrence and the proposition

is false. Confusion of primary and secondary occurrences is a

ready source of fallacies where descriptions are concerned.
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Descriptions occur in mathematics chiefly in the form of

descriptioe ifunctions, i.e. " the term having the relation R to

!r" or tt the R of y " ^s we may say, on the analogy of tt t-he

father of y " and similar phrases. To say " the father of y is

rich," for example, is to say that the follo*ittg propositional
function of. c: tt r is rich, and t x begat y' is always equivalent

to 3 tc is rrt " is 66 sometimes truer" i.e. is true for at least one
value of c. It obviously cannot be true for more than one
value.

The theory of descriptions, briefly outlined in the present
chapter, is of the utmost importance both in logic and in theory
of knowledge. But for purposes of mathematics, the more
philosophical parts of the theory are not essential, and have
therefore been omitted in the above account, which has confined
itself to the barest mathematical requisites.



CHAPTER XVII

CLASSES

IN the present chapter we shall be concerned with tbe in the
plural : the inhabitants of London, the sons of rich men, and
so on. In other words, we shall be concerned with classes. We
saw in Chapter II. that a cardinal number is to be defined as a
class of classes, and in Chapter III. that the number r is to be
defined as the class of all unit classes, i.e. of all that have just

one member, as we should say but for the vicious circle. Of
course, when the number r is defined as the class of all unit
classes, tt unit classes tt must be defined so as not to assume
that we know what is meant by " one " I in fact, they are defined
in a way closely analogous to that used for descriptions, namely :
A class a is said to be a " unit " class if the propositional function
'c ' ,c is an o t is always equivalent to t x is c' " (regarded as a
function of r) is not always false, i.e., in more ordinary language,
if there is a term e such that * will be a member of cr, when r is c
but not otherwise. This gives us a definition of a unit class if we
already know what a class is in general. Hitherto we have, in
dealing with arithmetic, treated " class " as a primitive idea.
But, for the reasons set forth in Chapter XIII., if for no others,
we cannot accept tt class " as a primitive idea. We must seek a
definition on the same lines as the definition of descriptions,
i.e. a definition which will assign a meaning to propositions in
whose verbal or symbolic expression words or symbols apparently
representing classes occur, but which will assign a meaning that
altogether eliminates all mention of classes from a right analysis

r8 r
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of such propositions. We shall then be able to say that the

symbols for classes are mere conveniences, not rePresenting

objects called t' classesr" and that classes are in fact, like descrip-

tions, logical fictions, or (as we say) " incomplete symbols."

The theory of classes is less complete than the theory of descrip-

tions, and there are reasons (which we shall give in outline)

for regarding the definition of classes that will be suggested as

not finally satisfactory. Some further subtlety aPPears to be

required; but the reasons for regarding the definition which

will be ofiered as being approximately correct and on the right

lines are overwhelming.
The first thing is to realise why classes cannot be regarded

as part of the ultimate furniture of the world. It is difficult

to explain precisely what one means by this statement, but one
consequence which it implies may be used to elucidate its meaning.
If we had a complete symbolic language, with a definition for

everything definable, and an undefined symbol for everything

indefinable, the undefined symbols in this language would repre-
sent symbolically what I mean by " the ultimate furniture of

the world." I am maintaining that no symbols either for " class "
in general or for particular classes would be included in this
apparatus of undefined symbols. On the other hand, all the

particular things there are in the world would have to have
names which would be included among undefined symbols.
We might try to avoid this conclusion by the use of descriptions.

Take (r"y) " the last thing Casar saw before he died." This

is a description of some particular; we might use it as (in one

perfectly legitimate sense) a def'nition of that particular. But

if. " a " is a narne for the same particular, a proposition in which
'c a" occurs is not (as we saw in the preceding chapter) identical

with what this proposition becomes when for t' A" we substitute

" the last thing Casar saw before he died." If our language
does not contain the name " ar" or some other name for the same

particular, we shall have no means of expressing the proposition
which we expressed by means of " a " as opposed to the one that
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we expressed by means of the description. Thus descriptions
would not enable a perfect language to dispense with names for
all particulars. In this respect, we are maintaining, classes
differ from particulars, and need not be represented by undefined
symbols. Our first business is to give the reasons for this opinion.

We have already seen that classes cannot be regarded as a
species of individuals, on account of the contradiction about
classes which are not members of themselves (explained in
Chapter XIII.), and because we can prove that the number of
classes is greater than the number of individuals.

We cannot take classes in the pure extension al way as simply
heaps or conglomerations. If we were to attempt to do that,
we should find it impossible to understand how there can be such
a class as the null-class, which has no members at all and cannot
be regarded as a " heap " 1 we should also find it very hard to
understand how it comes about that a class which has only one
member is not identical with that one member. I do not mean
to assert, or to deny, that there are such entities as " heaps.t'
As a mathematical logician, I am not called upon to have an
opinion on this point. All that I am maintaining is that, if there
are such things as heaps, we cannot identify them with the classes
composed of their constituents.

We shall come much nearer to a satisfactory theory if we
try to identify classes with propositional functions. Every
class, as we explained in Chapter II., is defined by some pro-
positional function which is true of the members of the class
and false of other things. But if a class can be defined by one
propositional function, it can equally well be defined by any
other which is true whenever the first is true and false when-
ever the first is false. For this reason the class cannot be identi-
fied with any one such propositional function rather than with
any other-and given a propositional function, there are always
many others which are true when it is true and false when it is
false. We say that two propositional functions are $ formally
eguivalent " when this happens. Two propos'itions ate " eguiva-
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lent " when bclth are true or both false I two propositional
functions d*, tlx are " formally equivalent " when t'.tu is always

equivalent to $x. It is the fact that there are other functions

formally equivalent to a given function that makes it impossible

to identify a class with a function ; for we wish classes to be such

that no two distinct classes have exactly the same members,

and therefore two formally equivalent functions will have to

determine the same class.
When we have decided that classes cannot be things of the

same sort as their members, that they cannot be just heaps or

aggregates, and also that they cannot be identified with pro-

positional functions, it becomes very dificult to see what they

can be, if they are to be more than symbolic fictions. And if

we can find any way of dealing with them as symbolic fictions,

we increase the logical security of our position, since we avoid

the need of assuming that there are classes without being com-

pelled to make the opposite assumption that there are no classes.

We merely abstain from both assumptions. This is an example

of Occam's tazor, namely, ('entities are not to be multiplied

without necessity.tt But when we refuse to assert that there

are classes, we must not be supposed to be asserting dogmatically

that there are none. We are merely agnostic as regards them:

like Laplace, we can safr " ie n'ai pas besoin de cette hypolh\se."

Let us set forth the conditions that a symbol must fulfil if

it is to serve as a class. I think the follorn'ing conditions will

be found necessary and sufficient:-
(l) Bvery propositional function must determine a class,

consisting of those arguments for which the function is true.

Given any proposition (true or false), sal about Socrates, we

can imagine $ocrateO replaced by Plato or Aristotle or a gorilla

or the man in the moon or any other individual in the world.

In general, some of these substitutions will give a true ProPosition
and some a false one. The class determined will consist of all

those substitutions that give a true one. Of course, we have

still to decide what we mean by " all those which, etc." All that
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we are observing at present is that a class is rendered determinate
by ^ propositional function, and that every propositional function
determines an appropriate class.

(z) Two formally equivalent propositional functions must
determine the same class, and two which are not formally equiva-
lent must determine difierent classes. That is, a class is deter-
mined by its membership, and no two different classes can have
the same membership. (If a class is determined by ^ function

$x, we say that a is a tt member t' of the class it $a is true.)
(:) W. must find some way of defining not only classes, but

classes of classes. We saw in Chapter II. that carclinal numbers
are to be defined as classes of classes. The ordinary phrase
of elementary mathematics, " The combinations of n things
m at a time " represents a class of classes, namely, the class of
all classes of. m terms that can be selected out of a given class
of n terms. Without some symbolic method of dealing with
classes of classes, mathematical logic would break down.

(+) It must under all circumstances be meaningless (not false)
to suppose a class a member of itself or not a member of itself.
This results from the contradiction which we discussed in
Chapter XIII.

(5) Lastly-and this is the condition which is most difficult
of fulfilmentr-it must be possible to make propositions about
all the classes that are composed of individuals, or about all the
classes that are composed of objects of. any one logical " type."
If this were not the case, many uses of classes would go astray
-for example, mathematical induction. In defining the posterity
of a given term, we need to be able to say that a member of the
posterity belongs to all hereditary classes to which the given
term belongs, and this requires the sort of totality that is in
question. T'he reason there is a difficulty about this condition
is that it can be proved to be impossible to speak of. all the pro-
positional functions that can have arguments of a given type.

We will, to begin with, ignore this last condition and the
problems which it raises. The firgt two conditions may be
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taken together. They state that there is to be one class, tro

more and no less, for each group of formally equivalent pro-

positional functions; a.g. the class of men is to be the same as

that of featherless bipeds or rational animals or Yahoos or what-

ever other characteristic may be preferred for defining a human

being. No*, when we say that two formally equivalent pro-

positional functions may be not identical, although they define

the same class, we may Prove the truth of the assertion by point-

ing out t-hat a statement may be true of the one function and

false of the other i e.g. " I believe that all men are mortal "

may be tlue, while " I believe that all rational animals are

mortal " may be false, since I may believe falsely that the

Phenix is an immortal rational animal. Thus we are led to

consider statements about functions, or (more correcdy) functions
af functions.

Some of the things that may b. said about a function may

be regarded as said about the class defined by the function,

whereas others cannot. The statement tt all men are mortal tt

involves the functions " x is human tt and " x is mortal t' I att

if we choose, we can say that it involves the classes men and

mortals, We can interpret the statement in either waf t because

its truth-value is unchanged if we substitute for " r is human "

or for " f is mortal t' any formally equivalent function. But,

as we have just seen, the statement " I believe that all men are

mortal " cannot be regarded as being about the class determined

by either function, because its truth-value may be changed

by the substitution of a formally equivalent function (which

leaves the class unchanged). We will call a statement involving

a functio n Sx an " extensional " function of the function $x, if'

it is like " all men are mortalr" i.e,if. its truth-valueis unchanged

by the substitution of any formally equivalent function; and

when a function of a function is not extensional, we will call it
tt intensionalrtt so that t'I believe that all men are mortal tt

is an intensional function of " # is human t' or " x is mortal.tt

Thus ctctcnsional functions of a function ,c may, for practical




