
Fundamentals of Cryptography
an interactive tutorial

EIDMA-Stieltjes week

 22 September 2003

Leiden

Henk van Tilborg
Eindhoven University of Technology

1 Introduction
What are the reasons to use cryptographic algorithms?

è Confidentiality (or Privacy)

When transmitting data, one does not want an eavesdropper to understand the contents of
the transmitted messages. The same is true for stored data that should be protected against
unauthorized access, for instance by hackers.

è Authentication

This property is the equivalent of a signature. The receiver of a message wants proof that a
message comes from a certain party and not from somebody else (even if the original party
later wants to deny it).

è Integrity

This means that the receiver of certain data has evidence that no changes have been made by
a third party.

2 Symmetric Systems

2.1 Classical Systems

2.1.1 Caesar Cipher

Shift each letter in the text cyclicly over k places. So, with k = 7 one gets the following
encryption of the word cleopatra (note that the letter z is mapped to a):

cleopatra ô
+1

 dmfpqbusb ô
+1

 engqrcvtc ô
+1

 fohrsdwud ô
+1

 gpistexve ô
+1

 hqjtufywf ô
+1

irkuvgzxg ô

+1
 jslvwhayh

To do this in Mathematica, we need modular arithmetic (replace a by 0, b by 1,…,z by 25
and make your calculations modulo 26).

0
a

1
b 2

c 3
d 4e

5f
6g

7h
8i

9j
01

k

11
l

21
m

31
n

41
o51

p61
q71

r

81 s
91 t

02 u
12 v

22 w

32 x

42
y

52
z

CaesarCipher@plaintext_, key_D := FromCharacterCode@
Mod@ ToCharacterCode@plaintextD − 97 + key, 26D + 97D

2 EIDMA_Stieltjes.nb

plaintext = "cleopatraisanegyptianqueeen";
key = 7;
CaesarCipher@plaintext, keyD

An easy way to break the system is to try out all possible keys. This method is called
exhaustive key search.

The cryptanalysis of the ciphertext "xyuysuyifvyxi".

ciphertext = "xyuysuyifvyxi";
Table@8key, CaesarCipher@ciphertext, −keyD<, 8key, 0, 4<D êê
TableForm

So, the key k was -4 ∫ 22 Hmod 26L .

2.2 Block Ciphers

2.2.1 Some General Principles

Block ciphers handle n bits at a time (like n = 64, 128).

They have no memory (to store previous input).

There can operate at very high speeds.

Block

fi

Cipher
plaintext ciphertext

key

64 64

64 bits

bits bits

Often, the same device can be used for encryption and decryption.

Typically, the block cipher consists of a sequence of identical looking rounds each operating
under a round key that is computed from the key k .

EIDMA_Stieltjes.nb 3

Each round is designed to realize "confusion" and "diffusion" in order to obscure
dependencies and other statistical properties of the plaintext.

∫

fi fi fi
> > > > >

Round 1 Round 2 Round 8

k1 k2 k8

plain−
text

cipher−
text

Note that the same plaintext will result in the same ciphertext as long as the key has not been
changed. To avoid this situation feedback is introduced. Examples are given below.

2.2.2 Advanced Encryption Standard (AES), Rijndael

Like most modern block ciphers, Rijndael is an iterated block cipher: it specifies a
transformation, also called the round function, and the number of times this function is
iterated on the data block to be encrypted/decrypted, also referred to as the number of
rounds. The block size is 128, 192 or 256.

The round function consists of the following operations:

• ByteSub (affects individual bytes),

• ShiftRow (shifts rows),

• MixColumn (affects each column),

• RoundKey addition (overall XOR).

These are applied to the intermediate cipher result, also called the State: a 4 ¥ 4, 4 ¥ 6, resp.
4 ¥ 8 matrix of which the entries consist of 8 bits, i.e. one byte. Below the block length will be
192. One gets

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

4 EIDMA_Stieltjes.nb

where each ai, j consists of 8 bits, so it has the form 8Hai, jL0, Hai, jL1, …, Hai, jL7< . For example,
a0,0 = 81, 0, 1, 1, 0, 0, 0, 1< .

Sometimes, we use the one-dimensional ordering (columnwise) i.e.
a0,0, a1,0, a2,0, a3,0, a0,1, …, a3,5 .

É One Round

ByteSub

This is the only non-linear part in each round.

Apply to each byte ai, j two operations:

1) Interpret ai, j as element in GFH28L and replace it by its multiplicative inverse,

if it is not 0, otherwise leave it the same.

2) Replace the resulting 8-tuple, say Hx0, x1, …, x7L by i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

x0
x1
x2
x3
x4
x5
x6
x7

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
+

i

k

jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj

1
1
0
0
0
1
1
0

y

{

zzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz
.

The finite field GFH28L is made by means of the irreducible polynomial
mHaL = 1 + a + a3 + a4 + a8 . This polynomial is not primitive!

Note that both operations are invertible.

Instead of performing these calculations, one can also replace them by one substitution
table: the ByteSub S-box.

ShiftRow

The rows of the State are shifted cyclically to the left using different offsets: do not shift row
0, shift row 1 over c1 bytes, row 2 over c2 bytes, and row 3 over c3 bytes, where

c1 c2 c3
128 1 2 3
192 1 2 3
256 1 3 4

.

So

EIDMA_Stieltjes.nb 5

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

becomes

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,1 a1,2 a1,3 a1,4 a1,5 a1,0
a2,2 a2,3 a2,4 a2,5 a2,0 a2,1
a3,3 a3,4 a3,5 a3,0 a3,1 a3,2

MixColumn

Interpret each column as a polynomial of degree 3 over GFH28L and multiply it with

 H1 + aL x3 + x2 + x + a

modulo x4 + 1.

Note that the above polynomial is invertible modulo x4 + 1.

<<Algebra`FiniteFields`

f128 = GF@2, 81, 1, 0, 1, 1, 0, 0, 0, 1<D;
one = f128@81, 0, 0, 0, 0, 0, 0, 0<D
α = f128@80, 1, 0, 0, 0, 0, 0, 0<D
g@x_D = H1 + αL x3 + one x2 + one x + α

Suppose that the first column looks like

col = 8α100, α255, α200, α<;
col êê TableForm
colpol@x_D = col@@1DD + col@@2DD x + col@@3DD x2 + col@@4DD x3

pr@x_D = ownexpand@colpol@xD∗g@xDD
prod@x_D = PolynomialMod@pr@xD, x4 − 1D

6 EIDMA_Stieltjes.nb

The inverse operation is a multiplication by

h@x_D = H1 + α + α3L x3 + H1 + α2 + α3L x2 + H1 + α3L x + Hα + α2 + α3L ;
ownexpand@PolynomialMod@g@xD∗h@xD, x4 − 1DD
ownexpand@PolynomialMod@prod@xD∗h@xD, x4 − 1DD

Round Key Addition

XOR the whole matrix with a similar sized matrix (i.e. the Round Key) obtained from the
cipher key in a way that depends on the round index.

Note that the XOR applied to a byte, really is an XOR applied to the 8 bits in the byte.

For example, if

a0,0 a0,1 a0,2 a0,3 a0,4 a0,5
a1,0 a1,1 a1,2 a1,3 a1,4 a1,5
a2,0 a2,1 a2,2 a2,3 a2,4 a2,5
a3,0 a3,1 a3,2 a3,3 a3,4 a3,5

 ≈

k0,0 k0,1 k0,2 k0,3 k0,4 k0,5
k1,0 k1,1 k1,2 k1,3 k1,4 k1,5
k2,0 k2,1 k2,2 k2,3 k2,4 k2,5
k3,0 k3,1 k3,2 k3,3 k3,4 k3,5

=

u0,0 u0,1 u0,2 u0,3 u0,4 u0,5

u1,0 u1,1 u1,2 u1,3 u1,4 u1,5

u2,0 u2,1 u2,2 u2,3 u2,4 u2,5

u3,0 u3,1 u3,2 u3,3 u3,4 u3,5

.

with u0,0 = a0,0 ≈ k0,0 , the coordinate-wise exclusive or.

a0,0 = 81, 1, 1, 1, 0, 0, 0, 0<; k0,0 = 81, 1, 0, 0, 1, 0, 1, 0<;
Mod@a0,0 + k0,0, 2D

There is also an initial Round Key addition and one final round that differs slightly from the
others (the MixColumn is omitted) .

EIDMA_Stieltjes.nb 7

3 The Principle of Public Key Cryptography
Alice and Bob want a method for encryption that does not involve a common secret key kA,B
that has been agreed upon beforehand.

They also want techniques for authentication and integrity.

3.1 Setting It Up
Every participant P makes two matching algorithms:

è public algorithm PubAlgP,

è secret algorithm SecAlgP.

Because PubAlgP is public, it should not be possible to compute SecAlgP out of PubAlgP.

3.2 Encryption
Encryption of message m by Alice to Bob.

Alice sends:

c =PubAlgBobHmL .

Bob decrypts c as follows:

SecAlgBobHcL=SecAlgBob(PubAlgBobHmL) = m .

Question:
Is it possible that the plaintext remains secret while you know the ciphertext and how is was
encrypted?

It should be against your intuition that this works. If you know c and PubAlgBob then you
should be able to find m . In the worst case, you can find m by encrypting out all possible
plaintexts until you will find c .

Computationally, the above system is possible! The number of possibilities to check should
be too much even when many computers work together for many hours.

8 EIDMA_Stieltjes.nb

4 Mathematical Principles

4.1 Different Complexities
Exponentiation goes very easy:

To compute 64371 Hmod 99991L , we make the following table

61 6

62 36

64 1296

68 79760

616 30198

632 1284

664 48800

6128 54344

6256 36151

6512 12431

61024 43666

62048 91168

64096 52331

So, 64371 ∫ 64096 6256 616 62 61 ∫ 52331 ¥ 36151 ¥ 30198 ¥ 36 ¥ 6 ∫ 34455 Hmod 99991L .

The answer 34455 can be checked with the Mod function.

Mod@52331∗36151∗30198∗36∗6, 99991D
Mod@64371, 99991D

Faster is the PowerMod function which uses the method above.

PowerMod@6, 4371, 99991D
So, for a fast exponentiation one uses the binary expansion of the exponent to compute 64371 .

The binary expansion of the exponent can be found with the IntegerDigits function.

EIDMA_Stieltjes.nb 9

IntegerDigits@4371, 2D
From this we can also compute 64371 on the fly as follows (all calculations are modulo 99991):

ikjjjjjjjjjikjjjjjjjjikjjjjjjjikjjjjjikjjjjikjjjJJIIHH1∗ 6L2L2M2M2 6N2N2y{zzz2y{zzzz2 6
y{zzzzz2y{zzzzzzz2y{zzzzzzzz

2

 6
y{zzzzzzzzz
2

 6

A more formal verification:i
k
jjjjjjjjjjjikjjjjjjjjjj
ikjjjjjjjjjikjjjjjjjikjjjjjjikjjjjjikjjjjJJIHH1∗xL2L2M2N2 xN2y{zzzz2y{zzzzz2y{zzzzzz2 x

y{zzzzzzz
2y{zzzzzzzzz

2y
{zzzzzzzzzz
2

 x

y
{
zzzzzzzzzzz
2

 x

The Paul Kocher's timing attack is based on the difference in time needed for taking the
square and for multiplying.

The "opposite" operations of exponentiation are intractable for large moduli (unless they
have a special form).

a) Determine e such that 6e ∫ 34455 (mod 99991).

Since e can be written as log6 34455, the problem of computing e is called the
logarithm problem.

This observation is at the base of the Diffie-Hellman system.

Compare the difference in the following two plots:

p = 541;
Plot@Log@xD, 8x, 1, p<D
ListPlot@Table@8j, Mod@2j, pD<, 8j, 1, p<DD

b) Determine m such that m4371 ∫ 34455 (mod 99991).

Take the 4371th modular root of 34455.

This observation is at the base of the RSA system.

Compare the difference in the following two plots:

10 EIDMA_Stieltjes.nb

n = 541;
Plot@x1ê3, 8x, 1, n<D
ListPlot@Table@8j, Mod@j3, nD<, 8j, 1, n<DD

What is the complexity of a modular exponentiation? The table above has length log2 m .
Since m < p , this length is at most log2 p . So, it takes at most log2 p multiplications to make
the table.

In the worst case, all these elements have to be multiplied. This takes another log2 p
multiplications. The overal complexity is 2 log2 p .

Theorem 4.1
The complexity of an exponentiation in p

* is at most 2 log2 p .

5 Discrete Logarithm Based Systems

5.1 The Diffie-Hellman Key-Exchange System

5.1.1 Setting It Up

Consider the prime number p = 99991 and take g = 6.

The multiplicative order of 6 is 99990. This means the following:

The number 6 has the property that all powers 1, 6, 62, 63, …, 699989 are different modulo
99991 and that 699990 ∫ 1 Hmod 99991L .

PowerMod@6, 99990, 99991D
FactorInteger@99990D

EIDMA_Stieltjes.nb 11

PowerMod@6, 99990ê2, 99991D
PowerMod@6, 99990ê3, 99991D
PowerMod@6, 99990ê5, 99991D
PowerMod@6, 99990ê11, 99991D
PowerMod@6, 99990ê101, 99991D

Such an element is called a generator of p
* or primitive element in p

* .

Alice chooses as random secret exponent SAlice = 12345 and Bob as random secret exponent
SBob = 11111.

Next, Alice and Bob compute their public key:

612345 (mod 99991), resp. 611111 (mod 99991).

PAlice = PowerMod@6, 12345, 99991D
PBob = PowerMod@6, 11111, 99991D

So, PAlice=33190 and PBob=61056.

These public keys are made public by them.

5.1.2 The Key Determination

Alice can compute the common key kA,B (with Bob) by raising the publicly known
PBob=61056 of Bob to the power SAlice=12345, which she only knows. She gets:

PowerMod@61056, 12345, 99991D
Bob gets the same common key kA,B by raising PAlice=33190 of Alice to the power SBob.
Indeed, he gets:

PowerMod@33190, 11111, 99991D
Note that

PBobSAlice = H6SBobLSAlice = 6SBob¥SAlice

just as

PAliceSBob = H6SAliceLSBob = 6SAlice¥SBob

12 EIDMA_Stieltjes.nb

Remember from high school that

 HgmLn = gm gm …gmõúúúúúúúúúúúúúù ûúúúúúúúúúúún

= gm+m+…+mõúúúúúúúúúúúúúúúù ûúúúúúúúúúúúúún

= gm¥n = HgnLm .

If Eve can find SAlice from PAlice, she can also determine kA,B , just like Bob did. To this
end, she has to solve the logarithm problem

 6?? ∫ 33190 (mod 99991).

In Sept. 2001, a logarithm in GFH2521L was determined.

N@2521, 10D
Time involved: sieving 21 days, linear algebra 10 days, final step 12 hours.

5.2 How to Take Discrete Logarithms

5.2.1 Exhaustive Search

Try SBob = 1, 2, 3, …until you find that gSBob ∫ PBob (mod p).

Complexity is p .

5.2.2 Baby-step Giant-step

Complexity of the baby-step giant-step method is pa in computer time and p1-a in memory
space, where a can be chosen freely in between 0 and 1.

EXAMPLE : a=4/5

Consider the equation 6m ∫ 55555 Hmod 99991L and assume that we can only store a table with 10
field elements.

We make a table of 6i Hmod 99991L for i = 0, 1, …, 9.

powers = Table@PowerMod@6, i, 99991D, 8i, 0, 9<D

EIDMA_Stieltjes.nb 13

This gives the table:
i 0 1 2 3 4 5 6 7 8 9
6i 1 6 36 216 1296 7776 46656 79954 79760 78596

Now note that either

0 £ m £ 9 or

0 £ m - 10 £ 9or

0 £ m - 2.10 £ 9 or

0 £ m - 3.10 £ 9 or

etc.

The idea is to make (giant) steps of size 10 by checking if 55555, 55555 ê 610 , 55555 ê 62.10 ,… is in the
table.

Instead of having to divide by 610 , we rather multiply by something else. We use the PowerMod
function to find 6-10 mod 99991.

PowerMod@6, −10, 99991D
This means that 1 ê 610 ∫ 12339 Hmod 99991L , i.e. dividing by 610 amounts to the same as multiplying
by 12339 modulo 99991

So, we check if 55555, 55555×12339, 55555 ¥ 123392 , 55555 ¥ 123393 ,… is in the table above. We use
the function MemberQ.

try = Mod@55555∗123391, 99991D
MemberQ@powers, tryD

We better make a program.

j = 0; try = Mod@55555, 99991D;
While@Not@MemberQ@powers, tryDD,
j = j + 1; try = Mod@try∗12339, 99991DD;

j
try

We conclude that j = 7972. Indeed, 1296 is the element in the table above corresponding to i = 4.

This means that m - 7972â10 = 4, i.e. m = 79724.

Indeed, 679724 ∫ 55555 mod 99991, as can be easily checked with:

14 EIDMA_Stieltjes.nb

PowerMod@6, 79724, 99991D
Note that the maximum number of tries is `99991 ê 10p = 1000 ª p4ê5 and that the length of
the table is 10 ª p1ê5 .

5.2.3 Pollard-·

The time complexity of the Pollard-r method is the same as that of the
Baby-Step-Giant-Step, so

è!!!!
p .

The advantage lies in the minimal memory requirements.

É The Method

We shall explain the Pollard-r method for the special case of a multiplicative subgroup G of
GFHpL of prime order. So, we want to solve m , 0 £ m < q , from the equation c = gm , where
g Œ GFHpL has order q , q prime, and where c Œ GFHqL is some given q-th root of unity.

EXAMPLE (Part I): 121m ∫ 3435 Hmod 4679L
We consider p = 4679. Note that p - 1 = 2 ¥ 2339. The number 11 is a primitive element of GFH4679L
and thus g = 11Hq-1Lê2339 = 112 = 121 is the generator of a multiplicative subgroup of order 2339.

p = 4679; PrimeQ@pD
MultiplicativeOrder@11, pD
MultiplicativeOrder@121, pD

We want to solve the equation

121m ∫ 3435 Hmod 4679L .

Note that this equation must have a solution, since 3435 is indeed a 2339-th root of unity in
GFH4679L .

Indeed, all 2339-th roots of unity are a zero of x2339 - 1 and this polynomial can not have more
zeros.

PowerMod@3435, 2339, 4679D
In order to solve c = gm , we partition the multiplicative subgroup G of GFHpL of order q , in
three subsets Gi , i = 0, 1, 2, as follows:

EIDMA_Stieltjes.nb 15

x Œ Gi ñ x ∫ i Hmod 3L .

So, G0 = 80, 3, …< , G1 = 81, 4, …<, and G2 = 82, 5, …<.
We define a sequence 8xi<i≥0 in GFHpL recursively by x0 = 1 and

(5.1)xi+1 = f HxiL =
loooomnoooo

xi
2 Hmod pL,

c.xi Hmod pL,
g.xi Hmod pL, if xi Œ G0,

if xi Œ G1,
if xi Œ G2.

Clearly, the sequence 8xi<i≥0 will eventually cycle. This behaviour explains the name
r-method.

With the sequence 8xi<i≥0 we associate two other sequences 8ai<i≥0 and 8bi<i≥0 in such a way
that for all i ≥ 0

xi = gai cbi .

To this end, take a0 = b0 = 0 and use the recursions

ai+1 =
looomnooo 2 ai Hmod qL,

ai,
ai + 1 Hmod qL, if xi Œ G0,

if xi Œ G1,
if xi Œ G2.

bi+1 =
looomnooo 2 bi Hmod qL,

bi + 1 Hmod qL,
bi,

if xi Œ G0,
if xi Œ G1,
if xi Œ G2.

Note that by induction

xi+1 = xi
2 = Hgai cbiL2 = g2 ai c2 bi = gai+1 cbi+1 , if xi Œ G0 ,

xi+1 = c.xi = c.gai cbi = gai cbi+1 = gai+1 cbi+1 , if xi Œ G1 ,
xi+1 = g.xi = g.gai cbi = gai+1 cbi = gai+1 cbi+1 , if xi Œ G2 .

As soon as we have two distinct indices i and j with xi = x j we are done.

Indeed, if gai cbi = ga j cb j , i < j, then gai-a j = cb j-bi .

Provided that bi π b j , we have found the solution

m ∫ Ha j - aiL ê Hbi - b jL Hmod qL .

If bi = b j (with negligible probability), put c ' = c.g and solve c ' = gm' , where m ' = m + 1.

16 EIDMA_Stieltjes.nb

To find indices i and j with xi = x j , we follow Floyd's cycle-finding algorithm: find an index
i such that xi = x2 i (so, take j = 2 i).

To this end, we start with the pair Hx1, x2L , calculate Hx2, x4L , then Hx3, x6L , and so on, each
time calculating Hxi+1, x2 i+2L from the previously calculated Hxi, x2 iL by the defining rules

 xi+1 = f HxiL ,

 x2 i+2 = f H f Hx2 iLL .

In this way, huge storage requirements can be avoided.

EXAMPLE (Part II): 121m ∫ 3435 Hmod 4679L
We want to solve the equation:

121m ∫ 3435 Hmod 4679L .

The recurrence relation for the 8xi<i≥0 sequence can be evaluated by means of the Which and
Mod functions.

RecX@x_, g_, c_, p_D := Which@ Mod@x, 3D == 0, Mod@x2, pD,
Mod@x, 3D == 1, Mod@c∗x, pD, Mod@x, 3D == 2, Mod@g∗x, pD D

The smallest index i , i ≥ 1, satisfying xi = x2 i can be found with the help of the While
function.

g = 121; c = 3435; p = 4679;
x1 = RecX@1, g, c, pD;
x2 = RecX@x1, g, c, pD;
i = 1;
While@x1 != x2, x1 = RecX@x1, g, c, pD;
x2 = RecX@RecX@x2, g, c, pD, g, c, pD; i = i + 1D;

i

So, x76 = x152 and m ∫ Ha152 - a76L ê Hb76 - b152L Hmod 2339L . However, above we did not update
the values of the sequences ai and bi . We will do that now.

EIDMA_Stieltjes.nb 17

RecurrDef@8x_, a_, b_<D := Which@Mod@x, 3D == 0,8Mod@x2, pD, Mod@2 a, qD, Mod@2 b, qD<,
Mod@x, 3D == 1, 8Mod@c∗x, pD , a, Mod@b + 1, qD<,
Mod@x, 3D == 2, 8Mod@g∗x, pD, Mod@a + 1, qD, b<D

g = 121; c = 3435; p = 4679; q = 2339;
x1 = 1; a1 = 0; b1 = 0;
x2 = 1; a2 = 0; b2 = 0;8x1, a1, b1< = RecurrDef@8x1, a1, b1<D; i = 1;8x2, a2, b2< = RecurrDef@RecurrDef@8x2, a2, b2<DD;
While@x1 != x2, 8x1, a1, b1< = RecurrDef@8x1, a1, b1<D;8x2, a2, b2< = RecurrDef@RecurrDef@8x2, a2, b2<DD; i = i + 1D;
Print@"i=", iD
Print@"xi=", x1, ", ai=", a1, ", bi=", b1D;
Print@"x2i=", x2, ", a2i=", a2, ", b2i=", b2D;

Indeed, the relation a ai cbi gives the same value for i = 76 and i = 2 ¥ 76:

Mod@PowerMod@g, a1, pD∗PowerMod@c, b1, pD, pD
Mod@PowerMod@g, a2, pD∗PowerMod@c, b2, pD, pD

The solution m of 121m ∫ 3435 Hmod 4679L can now be determined from
m ∫ H286 - 84L ê H2191 - 915L Hmod 2339L .

m = Mod@Ha2 − a1L∗ PowerMod@b1 − b2, −1, qD, qD
That m = 1111 is indeed the solution can be checked with

PowerMod@g, 1111, pD == c

The r in the name of this algorithm reflects the shape of the 8xi<i≥0 -sequence: after a while it
starts cycling around. The memory requirements of Floyd's cycle finding algorithm are
indeed minimal. The expected running time is

è!!!
q .

18 EIDMA_Stieltjes.nb

5.2.4 Pohlig-Hellman

Complexity of the Pohlig-Hellman method depends on factorization of p - 1. It can be much
faster than

è!!!!
p operations, if p - 1 has only small prime divisors. but is, in general, still

exponential in behaviour.

É Special Case: p - 1 = 2n

Examples of prime numbers that are a power of 2 plus one are given by p = 17, p = 257,
and p = 216 + 1.

n = 16; PrimeQ@2n + 1D
So, let g be a generator (primitive element) in p

* . The problem is to find m , 0 £ m £ q - 2,
satisfying

gm ∫ c Hmod pL

for given value of c .

Let m0, m1, …, mn-1 be the binary representation of the unknown m , i.e.

m = m0 + m1 .2 + … + mn-1 .2n-1 , mi Œ 80, 1<, 0 £ i £ n - 1.

Of course, it suffices to compute the unknown mi 's. Since g is a generator of p
* we know

that

gp-1 ∫ 1 Hmod pL and gi T 1 Hmod pL for 0 < i < p - 1.

It also follows that gHp-1Lê2 ∫ -1 Hmod pL , because

• the square of gHp-1Lê2 is 1,

• gHp-1Lê2 T 1 Hmod pL .

We also use here that the quadratic equation x2 ∫ 1 Hmod pL has ±1 as only roots. Hence

cHp-1Lê2 ∫ HgmLHp-1Lê2 ∫ gmHp-1Lê2 ∫ gHm0+m1 .2+…+mn-1 .2n-1L Hp-1Lê2
∫

g prim.
 gm0 Hp-1Lê2 ∫ 9 +1,

-1,
if m0 = 0,
if m0 = 1.

EIDMA_Stieltjes.nb 19

Therefore, the evaluation of cHp-1Lê2 modulo p , which takes at most 2. `log2 pp
multiplications, as we have seen in Section 4.4), yields m0 .

Compute c1 = c.g-m0 = gm1 .2+m2 .22+…+mn-1 .2n-1 .

Now m1 can be determined in the same way as above from

c1
Hp-1Lê4 ∫ gHm1 2+m2 .22+…+mn-1 .2n-1L Hp-1Lê4

∫ gm1 Hp-1Lê2 ∫ 9 1,
-1,

if m1 = 0,
if m1 = 1.

Compute c2 = c1.g-2 m1 = c.g-Hm0+m1 .2L and determine m2 from Hc2LHp-1Lê8 . Repeat this process
until also mn-1 (and thus m) has been determined.

EXAMPLE

Consider the equation 3m ∫ 7 mod 17. So, p = 17, g = 3, and c = 7 . Note that g-1 = 6.

Writing m = m0 + 2 m1 + 4 m2 + 8 m3 , we find m0 by evaluating cHp-1Lê2 Hmodulo pL .

PowerMod@7, 8, 17D
Since this is -1 we know that m0 = 1. Compute c1 ∫ c ê 3 ∫ 6. c ∫ 8 mod 17. Then m1 can be
found from c1

Hp-1Lê4 Hmodulo pL:

PowerMod@8, 4, 17D
Again this is -1, so m1 = 1. Compute c2 ∫ c1 ê 32 ∫ 62.c1 ∫ 16 mod 17. Then m2 can be found
from c2

Hp-1Lê8 Hmodulo pL:

PowerMod@16, 2, 17D
Since the outcome is 1, we have m2 = 0. So, c3 = c2 and m3 can be found from
c3

Hp-1Lê16 Hmodulo pL:

PowerMod@16, 1, 17D
We now also have m3 = 1 and thus m = 1.20 + 1.21 + 0.22 + 1.23 = 11. We can check this with:

PowerMod@3, 11, 17D
The above algorithm finds m from c in at most

20 EIDMA_Stieltjes.nb

n.H2. `log2 pp + 2L ª 2. Hlog2 pL2 ª 2 n2,

operations, where the term +2 comes from the evaluation of the ci 's (one squaring and
possibly one multiplication to compute ci-1) and the n from the number of exponentiations.

Comparing with the complexity of an exponentiation (see Theorem 4.3), we observe that for
p = 2n + 1,

• using the Diffie-Hellman scheme takes 2 n multiplications

• breaking it takes ª 2 n2 multiplications

A quadratic relation, which is not significant enough to make the system secure.

The method above can be generalized to prime numbers p with the property that p - 1 only
contains small primefactors.

5.2.5 The Index-Calculus Method

Complexity of the index-calculus method is subexponential!

Depending on the implementation it may look like e
è!!!!!!!!!!!!!!!!!!!!!!

ln n lnln n , where n is the size of the
multiplicative group.

É GFHpL
EXAMPLE: p=99991, g=6

Consider 99991
* with generator g = 6 and say that we want to solve

6m ∫ 55555 Hmod 99991L
As factor base S we take the set of prime numbers 82, 3, 5, 7, 11, 13, 17, 19, 23, 29< .

Next, we try to write all the elements in the factor base as powers of 6 mod 99991, i.e. we need to solve
the logarithm problem for all the elements in the factor base.

We achieve this by finding powers of 6 that reduced modulo 99991 can be expressed as product of
elements in 82, 3, 5, 7, 11, 13, 17, 19, 23, 29< .

EIDMA_Stieltjes.nb 21

A number with this property is called smooth with respect to this factorbase.

(Here, we shall use the function FactorInteger, but that does function does much more than is
needed.)

p = 99991;
try = PowerMod@6, 812, pD
FactorInteger@tryD

After some trial and error we find the following five succesful attempts.

FactorInteger@PowerMod@6, 219, pDD
FactorInteger@PowerMod@6, 813, pDD
FactorInteger@PowerMod@6, 2150, pDD
FactorInteger@PowerMod@6, 2151, pDD
FactorInteger@PowerMod@6, 7003, pDD
FactorInteger@PowerMod@6, 10028, pDD
FactorInteger@PowerMod@6, 12067, pDD
FactorInteger@PowerMod@6, 20019, pDD
FactorInteger@PowerMod@6, 30042, pDD
FactorInteger@PowerMod@6, 30057, pDD

Write

2 ∫ 6m1 Hmod 99991L , 3 ∫ 6m2 Hmod 99991L ,
5 ∫ 6m3 Hmod 99991L , 7 ∫ 6m4 Hmod 99991L ,
11 ∫ 6m5 Hmod 99991L 13 ∫ 6m6 Hmod 99991L ,
17 ∫ 6m7 Hmod 99991L , 19 ∫ 6m8 Hmod 99991L ,
23 ∫ 6m9 Hmod 99991L 29 ∫ 6m10 Hmod 99991L .

We get ten congruence relations modulo 99990.

For example, 6813 ∫ 17986 ∫ 21 .171 .232 Hmod 99991L can be rewritten as

6813 ∫ H6m1L1.H6m7L1.H6m9L2 ∫ 6m1+m7+2 m9 Hmod 99991L .

Comparing the exponents on both sides gives the relation

 813 ∫ m1 + m7 + 2 m9 Hmod 99990L .

The ten congruence relations modulo 99990 that we get are

22 EIDMA_Stieltjes.nb

219 ∫ m4 + m6 + m8 + m9 Hmod 99990L ,
813 ∫ m1 + m7 + 2 m9 Hmod 99990L ,
2150 ∫ m3 + m8 + m10 Hmod 99990L ,
2151 ∫ m1 + m2 + m3 + m8 + m10 Hmod 99990L ,
7003 ∫ 3 m2 + m4 + 2 m7 Hmod 99990L ,
10028 ∫ 3 m1 + m4 + m8 + m10 Hmod 99990L ,
12067 ∫ 2 m4 + m6 + m8 Hmod 99990L ,
20019 ∫ m1 + 2 m3 + m6 + m10 Hmod 99990L ,
30042 ∫ 6 m1 + 2 m9 Hmod 99990L ,
30057 ∫ 3 m1 + 2 m5 + m6 Hmod 99990L .

The above system of relations can now easily be solved:

Solve@8m4 + m6 + m8 + m9 m 219 ,
m1 + m7 + 2∗ m9 == 813, m3 + m8 + m10 == 2150,
m1 + m2 + m3 + m8 + m10 == 2151, 3 m2 + m4 + 2∗ m7 m 7003,
3∗ m1 + m4 + m8 + m10 m 10028, 2 ∗ m4 + m6 + m8 m 12067,
m1 + 2∗ m3 + m6 + m10 m 20019, 6 ∗ m1 + 2∗ m9 m 30042,
3∗ m1 + 2∗ m5 + m6 m 30057, Modulus m p − 1<,8m1, m2, m3, m4, m5, m6, m7, m8, m9, m10<D

So, we know that

2 ∫ 622146 Hmod 99991L , 3 ∫ 677845 Hmod 99991L ,
5 ∫ 668986 Hmod 99991L , 7 ∫ 610426 Hmod 99991L ,
11 ∫ 677314 Hmod 99991L 13 ∫ 68971 Hmod 99991L
17 ∫ 681501 Hmod 99991L 19 ∫ 682234 Hmod 99991L
23 ∫ 698568 Hmod 99991L 29 ∫ 650910 Hmod 99991L .

Let us now find a solution of 6m ∫ 55555 Hmod 99991L .

From

FactorInteger@55555D
FactorInteger@Mod@613 55555, 99991DD

we see that 55555 can not be expressed as product of elements of S , but

613 ¥ 55555 ∫ 35 131 171 ∫ H6m2L5 H6m6L1 H6m7L1 ∫ 65 m2 6m6 6m7 Hmod 99991L .

EIDMA_Stieltjes.nb 23

Since we are trying to solve 6m ∫ 55555 Hmod 99991L we conclude that

613+m ∫ 65 m2+m6+m7 Hmod 99991L .

13 + m ∫ 5. m2 + m6 + m7 ∫ 5 ¥ 77845 + 8971 + 81501 Hmod 99990L .

We conclude that m is given by

Mod@5∗77845 + 8971 + 81501 − 13, p − 1D
So

m ∫ 79724 Hmod 99990L .

This can easily be checked with

PowerMod@6, 79724, 99991D
6 Elliptic Curve Based Systems

6.1 The Definition of an Elliptic Curve
Elliptic curves are defined by the so-called Weierstrass equation:

(6.1)y2 + u.x.y + v.y = x3 + a.x2 + b.x + c .

The coefficients will be in p or in GFH2mL . Here we only consider the p case.

For p r 5 one can simplify this equation by means of elementary transformations:

(6.2)y2 = x3 + a.x + b .

Definition 6.1
An elliptic curve  over GFHqL is defined as the set of points Hx, yL satisfying (7.1)
together we single element O , called the point at infinity.

24 EIDMA_Stieltjes.nb

<< Graphics`ImplicitPlot`

elliptic = ImplicitPlot@ y2 == x3 − 5 x + 3, 8x, −3, 3<D
Substitute a random value for x in

y2 = x3 + a.x + b .

On the average, half of time the right hand side will be a quadratic residue (=perfect square)
modulo p , leading to two values for y .

p = 31;
Solve@ 8y2 == x3 − 5 x + 3, x == 3, Modulus == p<, 8y<D

6.2 Lines Intersecting Elliptic Curves
Consider two points on an elliptic curve, say P = Hx1, y1L and Q = Hx2, y2L , with different
x-coordinates. Let y = u.x + v be the line through them.

Substitute y = u.x + v in

y2 = x3 + a.x + b .

One gets a third degree equation in x:

Hu.x + vL2 = x3 + a.x + b

This third degree equation has x1 and x2 as roots, i.e. it contains the factors x - x1 and
x - x2 .

So, there must be a third root x3 . It can easily be computed by comparing the coefficient of
x2 in:

x3 + a.x + b - Hu.x + vL2 = Hx - x1L Hx - x2L Hx - x3L .

Compute y3 = u.x3 + v . Then Hx3, y3L is also on the curve.

Conclusion: the line through Hx1, y1L and Hx2, y2L will intersect the curve in a third point!

EIDMA_Stieltjes.nb 25

Block@8$DisplayFunction = Identity<,
elliptic = ImplicitPlot@ y2 == x3 − 5 x − 3, 8x, −3, 4<D;
linea = Plot@ x + 2, 8x, −3, 4<DD;
Show@linea, ellipticD
NSolve@ 8y2 == x3 − 5 x − 3, y == x + 2<, 8x, y<D

The same is true for tangent lines. They will also intersect the curve in another point (except
when it is a double tangent).

Block@8$DisplayFunction = Identity<,
elliptic = ImplicitPlot@ y2 == x3 − 5 x − 3, 8x, −3, 4<D;
linea = Plot@− x, 8x, −3, 4<D;D;
Show@linea, ellipticD

Also modulo a prime number, lines through two points of an elliptic curve will intersect it in
a third point.

Solve@ 8y2 == x3 − 5 x + 3, y == x − 5, Modulus == 11<, 8x, y<D
6.3 Adding Two Points on the Curve
We are now ready to define an addition on .

To add points P1 and P2 , both not at infinity, execute the following two steps:

1) Compute the line  through P1 and P2 (or tangent line though P1 , if P1 = P2) and
find the third point of intersection with . Let this be Q .

2) The sum P1 + P2 is defined as P3 := -Q .

26 EIDMA_Stieltjes.nb

-3 -2 -1 1 2 3 4

-6

-4

-2

2

4

6

P

Q

P+Q

Ë

Ë

Ë

-3 -2 -1 1 2 3 4

-6

-4

-2

2

4

6

P

2P

Ë

Ë

Interpret the point O at infinity as the intersection point of all vertical lines.

Consistent with the above definition of addition we get

O + P = P + O = P ,

if P = Hx, yL , then -P = Hx, - yL .

EIDMA_Stieltjes.nb 27

-2 -1 1 2 3 4

-6

-4

-2

2

4

6

P

−P

Ë

Ë

With this addition we have a group structure on . It is in general non-trivial to determine
the order of this group. We quote:

Theorem 6.1 Hasse
Let N be the number of points on an elliptic curve  over GFHqL . Then… N - Hq + 1L … £ 2

è!!!
q

Theorem 6.2
The additive group of an elliptic curve  over GFHqL is isomorphic to

n1 ≈ n2 ,
where n2 divides both n1 and (q-1) and where n2 can be 1.

6.4 The Logarithm System on Elliptic Curves

6.4.1 The Discrete Logaritm Problem over Elliptic Curves

We have just seen how to to add points on an elliptic curve . This is an operation with
relatively low complexity. To compute scalar multiples of a point P

28 EIDMA_Stieltjes.nb

P + P + ∫ + P
õúúúúúúúúúúúúúúúúúù ûúúúúúúúúúúúúúúún

for some integer n , we can copy the ideas of Section 4.4.

EXAMPLE: n=171

The binary expansion of 171 is given by

IntegerDigits@171, 2D
So, to compute 171 P , it suffices to compute

2 P = P + P ,
4 P = 2 P + 2 P ,
8 P = 4 P + 4 P ,
 Å
 ª
64 P = 32 P + 32 P ,
128 P = 64 P + 64 P

and add the suitable terms. This can be done on the fly as follows:

P =.;
2 H2 H2 H2 H2 H2 H2 PL + PLL + PLL + PL + P

Note that we only needed:

- addition of a point to itself
- addition of P to a point.

The opposite problem is much harder.

Definition 6.2
Let  be an elliptic curve over GFHqL . Let P be a point on  and let Q be a scalar
multiple of P .
The discrete logarithm problem over an elliptic curve is to determine the solution
n of

n.P = Q .

Remember that the (additive) order of a point P is defined as the smallest positive integer m
such that m P = O .

EIDMA_Stieltjes.nb 29

It turns out that all the methods to solve the discrete logarithm problem over elliptic curves
have a complexity of the form ma , for some a > 0.

So, they are exponentially slower than the (logarithmic) complexity of computing scalar
multiples of P .

6.4.2 The Diffie-Hellman System over Elliptic Curves

As system parameters one needs

- an elliptic curve  over a finite field GFHqL ,
- a point P on  of high order.

To

Each user U of the system, selects a secret scalar mU , computes the point QU = mU P and
makes QU public.

Alice and Bob can now agree on the common key

KA,B = mA mB P .

Alice can find this common key by computing mA QB with her secret scalar mA and Bob's
public QB .

Bob can do likewise.

This system is summarized in the following table.

Table 6.1

system parameters elliptic curve 
P of high order

secret key of U mU
public point of U QU = mU P

common key of A and B KA,B = mA mB P
Alice computes mA QB
Bob computes mB QA

The Diffie-Hellman Key Exchange System
over Elliptic Curves

30 EIDMA_Stieltjes.nb

At the time of this writing, it is advised to take the order of P about 150-180 digits long.

EXAMPLE

Consider the elliptic curve  over 863 defined by y2 = x3 + 100 x2 + 10 x + 1. The point
P = 8121, 517< lies on it as can be checked with the Mathematica function Mod.

p = 863;
a = 100; b = 10; c = 1;
x = 121; y = 517;
Mod@y2 − Hx3 + a∗x2 + b∗x + cL, pD == 0

The order of P is 432. To check this we make use of the factorization of 432 and use the
ECScalarMultiplication function defined in Section 7.8.

FactorInteger@432D
P = 8121, 517<;
R = ECScalarMultiply@p, a, b, c, 432, PD

Suppose that Alice has chosen mA = 130 and Bob mB = 258. Then QA = H162, 663L and
QB = H307, 674L , as can be checked with the ECScalarMultiply function.

QAlice = ECScalarMultiply@p, a, b, c, 130, PD
QBob = ECScalarMultiply@p, a, b, c, 258, PD

Alice can compute the common key KA,B with the calculation KA,B = mA QB , where
mA = 130 is her secret key. She finds

ECScalarMultiply@p, a, b, c, 130, QBobD
Likewise, Bob can compute the common key KA,B with the calculation KA,B = mB QA , where
mB = 258 is his secret key. He also finds

ECScalarMultiply@p, a, b, c, 258, QAliceD
Now that the Diffie-Hellman key exchange system over elliptic curves has been described, it
really is a straightforward exercise to show the ElGamal protocol and the other systems,
described in Section 5.2, can be rewritten in the language of elliptic curves.

EIDMA_Stieltjes.nb 31

6.5 Why is it Attractive?
In Section 5.2, various methods are described to take the discrete logarithm over a finite
field.

Exhaustive search, the Pohlig-Hellman algorithm, the baby-step giant-step method, and the
Pollard-· method can all be directly translated into elliptic curve terminology. Use

modular arithmetic on an elliptic curve

multiplication } addition
exponentiation } scalar multiplication

É Exhaustive Search

Obviously, one can can try n = 1, 2, … until n P = Q. The workfactor is upperbounded by
the order m of P .

É Baby-Step Giant-Step Method

Also here the generalization from Section 5.3.2 is obvious.

For instance, if one wants to store only 10 elements, one makes a table of 8O, P, 2 P, …, 9 P< ,
but sorted in a suitable way for easy access.

To solve n P = Q , one looks for the first time that in the list

Q, Q - 10 P, Q - 20 P, Q - 30 P, …

an element of the table is found. Suppose that Q - 10 s P occurs as r P , 0 £ r £ 9, in the table,
then Q = H10 s + rL P , i.e. n = 10 s + r .

Note that is better to compute P
fl

= -10 P once and look in the list

Q, Q + P
fl

, Q + 2 P
fl

, Q + 3 P
fl

, … for a match with the table.

É Index-calculus method

The index-calculus method has defeated any attempt to transfer it efficiently to the elliptic
curve setting.

32 EIDMA_Stieltjes.nb

That is of great cryptographic significance, because the index-calculus method was the only
one with a subexponential complexity.

This means that in regular discrete-logarithm-like systems the index-calculus method is the
governing factor in determining the size of its parameters (to keep the system
computationally secure).

É Consequences

Since the index-calculus method is no longer around in the elliptic curve setting, one can
afford much smaller parameters to achieve the same level of security.

Compare the complexity of Pollard-r with that of the index calculus for k -bits long
numbers:

TableA9k, NAè!!!!!!!!!!!!!!!!!!!!!
Pi∗2k ê2, 3E,

NAExpA1.923∗
è!!!!!!!!!!!!!!!!!!
Log@2kD3

∗
"#####################################HLog@Log@2kDDL23 E, 3E=,8k, 100, 300, 50<E êê

TableForm

For instance, in Sept. 1999 a group of 200 international researchers led by INRIA broke the
97 bits EEC challenge from Certicom. The computing power used by them was twice as
much as the 512 bits RSA challenge broken a few weeks earlier.

There are special attacks on discrete logarithm based elliptic curve cryptosystems. For
instance, sometimes one can translate the discrete logarithm problem for elliptic curves to
the standard discrete logarithm problem!

These attacks make it necessary to avoid special classes of elliptic curves. In particular, one
should not use.

singular curves,
supersingular curves,
anomalous curves.

EIDMA_Stieltjes.nb 33

6.6 Elliptic Addition and Scalar Multiplication Functions

ECAdd@p_, a_, b_, c_, P_List, Q_ListD :=

Module@8lam, x3, y3, P3<,
Which@
P == 8O<, Q,
Q == 8O<, P,
P@@1DD != Q@@1DD,

lam = Mod@HQ@@2DD − P@@2DDL PowerMod@Q@@1DD − P@@1DD, p − 2, pD, pD;
x3 = Mod@lam2 − a − P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL, pD;8x3, y3<,HP == QL fl HP@@2DD == 0L, 8O<,HP == QL fl HP != 8O<L,
lam = Mod@ H3∗P@@1DD2 + 2 a∗P@@1DD + bL

PowerMod@2 P@@2DD, p − 2, pD, pD;
x3 = Mod@lam2 − a − P@@1DD − Q@@1DD, pD;
y3 = Mod@−Hlam Hx3 − P@@1DDL + P@@2DDL, pD;8x3, y3<,HP@@1DD == Q@@1DDL fl HP@@2DD != Q@@2DDL, 8O<DD

ECScalarMultiply@p_, a_, b_, c_, 0, P_ListD := 8O<;
ECScalarMultiply@p_, a_, b_, c_, 1, P_ListD := Mod@P, pD
ECScalarMultiply@p_, a_, b_, c_, n_?EvenQ, P_ListD :=

Module@8pn2 = ECScalarMultiply@p, a, b, c, n ê2, PD<,
ECAdd@p, a, b, c, pn2, pn2DD;

ECScalarMultiply@p_, a_, b_, c_, n_?OddQ, P_ListD :=

Module@8pn1 = ECScalarMultiply@p, a, b, c, n − 1, PD<,
ECAdd@p, a, b, c, pn1, PDD;

34 EIDMA_Stieltjes.nb

