
Chapter 2

SQL Injection Attack

The basic mechanism of SQL injection attack was introduced in Chapter 1 with a
simple motivating example. All web application receive external inputs through various
channels, such as form fields, URL query string parameters, Cookies, and HTTP headers
etc. SQL injection vulnerability exists in a web application when these inputs are used
to construct dynamic SQL queries without proper validation or data type checking. This
programming flaw gives the ability to an attacker to inject malicious SQL code through
the inputs so as to change the syntactic and semantic structure of the dynamic query,
forcing it to return a result set that the programmer did not originally intend. Using SQL
injection attacks, the attacker can extract, modify, or damage the data in the backend
databases.

Before attempting to develop solutions for prevention and detection of SQL injection
attacks, it is necessary to understand the intricate details of various attack techniques
and their consequences. This chapter delves into the implications of various types of
SQL injection attacks and their technical details with appropriate examples. Relatively
recent forms of attacks such as SQL smuggling, heavy-queries, overflow attacks, and out-
of-band channels are also included in the discussion. Additionally, the common evasion
techniques used by attackers to bypass IDS/IPS systems, and general countermeasures
to prevent SQL injection attacks are also discussed.

2.1 Introduction

Though the basic mechanism of SQL injection attack is simple, the attack vectors can
have various different forms and functions. Attackers can craft the malicious SQL
injection code in many different ways depending on how they want the victim query to
behave. Several other factors, such as presence of an IDS/WAF, configuration settings
of the web server, the language & database platform of the web application, etc., also
influence the construction of the attack vectors. Starting with the discovery of SQL
injection vulnerability in a web application, full-fledged SQL injection attack session
generally goes through a series of subsequent injections crafted for specific purposes,
and concludes with stealing of all sensitive data in the backend database. In most
cases, data breach is the primary intention of the attacker, however the data can also be

22 2. SQL Injection Attack

damaged to cause serious losses to the business process that is dependent on the web
application.

2.2 Types of SQL Injection Attack

SQL injection attacks have many different forms and functions depending on the sources,
goals, SQL specific techniques, and platform configurations. The earliest formal clas-
sification of SQL injection attacks was presented by Halfond et al. [33], which was
based on the injection mechanism and attack intent. Following their footprints, Sun
et al. [34] proposed a more elaborate model of SQL injection attacks considering assets,
threats, and countermeasures in an attempt to establish a semantic relationship between
the different classes of attacks. The following sections discuss different types of SQL
injection attacks following a classification that is universally accepted by the domain
researchers. The classes are ordered based on the complexity of attack vectors and
general sequence of real world attacks observed during the course of research.

2.2.1 Tautological Attacks

In logic, a tautology is a formula that evaluates to true in every possible interpretation.
The main goal of a tautological SQL injection attack is to change the conditional in the
WHERE clause of the dynamic SQL query so that it always evaluates to true irrespective
of the original condition given by the programmer. The example given in Section 1.2.1
is a tautological attack because the injection vector “OR 1 = 1” forces the WHERE clause
to evaluate to true. Tautological attacks are most commonly used for bypassing authen-
tication and extracting data. Generally, by transforming the conditional of the WHERE

clause into a tautology, the attacker causes all rows of the database table to be returned
by the query, however the exact consequences of the attack depends on how the results
of the dynamic query are used by the web application. Tautological attack vectors can
be constructed in a variety of ways. For example, consider the following attack vectors:

OR 10 = 7 + 3

OR 10 = (SELECT 14/2) + 3

OR 'ABCDEF' = 'aBcDeF'

OR 419320 = 0x84B22 - b'11110010100101010'

OR ASCII('E') = ASCII('A') + 4

OR PI() > LOG10(EXP(2))

OR 'ABC' = CoNcAt('a', 'b', 'c')

OR 'abc' < cOnCaT('D', 'E', 'F')

OR 'DEF' = CoNcAt(ChAr(0x28 + 28), cHaR(0x45), chAr(83 - 0x0D))

OR 'XYZ' = sUbStRiNg(CoNcAt('a', 'BcX', 'Y', 'ZdEf'), 4, 3)

All of these expressions are tautological attacks because they always evaluate to
true. Using SQL’s flexible and case-insensitive syntax, other operators such as ˆ, !=,

2.2 Types of SQL Injection Attack 23

%, /, *, &, &&, |, ||, », «, >=, <=, <>, <=>, XOR, DIV, SOUNDS LIKE, RLIKE, REGEXP, IS, NOT,
BETWEEN and many more, can be used to construct a tautology. Various mathematical,
string-handling, logarithmic, and trigonometrical functions available in SQL can also
be embedded in a tautological expression. For example, on MySQL 5.x versions, the
following expression:

TRUE - MOD(LENGTH(LOWER(TRIM(CONCAT(CONV(FLOOR(PI()*VERSION()),

CEIL(PI()*PI()),CEIL(VERSION())*CEIL(VERSION())),CONV(CEIL(PI()*

PI()+PI()),CEIL(PI()*PI()),CEIL(VERSION())*CEIL(VERSION())),

CONV(CEIL(CEIL(PI())*VERSION()),CEIL(PI()*PI()),CEIL(VERSION())*

CEIL(VERSION())),CONV(CEIL(PI()*VERSION())+TRUE,CEIL(PI()*PI()),

CEIL(VERSION())*CEIL(VERSION())))))),LENGTH(LOWER(TRIM(CONCAT(

CONV(FLOOR(PI()*(VERSION()+PI())),CEIL(PI()*PI()),CEIL(VERSION())*

CEIL(VERSION())),CONV(CEIL(PI()*PI())+TRUE,CEIL(PI()*PI()),

CEIL(VERSION())*CEIL(VERSION())),CONV(FLOOR(VERSION()*VERSION()),

CEIL(PI()*PI()),CEIL(VERSION())*CEIL(VERSION())),CONV(CEIL(PI()*

VERSION())+TRUE,CEIL(PI()*PI()),CEIL(VERSION())*CEIL(VERSION())))))))

is amazingly a tautological expression! It may be observed that the expression does not
use any digits at all, rather uses CEIL() and FLOOR() of values returned by the functions
PI() and VERSION() to produce the numbers needed to constuct the tautology. The
fundamental formula behind this complex expression is MOD(LENGTH(), LENGTH()),
which will return zero if the strings given to the two LENGTH() functions are of same
length. By deducting the result from TRUE, the final result is 1, which evaluates to true.

In fact, tautological attacks can be constructed in infinite number of ways. Therefore,
it is impossible for any intrusion detection system to detect these attack vectors by
regular-expression or pattern matching rule sets. Moreover, having too many rule-sets
can quickly become a performance bottleneck.

2.2.2 Stacked Queries

In this type of attacks, the attacker injects an additional SQL query which gets appended
to the original query. This is classified as a different type of attack because the attacker
does not attempt to change the original query, but appends another query so that both
queries can get executed by the DBMS as a batched query. For example, if the attacker
inputs “badguy” in the Username field and “xyz’; dRoP tAbLe users --” into the
Password field (see Fig. 1.4), the following query will be generated by the PHP code:

SELECT uid, fname, lname, email FROM users WHERE uname = 'badguy'

AND passwd = 'xyz'; dRoP tAbLe users --

The second query is appended to the original query by using the semi-colon, which
is the query terminator in SQL. Both the queries are submitted to the database server

24 2. SQL Injection Attack

to execute as a batch. The consequences are disastrous because the users table will get
permanently deleted. This type of attack is also known as piggy-backed queries, because
the second query piggy-backs over the first query.

Stacked queries are possible only when the database server supports batched execu-
tion of queries, such as PostgreSQL and Microsoft SQL Server. If batched queries are
supported by the backend database server, the attacker can virtually append any type
of SQL command and get them executed along with the original query. Fortunately,
MySQL database server does not support batched queries, so PHP/MySQL applications
are not vulnerable to this type of injection attacks.

2.2.3 Illegal or Logically Incorrect Queries

In this attack method, the attacker intentionally injects invalid keywords or parameters
to make the resulting SQL query illegal or logically incorrect, so that it results in an
error. The main agenda of the attacker is to gather information about the database
server, database names, database user name, table names, column names, etc., from the
error message(s) thrown by the database server. This type of SQL injection is actually a
preliminary step for gaining insight into the structure of the backend database which
can be used in further injection attacks. For example, if the attacker enters “badguy’
ABCD” in the Username field, and “xyz” in the Password field, the error message that is
displayed is:

Error Code: 1064

You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax

to use near 'ABCD AND passwd = 'abcd' at line 1

From the error message, it is confirmed that the backend database server is MySQL.
It is also revealed that the column name of the concerned table that stores the password
of users is named as ‘passwd’. Suppose the attacker now inputs “badguy’ ORDER BY 5

--” in the Username field and “xyz” in the password field as before, the error message
that is output by MySQL server is:

Error Code: 1054

Unknown column '5' in 'order clause'

From the error message, the attacker can conclude that the query has less than
five columns in its SELECT list. Thus, by intentionally crafting injection vectors to
cause the resulting dynamic query to malfunction, the attacker gathers important initial
information that are necessary to perform the subsequent attacks.

Generally in every software, the error messages are designed to help the program-
mers identify their mistakes so that they can debug the code, and in many cases they

2.2 Types of SQL Injection Attack 25

are overly descriptive. Database servers, being large and complex software, also follow
the same principles for error reporting. Error-based SQL injection is leveraged by the
descriptive nature of the messages which can reveal vital information about the database
schema. Though the information contained in the error messages varies from one DBMS
to another, they can be very useful for the attacker. For example, if the backend database
is Microsoft SQL Server, and the attacker inputs “badguy’ HAVING 1=1 --” into the
Username field, the following error message would be displayed:

Microsoft OLE DB Provider for ODBC Drivers error 840e14

[Microsoft][ODBC SQL Server Driver][SQL Server]Column users.uid is

invalid in the select list because it is not contained in an

aggregate function and there is no GROUP BY clause.

/process_login.php, line 5

As it can be seen, the description of the error reveals three useful pieces of informa-
tion: 1) the database server is Microsoft SQL Server (which the attacker probably did
not know yet), 2) the name of the table is ‘users’, and 3) the name of the first column
in the SELECT list is ‘uid’. By varying the injection vector to repeatedly cause the same
error, the names of all columns used in the query can be deduced.

In MySQL versions 5.5.5 or above, a recently discovered technique for illegal injec-
tions is to cause overflow of the BIGINT data type. Jayathissa, an independent security
enthusiast, has neatly described in his blog how to perform illegal query based injections
by causing BIGINT overflow in MySQL [35]. Similarly, MySQL’s EXP(x) function (used
to calculate ex), can also be used for error based injection attacks [36]. Moreover, these
error based attacks can harvest up to 27 data items in one injection.

Illegal or logically incorrect queries help the attacker through the error messages to
gain insight into the database structure. An attacker can inject statements to provoke
syntax errors, logical errors, or type conversion errors to identify injectable columns,
determine the data types of columns, names of tables and columns that caused the
error, respectively. These pieces of information collected from the description of error
messages are then used to craft the subsequent attack vectors. The immediate solution
to such leakage of schema information is to suppress the error messages from getting
echoed back to the client. Most web application languages and database platforms
provide configuration settings to disable error messages. It is highly recommended that
error messages are disabled on production servers.

2.2.4 UNION based Attacks

In SQL, the UNION keyword is used to combine the result from multiple SELECT state-
ments into a single result set. In UNION-based SQL injection attacks, the attacker injects
an additional query using the UNION keyword to bring data from other tables or columns
into the result set so that they can be displayed on the web page. For a UNION query to

26 2. SQL Injection Attack

be valid, both queries must have the same number of columns of same data types. This
information is previously collected by the attacker through error messages from illegal
or incorrect query attacks. UNION queries can also be used to determine the number
of columns in the SELECT list of the original query. For example, if the attacker enters
“badguy’ UNION SELECT 1 FROM dual --” into the Username field, then the result-
ing query becomes “SELECT uid, fname, lname, email FROM users WHERE uname

= ’badguy’ UNION SELECT 1 FROM dual -- AND passwd = ’xyz’”. Since there are
four columns in the SELECT list of the first query, it will cause the following error
message:

Error Code: 1222

The used SELECT statements have a different number of columns

The attacker now changes the input to “badguy’ UNION SELECT 1,2 FROM dual

--” which causes the same error. Increasing the number of values in the UNION part, ulti-
mately the input “badguy’ UNION SELECT 1,2,3,4 FROM dual --“ will not produce
any error. Assuming that there is no registered person with the username badguy, the
result of the query will be one row containing 1, 2, 3, 4 for the four columns, and these
values may be displayed on the web page where the actual values were supposed to
display. For example, the welcome message may change to “Hello 2 3!”. From this the
attacker infers that the second and third columns are used in the welcome message,
which correlate to the first and last names of the logged on user. Now it becomes
possible to get data from other database tables into the second and third columns and
have them displayed on the web page. The attacker then injects the following through
the Username field:

badguy' UNION SELECT 1, table_schema, table_name, 4

FROM information_schema.tables WHERE table_schema

NOT IN ('information_schema', 'mysql', 'test') LIMIT 1,1 --

When executed, the query will produce one row containing four values; suppose
they are: 1, shopdb, brands, 4. The welcome message now changes to “Hello shopdb
brands!”. From this, the attacker gets that the name of a database existing on the server
is ‘shopdb’ and that it contains a table named ‘brands’. By gradually increasing the
offset in the LIMIT clause, the attacker will harvest the names of all databases and tables
present in the database server. Similarly, by UNION’ing data from other system catalog
tables, the attacker can obtain the column names, data types, user accounts, permissions,
and virtually the entire database structure. Once these are obtained, the data stored in
the tables is easy to steal using the same UNION technique. For example, suppose there is
a table ‘orders’ in the database containing two columns ‘cardnum’ and ‘expdate’ which
store the credit card numbers and their expiry dates. All the attacker needs to do is,
modify the UNION query to the following:

2.2 Types of SQL Injection Attack 27

badguy' UNION SELECT 1, cardnum, expdate, 4

FROM shopdb.orders LIMIT 1,1 --

In each injection, the attacker gets one credit card number along with its expiry
date, in the same manner from the welcome message. By changing the LIMIT clause in
each iteration, all the card numbers can be obtained. Overall, UNION based attacks are
straightforward, easier to craft, quick to execute, and produce rewarding results for the
attacker with much less effort.

2.2.5 Blind Injection Attacks

When the database error messages are suppressed, the attacker cannot gather the
information needed for crafting the subsequent injection attacks. In other words, the
attacker is blind in absence of any feedback from the server through error messages. In
such a situation, the attacker injects SQL commands and observes if and when there
is a change in response from the web page. By carefully relating the responses to the
injection vectors, i.e., when the behavior remains same and when it changes, the attacker
can make inferences about vulnerable parameters and additional information about the
database structure. Therefore, blind injection attacks are also known as inference-based
attacks. Since blind injection attacks rely on the correlation between the attack vector
and behavior or response of the web page, it is much slower than UNION-based attacks.
Nevertheless, it is possible to achieve an extraction rate of about 1 byte per second by
issuing multiple requests to the web appilcation in parallel [13].

To exemplify blind injection attacks, consider an e-commerce website which displays
the details of a selected product on a web page that is accessed by the following URL:

http://www.estore.com/product_details.php?pid=24

Suppose in the script product_details.php, the URL parameter pid is used to
retrieve the details of the product by the following PHP code:

$query = "SELECT * FROM products WHERE prod_id = ".$_GET['pid'];

$result = mysql_query($query, $dbconn);

It may be observed that the value of pid coming through the URL is used for
constructing the query without any validation or type checking, therefore it is vulnerable
to SQL injection. If error messages are not suppressed on the server, the attacker could
simply add a single-quote (’) character to the URL as shown below:

http://www.estore.com/product_details.php?pid='24

28 2. SQL Injection Attack

This would cause a syntax error in the SQL query generated by the PHP code. Since
error messages are not suppressed, MySQL would output the following error message:

Error Code: 1064

You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax

to use near "'24" at line 1

From the error message, the attacker could conclude that the URL parameter pid is
vulnerable to SQL injection. However, since error messages are suppressed, the attacker
has no direct clue to make this conclusion. In such cases, the attacker resorts to blind
injection attacks to make inferences and extract data. There are three fundamental
techniques of blind injection attacks: boolean-based, time-based, and heavy queries.

Boolean-based Blind Attacks

In boolean based blind injection, the attacker crafts the attack vectors to ask the server
true/false questions. When the answer is true, the web page is displayed normally, but
when the answer is false, the display of the page changes significantly. By observing the
behavior of the web page the attacker first infers about the vulnerable parameters, and
then crafts the next set of true/false questions to extract the database structure byte by
byte. Consider the URL of the product details page shown in Section 2.2.5. Since error
messages are suppressed, the attacker first attempts to access the following URL:

http://www.estore.com/product_details.php?pid=24+AND+1+=+1

Each ‘+’ sign in the query string is the url-encoded form of a space character. There-
fore, the parameter pid now carries the string value “24 AND 1 = 1”. Since the code
directly uses the parameter’s value to construct the dynamic query without any valida-
tion, the SQL query would be generated as:

SELECT * FROM products WHERE prod_id = 24 AND 1 = 1;

The added condition “AND 1 = 1” evaluates to true, therefore the query returns the
details of the selected product and the web page would display normally. Now the
attacker forces the condition to false by accessing the following URL:

http://www.estore.com/product_details.php?pid=24+AND+1+=+2

The added condition “AND 1 = 2” evaluates to false, therefore the entire query
evaluates to false and no records are returned. This causes the web page to become
mostly blank. This is a significant change in the response, from which the attacker

2.2 Types of SQL Injection Attack 29

confirms that the parameter pid is vulnerable to SQL injection. Once the vulnerable
parameter is determined, the attacker proceeds to extract the database structure by
asking further true/false questions and observing the behavior of the response. For
example, the attacker can append the following subquery to the query string (after
?pid=24) in the URL :

AND (SELECT 97 = ASCII(SUBSTRING(table_name, 1, 1))

FROM information_schema.tables WHERE table_schema

NOT IN ('information_schema', 'mysql', 'test') LIMIT 1,1)

and observe the response. If the web page displays correctly, then it means that the
answer of the server to the added subquery is true, which in turn implies that ASCII
code of the first character of a table name is equal to 97. Therefore, from this injection
attempt the attacker concludes that, the name of a table starts with the character ‘a’.
Thus by changing the values for the ASCII code, substring offset, and the limit clause,
the attacker extracts the names of all other tables character by character. The column
names are obtained in a similar manner, and finally the data is extracted from the tables
one byte at a time. It may be noted here that no data is actually displayed on the web
page, but the entire information is deduced by making inferences from the response of
the web server.

Time-based Blind Attacks

Boolean-based blind injection attacks require a large number of requests to be submitted
to the web server because the data must be extracted one byte at a time. In some cases,
production web servers are configured to limit the maximum number of requests per
minute from the same source. Even when such a restriction is not imposed, too many
requests from one source within a small interval of time may be noticed by a proactive
server administrator during auditing of web server logs, and the administrator may
blacklist the IP address of the attacker. Under such situations, the attacker resorts to
another form of inference by crafting the attack with if/then constructs with time delays
within them. Instead of observing the difference caused in the web page, the attacker
measures the time it takes for the response to arrive, from which conclusions can be
made. Most database servers provide special keywords for pausing execution of a
query. For example, on MySQL, the SLEEP(n) function can be used to pause execution
of the query for n seconds. On Microsoft SQL Server, the same functionality is provided
by WAITFOR DELAY ’hh:mm:ss’ and WAITFOR TIME ’hh:mm:ss’ statements. Basically,
a time-based blind injection attack is constructed in the form “if <condition> then

<sleep for m seconds>. By measuring the time it takes for the web server to respond,
the attacker infers whether the question was answered as true or false. Attackers
generally use random values for the delay in each request.

30 2. SQL Injection Attack

Consider the URL of the product details page mentioned in Section 2.2.5. In order to
determine if the query string parameter pid is vulnerable, the attacker will access the
page using the following URL:

http://www.estore.com/product_details.php?pid=24 - SLEEP(10)

The parameter pid will carry the string value “24 - SLEEP(10)” which will be used
to construct the query. The query that will be generated by the PHP code is:

SELECT * FROM products WHERE prod_id = 24 - SLEEP(10)

Upon execution, the call to SLEEP() function will cause the query to halt for 10
seconds. When the SLEEP(10) function completes successfully, it will return zero, so the
product id will remain same as 24. Therefore, the same web page will be returned by
the server, but after a delay of 10 seconds. It is then confirmed that the parameter pid is
vulnerable to SQL injection. Now the attacker can craft further attacks using the same
technique of introducing a delay inside the injection vector. For example, to determine
if the name of the first table in the system catalog starts with ‘a’, the attacker will inject
the following:

AND (IF(SELECT ASCII(SUBSTRING(table_name, 1, 1))

FROM information_schema.tables WHERE table_schema

NOT IN ('information_schema', 'mysql', 'test')

LIMIT 1,1) = 97) SLEEP(10))

If the answer is true, then the page load will be delayed by 10 seconds; otherwise it
will load normally. Thus, by measuring the time taken by the web server to respond, the
attacker makes inferences about the information. Since delays are used in every attack,
the requests will be spread over long periods of time, which reduces the chance of being
spotted in server logs by the server administrator.

Heavy Query Attacks

In some cases, the database administrator may disable or restrict usage of the time-
delay functions in SQL queries, such as SLEEP() or WAITFOR DELAY etc., if submitted by
non-administrative users. Under such situations, the attacker can still simulate time
delays by using heavy queries inside the attack. A heavy query is a query which is
expensive and will take noticeable time to execute on the database engine. Particularly,
queries on some system catalog tables are known to take long time to execute. By
incorporating multiple joins between such system tables, the attack vector can be made
even heavier. For this purpose, the attacker chooses system tables which are known to
contain large number of rows. For example, on a MySQL server (version 5.5.25) with
only few databases, the following query:

2.2 Types of SQL Injection Attack 31

SELECT count(*) FROM information_schema.columns A,

information_schema.columns B, information_schema.columns C

takes '23 seconds to complete, making it equivalent to a SLEEP(23) function call. It
may be observed that the query implicitly joins the information_schema.columns table
with itself three times without a WHERE clause, which makes it quite heavy. However,
the time to execute a heavy query can vary significantly depending on the number of
rows contained in the chosen table, which in turn is influenced by factors like size of the
database, the server’s performance, etc. Therefore, the attacker generally begins with
joining two tables and then slowly increments until an acceptable delay is generated.
Once such a heavy query is formulated and its time of execution on the victim server is
measured, it can be used instead of SLEEP() calls in subsequent attacks. Heavy query
attacks are relatively a new form of SQL injection in comparison to other types, and can
severely affect the performance of the server. On MySQL server, heavy query attacks
can be spotted during auditing if logging of slow queries1 is enabled by the DBA.

2.2.6 Stored Procedure Attacks

A stored procedure is a set of SQL queries with an assigned name that’s stored in
compiled form in the database server. Stored procedures separate complex business logic
from the application code, generally take parameters, perform SQL queries according to
the business logic, and return the results to the web application. Many programmers
believe that by moving the database queries into stored procedures, the web application
would become resistant to SQL injection attacks, however this is a misconception. Stored
procedures can be equally vulnerable to SQL injection attack as the web application,
particularly when the queries are dynamically constructed inside the procedure using
string (VARCHAR) type of parameter(s) passed to it. Attackers target stored procedures
for privilege escalation, buffer overflows, and gaining access to the operating system.
The attack methodologies are exactly same, except that the victim is a stored procedure
instead of a query on a web page. For example, consider the following stored procedure
which accepts the username and password as parameters to verify the login of a user:

CREATE PROCEDURE verify_login

(username VARCHAR(255),

password VARCHAR(255))

BEGIN

SET @qry = CONCAT("SELECT uid,fname,lname,email FROM users",

" WHERE uid = '", username, "' AND passwd = '", password, "'");

PREPARE stmt FROM @qry;

EXECUTE stmt;

END

1https://dev.mysql.com/doc/refman/5.5/en/slow-query-log.html

https://dev.mysql.com/doc/refman/5.5/en/slow-query-log.html

32 2. SQL Injection Attack

The code of the stored procedure constructs the SQL query dynamically by concate-
nating the values passed through the parameters. Therefore, it is vulnerable to SQL
injection attacks in the same way. A vulnerable stored procedure can be exploited using
the different types of injection attacks.

Another common intention of attackers is to access some special built-in stored
procedures provided by the database vendors. For example, Microsoft SQL Server
provides several system procedures for performing server maintenance tasks. One such
notorious system procedure is the ‘xp_cmdshell’ which provides a command line shell
to execute any system command from within the stored procedure. An attacker can
even shut down a server by injecting a piggy-backed query like “;EXEC xp_cmdshell

’SHUTDOWN’”. Stored procedures like xp_getfiledetails, xp_fileexist, xp_dirtree
are a few other important system stored procedures that attackers target on MSSQL
Server. MySQL database server on the other hand, does not provide any built-in system
stored procedures, but the DBA may create them for server administration.

2.2.7 Alternate Encoding Attacks

In this type of attack, the attacker modifies the attack vector using a different encoding
method so that it can evade detection by intrusion detection systems or circumvent
sanitization functions. Alternate encoding is not a unique type of attack, rather it is a
technique used in conjunction with other types of attacks in order to evade detection.
Generally, sanitization functions look for presence of special characters such as single-
quotes or comment characters. Encoding these characters differently in the injection
vector enables the attacker to exploit the vulnerability which may not be possible by
direct methods.

Attackers employ various types of encoding techniques in their injection vectors,
such as, ASCII, hexadecimal, binary, and unicode encoding. All database servers pro-
vide built-in conversion functions for different encodings. In ASCII encoding, instead
of the characters, their ASCII codes are used with the CHAR() function for its decoding.
For example, CHAR(79,82,32,49,32,61,32,49) in MySQL is the ASCII encoded form
of “OR 1 = 1”. The ASCII codes can also be given in hexadecimal form. Sometimes
other functions are also used in conjunction to make the encoding more complex. For
example, “SHUTDOWN” can be encoded using the hexadecimal codes of each charac-
ter as CONCAT(CHAR(0x53485554), CHAR(0x444F574E)). Similarly, “OR 1 = 1” can be
encoded as CONCAT_WS(CHAR(0x20), CHAR(0x4F, 0x52), CHAR(0x31), CHAR(0x3D),

CHAR(0x31)). Other functions such as HEX(), UNHEX(), BIN(), SUBSTRING(), LEFT(),

RIGHT(), TRIM(), etc., are also frequently used to construct the encoded strings of the
attack in a complex manner so that detection systems can be bypassed.

A contributing factor to the encoding problem is that, different layers in application
may handle the character encodings in different ways. In particular, escape characters
in the language used for programming the application may be different from escape
characters in the database server. For example, in PHP single-quote character is escaped

2.2 Types of SQL Injection Attack 33

by “\’”, while in MySQL it can be escaped by both “\’” and “’’” (two single quotes).
Therefore, code-based approaches are generally defenseless against alternate encoding
attacks. Such differences in the escape sequences can be exploited by the attacker to ship
an unwanted character into the database layer.

SQL Smuggling is another encoding method that exploits weaknesses in character-
set conversions using special Unicode characters [37]. The technique mainly relies on
differences between contextual interpretation of the Unicode characters by the appli-
cation platform and the database server. There are numerous Unicode characters that
are “similar” to other characters in the ASCII base character set – these are known as
homoglyphs. Most database servers support automatic translation between supported
code pages. For example, a Unicode value may be automatically converted to a different
character in the local character set, according to a “best fit” heuristic, even if these
characters are not computationally equivalent. Since such translation is performed
by the database, the sanitization or filter routines may fail to recognize these special
characters, but they will be created as a result of translation by the database server. One
such Unicode character is the U+02BC (modifier letter apostrophe) which gets translated
to a simple single quote (U+0027) as the best-fit, i.e., the single quote character is created
by the database server. In consequence, the attacker successfully smuggles the single
quote character (which did not even exist during input validation) into the database,
which makes it possible for the injection vectors to execute as usual. Since there are a
large number of homoglyphs, it is nearly impossible to check for all such translations
which might enable smuggling of unwanted characters into the database server.

2.2.8 Second-order Injection Attacks

The types of SQL injection attacks discussed so far, the injected queries execute imme-
diately and produce results according to the intention of the attacker. However, it is
possible inject malicious SQL code which is stored in the database like normal data, but
gets executed at a later point of time when that data is used to construct another dy-
namic SQL query and the result is rendered on the web page. This type of SQL injection
attack is classified under a separate category and known as second-order SQL injection
attack [38]. Unlike regular (first-order) injection attacks which reach the database mostly
through SELECT queries, second order SQL injection attack is initiated through INSERT

queries. The attacker submits inputs containing SQL code through form fields. These
inputs silently gets stored in the database as any other piece of data. When some other
part of the web application uses that stored value in a dynamic query, the injected code
takes effect and modifies the structure of that dynamic query. Performing a second order
SQL injection attack requires the attacker to have adequate knowledge about how the
submitted values are used in other parts of the web application.

Consider a registration form on a web page where the user registers by supply-
ing username, password, and other details. Suppose an attacker enters “badguy’ OR

user_name LIKE ’%%’ �” in the username field and normal values in other required

34 2. SQL Injection Attack

fields. Assuming that the input validation routine properly escapes the single quote
character in username, it will be stored in the database as “badguy\’ OR user_name

LIKE \’%%\’ --”, which is correct according to the escaping rules.

Now the attacker logs in and goes to the “Change Password” page where it asks to
enter the old password, and a new password. The web application would construct a
dynamic query to update the password using the logged-on user’s username which is
already stored in the session variable as:

$sql = "UPDATE users SET password = '".$_POST['newpass']."'"

." WHERE user_name = '".$_SESSION['sess_uname']."'"

." AND password = '".$_POST['oldpass']."'"

The query that would be generated from the above code would be:

UPDATE users SET password = 'IamHacker' WHERE user_name = 'badguy'

OR user_name LIKE '%%' -- ' AND password = 'xyz'}''

It may be observed that, the single quote character in the username (which was
added by the attacker during registering on the website) terminates the value of user
name column, the “OR user_name LIKE ’%%’” attack vector is true for all records, and
the double-dash at the end of the username effectively comments out rest of the query.
When this query is executed, the password of all users (including admin users) will get
changed to IamHacker. Consequently, no other user would be able to log into the web
application while the attacker can log in using any user’s account and do whatever he
wants with the data of the web application.

Second-order injection attacks are difficult to prevent or detect because the source
of injection is different from the place where the effect of the attack actually manifests.
This shows that, even if a developer properly escapes single quotes from the user inputs,
it cannot be assumed to be safe against second order injection attacks. When the stored
data containing the injection vector is used in a different context, or to construct a
dynamic query, the validated inputs may still result in an injection attack.

2.3 SQL Injection Channels

Until this point, the SQL injection attack techniques have been discussed around the
HTTP protocol for launching the attacks against a web application. However, there
are other classes of SQL injection attacks which can happen through different channels.
Depending on the channel through which the attacks occur and data is extracted, SQL
injection attacks are classified as in-band or out-of-band attacks. Some security experts
[39] suggest a third class as inferential, but essentially these attacks can be launched
through both in-band and out-of-band channels.

2.3 SQL Injection Channels 35

2.3.1 In-Band Channels

In in-band SQL injection, the attacks and subsequent extraction of data occur through the
same communication channel between the client and the web server. In-band attacks are
also known as in-line injection attacks. For example, attacks are launched on vulnerable
web pages using HTTP protocol. Data is extracted through the same channel as the
results of the attack are embedded in the HTML response from the web application. The
injection attacks discussed so far, such as tautological attacks, UNION-based attacks, etc.,
all fall into this class. The client is assumed to be a browser for most cases, but it can
also be a program, tool, or process that can establish HTTP connection with the web
server, initiate the malicious HTTP requests (GET or POST), and parse the response
HTML to extract the data embedded therein. It may be noted here that, special markers
are generally used around extracted data, so that these can be programmatically parsed
out from the HTML.

Apart from user inputs through form field values or URL parameters, in-band SQL
injections can also happen through Cookies, other HTTP headers, and Server variables, if
their values are used to construct dynamic SQL queries by the server-side code without
proper validation and data type checking.

2.3.2 Out-of-Band Channels

Out-of-band injection attacks employ a different communication channel to steal the
data than the channel through which the attack was launched, such as using database
e-mail functionality, or file writing and loading functions. Out-of-band SQL injection
is not very common, because it depends on the specific additional features enabled on
the database server, possibly for use by the web application. This class of SQL injection
is useful when an attacker is unable to use the same channel to launch the attack and
gather results. Out-of-band techniques offer the attacker an alternative to time-based or
heavy-query based blind attacks, particularly when the responses from the server are
not stable enough to make inferences from the response time.

Out-of-band techniques consist of using special features and DBMS functions to
open a different connection to the attacker’s server and deliver the results of the injected
query as part of the request. This is leveraged by the fact that most modern DBMSs
are very powerful applications, and offer features which go beyond simply executing
user queries and return the results. For example, information residing on another
database, can be retrieved by opening a connection to that database within an SQL
query. SQL queries can send an e-mail when a specific event occurs, and can also
interact with the file system. When exploiting a vulnerability is not possible through
normal in-band HTTP channels, these advanced features can be very helpful to the
attacker. Usually, such functionality is available only to admin users, but an attacker
can escalate privilege through other means. The three main out-of-band channels that

36 2. SQL Injection Attack

can be used for siphoning of results of SQL injection attacks are: Email, HTTP/DNS,
and File System functions, which are briefly discussed here.

Email Functions

On Microsoft SQL Server, email functionality is available through the system stored
procedure xp_sendmail that uses the Messaging Application Programming Interface
(MAPI), or the sp_send_dbmail procedure that uses Simple Mail Transfer Protocol
(SMTP). Similarly, on Oracle, emails can be sent using the UTL_SMTP package (version
8i), or the UTL_MAIL package (version 10g). MySQL database server does not provide a
direct email sending function. However, the attacker can construct the email message in
plain-text, write that into a file using the INTO OUTFILE clause of the query, and drop
that file in the SMTP server’s pick-up directory. For PostgreSQL, there are third-party
procedures such as pgMail2 by BrandoLabs, which might have been already installed on
the server. When the attacker cannot extract data using the in-band channels, he can
email the results to himself using such email features provided by the database server.

HTTP/DNS

Database servers also provide functions to open HTTP connections inside an SQL query
to another server. This functionality can be used as an out-of-band channel for getting
the result of injection directly sent to the attacker’s server. In Microsoft SQL Server, the
OPENROWSET function can open a connection to an external database server, which can be
used as an out-of-band channel. Similarly in MySQL, the LOAD_FILE function and INTO

OUTFILE directive can be used. Oracle provides UTL_HTTP, HTTPURI_TYPE, UTL_INADDR,
and SYS.DBMS_LDAP packages/functions for opening connections to external hosts from
an SQL query. Additionally, these type of functions can be used to provoke a DNS
resolution request to the attacker’s server. The attacker can harvest several bytes of data
through each DNS resolution request if the injection vector is written inside the URI. An
interesting investigation by S̆tampar [40] shows that DNS based out-of-band attacks can
extract data from a regular sized database table in only 4.8% number of requests and
16.5% time in comparison to boolean-based blind injection attacks.

File System Functions

In many cases, the web server and database server are installed on the same physical
host. This is commonly seen on shared hosting servers. While this is very cost-effective,
it suffers from the serious security drawback that, a single flaw on one web application
can be enough for an attacker to obtain full control over all the components of the
server. The attacker can also escalate privileges to be able to create files inside the web
server root and redirect the results of the attack into those files. Accessing the extracted
data is then a matter of downloading them through a normal HTTP connection. If the

2http://brandolabs.com/pgmail

2.4 Common Evasion Techniques 37

web server and the database server are on separate physical machines, it might still be
possible to apply this technique if authorized shared folders have been set up between
the two hosts.

On Microsoft SQL Server, the sp_OACreate and sp_OAMethod procedures can be used
to create files and write into them. If the xp_cmdshell stored procedure is accessible,
then the attacker can also use the bcp bulk-copy utility to write huge amount of data
into the file. Similarly on MySQL, the INTO OUTFILE can be used to redirect results into
files created in the file system. On Oracle, UTL_FILE, DBMS_LOB etc., can be used for the
same purpose.

2.4 Common Evasion Techniques

Many organizations deploy intrusion prevention/detection systems (IPS/IDS), web
application firewalls (WAF) etc., to protect their web infrastructure from SQL injection
attacks. These systems are mostly signature-based and rely on regular-expression based
rule sets to filter out malicious requests. However, signature-based techniques are not
effective in real-world attacks. There are numerous techniques to craft the injection
vectors so that they can bypass signature-based SQL injection detection systems [41, 42].
These techniques take advantage of innate weakness of rule-based systems. Similarly, all
WAF’s can be circumvented by applying workarounds in the attack vectors [43]. One of
the reasons why SQL injection is still alive is that, in spite of IDS/WAF systems deployed
as perimeter security, attackers come up with techniques to evade them [44]. Warneck
[45] has suggested methods to defeat IDS evasion, but still bypassing IDS/WAF does
not seem to be too difficult for the creative attacker. To establish a comprehensive picture
of SQL injection attacks, the common bypassing techniques also need to be understood.

2.4.1 White-space Spreading

Database servers ignore whitespaces, such as space (ASCII code 32), newline (\n), and
tab (\t) characters, during parsing and executing SQL queries. In addition, flexible
syntax of SQL also allows omission of spaces between operands and operators. An
attacker can remove or spread these whitespace characters inside the attack vector to
force regular expression mismatch. For example, if the regular expression for a tautology
filter is “/OR\s+’?\d+’?\s+=\s+’?\d+’?/i”, it will fail to recognize “OR’1’=’1’” which
has no spaces in between. Similarly, the newline character can be used to break the
injection vector into multiple lines to bypass detection.

2.4.2 Upper/Lower-case Mixing

On most database servers, SQL is case-insensitive by default. If the regular expression
signatures in the filters are not made case-insensitive, attackers can mix uppercase and
lowercase letters in the attack vector to bypass detection. For example, if the filter is

38 2. SQL Injection Attack

“/union select|UNION SELECT/”, then the attacker can easily bypass it by using ‘uNiOn
SeLeCt’ in the attack vector. In fact, many of the automated SQL injection attack tools
construct the attack vectors in mixed-case by default in order to bypass detection.

2.4.3 Comment Embedding

In SQL, characters like hash (#), double hyphen (--), and C-style comment (/*...*/)
are available for commenting a part of SQL query or procedure. These comment-
ing elements are commonly used by attackers to evade detection. For example, a
UNION-based attack vector using “UNION SELECT” can be written in several ways by
embedding comments, such as ‘uNiOn/**/SeLeCt’, ‘uN/**/iOn/**/SeLe/**/cT’, or
‘uNiOn/*garbage*/SeLeCt’ etc. On MySQL, if the version is 5.5.25, keywords can be
embedded inside version-specific comments, like ‘uNiOn/*!50525 SeLeCt*/’. It is dif-
ficult for a signature-based system to detect such attack vectors where comments can
be embedded in numerous ways. Additionally, comment embedding can be used in
conjunction with whitespace spreading, which makes it much more difficult to construct
regular-expression based filters.

2.4.4 Encoding Techniques

Encoding techniques are used to change the appearance of the injection vector into
a cryptic manner which can be used to bypass detection in a variety of ways. Some
of the commonly used encoding techniques are: URL-Encoding, Unicode encoding,
hexadecimal encoding, binary encoding etc. Functions like CHAR(), HEX(), UNHEX(),
BIN(), etc., are used to un-encode the actual injection vector during execution. Though
the main intention of encoding techniques is to bypass detection and generally used in
combination with other type of attacks, these are classified as a special category (see
Section 2.2.7) of injection attack due to their abundance and popularity.

2.4.5 Advanced Techniques

When an attacker is unable to bypass the IDS/WAF using the above methods, several
other advanced techniques can be used. These techniques consist of formulating the in-
jection vectors in an indirect way using the above techniques or utilize special operators,
functions, or gadgets available in the database server. For example, if “OR 1 = 1” gets
trapped by the IDS in all the above ways, then the attacker can use “OR 1 = !!5”. In
this expression, the exclamation character (!) is the NOT operator, therefore NOT(NOT(5))
evaluates to TRUE, and when this is equated with 1, the result is also TRUE. By using
the NOT (!) operator cleverly, the attacker can evade signature based detection. Other
operators like ˆ, =, !=, %, /, *, &, &&, |, ||, <, >, >>, <<, >=, <=, <>, <=>, XOR, DIV, SOUNDS
LIKE, RLIKE, REGEXP, IS, NOT, BETWEEN etc., are also used in injection vectors to bypass
the filters of the IDS or WAF.

2.5 General Countermeasures 39

Other advanced techniques consist of using predefined constants, system variables,
functions, implicit type casting features, and complex expressions. Various string
handling functions, such as SUBSTRING(), LEFT(), RIGHT(), LPAD(), RPAD(), LOCATE()
etc., can be used in conjunction with other functions to build any substring or number.
These techniques vary from one database server to another, depending on the features
and functions provided by the database vendor. Overall, there are large number of
possibilities to create injection vectors, and for the attacker, all it takes is some creativity
with patience to bypass even the toughest filters [46, 47].

2.5 General Countermeasures

SQL injection vulnerability stems from absence or inadequate validation of inputs
received from external sources before using them to construct dynamic queries. Prevent-
ing SQL injection attacks can be achieved simply by following secured programming
practices – known as defensive programming. Unfortunately, many developers are not
careful to follow them in practice [48]. Defensive coding is prone to human errors and
in most cases not rigorously enforced during the software development life cycle. The
following simple and easy to follow development practices can sufficiently harden web
applications against SQL injection attacks.

2.5.1 Input Validation

SQL injection attacks are performed by injecting malicious code through either a nu-
meric or string parameter. The developers should validate and check the data type of
the received value before using them in dynamic SQL queries. Sanitizing numeric pa-
rameters is as simple as type-casting the parameter to the correct data type. For example,
if the product ID received through the ‘pid’ parameter (see Section 2.2.5) is type-casted
into integer type by using ”(int)$_GET[’pid’]” in the code, SQL injection attacks can-
not happen through this parameter. For string type parameters, pattern matching and
white-list validation techniques can be followed [49]. Scholte et al. [50] have established
by their research that, the complexity of the attacks have not changed significantly, but
application developers are either unaware of these classes of vulnerabilities, or fail to
implement effective input validation in their code.

2.5.2 Prepared Statements

All database servers provide the prepared statements or parametrized queries feature. In
case of prepared statements, SQL queries are written as a template using the ‘?’ symbol
as placeholder for inserting values and submitted to database server for preparing it.
The database server prepares the query by parsing, compiling, and applying query
optimization on the SQL statement template. The actual values are then bound to the
placeholders in the prepared statement by strong data types. For example, refer to the

40 2. SQL Injection Attack

URL of product detail page given in Section 2.2.5. Instead of dynamically constructing
the SQL query by concatenating the value of ‘pid’ parameter received through the URL,
the developer can make use of prepared statements provided by the MySQLi database
API in the following manner:

$qry = "SELECT * FROM products WHERE prod_id = ?";

$stmt = $mysqli->prepare($qry);

$stmt->bind_param("i", $_GET['pid'])

$stmt->execute();

Binding the parameter with the integer data type (specified by "i") ensures that the
value received from URL is converted to integer before execution of the prepared query,
which makes the parameter immune to SQL injection attacks. Prepared statements are
highly recommended as the best defense against SQL injection attacks. The downside is
that, it requires two round-trips to the database server, the memory footprint may be
larger, may be inconvenient in variable parameter situations (such as unknown number
of items in an IN(?,?,?...) clause), and in some cases it may negatively impact
performance. Prepared statements however should not be considered as a panacea
against injection attacks. SQL injection attacks can still happen through improperly
constructed prepared statements.

2.5.3 Multiple Users and Least Privileges

Generally, all database servers provide excellent permission management features to
exercise fine-grained permissions on database objects to authorized users. However,
most dynamic web applications use a single user-account with access to all database
tables to connect and execute queries on the backend database. While this is beneficial
in the sense that the database server can utilize connection pooling, it invites security
problems. It is strongly advised to use different user accounts to interact with the
database in different modules of the web application. These user accounts and their
access permissions should be set up according to the needs of the concerned module.
For example, a login page needs only read permission on the username and password
fields of a table, so write permissions should not be granted. In case of a situation where
only one user account is available (as on some shared servers), the user account should
be given least privileges as far as workable for defense against injection attacks. Multiple
user accounts and fine-grained permissions are however cumbersome to define and
increase the maintenance overhead.

Similarly, almost every web application needs to have an ‘admin’ user with full
access to all parts of the application in order to manage the web content. Generally the
admin user is inserted into the table as the first record for writing the application code,
pending other user accounts which will populate at runtime. In authorization bypass
injection attacks, such as the classic “OR 1 = 1” attack on a login form, the attacker can

2.5 General Countermeasures 41

gain administrative access if the admin account is the first row of the table. It is therefore
recommended not to put ‘admin’ users in the top rows of the table, rather mix them up
with rest of the non-admin user accounts.

2.5.4 Use of Views

In SQL, a view is a virtual table based on the result-set of an SQL statement, containing
rows and columns like an actual table. The columns in a view can be columns from one
or more base tables in the database. Using views can increase the granularity of access
by limiting the user accounts to specific columns of a table or result of joins between
multiple tables. Views help protect the data in the base tables by restricting access and
performing transformations of actual data when necessary. For example, suppose a
web application needs to store the passwords of users in plain-text form for recovery
purpose. The DBA can create a view that shows the username and the password hash
(salted on a secret key known only to DBA) instead of the real plain-text password. The
developers must use the view for the authorization queries. If a data breach by SQL
injection attack succeeds, then the attacker will get only the hashed passwords and
will not be able to decipher the actual passwords. The same technique can be used for
other sensitive data items as well. The user-account used by the web application can be
granted permission only on the views but not on the actual base tables.

2.5.5 Use of Stored Procedures

Stored procedures are not guaranteed to defend against SQL injection attacks (see Sec-
tion 2.2.6), however if standard stored procedure programming constructs and practices
are used, they can offer the same level of protection as prepared statements or param-
eterized queries. The developers must follow proper programming guidelines while
writing stored procedures instead of adhoc building of dynamic SQL statements. The
parameters passed into the stored procedure must be properly defined using correct
data types having proper size limits. Additionally, the values of parameters, particularly
for string (VARCHAR) type, must be validated inside the code of stored procedure and
exception should be raised if found invalid. It is also necessary to follow the correct
character-set and collation at the database level so that automatic Unicode conversions
do not lead to smuggling of unwanted characters into the stored procedure. Stored
procedures in conjunction with multiple user accounts and appropriately granted exe-
cute permissions can provide defense against SQL injections to an adequate level. Since
stored procedures are defined and stored in the database server itself, it is advantageous
to use them than prepared statements because they can be called from any point in the
web application and do not require two round-trips for execution.

42 2. SQL Injection Attack

2.6 Summary

This chapter presented the technical details of various types of SQL injection attacks with
appropriate examples as needed, without restricting the discussion to any particular
language or database platform. The different channels through which SQL injection
attacks are conducted were also discussed. In particular, the out-of-band SQL injection
channels are extremely concerning, because in spite of various security measures in
place, the attackers can still use the alternate channels for harvesting the sensitive data
out of the database. The common evasion techniques used by attackers to circumvent
any IDS/WAF deployed in perimeter security were also looked into. Since SQL injec-
tion attacks are a consequence of programming flaws, the general countermeasures
to prevent these attacks which should be followed by programmers, web application
architects, and database administrators were highlighted. Unfortunately, in spite of
increase in general awareness about SQL injection attacks among web programmers,
the threat is not only prevalent with almost the same intensity, but also new forms of
attacks are being devised with passage of time. Automated SQL injection tools have
abundantly and freely available on the Internet, making the situation worse.

The research community has promptly attended to the problem when advisories
on secured programming practice have failed to curb the problem. The next chapter
presents a systematic study of research works available in the literature for prevention
and detection of SQL injection attacks, along with some related contributions.

X

