
Tools for penetration tests 2

Carlo U. Nicola, HT FHNW

With extracts from documents of :

Google; Wireshark; nmap; Nessus, metasploit.

 NS HS12 2

1. Die nmap Scan-Rate auf ca 10/s reduzieren;

2. Ports Scan nur an maximal 3 FHNW-Server durchführen;

3. Bevor Sie zu scannen beginnen, schreiben Sie ein Email an

network.services@fhnw.ch mit folgenden Inhalt:

 a) Aktuelle IP-Nummer Ihres Laptops;

 b) IP-Nummer Bereich, den Sie scannen wollen;

 c) Zeitfenster des Scans (ungefähr von ... bis ...)

nmap: Labor Bedingungen

mailto:network.services@fhnw.ch

 NS HS12 3

Scanning: network’s mapping

Goal # 1: Network Mapping

Why: To determine the topology of the network.

How:

1. Manually using tools like ping, traceroute, (Windows:
tracert)

2. Automatically with tools like Google based TouchGraph
network mapping tool

3. Semi-automatically with nmap ¸ 5.5 (Zenmap GUI tool)

 NS HS12 4

Goal # 2: Port Scanning

Why: To find open ports in order to exploit them.

How: With nmap.

• TCP Connect: attempt to complete the 3-way handshake, look

for SYN-ACK. This scan is easy to detect.

• TCP SYN Scan: “half-open” scan, look for SYN-ACK, then send

RESET, in this case the target system will not record the

attempted connection. It is faster than the TCP connect scan.

• TCP FIN, Xmas Tree, Null Scans: scans that violate the

protocol: the closed ports send RESET, the open ones send

nothing (Windows does not respond to these scans).

Scanning: ports open/closed (1)

 NS HS12 5

nmap: functionality (1)

 (1) UDP scan (7) TCP FIN scan

 (2) TCP connect() (8) TCP ACK sweep

 (3) TCP SYN (half open) (9) Xmas Tree (FIN, URG, PSH flags set)

 (4) ftp proxy (bounce attack) (10) TCP SYN sweep

 (5) Reverse-Identification (11) IP Protocol

 (6) ICMP (ping sweep) (12) Null Scan (FIN, URG, PSH, RST, ACK,SYN

flags not set)

nmap uses the following scan techniques:

 NS HS12 6

• TCP ACK Scan: may be useful to get past packet filters

(believes it is a response to a request from inside a firewall), if

one receives a RESET, one knows that this port is open

through the firewall.

• FTP Bounce Scan: request a server to send a file to a victim

machine inside its network (most servers though, have this

service disabled).

• UDP Scan: if receive ICMP Port Unreachable, it assumes that

port closed, otherwise open. (Unreliable).

• Ping Sweep: can use ICMP or TCP packets to identify active

hosts within the target network.

Scanning: ports open/closed (2)

 NS HS12 7

Additional goals of a network scan:

 ! Decoys: insert false IP addresses in scan packets.

 ! Ping Sweeps: identify active hosts on a target network.

 ! Find RPCs: connect to each open port looking for common

RPC services (send a NULL RPC commands).

Scanning: ports open/closed (3)

 NS HS12 8

Goal # 3: Operating System Detection

Why: To determine which Operating System is in use in order to

 exploit known vulnerabilities.

How: With nmap you examine how the OS manipulates specific

 parameters of a TCP-packet. Also known as TCP stack

 fingerprinting. It takes advantage of the ambiguity of how to

 handle illegal combinations of TCP code bits that is found in the

 RFCs. Experience teaches that each OS responds to illegal

 combinations in different ways. Therefore one determines the

 OS by examining the system's responses.

Scanning: OS detection (1)

 NS HS12 9

Scanning: OS detection (2)

Examples:

 ! Window Size: most *ix OS keep the same window size

throughout a session. Windows OS tend to change the window

size during a session.

 ! Time to Live (TTL): FreeBSD or Linux typically use 64;

Windows OS typically uses 128.

 ! Do Not Fragment Flag: most OS leave this flag set, OpenBSD

leaves it unset.

nmap: OS detection

 NS HS12 10

nmap uses the following OS detection techniques:

! TCP/IP fingerprinting

! stealth scanning

! dynamic delay and retransmission calculations

! parallel scanning (-Pn)

! detection of down hosts via parallel pings

! decoy scanning

! port filtering detection

! direct (non-port mapper) RPC scanning

! fragmentation scanning

! flexible target and port specification.

 NS HS12 11

Goal # 4: Vulnerability Assessment

Why: To determine what known (or unknown?) vulnerabilities

 exist on a given network

 Vulnerabilities come from:
 ! Default configuration weaknesses

 ! Configuration errors

 ! Security holes in specific versions of applications and

 protocols
 ! Failure to download security patches!

Scanning: vulnerability assessment

 NS HS12 12

Vulnerability checkers consists of:
 ! Database of known vulnerabilities

 ! Configuration tool

 ! Scanning engine

 ! Knowledge base of current scan

 ! Report generation tool

Scanning: vulnerability checkers

 NS HS12 13

Purpose: “A software which will audit remotely a given network and

 determine whether bad guys (aka 'crackers') may break

 into it, or misuse it in some way.”

Available platforms: UNIX for client and server

 Windows for client only

Available at:

Vulnerability checker tool: Nessus (Metasploit)

http://www.nessus.org/
http://www.nessus.org/
http://www.nessus.org/

 NS HS12 14

(1) It iteratively tests if a target system (or systems) is vulnerable to known

exploits.

(2) It uses a separate plug-in (written in C or in Nessus scripting language)

for each security test the user wants to execute.

(3) It can test multiple hosts concurrently.

(4) It produces a thorough vulnerability assessment report at the conclusion

of the vulnerability scan.

What does Nessus (Metasploit) do?

 NS HS12 15

 ! Backdoors

 ! CGI abuses

 ! Denial of Service

 ! Finger abuses

 ! FTP

 ! Gain a shell remotely

 ! Gain root remotely

 ! Port scanners

 ! Remote file access

 ! RPC

 ! SMTP problems

 ! Useless services

 ! Windows loopholes

 ! and more...

What does Nessus check for?

 NS HS12 16

Traffic shaping and Intrusion Detection Systems (IDS)

 NS HS12 17

Traffic shaping

Traditional firewall is a binary system:

 ! Allow traffic or disallow traffic

Traffic shaping is a more subtle technique:

 ! it limits certain kinds of traffic;

 ! it can differentiate by host address, by protocol, etc.;

 ! Multi-Protocol Label Switching (MPLS):

 Label traffic flows at the edge of the network and let core

routers identify the required class of service.

With traffic shaping one can solve a fastidious problem known on

every school's campus:

 ! P2P file sharing takes a lot of bandwidth;

 ! On average 1/3 of a university's network bandwidth is

 consumed by BitTorrent (you know what I mean …).

 NS HS12 18

Academic computer users' patterns

Stanford University (2003)

 NS HS12 19

Traffic shaping functions

1. Classify and analyze traffic:
 Classify by IP address and port number

 Use application-specific information (layer 7)

2. Control traffic:
 Selectively slow certain classes of traffic

3. Monitor network performance:
 Collect performance data, used to improve policies

4. Network resilience:
 Active traffic management can provide resilience to DoS attacks,

at least within the enterprise network

 NS HS12 20

Physical

Network

Data Link

Transport

Session

Presentation

Application

P
ac

ke
tS

h
ap

e
r

M
o

st
 R

o
u

te
rs

Sw

it
ch

e
s

1

7

6

5

4

3

2

Classify more than 400 apps at OSI Layers 2-7

Peer-to-Peer Apps:

• Aimster

• AudioGalaxy

• CuteMX

• DirectConnect

• Gnutella

• Hotline

• iMesh

• KaZaA/Morpheus

• Napster

• ScourExchange

• Tripnosis….

Some Other Apps:

• H.323

• RTP-I/RTCP-I

• PASV FTP

• HTTP

• Real

• WinMedia

• Shoutcast

• MPEG

• Quicktime

• RTSP

• Chatting Apps

• Games

PacketShaper classification

 NS HS12 21

PacketShaper controls

A partition:

 ! Creates a virtual pipe within a link for `each
 traffic class;

 ! Provides a minimal and maximal
 bandwidth for each class;

 ! So it enables an efficient bandwidth's use

Rate shaped P2P capped at

300kbps

Rate shaped HTTP/SSL

to give better performance

 NS HS12 22

PacketShaper report: HTTP

Outside Web Server Normalized Network Response Times

Inside Web Server Normalized Network Response Times

No Shaping Shaping

No Shaping Shaping

 NS HS12 23

Host and network intrusion detection

Intrusion prevention:

1. Network firewall:

 ! Restrict flow of packets (see firewall slides);

2. System security:

 ! Find buffer overflow vulnerabilities and remove them!

Intrusion detection:

1. Discover system modifications:

 ! Tripwire

2. Look for attack in progress:

 ! Network traffic patterns

 ! System calls, other system events

 NS HS12 24

Tripwire

Standard modus operandi of a cracker's attack:

a) Gain user access to system;

b) Gain root access;

c) Replace system binaries to set up backdoor;

d) Use backdoor for future activities.

Tripwire detects an attack by examining the system's binaries:

 ! It computes hash of key system binaries;

 ! it compares the actual hash to the hash it stored earlier;

 ! It reports a problem if the hash is different;

 ! It stores the reference hash codes on a read-only medium.

 NS HS12 25

How to outsmart Tripwire

Cracker's attack with a new twist:

1. Gain access;

2. Install backdoor:

This can be stored in main memory, not on disk!!

3. Use it.

What can Tripwire do in this case?

 ! Not much because this attack doesn’t change the system files
stored on the hard disk!

 ! Nevertheless using Tripwire is always a good idea.

 ! It detects a compromised system's file after the attack has
happened.

 NS HS12 26

Can use system-call monitoring techniques. For example (see Wagner,

Dean; IEEE Security and Privacy Conf. 2001):

 ! Build automaton of expected (typical) system calls

– Can be done automatically from source code.

 ! Monitor system calls from each program;

 ! Compare with automaton and eventually catch violation.

How to detect modified binary in memory

 NS HS12 27

Code's example and its relevant automaton

g
e

te
u

id
()

Entry(f) Entry(g)

Exit(f) Exit(g)

open()

close()

exit()

g
e

tu
id

()

If code behavior is inconsistent with the automaton then something is wrong.

 NS HS12 28

General intrusion detection

Many intrusion detection systems that are available, are

roughly divided in three categories: (i) Network-based,

(ii) host-based, or (iii) a combination of (i) and (ii).

Two basic models:
 ! Misuse detection model:

• Maintain data on known attacks;

• Look for activity with corresponding signatures.

 ! Anomaly detection model:

• Try to figure out what is “normal” (hard) and then

• Report anomalous behavior

Fundamental problem: too many false alarms.

http://www.snort.org/

 NS HS12 29

Example of misuse that leads to detection: rootkit

A typical rootkit sniffs networks for passwords:
– It is a collection of programs that allow attacker to install and

operate a packet sniffer (on Unix machines).

rootkit attack:
– Use stolen password or dictionary attack to get access as a

legitimate user;

– Get root access using vulnerabilities in rdist, sendmail,
/bin/mail, loadmodule, rpc.ypupdated (NIS Network
Information Service data base), lpr, or passwd.

– Via ftp the rootkit is uploaded to the host, unpacked, compiled,
and installed.

– It then collects more username/password pairs and then moves
on.

 NS HS12 30

Rootkit covers its tracks

Modifies
– Modified binaries hide the new files used by

– Modified login allows attacker to return for fishing new passwords

Rootkit fools simple Tripwire checksum
– Modified binaries have the same checksum as the correct one.

– But a better hash than MD5 would make a rootkit attack more difficult
(e.g. SHA-1024).

 NS HS12 31

Detecting rootkit on system

Not the best way:
– Disk is full of sniffer logs.

Manual confirmation:
– Reinstall a clean version of ps and see what processes are

running.

Automatic detection:
– rootkit does not alter the data structures normally used by

netstat, ps, ls, du, ifconfig only their output is faked;

– Thus a host-based intrusion detection can find rootkit files, as
long as an update version of rootkit does not disable your
intrusion detection system …

 NS HS12 32

Detecting network attack (Sept. 2003)

Symantec honeypot running Red Hat Linux 9.

Attack

– Samba ‘call_trans2open’ Remote Buffer Overflow (BID 7294)

– Attacker installed a copy of the SHV4 Rootkit

Snort NIDS generated alerts against this attack from its standard rule

signature:

More info: Symantec030929-Analysis-SHV4Rootkit.pdf on the course's webpage.

 NS HS12 33

Misuse's example: port sweep

Attacks can be OS specific:
– Bugs in specific OS implementations can be exploited to mount an

attack;

– Oversights in default configuration's files open a path that can be
easily exploited.

Attacker sweeps network to find vulnerabilities:
– Port sweep tries many ports on many IP addresses

– If the characteristic behavior is detected, then it mounts an attack
• SGI IRIX responds to TCPMUX port (TCP on port 1)

• If a machine responds, then SGI IRIX vulnerabilities can be tested
and used to break in

Port sweep activity is easily detected.

 NS HS12 34

Anomaly (1) : usage of resources

Basic idea:
 ! Monitor network traffic, system calls;

 ! Compute statistical properties;

 ! Report errors if statistics lies outside an empirical established
 range.

Example: IDES (Denning, SRI)
 ! For each user, store the daily count of certain activities

• E.g., Fraction of hours spent reading email.

 ! Maintain a list of counts for several days;

 ! Report anomaly if count is outside weighted norm.

The crux is that the most unpredictable user is the most dangerous.

 NS HS12 35

Build traces during normal run of program:

Example of program's (good) behavior (sys
calls),

Sample traces are stored in file (as 4-calls
sequences):

Report anomaly if for example the following
sequence is observed:

Compute # of mismatches to get mismatch rate.

(See papers of Hofmeyr, Somayaji, Forrest)

Profile Model/Pattern

Acceptable

Illegal

Discrepancy

Match

S
ta

tis
tic

a
l

S
tru

c
tu

ra
l

Anomaly (2): sys calls' sequences

 NS HS12 36

Lack of training data:
 ! Lots of “normal” network and system call data but too little data

 containing realistic attacks, anomalies

Data drift:
 ! Statistical methods are used to detect changes in behavior

 ! That means that the cracker can attack gradually and
 incrementally thus defeating a statistical analysis.

Main characteristics not well understood:
 ! By many measures, attack may be within bounds of “normal”

 range of activities

False positive are very costly:
! System administrators spend many hours examining bogus

 evidence.

Difficulties in intrusion detection

 NS HS12 37

Test over two-week period:
 ! AFIWC’s (US Air Force Information Warfare Center)

 intrusion detectors at 100 AFBs alarmed on 2 million
 sessions

 ! Manual review identified 12,000 suspicious events

 ! Further manual review) four actual incidents

Conclusion:
 ! Most alarms are false positives;

 ! Most true positives are trivial incidents;

 ! Of the significant incidents, most are isolated attacks to be
 dealt with locally.

See details in: www.blackhat.com/presentations/bh-usa-99/teresa-lunt/tutorial.ppt

Example: strategic intrusion assessment (Lunt 1999)

 NS HS12 38

Appendices

 NS HS12 39

Appendix A: How to attach a IDS in a LAN

 NS HS12 40

Appendix B: Packet analysis (1)

Goal: Capture and decode the header and body information used in different

 Internet protocols.

Why: The careful study of the packet flow in a network permits:

i. to understand whether all components work as expected and

ii. to detect anomalies in the traffic due to an attack on the system.

How:

• Wireshark for both Unices and Windows: www.wireshark.org

• On Linux: tcdump

http://www.wireshark.org/

 NS HS12 41

The packet list pane

displays a summary of

each packet captured.

The packet details pane

displays the packet

selected in the list pane

with more details.

The packet bytes pane

displays the ASCII data

from the selection in

the first pane.

Appendix B: Packet analysis (2)

 NS HS12 42

Appendix B: Packet analysis (3)

