
1

INFORMATION SECURITY LTD

New attacks against
framed web pages

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP T +44 (0)207 537 7515 F +44 (0)207 537 1071 W www.contextis.co.uk

Paul Stone
(stone@contextis.co.uk)

14th April 2010

Next Generation
Clickjacking

White Paper

2

Abstract

Clickjacking is a term first introduced by Jeremiah Grossman and Robert Hansen
in 2008 to describe a technique whereby cross-domain attacks are performed
by ‘hijacking’ user-initiated mouse clicks to perform actions that the user did
not intend1. In this paper, I will explore other ways a user can be tricked into
interacting with a framed web page, that could allow an attacker to inject
arbitrary text into forms and extract content from a web page. I will also show a
new technique that allows information leaked from an iframe to be used for login
detection and many other purposes.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.ukT +44 (0)207 537 7515 F +44 (0)207 537 1071

White Paper / Next Generation Clickjacking

3

Introduction

The clickjacking technique was introduced in 2008 by Robert Hansen and
Jeremiah Grossman as a way to perform cross-domain attacks by ‘hijacking’
user-initiated mouse clicks to perform actions that the user did not intend

1
. To

achieve this, an attacker will choose a clickable region on a website that the user
is currently authenticated on (e.g. a ‘Submit’ button that will perform a particular
action). To perform the attack, a malicious website will load a page from the
website inside an iframe, using CSS to hide all except the targeted region of
the page. The targeted region may either be displayed so that it appears to be
part of the attacker’s site, a technique known as user interface (or UI) redressing;
alternatively it may be made fully transparent and layered on top of another
element on the site. JavaScript may also be used to position the iframe under the
mouse cursor, such that the user will click on the target no matter where they click
on the malicious page.

Various changes to web browser behaviour have been suggested to
automatically prevent clickjacking attacks

2
. However, these methods have not

been implemented by any major browser vendor as they are deemed tricky to
implement effectively without breaking some legitimate uses of iframes. Therefore,
the responsibility of protecting users from clickjacking attacks has fallen to website
authors who must use either JavaScript or the X-Frame-Options HTTP

3
 header in

order to prevent their sites being loaded in iframes. The NoScript Firefox add-on
provides automatic clickjacking protection for individual users.

High profile, in the wild clickjacking attacks have so far been limited to ‘nuisance’
viral worms, targeting social sites such as Twitter

4
 and Facebook

5
. It is not known

whether more malicious attacks are taking place, although a recent automated
survey of over a million websites suggests that clickjacking attacks are not currently
widespread

6
.

It has been suggested that clickjacking will not become a popular tool for
attackers until vulnerabilities such as Cross-Site Scripting (XSS) and Cross-Site-
Request Forgery (CSRF) become less widespread in websites or are mitigated
by browsers

7
. If a website is vulnerable to either XSS or CSRF, then clickjacking (as

described above) is not necessary.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

Figure 1
A normal web page and three
ways in which it can be used for
a clickjacking attack

T +44 (0)207 537 7515 F +44 (0)207 537 1071

White Paper / Next Generation Clickjacking

4

Basic Clickjacking

A typical clickjacking attack uses two nested iframes to crop and position an
element from a target website. The inner iframe contains the target page and
must be large enough to display it in its entirety, such that the element on which
the user will click is visible without scrolling. The outer iframe is much smaller and
acts as a window onto the page loaded in the inner iframe. For a UI redressing
attack, the outer iframe should only be large enough to display the targeted
element. For an attack using JavaScript and a moving invisible iframe, the outer
iframe may be even smaller (e.g. 10-20 pixels square).

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

Step 1
A page (inner.html) with a large
iframe is created, containing the
target site

Step 2
The iframe is positioned so that
the click target is at the top left
of the page

Step 3
inner.html is loaded into a small
iframe on clickjack.html. Here it
can be positioned, layered on
top of other elements, or made
to follow the mouse cursor

T +44 (0)207 537 7515 F +44 (0)207 537 1071

White Paper / Next Generation Clickjacking

5

The following HTML snippets show two iframes that will be referred to in examples
throughout this paper:

Positioning Methods

In order to carry out a successful clickjacking attack, the targeted element (e.g.
a button) must be carefully positioned. The inner iframe must be placed such
that the element appears in the top left of inner.html. For example, if the element
appears at the coordinates (400, 100) the inner iframe could be positioned with
CSS as follows:

However, on pages that contain dynamic content, the position of a target
element may vary: content at the top of a page may push a click target further
down a page. If the inner iframe is positioned based on fixed coordinates and
the target page changes, then the user will click on a different part of the page,
missing the target.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

#inner { position: absolute; left: -400px; top: -100px }

Figure 4
An announcement box pushes
a button further down a page.
The red highlights show where
the text box and button would
have been.

<iframe id=”inner” src=”http://www.victim.com” width=”1000” height=”3000”
scrolling=”no” frameborder=”none”></iframe>

<iframe id=”outer” src=”inner.html” width=”20” height=”20” scrolling=”no”
frameborder=”none”></iframe>

T +44 (0)207 537 7515 F +44 (0)207 537 1071

Figure 2
inner.html

Figure 3
clickjack.html

White Paper / Next Generation Clickjacking

6

Using pixel coordinates to position a target can also be inaccurate due to other
factors, such as rendering differences between browsers and differing fonts
between platforms.

A solution to this problem is to use URL fragment identifiers
8
 to position anchor

elements in the inner iframe. Anchors and URL fragments are commonly used
together to link to a particular section of text within an HTML document. When
a URL containing a fragment identifier is loaded, a browser will scroll the page
so that the anchor is at the top of the viewport

9
. An anchor can be created in

two ways, either by adding a ‘name’ attribute to an ‘a’ tag, or by adding an ‘id’
attribute to any element:

Although the <a name> method is often used only for static documents, websites
use ID attributes for various purposes, including CSS styling and JavaScript
integration. HTML forms will often have an ID attribute on every element, including
text fields and buttons.

For example, the ‘Save’ button on Wikipedia’s ‘Edit article’ page has an ID of
‘wpSave’. By loading the edit page into the inner iframe, and adding #wpSave
on the end of the URL, the browser will scroll the outer iframe so that the button is
visible.

Although scrollbars are disabled on both the inner and outer iframes, browsers will
still ‘scroll’ the content of the iframes both horizontally and vertically, in order to
make an anchor element visible.

Fragment positioning and pixel positioning may be combined if anchors are not
present on the exact elements that are to be clicked. For example, a button may
be at the bottom of a variable length page, 200 pixels above a footer that has
an ID attribute. The page could be loaded with the footer fragment ID. The inner
iframe can then be moved up by 200 pixels to make the button visible.

An alternative to using CSS for pixel positioning is to use the scrollTo and scrollBy
methods to scroll the outer iframe. The scrollBy method can be used to perform
relative positioning after fragment positioning has been used.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

 - http://www.example.org/page.html#foo
<div id=”foo”> - http://www.example.org/page.html#foo

<iframe src=”http://en.wikipedia.org/w/index.php?title=Clickjacking&action=ed
it#wpSave” width=”130” height=”34” scrolling=”no”></iframe>

T +44 (0)207 537 7515 F +44 (0)207 537 1071

Figure 5
Two types of page anchor, both
can be referenced with a URL
fragment identifier

Figure 6
A click target positioned using
a fragment identifier

7

Clickjacking and Cross-Site Request Forgery

Clickjacking allows an attacker to bypass CSRF protections put in place by a
website. The user is tricked into submitting a form directly from the website itself, so
there is no need for the attacker to know hidden or secret values in the form, such
as CSRF tokens.

However, clickjacking as it has currently been used is more limited than CSRF. Only
clicks can be directed into a form, so while checkboxes and submit buttons can
be clicked, an attacker cannot manipulate text fields. This is not a problem in
some situations, since CSRF can often be used to prime a form with data, requiring
only a single click to submit it. For example, the Twitter ‘Don’t Click’ clickjacking
worm took advantage of a feature that allows the status field to be prefilled by
passing a URL parameter:

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

http://www.twitter.com/?status=foo

T +44 (0)207 537 7515 F +44 (0)207 537 1071

Figure 7
Pages will often have many
elements with IDs

8

Many applications implement CSRF protection in a way that makes clickjacking
straightforward. Often the CSRF token is checked as part of the form validation
routine. If any field is invalid, (including the CSRF token), the form will be
redisplayed with all the data provided, along with a valid CSRF token.

Many web applications do implement CSRF protection in a way that also prevents
traditional clickjacking. In order to find a way to manipulate text fields, we must
look at other ways in which a user can interact with a website.

Text Field Injection

All major desktop browsers allow drag-and-drop to be used as a way to move
data around. Drag-and-drop is often used as an alternative to copy and paste, as
it can be performed using a simple mouse gesture rather than menus or keyboard
shortcuts. For example, text on a page can be selected and then dragged into a
text field.

Most browsers support the drag-and-drop API (application programming
interface), which was standardised as part of HTML5

10
. The API allows JavaScript

on a web page to set data at the beginning of a drag operation, and allows
dropped data to be read.

Drag-and-drop is not restricted by the ‘same-origin policy’
11
 that prevents a

website from accessing data belonging to another domain. Data can be
dragged freely from a website on one domain to another website. Browsers allow
this because drag-and-drop operations must always be initiated by a user gesture,
and cannot be started by JavaScript.

Despite these security precautions, drag-and-drop can be combined with
clickjacking techniques to create a powerful new attack that allows arbitrary text
to be entered into forms on another domain. The steps to carry out the attack are
as follows:

1.	A malicious website persuades a user to start dragging an item on the web
page.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

Figure 8
The Bugzilla issue tracker
prevents CSRF but makes
clickjacking easy

T +44 (0)207 537 7515 F +44 (0)207 537 1071

9

2.	When the drag is started, the drag-and-drop API is used to set the drag data to
the required text.

3.	Once the drag has started, an invisible iframe is placed underneath the mouse
cursor. The iframe contains a form on another website, positioned such that the
mouse cursor is over a text field.

4.	When the user drops the item, the attacker controlled text is entered into the
form field.

These steps would be repeated for each text field as necessary, followed by a final
click to submit the form. For more technical information on the events that are
used to perform these steps, see Appendix 1 – Useful JavaScript Events.

A drag gesture is more complex to perform than a simple click, so a little more
effort may be required to persuade a user to carry out the above steps. However,
the attack could be presented under many different guises, including moving a
slider or scrollbar, dragging products to a shopping cart or even moving pieces in
a puzzle game. Since the attacker controls the position of both the drag source
and drag target, the direction and distance of the drag does not matter. Provided
the user drags the mouse at least a few pixels and releases the mouse button over
the malicious page, the attack will succeed.

This technique can be used in many situations where CSRF protection prevents the
use of traditional clickjacking. It can also be used as a ‘stepping-stone’ for other
types of attack that would have previously been difficult or impossible to carry out.
For example, a site may be vulnerable to DOM (Document Object Model) based
XSS’

12
 through text entered into a search field. If the text can only be entered

‘manually’ then drag-and-drop could be used to deliver the XSS payload.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

Figure 9
A drag followed by a click
allows text to be injected into a
form which is then submitted

T +44 (0)207 537 7515 F +44 (0)207 537 1071

10

Content Extraction

A page cannot read the content of an iframe if it was loaded from a different
domain, due to the same-origin policy. However, the drag-and-drop technique
described above can be reversed in order to steal content and data from a
framed website.

In order to extract content from a web page, we must first identify which items can
be dragged. By default, all links and images on a page are draggable. When an
image or link is dropped onto a page, it will be converted into a URL. While URLs
are usually static, they will sometimes contain ‘secret’ data such as a document
ID, a security token or data that could identify a user.

While URLs can be interesting, the textual content of a web page will often be
much more valuable. It is possible to make arbitrary regions of any web page
draggable, by creating a text selection. Selections are created by performing the
same mouse gesture that is used for drag-and-drop operations - the mouse button
is held down in one area of the page, moved until the desired content has been
selected, and then released.

By using clickjacking techniques, an attacker can use an arbitrary user-initiated
drag gesture to select a particular region of a framed web page. A second drag
would then be used to extract the selection from the framed page and drop it
onto the attacker’s page.

The steps to carry this out are as follows:

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

Script Actions

1. An invisible iframe is made to follow
the user’s mouse cursor.

2. The document is positioned inside
the iframe so that the mouse is over the
area where the selection is to begin.

4. The inner document is repositioned so
that the mouse is over the area where
the selection is to finish.

7. The document is positioned so that
the mouse is over the selected area.

9. The script may examine the content
of the dropped data by calling the
getData method.

User Actions

3. Begins a drag gesture, by holding
down the mouse button.

5. Moves the mouse (by at least one
pixel), creating a selection between the
two points.

6. Releases the mouse button and
moves the mouse outside of the iframe.

8. Performs a drag gesture, dragging
the selection from inside the iframe
and dropping it on the attacker’s
document.

T +44 (0)207 537 7515 F +44 (0)207 537 1071

11

From the user’s point of view, the above steps require only two drag operations.
The start and end positions of the drags are not important, as the attacker can
control both the position of the iframe and the document inside it. If an attacker
can engage a user in a task that requires many drag operations (e.g. a sliding
block puzzle game), the content of many web pages could be extracted.

Traditional clickjacking attacks must be typically aimed at web applications to
which the attacker has access, so that the position of the required clicks can
be determined and tested. The content extraction technique could be used
in situations where the attacker knows the address of a web page but does
not know its content, for example, a leaked intranet URL or an authenticated
document. By using the steps above a selection of any size may be made, so it
makes sense for an attacker to select the entire page. For an unknown document,
an attacker can make a reasonable guess at the position to start dragging a
selection (e.g. the top left of a page). The end point of the selection does not
matter; if the user finishes dragging the selection well below the bottom of the
page, the entire document will usually be selected.

This technique can also be used against documents rendered using browser plug-
ins, for example, PDF documents.

HTML Source Extraction

The content extraction technique as described will extract the visible content of a
web page in plain text. While valuable and sensitive information may be gained
using this method, the HTML source code of a web page will often contain further
information of interest to an attacker.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

Figure 10
Content dragged from an
iframe is extracted as plain text

T +44 (0)207 537 7515 F +44 (0)207 537 1071

12

All major browsers implement rich text editing capabilities which are used for
applications such as webmail and document editing. An editable area may be
made by setting the designMode property of an HTML document or by setting the
contentEditable attribute of any HTML element

13
. Once enabled, a user may edit

any HTML in these areas.

When a selection from an HTML document is dragged or pasted into an editable
HTML area, the browser will first serialise the DOM of the selected content in the
source document, and then recreate the elements inside the editable area. A
script may access the source code of the editable area by reading its innerHTML
property.

The steps to extract the HTML source for a page are identical to those in the
previous section, except that in the final step, the script should position an invisible
editable area underneath the cursor as the user drags the selection out of the
iframe.

To view examples of the data can be extracted using this method, see the figures
below. A simple HTML document was created, containing simple elements,
inline scripts and a form with both hidden and visible fields. The entire page was
selected using the mouse, then dragged to an editable HTML area. This was
repeated in different browsers, and the resulting HTML source was extracted.

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

<!DOCTYPE html>
<html>
<head>
<title>HTML Drag Test</title>
<script>var a = ‘inside head’;</script>
</head>
<body>
<script>var b = ‘inside body, before visible content’;</script>
<h1>HTML Test</h1>
<script>document.write(‘<p>Written by script</p>’);</script>
<form action=”xyz”>
<input type=”hidden” value=”secret”>
<input type=”text” name=”foo” value=”bar”>
<input type=”submit” value=”Go”>
</form>
<script>var c = ‘inside body’;</script>
<p id=”an-id” class=”a-class” nonstandard=”attribute”>Content at end of body</p>
<hr>
<script>var d = ‘at end of body’</script>
</body>
</html>

Figure 11
The rendered HTML document

Figure 12
The original HTML source

T +44 (0)207 537 7515 F +44 (0)207 537 1071

13

In Internet Explorer and Firefox, all content between the first and last visible
elements was copied, including hidden form fields and the content of script tags.
Script tags at the very beginning and end of the document and content in the
head tag were not copied. In Chrome (and other WebKit based browsers) only
visible content was copied, although attributes on those elements including IDs,
classes and URLs were copied. In all browsers, elements that have been created
dynamically are also copied.

The source of an HTML document may contain several items of interest to an
attacker. Many web applications implement CSRF protection by including a
hidden field in each form. The value of the hidden field is a random token that
cannot be guessed by an attacker. However, if this token is stolen, the CSRF
protection is effectively broken. If the CSRF token is reusable, an attacker may
perform a fully automated CSRF attack consisting of many page requests. For
example, if a reusable CSRF token for a webmail application were stolen an
attacker could send emails from the user’s account or forward emails in the user’s
inbox to the attacker’s email address.

In addition to CSRF tokens, a document may contain sensitive URLs and various
other sensitive data within HTML attributes.

The Firefox browser allows a second kind of HTML source theft. The view-source
pseudo-protocol can be used to load the HTML source text of a document instead
of rendering it visually. Any document may be loaded into an iframe using the
view-source protocol. For example, instead of loading http://www.example.
com inside the iframe, the URL view-source:http://www.example.com would be

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

<h1>HTML Test</h1> <script>document.write(‘<p>Written by script</p>’);</
script><p>Written by script</p> <form action=”xyz”> <input value=”secret”
type=”hidden”> <input name=”foo” value=”bar” type=”text”> <input value=”Go”
type=”submit”> </form> <script>var c = ‘inside body’;</script> <p id=”an-id” class=”a-
class” nonstandard=”attribute”>Content at end of body</p> <hr>

<H1>HTML Test</H1>
<SCRIPT>document.write(‘<p>Written by script</p>’);</SCRIPT>

<P>Written by script</P>
<FORM action=xyz><INPUT value=secret type=hidden> <INPUT value=bar name=foo>
<INPUT value=Go type=submit> </FORM>
<SCRIPT>var c = ‘inside body’;</SCRIPT>

<P id=an-id class=a-class nonstandard=”attribute”>Content at end of body</P>

<h1>HTML Test</h1><p>Written by script</p><form action=”http://example.com/
xyz”><input type=”text” name=”foo” value=”bar”> <input type=”submit”
value=”Go”></form><p id=”an-id” class=”a-class” nonstandard=”attribute”>Content
at end of body</p><div>
</div>

T +44 (0)207 537 7515 F +44 (0)207 537 1071

Figure 13
Copied source, Firefox 3.6.2

Figure 14
Copied source, Internet Explorer
8.0.6001.18702

Figure 15
Copied source, Chrome
5.0.342.8 beta

14

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

loaded instead. Although the same-origin policy is enforced (preventing script
access to the content of the frame) an attacker may obtain the source using
the same content extraction method as described above. This method has the
benefit that the entire HTML source may be obtained, including the head element.
Additionally, the document is a static text file, so no JavaScript is run. This defeats
any script-based anti-framing code that is included on the page.

Forced Drag-and-Drop with Java Applets

When combined with clickjacking techniques, drag-and-drop can allow for
interesting new techniques, as has been seen with the text field injection and
content extraction methods. However, drag-and-drop gestures require the user to
perform actions not commonly used in normal browsing. The minimum required
interaction to perform a drag-and-drop operation is a mouse down event,
followed by a mouse move event, followed by a mouse up.

Java provides a much richer drag-and-drop API than is implemented by web
browsers

14
, and allows the standard behaviour to be overridden. The API contains

a MouseDragGestureRecogniser class that observes mouse events and triggers
a drag event when the correct mouse gesture is performed. An unprivileged
Java applet may override this class, changing the type of interaction that is
required to begin a drag operation. For example, a drag may be initiated by only
a mouse down event. When the mouse button is released, the drop operation
is completed, causing attacker controlled text to be inserted into any text field
underneath the user’s cursor. This allows a drag-and-drop event to be forced as a
result of a normal click.

If Java is available in a browser, the text field injection technique can be simplified
to require only mouse clicks, instead of drag gestures.

The Java drag-and-drop API may be further abused, by initiating a drag-and-
drop operation with no user interaction whatsoever. This is possible even when
the mouse cursor is not over the applet. If the user’s mouse button is not held
down when the drag operation begins, the drop will complete immediately. A
script on an attacker’s web page can coordinate with a Java applet to fill several

Figure 16
An iframe containing a
document loaded using
view-source, inside Firefox

T +44 (0)207 537 7515 F +44 (0)207 537 1071

15

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

form fields on another domain, without user interaction. The page script would
use an invisible iframe to position each text field in turn underneath the mouse
cursor, using the applet to initiate a drop for each field. Only a final click would be
required to submit the form.

The Java API also allows any mouse cursor to be displayed during the drag-and-
drop operation. By using a default mouse cursor instead of the standard ‘drag’
mouse cursor, the user is given no visual indication what is going on.

This technique allows many form fields to be filled without user interaction, giving
rise to many new types of attack. For example, an attacker could add a new
default shipping address to a user’s account on a shopping website, filling in
several form fields automatically and requiring just a single click to save the
address.

The forced drag-and-drop method has been tested using version 6 of the Sun
Java Runtime on Windows and the version 5 of the MacOS X Java Runtime. On
Linux, a real drag gesture is still required to complete a drop.

Anchor Element Position Detection

Browser based attacks such as clickjacking, CSRF and XSS usually require a
victim to be authenticated to a particular web application in order to succeed.
An attacker will often wish to know whether a user is authenticated against a
particular application before carrying out an attack. For techniques such as
clickjacking, where successful exploitation requires user interaction, an attacker
will want to maximise the effectiveness of every mouse click or movement. For
example, a number of webmail services may be vulnerable to clickjacking, but a
user may be authenticated to only one. The chances of a successful attack will be
increased by targeting only the application to which the user is authenticated.

Many browser based login detection techniques have been described, including
timing based attacks

15
, and loading authenticated resources such as style sheets

16

or images
17
. However, these methods are highly dependent on the implementation

of each application. The technique described below is more general and can be
easily adapted for almost any web application.

The fragment identifier positioning method described earlier can be used to leak
information about a page loaded in an iframe. Two iframes are used to position a
document for a clickjacking attack – an iframe containing the target document is
contained within a smaller iframe that acts as a window onto a particular element.
When a URL containing a fragment identifier is loaded in the inner iframe, the
browser will scroll the corresponding anchor into view. However, the inner iframe
is large (big enough to fit the entire content of the target document) and cannot
be scrolled. Therefore it is the smaller, outer iframe that is scrolled. The content of
the outer iframe belongs to the attacker’s domain, allowing its scroll position to
be read by JavaScript. If the loaded URL has a fragment identifier that does not
correspond to an anchor on the page, then the scroll position of the iframe will not
change.

This behaviour is consistent across all major browsers, including Internet Explorer,
Firefox, Chrome and Safari.

T +44 (0)207 537 7515 F +44 (0)207 537 1071

16

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

This technique can be used to perform login detection by checking for
the presence of a particular element that exists only on authenticated (or
unauthenticated) pages. For example, web applications will often redirect to a
login screen if a URL that requires authentication is loaded.

The Google Account login page has the IDs ‘Email’ and ‘Passwd’. An attacker
could attempt to load an authenticated page such as https://www.google.com/
accounts/ManageAccount, and then check for the presence of one or both of
these IDs to determine if the login screen was loaded in the iframe.

While this technique is well suited for aiding a clickjacking attack due to the use
of iframes, it can be used in many other situations that are beyond the scope
of this paper. One such example is a document repository that allows complex
search queries to be performed. If the search results page has a footer element
with an ID, then the length of the page can be determined. By performing search
queries for different terms (e.g. ‘starts with a’, ‘starts with b’, ‘starts with ab’), an
automated script could determine how many documents match a particular
search. A binary search would eventually reveal the titles of documents within the
system.

Clickjacking Defences

While a number of new techniques have been described in this paper, they
can mostly be defeated by the same methods that protect against traditional
clickjacking.

Frame-busting
18
 was the first technique that was recommended to counter

clickjacking attacks. A page using this method will detect that is has been framed
by another web site, and attempt to load itself in place of the site that is framing
it (thus ‘busting out’ of the frame). However, a malicious site may try to use the
onunload and onbeforeunload page events to prevent a framed site from
navigating to a different URL

19
.

An alternative to frame-busting is for a page to simply hide or obscure its content
if it detects that it is being framed. Both Twitter and Facebook now use this
approach. When framed, Twitter will hide its content and attempt to frame-bust.
Facebook takes a slightly different approach by placing a semi-transparent
overlay over its page, and will frame-bust when the page is clicked.

var outer = document.getElementById(‘outer’);
var inner = outer.contentWindow.document.getElementById(‘inner’);
inner.src = ‚http://www.victim.com/myprofile#username‘;
var x, y;

if (‘scrollX’ in inner.contentWindow) {
 x = inner.contentWindow.scrollX;
 y = inner.contentWindow.scrollY;
} else {
 x = inner.contentWindow.document.documentElement.scrollLeft;
 x = inner.contentWindow.document.documentElement.scrollTop;
}

Figure 17 - Determining the position of an anchor element

T +44 (0)207 537 7515 F +44 (0)207 537 1071

Figure 17
Determining the position of an
anchor element

17

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

No JavaScript based method of clickjacking protection should be deemed
100 percent effective

20
, and as a result browser vendors are now implementing

declarative methods such as X-Frame-Options
3
, first introduced by Microsoft in

Internet Explorer 8. Web browsers that support this security feature will prevent
a web page being displayed in an iframe if the X-Frame-Options header is set
by the page. In order to protect older browsers that do not support this feature,
it is advisable for sites to use X-Frame-Options in addition to JavaScript-based
methods.

Conclusion

Traditional clickjacking is a powerful technique, but there are many situations in
which it cannot be used. The methods described in this paper – text field injection,
content extraction, HTML source extraction, forced drag-and-drop and anchor
leakage – build upon clickjacking and potentially pose a threat to many more
types of web application.

Figure 18
Framed Twitter and Facebook
pages, and a page using
X-Frame-Options in Internet
Explorer

T +44 (0)207 537 7515 F +44 (0)207 537 1071

18

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

About Context

Context Information Security is an independent security consultancy specialising in
both technical security and information assurance services

The company was founded in 1998. Its client base has grown steadily over the
years, thanks in large part to personal recommendations from existing clients who
value us as business partners. We believe our success is based on the value our
clients place on our product-agnostic, holistic approach; the way we work closely
with them to develop a tailored service; and to the independence, integrity and
technical skills of our consultants.

The company’s client base now includes some of the most prestigious blue chip
companies in the world, as well as government organisations.

The best security experts need to bring a broad portfolio of skills to the job, so
Context has always sought to recruit staff with extensive business experience as
well as technical expertise. Our aim is to provide effective and practical solutions,
advice and support: when we report back to clients we always communicate our
findings and recommendations in plain terms at a business level as well as in the
form of an in-depth technical report.

T +44 (0)207 537 7515 F +44 (0)207 537 1071

INFORMATION SECURITY LTD

19

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

Acknowledgements

Thanks to Robert Hansen (RSnake) and Jeremiah Grossman for their original
clickjacking research. Many thanks also go to my colleagues at Context who have
supported this research.

T +44 (0)207 537 7515 F +44 (0)207 537 1071

20

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

References

1.
Robert Hansen and Jeremiah Grossman. (2008, Sep.)
Explanation of Clickjacking. [Online].
http://www.sectheory.com/clickjacking.htm

2.
Michal Zalewski. (2008, September) Dealing with UI redress vulnerabilities inherent 			
to the current web, WHATWG Mailing List. [Online].
http://lists.whatwg.org/pipermail/whatwg-whatwg.org/2008-September/016284.html

3.
Eric Lawrence. (2009, January) IE8 Security Part VII: ClickJacking Defenses. [Online]. 			
http://blogs.msdn.com/ie/archive/2009/01/27/ie8-security-part-vii-clickjacking-defenses.aspx

4.
The Register. (2009, February) Twitter attack exposes awesome power of clickjacking [Online].
http://www.theregister.co.uk/2009/02/13/twitter_clickjack_attack/

5.
Joey Tyson. (2009, November) Facebook Worm Uses Clickjacking in the Wild. [Online].
http://theharmonyguy.com/2009/11/23/facebook-worm-uses-clickjacking-in-the-wild/

6.
Marco Balduzzi, Manuel Egele, Davide Balzarotti, Engin Kirda, and Christopher Kruegel,
“A Solution for the Automated Detection of Clickjacking Attacks,” in ASIACCS’10, Beijing.

7.
Jeremiah Grossman. (2009, June) Clickjacking 2017. [Online].
http://jeremiahgrossman.blogspot.com/2009/06/clickjacking-2017.html

8.
W3C. HTML 4.01 Specification, Introduction to links and anchors. [Online].
http://www.w3.org/TR/REC-html40/struct/links.html#anchors

9.
W3C. HTML5 Specification, Session history and navigation. [Online].
http://www.w3.org/TR/html5/history.html#scroll-to-fragid

10.
W3C. HTML5 Specification, Drag and Drop. [Online].
http://www.w3.org/TR/html5/editing.html#dnd

11.
Michal Zalewski. Browser Security Handbook. [Online].
http://code.google.com/p/browsersec/wiki/Part2#Same-origin_policy

12.
Amit Klein. (2005, July) DOM Based Cross Site Scripting. [Online].
http://www.webappsec.org/projects/articles/071105.html

13.
W3C. HTML5 Specification, The contenteditable attribute. [Online].
http://www.w3.org/TR/html5/editing.html#contenteditable

14.
Oracle. Drag and Drop Subsystem for the JavaTM 2 Platform Standard Edition 5.0. [Online].
http://java.sun.com/javase/6/docs/technotes/guides/dragndrop/spec/dnd1.html

T +44 (0)207 537 7515 F +44 (0)207 537 1071

21

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

15.
Andrew Bortz, Dan Boneh, and Palash Nandy, “Exposing Private Information by Timing Web
Applications,” in WWW 2007, Banff, Alberta, Canada, pp. 621-628.

16. Chris Evans. (2008, August) Cross-domain leaks of site logins. [Online].
http://scarybeastsecurity.blogspot.com/2008/08/cross-domain-leaks-of-site-logins.html

17.
Jeremiah Grossman. (2008, March) Login Detection, whose problem is it? [Online].
http://jeremiahgrossman.blogspot.com/2008/03/login-detection-whose-problem-is-it.html

18.
Wikipedia. Framekiller. [Online].
http://en.wikipedia.org/wiki/Framekiller

19.
coderrr. (2009, February) Preventing Frame Busting and Click Jacking (UI Redressing). [Online].
http://coderrr.wordpress.com/2009/02/13/preventing-frame-busting-and-click-jacking-ui-
redressing/

20.
Mozilla Bugzilla. IFRAME inside designMode disables JavaScript, breaking current clickjacking
defenses. [Online].
https://bugzilla.mozilla.org/show_bug.cgi?id=519928

T +44 (0)207 537 7515 F +44 (0)207 537 1071

22

Context Information Security Ltd 4th Floor, 30 Marsh Wall, London E14 9TP W www.contextis.co.uk

White Paper / Next Generation Clickjacking

Appendix 1 – Useful JavaScript Events

The following events are useful for clickjacking, text field injection and content
extraction.

focus – In Internet Explorer, the focus event will be fired on an iframe when the
user clicks the mouse on it, or holds down the mouse button at the start of a drag
operation.

blur – This is used to detect iframe focus in browsers other than Internet Explorer.
The blur event will be fired on the document object when another document
or window receives focus. The blur event should be used in conjunction with the
mouseover and mouseout in order to determine whether the mouse is over the
iframe when focus is lost (i.e. whether the user clicked in the iframe or elsewhere)

After an iframe has been focused by a user, the document that contains the
iframe will not receive any more focus or blur events until the iframe loses focus.
In order to detect multiple clicks in an iframe, a script can call window.focus() to
regain focus.

dragStart – Used for text field injection. The dataTransfer.setData method can be
used to set the text that will be entered into the text field

dragOver – Can be used for both text field injection and content extraction. The
event contains the position of the mouse and can be used to update the position
of a visual item being dragged, or to place an invisible drop target underneath
the mouse cursor.

dragEnd – This is fired when a drag operation completes or is cancelled, even
in another document. When used with the mouseover and mouseout events, a
script can determine whether a drop occurred over an iframe or elsewhere. This is
handy when performing text field injection.

drop – This is fired when the user drops an item (e.g. selection dragged from an
iframe) on a document . The dataTransfer.getData method can be used to
retrieve the plain text of the dropped content. Scripts that wish to access dropped
data as HTML should wait for the drop event before accessing the innerHTML
attribute of the designMode document or contentEditable element onto which it
was dropped.

mousemove – This is fired every time the mouse is moved and can be used to
keep an invisible iframe placed underneath the mouse cursor. Internet Explorer
will also fire this event on a containing document when the user is dragging a
selection inside an iframe, while the mouse is moving outside the bounds of the
iframe. Other browsers do not send any mouse events to a parent document while
a selection is being dragged inside an iframe.

onload – The onload event will fire on an iframe when the document inside it has
loaded.

T +44 (0)207 537 7515 F +44 (0)207 537 1071

